351
|
Abstract
Secretion of growth hormone (GH), and consequently that of insulin-like growth factor 1 (IGF-1), declines over time until only low levels can be detected in individuals aged ≥60 years. This phenomenon, which is known as the 'somatopause', has led to recombinant human GH being widely promoted and abused as an antiageing drug, despite lack of evidence of efficacy. By contrast, several mutations that decrease the tone of the GH/IGF-1 axis are associated with extended longevity in mice. In humans, corresponding or similar mutations have been identified, but whether these mutations alter longevity has yet to be established. The powerful effect of reduced GH activity on lifespan extension in mice has generated the hypothesis that pharmaceutically inhibiting, rather than increasing, GH action might delay ageing. Moreover, mice as well as humans with reduced activity of the GH/IGF-1 axis are protected from cancer and diabetes mellitus, two major ageing-related morbidities. Here, we review data on mouse strains with alterations in the GH/IGF-1 axis and their effects on lifespan. The outcome of corresponding or similar mutations in humans is described, as well as the potential mechanisms underlying increased longevity and the therapeutic benefits and risks of medical disruption of the GH/IGF-1 axis in humans.
Collapse
Affiliation(s)
- Riia K Junnila
- Edison Biotechnology Institute, Ohio University, 1 Water Tower Drive, The Ridges (R. K. Junnila, E. O. List, D. E. Berryman, J. J. Kopchick), Department of Radiology, O'Bleness Hospital, 55 Hospital Drive, (J. W. Murrey), Athens, OH 45701, USA
| | - Edward O List
- Edison Biotechnology Institute, Ohio University, 1 Water Tower Drive, The Ridges (R. K. Junnila, E. O. List, D. E. Berryman, J. J. Kopchick), Department of Radiology, O'Bleness Hospital, 55 Hospital Drive, (J. W. Murrey), Athens, OH 45701, USA
| | - Darlene E Berryman
- Edison Biotechnology Institute, Ohio University, 1 Water Tower Drive, The Ridges (R. K. Junnila, E. O. List, D. E. Berryman, J. J. Kopchick), Department of Radiology, O'Bleness Hospital, 55 Hospital Drive, (J. W. Murrey), Athens, OH 45701, USA
| | - John W Murrey
- Edison Biotechnology Institute, Ohio University, 1 Water Tower Drive, The Ridges (R. K. Junnila, E. O. List, D. E. Berryman, J. J. Kopchick), Department of Radiology, O'Bleness Hospital, 55 Hospital Drive, (J. W. Murrey), Athens, OH 45701, USA
| | - John J Kopchick
- Edison Biotechnology Institute, Ohio University, 1 Water Tower Drive, The Ridges (R. K. Junnila, E. O. List, D. E. Berryman, J. J. Kopchick), Department of Radiology, O'Bleness Hospital, 55 Hospital Drive, (J. W. Murrey), Athens, OH 45701, USA
| |
Collapse
|
352
|
Page MM, Withers DJ, Selman C. Longevity of insulin receptor substrate1 null mice is not associated with increased basal antioxidant protection or reduced oxidative damage. AGE (DORDRECHT, NETHERLANDS) 2013; 35:647-658. [PMID: 22371226 PMCID: PMC3636410 DOI: 10.1007/s11357-012-9395-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 02/13/2012] [Indexed: 05/31/2023]
Abstract
Insulin receptor substrate-1 null (Irs1 (-/-)) mice are long lived and importantly they also demonstrate increased resistance to several age-related pathologies compared to wild type (WT) controls. Currently, the molecular mechanisms that underlie lifespan extension in long-lived mice are unclear although protection against oxidative damage may be important. Here, we determined both the activities of several intracellular antioxidants and levels of oxidative damage in brain, skeletal muscle, and liver of Irs1 (-/-) and WT mice at 80, 450, and 700 days of age, predicting that long-lived Irs1 (-/-) mice would be protected against oxidative damage. We measured activities of both intracellular superoxide dismutases (SOD); cytosolic (CuZnSOD) and mitochondrial (MnSOD), glutathione peroxide (GPx), glutathione reductase (GR), catalase (CAT), and reduced glutathione (GHS). Of these, only hepatic CAT was significantly altered (increased) in Irs1 (-/-) mice. In addition, the levels of protein oxidation (protein carbonyl content) and lipid peroxidation (4-hydroxynonenal) were unaltered in Irs1 (-/-) mice, although the hepatic GSH/GSSG ratio, indicating an oxidized environment, was significantly lower in long-lived Irs1 (-/-) mice. Overall, our results do not support the premise that lifespan extension in Irs1 (-/-) mice is associated with greater tissue antioxidant protection or reduced oxidative damage.
Collapse
Affiliation(s)
- Melissa M. Page
- />Integrative and Environmental Physiology, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB24 2TZ UK
| | - Dominic J. Withers
- />Metabolic Signaling Group, Medical Research Council Clinical Sciences Centre, Imperial College, London, W12 0NN UK
| | - Colin Selman
- />Integrative and Environmental Physiology, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB24 2TZ UK
| |
Collapse
|
353
|
Guo S. Molecular Basis of Insulin Resistance: The Role of IRS and Foxo1 in the Control of Diabetes Mellitus and Its Complications. ACTA ACUST UNITED AC 2013; 10:e27-e33. [PMID: 24015152 DOI: 10.1016/j.ddmec.2013.06.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Insulin/IGF-1 signaling plays a central role in control of cellular metabolism and survival, while insulin receptor substrate (IRS) protein -1 and -2 and downstream PI-3 kinase→Akt→Foxo1 signaling cascade play key roles in many functions of insulin/IGF-1. Dysregulation of this branch of signaling cascades may provide a mechanism for insulin resistance as we observed in cells, animals, and even humans. Targeting this branch of IRS→Foxo1 signaling may provide us with fundamental strategies for drug development in the future.
Collapse
Affiliation(s)
- Shaodong Guo
- Division of Molecular Cardiology, Cardiovascular Research Institute, College of Medicine, Texas A&M University Health Science Center, Scott & White; Central Texas Veterans Health Care System, Temple, TX 76504, USA
| |
Collapse
|
354
|
Insulin receptor substrate 2 is required for testicular development. PLoS One 2013; 8:e62103. [PMID: 23741292 PMCID: PMC3669358 DOI: 10.1371/journal.pone.0062103] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 03/18/2013] [Indexed: 11/19/2022] Open
Abstract
Insulin receptor substrate (IRS) proteins are key mediators of insulin and insulin-like growth factor (IGF) signalling. In mice, deletion of Irs1 is associated with profound growth retardation and increased longevity whereas Irs2-deficiency causes diabetes and female infertility. Clinical studies suggest that diabetes and obesity diminish male fertility. However, the role of IRS proteins in male reproduction is unknown. We observed that testis weight is reduced by 45% in Irs2-deficient mice as compared with control males. The weight of these organs in Irs1(-/-) males was similar to controls; however, since Irs1-deficient mice are 50% smaller, testis weight:body weight was increased in this model. Neonatal Irs2(-/-) mice also exhibited reduced testicular size, suggesting that impairments in this model occur during development. Histological examination of testicular cross sections from Irs2(-/-) mice revealed normal cellular associations without obvious abnormalities in the seminiferous epithelium. Reduced testicular weight was associated with fewer Sertoli cells, spermatogonia, spermatocytes, elongated spermatids, and epididymal spermatozoa. However, Leydig cell number and the concentration of serum testosterone were equivalent between Irs2-deficient and control males. Testicular weight was reduced similarly in non-diabetic and diabetic Irs2(-/-) mice, indicating that hyperglycemia does not compound the effects of Irs2 deletion on impaired testis development. Expression of Irs1, Irs3, and Irs4 was comparable between experimental groups. Collectively, our results demonstrate that IRS2 plays a critical role in testicular development, potentially by mediating IGF1 signalling during embryonic and early postnatal development.
Collapse
|
355
|
Hookham MB, O'Donovan HC, Church RH, Mercier-Zuber A, Luzi L, Curran SP, Carew RM, Droguett A, Mezzano S, Schubert M, White MF, Crean JK, Brazil DP. Insulin receptor substrate-2 is expressed in kidney epithelium and up-regulated in diabetic nephropathy. FEBS J 2013; 280:3232-43. [PMID: 23617393 DOI: 10.1111/febs.12305] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 03/29/2013] [Accepted: 04/18/2013] [Indexed: 02/06/2023]
Abstract
Diabetic nephropathy (DN) is a progressive fibrotic condition that may lead to end-stage renal disease and kidney failure. Transforming growth factor-β1 and bone morphogenetic protein-7 (BMP7) have been shown to induce DN-like changes in the kidney and protect the kidney from such changes, respectively. Recent data identified insulin action at the level of the nephron as a crucial factor in the development and progression of DN. Insulin requires a family of insulin receptor substrate (IRS) proteins for its physiological effects, and many reports have highlighted the role of insulin and IRS proteins in kidney physiology and disease. Here, we observed IRS2 expression predominantly in the developing and adult kidney epithelium in mouse and human. BMP7 treatment of human kidney proximal tubule epithelial cells (HK-2 cells) increases IRS2 transcription. In addition, BMP7 treatment of HK-2 cells induces an electrophoretic shift in IRS2 migration on SDS/PAGE, and increased association with phosphatidylinositol-3-kinase, probably due to increased tyrosine/serine phosphorylation. In a cohort of DN patients with a range of chronic kidney disease severity, IRS2 mRNA levels were elevated approximately ninefold, with the majority of IRS2 staining evident in the kidney tubules in DN patients. These data show that IRS2 is expressed in the kidney epithelium and may play a role in the downstream protective events triggered by BMP7 in the kidney. The specific up-regulation of IRS2 in the kidney tubules of DN patients also indicates a novel role for IRS2 as a marker and/or mediator of human DN progression.
Collapse
|
356
|
Duodenal–Jejunal Bypass Surgery Up-Regulates the Expression of the Hepatic Insulin Signaling Proteins and the Key Regulatory Enzymes of Intestinal Gluconeogenesis in Diabetic Goto–Kakizaki Rats. Obes Surg 2013; 23:1734-42. [DOI: 10.1007/s11695-013-0985-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
357
|
Previs SF, McLaren DG, Wang SP, Stout SJ, Zhou H, Herath K, Shah V, Miller PL, Wilsie L, Castro-Perez J, Johns DG, Cleary MA, Roddy TP. New methodologies for studying lipid synthesis and turnover: looking backwards to enable moving forwards. Biochim Biophys Acta Mol Basis Dis 2013; 1842:402-13. [PMID: 23707557 DOI: 10.1016/j.bbadis.2013.05.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 05/11/2013] [Accepted: 05/13/2013] [Indexed: 12/26/2022]
Abstract
Our ability to understand the pathogenesis of problems surrounding lipid accretion requires attention towards quantifying lipid kinetics. In addition, studies of metabolic flux should also help unravel mechanisms that lead to imbalances in inter-organ lipid trafficking which contribute to dyslipidemia and/or peripheral lipid accumulation (e.g. hepatic fat deposits). This review aims to outline the development and use of novel methods for studying lipid kinetics in vivo. Although our focus is directed towards some of the approaches that are currently reported in the literature, we include a discussion of the older literature in order to put "new" methods in better perspective and inform readers of valuable historical research. Presumably, future advances in understanding lipid dynamics will benefit from a careful consideration of the past efforts, where possible we have tried to identify seminal papers or those that provide clear data to emphasize essential points. This article is part of a Special Issue entitled: Modulation of Adipose Tissue in Health and Disease.
Collapse
Affiliation(s)
- Stephen F Previs
- Molecular Biomarkers, Merck, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA.
| | - David G McLaren
- Molecular Biomarkers, Merck, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA
| | - Sheng-Ping Wang
- Molecular Biomarkers, Merck, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA
| | - Steven J Stout
- Molecular Biomarkers, Merck, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA
| | - Haihong Zhou
- Molecular Biomarkers, Merck, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA
| | - Kithsiri Herath
- Molecular Biomarkers, Merck, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA
| | - Vinit Shah
- Molecular Biomarkers, Merck, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA
| | - Paul L Miller
- Molecular Biomarkers, Merck, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA
| | - Larissa Wilsie
- Molecular Biomarkers, Merck, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA
| | - Jose Castro-Perez
- Molecular Biomarkers, Merck, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA
| | - Douglas G Johns
- Molecular Biomarkers, Merck, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA
| | - Michele A Cleary
- Molecular Biomarkers, Merck, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA
| | - Thomas P Roddy
- Molecular Biomarkers, Merck, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA
| |
Collapse
|
358
|
Neukamm SS, Ott J, Dammeier S, Lehmann R, Häring HU, Schleicher E, Weigert C. Phosphorylation of serine 1137/1138 of mouse insulin receptor substrate (IRS) 2 regulates cAMP-dependent binding to 14-3-3 proteins and IRS2 protein degradation. J Biol Chem 2013; 288:16403-16415. [PMID: 23615913 DOI: 10.1074/jbc.m113.474593] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Insulin receptor substrate (IRS) 2 as intermediate docking platform transduces the insulin/IGF-1 (insulin like growth factor 1) signal to intracellular effector molecules that regulate glucose homeostasis, β-cell growth, and survival. Previously, IRS2 has been identified as a 14-3-3 interaction protein. 14-3-3 proteins can bind their target proteins via phosphorylated serine/threonine residues located within distinct motifs. In this study the binding of 14-3-3 to IRS2 upon stimulation with forskolin or the cAMP analog 8-(4-chlorophenylthio)-cAMP was demonstrated in HEK293 cells. Binding was reduced with PKA inhibitors H89 or Rp-8-Br-cAMPS. Phosphorylation of IRS2 on PKA consensus motifs was induced by forskolin and the PKA activator N(6)-Phe-cAMP and prevented by both PKA inhibitors. The amino acid region after position 952 on IRS2 was identified as the 14-3-3 binding region by GST-14-3-3 pulldown assays. Mass spectrometric analysis revealed serine 1137 and serine 1138 as cAMP-dependent, potential PKA phosphorylation sites. Mutation of serine 1137/1138 to alanine strongly reduced the cAMP-dependent 14-3-3 binding. Application of cycloheximide revealed that forskolin enhanced IRS2 protein stability in HEK293 cells stably expressing IRS2 as well as in primary hepatocytes. Stimulation with forskolin did not increase protein stability either in the presence of a 14-3-3 antagonist or in the double 1137/1138 alanine mutant. Thus the reduced IRS2 protein degradation was dependent on the interaction with 14-3-3 proteins and the presence of serine 1137/1138. We present serine 1137/1138 as novel cAMP-dependent phosphorylation sites on IRS2 and show their importance in 14-3-3 binding and IRS2 protein stability.
Collapse
Affiliation(s)
- Sabine S Neukamm
- Division of Clinical Chemistry and Pathobiochemistry, Tuebingen 72076, Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tuebingen (Paul Langerhans Institute Tuebingen), Tuebingen, Germany; German Center for Diabetes Research (DZD), Tuebingen 72076, Germany
| | - Jennifer Ott
- Medical Proteome Center, Institute for Ophtalmic Research, University Hospital Tuebingen, Tuebingen 72076, Germany
| | - Sascha Dammeier
- Medical Proteome Center, Institute for Ophtalmic Research, University Hospital Tuebingen, Tuebingen 72076, Germany
| | - Rainer Lehmann
- Division of Clinical Chemistry and Pathobiochemistry, Tuebingen 72076, Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tuebingen (Paul Langerhans Institute Tuebingen), Tuebingen, Germany; German Center for Diabetes Research (DZD), Tuebingen 72076, Germany
| | - Hans-Ulrich Häring
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tuebingen (Paul Langerhans Institute Tuebingen), Tuebingen, Germany; German Center for Diabetes Research (DZD), Tuebingen 72076, Germany; Division of Endocrinology, Diabetology, Vascular Medicine, Nephrology and Clinical Chemistry, Department of Internal Medicine IV, Tuebingen 72076, Germany
| | - Erwin Schleicher
- Division of Clinical Chemistry and Pathobiochemistry, Tuebingen 72076, Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tuebingen (Paul Langerhans Institute Tuebingen), Tuebingen, Germany; German Center for Diabetes Research (DZD), Tuebingen 72076, Germany
| | - Cora Weigert
- Division of Clinical Chemistry and Pathobiochemistry, Tuebingen 72076, Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tuebingen (Paul Langerhans Institute Tuebingen), Tuebingen, Germany; German Center for Diabetes Research (DZD), Tuebingen 72076, Germany.
| |
Collapse
|
359
|
Agarwal P, Srivastava R, Srivastava AK, Ali S, Datta M. miR-135a targets IRS2 and regulates insulin signaling and glucose uptake in the diabetic gastrocnemius skeletal muscle. Biochim Biophys Acta Mol Basis Dis 2013; 1832:1294-303. [PMID: 23579070 DOI: 10.1016/j.bbadis.2013.03.021] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 03/06/2013] [Accepted: 03/13/2013] [Indexed: 11/19/2022]
Abstract
Although aberrant miRNA signatures are associated with diabetes, yet, the status and role of altered miRNAs in the diabetic skeletal muscle is currently poorly understood. Here, we report that 41 miRNAs are altered in the diabetic gastrocnemius skeletal muscle and of these, miR-135a that is identified as a critical regulator of myogenesis, is significantly up-regulated. IRS2 is predicted as its potential putative target and its levels are down-regulated in the diabetic gastrocnemius skeletal muscle. In C2C12 cells, while miR-135a levels decreased during differentiation, IRS2 levels were up-regulated. miR-135a significantly reduced IRS2 protein levels and its 3'UTR luciferase reporter activity and these were blunted by the miR-135a inhibitor and mutation in the miR-135a binding site. Knock-down of endogenous miR-135a levels increased IRS2 at the mRNA and protein levels. miR-135a also attenuated insulin stimulated phosphorylation and activation of PI3Kp85α and Akt and glucose uptake. miR-135a levels were also found to be elevated in the human diabetic skeletal muscle. In-vivo silencing of miR-135a alleviated hyperglycemia, improved glucose tolerance and significantly restored the levels of IRS2 and p-Akt in the gastrocnemius skeletal muscle of db/db mice without any effect on their hepatic levels. These suggest that miR-135a targets IRS2 levels by binding to its 3'UTR and this interaction regulates skeletal muscle insulin signaling.
Collapse
Affiliation(s)
- Priyanka Agarwal
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi-110 007, India
| | | | | | | | | |
Collapse
|
360
|
Eizadi M, Bagheri G, Kasparast J, Zahedmanesh F, Afsharmand Z. Effects of training on body composition, blood lipids, and glucose homeostasis assessed by the homeostasis model assessment. Sci Sports 2013. [DOI: 10.1016/j.scispo.2012.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
361
|
Somchit-Assavacheep A, Campbell BK, Khalid M, Kendall NR, Scaramuzzi RJ. The effect of short-term nutritional supplementation of ewes with lupin grain (Lupinus luteus) on folliculogenesis, the concentrations of hormones and glucose in plasma and follicular fluid and the follicular levels of P450 aromatase and IRS-1, -2 and -4. Reproduction 2013; 145:319-33. [DOI: 10.1530/rep-12-0135] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
An experiment was conducted on 48 ewes during follicular and luteal phases of the oestrous cycle to determine the effect of a 5-day lupin grain supplementation (500 g/day) on folliculogenesis, plasma concentrations of glucose, insulin, FSH and oestradiol-17β (E2), follicular fluid concentrations of glucose, E2, androstenedione and progesterone and the levels of P450aromatase and insulin receptor substrate 1 (IRS-1), -2 and -4 in theca and granulosa cells. Average weight did not differ between lupin-fed and control groups. The numbers of follicles were increased (P<0.05; χ2) in the lupin-fed group. The plasma concentrations of glucose (P<0.05; ANOVA) and insulin (P<0.001; ANOVA) were higher in lupin-fed ewes. The plasma concentrations of FSH were not different but those of E2were decreased (P<0.001) in the lupin-fed group. Both the follicular fluid concentration of E2(P<0.05) and the level of P450aromatase in granulosa cells (P<0.05; ANOVA) were decreased in the lupin-fed group, but only during the follicular phase. The level of P450aromatase in granulosa cells was positively correlated with the concentration of E2in follicular fluid (r=0.820;P<0.001; ANOVA). The levels of IRS-1 and -2 in theca and granulosa cell lysates were increased in the lupin-fed group. These data suggest that insulin has a local role in the control of folliculogenesis and is likely to be a mediator of the effects of dietary energy intake on ovulation rate. We suggest that insulin acting through IRS proteins mediates the reproductive actions of insulin in the follicle and that IRS-1 and -2 are nutritionally regulated mediators of the action of insulin in the follicle.
Collapse
|
362
|
Roncero I, Alvarez E, Acosta C, Sanz C, Barrio P, Hurtado-Carneiro V, Burks D, Blázquez E. Insulin-receptor substrate-2 (irs-2) is required for maintaining glucokinase and glucokinase regulatory protein expression in mouse liver. PLoS One 2013; 8:e58797. [PMID: 23560040 PMCID: PMC3613347 DOI: 10.1371/journal.pone.0058797] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 02/06/2013] [Indexed: 12/02/2022] Open
Abstract
Insulin receptor substrate (IRS) proteins play important roles in hepatic nutrient homeostasis. Since glucokinase (GK) and glucokinase regulatory protein (GKRP) function as key glucose sensors, we have investigated the expression of GK and GKRP in liver of Irs-2 deficient mice and Irs2(−/−) mice where Irs2 was reintroduced specifically into pancreatic β-cells [RIP-Irs-2/IRS-2(−/−)]. We observed that liver GK activity was significantly lower (p<0.0001) in IRS-2(−/−) mice. However, in RIP-Irs-2/IRS-2(−/−) mice, GK activity was similar to the values observed in wild-type animals. GK activity in hypothalamus was not altered in IRS-2(−/−) mice. GK and GKRP mRNA levels in liver of IRS-2(−/−) were significantly lower, whereas in RIP-Irs-2/IRS-2(−/−) mice, both GK and GKRP mRNAs levels were comparable to wild-type animals. At the protein level, the liver content of GK was reduced in IRS-2(−/−) mice as compared with controls, although GKRP levels were similar between these experimental models. Both GK and GKRP levels were lower in RIP-Irs-2/IRS-2(−/−) mice. These results suggest that IRS-2 signalling is important for maintaining the activity of liver GK. Moreover, the differences between liver and brain GK may be explained by the fact that expression of hepatic, but not brain, GK is controlled by insulin. GK activity was restored by the β-cell compensation in the RIP-Irs-2/IRS-2 mice. Interestingly, GK and GKRP protein expression remained low in RIP-Irs-2/IRS-2(−/−) mice, perhaps reflecting different mRNA half-lives or alterations in the process of translation and post-translational regulation.
Collapse
Affiliation(s)
- Isabel Roncero
- The Center for Biomedical Research in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense de Madrid-Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Elvira Alvarez
- The Center for Biomedical Research in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense de Madrid-Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Carlos Acosta
- The Center for Biomedical Research in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
- Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Carmen Sanz
- The Center for Biomedical Research in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense de Madrid-Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- Departamento de Biología Celular, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Pedro Barrio
- The Center for Biomedical Research in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense de Madrid-Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Veronica Hurtado-Carneiro
- The Center for Biomedical Research in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense de Madrid-Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Deborah Burks
- The Center for Biomedical Research in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
- Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Enrique Blázquez
- The Center for Biomedical Research in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense de Madrid-Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- * E-mail:
| |
Collapse
|
363
|
Romanick M, Thompson LV, Brown-Borg HM. Murine models of atrophy, cachexia, and sarcopenia in skeletal muscle. Biochim Biophys Acta Mol Basis Dis 2013; 1832:1410-20. [PMID: 23523469 DOI: 10.1016/j.bbadis.2013.03.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 03/10/2013] [Accepted: 03/12/2013] [Indexed: 12/11/2022]
Abstract
With the extension of life span over the past several decades, the age-related loss of muscle mass and strength that characterizes sarcopenia is becoming more evident and thus, has a more significant impact on society. To determine ways to intervene and delay, or even arrest the physical frailty and dependence that accompany sarcopenia, it is necessary to identify those biochemical pathways that define this process. Animal models that mimic one or more of the physiological pathways involved with this phenomenon are very beneficial in providing an understanding of the cellular processes at work in sarcopenia. The ability to influence pathways through genetic manipulation gives insight into cellular responses and their impact on the physical expression of sarcopenia. This review evaluates several murine models that have the potential to elucidate biochemical processes integral to sarcopenia. Identifying animal models that reflect sarcopenia or its component pathways will enable researchers to better understand those pathways that contribute to age-related skeletal muscle mass loss, and in turn, develop interventions that will prevent, retard, arrest, or reverse this phenomenon. This article is part of a Special Issue entitled: Animal Models of Disease.
Collapse
Affiliation(s)
- Mark Romanick
- Department of Physical Therapy, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, USA
| | | | | |
Collapse
|
364
|
Abstract
New-onset diabetes after transplantation independently increases the risk of cardiovascular disease, infections, and graft loss and decreases patient survival. The required balance between insulin sensitivity/resistance and insulin secretion is necessary to maintain normal glucose metabolism. Calcineurin inhibitors are standard immunosuppression drugs used after transplantation and have been implicated in the development of new-onset diabetes after transplantation partially by pancreatic β-cell apoptosis and resultant decrease in insulin secretion. The ability of muscle to take up glucose is critical to blood glucose homeostasis. Skeletal muscle is quantitatively the most important tissue in the body for insulin-stimulated glucose disposal and is composed of diverse myofibers that vary in their properties between healthy and insulin-resistant muscle. Various signaling pathways are responsible for remodeling of skeletal muscle, and among these is the calcineurin/nuclear factor of activated T-cell pathway. The mechanism of action of the calcineurin inhibitors is to bind in a complex with a binding protein to calcineurin and inhibit its dephosphorylation and activation of nuclear factor of activated T cells. In this review, we will provide a detailed discussion of the hypothesis that inhibition of calcineurin in tissues involved in insulin sensitivity/resistance could be at least partially responsible for the diabetogenicity seen with the use of calcineurin inhibitors.
Collapse
Affiliation(s)
- Harini A Chakkera
- Division of Nephrology and Hypertension, Mayo Clinic, Phoenix, AZ 85054, USA.
| | | |
Collapse
|
365
|
Jain S, Ruiz de Azua I, Lu H, White MF, Guettier JM, Wess J. Chronic activation of a designer G(q)-coupled receptor improves β cell function. J Clin Invest 2013; 123:1750-62. [PMID: 23478411 DOI: 10.1172/jci66432] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 01/17/2013] [Indexed: 12/12/2022] Open
Abstract
Type 2 diabetes (T2D) has emerged as a major threat to human health in most parts of the world. Therapeutic strategies aimed at improving pancreatic β cell function are predicted to prove beneficial for the treatment of T2D. In the present study, we demonstrate that drug-mediated, chronic, and selective activation of β cell G(q) signaling greatly improve β cell function and glucose homeostasis in mice. These beneficial metabolic effects were accompanied by the enhanced expression of many genes critical for β cell function, maintenance, and differentiation. By employing a combination of in vivo and in vitro approaches, we identified a novel β cell pathway through which receptor-activated G(q) leads to the sequential activation of ERK1/2 and IRS2 signaling, thus triggering a series of events that greatly improve β cell function. Importantly, we found that chronic stimulation of a designer G(q)-coupled receptor selectively expressed in β cells prevented both streptozotocin-induced diabetes and the metabolic deficits associated with the consumption of a high-fat diet in mice. Since β cells are endowed with numerous receptors that mediate their cellular effects via activation of G(q)-type G proteins, our findings provide a rational basis for the development of novel antidiabetic drugs targeting this class of receptors.
Collapse
Affiliation(s)
- Shalini Jain
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
366
|
Affiliation(s)
- Franck Mauvais-Jarvis
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Medicine, Comprehensive Center on Obesity, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.
| |
Collapse
|
367
|
Sadagurski M, White MF. Integrating metabolism and longevity through insulin and IGF1 signaling. Endocrinol Metab Clin North Am 2013; 42:127-48. [PMID: 23391244 PMCID: PMC3982789 DOI: 10.1016/j.ecl.2012.11.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The insulin pathway coordinates growth, development, metabolic homoeostasis, fertility, and stress resistance, which influence life span. Compensatory hyperinsulinemia to overcome systemic insulin resistance circumvents the immediate consequences of hyperglycemia. Work on flies, nematodes, and mice indicate that excess insulin signaling damages cellular function and accelerates aging. Maintenance of the central nervous system (CNS) has particular importance for life span. Reduced insulin/IGF1 signaling in the CNS can dysregulate peripheral energy homeostasis and metabolism, promote obesity, and extend life span. Genetic manipulations of insulin/IGF1 signaling components are revealing neuronal circuits that might resolve the central regulation of systemic metabolism from organism longevity.
Collapse
Affiliation(s)
- Marianna Sadagurski
- Department of Endocrinology, Children's Hospital Boston, Howard Hughes Medical Institute, Boston, MA 02115, USA
| | | |
Collapse
|
368
|
Vummidi BR, Alzeer J, Luedtke NW. Fluorescent Probes for G-Quadruplex Structures. Chembiochem 2013; 14:540-58. [DOI: 10.1002/cbic.201200612] [Citation(s) in RCA: 197] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Indexed: 12/19/2022]
|
369
|
González-Navarro H, Vinué Á, Sanz MJ, Delgado M, Pozo MA, Serrano M, Burks DJ, Andrés V. Increased dosage of Ink4/Arf protects against glucose intolerance and insulin resistance associated with aging. Aging Cell 2013; 12:102-11. [PMID: 23107464 DOI: 10.1111/acel.12023] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2012] [Indexed: 11/30/2022] Open
Abstract
Recent genome-wide association studies have linked type-2 diabetes mellitus to a genomic region in chromosome 9p21 near the Ink4/Arf locus, which encodes tumor suppressors that are up-regulated in a variety of mammalian organs during aging. However, it is unclear whether the susceptibility to type-2 diabetes is associated with altered expression of the Ink4/Arf locus. In the present study, we investigated the role of Ink4/Arf in age-dependent alterations of insulin and glucose homeostasis using Super-Ink4/Arf mice which bear an extra copy of the entire Ink4/Arf locus. We find that, in contrast to age-matched wild-type controls, Super-Ink4/Arf mice do not develop glucose intolerance with aging. Insulin tolerance tests demonstrated increased insulin sensitivity in Super-Ink4/Arf compared with wild-type mice, which was accompanied by higher activation of the insulin receptor substrate (IRS)-PI3K-AKT pathway in liver, skeletal muscle and heart. Glucose uptake studies in Super-Ink4/Arf mice showed a tendency toward increased (18)F-fluorodeoxyglucose uptake in skeletal muscle compared with wild-type mice (P = 0.079). Furthermore, a positive correlation between glucose uptake and baseline glucose levels was observed in Super-Ink4/Arf mice (P < 0.008) but not in wild-type mice. Our studies reveal a protective role of the Ink4/Arf locus against the development of age-dependent insulin resistance and glucose intolerance.
Collapse
Affiliation(s)
| | - Ángela Vinué
- Vascular Biology Unit; Department of Molecular and Cellular Pathology and Therapy; Instituto de Biomedicina de Valencia (IBV); Spanish Council for Scientific Research (CSIC); Valencia; 46010; Spain
| | | | - Mercedes Delgado
- CAI Cartografía Cerebral; Instituto Pluridisciplinar; Universidad Complutense de Madrid; Madrid; 28040; Spain
| | - Miguel Angel Pozo
- CAI Cartografía Cerebral; Instituto Pluridisciplinar; Universidad Complutense de Madrid; Madrid; 28040; Spain
| | - Manuel Serrano
- Spanish National Cancer Research Center (CNIO); Madrid; 28029; Spain
| | - Deborah J. Burks
- CIBER de Diabetes y Enfermedades Metabolicas (CIBERDEM); Centro de Investigación Príncipe Felipe (CIPF); Valencia; 46012; Spain
| | - Vicente Andrés
- Laboratory of Molecular and Genetic Cardiovascular Pathophysiology; Department of Epidemiology, Atherothrombosis and Imaging; Centro Nacional de Investigaciones Cardiovasculares (CNIC); Madrid; 28029; Spain
| |
Collapse
|
370
|
Tang Y, Han X, Sun X, Lv C, Zhang X, Guo W, Ren Q, Luo Y, Zhang X, Zhou X, Ji L. Association study of a common variant near IRS1 with type 2 diabetes mellitus in Chinese Han population. Endocrine 2013; 43:84-91. [PMID: 22576021 DOI: 10.1007/s12020-012-9693-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Accepted: 04/30/2012] [Indexed: 01/10/2023]
Abstract
The insulin receptor substrate-1 (IRS1) plays an important role in insulin signaling. A recent genome-wide association study identified rs2943641C>T as a susceptibility locus for type 2 diabetes mellitus (T2DM) in Caucasian patients. Therefore, we determined whether this common variant near IRS1 is also associated with the risk of T2DM and T2DM-related phenotypes in a Chinese Han population. A total of 2,290 unrelated Chinese Han individuals residing in Beijing were recruited in this study, including 1177 T2DM patients and 1113 subjects with normal glucose tolerance (control group). The single nucleotide polymorphism (SNP) was genotyped using a MassARRAY iPLEX system. The frequency of risk allele C was 0.929 in the control group and 0.939 in patients with T2DM. We found no association between the C allele of rs2943641 and T2DM in a recessive model [OR 1.14, 95 % confidence interval (CI) 0.89-1.45, P = 0.298], or after adjusting for sex, age, and body mass index (BMI) (OR 1.10, 95 % CI 0.85-1.43, P = 0.301). Analysis of the clinical features of the control subjects with normal glucose tolerance revealed that the 30-min plasma glucose level during a 75-g oral glucose tolerance test was significantly different between the CC and CT+TT genotypes (P = 0.017). Linear regression analysis showed that the 30-min plasma glucose levels was significantly and positively associated with the CC genotype after adjusting for sex, age, and BMI (β = 0.065, 95 % CI 0.009-0.654, P = 0.044). In addition, a potential association between this SNP and increased waist circumference (β = 1.337, 95 % CI -0.179 to 2.853, P = 0.084) was observed with adjustment for the sex and age. Our study was not able to demonstrate the association between rs2943641 near IRS1 and T2DM in a Chinese Han population. However, this SNP may be associated with postprandial hyperglycemia.
Collapse
Affiliation(s)
- Yong Tang
- Department of Endocrinology and Metabolism, Peking University People's Hospital, No 11, Xizhimen South Street, Beijing, 100044, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
371
|
Morino-Koga S, Yano S, Kondo T, Shimauchi Y, Matsuyama S, Okamoto Y, Suico MA, Koga T, Sato T, Shuto T, Arima H, Wada I, Araki E, Kai H. Insulin receptor activation through its accumulation in lipid rafts by mild electrical stress. J Cell Physiol 2013; 228:439-46. [PMID: 22740366 DOI: 10.1002/jcp.24149] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Insulin resistance is due to the reduced cellular response to insulin in peripheral tissues. The interaction of insulin with its receptor is the first step in insulin action and thus the identified target of insulin resistance. It has been well established that defects or mutations in the insulin receptor (IR) cause insulin resistance. Therefore, an IR activator might be a novel therapeutic approach for insulin resistance. Our previous report showed that mild electrical stress (MES) enhanced the insulin-induced signaling pathway. However, the molecular mechanism of the effect of MES remains unclear. We assessed the effect of MES, which is characterized by low-intensity direct current, on insulin signaling in vitro and in vivo. Here, we showed that MES activated the insulin signaling in an insulin-independent manner and improved insulin resistance in peripheral tissues of high fat-fed mice. Moreover, we found that MES increased the localization of IR in lipid rafts and enhanced the level of phosphorylated Akt in insulin-resistant hepatic cells. Ablation of lipid rafts disrupted the effect of MES on Akt activation. Our findings indicate that MES has potential as an activator of IR in an insulin-independent manner, and might be beneficial for insulin resistance in type 2 diabetes.
Collapse
Affiliation(s)
- Saori Morino-Koga
- Department of Molecular Medicine, Global COE Cell Fate Regulation Research and Education Unit, Kumamoto University, Kumamoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
372
|
Penkov DN, Egorov AD, Mozgovaya MN, Tkachuk VA. Insulin resistance and adipogenesis: role of transcription and secreted factors. BIOCHEMISTRY. BIOKHIMIIA 2013; 78:8-18. [PMID: 23379555 DOI: 10.1134/s0006297913010021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Insulin stimulates carbohydrate uptake by cells and induces their conversion into lipids as a more efficient form of energy storage. Insulin resistance is associated with a decrease in glucose uptake by muscle and adipose cells and also with a decrease in glycogen synthesis on retention of glucose synthesis by liver cells. Disorders in the insulin signaling cascade on development of insulin resistance can be caused by both changes in functioning of transcriptional factors and in the secretion profile of hormone-like substances. Diacylglycerols and ceramides responsible for activation of some kinases and phosphatases can directly trigger these changes in muscle and liver cells. In adipose tissue, insulin mainly stimulates adipogenesis (adipocyte differentiation) and lipogenesis (lipid accumulation in the cells). Thus, studies on the action mechanisms of factors influencing adipogenesis can be of help for understanding the molecular mechanisms of insulin resistance.
Collapse
Affiliation(s)
- D N Penkov
- Russian Cardiology Research and Production Center, Moscow, 121552, Russia.
| | | | | | | |
Collapse
|
373
|
Animal models of diabetes mellitus for islet transplantation. EXPERIMENTAL DIABETES RESEARCH 2012; 2012:256707. [PMID: 23346100 PMCID: PMC3546491 DOI: 10.1155/2012/256707] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 12/12/2012] [Indexed: 01/09/2023]
Abstract
Due to current improvements in techniques for islet isolation and transplantation and protocols for immunosuppressants, islet transplantation has become an effective treatment for severe diabetes patients. Many diabetic animal models have contributed to such improvements. In this paper, we focus on 3 types of models with different mechanisms for inducing diabetes mellitus (DM): models induced by drugs including streptozotocin (STZ), pancreatomized models, and spontaneous models due to autoimmunity. STZ-induced diabetes is one of the most commonly used experimental diabetic models and is employed using many specimens including rodents, pigs or monkeys. The management of STZ models is well established for islet studies. Pancreatomized models reveal different aspects compared to STZ-induced models in terms of loss of function in the increase and decrease of blood glucose and therefore are useful for evaluating the condition in total pancreatomized patients. Spontaneous models are useful for preclinical studies including the assessment of immunosuppressants because such models involve the same mechanisms as type 1 DM in the clinical setting. In conclusion, islet researchers should select suitable diabetic animal models according to the aim of the study.
Collapse
|
374
|
Isaac R, Boura-Halfon S, Gurevitch D, Shainskaya A, Levkovitz Y, Zick Y. Selective serotonin reuptake inhibitors (SSRIs) inhibit insulin secretion and action in pancreatic β cells. J Biol Chem 2012; 288:5682-93. [PMID: 23275337 DOI: 10.1074/jbc.m112.408641] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are antidepressants used for the treatment of mood and anxiety disorders. Here, we demonstrate that incubation (2 h) of murine islets or Min6 β cell line with the SSRIs paroxetine, fluoxetine, or sertraline inhibited insulin-induced Tyr phosphorylation of insulin receptor substrate (IRS)-2 protein and the activation of its downstream targets Akt and the ribosomal protein S6 kinase-1 (S6K1). Inhibition was dose-dependent with half-maximal effects at ∼15-20 μM. It correlated with a rapid dephosphorylation and activation of the IRS kinase GSK3β. Introduction of GSK3β siRNAs eliminated the inhibitory effects of the SSRIs. Inhibition of IRS-2 action by 30 μM SSRI was associated with a marked inhibition of glucose-stimulated insulin secretion from murine and human pancreatic islets. Secretion induced by basic secretagogues (KCl and Arg) was not affected by these drugs. Prolonged treatment (16 h) of Min6 cells with sertraline resulted in the induction of inducible nitric oxide synthase; activation of endoplasmic reticulum stress, and the initiation of the unfolded protein response, manifested by enhanced transcription of ATF4 and C/EBP homologous protein. This triggered an apoptotic process, manifested by enhanced caspase 3/7 activity, which resulted in β cell death. These findings implicate SSRIs as inhibitors of IRS protein function and insulin action through the activation of GSK3β. They further suggest that SSRIs inhibit insulin secretion; induce the unfolded protein response; activate an apoptotic process, and trigger β cell death. Given that SSRIs promote insulin resistance while inhibiting insulin secretion, these drugs might accelerate the transition from an insulin-resistant state to overt diabetes.
Collapse
Affiliation(s)
- Roi Isaac
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100 Israel
| | | | | | | | | | | |
Collapse
|
375
|
Sathanoori R, Olde B, Erlinge D, Göransson O, Wierup N. Cocaine- and amphetamine-regulated transcript (CART) protects beta cells against glucotoxicity and increases cell proliferation. J Biol Chem 2012; 288:3208-18. [PMID: 23250745 DOI: 10.1074/jbc.m112.437145] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cocaine- and amphetamine-regulated transcript (CART) is an islet peptide that promotes glucose-stimulated insulin secretion in beta cells via cAMP/PKA-dependent pathways. In addition, CART is a regulator of neuronal survival. In this study, we examined the effect of exogenous CART 55-102 on beta cell viability and dissected its signaling mechanisms. Evaluation of DNA fragmentation and chromatin condensation revealed that CART 55-102 reduced glucotoxicity-induced apoptosis in both INS-1 (832/13) cells and isolated rat islets. Glucotoxicity in INS-1 (832/13) cells also caused a 50% reduction of endogenous CART protein. We show that CART increased proliferation in INS-1 (832/13) cells, an effect that was blocked by PKA, PKB, and MEK1 inhibitors. In addition, CART induced phosphorylation of CREB, IRS, PKB, FoxO1, p44/42 MAPK, and p90RSK in INS-1 (832/13) cells and isolated rat islets, all key mediators of cell survival and proliferation. Thus, we demonstrate that CART 55-102 protects beta cells against glucotoxicity and promotes proliferation. Taken together our data point to the potential use of CART in therapeutic interventions targeted at enhancing functional beta cell mass and long-term insulin secretion in T2D.
Collapse
|
376
|
Spruss A, Henkel J, Kanuri G, Blank D, Püschel GP, Bischoff SC, Bergheim I. Female mice are more susceptible to nonalcoholic fatty liver disease: sex-specific regulation of the hepatic AMP-activated protein kinase-plasminogen activator inhibitor 1 cascade, but not the hepatic endotoxin response. Mol Med 2012; 18:1346-55. [PMID: 22952059 DOI: 10.2119/molmed.2012.00223] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Accepted: 08/28/2012] [Indexed: 12/16/2022] Open
Abstract
As significant differences between sexes were found in the susceptibility to alcoholic liver disease in human and animal models, it was the aim of the present study to investigate whether female mice also are more susceptible to the development of non-alcoholic fatty liver disease (NAFLD). Male and female C57BL/6J mice were fed either water or 30% fructose solution ad libitum for 16 wks. Liver damage was evaluated by histological scoring. Portal endotoxin levels and markers of Kupffer cell activation and insulin resistance, plasminogen activator inhibitor 1 (PAI-1) and phosphorylated adenosine monophosphate-activated protein kinase (pAMPK ) were measured in the liver. Adiponectin mRNA expression was determined in adipose tissue. Hepatic steatosis was almost similar between male and female mice; however, inflammation was markedly more pronounced in livers of female mice. Portal endotoxin levels, hepatic levels of myeloid differentiation primary response gene (88) (MyD88) protein and of 4-hydroxynonenal protein adducts were elevated in animals with NAFLD regardless of sex. Expression of insulin receptor substrate 1 and 2 was decreased to a similar extent in livers of male and female mice with NAFLD. The less pronounced susceptibility to liver damage in male mice was associated with a superinduction of hepatic pAMPK in these mice whereas, in livers of female mice with NAFLD, PAI-1 was markedly induced. Expression of adiponectin in visceral fat was significantly lower in female mice with NAFLD but unchanged in male mice compared with respective controls. In conclusion, our data suggest that the sex-specific differences in the susceptibility to NAFLD are associated with differences in the regulation of the adiponectin-AMPK-PAI-1 signaling cascade.
Collapse
Affiliation(s)
- Astrid Spruss
- Department of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | | | | | | | | | | | | |
Collapse
|
377
|
Chan SH, Chen JH, Li YH, Tsai LM. Gly1057Asp polymorphism of insulin receptor substrate-2 is associated with coronary artery disease in the Taiwanese population. J Biomed Sci 2012; 19:100. [PMID: 23216712 PMCID: PMC3541354 DOI: 10.1186/1423-0127-19-100] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 11/30/2012] [Indexed: 11/19/2022] Open
Abstract
Background Gly1057Asp polymorphism in insulin receptor substrate (IRS)-2 is related to insulin resistance and diabetes mellitus (DM), which both contribute to the pathogenesis of coronary artery disease (CAD). Hence, we hypothesize that Gly1057Asp polymorphism in IRS-2 is associated with CAD. Methods Patients receiving elective coronary angiography were enrolled. Significant stenosis is defined as a luminal diameter stenosis greater than 50%. Patients without significant stenosis were defined as group A, and those with significant stenosis in at least one major coronary artery were defined as group B. Genotypes were determined by polymerase chain reaction/restriction fragment length polymorphism. Chi-square test and multivariate logistic regression were used to evaluate the relationship between Gly1057Asp polymorphism in IRS-2 and CAD. The homeostasis model assessment of insulin resistance (HOMA-IR) index was calculated as a representative of insulin resistance. Multiple linear regression was used to analyze the association between Gly1057Asp polymorphism in IRS-2 and the HOMA-IR index. Results There were 170 patients in group A and 284 patients in group B. The Gly allele frequencies were 54.7% for group A and 60.9% for group B (p = 0.077). The Gly/Gly + Gly/Asp genotype frequency was 74.1% for group A and 84.9% for group B (p = 0.007). After adjustments for conventional risk factors in multivariate logistic regression, the odds ratio for CAD in patients with the Gly/Gly + Gly/Asp genotype was 2.008 [95% confidence interval (95% CI) = 1.210-3.332, p = 0.007], using patients with the Asp/Asp genotype as a reference group. The concurrence of Gly1057Asp polymorphism in IRS-2 with DM is correlated with occurrence of CAD. In multivariate logistic regression, employing non-diabetics with the Asp/Asp genotype as a reference group, the odds ratio for CAD was 1.561 [95% CI = 0.517-4.713, p = 0.430] for diabetics with the Asp/Asp genotype, 1.922 [95% CI = 1.086-3.400, p = 0.025] for non-diabetics with the Gly/Gly + Gly/Asp genotype, and 3.629 [95% CI = 1.820-7.236, p < 0.001] for diabetics with the Gly/Gly + Gly/Asp genotype. There was no association between Gly1057Asp polymorphism in IRS-2 and HOMA-IR index. Conclusion Gly allele at codon 1057 in IRS-2 is correlated with an increased susceptibility to CAD in the Taiwanese population. There is a synergistic effect toward CAD between the pathogenicity of DM and that of the Gly allele.
Collapse
Affiliation(s)
- Shih-Hung Chan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | | | | | | |
Collapse
|
378
|
Mazzoccoli G, Dagostino MP, Fontana A, Grandone E, Favuzzi G, Tiscia G, Margaglione M, de Matthaeis A, Greco A, Vendemiale G. Influence of the Gly1057Asp variant of the insulin receptor substrate 2 (IRS2) on insulin resistance and relationship with epicardial fat thickness in the elderly. Exp Gerontol 2012; 47:988-93. [DOI: 10.1016/j.exger.2012.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 08/29/2012] [Accepted: 09/17/2012] [Indexed: 10/27/2022]
|
379
|
Ye J, Zheng R, Wang Q, Liao L, Ying Y, Lu H, Cianflone K, Ning Q, Luo X. Downregulating SOCS3 with siRNA ameliorates insulin signaling and glucose metabolism in hepatocytes of IUGR rats with catch-up growth. Pediatr Res 2012; 72:550-9. [PMID: 23007031 DOI: 10.1038/pr.2012.123] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Individuals with intrauterine growth retardation (IUGR) who demonstrate a catch-up in body weight are prone to insulin resistance. High expressions of suppressor of cytokine signaling 3 (SOCS3) are thought to aggravate insulin resistance. We hypothesized that downregulating SOCS3 expression via small interfering RNA (siRNA) might have beneficial effects on insulin-resistant hepatocytes of catch-up growth IUGR rats (CG-IUGRs). METHODS An IUGR rat model was employed via maternal nutritional restriction. After evaluating metabolic states of CG-IUGR offspring, effective SOCS3-specific siRNA (siSOCS3) was transfected into cultured hepatocytes using liposomes. mRNA levels of SOCS3, insulin receptor substrates (IRSs), phosphatidylinositol 3-kinase (PI3K), and Akt2, key gluconeogenesis genes, were assessed via real-time PCR. Protein expression and phosphorylation changes were evaluated via western blot. RESULTS CG-IUGR hepatocytes showed increases in SOCS3 and gluconeogenic gene expressions, and decreases in IRS1 and PI3K expressions as compared with controls. After transfecting CG-IUGR hepatocytes with siSOCS3, protein levels of IRS1, PI3K, and phosphorylated Akt2 were higher as compared with those of untransfected CG-IUGR cells. Transcriptional suppression effects of gluconeogenesis genes were more obvious in siSOCS3-treated cells after insulin stimulation. CONCLUSION Additional insights were provided to understand mechanisms of insulin resistance in CG-IUGR rats. Downregulating SOCS3 might improve insulin signaling transduction and ameliorate hepatic glucose metabolism in insulin-resistant CG-IUGR rats in vitro.
Collapse
Affiliation(s)
- Juan Ye
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | | | | | | | |
Collapse
|
380
|
Haghani K, Bakhtiyari S. The Study on the Relationship Between IRS-1 Gly972Arg and IRS-2 Gly1057Asp Polymorphisms and Type 2 Diabetes in the Kurdish Ethnic Group in West Iran. Genet Test Mol Biomarkers 2012; 16:1270-6. [DOI: 10.1089/gtmb.2012.0160] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Karimeh Haghani
- Department of Clinical Biochemistry, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Islamic Republic of Iran
| | - Salar Bakhtiyari
- Department of Clinical Biochemistry, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Islamic Republic of Iran
| |
Collapse
|
381
|
Ma Y, Kong Q, Hua H, Luo T, Jiang Y. Aflatoxin B1 up-regulates insulin receptor substrate 2 and stimulates hepatoma cell migration. PLoS One 2012; 7:e47961. [PMID: 23112878 PMCID: PMC3480444 DOI: 10.1371/journal.pone.0047961] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2012] [Accepted: 09/19/2012] [Indexed: 02/05/2023] Open
Abstract
Aflatoxin B1 (AFB1) is a potent carcinogen that can induce hepatocellular carcinoma. AFB1-8,9-exo-epoxide, one of AFB1 metabolites, acts as a mutagen to react with DNA and induce gene mutations, including the tumor suppressor p53. In addition, AFB1 reportedly stimulates IGF receptor activation. Aberrant activation of IGF-I receptor (IGF-IR) signaling is tightly associated with various types of human tumors. In the current study, we investigated the effects of AFB1 on key elements in IGF-IR signaling pathway, and the effects of AFB1 on hepatoma cell migration. The results demonstrated that AFB1 induced IGF-IR, Akt, and Erk1/2 phosphorylation in hepatoma cell lines HepG2 and SMMC-7721, and an immortalized human liver cell line Chang liver. AFB1 also down-regulated insulin receptor substrate (IRS) 1 but paradoxically up-regulated IRS2 through preventing proteasomal degradation. Treatment of hepatoma cells and Chang liver cells with IGF-IR inhibitor abrogated AFB1-induced Akt and Erk1/2 phosphorylation. In addition, IRS2 knockdown suppressed AFB1-induced Akt and Erk1/2 phosphorylation. Finally, AFB1 stimulated hepatoma cell migration. IGF-IR inhibitor or IRS2 knockdown suppressed AFB1-induced hepatoma cell migration. These data demonstrate that AFB1 stimulates hepatoma cell migration through IGF-IR/IRS2 axis.
Collapse
Affiliation(s)
- Yanli Ma
- State Key Laboratory of Biotherapy, Section of Signal Transduction and Molecular Targeted Therapy, West China Hospital, Sichuan University, Chengdu, China
| | - Qingbin Kong
- State Key Laboratory of Biotherapy, Section of Signal Transduction and Molecular Targeted Therapy, West China Hospital, Sichuan University, Chengdu, China
| | - Hui Hua
- State Key Laboratory of Biotherapy, Section of Signal Transduction and Molecular Targeted Therapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ting Luo
- Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yangfu Jiang
- State Key Laboratory of Biotherapy, Section of Signal Transduction and Molecular Targeted Therapy, West China Hospital, Sichuan University, Chengdu, China
- * E-mail:
| |
Collapse
|
382
|
Olson AL. Regulation of GLUT4 and Insulin-Dependent Glucose Flux. ISRN MOLECULAR BIOLOGY 2012; 2012:856987. [PMID: 27335671 PMCID: PMC4890881 DOI: 10.5402/2012/856987] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Accepted: 09/24/2012] [Indexed: 12/21/2022]
Abstract
GLUT4 has long been known to be an insulin responsive glucose transporter. Regulation of GLUT4 has been a major focus of research on the cause and prevention of type 2 diabetes. Understanding how insulin signaling alters the intracellular trafficking of GLUT4 as well as understanding the fate of glucose transported into the cell by GLUT4 will be critically important for seeking solutions to the current rise in diabetes and metabolic disease.
Collapse
Affiliation(s)
- Ann Louise Olson
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, P.O. Box 26901, BMSB 964, Oklahoma City, OK 73190, USA
| |
Collapse
|
383
|
Hong SW, Lee J, Park SE, Rhee EJ, Park CY, Oh KW, Park SW, Lee WY. Repression of sterol regulatory element-binding protein 1-c is involved in the protective effects of exendin-4 in pancreatic β-cell line. Mol Cell Endocrinol 2012; 362:242-52. [PMID: 22820130 DOI: 10.1016/j.mce.2012.07.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 06/06/2012] [Accepted: 07/10/2012] [Indexed: 02/07/2023]
Abstract
Exendin-4 (Ex-4), a long-acting agonist of glucagon-like peptide-1 receptor, is a novel anti-diabetic drug that prevents β-cells against various toxicities. However, the mechanism and molecules mediating the protection procession of Ex-4 are not fully understood. We investigated the protective effect of Ex-4 against lipotoxicity, mediated by a repression of sterol regulatory element-binding protein (SREBP)-1c, a regulator of genes expression involved in fat and cholesterol synthesis. To observe the effect of Ex-4, we evaluated glucose-stimulated insulin secretion (GSIS) and apoptosis in the MIN6 pancreatic β-cell line, which were cultured in DMEM medium containing 500 μM palmitate, with or without 10 nM Ex-4. We also examined the roles of SREBP-1c in lipotoxicity model by knockdown with si-RNA. Treatment with Ex-4 improved insulin secretion and survival as well as reduced SREBP-1c expression and activity in palmitate-treated MIN6 cells. This improvement was accompanied with an upregulation of PI3K/Akt signaling pathway, and LY294.002, a specific inhibitor of PI3 kinase, abrogated effects of Ex-4 on insulin secretion. Moreover, SREBP-1c in nuclei was increased by the inhibition of PI3 kinase. Lipotoxic effects of palmitate in the insulin secretion and apoptosis were significantly prevented by SREBP-1 knockdown. In conclusion, Ex-4 protects β-cell against palmitate-induced β-cell dysfunction and apoptosis, by inhibiting SREBP-1c expression and activity through the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Seok-Woo Hong
- Institute of Medical Research, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
384
|
Shimizu S, Hosooka T, Matsuda T, Asahara SI, Koyanagi-Kimura M, Kanno A, Bartolome A, Etoh H, Fuchita M, Teruyama K, Takahashi H, Inoue H, Mieda Y, Hashimoto N, Seino S, Kido Y. DPP4 inhibitor vildagliptin preserves β-cell mass through amelioration of endoplasmic reticulum stress in C/EBPB transgenic mice. J Mol Endocrinol 2012; 49:125-35. [PMID: 22822047 DOI: 10.1530/jme-12-0039] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The development of type 2 diabetes is accompanied by a progressive decline in β-cell mass and function. Vildagliptin, a dipeptidyl peptidase 4 inhibitor, is representative of a new class of antidiabetic agents that act through increasing the expression of glucagon-like peptide-1. The protective effect of this agent on β cells was studied in diabetic mice. Diabetic pancreatic β cell-specific C/EBPB transgenic (TG) mice exhibit decreased β-cell mass associated with increased apoptosis, decreased proliferation, and aggravated endoplasmic reticulum (ER) stress. Vildagliptin was orally administered to the TG mice for a period of 24 weeks, and the protective effects of this agent on β cells were examined, along with the potential molecular mechanism of protection. Vildagliptin ameliorated hyperglycemia in TG mice by increasing the serum concentration of insulin and decreasing the serum concentration of glucagon. This agent also markedly increased β-cell mass, improved aggravated ER stress, and restored attenuated insulin/IGF1 signaling. A decrease in pancreatic and duodenal homeobox 1 expression was also observed in β cells isolated from our mouse model, but this was also restored by vildagliptin treatment. The expression of C/EBPB protein, but not mRNA, was unexpectedly downregulated in vildagliptin-treated TG mice and in exenatide-treated MIN6 cells. Activation of the GLP1 pathway induced proteasome-dependent C/EBPB degradation in β cells as the proteasome inhibitor MG132 restored the downregulation of C/EBPB protein by exenatide. Vildagliptin elicits protective effects on pancreatic β cells, possibly through C/EBPB degradation, and has potential for preventing the progression of type 2 diabetes.
Collapse
Affiliation(s)
- Shinobu Shimizu
- Division of Medical Chemistry, Department of Biophysics Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Health Sciences, Kobe 654-0142, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
385
|
Goldfine AB, Kulkarni RN. Modulation of β-cell function: a translational journey from the bench to the bedside. Diabetes Obes Metab 2012; 14 Suppl 3:152-60. [PMID: 22928576 DOI: 10.1111/j.1463-1326.2012.01647.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Both decreased insulin secretion and action contribute to the pathogenesis of type 2 diabetes (T2D) in humans. The insulin receptor and insulin signalling proteins are present in the rodent and human β-cell and modulate cell growth and function. Insulin receptors and insulin signalling proteins in β-cells are critical for compensatory islet growth in response to insulin resistance. Rodents with tissue-specific knockout of the insulin receptor in the β-cell (βIRKO) show reduced first-phase glucose-stimulated insulin secretion (GSIS) and with aging develop glucose intolerance and diabetes, phenotypically similar to the process seen in human T2D. Expression of multiple insulin signalling proteins is reduced in islets of patients with T2D. Insulin potentiates GSIS in isolated human β-cells. Recent studies in humans in vivo show that pre-exposure to insulin increases GSIS, and this effect is diminished in persons with insulin resistance or T2D. β-Cell function correlates to whole-body insulin sensitivity. Together, these findings suggest that pancreatic β-cell dysfunction could be caused by a defect in insulin signalling within β-cell, and β-cell insulin resistance may lead to a loss of β-cell function and/or mass, contributing to the pathophysiology of T2D.
Collapse
Affiliation(s)
- A B Goldfine
- Section of Clinical Research, Joslin Diabetes Center, Boston, MA 02215, USA.
| | | |
Collapse
|
386
|
Liu B, Barbosa-Sampaio H, Jones PM, Persaud SJ, Muller DS. The CaMK4/CREB/IRS-2 cascade stimulates proliferation and inhibits apoptosis of β-cells. PLoS One 2012; 7:e45711. [PMID: 23049845 PMCID: PMC3458088 DOI: 10.1371/journal.pone.0045711] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 08/23/2012] [Indexed: 01/09/2023] Open
Abstract
Progressive reduction in β-cell mass is responsible for the development of type 2 diabetes mellitus, and alteration in insulin receptor substrate 2 (IRS-2) abundance plays a critical role in this process. IRS-2 expression is stimulated by the transcription factor cAMP response element-binding protein (CREB) and we recently demonstrated that Ca2+/calmodulin dependent kinase 4 (CaMK4) is upstream of CREB activation in β-cells. This study investigated whether CaMK4 is also a potential target to increase β-cell mass through CREB-mediated IRS-2 expression, by quantifying mouse MIN6 β-cell proliferation and apoptosis following IRS-2 knockdown, CaMKs inhibition and alterations in CaMK4 and CREB expression. Expression of constitutively active CaMK4 (ΔCaMK4) and CREB (CREBDIEDLM) significantly stimulated β-cell proliferation and survival. In contrast, expression of their corresponding dominant negative forms (ΔK75ECaMK4 and CREBM1) and silencing of IRS-2 increased apoptosis and reduced β-cell division. Moreover, CREBDIEDLM and CREBM1 expression completely abolished the effects of ΔK75ECaMK4 and of ΔCaMK4, respectively. Our results indicate that CaMK4 regulates β-cell proliferation and apoptosis in a CREB-dependent manner and that CaMK4-induced IRS-2 expression is important in these processes.
Collapse
Affiliation(s)
- Bo Liu
- Diabetes Research Group, School of Medicine, Division of Diabetes & Nutritional Sciences, King’s College London, London, United Kingdom
| | - Helena Barbosa-Sampaio
- Diabetes Research Group, School of Medicine, Division of Diabetes & Nutritional Sciences, King’s College London, London, United Kingdom
| | - Peter M. Jones
- Diabetes Research Group, School of Medicine, Division of Diabetes & Nutritional Sciences, King’s College London, London, United Kingdom
| | - Shanta J. Persaud
- Diabetes Research Group, School of Medicine, Division of Diabetes & Nutritional Sciences, King’s College London, London, United Kingdom
- * E-mail:
| | - Dany S. Muller
- Diabetes Research Group, School of Medicine, Division of Diabetes & Nutritional Sciences, King’s College London, London, United Kingdom
| |
Collapse
|
387
|
Chenoweth DM, Meier JL, Dervan PB. Pyrrole-imidazole polyamides distinguish between double-helical DNA and RNA. Angew Chem Int Ed Engl 2012; 52:415-8. [PMID: 22987334 DOI: 10.1002/anie.201205775] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Indexed: 12/14/2022]
Abstract
Groove specificity: pyrrole-imidazole polyamides are well-known for their specific interactions with the minor groove of DNA. However, polyamides do not show similar binding to duplex RNA, and a structural rationale for the molecular-level discrimination of nucleic acid duplexes by minor-groove-binding ligands is presented.
Collapse
Affiliation(s)
- David M Chenoweth
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, 91125, USA
| | | | | |
Collapse
|
388
|
Chenoweth DM, Meier JL, Dervan PB. Pyrrole-Imidazole Polyamides Distinguish Between Double-Helical DNA and RNA. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201205775] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
389
|
Kulkarni RN, Mizrachi EB, Ocana AG, Stewart AF. Human β-cell proliferation and intracellular signaling: driving in the dark without a road map. Diabetes 2012; 61:2205-13. [PMID: 22751699 PMCID: PMC3425429 DOI: 10.2337/db12-0018] [Citation(s) in RCA: 192] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A major goal in diabetes research is to find ways to enhance the mass and function of insulin secreting β-cells in the endocrine pancreas to prevent and/or delay the onset or even reverse overt diabetes. In this Perspectives in Diabetes article, we highlight the contrast between the relatively large body of information that is available in regard to signaling pathways, proteins, and mechanisms that together provide a road map for efforts to regenerate β-cells in rodents versus the scant information in human β-cells. To reverse the state of ignorance regarding human β-cell signaling, we suggest a series of questions for consideration by the scientific community to construct a human β-cell proliferation road map. The hope is that the knowledge from the new studies will allow the community to move faster towards developing therapeutic approaches to enhance human β-cell mass in the long-term goal of preventing and/or curing type 1 and type 2 diabetes.
Collapse
Affiliation(s)
- Rohit N. Kulkarni
- Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Corresponding authors: Rohit N. Kulkarni, , and Andrew F. Stewart,
| | - Ernesto-Bernal Mizrachi
- Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, Michigan
| | - Adolfo Garcia Ocana
- Division of Endocrinology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Andrew F. Stewart
- Division of Endocrinology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Corresponding authors: Rohit N. Kulkarni, , and Andrew F. Stewart,
| |
Collapse
|
390
|
Scott RA, Lagou V, Welch RP, Wheeler E, Montasser ME, Luan J, Mägi R, Strawbridge RJ, Rehnberg E, Gustafsson S, Kanoni S, Rasmussen-Torvik LJ, Yengo L, Lecoeur C, Shungin D, Sanna S, Sidore C, Johnson PCD, Jukema JW, Johnson T, Mahajan A, Verweij N, Thorleifsson G, Hottenga JJ, Shah S, Smith AV, Sennblad B, Gieger C, Salo P, Perola M, Timpson NJ, Evans DM, Pourcain BS, Wu Y, Andrews JS, Hui J, Bielak LF, Zhao W, Horikoshi M, Navarro P, Isaacs A, O'Connell JR, Stirrups K, Vitart V, Hayward C, Esko T, Mihailov E, Fraser RM, Fall T, Voight BF, Raychaudhuri S, Chen H, Lindgren CM, Morris AP, Rayner NW, Robertson N, Rybin D, Liu CT, Beckmann JS, Willems SM, Chines PS, Jackson AU, Kang HM, Stringham HM, Song K, Tanaka T, Peden JF, Goel A, Hicks AA, An P, Müller-Nurasyid M, Franco-Cereceda A, Folkersen L, Marullo L, Jansen H, Oldehinkel AJ, Bruinenberg M, Pankow JS, North KE, Forouhi NG, Loos RJF, Edkins S, Varga TV, Hallmans G, Oksa H, Antonella M, Nagaraja R, Trompet S, Ford I, Bakker SJL, Kong A, Kumari M, Gigante B, Herder C, Munroe PB, Caulfield M, Antti J, Mangino M, Small K, Miljkovic I, et alScott RA, Lagou V, Welch RP, Wheeler E, Montasser ME, Luan J, Mägi R, Strawbridge RJ, Rehnberg E, Gustafsson S, Kanoni S, Rasmussen-Torvik LJ, Yengo L, Lecoeur C, Shungin D, Sanna S, Sidore C, Johnson PCD, Jukema JW, Johnson T, Mahajan A, Verweij N, Thorleifsson G, Hottenga JJ, Shah S, Smith AV, Sennblad B, Gieger C, Salo P, Perola M, Timpson NJ, Evans DM, Pourcain BS, Wu Y, Andrews JS, Hui J, Bielak LF, Zhao W, Horikoshi M, Navarro P, Isaacs A, O'Connell JR, Stirrups K, Vitart V, Hayward C, Esko T, Mihailov E, Fraser RM, Fall T, Voight BF, Raychaudhuri S, Chen H, Lindgren CM, Morris AP, Rayner NW, Robertson N, Rybin D, Liu CT, Beckmann JS, Willems SM, Chines PS, Jackson AU, Kang HM, Stringham HM, Song K, Tanaka T, Peden JF, Goel A, Hicks AA, An P, Müller-Nurasyid M, Franco-Cereceda A, Folkersen L, Marullo L, Jansen H, Oldehinkel AJ, Bruinenberg M, Pankow JS, North KE, Forouhi NG, Loos RJF, Edkins S, Varga TV, Hallmans G, Oksa H, Antonella M, Nagaraja R, Trompet S, Ford I, Bakker SJL, Kong A, Kumari M, Gigante B, Herder C, Munroe PB, Caulfield M, Antti J, Mangino M, Small K, Miljkovic I, Liu Y, Atalay M, Kiess W, James AL, Rivadeneira F, Uitterlinden AG, Palmer CNA, Doney ASF, Willemsen G, Smit JH, Campbell S, Polasek O, Bonnycastle LL, Hercberg S, Dimitriou M, Bolton JL, Fowkes GR, Kovacs P, Lindström J, Zemunik T, Bandinelli S, Wild SH, Basart HV, Rathmann W, Grallert H, Maerz W, Kleber ME, Boehm BO, Peters A, Pramstaller PP, Province MA, Borecki IB, Hastie ND, Rudan I, Campbell H, Watkins H, Farrall M, Stumvoll M, Ferrucci L, Waterworth DM, Bergman RN, Collins FS, Tuomilehto J, Watanabe RM, de Geus EJC, Penninx BW, Hofman A, Oostra BA, Psaty BM, Vollenweider P, Wilson JF, Wright AF, Hovingh GK, Metspalu A, Uusitupa M, Magnusson PKE, Kyvik KO, Kaprio J, Price JF, Dedoussis GV, Deloukas P, Meneton P, Lind L, Boehnke M, Shuldiner AR, van Duijn CM, Morris AD, Toenjes A, Peyser PA, Beilby JP, Körner A, Kuusisto J, Laakso M, Bornstein SR, Schwarz PEH, Lakka TA, Rauramaa R, Adair LS, Smith GD, Spector TD, Illig T, de Faire U, Hamsten A, Gudnason V, Kivimaki M, Hingorani A, Keinanen-Kiukaanniemi SM, Saaristo TE, Boomsma DI, Stefansson K, van der Harst P, Dupuis J, Pedersen NL, Sattar N, Harris TB, Cucca F, Ripatti S, Salomaa V, Mohlke KL, Balkau B, Froguel P, Pouta A, Jarvelin MR, Wareham NJ, Bouatia-Naji N, McCarthy MI, Franks PW, Meigs JB, Teslovich TM, Florez JC, Langenberg C, Ingelsson E, Prokopenko I, Barroso I. Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways. Nat Genet 2012; 44:991-1005. [PMID: 22885924 PMCID: PMC3433394 DOI: 10.1038/ng.2385] [Show More Authors] [Citation(s) in RCA: 654] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 07/20/2012] [Indexed: 12/16/2022]
Abstract
Through genome-wide association meta-analyses of up to 133,010 individuals of European ancestry without diabetes, including individuals newly genotyped using the Metabochip, we have increased the number of confirmed loci influencing glycemic traits to 53, of which 33 also increase type 2 diabetes risk (q < 0.05). Loci influencing fasting insulin concentration showed association with lipid levels and fat distribution, suggesting impact on insulin resistance. Gene-based analyses identified further biologically plausible loci, suggesting that additional loci beyond those reaching genome-wide significance are likely to represent real associations. This conclusion is supported by an excess of directionally consistent and nominally significant signals between discovery and follow-up studies. Functional analysis of these newly discovered loci will further improve our understanding of glycemic control.
Collapse
Affiliation(s)
- Robert A Scott
- Medical Research Council Epidemiology Unit, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
391
|
Rosuvastatin may Modulate Insulin Signaling and Inhibit Atherogenesis Beyond its Plasma Cholesterol-Lowering Effect in Insulin-Resistant Mice. Cardiovasc Drugs Ther 2012; 26:375-82. [DOI: 10.1007/s10557-012-6406-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
392
|
Huang L, Kirschke CP, Lay YAE, Levy LB, Lamirande DE, Zhang PH. Znt7-null mice are more susceptible to diet-induced glucose intolerance and insulin resistance. J Biol Chem 2012; 287:33883-96. [PMID: 22854958 DOI: 10.1074/jbc.m111.309666] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Znt7 gene encodes a ubiquitously expressed zinc transporter that is involved in transporting cytoplasmic zinc into the Golgi apparatus and a ZnT7-containing vesicular compartment. Overexpression of ZnT7 in the pancreatic β-cell stimulates insulin synthesis and secretion through regulation of insulin gene transcription. In this study, we demonstrate that ZnT7 is expressed in the mouse skeletal muscle. The activity of the insulin signaling pathway was down-regulated in myocytes isolated from the femoral muscle of Znt7 knock-out (KO) mice. High fat diet consumption (45% kcal) induced weight gain in male Znt7 KO mice but not female Znt7 KO mice. Male Znt7 KO mice fed the high fat diet at 5 weeks of age for 10 weeks exhibited hyperglycemia in the non-fasting state. Oral glucose tolerance tests revealed that male Znt7 KO mice fed the high fat diet had severe glucose intolerance. Insulin tolerance tests showed that male Znt7 KO mice were insulin-resistant. Diet-induced insulin resistance in male Znt7 KO mice was paralleled by a reduction in mRNA expression of Insr, Irs2, and Akt1 in the primary skeletal myotubes isolated from the KO mice. Overexpression of ZnT7 in a rat skeletal muscle cell line (L6) increased Irs2 mRNA expression, Irs2 and Akt phosphorylation, and glucose uptake. We conclude that a combination of decreased insulin secretion and increased insulin resistance accounts for the glucose intolerance observed in Znt7 KO mice.
Collapse
Affiliation(s)
- Liping Huang
- United States Department of Agriculture/Agricultural Research Service/Western Human Nutrition Research Center, Obesity and Metabolism Research Unit, Davis, California 95616, USA.
| | | | | | | | | | | |
Collapse
|
393
|
Johnston-Cox H, Koupenova M, Yang D, Corkey B, Gokce N, Farb MG, LeBrasseur N, Ravid K. The A2b adenosine receptor modulates glucose homeostasis and obesity. PLoS One 2012; 7:e40584. [PMID: 22848385 PMCID: PMC3405065 DOI: 10.1371/journal.pone.0040584] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 06/09/2012] [Indexed: 02/06/2023] Open
Abstract
Background High fat diet and its induced changes in glucose homeostasis, inflammation and obesity continue to be an epidemic in developed countries. The A2b adenosine receptor (A2bAR) is known to regulate inflammation. We used a diet-induced obesity murine knockout model to investigate the role of this receptor in mediating metabolic homeostasis, and correlated our findings in obese patient samples. Methodology/Principal Findings Administration of high fat, high cholesterol diet (HFD) for sixteen weeks vastly upregulated the expression of the A2bAR in control mice, while A2bAR knockout (KO) mice under this diet developed greater obesity and hallmarks of type 2 diabetes (T2D), assessed by delayed glucose clearance and augmented insulin levels compared to matching control mice. We identified a novel link between the expression of A2bAR, insulin receptor substrate 2 (IRS-2), and insulin signaling, determined by Western blotting for IRS-2 and tissue Akt phosphorylation. The latter is impaired in tissues of A2bAR KO mice, along with a greater inflammatory state. Additional mechanisms involved include A2bAR regulation of SREBP-1 expression, a repressor of IRS-2. Importantly, pharmacological activation of the A2bAR by injection of the A2bAR ligand BAY 60-6583 for four weeks post HFD restores IRS-2 levels, and ameliorates T2D. Finally, in obese human subjects A2bAR expression correlates strongly with IRS-2 expression. Conclusions/Significance Our study identified the A2bAR as a significant regulator of HFD-induced hallmarks of T2D, thereby pointing to its therapeutic potential.
Collapse
Affiliation(s)
- Hillary Johnston-Cox
- Departments of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Milka Koupenova
- Departments of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Dan Yang
- Departments of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Barbara Corkey
- Departments of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Evans Center for Interdisciplinary Biomedical Research, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Noyan Gokce
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Evans Center for Interdisciplinary Biomedical Research, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Melissa G. Farb
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Evans Center for Interdisciplinary Biomedical Research, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Nathan LeBrasseur
- Departments of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Katya Ravid
- Departments of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Evans Center for Interdisciplinary Biomedical Research, Boston University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
394
|
Luzina IG, Keegan AD, Heller NM, Rook GAW, Shea-Donohue T, Atamas SP. Regulation of inflammation by interleukin-4: a review of "alternatives". J Leukoc Biol 2012; 92:753-64. [PMID: 22782966 DOI: 10.1189/jlb.0412214] [Citation(s) in RCA: 261] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Studies of IL-4 have revealed a wealth of information on the diverse roles of this cytokine in homeostatic regulation and disease pathogenesis. Recent data suggest that instead of simple linear regulatory pathways, IL-4 drives regulation that is full of alternatives. In addition to the well-known dichotomous regulation of Th cell differentiation by IL-4, this cytokine is engaged in several other alternative pathways. Its own production involves alternative mRNA splicing, yielding at least two functional isoforms: full-length IL-4, encoded by the IL-4 gene exons 1-4, and IL-4δ2, encoded by exons 1, 3, and 4. The functional effects of these two isoforms are in some ways similar but in other ways quite distinct. When binding to the surface of target cells, IL-4 may differentially engage two different types of receptors. By acting on macrophages, a cell type critically involved in inflammation, IL-4 induces the so-called alternative macrophage activation. In this review, recent advances in understanding these three IL-4-related branch points--alternative splicing of IL-4, differential receptor engagement by IL-4, and differential regulation of macrophage activation by IL-4--are summarized in light of their contributions to inflammation.
Collapse
Affiliation(s)
- Irina G Luzina
- University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | | | |
Collapse
|
395
|
Pulla VK, Battu MB, Alvala M, Sriram D, Yogeeswari P. Can targeting SIRT-1 to treat type 2 diabetes be a good strategy? A review. Expert Opin Ther Targets 2012; 16:819-32. [PMID: 22762724 DOI: 10.1517/14728222.2012.703656] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Dysregulation of metabolic pathways, caused by imbalances in energy homeostasis, leads to type 2 diabetes characterized by high glucose concentration in the blood due to insulin resistance which is a major disorder in developed countries. AREAS COVERED One of the recent treatment strategies is using activators of SIRT1, which has been in clinical trials. Many of the cellular processes including insulin secretion, cell cycle, and apoptosis are imperatively regulated by a family of mediators called sirtuins. First known mammalian sirtuin, SIRT1 is a positive regulator of insulin secretion, which triggers glucose uptake and utilization. Since the past decade, a major outstanding question is whether SIRT1 activation is a safe therapy for human diseases such as type 2 diabetes? This review summarizes and discusses the advances of the past decade and the challenges that will brazen out perplexity about homeostasis and metabolic pathways linked to SIRT1 and type 2 diabetes. Furthermore, we described the interlink between SIRT1 metabolic pathways of various tissues such as pancreas, skeletal muscle, adipose tissue and liver. EXPERT OPINION However be the complexity of the pathways involved, T2DM regulated by SIRT1 affected metabolism is dropping down progressively due to profound research. In the context of interlinking all the SIRT1 pathways in T2DM we found various crucial intermediaries in metabolic tissues, which can also be targeted for future prospects.
Collapse
Affiliation(s)
- Venkat Koushik Pulla
- Birla Institute of Technology & Science- Pilani, Hyderabad Campus, Department of Pharmacy, Drug Discovery Research Laboratory, R.R. District-500078, Andhra Pradesh, India
| | | | | | | | | |
Collapse
|
396
|
Analysis of Codon 972 (Gly → Arg) Polymorphism in IRS-1 Gene in Type 2 Diabetic Population. J Med Biochem 2012. [DOI: 10.2478/v10011-012-0007-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Analysis of Codon 972 (Gly → Arg) Polymorphism in IRS-1 Gene in Type 2 Diabetic PopulationPolymorphism of Insulin Receptor Substrate-1, especially the GGG→AGG (Gly-Arg) substitution at codon 972, is one of the major factors leading to the development of type 2 diabetes mellitus. This defect in IRS-1 causes insulin resistance along with many other consequences. It generally impairs insulin signalling via the phosphadylinositol-3 (PI3)-Kinase pathway. In this study, the heterozygous Gly→Arg substitution at codon 972 of the IRS-1 gene was found in 2 of the 43 control Indian subjects, which is higher than normal when compared with the other population. The prevalence of the codon 972 GGG→AGG substitutions was found to be around 4.6%, which may be due to a predisposition factor. In diabetic subjects, on the other hand, 5 out of 43 showed substitution at codon 972, with a percent prevalence of 14%, establishing the role of the polymorphism of IRS-1 codon in the prevalence of diabetes mellitus.
Collapse
|
397
|
Boller S, Joblin BA, Xu L, Item F, Trüb T, Boschetti N, Spinas GA, Niessen M. From signal transduction to signal interpretation: an alternative model for the molecular function of insulin receptor substrates. Arch Physiol Biochem 2012; 118:148-55. [PMID: 22515179 DOI: 10.3109/13813455.2012.671333] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The insulin receptor (IR) recruits adaptor proteins, so-called insulin receptor substrates (IRS), to connect with downstream signalling pathways. A family of IRS proteins was defined based on three major common structural elements: Amino-terminal PH and PTB domains that mediate protein-lipid or protein-protein interactions, mostly carboxy-terminal multiple tyrosine residues that serve as binding sites for proteins that contain one or more SH2 domains and serine/threonine-rich regions which may be recognized by negative regulators of insulin action. The current model for the role of IRS proteins therefore combines an adaptor function with the integration of mostly negative input from other signal transduction cascades allowing for modulation of signalling amplitude. In this review we propose an extended version of the adaptor model that can explain how signalling specificity could be implemented at the level of IRS proteins.
Collapse
Affiliation(s)
- Simone Boller
- Endocrinology, Diabetes and Clinical Nutrition, University Hospital of Zurich, 8091 Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
398
|
Stagakis I, Bertsias G, Karvounaris S, Kavousanaki M, Virla D, Raptopoulou A, Kardassis D, Boumpas DT, Sidiropoulos PI. Anti-tumor necrosis factor therapy improves insulin resistance, beta cell function and insulin signaling in active rheumatoid arthritis patients with high insulin resistance. Arthritis Res Ther 2012; 14:R141. [PMID: 22691241 PMCID: PMC3446524 DOI: 10.1186/ar3874] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 03/04/2012] [Accepted: 06/12/2012] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Prevalence of insulin resistance and the metabolic syndrome has been reported to be high in rheumatoid arthritis (RA) patients. Tumor necrosis factor (TNF), a pro-inflammatory cytokine with a major pathogenetic role in RA, may promote insulin resistance by inducing Ser312 phosphorylation (p-Ser312) of insulin receptor substrate (IRS)-1 and downregulating phosphorylated (p-)AKT. We examined whether anti-TNF therapy improves insulin resistance in RA patients and assessed changes in the insulin signaling cascade. METHODS Prospective study of RA patients receiving anti-TNF agents (infliximab, n = 49, adalimumab, n = 11, or etanercept, n = 1) due to high disease activity score in 28 joints (DAS28 > 5.1). A complete biochemical profile was obtained at weeks 0 and 12 of treatment. Insulin resistance, insulin sensitivity and pancreatic beta cell function were measured by the Homeostasis Model Assessment (HOMA-IR), the Quantitative Insulin Sensitivity Check Index (QUICKI) and the HOMA-B respectively. Protein extracts from peripheral blood mononuclear cells were assayed by western blot for p-Ser312 IRS-1 and p-AKT. RA patients treated with abatacept (CTLA4.Ig) were used as a control group for insulin signaling studies. RESULTS At study entry, RA patients with high insulin resistance (HOMA-IR above median) had significantly higher mean DAS28 (P = 0.011), serum triglycerides (P = 0.015), and systolic blood pressure levels (P = 0.024) than patients with low insulin resistance. After 12 weeks of anti-TNF therapy, patients with high insulin resistance demonstrated significant reduction in HOMA-IR (P < 0.001), HOMA-B (P = 0.001), serum triglycerides (P = 0.039), and increase in QUICKI (P < 0.001) and serum HDL-C (P = 0.022). Western blot analysis in seven active RA patients with high insulin resistance showed reduction in p-Ser312 IRS-1 (P = 0.043) and increase in p-AKT (P = 0.001) over the study period. In contrast, the effect of CTLA4.Ig on p-Ser312 IRS-1 and p-AKT levels was variable. CONCLUSIONS Anti-TNF therapy improved insulin sensitivity and reversed defects in the insulin signaling cascade in RA patients with active disease and high insulin resistance. The impact of these biochemical changes in modifying cardiovascular disease burden in active RA patients remains to be seen.
Collapse
Affiliation(s)
- Ilias Stagakis
- Rheumatology, Clinical Immunology and Allergy, University of Crete, Medical School, Voutes 1, Heraklion, 71003, Greece
- Department of Internal Medicine, University of Crete, Medical School, Voutes 1, Heraklion, 71003, Greece
| | - George Bertsias
- Rheumatology, Clinical Immunology and Allergy, University of Crete, Medical School, Voutes 1, Heraklion, 71003, Greece
- Department of Internal Medicine, University of Crete, Medical School, Voutes 1, Heraklion, 71003, Greece
| | - Stylianos Karvounaris
- Rheumatology, Clinical Immunology and Allergy, University of Crete, Medical School, Voutes 1, Heraklion, 71003, Greece
| | - Melina Kavousanaki
- Rheumatology, Clinical Immunology and Allergy, University of Crete, Medical School, Voutes 1, Heraklion, 71003, Greece
| | - Dimitra Virla
- Department of Basic Sciences, University of Crete Medical School, Voutes 1, Heraklion, 71003, Greece
| | - Amalia Raptopoulou
- Rheumatology, Clinical Immunology and Allergy, University of Crete, Medical School, Voutes 1, Heraklion, 71003, Greece
| | - Dimitrios Kardassis
- Department of Basic Sciences, University of Crete Medical School, Voutes 1, Heraklion, 71003, Greece
- Developmental & Functional Biology, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Nikolaou Plastira 100, Heraklion, 70013, Greece
| | - Dimitrios T Boumpas
- Rheumatology, Clinical Immunology and Allergy, University of Crete, Medical School, Voutes 1, Heraklion, 71003, Greece
- Department of Internal Medicine, University of Crete, Medical School, Voutes 1, Heraklion, 71003, Greece
- Developmental & Functional Biology, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Nikolaou Plastira 100, Heraklion, 70013, Greece
| | - Prodromos I Sidiropoulos
- Rheumatology, Clinical Immunology and Allergy, University of Crete, Medical School, Voutes 1, Heraklion, 71003, Greece
| |
Collapse
|
399
|
Nakamura A, Togashi Y, Orime K, Sato K, Shirakawa J, Ohsugi M, Kubota N, Kadowaki T, Terauchi Y. Control of beta cell function and proliferation in mice stimulated by small-molecule glucokinase activator under various conditions. Diabetologia 2012; 55:1745-54. [PMID: 22456697 DOI: 10.1007/s00125-012-2521-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 02/20/2012] [Indexed: 12/15/2022]
Abstract
AIMS/HYPOTHESIS We investigated changes in the expression of genes involved in beta cell function and proliferation in mouse islets stimulated with glucokinase activator (GKA) in order to elucidate the mechanisms by which GKA stimulates beta cell function and proliferation. METHODS Islets isolated from mice were used to investigate changes in the expression of genes related to beta cell function and proliferation stimulated by GKA. In addition, Irs2 knockout (Irs2 (-/-)) mice on a high-fat diet or a high-fat diet containing GKA were used to investigate the effects of GKA on beta cell proliferation in vivo. RESULTS In wild-type mice, Irs2 and Pdx1 expression was increased by GKA. In Irs2 (-/-) mice, GKA administration increased the glucose-stimulated secretion of insulin and Pdx1 expression, but not beta cell proliferation. It was particularly noteworthy that oxidative stress inhibited the upregulation of the Irs2 and Pdx1 genes induced by GKA. Moreover, whereas neither GKA alone nor exendin-4 alone upregulated the expression of Irs2 and Pdx1 in the islets of db/db mice, prior administration of exendin-4 to the mice caused GKA to increase the expression of these genes. CONCLUSIONS/INTERPRETATION GKA-stimulated IRS2 production affected beta cell proliferation but not beta cell function. Oxidative stress diminished the effects of GKA on the changes in expression of genes involved in beta cell function and proliferation. A combination of GKA and an incretin-related agent might therefore be effective in therapy.
Collapse
Affiliation(s)
- A Nakamura
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
400
|
Abstract
Post-transcriptional gene regulation by microRNAs (miRNAs) and RNA-binding proteins (RBPs) is central to many biological functions. Aberrant gene expression patterns underlie many metabolic diseases that represent major public health concerns and formidable therapeutic challenges. Several studies have established a number of post-transcriptional regulators implicated in metabolic diseases such as diabetes and obesity. In addition, emerging knowledge of metabolically active and insulin-sensitive organs, such as the pancreas, liver, muscle and adipose compartment, is rapidly expanding the panel of potential therapeutic targets for the treatment of metabolic diseases. Here, we review our current understanding of miRNAs and RBPs that affect glucose and lipid homeostasis, and their roles in normal physiology and metabolic disorders, especially type 2 diabetes and obesity.
Collapse
Affiliation(s)
- Wook Kim
- Laboratory of Clinical Investigation, National Institute on Aging-Intramural Research Program, NIH, Baltimore, MD, USA
| | | |
Collapse
|