301
|
Ji H, Zhang K, Pan G, Li C, Li C, Hu X, Yang L, Cui H. Deoxyelephantopin Induces Apoptosis and Enhances Chemosensitivity of Colon Cancer via miR-205/Bcl2 Axis. Int J Mol Sci 2022; 23:5051. [PMID: 35563442 PMCID: PMC9099879 DOI: 10.3390/ijms23095051] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 12/24/2022] Open
Abstract
Colon cancer (CC) is one of the major causes of cancer death in humans. Despite recent advances in the management of CC, the prognosis is still poor and a new strategy for effective therapy is imperative. Deoxyelephantopin (DET), extracted from an important medicinal plant, Elephantopus scaber L., has been reported to exhibit excellent anti-inflammatory and -cancer activities, while the detailed anti-cancer mechanism remains unclear. Herein, we found that DET showed a significant CC inhibiting effect in vitro and in vivo without obvious organ toxicity. Mechanistically, DET inhibited CC cells and tumor growth by inducing G2/M phase arrest and subsequent apoptosis. DET-mediated cell cycle arrest was caused by severe DNA damage, and DET decreased the Bcl2 expression level in a dose-dependent manner to promote CC cell apoptosis, whereas restoring Bcl2 expression reduced apoptosis to a certain extent. Moreover, we identified a microRNA complementary to the 3'-UTR of Bcl2, miR-205, that responded to the DET treatment. An inhibitor of miR-205 could recover Bcl2 expression and promoted the survival of CC cells upon DET treatment. To further examine the potential value of the drug, we evaluated the combinative effects of DET and 5-Fluorouracil (5FU) through Jin's formula and revealed that DET acted synergistically with 5FU, resulting in enhancing the chemotherapeutic sensitivity of CC to 5FU. Our results consolidate DET as a potent drug for the treatment of CC when it is used alone or combined with 5FU, and elucidate the importance of the miR-205-Bcl2 axis in DET treatment.
Collapse
Affiliation(s)
- Haoyan Ji
- State Key Laboratory of Silkworm Genome Biology, Medical Research Institute, Southwest University, Chongqing 400715, China; (H.J.); (K.Z.); (G.P.); (C.L.); (C.L.); (X.H.); (H.C.)
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Kui Zhang
- State Key Laboratory of Silkworm Genome Biology, Medical Research Institute, Southwest University, Chongqing 400715, China; (H.J.); (K.Z.); (G.P.); (C.L.); (C.L.); (X.H.); (H.C.)
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Guangzhao Pan
- State Key Laboratory of Silkworm Genome Biology, Medical Research Institute, Southwest University, Chongqing 400715, China; (H.J.); (K.Z.); (G.P.); (C.L.); (C.L.); (X.H.); (H.C.)
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Changhong Li
- State Key Laboratory of Silkworm Genome Biology, Medical Research Institute, Southwest University, Chongqing 400715, China; (H.J.); (K.Z.); (G.P.); (C.L.); (C.L.); (X.H.); (H.C.)
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Chongyang Li
- State Key Laboratory of Silkworm Genome Biology, Medical Research Institute, Southwest University, Chongqing 400715, China; (H.J.); (K.Z.); (G.P.); (C.L.); (C.L.); (X.H.); (H.C.)
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Xin Hu
- State Key Laboratory of Silkworm Genome Biology, Medical Research Institute, Southwest University, Chongqing 400715, China; (H.J.); (K.Z.); (G.P.); (C.L.); (C.L.); (X.H.); (H.C.)
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Liqun Yang
- State Key Laboratory of Silkworm Genome Biology, Medical Research Institute, Southwest University, Chongqing 400715, China; (H.J.); (K.Z.); (G.P.); (C.L.); (C.L.); (X.H.); (H.C.)
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Medical Research Institute, Southwest University, Chongqing 400715, China; (H.J.); (K.Z.); (G.P.); (C.L.); (C.L.); (X.H.); (H.C.)
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
| |
Collapse
|
302
|
Wang S, Gao CZ, Liu X, Wu FG, Han X. Long-Chain Poly-d-Lysines Interact with the Plasma Membrane and Induce Protective Autophagy and Intense Cell Necrosis. Bioconjug Chem 2022; 33:938-947. [PMID: 35442635 DOI: 10.1021/acs.bioconjchem.2c00153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Polylysines have been frequently used in drug delivery and antimicrobial and cell adhesion studies. Because of steric hindrance, chirality plays a major role in the functional difference between poly-l-lysine (PLL) and poly-d-lysine (PDL), especially when they interact with the plasma membranes of mammalian cells. Therefore, it is speculated that the interaction between chiral polylysines and the plasma membrane may cause different cellular behaviors. Here, we carefully investigated the interaction pattern of PLL and PDL with plasma membranes. We found that PDL could be anchored onto the plasma membrane and interact with the membrane lipids, leading to the rapid morphological change and death of A549 cells (a human lung cancer cell line) and HPAEpiCs (a human pulmonary alveolar epithelial cell line). In contrast, PLL exhibited good cytocompatibility and was not anchored onto the plasma membranes of these cells. Unlike PLL, PDL could trigger protective autophagy to prevent cells in a certain degree, and the PDL-caused cell death occurred via intense necrosis (featured by increased intracellular Ca2+ content and plasma membrane disruption). In addition, it was found that the short-chain PDL with a repeat unit number of 9 (termed DL9) could locate in lysosomes and induce autophagy at high concentrations, but it could not elicit drastic cell death, which proved that the repeat unit number of polylysine could affect its cellular action. This research confirms that the interaction between chiral polylysines and the plasma membrane can induce autophagy and intense necrosis, which provides guidance for the future studies of chiral molecules/drugs.
Collapse
Affiliation(s)
- Shujing Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, National Demonstration Center for Experimental, Biomedical Engineering Education, Southeast University, Nanjing 210096, China
| | - Cheng-Zhe Gao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, National Demonstration Center for Experimental, Biomedical Engineering Education, Southeast University, Nanjing 210096, China
| | - Xiaoyang Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, National Demonstration Center for Experimental, Biomedical Engineering Education, Southeast University, Nanjing 210096, China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, National Demonstration Center for Experimental, Biomedical Engineering Education, Southeast University, Nanjing 210096, China
| | - Xiaofeng Han
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, National Demonstration Center for Experimental, Biomedical Engineering Education, Southeast University, Nanjing 210096, China
| |
Collapse
|
303
|
M P A, Pardhiya S, Rajamani P. Carbon Dots: An Excellent Fluorescent Probe for Contaminant Sensing and Remediation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105579. [PMID: 35001502 DOI: 10.1002/smll.202105579] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/08/2021] [Indexed: 06/14/2023]
Abstract
Pollution-induced degradation of the environment is a serious problem for both developing and developed countries. Existing remediation methods are restricted, necessitating the development of novel remediation technologies. Nanomaterials with unique characteristics have recently been developed for remediation. Quantum dots (QDs) are semiconductor nanoparticles (1-10 nm) with optical and electrical characteristics that differ from bigger particles owing to quantum mechanics, making them intriguing for sensing and remediation applications. Carbon dots (CDs) offer better characteristics than typical QDs, such as, CdSe QDs in terms of contaminant sensing and remediation. Non-toxicity, chemical inertness, photo-induced electron transfer, good biocompatibility, and adjustable photoluminescence behavior are all characteristics of CDs. CDs are frequently made from sustainable raw materials as they are cost-effective, environmentally compactable, and excellent in reducing waste generation. The goal of this review article is to briefly describe CDs fabrication methods, to deeply investigate the criteria and properties of CDs that make them suitable for sensing and remediation of contaminants, and also to highlight recent advances in their use in sensing and remediation of contaminants.
Collapse
Affiliation(s)
- Ajith M P
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sonali Pardhiya
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Paulraj Rajamani
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
304
|
Xing W, Wen C, Wang D, Shao H, Liu C, He C, Olatunji OJ. Cardiorenal Protective Effect of Costunolide against Doxorubicin-Induced Toxicity in Rats by Modulating Oxidative Stress, Inflammation and Apoptosis. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072122. [PMID: 35408518 PMCID: PMC9000510 DOI: 10.3390/molecules27072122] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 11/16/2022]
Abstract
Doxorubicin (DXB) is one of the most commonly used anticancer agents for treating solid and hematological malignancies; however, DXB-induced cardiorenal toxicity presents a limiting factor to its clinical usefulness in cancer patients. Costunolide (COST) is a naturally occurring sesquiterpene lactone with excellent anti-inflammatory, antioxidant and antiapoptotic properties. This study evaluated the effect of COST on DXB-induced cardiorenal toxicity in rats. Rats were orally treated with COST for 4 weeks and received weekly 5 mg/kg doses of DXB for three weeks. Cardiorenal biochemical biomarkers, lipid profile, oxidative stress, inflammatory cytokines, histological and immunohistochemical analyses were evaluated. DXB-treated rats displayed significantly increased levels of lipid profiles, markers of cardiorenal dysfunction (aspartate aminotransferase, creatine kinase, lactate dehydrogenase, troponin T, blood urea nitrogen, uric acid and creatinine). In addition, DXB markedly upregulated cardiorenal malondialdehyde, tumor necrosis factor-α, interleukin-1β, interleukin-6 levels and decreased glutathione, superoxide dismutase and catalase activities. COST treatment significantly attenuated the aforementioned alterations induced by DXB. Furthermore, histopathological and immunohistochemical analyses revealed that COST ameliorated the histopathological features and reduced p53 and myeloperoxidase expression in the treated rats. These results suggest that COST exhibits cardiorenal protective effects against DXB-induced injury presumably via suppression of oxidative stress, inflammation and apoptosis.
Collapse
Affiliation(s)
- Wen Xing
- Department of Gerontology, Wannan Medical College Affiliated Yijishan Hospital, Wuhu 241001, China; (W.X.); (D.W.)
| | - Chaoling Wen
- Anhui Traditional Chinese Medicine College, Wuhu 241001, China;
| | - Deguo Wang
- Department of Gerontology, Wannan Medical College Affiliated Yijishan Hospital, Wuhu 241001, China; (W.X.); (D.W.)
| | - Hui Shao
- Department of Clinical Laboratory, East China Normal University Affiliated Wuhu Hospital, Wuhu 241001, China;
| | - Chunhong Liu
- The Second Peoples Hospital of Wuhu City, Wuhu 241001, China;
| | - Chunling He
- Department of Endocrinology, Wannan Medical College Affiliated Yijishan Hospital, Wuhu 241001, China
- Correspondence: (C.H.); (O.J.O.)
| | - Opeyemi Joshua Olatunji
- Traditional Thai Medical Research and Innovation Center, Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat Yai 90110, Thailand
- Correspondence: (C.H.); (O.J.O.)
| |
Collapse
|
305
|
Wu L, Zhang S, Zhang Q, Wei S, Wang G, Luo P. The Molecular Mechanism of Hepatic Lipid Metabolism Disorder Caused by NaAsO 2 through Regulating the ERK/PPAR Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6405911. [PMID: 35320977 PMCID: PMC8938049 DOI: 10.1155/2022/6405911] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/22/2022] [Accepted: 02/28/2022] [Indexed: 11/18/2022]
Abstract
Chronic arsenic exposure is a risk factor for human fatty liver disease, and the ERK signaling pathway plays an important role in the regulation of liver lipid metabolism. However, whether ERK plays a role in the progression of arsenic-induced liver lipid metabolism disorder and the specific mechanism remain unclear. Here, by constructing a rat model of liver lipid metabolism disorder induced by chronic arsenic exposure, we demonstrated that ERK might regulate arsenic-induced liver lipid metabolism disorders through the PPAR signaling pathway. Arsenic could upregulate the expression of PPARγ and CD36 in the rat liver, decrease the expression of PPARα and CPT-1 in the rat liver, increase the organ coefficient of the rat liver, decrease the content of TG in rat serum, and promote fat deposition in the rat liver. In the arsenic-induced rat model of hepatic lipid metabolism disorder, we found that the expression of p-ERK was increased. In order to further explore whether the ERK signaling pathway was involved in arsenic-induced liver lipid metabolism disorder, we exposed L-02 cells to different arsenic concentrations, and the results showed that arsenic significantly increased the expression of P-ERK in L-02 cells in a dose-dependent manner. We further treated L-02 cells with ERK inhibitors and found that the expression of TG, PPARα, and CPT-1 in L-02 cells increased, while the expression of P-ERK, PPARγ, and CD36 decreased. In conclusion, ERK may be involved in arsenic-induced liver lipid metabolism disorder by regulating the PPAR signaling pathway. These findings are expected to provide a new targeting strategy for arsenic-induced liver lipid metabolism disorder.
Collapse
Affiliation(s)
- Liping Wu
- The Affiliated Hospital of Guizhou Medical University & Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- Guizhou Provincial Engineering Research Center of Food Nutrition and Health, Guizhou Medical University, Guiyang 550025, China
| | - Shuling Zhang
- The Affiliated Hospital of Guizhou Medical University & Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- Guizhou Provincial Engineering Research Center of Food Nutrition and Health, Guizhou Medical University, Guiyang 550025, China
| | - Qi Zhang
- The Affiliated Hospital of Guizhou Medical University & Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- Guizhou Provincial Engineering Research Center of Food Nutrition and Health, Guizhou Medical University, Guiyang 550025, China
| | - Shaofeng Wei
- The Affiliated Hospital of Guizhou Medical University & Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- Guizhou Provincial Engineering Research Center of Food Nutrition and Health, Guizhou Medical University, Guiyang 550025, China
| | - Guoze Wang
- The Affiliated Hospital of Guizhou Medical University & Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- Guizhou Provincial Engineering Research Center of Food Nutrition and Health, Guizhou Medical University, Guiyang 550025, China
| | - Peng Luo
- The Affiliated Hospital of Guizhou Medical University & Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- Guizhou Provincial Engineering Research Center of Food Nutrition and Health, Guizhou Medical University, Guiyang 550025, China
| |
Collapse
|
306
|
Shou X, Wang Y, Zhang X, Zhang Y, Yang Y, Duan C, Yang Y, Jia Q, Yuan G, Shi J, Shi S, Cui H, Hu Y. Network Pharmacology and Molecular Docking Analysis on Molecular Mechanism of Qingzi Zhitong Decoction in the Treatment of Ulcerative Colitis. Front Pharmacol 2022; 13:727608. [PMID: 35237152 PMCID: PMC8883437 DOI: 10.3389/fphar.2022.727608] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 01/10/2022] [Indexed: 12/12/2022] Open
Abstract
Ulcerative colitis (UC) is a disease with complex pathological mechanisms. We explored the potential molecular mechanisms behind the therapeutic functions of Qingzi Zhitong decoction (QZZTD) in the treatment of UC by network pharmacology and molecular docking. QZZTD is a formula of Chinese traditional medicine consisting of 10 herbs. The potential active ingredients of QZZTD and their target genes were obtained from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform database, and UC-related target genes were obtained from GeneCards and OMIM databases. A total of 138 co-identified target genes were obtained by plotting the intersection target Venn diagram, and then the STRING database and Cytoscape software were used to establish protein-protein interaction networks and herb-ingredient-target networks. Four key active compounds and nine key proteins were identified. Then, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses showed that the biological functions of potential target genes were associated with DNA transcription, signaling receptor and ligand activity, cytokine activity, cellular autophagy, and antioxidant pathways, with related pathways involving the phosphatidylinositol 3-kinase (PI3K)-Akt signaling pathway, advanced glycosylation end product (AGE)-RAGE signaling pathway, tumor necrosis factor (TNF) signaling pathway, and IL-17 signaling pathway. Moreover, the binding activities of key target genes and essential active compounds of Chinese herbal medicines in QZZTD were further validated by molecular docking. This demonstrated that quercetin, luteolin, hyndarin, and beta-sitosterol had good binding to eight key proteins, and Akt1 was the target protein with the best binding activity, suggesting that Akt1 could be the essential mediator responsible for signaling transduction after QZZTD administration. The rat experiment verified that QZZTD inhibited PI3K-Akt pathway activation and reduced inflammation in UC. In conclusion, our study suggested four potential key active components, including quercetin, were identified in QZZTD, which could interact with Akt1 and modulate the activation of the PI3K-Akt pathway. The other three pathways may also be involved in the signaling transduction induced by QZZTD in the treatment of UC.
Collapse
Affiliation(s)
- Xintian Shou
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Yumeng Wang
- Beijing University of Chinese Medicine, Beijing, China
| | - Xuesong Zhang
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, China
| | - Yanju Zhang
- National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Yan Yang
- National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Chenglin Duan
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Yihan Yang
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Qiulei Jia
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Guozhen Yuan
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, China
| | - Jingjing Shi
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, China
| | - Shuqing Shi
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Hanming Cui
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, China
| | - Yuanhui Hu
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, China
| |
Collapse
|
307
|
Mao J, Zhan H, Meng F, Wang G, Huang D, Liao Z, Chen M. Costunolide protects against alcohol-induced liver injury by regulating gut microbiota, oxidative stress and attenuating inflammation in vivo and in vitro. Phytother Res 2022; 36:1268-1283. [PMID: 35084790 DOI: 10.1002/ptr.7383] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/14/2021] [Accepted: 12/29/2021] [Indexed: 12/17/2022]
Abstract
Costunolide (cos) derived from the roots of Dolomiaea souliei (Franch.), which belongs to the Dolomiaea genus in the family Compositae, exert the anti-inebriation effect mainly by inhibiting the absorption of alcohol in the gastrointestinal tract. However, the protective effect of cos against alcohol-induced liver injury (ALI) remains obscure. The present study was aimed to evaluate the hepatoprotective effects of cos (silymarin was used as positive control) against ALI and its potential mechanisms. MTT was used to examine the effect of cos on the cell viability of L-02 cells. Plasma was separated from blood that used to test the levels of TNF-α, IL-6 and IL-12, and LPS while serum separated from blood which used to detect the level of ALT and AST. Liver tissues were obtained for histopathological examination and western blot analysis. Fresh mice feces samples were collected for the detection of bacterial composition. Cos exhibited protective effect against alcoholic-induced liver injury by regulating gut microbiota capacities (higher relative abundance of Firmicutes and Actinobacteria while lower in Bacteroidetes and Proteobacteria), adjusting oxidative stress (reduced the activities of MDA and ROS while promoted SOD, GSH and GSH-PX in L-02 cells) and attenuating inflammation (decreased the levels of ALT, AST, LPS, IL-6, IL-12 and TNF-α) via LPS-TLR4-NF-κB p65 signaling pathway, which might be an active therapeutic agent for treatment of ALI.
Collapse
Affiliation(s)
- Jingxin Mao
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Honghong Zhan
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Fancheng Meng
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Guowei Wang
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Dan Huang
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Zhihua Liao
- School of Life Sciences, Southwest University, Chongqing, China
| | - Min Chen
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| |
Collapse
|
308
|
Liu Z, Ling Q, Cai Y, Xu L, Su J, Yu K, Wu X, Xu J, Hu B, Wang X. Synthesis of carbon-based nanomaterials and their application in pollution management. NANOSCALE ADVANCES 2022; 4:1246-1262. [PMID: 36133685 PMCID: PMC9419251 DOI: 10.1039/d1na00843a] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/19/2022] [Indexed: 05/02/2023]
Abstract
With the fast development of industry, large amounts of organic and inorganic pollutants are inevitably released into the natural environment, which results in the pollution of the environment and are thereby dangerous to human health. The efficient elimination of these pollutants is crucial to environment protection and human health. The high sorption capacity of carbon-based materials and high photocatalytic ability of carbon-based composites result in the application of carbon-based materials in environmental pollution cleanup. In this review article, we summarized recent studies on the synthesis of carbon-based materials, and their application in the sorption of organic and inorganic pollutants, the photocatalytic degradation of organic pollutants, and the in situ photocatalytic reduction-solidification of heavy metal ions. The sorption method is useful to remove pollutants from aqueous solutions. The sorption-photocatalytic degradation of organic pollutants is applicable, especially at low concentrations, whereas the catalytic reduction of metal ions is the best method for the in situ immobilization of high valent metal ions under complicated conditions. The interaction mechanism is discussed using advanced spectroscopy analysis and theoretical calculations, and at the end the challenges in the future are described.
Collapse
Affiliation(s)
- Zhixin Liu
- School of Life Science, Shaoxing University Huancheng West Road 508 Shaoxing 312000 China
| | - Qian Ling
- School of Life Science, Shaoxing University Huancheng West Road 508 Shaoxing 312000 China
| | - Yawen Cai
- School of Life Science, Shaoxing University Huancheng West Road 508 Shaoxing 312000 China
| | - Linfeng Xu
- School of Life Science, Shaoxing University Huancheng West Road 508 Shaoxing 312000 China
| | - Jiahao Su
- School of Life Science, Shaoxing University Huancheng West Road 508 Shaoxing 312000 China
| | - Kuai Yu
- School of Life Science, Shaoxing University Huancheng West Road 508 Shaoxing 312000 China
| | - Xinyi Wu
- School of Life Science, Shaoxing University Huancheng West Road 508 Shaoxing 312000 China
| | - Jiayi Xu
- School of Life Science, Shaoxing University Huancheng West Road 508 Shaoxing 312000 China
| | - Baowei Hu
- School of Life Science, Shaoxing University Huancheng West Road 508 Shaoxing 312000 China
| | - Xiangke Wang
- School of Life Science, Shaoxing University Huancheng West Road 508 Shaoxing 312000 China
| |
Collapse
|
309
|
Jiang G, Sun C, Wang X, Mei J, Li C, Zhan H, Liao Y, Zhu Y, Mao J. Hepatoprotective mechanism of Silybum marianum on nonalcoholic fatty liver disease based on network pharmacology and experimental verification. Bioengineered 2022; 13:5216-5235. [PMID: 35170400 PMCID: PMC8974060 DOI: 10.1080/21655979.2022.2037374] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/17/2022] [Accepted: 01/29/2022] [Indexed: 12/12/2022] Open
Abstract
The study aimed to identify the key active components in Silybum marianum (S. marianum) and determine how they protect against nonalcoholic fatty liver disease (NAFLD). TCMSP, DisGeNET, UniProt databases, and Venny 2.1 software were used to identify 11 primary active components, 92 candidate gene targets, and 30 core hepatoprotective gene targets in this investigation, respectively. The PPI network was built using a string database and Cytoscape 3.7.2. The KEGG pathway and GO biological process enrichment, biological annotation, as well as the identified hepatoprotective core gene targets were analyzed using the Metascape database. The effect of silymarin on NAFLD was determined using H&E on pathological alterations in liver tissues. The levels of liver function were assessed using biochemical tests. Western blot experiments were used to observe the proteins that were expressed in the associated signaling pathways on the hepatoprotective effect, which the previous network pharmacology predicted. According to the KEGG enrichment study, there are 35 hepatoprotective signaling pathways. GO enrichment analysis revealed that 61 biological processes related to the hepatoprotective effect of S. marianum were identified, which mainly involved in response to regulation of biological process and immune system process. Silymarin was the major ingredient derived from S. marianum, which exhibited the hepatoprotective effect by reducing the levels of ALT, AST, TC, TG, HDL-C, LDL-C, decreasing protein expressions of IL-6, MAPK1, Caspase 3, p53, VEGFA, increasing protein expression of AKT1. The present study provided new sights and a possible explanation for the molecular mechanisms of S. marianum against NAFLD.
Collapse
Affiliation(s)
- Guoyan Jiang
- Department of Emergency, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chunhong Sun
- Department of Emergency, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaodong Wang
- Chongqing Medical and Pharmaceutical College, School of Clinical medicine, Chongqing, China
| | - Jie Mei
- Department of periodontal, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Chen Li
- Department of Biology, Chemistry, Pharmacy, Free University of Berlin, Berlin, Germany
| | - Honghong Zhan
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Yixuan Liao
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Yongjun Zhu
- Department of Orthopedics, The Ninth People’s Hospital of Chongqing, Chongqing, China
| | - Jingxin Mao
- Chongqing Medical and Pharmaceutical College, School of Clinical medicine, Chongqing, China
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
- College of Basic Medical Science, Southwest University, Chongqing, China
| |
Collapse
|
310
|
Glaucocalyxin B Attenuates Ovarian Cancer Cell Growth and Cisplatin Resistance In Vitro via Activating Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6324292. [PMID: 35251480 PMCID: PMC8896941 DOI: 10.1155/2022/6324292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/20/2022] [Accepted: 02/05/2022] [Indexed: 11/26/2022]
Abstract
Ovarian cancer is one of the fatal gynecological cancers around the world. Cisplatin is the first-line chemotherapy drug for the clinical treatment of ovarian cancer. However, many patients with ovarian cancer are still suffering from resistance to cisplatin. Therefore, the new drug combinations or treatment strategies for ovarian cancer are urgently needed. Glaucocalyxin B (GLB), a diterpenoid isolated from the aerial parts of Rabdosia japonica, has shown antitumor activity in some tumors. However, the mechanisms by which GLB inhibits ovarian cancer remain unclear. In the present study, we showed that GLB potently inhibits ovarian cancer cell growth in a dose-dependent manner. Furthermore, we found that GLB has a notably synergistic antitumor effect with cisplatin. Mechanistically, we found that GLB enhances the sensitivity of ovarian cancer cells to cisplatin via increasing reactive oxygen species (ROS) levels, the phosphorylation of c-Jun N-terminal kinase (JNK), and DNA damage. Interestingly, a synergistic inhibitory effect of GLB with cisplatin was also observed in the cells which were resistance to cisplatin. Together, these data suggest that GLB can sensitize ovarian cancer cells to cisplatin by increasing ROS levels.
Collapse
|
311
|
Liu F, Wang M, He Y, Song G, Zhao J. Smartphone-assisted ratiometric fluorescence sensing platform for the detection of doxycycline based on BCNO QDs and calcium ion. Mikrochim Acta 2022; 189:113. [PMID: 35190913 DOI: 10.1007/s00604-022-05224-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/09/2022] [Indexed: 10/19/2022]
Abstract
A novel colorimetric and ratiometric fluorescence sensor has been established based on boron carbon oxynitride quantum dots (BCNO QDs) and Ca2+ for the detection of doxycycline (DOX). BCNO QDs were synthesized by microwave-assisted method with boric acid and ethylenediamine. The fluorescence of BCNO QDs at 425 nm was quenched due to the electrostatic interaction and inner filter effect with doxycycline. Meanwhile, doxycycline was combined with Ca2+ to form a fluorescence complex, which generated a new fluorescence peak at 520 nm. The fluorescence intensity ratio (F520/F425) has a good linear relationship with doxycycline concentration, and the detection limit is 25 nM. Moreover, the fluorescence of the reaction solution showed a concentration-dependent visual color change from blue to green. In order to facilitate further application, a portable fluorescent test paper which is easy to store was prepared. The RGB values of the reaction solution and corresponding test paper were identified by smartphone, and the visual detection of doxycycline was performed by digital image colorimetric analysis. The application of smartphone and fluorescent test paper can effectively shorten the detection time and simplified the operation, providing an effective scheme for quantitative detection of doxycycline in actual samples. Overall, this work provides a method for the detection of doxycycline and shows that the BCNO QDs have great potential application in food safety.
Collapse
Affiliation(s)
- Fang Liu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China
| | - Manman Wang
- School of Public Health, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Yu He
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China.
| | - Gongwu Song
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China
| | - Junjian Zhao
- Department of Clinical Laboratory, North China University of Science and Technology Affiliated Hospital, Tangshan, 063000, Hebei, China
| |
Collapse
|
312
|
Yu Z, Ding Y, Zeng T, Zhao X, Zhang C. Hepatoprotective effect of diallyl trisulfide against lipopolysaccharide and D-galactosamine induced acute liver failure in mice via suppressing inflammation and apoptosis. Toxicol Res (Camb) 2022; 11:263-271. [PMID: 35510232 PMCID: PMC9052318 DOI: 10.1093/toxres/tfac005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/04/2022] [Accepted: 01/14/2022] [Indexed: 11/14/2022] Open
Abstract
Acute liver failure (ALF), characterized by the quick occurrence of disorder in liver, is a serious liver injury with extremely high mortality. Therefore, we investigated whether diallyl trisulfide (DATS), a natural product from garlic, protected against ALF in mice and studied underlying mechanisms. In the present study, lipopolysaccharide (LPS) (10 μg·kg-1)/D-galactosamine (D-gal) (500 mg·kg-1) was intraperitoneally injected to ICR mice to induce ALF. The mice were orally administered 20-, 40-, or 80-mg·kg-1 DATS) 1 h before LPS/D-gal exposure. Serum biochemical analyses and pathological study found that DATS pretreatment effectively prevented the ALF in LPS/D-gal-treated mice. Mechanistically, pretreatment of DATS inhibited the increase of the numbers of CD11b+ Kupffer cells and other macrophages in the liver, the release of tumor necrosis factor-α into the blood, and Caspase-1 activation induced by LPS/D-gal treatment in mice. Furthermore, DATS inhibited the activation of Caspase-3, downregulation of Bcl-2/Bax ratio, and increase of TUNEL positive staining. Altogether, our findings suggest that DATS exhibits hepatoprotective effects against ALF elicited by LPS/D-gal challenge, which probably associated with anti-inflammation and anti-apoptosis.
Collapse
Affiliation(s)
- Ziqiang Yu
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhua West Road, Jinan 250012, Shandong, China
| | - Yun Ding
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhua West Road, Jinan 250012, Shandong, China
| | - Tao Zeng
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhua West Road, Jinan 250012, Shandong, China
| | - Xiulan Zhao
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhua West Road, Jinan 250012, Shandong, China
| | - Cuili Zhang
- Corresponding author: Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhua West Road, Jinan 250012, Shandong, China.
| |
Collapse
|
313
|
Nguyen P, Doan P, Murugesan A, Ramesh T, Rimpilainen T, Candeias NR, Yli-Harja O, Kandhavelu M. GPR17 signaling activation by CHBC agonist induced cell death via modulation of MAPK pathway in glioblastoma. Life Sci 2022; 291:120307. [PMID: 35016881 DOI: 10.1016/j.lfs.2022.120307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/17/2021] [Accepted: 01/04/2022] [Indexed: 01/10/2023]
Abstract
AIM Glioblastoma multiforme (GBM) is the most common and aggressive primary adult brain tumor. GBM is characterized by a heterogeneous population of cells that are resistant to chemotherapy. Recently, we have synthesized CHBC, a novel indole derivative targeted to GBM biomarker G-protein-coupled receptor 17 and inhibitor of GBM cells. In this study, CHBC was further investigated to characterize the efficiency of this agonist at the molecular level and its underlying mechanism in GBM cell death induction. MATERIALS AND METHODS The effect of CHBC and TMZ was determined using time dependent inhibitor assay in glioblastoma cells, LN229 and SNB19. Drug induced cell cycle arrest was measured using PI staining followed by image analysis. The induction of apoptosis and mechanism of action of CHBC was studied using apoptosis, caspase 3/7 and mitochondrial membrane permeability assays. Modulation of the key genes involved in MAPK signaling pathway was also measured using immunoblotting array. KEY FINDINGS The inhibitory kinetic study has revealed that CHBC inhibited SNB19 and LN229 cell growth in a time-dependent manner. Furthermore, CHBC with the IC50 of 85 μM, mediated cell death through an apoptosis mechanism in both studied cell lines. The study also has revealed that CHBC targets GPR17 leading to the induction of apoptosis via the activation of Caspase 3/7 and dysfunction of mitochondrial membrane potential. In addition, CHBC treatment led to marked G2/M cell cycle arrest. The protein array has confirmed the anticancer effect of CHBC by the disruption of the mitogen-activated protein kinase pathway (MAPK). SIGNIFICANCE Taken together, these results demonstrated that CHBC induced G2/M cell cycle arrest and apoptosis by disrupting MAPK signaling in human glioblastoma cells. This study concludes that CHBC represent a class of compounds for treating glioblastoma.
Collapse
Affiliation(s)
- Phung Nguyen
- Molecular Signaling Lab, Faculty of Medicine and Health Technology, Tampere University, Tampere 33720, Finland; BioMeditech and Tays Cancer Center, Tampere University Hospital, P.O. Box 553, 33101 Tampere, Finland
| | - Phuong Doan
- Molecular Signaling Lab, Faculty of Medicine and Health Technology, Tampere University, Tampere 33720, Finland; BioMeditech and Tays Cancer Center, Tampere University Hospital, P.O. Box 553, 33101 Tampere, Finland
| | - Akshaya Murugesan
- Molecular Signaling Lab, Faculty of Medicine and Health Technology, Tampere University, Tampere 33720, Finland; Department of Biotechnology, Lady Doak College, Thallakulam, Madurai 625002, India
| | - Thiyagarajan Ramesh
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Tatu Rimpilainen
- Faculty of Engineering and Natural Sciences, Tampere University, 33101 Tampere, Finland
| | - Nuno R Candeias
- Faculty of Engineering and Natural Sciences, Tampere University, 33101 Tampere, Finland; LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Olli Yli-Harja
- Computational Systems Biology Group, Faculty of Medicine and Health Technology, Tampere University, P.O. Box 553, 33101 Tampere, Finland; Institute for Systems Biology, 1441N 34th Street, Seattle, WA 98103-8904, USA
| | - Meenakshisundaram Kandhavelu
- Molecular Signaling Lab, Faculty of Medicine and Health Technology, Tampere University, Tampere 33720, Finland; BioMeditech and Tays Cancer Center, Tampere University Hospital, P.O. Box 553, 33101 Tampere, Finland.
| |
Collapse
|
314
|
Sirwi A, Shaik RA, Alamoudi AJ, Eid BG, Elfaky MA, Ibrahim SRM, Mohamed GA, Abdallah HM, Abdel-Naim AB. Mokko Lactone Alleviates Doxorubicin-Induced Cardiotoxicity in Rats via Antioxidant, Anti-Inflammatory, and Antiapoptotic Activities. Nutrients 2022; 14:nu14040733. [PMID: 35215383 PMCID: PMC8880813 DOI: 10.3390/nu14040733] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 12/12/2022] Open
Abstract
Doxorubicin (DOX), a commonly utilized anthracycline antibiotic, suffers deleterious side effects such as cardiotoxicity. Mokko lactone (ML) is a naturally occurring guainolide sesquiterpene with established antioxidant and anti-inflammatory actions. This study aimed at investigating the protective effects of ML in a DOX-induced cardiotoxicity model in rats. Our results indicated that ML exerted protection against cardiotoxicity induced by DOX as indicated by ameliorating the rise in serum troponin and creatine kinase-MB levels and lactate dehydrogenase activity. Histological assessment showed that ML provided protection against pathological alterations in heart architecture. Furthermore, treatment with ML significantly ameliorated DOX-induced accumulation of malondialdehyde and protein carbonyl, depletion of glutathione, and exhaustion of superoxide dismutase and catalase. ML's antioxidant effects were accompanied by increased nuclear translocation of NF-E2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) expression. Moreover, ML exhibited significant anti-inflammatory activities as evidenced by lowered nuclear factor κB, interleukin-6, and tumor necrosis factor-α expression. ML also caused significant antiapoptotic actions manifested by modulation in mRNA expression of Bax, Bcl-2, and caspase-3. This suggests that ML prevents heart injury induced by DOX via its antioxidant, anti-inflammatory, and antiapoptotic activities.
Collapse
Affiliation(s)
- Alaa Sirwi
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.S.); (M.A.E.); (G.A.M.); (H.M.A.)
| | - Rasheed A. Shaik
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (R.A.S.); (A.J.A.); (B.G.E.)
| | - Abdulmohsin J. Alamoudi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (R.A.S.); (A.J.A.); (B.G.E.)
| | - Basma G. Eid
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (R.A.S.); (A.J.A.); (B.G.E.)
| | - Mahmoud A. Elfaky
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.S.); (M.A.E.); (G.A.M.); (H.M.A.)
- Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sabrin R. M. Ibrahim
- Department of Chemistry, Preparatory Year Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia;
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Gamal A. Mohamed
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.S.); (M.A.E.); (G.A.M.); (H.M.A.)
| | - Hossam M. Abdallah
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.S.); (M.A.E.); (G.A.M.); (H.M.A.)
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Ashraf B. Abdel-Naim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (R.A.S.); (A.J.A.); (B.G.E.)
- Correspondence: ; Tel.: +966-55-6814781
| |
Collapse
|
315
|
Li J, Nie Z, Fan Z, Li C, Liu B, Hua Q, Hou C. Biochemical Fulvic Acid Modification for Phosphate Crystal Inhibition in Water and Fertilizer Integration. MATERIALS 2022; 15:ma15031174. [PMID: 35161118 PMCID: PMC8840660 DOI: 10.3390/ma15031174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 02/04/2023]
Abstract
Biochemical fulvic acid (BFA), produced by organic wastes composting, is the complex organic matter with various functional groups. A novel modified biochemical fulvic acid (MBFA) which possessed stronger chelating ability had been synthesized by the grafting copolymerization of BFA and acrylic acid (AA). Results showed that MBFA effectively inhibited the crystallization of calcium phosphate and increased the concentration of phosphate in water solution. The optimum reaction conditions optimized by Box–Behnken design and response surface methodology were reaction temperature 69.24 °C, the mass of monomer to fulvic acid ratio 0.713, the initiator dosage 19.78%, and phosphate crystal-inhibition extent was 96.89%. IR spectra demonstrated AA was grafted onto BFA. XRD data and SEM images appeared the formation and growth of calcium phosphate crystals was effectively inhibited by MBFA.
Collapse
Affiliation(s)
- Jianyun Li
- School of Civil Engineering and Architecture, Zhengzhou University of Aeronautics, Zhengzhou 450046, China; (J.L.); (C.L.)
| | - Zihan Nie
- School of Chemical Engineering, National Center for Research and Popularization on Calcium, Magnesium, Phosphate & Compound Fertilizer Technology, Zhengzhou University, Zhengzhou 450001, China; (B.L.); (Q.H.); (C.H.)
- Correspondence:
| | - Zhao Fan
- School of Environmental Economics, Henan Finance University, Zhengzhou 450046, China;
| | - Chunguang Li
- School of Civil Engineering and Architecture, Zhengzhou University of Aeronautics, Zhengzhou 450046, China; (J.L.); (C.L.)
| | - Bingbing Liu
- School of Chemical Engineering, National Center for Research and Popularization on Calcium, Magnesium, Phosphate & Compound Fertilizer Technology, Zhengzhou University, Zhengzhou 450001, China; (B.L.); (Q.H.); (C.H.)
| | - Quanxian Hua
- School of Chemical Engineering, National Center for Research and Popularization on Calcium, Magnesium, Phosphate & Compound Fertilizer Technology, Zhengzhou University, Zhengzhou 450001, China; (B.L.); (Q.H.); (C.H.)
| | - Cuihong Hou
- School of Chemical Engineering, National Center for Research and Popularization on Calcium, Magnesium, Phosphate & Compound Fertilizer Technology, Zhengzhou University, Zhengzhou 450001, China; (B.L.); (Q.H.); (C.H.)
| |
Collapse
|
316
|
Liang YM, Yang H, Zhou B, Chen Y, Yang M, Wei KS, Yan XF, Kang C. Waste tobacco leaves derived carbon dots for tetracycline detection: Improving quantitative accuracy with the aid of chemometric model. Anal Chim Acta 2022; 1191:339269. [PMID: 35033278 DOI: 10.1016/j.aca.2021.339269] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 11/04/2021] [Accepted: 11/09/2021] [Indexed: 12/13/2022]
Abstract
The recycling and reutilization of biomass wastes are significant for environmental protection and sustainable development. Recently, there have many studies on utilizing biomass wastes to produce carbon dots. Whereas, the spectrum shift effect that occurs in the quantitative application of carbon dots as fluorescent probes limits the accuracy of the quantitative analysis. In this work, waste tobacco leaves were used as the carbon source for synthesizing a novel carbon dots (CDs(WTL)) through a facile hydrothermal method. The CDs(WTL) possess a series of excellent properties, including good water solubility, well stability, and high fluorescence quantum yield. The fluorescent intensity of the CDs(WTL) can be quenched by tetracycline (TC) obviously, but there is a spectrum shift. In order to use the CDs(WTL) as fluorescent probes to quantify TC with higher accuracy, a quantification fluorescence model (QFM) was introduced to overcome this spectrum shift effect that often occurs. The coefficient of determination (R2) of traditional quantification model (TQ), partial least squares (PLS), and QFM are 0.9672, 0.9834, and 0.9991, respectively; the average relative predictive error (ARPE) of TQ, PLS, and QFM are 8.8%, 4.5%, and 3.9% for the spiked water samples, and 21.9%, 22.0%, and 2.9% for spiked tablet samples, respectively. The obtained results suggest that QFM is more accurate than PLS and TQ for the TC detection. By utilizing QFM, the spike recoveries (mean ± standard deviation) in three kinds of real tablet samples produced by different manufacturers are 98.9 ± 3.6%, 102.5 ± 6.2%, and 98.5 ± 2.7%, respectively; the spike recovery in river water samples is 99.4 ± 5.0%. In addition, high performance liquid chromatography (HPLC) was used as a reference method, the F and t tests suggest that there are no significant differences on the precision and accuracy between QFM and HPLC methods.
Collapse
Affiliation(s)
- Yan-Mei Liang
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025, China
| | - Hui Yang
- Guizhou Academy of Tobacco Science, Guiyang, 550081, China
| | - Bo Zhou
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025, China
| | - Yang Chen
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025, China
| | - Min Yang
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025, China
| | - Ke-Su Wei
- Guizhou Academy of Tobacco Science, Guiyang, 550081, China
| | - Xiu-Fang Yan
- College of Tobacco Science, Guizhou University, Guiyang, 550025, China; Key Laboratory of Tobacco Quality Research of Guizhou Province, Guizhou University, Guiyang, 550025, China.
| | - Chao Kang
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
317
|
Wang Q, Wang Z, Pang B, Zheng H, Cao Z, Feng C, Ma W, Wei J. Probiotics for the improvement of metabolic profiles in patients with metabolic-associated fatty liver disease: A systematic review and meta-analysis of randomized controlled trials. Front Endocrinol (Lausanne) 2022; 13:1014670. [PMID: 36407321 PMCID: PMC9670148 DOI: 10.3389/fendo.2022.1014670] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVE This meta-analysis of randomized controlled trials (RCTs) was conducted to assess the efficacy of probiotics in the treatment of metabolic-associated fatty liver disease (MAFLD) mainly in terms of liver function, glucose and lipid metabolism, and inflammation. METHODS RCTs were searched on PubMed, Web of Science, Embase, and the Cochrane Library until June 2022. A meta-analysis was performed on the therapeutic efficacy of probiotics on liver function, glucose and lipid metabolism, and inflammatory biomarkers by using RevMan 5.4 software. RESULTS A total of 772 patients from 15 studies were included in the analysis. The methodological quality varied across studies. We found that adding probiotic therapies could reduce the levels of alanine aminotransferase [mean difference (MD): -11.76 (-16.06, -7.46), p < 0.00001], aspartate aminotransferase (MD: -9.08 (-13.60, -4.56), p < 0.0001], γ-glutamyltransferase [MD: -5.67 (-6.80, -4.54), p < 0.00001] and homeostasis model assessment-insulin resistance [MD: -0.62 (-1.08, -0.15), p = 0.01], in patients with MAFLD compared with those in control individuals. However, there was no statistically significant improvement in the levels of total cholesterol, triglycerides, low-density lipoprotein cholesterol, C-reactive protein and tumor necrosis factor α among patients with MAFLD. Subgroup analyses showed that other key factors, such as age, participants' baseline body mass index, and the duration of intervention, may influence probiotic therapy outcomes. CONCLUSION There is promising evidence that probiotic supplementation can reduce liver enzyme levels and regulate glycometabolism in patients with MAFLD. Further rigorous and long-term trials exploring these novel therapeutic perspectives are warranted to confirm these results.
Collapse
Affiliation(s)
- Qiuhong Wang
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Junping Wei, ; Qiuhong Wang,
| | - Ze Wang
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Boxian Pang
- Graduate school, Beijing University of Chinese Medicine, Beijing, China
| | - Huijuan Zheng
- Renal Research Institution of Beijing University of Chinese Medicine, and Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Zhengmin Cao
- Infections Disease Section, Guang’anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, China
| | - Chunpeng Feng
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenxin Ma
- Centre for Evidence-based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Junping Wei
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Junping Wei, ; Qiuhong Wang,
| |
Collapse
|
318
|
Wang F, Zhang J, Tang H, Pang Y, Ke X, Peng W, Chen S, Abbas MN, Dong Z, Cui Z, Cui H. Nup54-induced CARM1 nuclear importation promotes gastric cancer cell proliferation and tumorigenesis through transcriptional activation and methylation of Notch2. Oncogene 2022; 41:246-259. [PMID: 34725461 DOI: 10.1038/s41388-021-02078-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/27/2021] [Accepted: 10/11/2021] [Indexed: 11/09/2022]
Abstract
Gastric cancer (GC) has the fifth highest incidence globally, but its molecular mechanisms are not well understood. Here, we report that coactivator-associated arginine methyltransferase 1 (CARM1) is specifically highly expressed in gastric cancer and that its overexpression correlates with poor prognosis in patients with gastric cancer. Nucleoporin 54 (Nup54) was identified as a CARM1-interacting protein that promoted CARM1 nuclear importation. In the nucleus, CARM1 cooperates with transcriptional factor EB (TFEB) to activate Notch2 transcription by inducing H3R17me2 of the Notch2 promoter but not H3R26me2. Additionally, the Notch2 intracellular domain (N2ICD) was identified as a CARM1 substrate. Methylation of N2ICD at R1786, R1838, and R2047 by CARM1 enhanced the binding between N2ICD and mastermind-like protein 1 (MAML1) and increased gastric cancer cell proliferation in vitro and tumor formation in vivo. Our findings reveal a molecular mechanism linking CARM1-mediated transcriptional activation of the Notch2 signaling pathway to Notch2 methylation in gastric cancer progression.
Collapse
Affiliation(s)
- Feng Wang
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Beibei, Chongqing, 400716, China.,Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing, 400716, China
| | - Jiayi Zhang
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Beibei, Chongqing, 400716, China.,Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing, 400716, China
| | - Houyi Tang
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Beibei, Chongqing, 400716, China.,Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing, 400716, China
| | - Yi Pang
- Chongqing Engineering Research Center of Antitumor Natural Drugs, Chongqing Three Gorges Medical College, Chongqing, 404120, China
| | - Xiaoxue Ke
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Beibei, Chongqing, 400716, China.,Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing, 400716, China
| | - Wen Peng
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Beibei, Chongqing, 400716, China.,Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing, 400716, China
| | - Shitong Chen
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Beibei, Chongqing, 400716, China.,Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing, 400716, China
| | - Muhammad Nadeem Abbas
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Beibei, Chongqing, 400716, China.,Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing, 400716, China
| | - Zhen Dong
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Beibei, Chongqing, 400716, China.,Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing, 400716, China
| | - Zhaobo Cui
- Department of Intensive Care Unit, Harrison International Peace Hospital, Hengshui, 053000, Hebei, China.
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Beibei, Chongqing, 400716, China. .,Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing, 400716, China.
| |
Collapse
|
319
|
Dirir AM, Daou M, Yousef AF, Yousef LF. A review of alpha-glucosidase inhibitors from plants as potential candidates for the treatment of type-2 diabetes. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2022; 21:1049-1079. [PMID: 34421444 PMCID: PMC8364835 DOI: 10.1007/s11101-021-09773-1] [Citation(s) in RCA: 169] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 07/27/2021] [Indexed: 05/02/2023]
Abstract
UNLABELLED Diabetes mellitus is a multifactorial global health disorder that is rising at an alarming rate. Cardiovascular diseases, kidney damage and neuropathy are the main cause of high mortality rates among individuals with diabetes. One effective therapeutic approach for controlling hyperglycemia associated with type-2 diabetes is to target alpha-amylase and alpha-glucosidase, enzymes that catalyzes starch hydrolysis in the intestine. At present, approved inhibitors for these enzymes are restricted to acarbose, miglitol and voglibose. Although these inhibitors retard glucose absorption, undesirable gastrointestinal side effects impede their application. Therefore, research efforts continue to seek novel inhibitors with improved efficacy and minimal side effects. Natural products of plant origin have been a valuable source of therapeutic agents with lesser toxicity and side effects. The anti-diabetic potential through alpha-glucosidase inhibition of plant-derived molecules are summarized in this review. Eight molecules (Taxumariene F, Akebonoic acid, Morusin, Rhaponticin, Procyanidin A2, Alaternin, Mulberrofuran K and Psoralidin) were selected as promising drug candidates and their pharmacokinetic properties and toxicity were discussed where available. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s11101-021-09773-1.
Collapse
Affiliation(s)
- Amina M. Dirir
- Department of Chemistry, Khalifa University, Abu Dhabi, UAE
| | - Marianne Daou
- Department of Chemistry, Khalifa University, Abu Dhabi, UAE
| | - Ahmed F. Yousef
- Department of Chemistry, Khalifa University, Abu Dhabi, UAE
- Center for Membranes and Advances Water Technology, Khalifa University, Abu Dhabi, UAE
| | - Lina F. Yousef
- Department of Chemistry, Khalifa University, Abu Dhabi, UAE
| |
Collapse
|
320
|
Yu CC, Du YJ, Li J, Li Y, Wang L, Kong LH, Zhang YW. Neuroprotective Mechanisms of Puerarin in Central Nervous System Diseases: Update. Aging Dis 2022; 13:1092-1105. [PMID: 35855345 PMCID: PMC9286922 DOI: 10.14336/ad.2021.1205] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/05/2021] [Indexed: 12/15/2022] Open
Abstract
Due to global population aging and modern lifestyle changes, the incidence of central nervous system (CNS) disorders, such as neurodegenerative diseases, neuropsychiatric disorders, and cerebrovascular diseases, is increasing and has become a major public health challenge. Current medications commonly used in the clinic are far from satisfactory and may cause serious side effects. Therefore, the identification of novel drugs for the effective management of CNS diseases is very urgent. Puerarin, a highly bioactive ingredient isolated from Pueraria lobata, is known to possess a broad spectrum of pharmacological properties including anti-diabetic, anti-inflammatory, anti-antioxidant, neuroprotective, and cardioprotective features. However, its clinical application is limited due to its poor water solubility. Since puerarin has demonstrated a wide range of neuroprotective functions in various CNS diseases, such as Alzheimer’s disease, Parkinson’s disease, cerebral ischemia, depression, and spinal cord injury, it has been attracting increasingly intense attention worldwide. In this review, we intend to extensively summarize the research progress on neuroprotective mechanisms of puerarin in recent years and discuss the future directions of its application in CNS disease treatment.
Collapse
Affiliation(s)
- Chao-Chao Yu
- Department of Integrated Chinese and Western Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China.
| | - Yan-Jun Du
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hubei, China.
| | - Jin Li
- Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China.
| | - Yi Li
- Department of Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China.
| | - Li Wang
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hubei, China.
| | - Li-Hong Kong
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hubei, China.
| | - Ying-Wen Zhang
- Department of Integrated Chinese and Western Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China.
- Correspondence should be addressed to: Dr. Ying-Wen Zhang, Department of Integrated Chinese and Western Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China. E-mail:
| |
Collapse
|
321
|
Meisaprow P, Aksorn N, Vinayanuwattikun C, Chanvorachote P, Sukprasansap M. Caffeine Induces G0/G1 Cell Cycle Arrest and Inhibits Migration through Integrin αv, β3, and FAK/Akt/c-Myc Signaling Pathway. Molecules 2021; 26:7659. [PMID: 34946741 PMCID: PMC8706725 DOI: 10.3390/molecules26247659] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is recognized as a major cause of mortality worldwide owing to its metastatic activity. Given the lack of solid information regarding the possible effects of caffeine, one of the most consumed natural psychoactive substances, on molecular signaling pathways implicated in the aggressive behavior of lung cancer, our study aimed to evaluate the effect and mechanism of caffeine on metastasis-related mechanisms. The results revealed that caffeine treatment at concentrations of 0-500 µM caused no direct cytotoxic effects on NCI-H23 cells. Treatment of cells with caffeine showed good potential to inhibit cell proliferation at 48 h and induced significant cell cycle arrest at the G0/G1 phase. Concerning metastasis, caffeine was shown to reduce filopodia formation, inhibit migration and invasion capability, and reduce the ability of cancer cells to survive and grow in an anchorage-independent manner. Moreover, caffeine could attenuate the formation of 3D tumor spheroids in cancer stem cell (CSC)-enriched populations. With regard to mechanisms, we found that caffeine significantly altered the integrin pattern of the treated cells and caused the downregulation of metastasis-associated integrins, namely, integrins αv and β3. Subsequently, the downstream signals, including protein signaling and transcription factors, namely, phosphorylated focal adhesion kinase (p-FAK), phosphorylated protein kinase B (p-Akt), cell division cycle 42 (Cdc42), and c-Myc, were significantly decreased in caffeine-exposed cells. Taken together, our novel data on caffeine-inhibiting mechanism in relation to metastasis in lung cancer could provide insights into the impact of caffeine intake on human diseases and conditions.
Collapse
Affiliation(s)
- Pichitchai Meisaprow
- Graduate Student in Master of Science Program in Nutrition, Faculty of Medicine Ramathibodi Hospital and Institute of Nutrition, Mahidol University, Bangkok 10400, Thailand;
| | - Nithikoon Aksorn
- Department of Clinical Pathology, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok 10300, Thailand;
| | - Chanida Vinayanuwattikun
- Division of Medical Oncology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Pithi Chanvorachote
- Cell-Based Drug and Health Product Development Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Monruedee Sukprasansap
- Food Toxicology Unit, Institute of Nutrition, Mahidol University, Salaya Campus, Nakhon Pathom 73170, Thailand
| |
Collapse
|
322
|
Xu C, Huang X, Lei X, Jin Z, Wu M, Liu X, Huang Y, Zhao X, Xiong Y, Sun J, Duan X, Wang J. Costunolide-Induced Apoptosis via Promoting the Reactive Oxygen Species and Inhibiting AKT/GSK3β Pathway and Activating Autophagy in Gastric Cancer. Front Cell Dev Biol 2021; 9:722734. [PMID: 34869312 PMCID: PMC8633576 DOI: 10.3389/fcell.2021.722734] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022] Open
Abstract
Objective: Costunolide (Cos) is a sesquiterpene lactone extracted from chicory. Although it possesses anti-tumor effects, the underlying molecular mechanism against gastric cancer cells remains unclear. This study aimed to explore the effect and potential mechanism of Cos on gastric cancer. Methods: The effect of Cos on HGC-27 and SNU-1 proliferation was detected by CCK-8 and clone formation assay. The changes in cell apoptosis were determined using Hoechst 33258 and tunel staining. The morphology of autophagy was analyzed by autophagosomes with the electron microscope and LC3-immunofluorescence with the confocal microscope. The related protein levels of the cell cycle, apoptosis, autophagy and AKT/GSK3β pathway were determined by Western blot. The anti-tumor activity of Cos was evaluated by subcutaneously xenotransplanting HGC-27 into Balb/c nude mice. The Ki67 and P-AKT levels were examined by immunohistochemistry. Results: Cos significantly inhibited HGC-27 and SNU-1 growth and induced cell cycle arrest in the G2/M phase. Cos activated intrinsic apoptosis and autophagy through promoting cellular reactive oxygen species (ROS) levels and inhibiting the ROS-AKT/GSK3β signaling pathway. Moreover, preincubating gastric carcinoma cells with 3-methyladenine (3-MA), a cell-autophagy inhibitor, significantly alleviated the effects of Cos in inducing cell apoptosis. Conclusion: Cos induced apoptosis of gastric carcinoma cells via promoting ROS and inhibiting AKT/GSK3β pathway and activating pro-death cell autophagy, which may be an effective strategy to treat gastric cancer.
Collapse
Affiliation(s)
- Cuixiang Xu
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Xiaoyan Huang
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Xiaohua Lei
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhankui Jin
- Department of Orthopedics, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Min Wu
- Department of Research, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Xiao Liu
- Department of Graduate School, Xi'an Medical University, Xi'an, China.,Second Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Yubin Huang
- Department of Graduate School, Xi'an Medical University, Xi'an, China.,Second Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Xiangrong Zhao
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Yue Xiong
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jingying Sun
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Xianglong Duan
- Second Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Jianhua Wang
- Second Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, China
| |
Collapse
|
323
|
Wang WX, Luo SY, Wang Y, Xiang L, Liu XH, Tang C, Zhang Y. Pterocephanoside A, a new iridoid from a traditional Tibetan medicine, Pterocephalus hookeri. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2021; 23:1189-1196. [PMID: 33327766 DOI: 10.1080/10286020.2020.1860951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
This work obtained and identified pterocephanoside A (1), one new iridoid glucoside derivative with rare structure of three iridoid glycosides linked to cyclopenta[c]pyran-3(1H)-one, and 10 known iridoids (2-11) from Pterocephalus hookeri through silica gel column chromatography and semi-preparative HPLC. The structure of the new compound was confirmed by 1D and 2D NMR and HRMS data analysis. Compounds 1 and 2 were isolated from this plant for the first time. The iridoids mostly possessed seco-iridoid subtype and iridoid subtype skeletons from P. hookeri. Compounds 1, 3, 4, and 6-11 showed weak anti-inflammatory activity.
Collapse
Affiliation(s)
- Wen-Xiang Wang
- Department of Traditional Chinese Medicine Chemistry, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shi-Ying Luo
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yi Wang
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Li Xiang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiu-Hua Liu
- Department of Internal Classics, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ce Tang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yi Zhang
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
324
|
Cheng YY, Yang X, Gao X, Song SX, Yang MF, Xie FM. LGR6 promotes glioblastoma malignancy and chemoresistance by activating the Akt signaling pathway. Exp Ther Med 2021; 22:1364. [PMID: 34659510 PMCID: PMC8515564 DOI: 10.3892/etm.2021.10798] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 06/17/2020] [Indexed: 12/11/2022] Open
Abstract
Chemoresistance is the primary cause of the poor outcome of glioblastoma multiforme (GBM) therapy. Leucine-rich repeat-containing G-protein coupled receptor 6 (LGR6) is involved in the growth and proliferation of several types of cancer, including gastric cancer and ovarian cancer. Therefore, the aim of the present study was to investigate the role of LGR6 in GBM malignancy and chemoresistance. Cell counting kit-8 and Matrigel®-Transwell assays were conducted to assess GBM cell viability and invasion. The effect of LGR6 on cell cycle progression and activation of Akt signaling was analyzed by performing propidium iodide staining and western blotting, respectively. The results demonstrated that LGR6, a microRNA-1236-3p target candidate, promoted GBM cell viability and invasion, and mediated temozolomide sensitivity in SHG-44 and U251 GBM cells. In addition, LGR6 triggered the activation of the Akt signaling pathway during GBM progression. Collectively, the results of the present study suggested that LGR6 promoted GBM malignancy and chemoresistance, at least in part, by activating the Akt signaling pathway. The results may aid with the identification of a novel therapeutic target and strategy for GBM.
Collapse
Affiliation(s)
- Yuan Yuan Cheng
- Department of Oncology, Tai'an Central Hospital, Tai'an, Shandong 271000, P.R. China
| | - Xue Yang
- Department of Oncology, Tai'an Central Hospital, Tai'an, Shandong 271000, P.R. China
| | - Xin Gao
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266100, P.R. China
| | - Si Xin Song
- Department of Neurosurgery, The Second Affiliated Hospital of Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, Shandong 270000, P.R. China
| | - Ming Feng Yang
- Institute of Basic Medicine of Shangdong, First Medical University and Shandong Academy of Medical Sciences, Tai'an, Shandong 270000, P.R. China
| | - Fang Min Xie
- Department of Neurosurgery, The Second Affiliated Hospital of Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, Shandong 270000, P.R. China
| |
Collapse
|
325
|
Sirwi A, Shaik RA, Alamoudi AJ, Eid BG, Kammoun AK, Ibrahim SRM, Mohamed GA, Abdallah HM, Abdel-Naim AB. Mokko Lactone Attenuates Doxorubicin-Induced Hepatotoxicity in Rats: Emphasis on Sirt-1/FOXO1/NF-κB Axis. Nutrients 2021; 13:nu13114142. [PMID: 34836397 PMCID: PMC8621765 DOI: 10.3390/nu13114142] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/28/2022] Open
Abstract
Doxorubicin (DOX), a common chemotherapeutic agent, suffers serious adverse effects including hepatotoxicity. Mokko lactone (ML) is a guainolide sesquiterpene with promising biological activities. The study aimed to evaluate the protection offered by ML against hepatotoxicity induced by DOX in rats. Our data indicated ML exhibited protective effects as evidenced by ameliorating the rise in serum activities of alanine transaminase, aspartate transaminase and alkaline phosphatase. This was confirmed histologically as ML prevented DOX-induced pathological alteration in liver architecture. Further, ML administration significantly prevented malondialdehyde accumulation, glutathione depletion and superoxide dismutase and catalase exhaustion. Antioxidant action of ML was associated with enhanced expression of the nuclear translocation of NF-E2-related factor 2 (Nrf2) and a lower expression of forkhead box protein O1 (FOXO1). Also, ML showed potent anti-inflammatory activities highlighted by decreased expression of interleukin 6, tumor necrosis factor α and nuclear factor κB (NF-κB). The anti-apoptotic effects of ML were associated with decreased Bax and enhanced Bcl-2 mRNA expression in liver tissues. ML caused a significant up-regulation in the expression of silent information regulator 1 (Sirt-1). Therefore, it can be concluded that ML prevents liver injury caused by DOX. This could partially be due to the ML regulatory activities on Sirt-1/FOXO1/NF-κB axis.
Collapse
Affiliation(s)
- Alaa Sirwi
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.S.); (G.A.M.); (H.M.A.)
| | - Rasheed A. Shaik
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (R.A.S.); (A.J.A.); (B.G.E.)
| | - Abdulmohsin J. Alamoudi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (R.A.S.); (A.J.A.); (B.G.E.)
| | - Basma G. Eid
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (R.A.S.); (A.J.A.); (B.G.E.)
| | - Ahmed K. Kammoun
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Sabrin R. M. Ibrahim
- Batterjee Medical College, Preparatory Year Program, Jeddah 21442, Saudi Arabia;
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Gamal A. Mohamed
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.S.); (G.A.M.); (H.M.A.)
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Hossam M. Abdallah
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.S.); (G.A.M.); (H.M.A.)
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Ashraf B. Abdel-Naim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (R.A.S.); (A.J.A.); (B.G.E.)
- Correspondence:
| |
Collapse
|
326
|
Hu J, Li W, Qiao X, Li W, Xie K, Wang Y, Huang B, Zhao Q, Liu L, Fan X. Characterization of microRNA Profiles in Pasteurella multocida-Infected Rabbits and Identification of miR-29-5p as a Regulator of Antibacterial Immune Response. Front Vet Sci 2021; 8:746638. [PMID: 34869721 PMCID: PMC8635715 DOI: 10.3389/fvets.2021.746638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 10/26/2021] [Indexed: 11/13/2022] Open
Abstract
Pasteurella multocida is the pathogenic agent for a variety of severe diseases in livestock, including rabbits. MicroRNAs (miRNAs) participate in the immune response to the pathogen. Distinct miRNA expression patterns were explored in rabbit lung by small-RNA deep sequencing to assess dysregulated miRNAs during P. multocida infection. Totally, 571 miRNAs were screened, of which, 62 were novel, and 32 exhibited differential expression (DE). Of the 32 known DE-miRNAs, 13 and 15 occurred at 1 day and 3 days post-infection (dpi); and ocu-miR-107-3p and ocu-miR-29b-5p were shared between the two time points. Moreover, 7,345 non-redundant target genes were predicted for the 32 DE-miRNAs. Putative target genes were enriched in diverse GO and KEGG pathways and might be crucial for disease resistance. Interestingly, upregulation of ocu-miR-29-5p suppresses P. multocida propagation and downregulates expression of epithelial membrane protein-2 (EMP2) and T-box 4 (TBX4) genes by binding to their 3' untranslated region in RK13 cells. Thus, ocu-miR-29-5p may indirectly inhibit P. multocida invasion by modulating genes related to the host immune response, such as EMP2 and TBX4.
Collapse
Affiliation(s)
- Jiaqing Hu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Wenqiang Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Xibo Qiao
- Shandong New Hexin Technology Co. Ltd., Taian, China
| | - Wenjie Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Kerui Xie
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Yanyan Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Bing Huang
- Shandong Provincial Key Laboratory of Poultry Disease Diagnose and Immune, Institute of Poultry, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Qiaoya Zhao
- Shandong Provincial Key Laboratory of Poultry Disease Diagnose and Immune, Institute of Poultry, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Lei Liu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Xinzhong Fan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| |
Collapse
|
327
|
Jiang Z, Han Y, Zhang Y, Li J, Liu C. Sedum sarmentosum Bunge Attenuates Drug-Induced Liver Injury via Nrf2 Signaling Pathway: An Experimental Verification Based on Network Pharmacology Prediction. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:1142638. [PMID: 34900173 PMCID: PMC8577938 DOI: 10.1155/2021/1142638] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 10/09/2021] [Indexed: 12/12/2022]
Abstract
Purpose Using network pharmacology and in vivo experiments, we investigated the antidrug-induced liver injury components and functional processes of Sedum sarmentosum Bunge (SSBE). Methods The effective components, primary active ingredients, and possible target in the therapy of DILI were predicted using network pharmacology and bioinformatics. APAP was inducing the DILI model. In vivo testing of the pharmacodynamic foundation of SSBE in the treatment of DILI was performed. Results The TCMSP database evaluated five main active components and 299 related targets. In addition, 707 differential genes for DILI were obtained from the DisGeNET database, DigSee database, and OMIM database. 61 related targets were mapped to predict the targets of SSBE acting on DILI. The protein-protein interaction (PPI) core network contained 59 proteins, including IL-β, MARK14, SSP1, and MMP9. These genes are closely related to the Nrf2/ARE signaling pathway, and they may play a key role in the hepatoprotective effect of SSBE. Verification experiment results showed that, in the DILI mouse model, SSBE promoted inflammation diminution and regulation of Nrf2-ARE cascade. SSBE protected normal hepatocyte growth and inhibited apoptosis of normal liver cells induced by APAP. SSBE inhibited the expression of Nrf2 and ARE proteins in the liver tissue of the DILI mouse model in vivo. Conclusion By modulating the Nrf2 signaling pathway, the active components in SSBE may protect against drug-induced liver damage.
Collapse
Affiliation(s)
- Zhitao Jiang
- Department of Pharmacy, Zhangjiagang Hospital of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Zhangjiagang, Suzhou, Jiangsu 215600, China
| | - Yi Han
- Department of Pharmacy, Zhangjiagang Hospital of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Zhangjiagang, Suzhou, Jiangsu 215600, China
| | - Yuechan Zhang
- Department of Pharmacy, Zhangjiagang Hospital of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Zhangjiagang, Suzhou, Jiangsu 215600, China
| | - Jie Li
- Department of Pharmacy, Zhangjiagang Hospital of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Zhangjiagang, Suzhou, Jiangsu 215600, China
| | - Chundi Liu
- Department of Pharmacy, Zhangjiagang Hospital of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Zhangjiagang, Suzhou, Jiangsu 215600, China
| |
Collapse
|
328
|
McBryde ES, Meehan MT, Caldwell JM, Adekunle AI, Ogunlade ST, Kuddus MA, Ragonnet R, Jayasundara P, Trauer JM, Cope RC. Modelling direct and herd protection effects of vaccination against the SARS-CoV-2 Delta variant in Australia. Med J Aust 2021; 215:427-432. [PMID: 34477236 PMCID: PMC8662033 DOI: 10.5694/mja2.51263] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVES To analyse the outcomes of COVID-19 vaccination by vaccine type, age group eligibility, vaccination strategy, and population coverage. DESIGN Epidemiologic modelling to assess the final size of a COVID-19 epidemic in Australia, with vaccination program (Pfizer, AstraZeneca, mixed), vaccination strategy (vulnerable first, transmitters first, untargeted), age group eligibility threshold (5 or 15 years), population coverage, and pre-vaccination effective reproduction number ( R eff v ¯ ) for the SARS-CoV-2 Delta variant as factors. MAIN OUTCOME MEASURES Numbers of SARS-CoV-2 infections; cumulative hospitalisations, deaths, and years of life lost. RESULTS Assuming R eff v ¯ = 5, the current mixed vaccination program (vaccinating people aged 60 or more with the AstraZeneca vaccine and people under 60 with the Pfizer vaccine) will not achieve herd protection unless population vaccination coverage reaches 85% by lowering the vaccination eligibility age to 5 years. At R eff v ¯ = 3, the mixed program could achieve herd protection at 60-70% population coverage and without vaccinating 5-15-year-old children. At R eff v ¯ = 7, herd protection is unlikely to be achieved with currently available vaccines, but they would still reduce the number of COVID-19-related deaths by 85%. CONCLUSION Vaccinating vulnerable people first is the optimal policy when population vaccination coverage is low, but vaccinating more socially active people becomes more important as the R eff v ¯ declines and vaccination coverage increases. Assuming the most plausible R eff v ¯ of 5, vaccinating more than 85% of the population, including children, would be needed to achieve herd protection. Even without herd protection, vaccines are highly effective in reducing the number of deaths.
Collapse
Affiliation(s)
- Emma S McBryde
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD
| | - Michael T Meehan
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD
| | - Jamie M Caldwell
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD.,University of Hawai'i at Mānoa, Honolulu, HI, United States of America
| | - Adeshina I Adekunle
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD.,Australian Department of Defence, Melbourne, VIC
| | - Samson T Ogunlade
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD
| | - Md Abdul Kuddus
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD.,University of Rajshahi, Rajshahi, Bangladesh
| | | | | | | | - Robert C Cope
- Biological Data Sciences Institute, Australian National University, Canberra, ACT
| |
Collapse
|
329
|
Zhou X, Li S, Ma T, Zeng J, Li H, Liu X, Li F, Jiang B, Zhao M, Liu Z, Qin Y. MEX3A knockdown inhibits the tumorigenesis of colorectal cancer via modulating CDK2 expression. Exp Ther Med 2021; 22:1343. [PMID: 34630697 PMCID: PMC8495542 DOI: 10.3892/etm.2021.10778] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 07/26/2021] [Indexed: 12/20/2022] Open
Abstract
Colorectal cancer (CRC) is a malignant tumor of the gastrointestinal tract and a leading cause of cancer-associated mortality worldwide. Mex-3 RNA binding family member A (MEX3A) promotes the progression of multiple types of cancer, including ovarian and cervical cancer. However, to the best of our knowledge, the role of MEX3A in CRC is not completely understood. Therefore, the present study aimed to investigate the function of MEX3A in CRC. The mRNA and protein expression levels of MEX3A in CRC cells were analyzed using reverse transcription-quantitative PCR and western blotting, respectively. Cell Counting Kit-8 assays were used to measure cell viability. Cell apoptosis and cell cycle distribution were detected via flow cytometry, and CRC cell invasion was analyzed by performing Transwell assays. Moreover, the mitochondrial membrane potential in CRC cells was measured via JC-1 staining. The results of the present study revealed that the expression levels of MEX3A were upregulated in CRC tissues compared with adjacent healthy tissues. MEX3A knockdown notably inhibited CRC cell viability, and induced apoptosis and mitochondrial injury. In addition, MEX3A knockdown markedly induced G1 phase cell cycle arrest in CRC cells via downregulating CDK2 expression. In conclusion, the findings of the present study suggested that MEX3A knockdown may inhibit the tumorigenesis of CRC cells by regulating CDK2 expression. Therefore, MEX3A may serve as a novel target for CRC treatment.
Collapse
Affiliation(s)
- Xin Zhou
- Department of General Surgery, Xiangtan Central Hospital, Xiangtan, Hunan 411100, P.R. China
| | - Shaojie Li
- Department of General Surgery, Xiangtan Central Hospital, Xiangtan, Hunan 411100, P.R. China
| | - Tiexiang Ma
- Department of General Surgery, Xiangtan Central Hospital, Xiangtan, Hunan 411100, P.R. China
| | - Jian Zeng
- Department of General Surgery, Xiangtan Central Hospital, Xiangtan, Hunan 411100, P.R. China
| | - Huanyu Li
- Department of General Surgery, Xiangtan Central Hospital, Xiangtan, Hunan 411100, P.R. China
| | - Xiang Liu
- Department of General Surgery, Xiangtan Central Hospital, Xiangtan, Hunan 411100, P.R. China
| | - Feng Li
- Department of General Surgery, Xiangtan Central Hospital, Xiangtan, Hunan 411100, P.R. China
| | - Bin Jiang
- Department of General Surgery, Xiangtan Central Hospital, Xiangtan, Hunan 411100, P.R. China
| | - Ming Zhao
- Department of General Surgery, Xiangtan Central Hospital, Xiangtan, Hunan 411100, P.R. China
| | - Zhuo Liu
- Department of General Surgery, Xiangtan Central Hospital, Xiangtan, Hunan 411100, P.R. China
| | - Yiyu Qin
- Clinical Medical College, Follow-up Research Center, Jiangsu Vocational College of Medicine, Yancheng, Jiangsu 224005, P.R. China
| |
Collapse
|
330
|
Bai B, Chen Q, Jing R, He X, Wang H, Ban Y, Ye Q, Xu W, Zheng C. Molecular Basis of Prostate Cancer and Natural Products as Potential Chemotherapeutic and Chemopreventive Agents. Front Pharmacol 2021; 12:738235. [PMID: 34630112 PMCID: PMC8495205 DOI: 10.3389/fphar.2021.738235] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/06/2021] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer is the second most common malignant cancer in males. It involves a complex process driven by diverse molecular pathways that closely related to the survival, apoptosis, metabolic and metastatic characteristics of aggressive cancer. Prostate cancer can be categorized into androgen dependent prostate cancer and castration-resistant prostate cancer and cure remains elusive due to the developed resistance of the disease. Natural compounds represent an extraordinary resource of structural scaffolds with high diversity that can offer promising chemical agents for making prostate cancer less devastating and curable. Herein, those natural compounds of different origins and structures with potential cytotoxicity and/or in vivo anti-tumor activities against prostate cancer are critically reviewed and summarized according to the cellular signaling pathways they interfere. Moreover, the anti-prostate cancer efficacy of many nutrients, medicinal plant extracts and Chinese medical formulations were presented, and the future prospects for the application of these compounds and extracts were discussed. Although the failure of conventional chemotherapy as well as involved serious side effects makes natural products ideal candidates for the treatment of prostate cancer, more investigations of preclinical and even clinical studies are necessary to make use of these medical substances reasonably. Therefore, the elucidation of structure-activity relationship and precise mechanism of action, identification of novel potential molecular targets, and optimization of drug combination are essential in natural medicine research and development.
Collapse
Affiliation(s)
- Bingke Bai
- Department of Chinese Medicine Authentication, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Qianbo Chen
- Department of Anesthesiology, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Rui Jing
- Department of Chinese Medicine Authentication, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Xuhui He
- Department of Chinese Medicine Authentication, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Hongrui Wang
- Department of Chinese Medicine Authentication, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Yanfei Ban
- Department of Chinese Medicine Authentication, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Qi Ye
- Department of Biological Science, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Weiheng Xu
- Department of Biochemical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Chengjian Zheng
- Department of Chinese Medicine Authentication, School of Pharmacy, Second Military Medical University, Shanghai, China
| |
Collapse
|
331
|
Panek-Krzyśko A, Stompor-Gorący M. The Pro-Health Benefits of Morusin Administration-An Update Review. Nutrients 2021; 13:3043. [PMID: 34578920 PMCID: PMC8470188 DOI: 10.3390/nu13093043] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 01/12/2023] Open
Abstract
Prenylflavonoids are widespread in nature. Plants are valuable sources of natural polyphenolic compounds with isoprenyl groups, which include flavones, flavanones, chalcones and aurones. They can be found in flowers, bark and stems. One of the most important compounds found in the bark of white mulberry (Morus alba) is morusin, a prenylated flavone with interesting pro-health properties. The research carried out so far revealed that morusin has antioxidant, antitumor, anti-inflammatory and anti-allergic activity. Moreover, its neuroprotective and antihyperglycemic properties have also been confirmed. Morusin suppresses the growth of different types of tumors, including breast cancer, glioblastoma, pancreatic cancer, hepatocarcinoma, prostate cancer, and gastric cancer. It also inhibits the inflammatory response by suppressing COX activity and iNOS expression. Moreover, an antimicrobial effect against Gram-positive bacteria was observed after treatment with morusin. The objective of this review is to summarize the current knowledge about the positive effects of morusin on human health in order to facilitate future study on the development of plant polyphenolic drugs and nutraceutics in the group of prenylflavones.
Collapse
Affiliation(s)
| | - Monika Stompor-Gorący
- Department of Human Pathophysiology, Institute of Medical Sciences, University of Rzeszów, Warzywna 1a, 35-310 Rzeszów, Poland;
| |
Collapse
|
332
|
Zhuang K, Xia Q, Zhang S, Maharajan K, Liu K, Zhang Y. A comprehensive chemical and pharmacological review of three confusable Chinese herbal medicine-Aucklandiae radix, Vladimiriae radix, and Inulae radix. Phytother Res 2021; 35:6655-6689. [PMID: 34431559 DOI: 10.1002/ptr.7250] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 07/05/2021] [Accepted: 08/08/2021] [Indexed: 12/28/2022]
Abstract
Aucklandiae radix (AR, Muxiang), vladimiriae radix (VR, Chuanmuxiang), and inulae radix (IR, Tumuxiang) are widely used in clinical or folk medicine in China. Their Chinese names all have the Chinese character "Muxiang," which makes it confusable in usage, especially AR and VR, because VR was used as a substitute for AR during a historical period. The National Health Commission of the People's Republic of China has approved AR as a functional food. However, VR and IR are not listed. Many research articles on three kinds of "Muxiang" have been published. However, no review was appeared to compare similarities and differences among the three kinds of "Muxiang." Here, the morphological characterization, phytochemistry, and pharmaceutical effects of AR, VR, and IR were reviewed. We found that only six compounds were common in the three species. Twenty-six compounds were common to AR and VR. Twenty-two compounds were common to AR and IR. Only seven compounds were common to VR and IR. The extracts of AR, VR, and IR were all reported with antiinflammatory effects, which is the most important activity of "Muxiang" species. The volatile oil of AR, VR, and IR had antibacterial activities. Extracts of AR and VR showed anti-gastric ulcers and anti-diarrhea effects. Extracts of AR and IR exhibited anticancer effects. In addition, AR extract had liver protective effect. It is worth mentioning that costunolide and dehydrocostus lactone, which were the common representative compounds of "Muxiang" species, showed antiinflammatory, anticancer, anti-gastric ulcers, and liver protective effects. This review will be a benefit reference for correct understanding and application of the three "Muxiang" species.
Collapse
Affiliation(s)
- Kaiyan Zhuang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.,Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, China.,Shandong Provincial Engineering Laboratory for Biological Testing Technology, Jinan, China
| | - Qing Xia
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.,Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, China.,Shandong Provincial Engineering Laboratory for Biological Testing Technology, Jinan, China
| | - Shanshan Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.,Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, China.,Shandong Provincial Engineering Laboratory for Biological Testing Technology, Jinan, China
| | - Kannan Maharajan
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.,Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, China.,Shandong Provincial Engineering Laboratory for Biological Testing Technology, Jinan, China
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.,Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, China.,Shandong Provincial Engineering Laboratory for Biological Testing Technology, Jinan, China
| | - Yun Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.,Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, China.,Shandong Provincial Engineering Laboratory for Biological Testing Technology, Jinan, China
| |
Collapse
|
333
|
Kłeczek N, Malarz J, Gierlikowska B, Skalniak Ł, Galanty A, Kiss AK, Stojakowska A. Germacranolides from Carpesium divaricatum: Some New Data on Cytotoxic and Anti-Inflammatory Activity. Molecules 2021; 26:4644. [PMID: 34361797 PMCID: PMC8347481 DOI: 10.3390/molecules26154644] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 12/02/2022] Open
Abstract
Carpesium divaricatum Sieb. & Zucc., a traditional medicinal plant used as an inflammation-relieving remedy, is a rich source of terpenoids. At least 40 germacrane-type sesquiterpene lactones, representatives of four different structural groups, were isolated from the plant. Cytotoxicity against cancer cells in vitro is the most frequently described biological activity of the compounds. However, little is known about the selectivity of the cytotoxic effect. The anti-inflammatory activity of the germacranolides is also poorly documented. The objective of the present study was to assess the cytotoxic activity of selected C. divaricatum germacranolides-derivatives of 4,5,8,9-tetrahydroxy-3-oxo-germacran-6,12-olide towards cancer and normal cell lines (including cells of different p53 status). Moreover, to assess the anti-inflammatory effect of the compounds, the release of four proinflammatory cytokines/chemokines (IL-1β, IL-8, TNF-α and CCL2) by lipopolysaccharide-stimulated human neutrophils was measured by ELISA. The investigated sesquiterpene lactones demonstrated nonselective activity towards prostate cancer (Du145 and PC3) and normal prostate epithelial cells (PNT2) as well as against melanoma cells (A375 and HTB140) and keratinocytes (HaCaT). Cytotoxic activity against osteosarcoma cells was independent of their p53 status. In sub-cytotoxic concentrations (0.5-2.5 µM) the studied compounds significantly decreased cytokine/chemokine release by lipopolysaccharide-stimulated human leukocytes.
Collapse
MESH Headings
- Anti-Inflammatory Agents/chemistry
- Anti-Inflammatory Agents/classification
- Anti-Inflammatory Agents/isolation & purification
- Anti-Inflammatory Agents/pharmacology
- Antineoplastic Agents, Phytogenic/chemistry
- Antineoplastic Agents, Phytogenic/classification
- Antineoplastic Agents, Phytogenic/isolation & purification
- Antineoplastic Agents, Phytogenic/pharmacology
- Asteraceae/chemistry
- Asteraceae/metabolism
- Cell Line
- Cell Line, Tumor
- Cell Survival/drug effects
- Chemokine CCL2/genetics
- Chemokine CCL2/immunology
- Cytotoxins/chemistry
- Cytotoxins/classification
- Cytotoxins/isolation & purification
- Cytotoxins/pharmacology
- Doxorubicin/pharmacology
- Gene Expression Regulation, Neoplastic
- Humans
- Inhibitory Concentration 50
- Interleukin-1beta/genetics
- Interleukin-1beta/immunology
- Interleukin-8/genetics
- Interleukin-8/immunology
- Lipopolysaccharides/antagonists & inhibitors
- Lipopolysaccharides/pharmacology
- Neutrophils/cytology
- Neutrophils/drug effects
- Neutrophils/immunology
- Plant Components, Aerial/chemistry
- Plant Components, Aerial/metabolism
- Plant Extracts/chemistry
- Plants, Medicinal
- Poland
- Primary Cell Culture
- Sesquiterpenes, Germacrane/chemistry
- Sesquiterpenes, Germacrane/classification
- Sesquiterpenes, Germacrane/isolation & purification
- Sesquiterpenes, Germacrane/pharmacology
- Signal Transduction
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/immunology
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/immunology
Collapse
Affiliation(s)
- Natalia Kłeczek
- Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland; (N.K.); (J.M.)
| | - Janusz Malarz
- Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland; (N.K.); (J.M.)
| | - Barbara Gierlikowska
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Żwirki i Wigury 63a, 02-091 Warsaw, Poland;
| | - Łukasz Skalniak
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland;
| | - Agnieszka Galanty
- Department of Pharmacognosy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland;
| | - Anna K. Kiss
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland;
| | - Anna Stojakowska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland; (N.K.); (J.M.)
| |
Collapse
|
334
|
Meng F, Zong W, Wei X, Tao Y, Wang G, Liao Z, Chen M. Dolomiaea souliei ethyl acetate extract protected against α-naphthylisothiocyanate-induced acute intrahepatic cholestasis through regulation of farnesoid x receptor-mediated bile acid metabolism. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 87:153588. [PMID: 34091148 DOI: 10.1016/j.phymed.2021.153588] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/25/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Cholestasis is characterized by accumulation of bile components in liver and systemic circulation. Restoration of bile acid homeostasis via activating farnesoid x receptor (FXR) is a promising strategy for the treatment of cholestasis. FXR-SHP (small heterodimer partner) axis plays an important role in maintaining bile acid homeostasis. PURPOSE To investigate the anti-cholestasis effect of Dolomiaea souliei (Franch.) C.Shih (D. souliei) and clarify its underlying mechanism against α-naphthylisothiocyanate (ANIT) induced acute intrahepatic cholestasis. METHODS ANIT-induced Sprague-Dawley rats were employed to investigate the anti-cholestasis effect of D. souliei ethyl acetate extract (DSE). Ursodeoxycholic acid (UDCA) was used as positive control. Bile flow and blood biochemical parameters were measured. Liver histopathological examination was conducted via hematoxylin-eosin staining. Western blot analysis was carried out to evaluate the protein levels related to bile acids metabolism and inflammation. The interactions between FXR and costunolide or dehydrocostus lactone, were conducted by molecular docking experiments. The effect of costunolide and dehydrocostus lactone on aspartate aminotransferase (AST), alanine aminotransferase (ALT) levels and FXR expression were also evaluated using guggulsterone-induced L02 cells. RESULTS DSE could promote bile excretions and protect against ANIT-induced liver damage in cholestasis rats. Protein levels of FXR, SHP, Na+/taurocholate cotransporter (NTCP), bile salt export pump (BSEP), multidrug resistance-associated protein 2 (MRP2) were increased and the expressions of cholesterol 7α-hydroxylase (CYP7A1) and sterol 27-hydroxylase (CYP27A1) were decreased by DSE. Meanwhile, the anti-inflammatory factors, tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6) were also significantly increased, and the pro-inflammatory factor, interleukin-10 (IL-10), was significantly decreased in rats of DSE groups. Molecular docking revealed that costunolide and dehydrocostus lactone could be well docked into the FXR protein molecule, and hydrophobic interactions played the main function. Costunolide could reverse the increased AST and ALT levels and increase the FXR expression in guggulsterone-induced L02 cells. CONCLUSION DSE had an anti-cholestasis effect by activating FXR-SHP axis, inhibiting synthesis of bile acid, and increasing bile secretion, together with inflammatory response and improving liver injury. Costunolide may be the main active component. This study provided a potential therapeutic mechanism for D. souliei as an anti-cholestasis medicine in the treatment of cholestasis liver diseases.
Collapse
Affiliation(s)
- FanCheng Meng
- College of Pharmaceutical Sciences, Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), Southwest University, No. 2 Tiansheng Road, Chongqing 400715, P.R. China
| | - Wei Zong
- College of Pharmaceutical Sciences, Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), Southwest University, No. 2 Tiansheng Road, Chongqing 400715, P.R. China
| | - XiaoDong Wei
- College of Pharmaceutical Sciences, Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), Southwest University, No. 2 Tiansheng Road, Chongqing 400715, P.R. China
| | - YunYi Tao
- College of Pharmaceutical Sciences, Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), Southwest University, No. 2 Tiansheng Road, Chongqing 400715, P.R. China
| | - GuoWei Wang
- College of Pharmaceutical Sciences, Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), Southwest University, No. 2 Tiansheng Road, Chongqing 400715, P.R. China
| | - ZhiHua Liao
- School of Life Sciences, Southwest University, No. 2 Tiansheng Road, Chongqing 400715, P.R. China
| | - Min Chen
- College of Pharmaceutical Sciences, Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), Southwest University, No. 2 Tiansheng Road, Chongqing 400715, P.R. China.
| |
Collapse
|
335
|
ARS2/SRRT: at the nexus of RNA polymerase II transcription, transcript maturation and quality control. Biochem Soc Trans 2021; 49:1325-1336. [PMID: 34060620 DOI: 10.1042/bst20201008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 01/26/2023]
Abstract
ARS2/SRRT is an essential eukaryotic protein that has emerged as a critical factor in the sorting of functional from non-functional RNA polymerase II (Pol II) transcripts. Through its interaction with the Cap Binding Complex (CBC), it associates with the cap of newly made RNAs and acts as a hub for competitive exchanges of protein factors that ultimately determine the fate of the associated RNA. The central position of the protein within the nuclear gene expression machinery likely explains why its depletion causes a broad range of phenotypes, yet an exact function of the protein remains elusive. Here, we consider the literature on ARS2/SRRT with the attempt to garner the threads into a unifying working model for ARS2/SRRT function at the nexus of Pol II transcription, transcript maturation and quality control.
Collapse
|
336
|
Huang Y, Mao J, Zhang L, Guo H, Yan C, Chen M. Incaspitolide A isolated from Carpesium cernuum L. inhibits the growth of prostate cancer cells and induces apoptosis via regulation of the PI3K/Akt/xIAP pathway. Oncol Lett 2021; 21:477. [PMID: 33968193 PMCID: PMC8100957 DOI: 10.3892/ol.2021.12738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 03/17/2021] [Indexed: 01/21/2023] Open
Abstract
Carpesium cernuum L. is a traditional medicine primarily used in Southwestern China, and it has been shown to exhibit a range of biological properties, including anti-inflammatory and antitumor activities. Incaspitolide A (IA) is a sesquiterpene isolated from C. cernuum L. The aim of the present study was to investigate the antiproliferative effects of IA on PC-3 prostate cancer cells and determine the underlying mechanism. Results from a Cell Counting Kit-8 assay demonstrated that IA significantly reduced the numbers of viable PC-3 cells in a time and dose-dependent manner. Phase-contrast microscopy revealed that the number and morphology of cells were markedly altered. Hoechst and EdU staining assays showed that IA reduced the proliferation of PC-3 cells. Flow cytometry analysis revealed that IA arrested cell cycle progression at the S phase and promoted cell apoptosis in a dose-dependent manner. Western blot analysis demonstrated that treatment with IA resulted in downregulation of phosphorylated (p-) PI3K, p-Akt, X-linked inhibitor of apoptosis (xIAP), CKD2, cyclin A2 and pro-Caspase-3 protein expression, and upregulation of cleaved poly(ADP-ribose) polymerase and P53 expression. The present results suggested that IA inhibited the growth of PC-3 cells and induced apoptosis. The underlying mechanism appeared to involve the inhibition of the PI3K/Akt/xIAP pathway. The present study indicated that IA may serve as a therapeutic for the management of prostate cancer and provided a theoretical basis for the pathogenesis of prostate cancer.
Collapse
Affiliation(s)
- Yuanshe Huang
- College of Pharmaceutical Sciences, Southwest University, Chongqing, Sichuan 400715, P.R. China
- Agricultural College, An Shun University, Anshun, Guizhou 561000, P.R. China
| | - Jingxin Mao
- College of Pharmaceutical Sciences, Southwest University, Chongqing, Sichuan 400715, P.R. China
| | - Lai Zhang
- Agricultural College, An Shun University, Anshun, Guizhou 561000, P.R. China
| | - Hongwei Guo
- Department of Pharmacy, An Shun City People's Hospital, Anshun, Guizhou 561000, P.R. China
| | - Chen Yan
- Department of Pharmacy, An Shun City People's Hospital, Anshun, Guizhou 561000, P.R. China
| | - Min Chen
- College of Pharmaceutical Sciences, Southwest University, Chongqing, Sichuan 400715, P.R. China
| |
Collapse
|
337
|
Zhou Y, Guo Y, Zhu Y, Sun Y, Li W, Li Z, Wei L. Dual PPARγ/ɑ agonist oroxyloside suppresses cell cycle progression by glycolipid metabolism switch-mediated increase of reactive oxygen species levels. Free Radic Biol Med 2021; 167:205-217. [PMID: 33713839 DOI: 10.1016/j.freeradbiomed.2021.02.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/26/2021] [Accepted: 02/24/2021] [Indexed: 12/15/2022]
Abstract
Cancer cells prefers to rely on aerobic glycolysis than pyruvate oxidation to meet the high demand of energy for rapidly proliferation. Peroxisome proliferator-activated receptors (PPARs) are a kind of important ligand-inducible transcription factors and play crucial roles in glucose and lipid metabolism. Careful designing of novel agonists for PPARs, may show improvement with the side effects and also increase the therapeutic value for cancer and other metabolic disorder diseases. Compared with normal human liver cells, lower expression or acitivity of PPARs is observed in hepatocellular carcinoma (HCC). In this study, we show that oroxyloside (OAG) is a new dual agonist of PPARγ/ɑ, and inhibits cell proliferation of HCC based on metabolic switch. Via both PPAR-dependent and PPAR-independent regulations on glycolipid metabolic enzymes, OAG shuts down the catabolism of glucose and promotes fatty acids oxidation to generate acetyl-CoA for TCA cycle and oxidative phosphorylation. The metabolic switch induced by OAG results in a marked increase of reactive oxygen species (ROS) levels, leading to rapid dephosphorylation of RB and cell-cycle arrest in G1 phase. Pyruvate dehydrogenase kinase 4 (PDK4) and β-Oxidation are required for the suppression of cell cycle progression by OAG. Together, our findings provide a new drug candidate and a viable therapeutic strategy for HCC based on metabolic reprogram.
Collapse
Affiliation(s)
- Yuxin Zhou
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, PR China
| | - Yongjian Guo
- School of Biopharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, PR China
| | - Yejin Zhu
- School of Medicine & Holistic Integrative Medcine, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, PR China
| | - Yuening Sun
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, PR China
| | - Wei Li
- Research Center of Basic Medical College, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, PR China
| | - Zhiyu Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, PR China
| | - Libin Wei
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, PR China.
| |
Collapse
|
338
|
Chen Y, Shen L, Chen B, Han X, Yu Y, Yuan X, Zhong L. The predictive prognostic values of CBFA2T3, STX3, DENR, EGLN1, FUT4, and PCDH7 in lung cancer. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:843. [PMID: 34164477 PMCID: PMC8184469 DOI: 10.21037/atm-21-1392] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/13/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Lung cancer is one of the most malignant tumors. However, neither the pathogenesis of lung cancer nor the prognosis markers are completely clear. The purpose of this study is to screen the diagnostic or prognostic markers of lung cancer. METHODS TCGA and GEO datasets were used to analyze the relationship between lung cancer-related genes and lung cancer samples. Common differential genes were screened, and a univariate Cox regression analysis was used to screen survival related genes. A univariable Cox proportional hazards regression analysis was used to verify the genes and construct risk model. The key factors affecting the prognosis of lung cancer were determined by univariate and multivariate regression analyses. The ROC curve, AUC and the survival of each risk gene was analyzed. Finally, the biological functions of high- and low-risk patients were explored by GSEA and an immune-infiltration analysis. RESULTS Based on the common differential genes, 13 genes significantly related to lung cancer survival were identified. Eight risk genes (CBFA2T3, DENR, EGLN1, FUT2, FUT4, PCDH7, PHF14, and STX3) were screened out. The results showed that risk status may be an independent prognostic factor, and the risk score predicted the prognosis of lung cancer. CBFA2T3 and STX3 are protective genes, while DENR, EGLN1, FUT4 and PCDH7 are dangerous genes. These 6 genes can be used as independent lung cancer prognosis markers. The corresponding biological functions of genes expressed in high-risk patients were mostly related to tumor proliferation and inflammatory infiltration. Neutrophil, CD8+T, Macrophage M0, Macrophage M1- and mDC-activated cells were high in high-risk status samples. CONCLUSIONS CBFA2T3, STX3, DENR, EGLN1, FUT4, and PCDH7 are important participants in the occurrence and development of lung cancer. High-risk patients display serious inflammatory infiltration. This study not only provides insight into the mechanism of occurrence and development of lung cancer, but also provides potential targets for targeted therapy of lung cancer.
Collapse
Affiliation(s)
- Yuhao Chen
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Lu Shen
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Bairong Chen
- Department of Medical Laboratory, School of Public Health, Nantong University, Nantong, China
| | - Xiao Han
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Yunchi Yu
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Xiaosa Yuan
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Lou Zhong
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
339
|
Wang R, Wei L, Dong Z, Meng F, Wang G, Zhou S, Lan X, Liao Z, Chen M. Pterocephin A, a novel Triterpenoid Saponin from Pterocephalus hookeri induced liver injury by activation of necroptosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 85:153548. [PMID: 33831690 DOI: 10.1016/j.phymed.2021.153548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/30/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Pterocephalus hookeri (C. B. Clarke) Höeck, a Tibetan medicine widely used for treatment of rheumatoid arthritis, was recorded in Chinese Pharmacopoeia (2020 version) with slight toxicity. The liver injury was observed in mice with administration of n-butanol extract (BUE) in our previously study. However, the toxic components and the mechanism were still unrevealed. PURPOSE The present study was aimed to isolate and structural elucidate of the toxic compound pterocephin A (PA), as well as evaluate its liver toxicity and investigate its mechanism. METHODS PA was isolated from the BUE of P. hookeri. Its structure was determined by analysis of HRMS, NMR and ECD data. L-02 cellular viability, LDH, ALT, AST, ROS, intracellular Ca2+ and the fluidity of cell membrane were assessed by multifunctional microplate reader. The PI staining, cell membrane permeability assessment, and mitochondrial fluorescence staining analysis were determined through the fluorescence microscope. Liver samples for mice were assessed by pathological and immunohistochemistry analysis. Expression levels of indicated proteins were measured by western blotting assays. RESULTS PA was determined as a previously undescribed oleanolane-type triterpenoid saponin. In vitro study revealed PA significantly induced hepatotoxicity by inhibition of L-02 cell growth, abnormally elevation of ALT and AST. Mechanically, PA induced the damage of cell membrane, fragmentation of mitochondria, and subsequently increase of intracellular Ca2+ and ROS levels, which trigged by necroptosis with the activation of RIP1 and NF-κB signaling pathways. In vivo study confirmed PA could induce liver injury in mice with observation of the body weight loss, increasing of serum ALT and AST, and the histopathological changes in liver tissues. CONCLUSION Our present study indicated that PA was an undescribed toxic constituent in P. hookeri to induce liver injury in mice by activation of necroptosis and inflammation. And the findings are of great significance for the clinical use safely of this herb.
Collapse
Affiliation(s)
- Rui Wang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Lin Wei
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Zhaoyue Dong
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Fancheng Meng
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Guowei Wang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Siyu Zhou
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Xiaozhong Lan
- TAAHC-SWU Medicinal Plant R&D Center, XiZang Agriculture and Animal Husbandry College, Nyingchi, Tibet 860000, PR China
| | - Zhihua Liao
- School of Life Sciences, Southwest University, Chongqing 400715, PR China
| | - Min Chen
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
340
|
Liu C, Zhao Q, Zhong L, Li Q, Li R, Li S, Li Y, Li N, Su J, Dhondrup W, Meng X, Zhang Y, Tu Y, Wang X. Tibetan medicine Ershiwuwei Lvxue Pill attenuates collagen-induced arthritis via inhibition of JAK2/STAT3 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2021; 270:113820. [PMID: 33465441 DOI: 10.1016/j.jep.2021.113820] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/18/2020] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ershiwuwei Lvxue Pill (ELP, མགྲིན་མཚལ་ཉེར་ལྔ།), a traditional Tibetan medicine preparation, has been used hundreds of years for the clinical treatment of rheumatoid arthritis (RA) in the highland region of Tibet, China. However, the underlying mechanism of its therapeutic effect remains unclear. AIM OF THE STUDY The present study aimed to investigate the potential pharmacological mechanisms of anti-arthritic effect of ELP. MATERIALS AND METHODS The main chemical constituents of ELP were analyzed by ultra-performance liquid chromatography quadrupole-time-flight mass spectrometry (UPLC-Q-TOF-MS). Forty-eight male Wistar rats (220 ± 20 g) were randomly divided into six groups: normal group, collagen-induced arthritis (CIA) group, methotrexate group (1.05 mg/kg), ELP groups (115, 230 and 460 mg/kg). CIA rat models were assigned to evaluate the anti-RA activity of ELP by determining the paws swelling, arthritis score, organ coefficients of spleen and thymus, and histopathological analysis of knee joints of synovial tissues. The levels of TNF-α, IL-10, IL-6 and IL-17 in serum were measured by ELISA. In addition, mRNA and protein expression levels associated with JAK2/STAT3 signaling pathway in synovial tissues of CIA rats were detected by qRT-PCR, immunohistochemistry and Western blot analyses. RESULTS Fourteen main chemical constituents of ELP were quantitatively determined by UPLC-Q-TOF-MS analysis. Treatment with ELP reduced the paw swelling, arthritis score and organ coefficients of spleen and thymus. Histopathological examination revealed the protective effects of ELP on CIA rats with knee joint injury. The levels of serum pro-inflammatory cytokines (TNF-α, IL-6 and IL-17) were markedly reduced while the anti-inflammatory cytokine IL-10 was significantly increased with the treatment of ELP. Further investigations showed ELP down-regulated the mRNA and protein expression levels of Bcl-2, whereas up-regulated Bax, SOCS1 and SOCS3. Meanwhile, the ratios of p-JAK2/JAK2 and p-STAT3/STAT3 proteins from synovial tissues were dramatically decreased with the treatment of ELP, whereas no changes of the mRNA and protein expression levels of JAK2 and STAT3 were observed. CONCLUSION These results indicated that ELP reduced the severity of arthritis and joint swelling, suggesting an antirheumatic effect on CIA rats. The possible mechanism is related to inhibiting inflammatory response and inducing apoptosis in synovial tissues by regulating JAK2/STAT3 signaling pathway. However, further in vivo and in vitro investigations are still needed to clarify the underlying mechanism of ELP in treating RA.
Collapse
Affiliation(s)
- Chuan Liu
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qian Zhao
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Lu Zhong
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qiuyue Li
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Rui Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shuang Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yangxin Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ning Li
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jinsong Su
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wüntrang Dhondrup
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xianli Meng
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yi Zhang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; NMPA Key Laboratory for Quality Evaluation of Traditional Chinese Medicine (Traditional Chinese Patent Medicine), Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Ya Tu
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Development Research Center of Traditional Chinese Medicine, China Academy of Traditional Chinese Medicine, Beijing, 100700, China.
| | - Xiaobo Wang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
341
|
Huang X, Tang W, Lin C, Sa Z, Xu M, Liu J, Wang L, Li W, Chen Y, Yang C. Protective mechanism of Astragalus Polysaccharides against Cantharidin-induced liver injury determined in vivo by liquid chromatography/mass spectrometry metabolomics. Basic Clin Pharmacol Toxicol 2021; 129:61-71. [PMID: 33834601 DOI: 10.1111/bcpt.13585] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/29/2021] [Accepted: 04/07/2021] [Indexed: 12/14/2022]
Abstract
Cantharidin (CTD) is a promising anticancer drug; however, its dosage is limited by hepatotoxicity. We previously showed that Astragalus polysaccharides (APS) effectively improved chemical liver injury. In this study, we established a CTD-induced subacute liver injury mouse model and examined the effects of APS on weight, liver indexes, histopathology, serum biochemical indexes and liver metabolism. Compared with the control group, mice in the CTD model group had obvious liver damage, which was partially prevented by APS. Metabolomics demonstrated that CTD caused liver damage mainly by regulating glycerophospholipid metabolism, ABC transporter pathways and choline metabolism in cancer in vivo. APS regulated primary bile acid biosynthesis and glycerophospholipid metabolism, thus decreasing the liver damage caused by CTD. This study revealed the protective mechanism of APS against CTD-induced liver injury from the perspective of metabolomics. The results provide an important basis for analysing the mechanism of CTD-induced liver toxicity and for assessing clinical treatment options to reduce CTD liver toxicity.
Collapse
Affiliation(s)
- Xiaoduo Huang
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Wenchao Tang
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Chang Lin
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Zongge Sa
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Mengdan Xu
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Jieying Liu
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Lina Wang
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Wen Li
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yunzhi Chen
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Changfu Yang
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
342
|
LncRNA NEAT1 promotes malignant phenotypes and TMZ resistance in glioblastoma stem cells by regulating let-7g-5p/MAP3K1 axis. Biosci Rep 2021; 40:226679. [PMID: 33057597 PMCID: PMC7601351 DOI: 10.1042/bsr20201111] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 09/16/2020] [Accepted: 10/07/2020] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most malign brain tumors in adults. Temozolomide (TMZ) is an oral chemotherapy drug constituting the backbone of chemotherapy regimens utilized as first-line treatment of GBM. However, resistance to TMZ often leads to treatment failure. In the present study, we explored the expression and related mechanisms of nuclear enriched abundant transcript 1 (NEAT1) in glioma stem cells (GSCs). Quantitative real-time PCR (qRT-PCR) showed that NEAT1 was up-regulated in serum samples of GBM patients and GSCs isolated from U87, U251 cell lines. Functional experiments showed that NEAT1 knockdown restrained malignant behaviors of GSC, including proliferation, migration and invasion. Dual-luciferase assays identified let-7g-5p was a downstream target and negatively adjusted by NEAT1. Restoration of let-7g-5p impeded tumor progression by inhibiting proliferation, migration and invasion. Mitogen-activated protein kinase kinase kinase 1 (MAP3K1), as a direct target of let-7g-5p, was positively regulated by NEAT1 and involved to affect the regulation of NEAT1 on GSCs' behaviors. In conclusion, our results suggested that NEAT1 promoted GSCs progression via NEAT1/let-7g-5p/MAP3K1 axis, which provided a depth insight into TMZ resistance mechanism.
Collapse
|
343
|
Zhuang Y, Lin B, Yu Y, Wang Y, Zhang L, Cao Y, Guo M. A ratiometric fluorescent probe based on sulfur quantum dots and calcium ion for sensitive and visual detection of doxycycline in food. Food Chem 2021; 356:129720. [PMID: 33831834 DOI: 10.1016/j.foodchem.2021.129720] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/17/2021] [Accepted: 03/26/2021] [Indexed: 10/21/2022]
Abstract
The residue of doxycycline in food can cause harm to human. Therefore, the detection of doxycycline residue is necessary. Herein, a ratiometric fluorescent probe was designed based on sulfur quantum dots (S dots) and Ca2+. Due to static quenching and inter filter effect between doxycycline and S dots, doxycycline quenched fluorescence of S dots at 450 nm. Meanwhile, doxycycline and Ca2+ formed fluorescent complex through coordination to produce new peak at 520 nm. The ratio of fluorescence intensity (F520/F450) and doxycycline concentration showed good linear relationship with detection limit of 0.19 μM. The fluorescence color of S dots/Ca2+ changed from blue to light green with increasing doxycycline concentration, which was applied for visual semi-quantitative detection of doxycycline. Moreover, the method was used for detecting doxycycline in milk and fish samples with recoveries in the range of 91%-110%. The method showed good application potential in detection of doxycycline in food samples.
Collapse
Affiliation(s)
- Yuerui Zhuang
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China
| | - Bixia Lin
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China.
| | - Ying Yu
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China.
| | - Yumin Wang
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China
| | - Li Zhang
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China
| | - Yujuan Cao
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China
| | - Manli Guo
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
344
|
Dong ZY, Wei L, Lu HQ, Zeng QH, Meng FC, Wang GW, Lan XZ, Liao ZH, Chen M. Ptehoosines A and B: Two new sesamin-type sesquilignans with antiangiogenic activity from Pterocephalus hookeri (C.B. Clarke) Höeck. Fitoterapia 2021; 151:104886. [PMID: 33757847 DOI: 10.1016/j.fitote.2021.104886] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/13/2021] [Accepted: 03/13/2021] [Indexed: 11/30/2022]
Abstract
Two undescribed sesamin-type sesquilignans ptehoosines A (1) and B (2), together with 4 known lignans (3-6), were isolated from Pterocephalus hookeri (C.B. Clarke) Höeck which was widely used as traditional Tibetan medicine for treatment of rheumatoid arthritis. Their structures were determined by HR-ESI-MS, NMR analysis and CD experiment. The in vitro antiangiogenic effect of all isolated compounds against human umbilical vein endothelial cells (HUVECs) were evaluated by CCK-8 assay. Among them, compound 1 exhibited significant proliferative inhibition on HUVECs with IC50 value of 32.82 ± 0.99 μM. Further in vitro study indicated 1 could arrest cell cycle at G0/G1 phase and reduce the migration of HUVECs. In vivo experiment exhibited 1 could inhibit tail vessels plexus in zebrafish. The above finding suggested that 1 was a promising lead compound against RA by inhibiting of angiogenesis.
Collapse
Affiliation(s)
- Zhao-Yue Dong
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China; Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, Southwest University, Chongqing 400715, PR China
| | - Lin Wei
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Hui-Qiang Lu
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China; Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi, PR China
| | - Qing-Hong Zeng
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Fan-Cheng Meng
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Guo-Wei Wang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Xiao-Zhong Lan
- TAAHC-SWU Medicinal Plant R&D Center, Xizang Agriculture and Animal Husbandry College, Nyingchi, Tibet 860000, PR China
| | - Zhi-Hua Liao
- School of Life Sciences, Southwest University, Chongqing 400715, PR China
| | - Min Chen
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China; Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
345
|
Zhang X, Bi C, Chen Q, Xu H, Shi H, Li X. Structure elucidation of arabinogalactoglucan isolated from Sedum sarmentosum Bunge and its inhibition on hepatocellular carcinoma cells in vitro. Int J Biol Macromol 2021; 180:152-160. [PMID: 33741368 DOI: 10.1016/j.ijbiomac.2021.03.051] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/26/2021] [Accepted: 03/10/2021] [Indexed: 02/07/2023]
Abstract
Sedum sarmentosum Bunge (SS) is clinically used as Chinese medicine for hepatitis related diseases treatment. The purpose of this study was to explore the chemical structures of polysaccharides from this plant. A neutral polysaccharide (SSWP) was isolated and purified by ion-exchange chromatography and Superdex-75 column. The obtained SSWP was a homogenous one with a molecular weight of 21.5 kDa according to the high-performance gel permeation chromatography. The major monosaccharide composition of SSWP was arabinose, glucose and galactose in a molar ratio of 2.4:1:1.8. The methylation analysis showed that SSWP consists mainly of Araf-(1→, →5)-Araf-(1→, →3,5)-Araf-(1→, →4)-Galp-(1→, →4)-Glcp-(1→. The NMR result and enzymatic digestion data comprehensively indicated that SSWP was a novel arabinogalactoglucan-type structure. The anticancer assay in vitro exhibited that SSWP could effectively inhibit 48.9% of Huh-7 cells growth at 50 μg/mL and arrest cells at S-phase, and induce tumor cells apoptosis. Together, polysaccharide from S. sarmentosum Bunge could be a potential natural antitumor agent.
Collapse
Affiliation(s)
- Xue Zhang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, PR China
| | - Caili Bi
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, PR China
| | - Qi Chen
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, PR China
| | - Hairong Xu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, PR China
| | - Hongcan Shi
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, PR China
| | - Xiaojun Li
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, PR China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, PR China.
| |
Collapse
|
346
|
Anticancer Mechanism of Curcumin on Human Glioblastoma. Nutrients 2021; 13:nu13030950. [PMID: 33809462 PMCID: PMC7998496 DOI: 10.3390/nu13030950] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) is the most malignant brain tumor and accounts for most adult brain tumors. Current available treatment options for GBM are multimodal, which include surgical resection, radiation, and chemotherapy. Despite the significant advances in diagnostic and therapeutic approaches, GBM remains largely resistant to treatment, with a poor median survival rate between 12 and 18 months. With increasing drug resistance, the introduction of phytochemicals into current GBM treatment has become a potential strategy to combat GBM. Phytochemicals possess multifarious bioactivities with multitarget sites and comparatively marginal toxicity. Among them, curcumin is the most studied compound described as a potential anticancer agent due to its multi-targeted signaling/molecular pathways properties. Curcumin possesses the ability to modulate the core pathways involved in GBM cell proliferation, apoptosis, cell cycle arrest, autophagy, paraptosis, oxidative stress, and tumor cell motility. This review discusses curcumin’s anticancer mechanism through modulation of Rb, p53, MAPK, P13K/Akt, JAK/STAT, Shh, and NF-κB pathways, which are commonly involved and dysregulated in preclinical and clinical GBM models. In addition, limitation issues such as bioavailability, pharmacokinetics perspectives strategies, and clinical trials were discussed.
Collapse
|
347
|
Feng SL, Zhang J, Jin H, Zhu WT, Yuan Z. A Network Pharmacology Study of the Molecular Mechanisms of Hypericum japonicum in the Treatment of Cholestatic Hepatitis with Validation in an Alpha-Naphthylisothiocyanate (ANIT) Hepatotoxicity Rat Model. Med Sci Monit 2021; 27:e928402. [PMID: 33657087 PMCID: PMC7938440 DOI: 10.12659/msm.928402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background This network pharmacology study aimed to identify the active compounds and molecular mechanisms involved in the effects of Hypericum japonicum on cholestatic hepatitis. We validated the findings in an alpha-naphthylisothiocyanate (ANIT) rat model of hepatotoxicity. Material/Methods The chemical constituents and targets of H. japonicum and target genes previously associated with cholestatic hepatitis were retrieved from public databases. A network was constructed using Cytoscape 3.7.2 software and the STRING database and potential protein functions were analyzed based on the public platform of bioinformatics. ANIT was used to induce cholestatic hepatitis in a rat model using 36 Sprague-Dawley rats, and this model was used to investigate intervention with 3 doses of quercetin (low-dose, 50 mg/kg; medium-dose, 100 mg/kg; and high-dose, 200 mg/kg), the main active component of H. japonicum. Levels of serum biochemical indexes were measured by commercial kits, and the messenger RNA (mRNA) levels of markers of liver and mitochondrial function and oxidative stress were detected by real-time reverse transcription-polymerase chain reaction (RT-PCR). Results The main active ingredients of H. japonicum were quercetin, kaempferol, and tetramethoxyluteolin, and their key targets included prostaglandin G/H synthase 2 (PTGS2), B-cell lymphoma-2 (BCL2), cholesterol 7-alpha hydroxylase (CYP7A1), and farnesoid X receptor (FXR). Quercetin intervention promoted recovery from cholestatic hepatitis. Conclusions The findings from this research provide support for future research on the roles of quercetin, kaempferol, and tetramethoxyluteolin in human liver disease and the roles of the PTGS2, BCL2, CYP7A1, and FXR genes in cholestatic hepatitis.
Collapse
Affiliation(s)
- Sen Ling Feng
- Department of Pharmacy, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China (mainland)
| | - Jing Zhang
- Department of Pharmacy, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China (mainland)
| | - Hongliu Jin
- Department of Pharmacy, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China (mainland)
| | - Wen Ting Zhu
- Department of Pharmacy, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China (mainland)
| | - Zhongwen Yuan
- Department of Pharmacy, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China (mainland)
| |
Collapse
|
348
|
Su Y, Zeng Z, Rong D, Yang Y, Wu B, Cao Y. PSMC2, ORC5 and KRTDAP are specific biomarkers for HPV-negative head and neck squamous cell carcinoma. Oncol Lett 2021; 21:289. [PMID: 33732365 PMCID: PMC7905686 DOI: 10.3892/ol.2021.12550] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 01/07/2021] [Indexed: 12/11/2022] Open
Abstract
The prognosis of patients with human papillomavirus (HPV)-negative head and neck squamous cell carcinoma (HNSCC) is poorer than those with HPV-positive HNSCC. The present study aimed to identify novel and specific biomarkers of HPV-negative HNSCC using bioinformatics analysis and associated experiments. The gene expression profiles of HPV-negative HNSCC tissues and corresponding clinical data were downloaded from The Cancer Genome Atlas database and used in a weighted gene co-expression network analysis. Genes in clinically significant co-expression modules were used to construct a protein-protein interaction (PPI) network. The genes demonstrating a high degree score in the PPI network and a high correlation with tumor grade were considered hub genes. The diagnostic value of the hub genes associated with HPV-negative and HPV-positive HNSCC was analyzed using differential expression gene (DEG) analysis, immunohistochemical (IHC) staining and a receiver operating characteristic (ROC) curve analysis. Seven genes [Serrate RNA effector molecule (SRRT), checkpoint kinase 2 (CHEK2), small nuclear ribonucleoprotein polypeptide E (SNRPE), proteasome 26S subunit ATPase 2 (PSMC2), origin recognition complex subunit 5 (ORC5), S100 calcium binding protein A7 and keratinocyte differentiation associated protein (KRTDAP)] were demonstrated to be hub genes in clinically significant co-expression modules. DEG, IHC and ROC curve analyses revealed that SRRT, CHEK2 and SNRPE were significantly upregulated in HPV-negative and HPV-positive HNSCC tissues compared with in adjacent tissues, and these genes demonstrated a high diagnostic value for distinguishing HNSCC tissues. However, PSMC2, ORC5 and KRTDAP were the only differentially expressed genes identified in HPV-negative HNSCC tissues, and these genes demonstrated a high diagnostic value for HPV-negative HNSCC. PSMC2, ORC5 and KRTDAP may therefore serve as novel and specific biomarkers for HPV-negative HNSCC, potentially improving the diagnosis and treatment of patients with HPV-negative HNSCC.
Collapse
Affiliation(s)
- Yushen Su
- Clinical Medical School, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China
| | - Zhirui Zeng
- School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China
| | - Dongyun Rong
- Clinical Medical School, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China.,Public Health School, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China
| | - Yushi Yang
- School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China.,Department of Pathology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Bei Wu
- Department of Obstetrics and Gynecology, 925 Hospital of The Joint Logistics Support Force of The Chinese People's Liberation Army, Guiyang, Guizhou 550004, P.R. China
| | - Yu Cao
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| |
Collapse
|
349
|
Surai PF, Kochish II, Kidd MT. Redox Homeostasis in Poultry: Regulatory Roles of NF-κB. Antioxidants (Basel) 2021; 10:186. [PMID: 33525511 PMCID: PMC7912633 DOI: 10.3390/antiox10020186] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/19/2021] [Accepted: 01/25/2021] [Indexed: 12/13/2022] Open
Abstract
Redox biology is a very quickly developing area of modern biological sciences, and roles of redox homeostasis in health and disease have recently received tremendous attention. There are a range of redox pairs in the cells/tissues responsible for redox homeostasis maintenance/regulation. In general, all redox elements are interconnected and regulated by various means, including antioxidant and vitagene networks. The redox status is responsible for maintenance of cell signaling and cell stress adaptation. Physiological roles of redox homeostasis maintenance in avian species, including poultry, have received limited attention and are poorly characterized. However, for the last 5 years, this topic attracted much attention, and a range of publications covered some related aspects. In fact, transcription factor Nrf2 was shown to be a master regulator of antioxidant defenses via activation of various vitagenes and other protective molecules to maintain redox homeostasis in cells/tissues. It was shown that Nrf2 is closely related to another transcription factor, namely, NF-κB, responsible for control of inflammation; however, its roles in poultry have not yet been characterized. Therefore, the aim of this review is to describe a current view on NF-κB functioning in poultry with a specific emphasis to its nutritional modulation under various stress conditions. In particular, on the one hand, it has been shown that, in many stress conditions in poultry, NF-κB activation can lead to increased synthesis of proinflammatory cytokines leading to systemic inflammation. On the other hand, there are a range of nutrients/supplements that can downregulate NF-κB and decrease the negative consequences of stress-related disturbances in redox homeostasis. In general, vitagene-NF-κB interactions in relation to redox balance homeostasis, immunity, and gut health in poultry production await further research.
Collapse
Affiliation(s)
- Peter F. Surai
- Department of Biochemistry, Vitagene and Health Research Centre, Bristol BS4 2RS, UK
- Department of Hygiene and Poultry Sciences, Moscow State Academy of Veterinary Medicine and Biotechnology named after K. I. Skryabin, 109472 Moscow, Russia;
- Department of Biochemistry and Physiology, Saint-Petersburg State Academy of Veterinary Medicine, 196084 St. Petersburg, Russia
- Department of Microbiology and Biochemistry, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
- Department of Animal Nutrition, Faculty of Agricultural and Environmental Sciences, Szent Istvan University, H-2103 Gödöllo, Hungary
| | - Ivan I. Kochish
- Department of Hygiene and Poultry Sciences, Moscow State Academy of Veterinary Medicine and Biotechnology named after K. I. Skryabin, 109472 Moscow, Russia;
| | - Michael T. Kidd
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA;
| |
Collapse
|
350
|
Gan Z, Jiang J, Tao H, Luo S, Meng X, Yu J, Zhang Y, Tang C. Traditional uses, phytochemistry, pharmacology, and toxicology of Pterocephalus hookeri (C. B. Clarke) Höeck: a review. RSC Adv 2021; 11:28761-28774. [PMID: 35478563 PMCID: PMC9038101 DOI: 10.1039/d1ra05548h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 08/15/2021] [Indexed: 12/29/2022] Open
Abstract
Pterocephalus hookeri (C. B. Clarke) Höeck is a member of the Dipsacaceae family and has been used in traditional Tibetan medicine for thousands of years. P. hookeri clears heat, detoxifies, stops dysentery, eliminates distemper, dispels wind, and relieves stagnation and is mainly prescribed for heat syndrome, dysentery, arthritis, and plague. Approximately 93 chemical compounds have been isolated and identified from P. hookeri, including iridoid glycosides, lignan and triterpenoids. Meanwhile, modern pharmacological studies have shown that P. hookeri has anti-inflammatory, anti-rheumatoid arthritis, analgesic, anticancer, and neuroprotection activities. However, studies on the in vivo pharmacokinetics and mechanism of action, discovery of quality markers, and qualitative and quantitative analysis are still insufficient. Hence, this paper provides a comprehensive review of the ethnic medicine, phytochemistry, pharmacology, and toxicology of P. hookeri to increase the understanding of the medicinal value of P. hookeri. Pterocephalus hookeri (C. B. Clarke) Höeck has been used in traditional Tibetan medicine for thousands of years. The existing research results of P. hookeri are summarized, and will provide a basis for the further development of new drugs.![]()
Collapse
Affiliation(s)
- Zhiqiang Gan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Juan Jiang
- Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Honglin Tao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shiying Luo
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xianli Meng
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jia Yu
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yi Zhang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ce Tang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|