351
|
Maszka P, Kwasniak-Butowska M, Cysewski D, Slawek J, Smolenski RT, Tomczyk M. Metabolomic Footprint of Disrupted Energetics and Amino Acid Metabolism in Neurodegenerative Diseases: Perspectives for Early Diagnosis and Monitoring of Therapy. Metabolites 2023; 13:metabo13030369. [PMID: 36984809 PMCID: PMC10057046 DOI: 10.3390/metabo13030369] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/20/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
The prevalence of neurodegenerative diseases (NDs) is increasing due to the aging population and improved longevity. They are characterized by a range of pathological hallmarks, including protein aggregation, mitochondrial dysfunction, and oxidative stress. The aim of this review is to summarize the alterations in brain energy and amino acid metabolism in Alzheimer’s disease (AD), Parkinson’s disease (PD), and Huntington’s disease (HD). Based on our findings, we proposed a group of selected metabolites related to disturbed energy or mitochondrial metabolism as potential indicators or predictors of disease. We also discussed the hidden challenges of metabolomics studies in NDs and proposed future directions in this field. We concluded that biochemical parameters of brain energy metabolism disruption (obtained with metabolomics) may have potential application as a diagnostic tool for the diagnosis, prediction, and monitoring of the effectiveness of therapies for NDs. However, more studies are needed to determine the sensitivity of the proposed candidates. We suggested that the most valuable biomarkers for NDs studies could be groups of metabolites combined with other neuroimaging or molecular techniques. To attain clinically applicable results, the integration of metabolomics with other “omic” techniques might be required.
Collapse
Affiliation(s)
- Patrycja Maszka
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Magdalena Kwasniak-Butowska
- Division of Neurological and Psychiatric Nursing, Medical University of Gdansk, 80-211 Gdansk, Poland
- Department of Neurology, St. Adalbert Hospital, 80-462 Gdansk, Poland
| | - Dominik Cysewski
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Jaroslaw Slawek
- Division of Neurological and Psychiatric Nursing, Medical University of Gdansk, 80-211 Gdansk, Poland
- Department of Neurology, St. Adalbert Hospital, 80-462 Gdansk, Poland
| | - Ryszard T. Smolenski
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland
- Correspondence: (R.T.S.); (M.T.)
| | - Marta Tomczyk
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland
- Correspondence: (R.T.S.); (M.T.)
| |
Collapse
|
352
|
Khodabakhshi A, Monfared V, Arabpour Z, Vahid F, Hasani M. Association between Levels of Trimethylamine N-Oxide and Cancer: A Systematic Review and Meta-Analysis. Nutr Cancer 2023; 75:402-414. [PMID: 36217110 DOI: 10.1080/01635581.2022.2129080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cancer is the second leading cause of death in the world. Reports on the effect of Trimethylamine-N-oxide (TAMO), a small amine oxide generated by gut microbial metabolism of choline, betaine, and carnitine, on cancer are inconsistent. Therefore, this systematic review and meta-analysis summarize the effect of TAMO on cancer incidence. A systematic search was conducted in PubMed, Scopus, Web of Science, and Embase. Data were pooled using the random-effects method and were expressed as weighted mean difference (WMD) and 95% confidence intervals (CI). The pooled results of 16 studies, including 5930 participants, showed that the association between TMAO levels and cancer incidence is insignificant (Odds Ratio: 0.97, 95% CI: (0.64, 1.46), P-value = 0.871). Subgroup analysis showed that urinary TMAO levels were negatively associated with cancer incidence; in contrast, a direct and positive association was observed between serum TMAO levels and cancer incidence. However, "gender" and the "TMAO measuring method" were the potential sources of discrepancies. Meta-regression analysis did not reveal any significant association between duration of studies, age, female ratio, subjects-control, and subjects-case. The present study demonstrates that serum TAMO levels were insignificantly associated with cancer incidence.
Collapse
Affiliation(s)
- Adeleh Khodabakhshi
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran.,Physiology Research center, Institute of Neuropharmacology, and Department of Nutrition, Faculty of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Vahid Monfared
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Zahra Arabpour
- Department of Nutrition, School of Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Farhad Vahid
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Motahareh Hasani
- Department of Nutrition, School of Health, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
353
|
Sensi SL, Russo M, Tiraboschi P. Biomarkers of diagnosis, prognosis, pathogenesis, response to therapy: Convergence or divergence? Lessons from Alzheimer's disease and synucleinopathies. HANDBOOK OF CLINICAL NEUROLOGY 2023; 192:187-218. [PMID: 36796942 DOI: 10.1016/b978-0-323-85538-9.00015-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Alzheimer's disease (AD) is the most common disorder associated with cognitive impairment. Recent observations emphasize the pathogenic role of multiple factors inside and outside the central nervous system, supporting the notion that AD is a syndrome of many etiologies rather than a "heterogeneous" but ultimately unifying disease entity. Moreover, the defining pathology of amyloid and tau coexists with many others, such as α-synuclein, TDP-43, and others, as a rule, not an exception. Thus, an effort to shift our AD paradigm as an amyloidopathy must be reconsidered. Along with amyloid accumulation in its insoluble state, β-amyloid is becoming depleted in its soluble, normal states, as a result of biological, toxic, and infectious triggers, requiring a shift from convergence to divergence in our approach to neurodegeneration. These aspects are reflected-in vivo-by biomarkers, which have become increasingly strategic in dementia. Similarly, synucleinopathies are primarily characterized by abnormal deposition of misfolded α-synuclein in neurons and glial cells and, in the process, depleting the levels of the normal, soluble α-synuclein that the brain needs for many physiological functions. The soluble to insoluble conversion also affects other normal brain proteins, such as TDP-43 and tau, accumulating in their insoluble states in both AD and dementia with Lewy bodies (DLB). The two diseases have been distinguished by the differential burden and distribution of insoluble proteins, with neocortical phosphorylated tau deposition more typical of AD and neocortical α-synuclein deposition peculiar to DLB. We propose a reappraisal of the diagnostic approach to cognitive impairment from convergence (based on clinicopathologic criteria) to divergence (based on what differs across individuals affected) as a necessary step for the launch of precision medicine.
Collapse
Affiliation(s)
- Stefano L Sensi
- Department of Neuroscience, Imaging, and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Molecular Neurology Unit, Center for Advanced Studies and Technology-CAST and ITAB Institute for Advanced Biotechnology, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.
| | - Mirella Russo
- Department of Neuroscience, Imaging, and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Molecular Neurology Unit, Center for Advanced Studies and Technology-CAST and ITAB Institute for Advanced Biotechnology, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Pietro Tiraboschi
- Division of Neurology V-Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
354
|
Tian Z, Wang X, Han T, Sun C. Selegiline ameliorated dyslipidemia and hepatic steatosis in high-fat diet mice. Int Immunopharmacol 2023; 117:109901. [PMID: 36822098 DOI: 10.1016/j.intimp.2023.109901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/06/2023] [Accepted: 02/13/2023] [Indexed: 02/25/2023]
Abstract
Certain monoamine oxidase (MAO) inhibitors exhibit beneficial effects, such as reducing adiposity and metabolic disorders; however, their effects on hepatic lipid metabolism have not been revealed. This study aimed to investigate the effects of a selective MAO-B inhibitor, selegiline, on dyslipidemia and hepatic steatosis in mice induced by a high-fat diet (HFD). Administration of selegiline (0.6 mg/kg body weight) by intraperitoneal injection was found to reduce HFD-induced body weight gain and increases in liver and adiposity coefficients, blood lipids and fatty acid levels. Furthermore, selegiline dramatically reduced the total triglyceride (TG) and cholesterol (TC) levels and lipid accumulation in the livers of HFD-fed mice and palmitic acid (PA)-treated AML-12 hepatocytes. In vivo and in vitro results indicated that selegiline protects against HFD- and PA-induced hepatic inflammation by reducing the expression of proinflammatory cytokines, namely IL-6, TNF-α, IL-1β, and IL-1α. Additionally, selegiline exhibited antioxidative effects on HFD and PA exposure in mouse liver and AML-12 cells by decreasing the levels of reactive oxygen species (ROS) and malonaldehyde (MDA) and increasing superoxide dismutase (SOD) activity. Further study showed that selegiline administration mitigated the expression of Srebf-1, Fasn, and Acaca and downregulated the expression of Cpt-1 and Pparα in HFD-fed mouse livers and PA-treated AML-12 cells. In conclusion, our findings suggest that selegiline exerts protective effects against HFD-induced dyslipidemia and hepatic steatosis, which may be related to an improved inflammatory response, oxidative stress, and hepatic lipid metabolism.
Collapse
Affiliation(s)
- Zhen Tian
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, PR China
| | - Xinyue Wang
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, PR China
| | - Tianshu Han
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, PR China.
| | - Changhao Sun
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, PR China.
| |
Collapse
|
355
|
Lin S, Li P, Qin J, Liu Q, Zhang J, Meng N, Jia C, Zhu K, Lv D, Sun L, Shang T, Lin Y, Niu W, Wang T. Exploring the key factors of schizophrenia relapse by integrating LC-MS/ 1H NMR metabolomics and weighted correlation network analysis. Clin Chim Acta 2023; 541:117252. [PMID: 36781041 DOI: 10.1016/j.cca.2023.117252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/13/2023]
Abstract
BACKGROUND Lack of comprehending key factors of schizophrenia relapse has impeded its effective treatment, indicating that the mechanism clarification and available intervention of schizophrenia relapse required further amelioration. METHOD Based on the integration of LC-MS and 1H NMR metabolomics, a weighted correlation network was established to screen pivotal factors of accelerating schizophrenia relapse. Then, the cluster most correlated with schizophrenia relapse was explored, and the biological function of cluster was investigated. Next, the key biomarker related to schizophrenia relapse was obtained through multiple algorithms. Moreover, the Lilikoi algorithm and correlation analysis were implemented to reveal the association between key biomarker and schizophrenia relapse. RESULT Results showed that 458 different forms of metabolites were identified for structuring the weighted correlation network. The module-trait correlation indicated that the turquoise module was the most highly correlated with schizophrenia relapse. Further, network analysis revealed that, in turquoise module, cluster 1 composed of 139 metabolites (involved in lipid metabolism and energy metabolism) was the most important subnetwork relevant to schizophrenia relapse. Finally, phenylalanylphenylalanine was recommended as the key biomarker related to schizophrenia relapse. Moreover, the correlation analysis indicated that phenylalanylphenylalanine might affect the progression of schizophrenia by intervening in energy metabolism. CONCLUSION In summary, critical factors of schizophrenia relapse have been revealed in our research, expounding the schizophrenia progression more systemically, which could shed some light on improving the intervention of schizophrenia relapse.
Collapse
Affiliation(s)
- Song Lin
- Basic Medical Science College, Qiqihar Medical University, Qiqihar, Heilongjiang Province 161006, China
| | - Ping Li
- School of Mental Health, Qiqihar Medical University, Qiqihar, Heilongjiang Province 161006, China
| | - Jinglei Qin
- Baiyupao Psychiatric Hospital of Harbin, Harbin, Heilongjiang Province 150000, China
| | - Qi Liu
- Research Institute of Medicine & Pharmacy, Qiqihar Medical University, Qiqihar, Heilongjiang Province 161006, China
| | - Jinling Zhang
- Research Institute of Medicine & Pharmacy, Qiqihar Medical University, Qiqihar, Heilongjiang Province 161006, China
| | - Nana Meng
- Basic Medical Science College, Qiqihar Medical University, Qiqihar, Heilongjiang Province 161006, China
| | - Cuicui Jia
- School of Mental Health, Qiqihar Medical University, Qiqihar, Heilongjiang Province 161006, China
| | - Kunjie Zhu
- Basic Medical Science College, Qiqihar Medical University, Qiqihar, Heilongjiang Province 161006, China
| | - Dan Lv
- School of Mental Health, Qiqihar Medical University, Qiqihar, Heilongjiang Province 161006, China
| | - Lei Sun
- School of Mental Health, Qiqihar Medical University, Qiqihar, Heilongjiang Province 161006, China
| | - Tinghuizi Shang
- School of Mental Health, Qiqihar Medical University, Qiqihar, Heilongjiang Province 161006, China
| | - Yan Lin
- Basic Medical Science College, Qiqihar Medical University, Qiqihar, Heilongjiang Province 161006, China
| | - Weipan Niu
- Baiyupao Psychiatric Hospital of Harbin, Harbin, Heilongjiang Province 150000, China
| | - Tianyang Wang
- School of Pharmacy, Qiqihar Medical University, Qiqihar, Heilongjiang Province 161006, China.
| |
Collapse
|
356
|
De la Cruz-Concepción B, Flores-Cortez YA, Barragán-Bonilla MI, Mendoza-Bello JM, Espinoza-Rojo M. Insulin: A connection between pancreatic β cells and the hypothalamus. World J Diabetes 2023; 14:76-91. [PMID: 36926659 PMCID: PMC10011898 DOI: 10.4239/wjd.v14.i2.76] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/13/2022] [Accepted: 01/17/2023] [Indexed: 02/14/2023] Open
Abstract
Insulin is a hormone secreted by pancreatic β cells. The concentration of glucose in circulation is proportional to the secretion of insulin by these cells. In target cells, insulin binds to its receptors and activates phosphatidylinositol-3-kinase/protein kinase B, inducing different mechanisms depending on the cell type. In the liver it activates the synthesis of glycogen, in adipose tissue and muscle it allows the capture of glucose, and in the hypothalamus, it regulates thermogenesis and appetite. Defects in insulin function [insulin resistance (IR)] are related to the development of neurodegenerative diseases in obese people. Furthermore, in obesity and diabetes, its role as an anorexigenic hormone in the hypothalamus is diminished during IR. Therefore, hyperphagia prevails, which aggravates hyper-glycemia and IR further, becoming a vicious circle in which the patient cannot regulate their need to eat. Uncontrolled calorie intake induces an increase in reactive oxygen species, overcoming cellular antioxidant defenses (oxidative stress). Reactive oxygen species activate stress-sensitive kinases, such as c-Jun N-terminal kinase and p38 mitogen-activated protein kinase, that induce phos-phorylation in serine residues in the insulin receptor, which blocks the insulin signaling pathway, continuing the mechanism of IR. The brain and pancreas are organs mainly affected by oxidative stress. The use of drugs that regulate food intake and improve glucose metabolism is the conventional therapy to improve the quality of life of these patients. Currently, the use of antioxidants that regulate oxidative stress has given good results because they reduce oxidative stress and inflammatory processes, and they also have fewer side effects than synthetic drugs.
Collapse
Affiliation(s)
- Brenda De la Cruz-Concepción
- Molecular and Genomic Biology Laboratory, Faculty of Chemical-Biological Sciences, Autonomous University of Guerrero, Chilpancingo 39070, Guerrero, Mexico
| | - Yaccil Adilene Flores-Cortez
- Molecular and Genomic Biology Laboratory, Faculty of Chemical-Biological Sciences, Autonomous University of Guerrero, Chilpancingo 39070, Guerrero, Mexico
| | - Martha Isela Barragán-Bonilla
- Molecular and Genomic Biology Laboratory, Faculty of Chemical-Biological Sciences, Autonomous University of Guerrero, Chilpancingo 39070, Guerrero, Mexico
| | - Juan Miguel Mendoza-Bello
- Molecular and Genomic Biology Laboratory, Faculty of Chemical-Biological Sciences, Autonomous University of Guerrero, Chilpancingo 39070, Guerrero, Mexico
| | - Monica Espinoza-Rojo
- Molecular and Genomic Biology Laboratory, Faculty of Chemical-Biological Sciences, Autonomous University of Guerrero, Chilpancingo 39070, Guerrero, Mexico
| |
Collapse
|
357
|
Zhang Y, Zhang W, Hou J, He J, Li K, Li Y, Xu D. Determination of sugars and sugar alcohols in infant formula by high performance liquid chromatography with evaporative light-scattering detector. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1217:123621. [PMID: 36746090 DOI: 10.1016/j.jchromb.2023.123621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023]
Abstract
A method was established for the simultaneous determination of five sugars (fructose, glucose, sucrose, lactose, maltose) and five sugar alcohols (erythritol, xylitol, sorbitol, mannitol, maltitol) in infant formula by high performance liquid chromatography-evaporative light scattering detector. After the samples were extracted with acetonitrile-water solution, precipitated by acetic acid, and purified with solid phase extraction cartridge, ALLChrom Rocksil Carbohydrate ES column was adopted for separation, and isocratic elution was conducted at the flow rate of 1.0 mL/min with acetonitrile-0.04 % ammonia solution as the mobile phase. The analytes were detected by an evaporative light-scattering detector, and quantified by external standard method. The linear ranges of the 10 components were 0.04-4.0 g/L with the correlation coefficients greater than 0.999, and the limits of quantification (S/N = 10) of the method were 0.08-0.4 g/100 g. The relative standard deviation of the lactose parallel samples reached 1.29 %, and the recoveries of the other 9 components ranged from 80.4 % to 99.4 % with the relative standard deviation of 2.8 %-7.1 %. The method performs well in sensitivity and separation, which is suitable for the simultaneous quantitative determination of sugars and sugar alcohols in infant formula.
Collapse
Affiliation(s)
- Yaqin Zhang
- Zhejiang Academy of Science and Technology for Inspection and Quarantine, 126 Fuchun Road, Hangzhou 310016, P. R. China
| | - Wenhua Zhang
- Zhejiang Academy of Science and Technology for Inspection and Quarantine, 126 Fuchun Road, Hangzhou 310016, P. R. China; Technical Center of Hangzhou Customs, Hangzhou 310016, P. R. China.
| | - Jianbo Hou
- Zhejiang Academy of Science and Technology for Inspection and Quarantine, 126 Fuchun Road, Hangzhou 310016, P. R. China; Technical Center of Hangzhou Customs, Hangzhou 310016, P. R. China
| | - Jianmin He
- Zhejiang Academy of Science and Technology for Inspection and Quarantine, 126 Fuchun Road, Hangzhou 310016, P. R. China
| | - Ke Li
- Zhejiang Academy of Science and Technology for Inspection and Quarantine, 126 Fuchun Road, Hangzhou 310016, P. R. China; Technical Center of Hangzhou Customs, Hangzhou 310016, P. R. China
| | - Yi Li
- Zhejiang Academy of Science and Technology for Inspection and Quarantine, 126 Fuchun Road, Hangzhou 310016, P. R. China; Technical Center of Hangzhou Customs, Hangzhou 310016, P. R. China
| | - Dunming Xu
- Technical Center of Xiamen Customs, Xiamen 361026, P. R. China
| |
Collapse
|
358
|
Samokhin AS, Matyushin DD. How searching against multiple libraries can lead to biased results in GC/MS-based metabolomics. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2023; 37:e9437. [PMID: 36409456 DOI: 10.1002/rcm.9437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
RATIONALE Databases of electron ionization mass spectra are often used in GC/MS-based untargeted metabolomics analysis. The results of the library search depend on several factors, such as the size and quality of the database, and the library search algorithm. We found out that the list of considered m/z values is another important parameter. Unfortunately, this information is not usually specified by software developers and it is hidden from the end user. METHODS We created synthetic data sets and figured out how several popular software products (AMDIS, ChromaTOF, MS Search, and Xcalibur) select the list of m/z values for the library search. Moreover, we considered data sets of real mass spectra (presented in both the NIST and FiehnLib libraries) and compared the library search results obtained within different software products. All programs under consideration use the NIST MS Search binaries to perform the library search using the Identity algorithm. RESULTS We found that AMDIS and ChromaTOF can give biased library search results under particular conditions. In untargeted metabolomics, this can happen when NIST and FiehnLib libraries are used simultaneously, the scan range of the instrument is less than 85, and the correct answer is present only in the FiehnLib library. CONCLUSIONS The main reason for biased results is that the information about the scan range is not stored in the metadata of library records. As a result, in the case of AMDIS and ChromaTOF software, some unrecorded peaks are considered as missing during the library search, the respective compound is penalized, and the correct answer falls outside the top five or even top 10 hits. At the same time, the default algorithm for selecting the list of considered m/z values implemented in MS Search is free from such unexpected behavior.
Collapse
Affiliation(s)
- Andrey S Samokhin
- Chemistry Department, Lomonosov Moscow State University, Moscow, Russia
| | - Dmitriy D Matyushin
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
359
|
Lőrincz H, Somodi S, Ratku B, Harangi M, Paragh G. Crucial Regulatory Role of Organokines in Relation to Metabolic Changes in Non-Diabetic Obesity. Metabolites 2023; 13:270. [PMID: 36837889 PMCID: PMC9967669 DOI: 10.3390/metabo13020270] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/09/2023] [Accepted: 02/12/2023] [Indexed: 02/16/2023] Open
Abstract
Obesity is characterized by an excessive accumulation of fat leading to a plethora of medical complications, including coronary artery disease, hypertension, type 2 diabetes mellitus or impaired glucose tolerance and dyslipidemia. Formerly, several physiological roles of organokines, including adipokines, hepatokines, myokines and gut hormones have been described in obesity, especially in the regulation of glucose and lipid metabolism, insulin sensitivity, oxidative stress, and low-grade inflammation. The canonical effect of these biologically active peptides and proteins may serve as an intermediate regulatory level that connects the central nervous system and the endocrine, autocrine, and paracrine actions of organs responsible for metabolic and inflammatory processes. Better understanding of the function of this delicately tuned network may provide an explanation for the wide range of obesity phenotypes with remarkable inter-individual differences regarding comorbidities and therapeutic responses. The aim of this review is to demonstrate the role of organokines in the lipid and glucose metabolism focusing on the obese non-diabetic subgroup. We also discuss the latest findings about sarcopenic obesity, which has recently become one of the most relevant metabolic disturbances in the aging population.
Collapse
Affiliation(s)
- Hajnalka Lőrincz
- Division of Metabolic Diseases, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Sándor Somodi
- Department of Emergency Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
- Institute of Health Studies, Faculty of Health Sciences, University of Debrecen, H-4032 Debrecen, Hungary
| | - Balázs Ratku
- Department of Emergency Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
- Institute of Health Studies, Faculty of Health Sciences, University of Debrecen, H-4032 Debrecen, Hungary
- Doctoral School of Health Sciences, University of Debrecen, H-4032 Debrecen, Hungary
| | - Mariann Harangi
- Division of Metabolic Diseases, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
- Institute of Health Studies, Faculty of Health Sciences, University of Debrecen, H-4032 Debrecen, Hungary
| | - György Paragh
- Division of Metabolic Diseases, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| |
Collapse
|
360
|
Zhong W, Li Y, Zhong H, Cheng Y, Chen Q, Zhao X, Liu Z, Li R, Zhang R. Exploring the mechanism of anti-chronic heart failure effect of qiweiqiangxin І granules based on metabolomics. Front Pharmacol 2023; 14:1111007. [PMID: 36860302 PMCID: PMC9968974 DOI: 10.3389/fphar.2023.1111007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/25/2023] [Indexed: 02/15/2023] Open
Abstract
Background: Qiweiqiangxin І granules (QWQX І) is a traditional Chinese medicine preparation based on the basic theory of traditional Chinese medicine, which produces a good curative effect in treating chronic heart failure (CHF). However, its pharmacological effect and potential mechanism for CHF remain unknown. Aim of the study: The purpose of this study is to clarify the efficacy of QWQX І and its possible mechanisms. Materials and methods: A total of 66 patients with CHF were recruited and randomly assigned to the control or QWQX І groups. The primary endpoint was the effect of left ventricular ejection fraction (LVEF) after 4 weeks of treatment. The LAD artery of rats was occluded to establish the model of CHF. Echocardiography, HE and Masson staining were performed to evaluate the pharmacological effect of QWQX І against CHF. Ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF/MS) untargeted metabolomics was to screen endogenous metabolites in rat plasma and heart and elucidate the mechanism of QWQX І against CHF. Results: In the clinical study, a total of 63 heart failure patients completed the 4-week follow-up, including 32 in the control group and 31 in QWQX І group. After 4 weeks of treatment, LVEF was significantly improved in QWQX І group compared with the control group. In addition, the patients in QWQX І group had better quality of life than the control group. In animal studies, QWQX І significantly improved cardiac function, decreased B-type natriuretic peptide (BNP) levels, reduced inflammatory cell infiltration, and inhibited collagen fibril rate. Untargeted metabolomic analysis revealed that 23 and 34 differential metabolites were screened in the plasma and heart of chronic heart failure rats, respectively. 17 and 32 differential metabolites appeared in plasma and heart tissue after QWQX І treatment, which were enriched to taurine and hypotaurine metabolism, glycerophospholipid metabolism and linolenic acid metabolism by KEGG analysis. LysoPC (16:1 (9Z)) is a common differential metabolite in plasma and heart, which is produced by lipoprotein-associated phospholipase A2 (Lp-PLA2), hydrolyzes oxidized linoleic acid to produce pro-inflammatory substances. QWQX І regulates the level of LysoPC (16:1 (9Z)) and Lp-PLA2 to normal. Conclusion: QWQX І combined with western medicine can improve the cardiac function of patients with CHF. QWQX І can effectively improve the cardiac function of LAD-induced CHF rats through regulating glycerophospholipid metabolism and linolenic acid metabolism-mediated inflammatory response. Thus, QWQX I might provide a potential strategy for CHF therapy.
Collapse
Affiliation(s)
- Wanru Zhong
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, School of Pharmaceutical Sciences, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yihua Li
- The first clinical medical college, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haixiang Zhong
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, School of Pharmaceutical Sciences, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuanyuan Cheng
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, School of Pharmaceutical Sciences, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qi Chen
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, School of Pharmaceutical Sciences, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China,Department of Internal Medicine-Cardiovascular, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xinjun Zhao
- Department of Internal Medicine-Cardiovascular, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zhongqiu Liu
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, School of Pharmaceutical Sciences, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China,*Correspondence: Zhongqiu Liu, ; Rong Li, ; Rong Zhang,
| | - Rong Li
- Department of Internal Medicine-Cardiovascular, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China,*Correspondence: Zhongqiu Liu, ; Rong Li, ; Rong Zhang,
| | - Rong Zhang
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, School of Pharmaceutical Sciences, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China,*Correspondence: Zhongqiu Liu, ; Rong Li, ; Rong Zhang,
| |
Collapse
|
361
|
Dhankhar S, Chauhan S, Mehta DK, Nitika, Saini K, Saini M, Das R, Gupta S, Gautam V. Novel targets for potential therapeutic use in Diabetes mellitus. Diabetol Metab Syndr 2023; 15:17. [PMID: 36782201 PMCID: PMC9926720 DOI: 10.1186/s13098-023-00983-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 01/11/2023] [Indexed: 02/15/2023] Open
Abstract
Future targets are a promising prospect to overcome the limitation of conventional and current approaches by providing secure and effective treatment without compromising patient compliance. Diabetes mellitus is a fast-growing problem that has been raised worldwide, from 4% to 6.4% (around 285 million people) in past 30 years. This number may increase to 430 million people in the coming years if there is no better treatment or cure is available. Ageing, obesity and sedentary lifestyle are the key reasons for the worsening of this disease. It always had been a vital challenge, to explore new treatment which could safely and effectively manage diabetes mellitus without compromising patient compliance. Researchers are regularly trying to find out the permanent treatment of this chronic and life threatening disease. In this journey, there are various treatments available in market to manage diabetes mellitus such as insulin, GLP-1 agonist, biguanides, sulphonyl ureas, glinides, thiazolidinediones targeting the receptors which are discovered decade before. PPAR, GIP, FFA1, melatonin are the recent targets that already in the focus for developing new therapies in the treatment of diabetes. Inspite of numerous preclinical studies very few clinical data available due to which this process is in its initial phase. The review also focuses on the receptors like GPCR 119, GPER, Vaspin, Metrnl, Fetuin-A that have role in insulin regulation and have potential to become future targets in treatment for diabetes that may be effective and safer as compared to the conventional and current treatment approaches.
Collapse
Affiliation(s)
- Sanchit Dhankhar
- Department of Pharmaceutical Sciences, M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed To Be University), Mullana, Ambala, 133207, Haryana, India
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Samrat Chauhan
- Department of Pharmaceutical Sciences, M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed To Be University), Mullana, Ambala, 133207, Haryana, India
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Dinesh Kumar Mehta
- Department of Pharmaceutical Sciences, M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed To Be University), Mullana, Ambala, 133207, Haryana, India
| | - Nitika
- Department of Pharmaceutical Sciences, M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed To Be University), Mullana, Ambala, 133207, Haryana, India
- Ganpati Institute of Pharmacy, Bilaspur, Yamunanagar, 135102, Haryana, India
| | - Kamal Saini
- Department of Pharmaceutical Sciences, M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed To Be University), Mullana, Ambala, 133207, Haryana, India
| | - Monika Saini
- Department of Pharmaceutical Sciences, M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed To Be University), Mullana, Ambala, 133207, Haryana, India
| | - Rina Das
- Department of Pharmaceutical Sciences, M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed To Be University), Mullana, Ambala, 133207, Haryana, India
| | - Sumeet Gupta
- Department of Pharmaceutical Sciences, M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed To Be University), Mullana, Ambala, 133207, Haryana, India.
| | - Vinod Gautam
- Department of Pharmaceutical Sciences, IES Institute of Pharmacy, IES University, Bhopal, India
| |
Collapse
|
362
|
Lu R, Liu Y, Hong T. Epidemiological characteristics and management of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis in China: A narrative review. Diabetes Obes Metab 2023; 25 Suppl 1:13-26. [PMID: 36775938 DOI: 10.1111/dom.15014] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/27/2023] [Accepted: 02/08/2023] [Indexed: 02/14/2023]
Abstract
AIM With industrialization and spread of the westernized lifestyle, the number of people affected by non-alcoholic fatty liver disease (NAFLD)/non-alcoholic steatohepatitis (NASH) is growing rapidly in China; this has become a major public health concern. To better understand the burden and characteristics of NAFLD/NASH in China, we aim to perform a narrative review of the literature published in this field. MATERIALS AND METHODS We carried out a comprehensive electronic search of five English-language and three Chinese-language databases, to identify studies regarding NAFLD or NASH published from inception to November 30, 2022. Epidemiological studies of NAFLD/NASH in China were particularly noticed and summarized. We also searched the www. CLINICALTRIALS gov and www.chictr.org.cn websites for the registered trials on the treatment of the disease led by Chinese investigators or located in China. RESULTS The increasing rate of NAFLD prevalence in China is strikingly high, reaching more than twice that in western countries. The prevalence of NAFLD is nearly 30% of the general Chinese population, making it the leading cause of chronic liver diseases. The prevalence of NAFLD/NASH varies between provinces/regions, age groups, sexes, and individuals with different metabolic profiles. NAFLD co-exists in many Chinese patients with chronic hepatitis B. Since 2020, more Chinese studies have used the term metabolic-associated fatty liver disease (MAFLD), emphasizing the underlying metabolic disorders that occur concurrently with this disease. Several clinical trials involving lifestyle interventions, antidiabetic drugs, or traditional Chinese medicines, registered by Chinese investigators, have been completed or are ongoing. Moreover, several innovative targeted therapies developed in China are revolutionizing the treatment of NAFLD/NASH. CONCLUSIONS NAFLD has cast a heavy burden on the Chinese healthcare system. Chinese scholars are making efforts to achieve the optimal management of this disease.
Collapse
Affiliation(s)
- Ran Lu
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China
| | - Ye Liu
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China
| | - Tianpei Hong
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China
| |
Collapse
|
363
|
Metabolomic and transcriptomic response to imatinib treatment of gastrointestinal stromal tumour in xenograft-bearing mice. Transl Oncol 2023; 30:101632. [PMID: 36774883 PMCID: PMC9945753 DOI: 10.1016/j.tranon.2023.101632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/09/2023] [Accepted: 02/01/2023] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND Although imatinib is a well-established first-line drug for treating a vast majority of gastrointestinal stromal tumours (GIST), GISTs acquire secondary resistance during therapy. Multi-omics approaches provide an integrated perspective to empower the development of personalised therapies through a better understanding of functional biology underlying the disease and molecular-driven selection of the best-targeted individualised therapy. In this study, we applied integrative metabolomic and transcriptomic analyses to elucidate tumour biochemical processes affected by imatinib treatment. MATERIALS AND METHODS A GIST xenograft mouse model was used in the study, including 10 mice treated with imatinib and 10 non-treated controls. Metabolites in tumour extracts were analysed using gas chromatography coupled with mass spectrometry (GC-MS). RNA sequencing was also performed on the samples subset (n=6). RESULTS Metabolomic analysis revealed 21 differentiating metabolites, whereas next-generation RNA sequencing data analysis resulted in 531 differentially expressed genes. Imatinib significantly changed the profile of metabolites associated mainly with purine and pyrimidine metabolism, butanoate metabolism, as well as alanine, aspartate, and glutamate metabolism. The related changes in transcriptomic profiles included genes involved in kinase activity and immune responses, as well as supported its impact on the purine biosynthesis pathway. CONCLUSIONS Our multi-omics study confirmed previously known pathways involved in imatinib anticancer activity as well as correlated imatinib-relevant downregulation of expression of purine biosynthesis pathway genes with the reduction of respectful metabolites. Furthermore, considering the importance of the purine biosynthesis pathway for cancer proliferation, we identified a potentially novel mechanism for the anti-tumour activity of imatinib. Based on the results, we hypothesise metabolic modulations aiming at the reduction in purine and pyrimidine pool may ensure higher imatinib efficacy or re-sensitise imatinib-resistant tumours.
Collapse
|
364
|
Zheng Q, Wang Z, Xiong F, Song Y, Zhang G. Effect of pearling on nutritional value of highland barley flour and processing characteristics of noodles. Food Chem X 2023; 17:100596. [PMID: 36845504 PMCID: PMC9945427 DOI: 10.1016/j.fochx.2023.100596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/28/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023] Open
Abstract
Highland barley is increasingly recognized as its nutritional benefits but its structure restricts the development and utilization in the food industry. The quality of highland barley products may be impacted by pearling, an essential step before the hull bran is consumed or further processed. The nutrition, function and edible qualities of three highland barley flour (HBF) with different pearling rates were assessed in this study. The content of resistant starch was the highest when the pearling rate of QB27 and BHB was 4%, while 8% of QB13. Un-pearled HBF showed higher DPPH, ABTS and superoxide radicals inhibition rates. The break rates of QB13, QB27 and BHB obviously decreased from 51.7%, 53.3% and 38.3% to 35.0%, 15.0% and 6.7% respectively at 12% pearling rate. PLS-DA model further attributed the improvement of pearling on noodles quality to the alteration of resilience, hardness, tension distance, breaking rate and water absorption of noodles.
Collapse
|
365
|
Liu T, Yu H, Wang S, Li H, Du X, He X. Chondroitin sulfate alleviates osteoporosis caused by calcium deficiency by regulating lipid metabolism. Nutr Metab (Lond) 2023; 20:6. [PMID: 36747190 PMCID: PMC9901125 DOI: 10.1186/s12986-023-00726-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 01/21/2023] [Indexed: 02/08/2023] Open
Abstract
The use of non-drug intervention for calcium deficiency has attracted attention in recent years. Although calcium carbonate is the preferred raw material for calcium supplementation, there are few reports on the mechanism of the combined action of chondroitin sulfate and calcium to alleviate osteoporosis from the perspective of gut microbiota and metabolomics. In this study, a rat model of osteoporosis was established by feeding a low-calcium diet. The intestinal microbiota abundance, fecal and plasma metabolite expression levels of rats fed a basal diet, a low-calcium diet, a low-calcium diet plus calcium carbonate, and a low-calcium diet plus chondroitin sulfate were compared. The results showed that compared with the low calcium group, the calcium content and bone mineral density of femur were significantly increased in the calcium carbonate and chondroitin sulfate groups. 16 S rRNA sequencing and metabolomics analysis showed that chondroitin sulfate intervention could reduce short-chain fatty acid synthesis of intestinal flora, slow down inflammatory response, inhibit osteoclast differentiation, promote calcium absorption and antioxidant mechanism, and alleviate osteoporosis in low-calcium feeding rats. Correlation analysis showed that the selected intestinal flora was significantly correlated with metabolites enriched in feces and plasma. This study provides scientific evidence of the potential impact of chondroitin sulfate as a dietary supplement for patients with osteoporosis.
Collapse
Affiliation(s)
- Tianshu Liu
- grid.27255.370000 0004 1761 1174Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012 Shandong China ,grid.27255.370000 0004 1761 1174Institute for Medical Dataology, Shandong University, National Institute of Health Data Science of China, Jinan, 250012 Shandong China
| | - Hai Yu
- grid.272242.30000 0001 2168 5385Division of Cancer RNA Research, National Cancer Center Research Institute, Tokyo, 104-0045 Japan ,grid.27255.370000 0004 1761 1174Institute for Medical Dataology, Shandong University, National Institute of Health Data Science of China, Jinan, 250012 Shandong China
| | - Shuai Wang
- grid.27255.370000 0004 1761 1174Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jining, 250012 Shandong China
| | - Huimin Li
- grid.27255.370000 0004 1761 1174Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012 Shandong China ,grid.506261.60000 0001 0706 7839National Human Genetic Resources Center; National Research Institute for Health and Family Planning, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730 China
| | - Xinyiran Du
- grid.449428.70000 0004 1797 7280College of Stomatology, Jining Medical University, Jining, 272067 Shandong China
| | - Xiaodong He
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China. .,Institute for Medical Dataology, Shandong University, National Institute of Health Data Science of China, Jinan, 250012, Shandong, China.
| |
Collapse
|
366
|
Metabolomic analysis shows dysregulation in amino acid and NAD+ metabolism in palmitate treated hepatocytes and plasma of non-alcoholic fatty liver disease spectrum. Biochem Biophys Res Commun 2023; 643:129-138. [PMID: 36603530 DOI: 10.1016/j.bbrc.2022.12.078] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 12/21/2022] [Accepted: 12/27/2022] [Indexed: 12/29/2022]
Abstract
There is an alarming increase in incidence of fatty liver disease worldwide. The fatty liver disease spectrum disease ranges from simple steatosis (NAFL) to steatohepatitis (NASH) which culminates in cirrhosis and cancer. Altered metabolism is a hallmark feature associated with fatty liver disease and palmitic acid is the most abundant saturated fatty acid, therefore, the aim of this study was to compare metabolic profiles altered in hepatocytes treated with palmitic acid and also the differentially expressed plasma metabolites in spectrum of nonalcoholic fatty liver. The metabolites were analyzed by liquid chromatography-mass spectrometry (LC-MS) platform. Hepatocyte cell lines PH5CH8 and HepG2 cells when treated with 400 μM dose of palmitic acid showed typical features of steatosis. Metabolomic analysis of lipid treated hepatocyte cell lines showed differential changes in phenylalanine and tyrosine pathways, fatty acid metabolism and bile acids. The key metabolites tryptophan, kynurenine and carnitine differed significantly between subjects with NAFL, NASH and those with cirrhosis. As the tryptophan-kynurenine axis is also involved in denovo synthesis of NAD+, we found significant alterations in the NAD+ related metabolites in both palmitic acid treated and also fatty liver disease with cirrhosis. The study underscores the importance of amino acid and NAD+supplementation as promising strategies in fatty liver disorder.
Collapse
|
367
|
Network Pharmacological Analysis of a New Herbal Combination Targeting Hyperlipidemia and Efficacy Validation In Vitro. Curr Issues Mol Biol 2023; 45:1314-1332. [PMID: 36826031 PMCID: PMC9955970 DOI: 10.3390/cimb45020086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
The network pharmacology (NP) approach is a valuable novel methodology for understanding the complex pharmacological mechanisms of medicinal herbs. In addition, various in silico analysis techniques combined with the NP can improve the understanding of various issues used in natural product research. This study assessed the therapeutic effects of Arum ternata (AT), Poria cocos (PC), and Zingiber officinale (ZO) on hyperlipidemia after network pharmacologic analysis. A protein-protein interaction (PPI) network of forty-one key targets was analyzed to discover core functional clusters of the herbal compounds. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and gene ontology (GO) term enrichment analysis identified significant categories of hypolipidemic mechanisms. The STITCH database indicated a high connection with several statin drugs, deduced by the similarity in targets. AT, PC, and ZO regulated the genes related to the energy metabolism and lipogenesis in HepG2 cells loaded with free fatty acids (FFAs). Furthermore, the mixture of three herbs had a combinational effect. The herbal combination exerted superior efficacy compared to a single herb, particularly in regulating acetyl-CoA carboxylase (ACC) and carnitine palmitoyltransferase 1 (CPT-1). In conclusion, the network pharmacologic approach was used to assess potential targets of the herbal combination for treatment. Experimental data from FFA-induced HepG2 cells suggested that the combination of AT, PC, and ZO might attenuate hyperlipidemia and its associated hepatic steatosis.
Collapse
|
368
|
Sanches JM, Zhao LN, Salehi A, Wollheim CB, Kaldis P. Pathophysiology of type 2 diabetes and the impact of altered metabolic interorgan crosstalk. FEBS J 2023; 290:620-648. [PMID: 34847289 DOI: 10.1111/febs.16306] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 10/14/2021] [Accepted: 11/29/2021] [Indexed: 02/06/2023]
Abstract
Diabetes is a complex and multifactorial disease that affects millions of people worldwide, reducing the quality of life significantly, and results in grave consequences for our health care system. In type 2 diabetes (T2D), the lack of β-cell compensatory mechanisms overcoming peripherally developed insulin resistance is a paramount factor leading to disturbed blood glucose levels and lipid metabolism. Impaired β-cell functions and insulin resistance have been studied extensively resulting in a good understanding of these pathways but much less is known about interorgan crosstalk, which we define as signaling between tissues by secreted factors. Besides hormones and organokines, dysregulated blood glucose and long-lasting hyperglycemia in T2D is associated with changes in metabolism with metabolites from different tissues contributing to the development of this disease. Recent data suggest that metabolites, such as lipids including free fatty acids and amino acids, play important roles in the interorgan crosstalk during the development of T2D. In general, metabolic remodeling affects physiological homeostasis and impacts the development of T2D. Hence, we highlight the importance of metabolic interorgan crosstalk in this review to gain enhanced knowledge of the pathophysiology of T2D, which may lead to new therapeutic approaches to treat this disease.
Collapse
Affiliation(s)
| | - Li Na Zhao
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Albert Salehi
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Claes B Wollheim
- Department of Clinical Sciences, Lund University, Malmö, Sweden.,Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Philipp Kaldis
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| |
Collapse
|
369
|
Shen S, Huang H, Wang J, Tang Z, Shen C, Xu C. Positive Association Between the Chinese Visceral Adiposity Index and Nonalcoholic Fatty Liver Disease in Lean Adults. Dig Dis Sci 2023; 68:656-664. [PMID: 36512267 DOI: 10.1007/s10620-022-07787-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/05/2022] [Indexed: 02/09/2023]
Abstract
BACKGROUND Chinese visceral adiposity index (CVAI) is a novel indicator that precisely evaluates visceral obesity and has been shown to be significantly associated with nonalcoholic fatty liver disease (NAFLD) in the general population. However, the relationship between CVAI and NAFLD in lean adults remains unclear. AIMS This study aimed to explore the association of CVAI with NAFLD in a lean population and evaluate the diagnostic capability of CVAI for lean NAFLD. METHODS A cross-sectional study was conducted among 9,607 lean adults (body mass index < 24 kg/m2), who underwent their annual health examinations at the First Affiliated Hospital, Zhejiang University School of Medicine in 2021. NAFLD was determined by ultrasonography to the exclusion of other known etiologies. RESULTS The prevalence of NAFLD was 16.4% in this lean population. CVAI values were significantly higher in participants with NAFLD than those without NAFLD and the CVAI quartile was positively associated with the prevalence of NAFLD, which was 0.4%, 6.0%, 19.4%, and 39.8% among the participants with CVAI in quartile 1 to 4, respectively (P for trend < 0.001). Logistic regression analysis found that CVAI was positively associated with the risk of NAFLD (adjusted odds ratio: 1.025, 95% confidence interval: 1.021-1.028; P < 0.001). Furthermore, CVAI had a significantly higher area under curve value for detecting NAFLD than other visceral obesity indices. CONCLUSION Our study showed that CVAI was positively associated with the prevalence and risk of NAFLD in lean adults, and CVAI showed the highest diagnostic ability for lean NAFLD.
Collapse
Affiliation(s)
- Shuxia Shen
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
- Zhejiang Provincial Clinical Research Center for Digestive Diseases, Hangzhou, China
| | - Hangkai Huang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
- Zhejiang Provincial Clinical Research Center for Digestive Diseases, Hangzhou, China
| | - Jinghua Wang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
- Zhejiang Provincial Clinical Research Center for Digestive Diseases, Hangzhou, China
| | - Zexi Tang
- School of Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Chao Shen
- Health Management Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chengfu Xu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China.
- Zhejiang Provincial Clinical Research Center for Digestive Diseases, Hangzhou, China.
| |
Collapse
|
370
|
Relationship between plasma amino acid and carnitine levels and primary angle-closure glaucoma based on mass spectrometry metabolomics. Exp Eye Res 2023; 227:109366. [PMID: 36592680 DOI: 10.1016/j.exer.2022.109366] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/13/2022] [Accepted: 12/23/2022] [Indexed: 01/01/2023]
Abstract
World blindness is primarily caused by glaucoma. It has been predicted that by 2040, 118 million individuals will have glaucoma. Among Asians and Africans, primary angle-closure glaucoma (PACG) is the most prevalent type of glaucoma, for which treatment options are currently very limited. At present, lowering intraocular pressure (IOP) is the primary approach for PACG treatment. However, some PACG patients with decreased IOP measurements still advance. Additionally, because of the complicated pathophysiology, there are no biomarkers for diagnosis. Metabolomics is the study of the metabolites produced by all cellular processes in a biological sample, providing a method for identifying biomarkers and early diagnosis. Nevertheless, metabolomics has infrequently been applied to PACG. Previous research conducted by our lab on plasma metabolite fatty acids in PACG patients revealed reduced free fatty acid (FFA) levels, which may be connected to lipid peroxidation. To ascertain the relationship between other metabolites and PACG. We compared levels of amino acids and carnitine in patients with PACG (n = 147) and non-glaucoma (n = 340). Using metabolomics analysis, twenty-one amino acids and twenty-six carnitines (a total of ninety-six indicators) were examined. Odds ratios (OR) and 95% confidence intervals (CI) for these metabolites in relation to PACG were calculated. The relationship between ocular measures and metabolites was assessed by Spearman's rank correlation. Predictive performance was evaluated using the receiver operating characteristic (ROC). The C8/C2 level was comparable across patients with PACG and individuals without glaucoma based on the Wilcoxon rank-sum test. The PACG group had lower levels of Arginine (Arg), Ornithine (Orn), Arg/Orn, Orn/Cit, and C26/C20 than the nonglaucoma group, whereas Cit/Arg and C4/C2 ratios were greater. Both univariate and multivariate models showed a negative correlation between Orn and Orn/Cit and PACG. In the univariate model, palmitoylcarnitine (C16) had a negative correlation with PACG. According to our findings, metabolic profiles of plasma amino acids and carnitine between PACG patients and controls are different. The combination of amino acids and carnitine increased the predictive value of PACG. The Orn and Arg were negatively correlated with the local ocular neurodegenerative pathology. We speculate lipid peroxidation may explain the reduction in C16, and the decrease in Orn may be associated with hyperammonia neurotoxicity.
Collapse
|
371
|
Wang X, Yang X, Hou Z, Tian S, Xu G, Li J, Wen L, Bi D, Gao F, Shen Y, Huang G. Whole-brain mapping of metabolic alterations in a mouse model of Alzheimer's disease by desorption electrospray ionization mass spectrometry imaging. Talanta 2023. [DOI: 10.1016/j.talanta.2022.124046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
372
|
Chen J, Ruan X, Sun Y, Li X, Yuan S, Larsson SC. Plasma phospholipid arachidonic acid in relation to non-alcoholic fatty liver disease: Mendelian randomization study. Nutrition 2023; 106:111910. [PMID: 36459845 DOI: 10.1016/j.nut.2022.111910] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/11/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
Abstract
OBJECTIVES The role of plasma phospholipid arachidonic acid (AA) in the development of non-alcoholic fatty liver disease (NALFD), cirrhosis, and liver cancer remains unclear. This study aimed to determine the causality of the associations of plasma phospholipid AA with NALFD, cirrhosis, and liver cancer using Mendelian randomization analysis. METHODS Nine independent single-nucleotide polymorphisms associated with plasma phospholipid AA at the genome-wide significance were used as instrumental variables. Summary-level data for three outcomes were obtained from 1) a genome-wide association study for NAFLD, 2) the UK Biobank study, and 3) the FinnGen study. The sensitivity analysis excluding the pleiotropic variant rs174547 in the FADS1 gene was performed. Estimates from different sources were combined using the fixed-effects meta-analysis method. RESULTS Per standard deviation increase in AA levels, the combined odds ratio was 1.06 (95% confidence interval, 1.02-1.11; P = 0.008) for NAFLD, 1.05 (95% confidence interval, 1.01-1.09; P = 0.009) for cirrhosis, and 0.99 (95% confidence interval, 0.94-1.05; P = 0.765) for liver cancer. The associations remained stable in the sensitivity analysis excluding rs174547. CONCLUSIONS This study suggests potential causal associations of high levels of plasma phospholipid AA with the risk of NAFLD and cirrhosis.
Collapse
Affiliation(s)
- Jie Chen
- Center for Global Health, Zhejiang University School of Medicine, Hangzhou, China; Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xixian Ruan
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yuhao Sun
- Center for Global Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Xue Li
- School of Public Health and the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Center for Global Health, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Shuai Yuan
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Susanna C Larsson
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Unit of Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
373
|
Cao XH, Chen X, Yang K, Wang YL, Liang MX, Fei YJ, Tang JH. Vaspin accelerates the proliferation, invasion and metastasis of Triple-Negative breast cancer through MiR-33a-5p/ABHD2. Cancer Med 2023; 12:4530-4542. [PMID: 36125462 PMCID: PMC9972114 DOI: 10.1002/cam4.5241] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 07/17/2022] [Accepted: 09/02/2022] [Indexed: 11/07/2022] Open
Abstract
OBJECTIVE To explore the influence and the underlying mechanism of vaspin (visceral adipose tissue-derived serpin) on the development of triple-negative breast malignancy. METHODS First, we analyzed medical records and screened out 22 breast cancer patients with different BMI according to inclusion and exclusion criterion, and measured serum vaspin of those patients. Then we studied the effects of vaspin on TNBC cell lines by using EdU assay, colony formation, transwell and wound-healing assay. Later, we used bioinformatics analysis to identify downstream effectors and verify with qRT-PCR, luciferase assay, western blot, etc. RESULTS: We found the vaspin level was positively correlated with BMI in breast malignant patients and vaspin could significantly enhance the proliferation, infiltration and transferring of triple-negative breast cancer cells by restraining the expression of miR-33a-5p. By using bioinformatic analysis and luciferase assay, we identified miR-33a-5p directly regulating ABHD2. CONCLUSION Vaspin, as a cancer-promoting cytokine, may inhibit miR-33a-5p thus increasing the level of ABHD2 to promote the development of the triple-negative breast cancer.
Collapse
Affiliation(s)
- Xin-Hui Cao
- School of Clinical Medicine, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Xiu Chen
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Kai Yang
- School of Clinical Medicine, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Ya-Lin Wang
- School of Clinical Medicine, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Ming-Xing Liang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Yin-Jiao Fei
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Jin-Hai Tang
- School of Clinical Medicine, Xuzhou Medical University, Xuzhou, People's Republic of China.,Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
374
|
Growth Hormone Alters Circulating Levels of Glycine and Hydroxyproline in Mice. Metabolites 2023; 13:metabo13020191. [PMID: 36837810 PMCID: PMC9959592 DOI: 10.3390/metabo13020191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Growth hormone (GH) has established effects on protein metabolism, such as increasing protein synthesis and decreasing amino acid degradation, but its effects on circulating amino acid levels are less studied. To investigate this relationship, metabolomic analyses were used to measure amino acid concentrations in plasma and feces of mice with alterations to the GH axis, namely bovine GH transgenic (bGH; increased GH action) and GH receptor knockout (GHRKO; GH resistant) mice. To determine the effects of acute GH treatment, GH-injected GH knockout (GHKO) mice were used to measure serum glycine. Furthermore, liver gene expression of glycine metabolism genes was assessed in bGH, GHRKO, and GH-injected GHKO mice. bGH mice had significantly decreased plasma glycine and increased hydroxyproline in both sexes, while GHRKO mice had increased plasma glycine in both sexes and decreased hydroxyproline in males. Glycine synthesis gene expression was decreased in bGH mice (Shmt1 in females and Shmt2 in males) and increased in GHRKO mice (Shmt2 in males). Acute GH treatment of GHKO mice caused decreased liver Shmt1 and Shmt2 expression and decreased serum glycine. In conclusion, GH alters circulating glycine and hydroxyproline levels in opposing directions, with the glycine changes at least partially driven by decreased glycine synthesis.
Collapse
|
375
|
Wang Z, Sun Y, Wu Y, Chen R, Xu Y, Cai Y, Chu M, Dou X, Zhang Y, Qin Y, Gu M, Qiao Y, Zhang Q, Li Q, Wang X, Wu J, Wu R. Metabonomic analysis of human and 12 kinds of livestock mature milk. Food Chem X 2023; 17:100581. [PMID: 36845482 PMCID: PMC9944509 DOI: 10.1016/j.fochx.2023.100581] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Mature milk, as a nutrient-rich endogenous metabolite, has various beneficial effects on the human body. In order to investigate the specific nutrients provided by different dairy products to humans, we used UHPLC-Q-TOF MS to analyze the highly significantly differentially expressed metabolites in 13 species of mammalian mature milk, which were grouped into 17 major metabolite classes with 1992 metabolites based on chemical classification. KEGG shows that 5 pathways in which differentially significant metabolites are actively involved are ABC transporters, Purine metabolism, Pyrimidine metabolism, Phosphotransferase system, Galactose metabolism. The study found that pig milk and goat milk are closer to human milk and contain more nutrients that are beneficial to human health, followed by camel milk and cow milk. In the context of dairy production, the development of goat milk is more likely to meet human needs and health.
Collapse
Affiliation(s)
- Zeying Wang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Yinggang Sun
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Yanzhi Wu
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Rui Chen
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Yanan Xu
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Yafei Cai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Min Chu
- Lanzhou Institute of Animal Husbandry and Veterinary Medicine, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Xingtang Dou
- Liaoning Province Modern Agricultural Production Base Construction Engineering Center. Shenyang 110000, China
| | - Yu Zhang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Yuting Qin
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Ming Gu
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Yanjun Qiao
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Qiu Zhang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Qian Li
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiaowei Wang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Junrui Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
- Corresponding author.
| |
Collapse
|
376
|
Amin AM, Mostafa H, Khojah HMJ. Insulin resistance in Alzheimer's disease: The genetics and metabolomics links. Clin Chim Acta 2023; 539:215-236. [PMID: 36566957 DOI: 10.1016/j.cca.2022.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease with significant socioeconomic burden worldwide. Although genetics and environmental factors play a role, AD is highly associated with insulin resistance (IR) disorders such as metabolic syndrome (MS), obesity, and type two diabetes mellitus (T2DM). These findings highlight a shared pathogenesis. The use of metabolomics as a downstream systems' biology (omics) approach can help to identify these shared metabolic traits and assist in the early identification of at-risk groups and potentially guide therapy. Targeting the shared AD-IR metabolic trait with lifestyle interventions and pharmacological treatments may offer promising AD therapeutic approach. In this narrative review, we reviewed the literature on the AD-IR pathogenic link, the shared genetics and metabolomics biomarkers between AD and IR disorders, as well as the lifestyle interventions and pharmacological treatments which target this pathogenic link.
Collapse
Affiliation(s)
- Arwa M Amin
- Department of Clinical and Hospital Pharmacy, College of Pharmacy, Taibah University, Madinah, Saudi Arabia.
| | - Hamza Mostafa
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Food Innovation Network (XIA), Nutrition and Food Safety Research Institute (INSA), Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Hani M J Khojah
- Department of Clinical and Hospital Pharmacy, College of Pharmacy, Taibah University, Madinah, Saudi Arabia
| |
Collapse
|
377
|
Fanni G, Eriksson JW, Pereira MJ. Several Metabolite Families Display Inflexibility during Glucose Challenge in Patients with Type 2 Diabetes: An Untargeted Metabolomics Study. Metabolites 2023; 13:metabo13010131. [PMID: 36677056 PMCID: PMC9863788 DOI: 10.3390/metabo13010131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/06/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Metabolic inflexibility is a hallmark of insulin resistance and can be extensively explored with high-throughput metabolomics techniques. However, the dynamic regulation of the metabolome during an oral glucose tolerance test (OGTT) in subjects with type 2 diabetes (T2D) is largely unknown. We aimed to identify alterations in metabolite responses to OGTT in subjects with T2D using untargeted metabolomics of both plasma and subcutaneous adipose tissue (SAT) samples. Twenty subjects with T2D and twenty healthy controls matched for sex, age, and body mass index (BMI) were profiled with untargeted metabolomics both in plasma (755 metabolites) and in the SAT (588) during an OGTT. We assessed metabolite concentration changes 90 min after the glucose load, and those responses were compared between patients with T2D and controls. Post-hoc analyses were performed to explore the associations between glucose-induced metabolite responses and markers of obesity and glucose metabolism, sex, and age. During the OGTT, T2D subjects had an impaired reduction in plasma levels of several metabolite families, including acylcarnitines, amino acids, acyl ethanolamines, and fatty acid derivates (p < 0.05), compared to controls. Additionally, patients with T2D had a greater increase in plasma glucose and fructose levels during the OGTT compared to controls (p < 0.05). The plasma concentration change of most metabolites after the glucose load was mainly associated with indices of hyperglycemia rather than insulin resistance, insulin secretion, or BMI. In multiple linear regression analyses, hyperglycemia indices (glucose area under the curve (AUC) during OGTT and glycosylated hemoglobin (HbA1c)) were the strongest predictors of plasma metabolite changes during the OGTT. No differences were found in the adipose tissue metabolome in response to the glucose challenge between T2D and controls. Using a metabolomics approach, we show that T2D patients display attenuated responses in several circulating metabolite families during an OGTT. Besides the well-known increase in monosaccharides, the glucose-induced lowering of amino acids, acylcarnitines, and fatty acid derivatives was attenuated in T2D subjects compared to controls. These data support the hypothesis of inflexibility in several metabolic pathways, which may contribute to dysregulated substrate partitioning and turnover in T2D. These findings are not directly associated with changes in adipose tissue metabolism; therefore, other tissues, such as muscle and liver, are probably of greater importance.
Collapse
|
378
|
Strefeler A, Jan M, Quadroni M, Teav T, Rosenberg N, Chatton JY, Guex N, Gallart-Ayala H, Ivanisevic J. Molecular insights into sex-specific metabolic alterations in Alzheimer's mouse brain using multi-omics approach. Alzheimers Res Ther 2023; 15:8. [PMID: 36624525 PMCID: PMC9827669 DOI: 10.1186/s13195-023-01162-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/02/2023] [Indexed: 01/11/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is a progressive neurodegenerative disorder that is characterized by altered cellular metabolism in the brain. Several of these alterations have been found to be exacerbated in females, known to be disproportionately affected by AD. We aimed to unravel metabolic alterations in AD at the metabolic pathway level and evaluate whether they are sex-specific through integrative metabolomic, lipidomic, and proteomic analysis of mouse brain tissue. METHODS We analyzed male and female triple-transgenic mouse whole brain tissue by untargeted mass spectrometry-based methods to obtain a molecular signature consisting of polar metabolite, complex lipid, and protein data. These data were analyzed using multi-omics factor analysis. Pathway-level alterations were identified through joint pathway enrichment analysis or by separately evaluating lipid ontology and known proteins related to lipid metabolism. RESULTS Our analysis revealed significant AD-associated and in part sex-specific alterations across the molecular signature. Sex-dependent alterations were identified in GABA synthesis, arginine biosynthesis, and in alanine, aspartate, and glutamate metabolism. AD-associated alterations involving lipids were also found in the fatty acid elongation pathway and lysophospholipid metabolism, with a significant sex-specific effect for the latter. CONCLUSIONS Through multi-omics analysis, we report AD-associated and sex-specific metabolic alterations in the AD brain involving lysophospholipid and amino acid metabolism. These findings contribute to the characterization of the AD phenotype at the molecular level while considering the effect of sex, an overlooked yet determinant metabolic variable.
Collapse
Affiliation(s)
- Abigail Strefeler
- grid.9851.50000 0001 2165 4204Metabolomics Unit, Faculty of Biology and Medicine, University de Lausanne, Lausanne, Switzerland
| | - Maxime Jan
- grid.9851.50000 0001 2165 4204Bioinformatics Competence Center, Faculty of Biology and Medicine, University de Lausanne, Lausanne, Switzerland
| | - Manfredo Quadroni
- grid.9851.50000 0001 2165 4204Protein Analysis Facility, Faculty of Biology and Medicine, University de Lausanne, Lausanne, Switzerland
| | - Tony Teav
- grid.9851.50000 0001 2165 4204Metabolomics Unit, Faculty of Biology and Medicine, University de Lausanne, Lausanne, Switzerland
| | - Nadia Rosenberg
- grid.9851.50000 0001 2165 4204Department of Fundamental Neurosciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Jean-Yves Chatton
- grid.9851.50000 0001 2165 4204Department of Fundamental Neurosciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Nicolas Guex
- grid.9851.50000 0001 2165 4204Bioinformatics Competence Center, Faculty of Biology and Medicine, University de Lausanne, Lausanne, Switzerland
| | - Hector Gallart-Ayala
- grid.9851.50000 0001 2165 4204Metabolomics Unit, Faculty of Biology and Medicine, University de Lausanne, Lausanne, Switzerland
| | - Julijana Ivanisevic
- grid.9851.50000 0001 2165 4204Metabolomics Unit, Faculty of Biology and Medicine, University de Lausanne, Lausanne, Switzerland
| |
Collapse
|
379
|
Shao C, Xu L, Lei P, Wang W, Feng S, Ye J, Zhong B. Metabolomics to identify fingerprints of carotid atherosclerosis in nonobese metabolic dysfunction-associated fatty liver disease. J Transl Med 2023; 21:12. [PMID: 36624524 PMCID: PMC9830861 DOI: 10.1186/s12967-022-03760-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/06/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND/AIMS Nonobese metabolic dysfunction-associated fatty liver disease (MAFLD) is paradoxically associated with improved metabolic and pathological features at diagnosis but similar cardiovascular diseases (CVD) prognosis to obese MAFLD. We aimed to utilize the metabolomics to identify the potential metabolite profiles accounting for this phenomenon. METHODS This prospective multicenter cross-sectional study was conducted in China enrolling derivation and validation cohorts. Liquid chromatography coupled with mass spectrometry and gas chromatography-mass spectrometry were applied to perform a metabolomics measurement. RESULTS The study involved 120 MAFLD patients and 60 non-MAFLD controls in the derivation cohort. Controls were divided into two groups according to the presence of carotid atherosclerosis (CAS). The MAFLD group was further divided into nonobese MAFLD with/without CAS groups and obese MAFLD with/without CAS groups. Fifty-six metabolites were statistically significant for discriminating the six groups. Among the top 10 metabolites related to CAS in nonobese MAFLD, only phosphatidylethanolamine (PE 20:2/16:0), phosphatidylglycerol (PG 18:0/20:4) and de novo lipogenesis (16:0/18:2n-6) achieved significant areas under the ROC curve (AUCs, 0.67, p = 0.03; 0.79, p = 0.02; 0.63, p = 0.03, respectively). The combination of these three metabolites and liver stiffness achieved a significantly higher AUC (0.92, p < 0.01). In obese MAFLD patients, cystine was found to be significant with an AUC of 0.69 (p = 0.015), followed by sphingomyelin (SM 16:1/18:1) (0.71, p = 0.004) and de novo lipogenesis (16:0/18:2n-6) (0.73, p = 0.004). The combination of these three metabolites, liver fat content and age attained a significantly higher AUC of 0.91 (p < 0.001). The AUCs of these metabolites remained highly significant in the independent validation cohorts involving 200 MAFLD patients and 90 controls. CONCLUSIONS Diagnostic models combining different metabolites according to BMI categories could raise the accuracy of identifying subclinical CAS. Trial registration The study protocol was approved by the local ethics committee and all the participants have provided written informed consent (Approval number: [2014] No. 112, registered at the Chinese Clinical Trial Registry, ChiCTR-ChiCTR2000034197).
Collapse
Affiliation(s)
- Congxiang Shao
- grid.12981.330000 0001 2360 039XDepartment of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan II Road, Yuexiu District, Guangzhou, 510080 China
| | - Lishu Xu
- grid.410643.4Department of Gastroenterology and Hepatology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, and Guangdong Provincial Geriatrics Institute, No. 106 Zhongshan II Road, Yuexiu District, Guangzhou, China
| | - Pingguang Lei
- Department of Gastroenterology, Shenzhen Baoan District Songgang People’s Hospital, No. 2, Shajiang Road, Songgang Street, Bao’an District, Shenzhen, China
| | - Wei Wang
- grid.12981.330000 0001 2360 039XDepartment of Medical Ultrasonics, The First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan II Road, Yuexiu District, Guangzhou, China
| | - Shiting Feng
- grid.12981.330000 0001 2360 039XDepartment of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan II Road, Yuexiu District, Guangzhou, China
| | - Junzhao Ye
- grid.12981.330000 0001 2360 039XDepartment of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan II Road, Yuexiu District, Guangzhou, 510080 China
| | - Bihui Zhong
- grid.12981.330000 0001 2360 039XDepartment of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan II Road, Yuexiu District, Guangzhou, 510080 China
| |
Collapse
|
380
|
Aleman RS, Moncada M, Aryana KJ. Leaky Gut and the Ingredients That Help Treat It: A Review. Molecules 2023; 28:619. [PMID: 36677677 PMCID: PMC9862683 DOI: 10.3390/molecules28020619] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/31/2022] [Accepted: 01/01/2023] [Indexed: 01/11/2023] Open
Abstract
The human body is in daily contact with potentially toxic and infectious substances in the gastrointestinal tract (GIT). The GIT has the most significant load of antigens. The GIT can protect the intestinal integrity by allowing the passage of beneficial agents and blocking the path of harmful substances. Under normal conditions, a healthy intestinal barrier prevents toxic elements from entering the blood stream. However, factors such as stress, an unhealthy diet, excessive alcohol, antibiotics, and drug consumption can compromise the composition of the intestinal microbiota and the homeostasis of the intestinal barrier function of the intestine, leading to increased intestinal permeability. Intestinal hyperpermeability can allow the entry of harmful agents through the junctions of the intestinal epithelium, which pass into the bloodstream and affect various organs and systems. Thus, leaky gut syndrome and intestinal barrier dysfunction are associated with intestinal diseases, such as inflammatory bowel disease and irritable bowel syndrome, as well as extra-intestinal diseases, including heart diseases, obesity, type 1 diabetes mellitus, and celiac disease. Given the relationship between intestinal permeability and numerous conditions, it is convenient to seek an excellent strategy to avoid or reduce the increase in intestinal permeability. The impact of dietary nutrients on barrier function can be crucial for designing new strategies for patients with the pathogenesis of leaky gut-related diseases associated with epithelial barrier dysfunctions. In this review article, the role of functional ingredients is suggested as mediators of leaky gut-related disorders.
Collapse
Affiliation(s)
- Ricardo Santos Aleman
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 28081, USA
| | - Marvin Moncada
- Department of Food, Bioprocessing & Nutrition Sciences and the Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, Kannapolis, NC 27599, USA
| | - Kayanush J. Aryana
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 28081, USA
| |
Collapse
|
381
|
Han S, Zhang X, Ding J, Li X, Zhang X, Jiang X, Duan S, Sun B, Hu X, Gao Y. Serum metabolic profiling of rats infected with Clonorchis sinensis using LC-MS/MS method. Front Cell Infect Microbiol 2023; 12:1040330. [PMID: 36683702 PMCID: PMC9852996 DOI: 10.3389/fcimb.2022.1040330] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/19/2022] [Indexed: 01/09/2023] Open
Abstract
Background Clonorchiasis is an important foodborne parasitic disease. The omics-based-techniques could illuminate parasite biology and further make innovations in the research for parasitic diseases. However, knowledge about the serum metabolic profiles and related metabolic pathways in clonorchiasis is very limited. Methods A untargeted ultra-high performance liquid tandem chromatography quadrupole time of flight mass spectrometry (UHPLC-QTOF-MS) was used to profile the serum metabolites of rats at both 4 and 8 weeks post infection (wpi) with Clonorchis sinensis (C. sinensis). Additionally, multivariate statistical analysis methods were employed to identify differential metabolites. Next, serum amino acids and phosphatidylcholines (PCs) levels were determined by targeted metabolomics analysis. Result A total of 10530 and 6560 ions were identified in ESI+ and ESI- modes. The levels of phosphatidylcholines, glycerophosphocholine and choline were significantly changed, with the shift in lipid metabolism. Significant changes were also observed in amino acids (isoleucine, valine, leucine, threonine, glutamate and glutamine). Targeted analysis showed that BCAAs (isoleucine, valine, leucine) levels significantly increased at 4 wpi and decreased at 8 wpi; threonine was increased at 8 wpi, whereas glutamate and glutamine showed a decreasing trend at 8 wpi. Additionally, the level of 17 PCs were significantly changed in infected rats. Marked metabolic pathways were involved in clonorchiasis, including glycerophospholipid metabolism, alanine, aspartate and glutamate metabolism, histidine metabolism and pyrimidine metabolism. Conclusion These results show that C. sinensis infection can cause significant changes in the rat serum metabolism, especially in amino acids and lipids. The metabolic signature together with perturbations in metabolic pathways could provide more in depth understanding of clonorchiasis and further make potential therapeutic interventions.
Collapse
Affiliation(s)
- Su Han
- Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China,Department of Parasitology, Harbin Medical University, Harbin, China,*Correspondence: Su Han,
| | - Xiaoli Zhang
- Department of Parasitology, Harbin Medical University, Harbin, China
| | - Jian Ding
- Department of Parasitology, Harbin Medical University, Harbin, China
| | - Xiang Li
- Department of Parasitology, Harbin Medical University, Harbin, China
| | - Xueli Zhang
- Department of Parasitology, Harbin Medical University, Harbin, China
| | - Xu Jiang
- Department of Parasitology, Harbin Medical University, Harbin, China
| | - Shanshan Duan
- Beijing Obstetrics and Gynecology Hospital Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Beibei Sun
- Clinical Laboratory, Zhuhai Maternal and Child Health Hospital, Zhuhai, China
| | - Xinyi Hu
- Department of Stomatology, Laixi People’s Hospital, Qingdao, China
| | - Yannan Gao
- Department of Graduate Studies, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
382
|
Zhao G, Zhao X, Bai J, Dilixiati A, Song Y, Haire A, Zhao S, Aihemaiti A, Fu X, Wusiman A. Metabolomic and Transcriptomic Changes Underlying the Effects of L-Citrulline Supplementation on Ram Semen Quality. Animals (Basel) 2023; 13:217. [DOI: doi.org/10.3390/ani13020217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024] Open
Abstract
This study examined the effects of L-Cit supplementation on ram semen quality through metabolomics and transcriptomics. A total of 16 rams were randomly categorized into two groups. The control group was fed a basic diet, whereas the experimental group received feed supplemented with 12 g/d of L-Cit. Semen and blood were collected from the rams on days 0 and 72 to measure sugar, pyruvate, amino acid, and nontargeted metabolite contents. Additionally, hypothalamic and testicular tissues were collected for a transcriptomic analysis. We found 27 differential metabolites between the control and experimental groups, of which 21 were downregulated (p < 0.05) and 6 were upregulated (p < 0.05). Compared with the control group, xylose and pyruvate contents in seminal plasma increased by 43.86% and 162.71%, respectively (p < 0.01). Additionally, the levels of 11 amino acids showed a significant increase in seminal plasma (p < 0.01). Furthermore, 961 and 715 differentially expressed genes were detected in the hypothalamic and testicular tissues, respectively. The pathways of significant enrichment in the hypothalamus and testes were protein digestion, absorption, glycolysis/gluconeogenesis, and amino as well as nucleotide sugar metabolisms. In the present study, L-Cit improved protein synthesis and blood metabolism, consequently increasing the contents of most amino acids in ram seminal plasma. Specifically, the hypothalamus controlled the expression of glycolysis/gluconeogenesis-related genes in the testes through its metabolites released into the serum, thereby providing energy for sperm production, which led to a decrease in the sugar content of seminal plasma.
Collapse
Affiliation(s)
- Guodong Zhao
- Laboratory of Animal Genetic Breeding & Reproduction, Xinjiang Agricultural University, Urumqi 830052, China
| | - Xi Zhao
- Laboratory of Animal Genetic Breeding & Reproduction, Xinjiang Agricultural University, Urumqi 830052, China
| | - Jiachen Bai
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, China
| | - Airixiati Dilixiati
- Laboratory of Animal Genetic Breeding & Reproduction, Xinjiang Agricultural University, Urumqi 830052, China
| | - Yukun Song
- Laboratory of Animal Genetic Breeding & Reproduction, Xinjiang Agricultural University, Urumqi 830052, China
| | - Aerman Haire
- Laboratory of Animal Genetic Breeding & Reproduction, Xinjiang Agricultural University, Urumqi 830052, China
| | - Shangshang Zhao
- Laboratory of Animal Genetic Breeding & Reproduction, Xinjiang Agricultural University, Urumqi 830052, China
| | - Aikebaier Aihemaiti
- Laboratory of Animal Genetic Breeding & Reproduction, Xinjiang Agricultural University, Urumqi 830052, China
| | - Xiangwei Fu
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, China
| | - Abulizi Wusiman
- Laboratory of Animal Genetic Breeding & Reproduction, Xinjiang Agricultural University, Urumqi 830052, China
| |
Collapse
|
383
|
Metabolomic and Transcriptomic Changes Underlying the Effects of L-Citrulline Supplementation on Ram Semen Quality. Animals (Basel) 2023; 13:ani13020217. [PMID: 36670757 PMCID: PMC9855076 DOI: 10.3390/ani13020217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/16/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
This study examined the effects of L-Cit supplementation on ram semen quality through metabolomics and transcriptomics. A total of 16 rams were randomly categorized into two groups. The control group was fed a basic diet, whereas the experimental group received feed supplemented with 12 g/d of L-Cit. Semen and blood were collected from the rams on days 0 and 72 to measure sugar, pyruvate, amino acid, and nontargeted metabolite contents. Additionally, hypothalamic and testicular tissues were collected for a transcriptomic analysis. We found 27 differential metabolites between the control and experimental groups, of which 21 were downregulated (p < 0.05) and 6 were upregulated (p < 0.05). Compared with the control group, xylose and pyruvate contents in seminal plasma increased by 43.86% and 162.71%, respectively (p < 0.01). Additionally, the levels of 11 amino acids showed a significant increase in seminal plasma (p < 0.01). Furthermore, 961 and 715 differentially expressed genes were detected in the hypothalamic and testicular tissues, respectively. The pathways of significant enrichment in the hypothalamus and testes were protein digestion, absorption, glycolysis/gluconeogenesis, and amino as well as nucleotide sugar metabolisms. In the present study, L-Cit improved protein synthesis and blood metabolism, consequently increasing the contents of most amino acids in ram seminal plasma. Specifically, the hypothalamus controlled the expression of glycolysis/gluconeogenesis-related genes in the testes through its metabolites released into the serum, thereby providing energy for sperm production, which led to a decrease in the sugar content of seminal plasma.
Collapse
|
384
|
Pixner T, Stummer N, Schneider AM, Lukas A, Gramlinger K, Julian V, Thivel D, Mörwald K, Mangge H, Dalus C, Aigner E, Furthner D, Weghuber D, Maruszczak K. The relationship between glucose and the liver-alpha cell axis - A systematic review. Front Endocrinol (Lausanne) 2023; 13:1061682. [PMID: 36686477 PMCID: PMC9849557 DOI: 10.3389/fendo.2022.1061682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/13/2022] [Indexed: 01/06/2023] Open
Abstract
Until recently, glucagon was considered a mere antagonist to insulin, protecting the body from hypoglycemia. This notion changed with the discovery of the liver-alpha cell axis (LACA) as a feedback loop. The LACA describes how glucagon secretion and pancreatic alpha cell proliferation are stimulated by circulating amino acids. Glucagon in turn leads to an upregulation of amino acid metabolism and ureagenesis in the liver. Several increasingly common diseases (e.g., non-alcoholic fatty liver disease, type 2 diabetes, obesity) disrupt this feedback loop. It is important for clinicians and researchers alike to understand the liver-alpha cell axis and the metabolic sequelae of these diseases. While most of previous studies have focused on fasting concentrations of glucagon and amino acids, there is limited knowledge of their dynamics after glucose administration. The authors of this systematic review applied PRISMA guidelines and conducted PubMed searches to provide results of 8078 articles (screened and if relevant, studied in full). This systematic review aims to provide better insight into the LACA and its mediators (amino acids and glucagon), focusing on the relationship between glucose and the LACA in adult and pediatric subjects.
Collapse
Affiliation(s)
- Thomas Pixner
- Department of Pediatric and Adolescent Medicine, Salzkammergutklinikum Voecklabruck, Voecklabruck, Austria
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
| | - Nathalie Stummer
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
- Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
| | - Anna Maria Schneider
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
- Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
| | - Andreas Lukas
- Department of Pediatric and Adolescent Medicine, Salzkammergutklinikum Voecklabruck, Voecklabruck, Austria
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
| | - Karin Gramlinger
- Department of Pediatric and Adolescent Medicine, Salzkammergutklinikum Voecklabruck, Voecklabruck, Austria
| | - Valérie Julian
- Department of Sport Medicine and Functional Explorations, Diet and Musculoskeletal Health Team, Human Nutrition Research Center (CRNH), INRA, University Hospital of Clermont-Ferrand, University of Clermont Auvergne, Clermont-Ferrand, France
| | - David Thivel
- Laboratory of Metabolic Adaptations to Exercise under Physiological and Pathological Conditions (AME2P), University of Clermont Auvergne, Clermont-Ferrand, France
| | - Katharina Mörwald
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
- Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
| | - Harald Mangge
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Christopher Dalus
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
- Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
| | - Elmar Aigner
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
- First Department of Medicine, Paracelsus Medical University, Salzburg, Austria
| | - Dieter Furthner
- Department of Pediatric and Adolescent Medicine, Salzkammergutklinikum Voecklabruck, Voecklabruck, Austria
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
| | - Daniel Weghuber
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
- Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
| | - Katharina Maruszczak
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
- Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
385
|
Burzynska-Pedziwiatr I, Dudzik D, Sansone A, Malachowska B, Zieleniak A, Zurawska-Klis M, Ferreri C, Chatgilialoglu C, Cypryk K, Wozniak LA, Markuszewski MJ, Bukowiecka-Matusiak M. Targeted and untargeted metabolomic approach for GDM diagnosis. Front Mol Biosci 2023; 9:997436. [PMID: 36685282 PMCID: PMC9849575 DOI: 10.3389/fmolb.2022.997436] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 12/14/2022] [Indexed: 01/06/2023] Open
Abstract
Gestational diabetes mellitus (GDM) is a disorder which manifests itself for the first time during pregnancy and is mainly connected with glucose metabolism. It is also known that fatty acid profile changes in erythrocyte membranes and plasma could be associated with obesity and insulin resistance. These factors can lead to the development of diabetes. In the reported study, we applied the untargeted analysis of plasma in GDM against standard glucose-tolerant (NGT) women to identify the differences in metabolomic profiles between those groups. We found higher levels of 2-hydroxybutyric and 3-hydroxybutyric acids. Both secondary metabolites are associated with impaired glucose metabolism. However, they are products of different metabolic pathways. Additionally, we applied lipidomic profiling using gas chromatography to examine the fatty acid composition of cholesteryl esters in the plasma of GDM patients. Among the 14 measured fatty acids characterizing the representative plasma lipidomic cluster, myristic, oleic, arachidonic, and α-linoleic acids revealed statistically significant changes. Concentrations of both myristic acid, one of the saturated fatty acids (SFAs), and oleic acid, which belong to monounsaturated fatty acids (MUFAs), tend to decrease in GDM patients. In the case of polyunsaturated fatty acids (PUFAs), some of them tend to increase (e.g., arachidonic), and some of them tend to decrease (e.g., α-linolenic). Based on our results, we postulate the importance of hydroxybutyric acid derivatives, cholesteryl ester composition, and the oleic acid diminution in the pathophysiology of GDM. There are some evidence suggests that the oleic acid can have the protective role in diabetes onset. However, metabolic alterations that lead to the onset of GDM are complex; therefore, further studies are needed to confirm our observations.
Collapse
Affiliation(s)
| | - Danuta Dudzik
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdansk, Gdansk, Poland
| | - Anna Sansone
- Consiglio Nazionale delle Ricerche, Institute for the Organic Synthesis and Photoreactivity, Bologna, Italy
| | - Beata Malachowska
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland,Department of Nursing and Obstetrics, Medical University of Lodz, Lodz, Poland,Department of Clinic Nursing, Medical University of Lodz, Lodz, Poland,Department of Diabetology and Metabolic Diseases Lodz, Medical University of Lodz, Lodz, Poland
| | - Andrzej Zieleniak
- Laboratory of Metabolomic Studies, Department of Structural Biology, Medical University of Lodz, Lodz, Poland
| | - Monika Zurawska-Klis
- Department of Radiation Oncology, Einstein College of Medicine, Bronx, NY, United States
| | - Carla Ferreri
- Consiglio Nazionale delle Ricerche, Institute for the Organic Synthesis and Photoreactivity, Bologna, Italy
| | | | - Katarzyna Cypryk
- Department of Radiation Oncology, Einstein College of Medicine, Bronx, NY, United States
| | - Lucyna A. Wozniak
- Laboratory of Metabolomic Studies, Department of Structural Biology, Medical University of Lodz, Lodz, Poland
| | - Michal J. Markuszewski
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdansk, Gdansk, Poland
| | - Malgorzata Bukowiecka-Matusiak
- Laboratory of Metabolomic Studies, Department of Structural Biology, Medical University of Lodz, Lodz, Poland,*Correspondence: Malgorzata Bukowiecka-Matusiak,
| |
Collapse
|
386
|
Lu N, Shan C, Fu JR, Zhang Y, Wang YY, Zhu YC, Yu J, Cai J, Li SX, Tao T, Liu W. RANKL Is Independently Associated with Increased Risks of Non-Alcoholic Fatty Liver Disease in Chinese Women with PCOS: A Cross-Sectional Study. J Clin Med 2023; 12:jcm12020451. [PMID: 36675380 PMCID: PMC9864426 DOI: 10.3390/jcm12020451] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/03/2023] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
Women with polycystic ovarian syndrome (PCOS) are more likely to have non-alcoholic fatty liver disease (NAFLD) than non-PCOS women; however, the exact mechanism underlying this trend is unknown. The receptor activator of NF-κB ligand (RANKL) is strongly involved in bone metabolism and has multiple functions. Recent studies suggest that RANKL is implicated in hepatic insulin resistance (IR), which is the highest risk factor for NAFLD. This study aimed to assess the role of RANKL in NAFLD in Chinese women with PCOS. A cross-sectional observational study was conducted on women newly diagnosed with PCOS, which included 146 patients with NAFLD and 142 patients without NAFLD. Sex hormones, glucose, insulin, and lipids were measured, and anthropometric data were collected. The concentration of serum total RANKL was measured using commercial ELISA kits. PCOS patients with NAFLD had a significantly higher mean age, body mass index (BMI), waist circumference (WC), and worsened metabolic profile than non-NAFLD subjects. The concentrations of high-sensitivity C-reactive protein, total cholesterol, and low-density lipoprotein cholesterol increased with the RANKL tertile (p for trend = 0.023, 0.026, and 0.035, respectively). A significantly positive association was found between RANKL (per SD change) and the risks of NAFLD (OR = 1.545, 95% CI = 1.086−2.199) after adjusting for confounders, including demographic factors, metabolic markers, and sex hormones. Subgroup multivariate logistic analyses stratified by age, BMI, and WC showed the same tendency. In addition, the positive association between RANKL and NAFLD seemed more prominent in lean patients with a BMI < 24 kg/m2 (OR = 1.70, 95% CI = 1.06−2.75) when compared to overweight/obesity subjects. Therefore, this study suggests that RANKL is positively associated with the increased risk of NAFLD in Chinese women with PCOS, independent of metabolic and reproductive factors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Tao Tao
- Correspondence: (T.T.); (W.L.)
| | - Wei Liu
- Correspondence: (T.T.); (W.L.)
| |
Collapse
|
387
|
Bifarin OO, Sah S, Gaul DA, Moore SG, Chen R, Palaniappan M, Kim J, Matzuk MM, Fernández FM. Machine Learning Reveals Lipidome Remodeling Dynamics in a Mouse Model of Ovarian Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.04.520434. [PMID: 36711577 PMCID: PMC9881992 DOI: 10.1101/2023.01.04.520434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Ovarian cancer (OC) is one of the deadliest cancers affecting the female reproductive system. It may present little or no symptoms at the early stages, and typically unspecific symptoms at later stages. High-grade serous ovarian cancer (HGSC) is the subtype responsible for most ovarian cancer deaths. However, very little is known about the metabolic course of this disease, particularly in its early stages. In this longitudinal study, we examined the temporal course of serum lipidome changes using a robust HGSC mouse model and machine learning data analysis. Early progression of HGSC was marked by increased levels of phosphatidylcholines and phosphatidylethanolamines. In contrast, later stages featured more diverse lipids alterations, including fatty acids and their derivatives, triglycerides, ceramides, hexosylceramides, sphingomyelins, lysophosphatidylcholines, and phosphatidylinositols. These alterations underscored unique perturbations in cell membrane stability, proliferation, and survival during cancer development and progression, offering potential targets for early detection and prognosis of human ovarian cancer. Teaser Time-resolved lipidome remodeling in an ovarian cancer model is studied through lipidomics and machine learning.
Collapse
Affiliation(s)
- Olatomiwa O. Bifarin
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Samyukta Sah
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - David A. Gaul
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Samuel G. Moore
- Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ruihong Chen
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, United States
| | - Murugesan Palaniappan
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, United States
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, United States
| | - Jaeyeon Kim
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, Indiana, 46202, United States
| | - Martin M. Matzuk
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, United States
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, United States
| | - Facundo M. Fernández
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
388
|
Zhang A, Wang R, Liu Q, Yang Z, Lin X, Pang J, Li X, Wang D, He J, Li J, Zhang M, Yu Y, Cao XC, Chen X, Tang NJ. Breast adipose metabolites mediates the association of tetrabromobisphenol a with breast cancer: A case-control study in Chinese population. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120701. [PMID: 36423888 DOI: 10.1016/j.envpol.2022.120701] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/13/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Studies exploring the association of tetrabromobisphenol A (TBBPA) with breast cancer and related mechanisms are limited. To investigate the relationship between TBBPA levels in breast adipose and breast cancer, we carried out case-control research. As well as further examine the mediating role of adipose metabolites between TBBPA and breast cancer using the metabolomics approach. In this study, the concentration of TBBPA was determined utilizing ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) after a solid phase extraction (SPE) pretreatment. High-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) was employed to analyze adipose metabolomics. Evaluation of metabolites linked to TBBPA exposure and breast cancer was performed utilizing mediation analysis. With an estimated OR (95%CI) of 1.153 (1.023, 1.299), TBBPA was firmly linked with breast cancer. We also used propensity score matching analysis and sensitivity analysis to reduce the effect of confounding factors on the results. Metabolomics of adipose suggested significant perturbation in the linoleic acid metabolism pathway. In addition, for PC (16:0/16:0) as phospholipids, a mediation effect on the associations of TBBPA exposure with breast cancer risks was observed (estimated mediation percentage: 56.58%). Understanding the relationship between TBBPA exposure and the risk of breast cancer may be facilitated by the findings, which point to potential mediation metabolites.
Collapse
Affiliation(s)
- Ai Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Rui Wang
- Health Inspection and Testing Institute Integrated Operations Section, Tianjin Centers for Disease Control and Prevention, Tianjin, 300011, China
| | - Qianfeng Liu
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Zhengjun Yang
- Tianjin Medical University Cancer Institute and Hospital: Tianjin Tumor Hospital, Tianjin, 300060, China
| | - Xiaohui Lin
- Health Inspection and Testing Institute Physical and Chemical Section, Tianjin Centers for Disease Control and Prevention, Tianjin, 300011, China
| | - Jing Pang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Xiaoyu Li
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Dan Wang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Jiayu He
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Jianping Li
- Health Inspection and Testing Institute Physical and Chemical Section, Tianjin Centers for Disease Control and Prevention, Tianjin, 300011, China
| | - Mingyue Zhang
- Tianjin Centers for Disease Control and Prevention, Tianjin, 300011, China
| | - Yue Yu
- Tianjin Medical University Cancer Institute and Hospital: Tianjin Tumor Hospital, Tianjin, 300060, China
| | - Xu-Chen Cao
- Tianjin Medical University Cancer Institute and Hospital: Tianjin Tumor Hospital, Tianjin, 300060, China
| | - Xi Chen
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Nai-Jun Tang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
389
|
Rapöhn I, Elias I, Weiner J, Pujol A, Kehr S, Chadt A, Al-Hasani H, Burkhardt R, Klöting N, Stumvoll M, Bosch F, Kovacs P, Heiker JT, Breitfeld J. Overexpressing high levels of human vaspin limits high fat diet-induced obesity and enhances energy expenditure in a transgenic mouse. Front Endocrinol (Lausanne) 2023; 14:1146454. [PMID: 37152954 PMCID: PMC10154460 DOI: 10.3389/fendo.2023.1146454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/30/2023] [Indexed: 05/09/2023] Open
Abstract
Adipose tissue inflammation and insulin resistance are hallmarks in the development of metabolic diseases resulting from overweight and obesity, such as type 2 diabetes and non-alcoholic fatty liver disease. In obesity, adipocytes predominantly secrete proinflammatory adipokines that further promote adipose tissue dysfunction with negative effects on local and systemic insulin sensitivity. Expression of the serpin vaspin (SERPINA12) is also increased in obesity and type 2 diabetes, but exhibits compensatory roles in inflammation and insulin resistance. This has in part been demonstrated using vaspin-transgenic mice. We here report a new mouse line (h-vaspinTG) with transgenic expression of human vaspin in adipose tissue that reaches vaspin concentrations three orders of magnitude higher than wild type controls (>200 ng/ml). Phenotyping under chow and high-fat diet conditions included glucose-tolerance tests, measurements of energy expenditure and circulating parameters, adipose tissue and liver histology. Also, ex vivo glucose uptake in isolated adipocytes and skeletal muscle was analyzed in h-vaspinTG and littermate controls. The results confirmed previous findings, revealing a strong reduction in diet-induced weight gain, fat mass, hyperinsulinemia, -glycemia and -cholesterolemia as well as fatty liver. Insulin sensitivity in adipose tissue and muscle was not altered. The h-vaspinTG mice showed increased energy expenditure under high fat diet conditions, that may explain reduced weight gain and overall metabolic improvements. In conclusion, this novel human vaspin-transgenic mouse line will be a valuable research tool to delineate whole-body, tissue- and cell-specific effects of vaspin in health and disease.
Collapse
Affiliation(s)
- Inka Rapöhn
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Ivet Elias
- Center of Animal Biotechnology and Gene Therapy (CBATEG) and Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Juliane Weiner
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Anna Pujol
- Center of Animal Biotechnology and Gene Therapy (CBATEG) and Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Stephanie Kehr
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, Leipzig University, Leipzig, Germany
| | - Alexandra Chadt
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Hadi Al-Hasani
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Ralph Burkhardt
- Institute of Clinical Chemistry and Laboratory Medicine, Transfusion Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Nora Klöting
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Michael Stumvoll
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Fatima Bosch
- Center of Animal Biotechnology and Gene Therapy (CBATEG) and Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Peter Kovacs
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - John T. Heiker
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
- *Correspondence: John T. Heiker, ; Jana Breitfeld,
| | - Jana Breitfeld
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
- *Correspondence: John T. Heiker, ; Jana Breitfeld,
| |
Collapse
|
390
|
Tang YS, Zhang MJ, Zhao JH, Liu LY. Optimization of a quantitative protocol for the intermediate metabolites of the glycolysis pathway in human serum using gas chromatography–mass spectrometry. NEW J CHEM 2023; 47:9364-9376. [DOI: 10.1039/d2nj06053a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2025]
Abstract
This protocol refined a methodology for simultaneously testing 10 glycolysis pathway metabolites in serum. The quantification of glycolysis metabolites in serum from gastric cancer patients was carried out to observe changes in glycolysis.
Collapse
Affiliation(s)
- Ying-Shu Tang
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, 157 Baojian Road, Nan gang District, Harbin, 150086, P. R. China
| | - Ming-Jia Zhang
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, 157 Baojian Road, Nan gang District, Harbin, 150086, P. R. China
| | - Jin-Hui Zhao
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, 157 Baojian Road, Nan gang District, Harbin, 150086, P. R. China
| | - Li-Yan Liu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, 157 Baojian Road, Nan gang District, Harbin, 150086, P. R. China
| |
Collapse
|
391
|
Protective effect of kaempferol against cognitive and neurological disturbances induced by d-galactose and aluminum chloride in mice. J Funct Foods 2023. [DOI: 10.1016/j.jff.2022.105385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
392
|
Ou K, Zhang S, Song J, Fang L, Xia S, Huang J, Wang Q, Wang C. Prenatal EGCG consumption causes obesity and perturbs glucose homeostasis in adult mice. J Nutr Biochem 2023; 111:109179. [PMID: 36223832 DOI: 10.1016/j.jnutbio.2022.109179] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/12/2022] [Accepted: 08/18/2022] [Indexed: 11/09/2022]
Abstract
Epigallocatechin gallate (EGCG) has a wide consumption for its health advantages. The current study investigates the effects of prenatal EGCG administration on glucose metabolism and obesity in adulthood. Pregnant C57BL/6J mice were supplemented with EGCG in drinking water (3 µg/mL) for 16 d. Abdominal obesity was observed in both male and female adult mice, which was associated with the upregulation of adipose-specific genes, including C/ebpα and Srebf1 (Srebf1 only in males), and the downregulation of genes related to lipolysis, such as Acox1, Atgl and Pdk4 (only in males) in visceral adipose tissue. Elevated fasting glucose levels and hyperinsulinemia were observed in adult males, while females exhibit lower glucose level in glucose tolerance test, which might be due to reduced glucagon levels. Though hepatic expression of the insulin receptor signaling pathway was upregulated in males and was not altered in females, prenatal treatment with EGCG downregulated the expression of this signaling pathway in the skeletal muscle of adult mice, which was further demonstrated in primary human skeletal muscle cells treated with EGCG. The methylation levels in promotor of genes related to the insulin receptor signaling were matched with their transcription in mice, while the expression of acetylated histones was downregulated in human skeletal muscle cells. These results suggest that EGCG consumption during pregnancy should be a risk factor for the disruption of glucose homeostasis in adulthood.
Collapse
Affiliation(s)
- Kunlin Ou
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, China
| | - Shenli Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, China
| | - Jialin Song
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, China
| | - Lu Fang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, China
| | - Siyu Xia
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, China
| | - Jie Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, China
| | - Qin Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, China.
| | - Chonggang Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, China.
| |
Collapse
|
393
|
Nisa KU, Tarfeen N, Humaira, Wani S, Nisa Q, Ali S, Wali AF. Proteomic approaches in the study of cancers. Proteomics 2023. [DOI: 10.1016/b978-0-323-95072-5.00002-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
394
|
Taghizadeh H, Emamgholipour S, Hosseinkhani S, Arjmand B, Rezaei N, Dilmaghani-Marand A, Ghasemi E, Panahi N, Dehghanbanadaki H, Ghodssi-Ghassemabadi R, Najjar N, Asadi M, khoshniat M, Larijani B, Razi F. The association between acylcarnitine and amino acids profile and metabolic syndrome and its components in Iranian adults: Data from STEPs 2016. Front Endocrinol (Lausanne) 2023; 14:1058952. [PMID: 36923214 PMCID: PMC10008865 DOI: 10.3389/fendo.2023.1058952] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 02/06/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND Evidence, albeit with conflicting results, has suggested that cardiometabolic risk factors, including obesity, type 2 diabetes (T2D), dyslipidemia, and hypertension, are highly associated with changes in metabolic signature, especially plasma amino acids and acylcarnitines levels. Here, we aimed to evaluate the association of circulating levels of amino acids and acylcarnitines with metabolic syndrome (MetS) and its components in Iranian adults. METHODS This cross-sectional study was performed on 1192 participants from the large-scale cross-sectional study of Surveillance of Risk Factors of non-communicable diseases (NCDs) in Iran (STEP 2016). The circulating levels of amino acids and acylcarnitines were measured using liquid chromatography-tandem mass spectrometry (LC-MS/MS) in individuals with MetS (n=529) and without MetS (n=663). RESULTS The higher plasma levels of branched-chain amino acids (Val, Leu), aromatic amino acids (Phe, Tyr), Pro, Ala, Glu, and the ratio of Asp to Asn were significantly associated with MetS, whereas lower circulating levels of Gly, Ser, His, Asn, and citrulline were significantly associated with MetS. As for plasma levels of free carnitine and acylcarnitines, higher levels of short-chain acylcarnitines (C2, C3, C4DC), free carnitine (C0), and long-chain acylcarnitines (C16, C18OH) were significantly associated with MetS. Principal component analysis (PCA) showed that factor 3 (Tyr, Leu, Val, Met, Trp, Phe, Thr) [OR:1.165, 95% CI: 1.121-1.210, P<0.001], factor 7 (C0, C3, C4) [OR:1.257, 95% CI: 1.150-1.374, P<0.001], factor 8 (Gly, Ser) [OR:0.718, 95% CI: 0.651-0.793, P< 0.001], factor 9 (Ala, Pro, C4DC) [OR:1.883, 95% CI: 1.669-2.124, P<0.001], factor 10 (Glu, Asp, C18:2OH) [OR:1.132, 95% CI: 1.032-1.242, P= 0.009], factor 11 (citrulline, ornithine) [OR:0.862, 95% CI: 0.778-0.955, P= 0.004] and 13 (C18OH, C18:1 OH) [OR: 1.242, 95% CI: 1.042-1.480, P= 0.016] were independently correlated with metabolic syndrome. CONCLUSION Change in amino acid, and acylcarnitines profiles were seen in patients with MetS. Moreover, the alteration in the circulating levels of amino acids and acylcarnitines is along with an increase in MetS component number. It also seems that amino acid and acylcarnitines profiles can provide valuable information on evaluating and monitoring MetS risk. However, further studies are needed to establish this concept.
Collapse
Affiliation(s)
- Hananeh Taghizadeh
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Solaleh Emamgholipour
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shaghayegh Hosseinkhani
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran, Iran
| | - Negar Rezaei
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Arezou Dilmaghani-Marand
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Erfan Ghasemi
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Nekoo Panahi
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hojat Dehghanbanadaki
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Niloufar Najjar
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojgan Asadi
- Osteoporosis Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen khoshniat
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Farideh Razi
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- *Correspondence: Farideh Razi,
| |
Collapse
|
395
|
Sahu B, Bal NC. Adipokines from white adipose tissue in regulation of whole body energy homeostasis. Biochimie 2023; 204:92-107. [PMID: 36084909 DOI: 10.1016/j.biochi.2022.09.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/08/2022] [Accepted: 09/01/2022] [Indexed: 02/06/2023]
Abstract
Diseases originating from altered energy homeostasis including obesity, and type 2 diabetes are rapidly increasing worldwide. Research in the last few decades on animal models and humans demonstrates that the white adipose tissue (WAT) is critical for energy balance and more than just an energy storage site. WAT orchestrates the whole-body metabolism through inter-organ crosstalk primarily mediated by cytokines named "Adipokines". The adipokines influence metabolism and fuel selection of the skeletal muscle and liver thereby fine-tuning the load on WAT itself in physiological conditions like starvation, exercise and cold. In addition, adipokine secretion is influenced by various pathological conditions like obesity, inflammation and diabetes. In this review, we have surveyed the current state of knowledge on important adipokines and their significance in regulating energy balance and metabolic diseases. Furthermore, we have summarized the interplay of pro-inflammatory and anti-inflammatory adipokines in the modulation of pathological conditions.
Collapse
Affiliation(s)
- Bijayashree Sahu
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, 751024, India.
| | - Naresh C Bal
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, 751024, India.
| |
Collapse
|
396
|
Omori NE, Malys MK, Woo G, Mansor L. Exploring the role of ketone bodies in the diagnosis and treatment of psychiatric disorders. Front Psychiatry 2023; 14:1142682. [PMID: 37139329 PMCID: PMC10149735 DOI: 10.3389/fpsyt.2023.1142682] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/28/2023] [Indexed: 05/05/2023] Open
Abstract
In recent times, advances in the field of metabolomics have shed greater light on the role of metabolic disturbances in neuropsychiatric conditions. The following review explores the role of ketone bodies and ketosis in both the diagnosis and treatment of three major psychiatric disorders: major depressive disorder, anxiety disorders, and schizophrenia. Distinction is made between the potential therapeutic effects of the ketogenic diet and exogenous ketone preparations, as exogenous ketones in particular offer a standardized, reproducible manner for inducing ketosis. Compelling associations between symptoms of mental distress and dysregulation in central nervous system ketone metabolism have been demonstrated in preclinical studies with putative neuroprotective effects of ketone bodies being elucidated, including effects on inflammasomes and the promotion of neurogenesis in the central nervous system. Despite emerging pre-clinical data, clinical research on ketone body effectiveness as a treatment option for psychiatric disorders remains lacking. This gap in understanding warrants further investigating, especially considering that safe and acceptable ways of inducing ketosis are readily available.
Collapse
Affiliation(s)
- Naomi Elyse Omori
- Health Via Modern Nutrition Inc. (H.V.M.N.), San Francisco, CA, United States
- *Correspondence: Naomi Elyse Omori,
| | - Mantas Kazimieras Malys
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s College, London, United Kingdom
| | - Geoffrey Woo
- Health Via Modern Nutrition Inc. (H.V.M.N.), San Francisco, CA, United States
| | - Latt Mansor
- Health Via Modern Nutrition Inc. (H.V.M.N.), San Francisco, CA, United States
| |
Collapse
|
397
|
Cai S, Lin J, Li Z, Liu S, Feng Z, Zhang Y, Zhang Y, Huang J, Chen Q. Alterations in intestinal microbiota and metabolites in individuals with Down syndrome and their correlation with inflammation and behavior disorders in mice. Front Microbiol 2023; 14:1016872. [PMID: 36910172 PMCID: PMC9998045 DOI: 10.3389/fmicb.2023.1016872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
The intestinal microbiota and fecal metabolome have been shown to play a vital role in human health, and can be affected by genetic and environmental factors. We found that individuals with Down syndrome (DS) had abnormal serum cytokine levels indicative of a pro-inflammatory environment. We investigated whether these individuals also had alterations in the intestinal microbiome. High-throughput sequencing of bacterial 16S rRNA gene in fecal samples from 17 individuals with DS and 23 non-DS volunteers revealed a significantly higher abundance of Prevotella, Escherichia/Shigella, Catenibacterium, and Allisonella in individuals with DS, which was positively associated with the levels of pro-inflammatory cytokines. GC-TOF-MS-based fecal metabolomics identified 35 biomarkers (21 up-regulated metabolites and 14 down-regulated metabolites) that were altered in the microbiome of individuals with DS. Metabolic pathway enrichment analyses of these biomarkers showed a characteristic pattern in DS that included changes in valine, leucine, and isoleucine biosynthesis and degradation; synthesis and degradation of ketone bodies; glyoxylate and dicarboxylate metabolism; tyrosine metabolism; lysine degradation; and the citrate cycle. Treatment of mice with fecal bacteria from individuals with DS or Prevotella copri significantly altered behaviors often seen in individuals with DS, such as depression-associated behavior and impairment of motor function. These studies suggest that changes in intestinal microbiota and the fecal metabolome are correlated with chronic inflammation and behavior disorders associated with DS.
Collapse
Affiliation(s)
- Shaoli Cai
- Biomedical Research Center of South China, Fujian Normal University, Fuzhou, Fujian, China.,Fujian Key Laboratory of Innate Immune Biology, Fujian Normal University, Fuzhou, Fujian, China.,College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China
| | - Jinxin Lin
- Biomedical Research Center of South China, Fujian Normal University, Fuzhou, Fujian, China.,Fujian Key Laboratory of Innate Immune Biology, Fujian Normal University, Fuzhou, Fujian, China.,College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China
| | - Zhaolong Li
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Songnian Liu
- Biomedical Research Center of South China, Fujian Normal University, Fuzhou, Fujian, China.,Fujian Key Laboratory of Innate Immune Biology, Fujian Normal University, Fuzhou, Fujian, China
| | - Zhihua Feng
- Biomedical Research Center of South China, Fujian Normal University, Fuzhou, Fujian, China.,Fujian Key Laboratory of Innate Immune Biology, Fujian Normal University, Fuzhou, Fujian, China.,College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China
| | - Yangfan Zhang
- Biomedical Research Center of South China, Fujian Normal University, Fuzhou, Fujian, China.,Fujian Key Laboratory of Innate Immune Biology, Fujian Normal University, Fuzhou, Fujian, China.,College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China
| | - Yanding Zhang
- College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China
| | - Jianzhong Huang
- College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China
| | - Qi Chen
- Biomedical Research Center of South China, Fujian Normal University, Fuzhou, Fujian, China.,Fujian Key Laboratory of Innate Immune Biology, Fujian Normal University, Fuzhou, Fujian, China.,College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China
| |
Collapse
|
398
|
Mokhtari E, Ahmadirad H, Teymoori F, Mohammadebrahim A, Bahrololomi SS, Mirmiran P. The association between dietary amino acids and the risk of nonalcoholic fatty liver disease among Tehranian adults: a case-control study. BMC Nutr 2022; 8:155. [PMID: 36575550 PMCID: PMC9793580 DOI: 10.1186/s40795-022-00656-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Amino acids (AAs) are important bioactive components in the diet that can be involved in various underlying biological processes that contribute to the development of nonalcoholic fatty liver disease (NAFLD). The present study investigates the association between dietary intake of amino acids and NAFLD in Iranian adults. METHODS This study was conducted among 225 newly diagnosed cases of NAFLD and 450 controls. A valid and reliable 168-item semiquantitative food frequency questionnaire (FFQ) was used to collect participants' dietary intakes. Multivariable logistic regression models were used to assess the association between tertiles of branched-chain amino acids (BCAAs), aromatic amino acids (AAAs), and sulfuric amino acids (SAAs) intake with the odds of NAFLD among the study participants. RESULTS The mean ± standard deviation of age and BMI of participants (53% male) were 38.1 ± 8.8 years and 26.8 ± 4.3 kg/m2, respectively. In the final models, the OR and 95% CI of NAFLD among participants in the highest tertiles of BCAAs, AAAs, and SAAs intake compared with those in the lowest tertiles were (OR = 2.82; 95% CI: 1.50-5.30), (OR = 2.82; 95% CI: 1.50-5.30), (OR = 2.86; 95% CI: 1.49-5.48), respectively. CONCLUSION Our study indicated a direct association between the intake of AAs groups, including BCAAs, AAAs, SAAs, and the odds of NAFLD. We suggest that other researchers examine the association between AAs groups and NAFLD in large cohort studies.
Collapse
Affiliation(s)
- Ebrahim Mokhtari
- grid.411600.2Student Research Committee, Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran ,grid.411600.2Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, P.O. Box: 1985717413, Tehran, Iran
| | - Hamid Ahmadirad
- grid.411600.2Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, P.O. Box: 1985717413, Tehran, Iran
| | - Farshad Teymoori
- grid.411600.2Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, P.O. Box: 1985717413, Tehran, Iran ,grid.411746.10000 0004 4911 7066Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Azadeh Mohammadebrahim
- grid.411746.10000 0004 4911 7066Department of Nutrition, health and treatment center of shahriyar, Iran University of Medical Sciences, Tehran, Iran
| | - Samaneh Sadat Bahrololomi
- grid.411746.10000 0004 4911 7066Department of Nutrition, health and treatment center of shahriyar, Iran University of Medical Sciences, Tehran, Iran
| | - Parvin Mirmiran
- grid.411600.2Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, P.O. Box: 1985717413, Tehran, Iran
| |
Collapse
|
399
|
Despite similar clinical features metabolomics reveals distinct signatures in insulin resistant and progressively obese minipigs. J Physiol Biochem 2022. [DOI: 10.1007/s13105-022-00940-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
400
|
Curcumin Stimulates UCP1-independent Thermogenesis in 3T3-L1 White Adipocytes but Suppresses in C2C12 Muscle Cells. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-022-0319-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|