351
|
Bagheri S, Sarabi MM, Khosravi P, Khorramabadi RM, Veiskarami S, Ahmadvand H, Keshvari M. Effects of Pistacia atlantica on Oxidative Stress Markers and Antioxidant Enzymes Expression in Diabetic Rats. J Am Coll Nutr 2019; 38:267-274. [PMID: 30716018 DOI: 10.1080/07315724.2018.1482577] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
INTRODUCTION Diabetes mellitus (DM) affects many patients all over the world. It involves different parts of the body, such as brain, eyes, kidneys, vessels, and so on. The lack of balance between free radicals and antioxidants is a possible mechanism involved in the pathogenesis of diabetes. Antioxidant treatment, especially natural forms, can be a beneficial solution. Therefore, we evaluated the effects of Pistacia atlantica oleoresin (PAO) on oxidative stress markers and antioxidant enzymes expression in diabetic rats. METHOD Fifty adult male Wistar rats were allotted randomly into five groups as follow: control group, diabetic control group, glibenclamide control group, diabetic glibenclamide group, diabetic treated group with 200 mg/kg PAO. Then PAO was prepared and analyzed by gas chromatography/mass spectroscopy (GC/MS). LD50 was also estimated for essential oil. Oxidative stress markers and antioxidant enzyme including malondialdehyde (MDA), glutathione (GSH), glutathione peroxidase (GPx), catalase (CAT), and superoxide dismutase (SOD) were also measured. The expression of GPx, CAT, and SOD genes was investigated using real-time polymerase chain reaction (PCR). RESULTS The main constituents of essential oil gum were beta-pinene (29.38%), followed by alpha-pinene (18.15%), myrcene (7.36%), trans-pinocarveol (7.15%), and camphene (4.12%). Diabetes induced an increased level of MDA (69.92 ± 3.92 vs. 43.76 ± 3.73) and decreased levels of GSH (2.57 ± 0.40 vs. 7.05 ± 1.59), GPx (11.66 ± 2.2 vs. 16.38 ± 2.1), CAT (12.17 ± 3.38 vs. 18.7 ± 2.66), and SOD (0.78 ± 0.67 vs. 2.41 ± 0.46). In contrast, PAO treatment significantly decreased MDA (54.59 ± 12.54 vs. 69.92 ± 3.92) and increased GSH (4.5 ± 0.89 vs. 2.57 ± 0.40), GPx (25.86 ± 5.37 vs. 11.66 ± 2.2), CAT (22.69 ± 0.36 vs. 12.17 ± 3.38), and SOD (3.65 ± 1.08 vs. 0.78 ± 0.67) (p < 0.05). Moreover, our results indicated that both GPx and CAT mRNA levels significantly increased approximately 4.46 and 6.23 times in rats fed with 200 mg/kg of PAO, more than that of the healthy control group, respectively (p < 0.01 and p < 0.001, respectively). Also, the average expression level of SOD was also significantly 1.57 higher in rats fed with 200 mg/kg of PAO in comparison to the diabetic control group (p < 0.05). CONCLUSION The results indicated that PAO could be propose as an agent that protects the body against diseases that are associated with oxidative stress.
Collapse
Affiliation(s)
- Shahrokh Bagheri
- a Razi Herbal Medicines Research Center , Lorestan University of Medical Sciences , Khorramabad , Iran.,b Student Research Committee , Lorestan University of Medical Sciences , Khorramabad , Iran
| | - Mostafa Moradi Sarabi
- c Department of Biochemistry, Faculty of Medicine , Lorestan University of Medical Sciences , Khorramabad , Iran
| | - Peyman Khosravi
- b Student Research Committee , Lorestan University of Medical Sciences , Khorramabad , Iran
| | | | - Saeid Veiskarami
- d Lorestan Agricultural and Natural Resources Research and Education Center, Department of animal science, Iran
| | - Hassan Ahmadvand
- c Department of Biochemistry, Faculty of Medicine , Lorestan University of Medical Sciences , Khorramabad , Iran
| | - Mahtab Keshvari
- e Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
352
|
Leptin regulates neuropeptides associated with food intake and GnRH secretion. ANNALES D'ENDOCRINOLOGIE 2019; 80:38-46. [DOI: 10.1016/j.ando.2018.07.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 05/31/2018] [Accepted: 07/26/2018] [Indexed: 12/18/2022]
|
353
|
Flier JS. Starvation in the Midst of Plenty: Reflections on the History and Biology of Insulin and Leptin. Endocr Rev 2019; 40:1-16. [PMID: 30357355 PMCID: PMC6270967 DOI: 10.1210/er.2018-00179] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 09/13/2018] [Indexed: 02/08/2023]
Abstract
Insulin and leptin are critical metabolic hormones that play essential but distinct roles in regulating the physiologic switch between the fed and starved states. The discoveries of insulin and leptin, in 1922 and 1994, respectively, arose out of radically different scientific environments. Despite the dearth of scientific tools available in 1922, insulin's discovery rapidly launched a life-saving therapy for what we now know to be type I diabetes, and continually enhanced insulin therapeutics are now effectively applied to both major forms of this increasingly prevalent disease. In contrast, although the discovery of leptin provided deep insights into the regulation of central nervous system energy balance circuits, as well as an effective therapy for an extremely rare form of obesity, its therapeutic impact beyond that has been surprisingly limited. Despite an enormous accumulated body of information, many important questions remain unanswered about the mechanisms of action and role in disease of both hormones. Additionally, although many decades apart, both discoveries reveal the complexities inherent to scientific collaboration and the assignment of credit, even when the efforts are spectacularly successful.
Collapse
Affiliation(s)
- Jeffrey S Flier
- Department of Medicine and Department of Neurobiology, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
354
|
Ramos-Lobo AM, Teixeira PD, Furigo IC, Melo HM, de M Lyra E Silva N, De Felice FG, Donato J. Long-term consequences of the absence of leptin signaling in early life. eLife 2019; 8:40970. [PMID: 30694175 PMCID: PMC6384028 DOI: 10.7554/elife.40970] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 01/28/2019] [Indexed: 12/11/2022] Open
Abstract
Leptin regulates energy balance and also exhibits neurotrophic effects during critical developmental periods. However, the actual role of leptin during development is not yet fully understood. To uncover the importance of leptin in early life, the present study restored leptin signaling either at the fourth or tenth week of age in mice formerly null for the leptin receptor (LepR) gene. We found that some defects previously considered irreversible due to neonatal deficiency of leptin signaling, including the poor development of arcuate nucleus neural projections, were recovered by LepR reactivation in adulthood. However, LepR deficiency in early life led to irreversible obesity via suppression of energy expenditure. LepR reactivation in adulthood also led to persistent reduction in hypothalamic Pomc, Cartpt and Prlh mRNA expression and to defects in the reproductive system and brain growth. Our findings revealed that early defects in leptin signaling cause permanent metabolic, neuroendocrine and developmental problems. Leptin is a hormone that keeps us healthy in many ways. It regulates our body weight by reining in our appetite and fine-tuning the energy we burn, and it helps us establish and maintain our fertility. It also participates in brain development. Leptin performs these roles by attaching to specific receptors in nerve cells and relaying relevant information to the brain. Early events can trigger life-long changes in the way our body works, a process called metabolic programming. Leptin is believed to participate in this reprogramming mechanism, but its role remains uncertain. In particular, it is still unclear which leptin-driven changes are permanent, and which ones are reversible. Being able to distinguish between the two types of alterations would help to better grasp the role leptin plays in early development. Here, Ramos-Lobo et al. examined genetically engineered mice born without a working leptin receptor. These animals were impervious to the effects of leptin. Then, once the rodents were adults, they were treated with a drug that restored their leptin receptors, making them sensitive to the hormone again. These experiments revealed that mice without leptin receptors during early life developed obesity, were less able to lose weight and burned less energy. Their reproductive success was also compromised. Finally, the lack of leptin during development caused permanent reduction of the animals’ brains, and changes in the activity of certain genes in the organ. The work by Ramos-Lobo et al. indicates that in mice, lacking leptin sensibility early in life conditions the body to permanently become ‘thrifty’, burning less energy and making it harder to lose weight. It is rare for humans to be born completely without leptin activity. Yet, having too much or too little food as a baby affects the level of the hormone, or our sensitivity to it: this may permanently change the way our bodies manage energy. Ultimately, learning more about these mechanisms could help us ward off or treat obesity.
Collapse
Affiliation(s)
- Angela M Ramos-Lobo
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Pryscila Ds Teixeira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Isadora C Furigo
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Helen M Melo
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Natalia de M Lyra E Silva
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Centre for Neuroscience Studies, Department of Psychiatry, Queen's University, Kingston, Canada
| | - Fernanda G De Felice
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jose Donato
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
355
|
Understanding Human Physiological Limitations and Societal Pressures in Favor of Overeating Helps to Avoid Obesity. Nutrients 2019; 11:nu11020227. [PMID: 30678194 PMCID: PMC6412691 DOI: 10.3390/nu11020227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 01/10/2019] [Accepted: 01/11/2019] [Indexed: 12/27/2022] Open
Abstract
Fat gain in our United States (US) environment of over-abundant, convenient, and palatable food is associated with hypertension, cardiovascular disease, diabetes, and increased mortality. Fuller understanding of physiological and environmental challenges to healthy weight maintenance could help prevent these morbidities. Human physiological limitations that permit development of obesity include a predilection to overeat palatable diets, inability to directly detect energy eaten or expended, a large capacity for fat storage, and the difficulty of losing body fat. Innate defenses resisting fat loss include reduced resting metabolism, increased hunger, and high insulin sensitivity, promoting a regain of fat, glycogen, and lean mass. Environmental challenges include readily available and heavily advertised palatable foods, policies and practices that make them abundant, less-than-ideal recommendations regarding national dietary macronutrient intake, and a frequently sedentary lifestyle. After gaining excess fat, some metabolic burdens can be mitigated though thoughtful selection of nutrients. Reduced dietary salt helps lower hypertension, less dietary sugar lowers risk of cardiovascular disease and obesity, and reducing proportion of dietary carbohydrates lowers post-meal insulin secretion and insulin resistance. Food intake and exercise should also be considered thoughtfully, as exercise in a fasted state and before the meals raises glucose intolerance, while exercising shortly after eating lowers it. In summary, we cannot directly detect energy eaten or expended, we have a genetic predisposition to eat palatable diets even when not hungry, and we have a large capacity for fat storage and a difficult time permanently losing excess fat. Understanding this empowers individuals to avoid overeating and helps them avoid obesity.
Collapse
|
356
|
Wang AZ, Husak JF, Lovern M. Leptin ameliorates the immunity, but not reproduction, trade-off with endurance in lizards. J Comp Physiol B 2019; 189:261-269. [DOI: 10.1007/s00360-019-01202-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 01/09/2019] [Accepted: 01/13/2019] [Indexed: 10/27/2022]
|
357
|
Dittfeld C, Bienger K, Andres J, Plötze K, Jannasch A, Waldow T, Tugtekin SM, Matschke K. Characterization of thoracal fat depots - expression of adipokines and remodeling factors and impact of adipocyte conditioned media in fibroblast scratch assays. Clin Hemorheol Microcirc 2019; 70:267-280. [PMID: 30507567 DOI: 10.3233/ch-170341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Adipose tissue is not only a connective tissue but also an endocrine organ secreting adipokines like Leptin and Adiponectin, lipokines such as palmitoileic acid and extracellular vesicles. These factors and the expression of matrix remodeling enzymes impact surrounding tissues via paracrine effects. The expression of selected secretion factors and the effect of adipocyte conditioned media from four thoracal adipose tissue origins - subcutaneous, perivascular, pericardial and epicardial adipose tissues - in a fibroblast proliferation/wound healing scratch assay model were investigated. Results were compared directly and according to the type 2 diabetic mellitus (T2DM) status of the patients the tissues are originated from. Adipocyte conditioned media from non-diabetic patients resulted in a significant higher scratch closure rate compared to the media with T2DM background. Linoleic acid incubation in scratch assay resulted in a reduced scratch closure rate. Leptin, Adiponectin and Visfatin/Nampt expression and MMP2, MMP9 and FSTL1 mRNA levels did not vary according to T2DM subgroups directly, leading to the assumption that these factors are not causal for scratch assay effects observed. In contrast significant mRNA expression differences were monitored between the thoracal tissue origins implying variations in the local effects of the different adipose tissue depots.
Collapse
Affiliation(s)
- C Dittfeld
- Department of Cardiac Surgery, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Herzzentrum Dresden, Germany
| | - K Bienger
- Department of Cardiac Surgery, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Herzzentrum Dresden, Germany
| | - J Andres
- Department of Cardiac Surgery, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Herzzentrum Dresden, Germany
| | - K Plötze
- Department of Cardiac Surgery, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Herzzentrum Dresden, Germany
| | - A Jannasch
- Department of Cardiac Surgery, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Herzzentrum Dresden, Germany
| | - T Waldow
- Department of Cardiac Surgery, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Herzzentrum Dresden, Germany
| | - S M Tugtekin
- Department of Cardiac Surgery, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Herzzentrum Dresden, Germany
| | - K Matschke
- Department of Cardiac Surgery, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Herzzentrum Dresden, Germany
| |
Collapse
|
358
|
Hill JW, Elias CF. Neuroanatomical Framework of the Metabolic Control of Reproduction. Physiol Rev 2019; 98:2349-2380. [PMID: 30109817 DOI: 10.1152/physrev.00033.2017] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A minimum amount of energy is required for basic physiological processes, such as protein biosynthesis, thermoregulation, locomotion, cardiovascular function, and digestion. However, for reproductive function and survival of the species, extra energy stores are necessary. Production of sex hormones and gametes, pubertal development, pregnancy, lactation, and parental care all require energy reserves. Thus the physiological systems that control energy homeostasis and reproductive function coevolved in mammals to support both individual health and species subsistence. In this review, we aim to gather scientific knowledge produced by laboratories around the world on the role of the brain in integrating metabolism and reproduction. We describe essential neuronal networks, highlighting key nodes and potential downstream targets. Novel animal models and genetic tools have produced substantial advances, but critical gaps remain. In times of soaring worldwide obesity and metabolic dysfunction, understanding the mechanisms by which metabolic stress alters reproductive physiology has become crucial for human health.
Collapse
Affiliation(s)
- Jennifer W Hill
- Center for Diabetes and Endocrine Research, Departments of Physiology and Pharmacology and of Obstetrics and Gynecology, University of Toledo College of Medicine , Toledo, Ohio ; and Departments of Molecular and Integrative Physiology and of Obstetrics and Gynecology, University of Michigan , Ann Arbor, Michigan
| | - Carol F Elias
- Center for Diabetes and Endocrine Research, Departments of Physiology and Pharmacology and of Obstetrics and Gynecology, University of Toledo College of Medicine , Toledo, Ohio ; and Departments of Molecular and Integrative Physiology and of Obstetrics and Gynecology, University of Michigan , Ann Arbor, Michigan
| |
Collapse
|
359
|
Arhire LI, Mihalache L, Covasa M. Irisin: A Hope in Understanding and Managing Obesity and Metabolic Syndrome. Front Endocrinol (Lausanne) 2019; 10:524. [PMID: 31428053 PMCID: PMC6687775 DOI: 10.3389/fendo.2019.00524] [Citation(s) in RCA: 192] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 07/16/2019] [Indexed: 12/26/2022] Open
Abstract
White adipose tissue (WAT) is an endocrine organ highly integrated in homeostasis and capable of establishing ways of communicating and influencing multiple metabolic processes. Brown adipose tissue promotes energy expenditure by incorporating the uncoupling protein 1 (UCP1), also known as thermogenin, which decouples cellular respiration and heat production, in the mitochondrial membranes. Recent data suggest the presence of a thermogenic cell formation from white adipocytes (beige or brite cells) with a potential role in preventing obesity and metabolic syndrome. The formation of these cells is influenced by physical exertion that induces expression of PPARγ coactivator-1 (PGC1) and downstream membrane protein, fibronectin type III domain-containing protein 5 (FNDC5) in skeletal muscle. Irisin, a thermogenic adipomyokine produced by FNDC5 cleavage is involved in the browning of adipose tissue. While animal studies are congruent with regard to the relationship between physical exertion and irisin release, the results from human studies are less than clear. Therefore, this review focuses on recent advances in our understanding of muscle and adipose tissue thermogenesis. Further, it describes the molecular mechanisms by which irisin impacts exercise, glucose homeostasis and obesity. Finally, the review discusses current gaps and controversies related to irisin release, its mode of action and its future potential as a therapeutic tool in managing obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Lidia I. Arhire
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iaşi, Romania
- Clinical Hospital “Sf. Spiridon”, Iaşi, Romania
| | - Laura Mihalache
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iaşi, Romania
- Clinical Hospital “Sf. Spiridon”, Iaşi, Romania
| | - Mihai Covasa
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA, United States
- Department of Health and Human Development, University of Suceava, Suceava, Romania
- *Correspondence: Mihai Covasa
| |
Collapse
|
360
|
Ullah R, Raza A, Rauf N, Shen Y, Zhou YD, Fu J. Postnatal Feeding With a Fat Rich Diet Induces Precocious Puberty Independent of Body Weight, Body Fat, and Leptin Levels in Female Mice. Front Endocrinol (Lausanne) 2019; 10:758. [PMID: 31781033 PMCID: PMC6856215 DOI: 10.3389/fendo.2019.00758] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 10/18/2019] [Indexed: 01/08/2023] Open
Abstract
Puberty generally occurs when an individual has stored a sufficient amount of energy. Previous reports have shown that postnatal overfeeding, induced by a small litter size or maternal high fat diet (HFD) feeding during gestation and lactation increases body weight (BW), body fat, plasma leptin levels, and induces precocious puberty. The role of BW, body fat, and leptin in postnatal HFD-induced precocious puberty is poorly understood. In this study, we investigated if postnatal HFD feeding induces precocious puberty independent of BW, body fat, and leptin levels. Different litter sizes and different exposure time to HFD were used to produce HFD feeding pups with different BW and body fat. BW, body fat, and plasma hormones levels were checked at different time points to test their relation with HFD-induced precocious puberty. Our results showed that postnatal HFD feeding increases BW, body fat, adipocyte size, and induces precocious puberty. HFD-induced precocious puberty was independent of BW, body fat, and plasma leptin levels. Plasma gonadotrophin, estradiol, testosterone and insulin levels were comparable in most of the groups. Our results collectively suggest that postnatal HFD feeding induces precocious puberty independent of BW, body fat and plasma leptin levels. Our results also suggest that HFD feeding acts as a stimulator for puberty onset but further studies are needed to understand how it induces precocious puberty.
Collapse
Affiliation(s)
- Rahim Ullah
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Department of Neurobiology, The Collaborative Innovation Center for Brain Science, Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
| | - Ali Raza
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Naveed Rauf
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Department of Neurobiology, The Collaborative Innovation Center for Brain Science, Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Shen
- Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Department of Neurobiology, The Collaborative Innovation Center for Brain Science, Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu-Dong Zhou
- Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Department of Neurobiology, The Collaborative Innovation Center for Brain Science, Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Yu-Dong Zhou
| | - Junfen Fu
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Clinical Research Center for Child Health, Chongqing, China
- Junfen Fu ;
| |
Collapse
|
361
|
|
362
|
Balland E, Chen W, Dodd GT, Conductier G, Coppari R, Tiganis T, Cowley MA. Leptin Signaling in the Arcuate Nucleus Reduces Insulin’s Capacity to Suppress Hepatic Glucose Production in Obese Mice. Cell Rep 2019; 26:346-355.e3. [DOI: 10.1016/j.celrep.2018.12.061] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 11/29/2018] [Accepted: 12/13/2018] [Indexed: 12/18/2022] Open
|
363
|
Mancuso P, Bouchard B. The Impact of Aging on Adipose Function and Adipokine Synthesis. Front Endocrinol (Lausanne) 2019; 10:137. [PMID: 30915034 PMCID: PMC6421296 DOI: 10.3389/fendo.2019.00137] [Citation(s) in RCA: 183] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 02/13/2019] [Indexed: 02/04/2023] Open
Abstract
During the last 40 years, there has been a world-wide increase in both the prevalence of obesity and an increase in the number of persons over the age of 60 due to a decline in deaths from infectious disease and the nutrition transition in low and middle income nations. While the increase in the elderly population indicates improvements in global public health, this population may experience a diminished quality of life due to the negative impacts of obesity on age-associated inflammation. Aging alters adipose tissue composition and function resulting in insulin resistance and ectopic lipid storage. A reduction in brown adipose tissue activity, declining sex hormones levels, and abdominal adipose tissue expansion occur with advancing years through the redistribution of lipids from the subcutaneous to the visceral fat compartment. These changes in adipose tissue function and distribution influence the secretion of adipose tissue derived hormones, or adipokines, that promote a chronic state of low-grade systemic inflammation. Ultimately, obesity accelerates aging by enhancing inflammation and increasing the risk of age-associated diseases. The focus of this review is the impact of aging on adipose tissue distribution and function and how these effects influence the elaboration of pro and anti-inflammatory adipokines.
Collapse
Affiliation(s)
- Peter Mancuso
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, United States
- Graduate Program in Immunology, School of Public Health, University of Michigan, Ann Arbor, MI, United States
- *Correspondence: Peter Mancuso
| | - Benjamin Bouchard
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
364
|
Hoffmann A, Ebert T, Klöting N, Kolb M, Gericke M, Jeromin F, Jessnitzer B, Lössner U, Burkhardt R, Stumvoll M, Fasshauer M, Kralisch S. Leptin decreases circulating inflammatory IL-6 and MCP-1 in mice. Biofactors 2019; 45:43-48. [PMID: 30496627 DOI: 10.1002/biof.1457] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 08/19/2018] [Indexed: 12/29/2022]
Abstract
Leptin influences inflammation and immune response. Dose-dependent effects of leptin on biomarkers of inflammation have not been studied in vivo, so far. Leptin-deficient low-density lipoprotein receptor (LDLR) knockout (LDLR-/- ;ob/ob) female mice were treated with three different leptin doses or saline for 12 weeks. The effect of leptin on plasma interleukin (IL)-6 and monocyte chemoattractant protein (MCP)-1 concentrations and Il-6 and Mcp-1 mRNA expression in vivo were assessed. Macrophage infiltration in epididymal adipose tissue (epiAT) after leptin treatment was determined by quantitative immunohistochemical analysis. Aortic root atherosclerotic lesions were analyzed by oil red O staining. Mean plasma IL-6 and MCP-1 decreased significantly in the 3.0 mg/kg BW/day group as compared to control mice (both P < 0.01). Messenger RNA expression of Il-6 and Mcp-1 was significantly down-regulated by leptin treatment in different adipose tissues in vivo. Characteristic crown-like structures formed by adipose tissue macrophages were significantly reduced by leptin treatment in epiAT. Recombinant leptin dose-dependently diminished plaque area in the aortic root. Leptin administration within the subphysiological to physiological range diminishes circulating pro-inflammatory IL-6 and MCP-1. Reduction of Il-6 and Mcp-1 gene expression in adipose tissue, as well as decreased adipose tissue macrophage infiltration might contribute. © 2018 BioFactors, 45(1):43-48, 2019.
Collapse
MESH Headings
- Adipose Tissue/drug effects
- Adipose Tissue/immunology
- Adipose Tissue/pathology
- Animals
- Aorta/drug effects
- Aorta/immunology
- Aorta/pathology
- Cell Movement/drug effects
- Chemokine CCL2/antagonists & inhibitors
- Chemokine CCL2/blood
- Chemokine CCL2/genetics
- Chemokine CCL2/immunology
- Drug Administration Schedule
- Epididymis/drug effects
- Epididymis/immunology
- Epididymis/pathology
- Female
- Gene Expression Regulation
- Injections, Intraperitoneal
- Interleukin-6/antagonists & inhibitors
- Interleukin-6/blood
- Interleukin-6/genetics
- Interleukin-6/immunology
- Leptin/deficiency
- Leptin/genetics
- Leptin/immunology
- Leptin/pharmacology
- Macrophages/drug effects
- Macrophages/immunology
- Macrophages/pathology
- Male
- Mice
- Mice, Knockout
- Plaque, Atherosclerotic/drug therapy
- Plaque, Atherosclerotic/genetics
- Plaque, Atherosclerotic/immunology
- Plaque, Atherosclerotic/pathology
- RNA, Messenger/antagonists & inhibitors
- RNA, Messenger/genetics
- RNA, Messenger/immunology
- RNA, Messenger/metabolism
- Receptors, LDL/deficiency
- Receptors, LDL/genetics
- Receptors, LDL/immunology
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Recombinant Proteins/pharmacology
- Signal Transduction
Collapse
Affiliation(s)
- Annett Hoffmann
- Department of Endocrinology and Nephrology, University of Leipzig, Leipzig, Germany
| | - Thomas Ebert
- Department of Endocrinology and Nephrology, University of Leipzig, Leipzig, Germany
- Leipzig University Medical Center, IFB AdiposityDiseases, Leipzig, Germany
| | - Nora Klöting
- Leipzig University Medical Center, IFB AdiposityDiseases, Leipzig, Germany
| | - Marlen Kolb
- Department of Otorhinolaryngology, University of Leipzig, Leipzig, Germany
| | - Martin Gericke
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Franziska Jeromin
- Institute of Laboratory Medicine, University of Leipzig, Clinical Chemistry and Molecular, Diagnostics, Leipzig, Germany
| | - Beate Jessnitzer
- Department of Endocrinology and Nephrology, University of Leipzig, Leipzig, Germany
| | - Ulrike Lössner
- Leipzig University Medical Center, IFB AdiposityDiseases, Leipzig, Germany
| | - Ralph Burkhardt
- Institute of Laboratory Medicine, University of Leipzig, Clinical Chemistry and Molecular, Diagnostics, Leipzig, Germany
| | - Michael Stumvoll
- Department of Endocrinology and Nephrology, University of Leipzig, Leipzig, Germany
| | - Mathias Fasshauer
- Department of Endocrinology and Nephrology, University of Leipzig, Leipzig, Germany
- Leipzig University Medical Center, IFB AdiposityDiseases, Leipzig, Germany
- Institute of Nutritional Science, Justus-Liebig-University, Giessen, Germany
| | - Susan Kralisch
- Department of Endocrinology and Nephrology, University of Leipzig, Leipzig, Germany
- Leipzig University Medical Center, IFB AdiposityDiseases, Leipzig, Germany
| |
Collapse
|
365
|
NAKAO K. Translational science: Newly emerging science in biology and medicine - Lessons from translational research on the natriuretic peptide family and leptin. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2019; 95:538-567. [PMID: 31708497 PMCID: PMC6856003 DOI: 10.2183/pjab.95.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/30/2019] [Indexed: 06/10/2023]
Abstract
Translation is the process of turning observations in the laboratory, clinic, and community into interventions that improve the health of individuals and the public, ranging from diagnostics and therapeutics to medical procedures and behavioral changes. Translational research is defined as the effort to traverse a particular step of the translation process for a particular target or disease. Translational science is a newly emerging science, distinct from basic and clinical sciences in biology and medicine, and is a field of investigation focused on understanding the scientific and operational principles underlying each step of the translational process. Advances in translational science will increase the efficacy and safety of translational research in all diagnostic and therapeutic areas. This report examines translational research on novel hormones, the natriuretic peptide family and leptin, which have achieved clinical applications or for which studies are still ongoing, and also emphasizes the lessons that translational science has learned from more than 30 years' experience in translational research.
Collapse
Affiliation(s)
- Kazuwa NAKAO
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
366
|
Demirel PB, Ozorhan U, Tuna BG, Cleary M, Dogan S. Effects of different glucose concentrations on the leptin signaling pathway in MCF-7 and T47D breast cancer cells. ACTA ACUST UNITED AC 2019; 26:2966-2971. [PMID: 32566928 DOI: 10.5455/annalsmedres.2019.09.542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Aim Leptin activates multiple intracellular signaling pathways, including JAK/STAT, by binding to its receptor. Leptin is also an important regulator of glucose homeostasis. Although both glucose and leptin increase breast cancer cell proliferation in vitro, whether the enhancing effect of glucose on the proliferation of breast cancer cells is mediated by the leptin signaling pathway is not known. The aim of this study was to investigate the effect of different glucose concentrations on the leptin signaling pathway in MCF-7 and T47D breast cancer cells. Material and Methods MCF-7 and T47D cell proliferation in different glucose concentrations (2.5 mM, 5 mM, 25 mM, or 50 mM) were assayed using CCK-8 assay. Leptin, leptin receptors (ObR, ObRb) as well as STAT3 mRNA and protein levels in both cell lines in different glucose concentrations were examined by RT-PCR and western blot, respectively. Results Incubation in 2.5 mM, 5 mM, 25 mM, or 50 mM glucose for 72h significantly increased the proliferation of both MCF-7 and T47D cells compared to 0 mM glucose incubated cells (P<0.001). mRNA levels of leptin, ObR, ObRb or STAT3 in 2.5 mM, 5 mM, 25 mM, or 50 mM glucose incubated cells were not significantly different in both cell lines compared to 0 mM (p>0.05). However, ObR protein levels in MCF-7 cells incubated in 25 mM glucose was significantly lower compared to 0 mM glucose by western blot (p<0.05). Conclusion Our data suggest that the enhancing effect of glucose on breast cancer cell proliferation is not mediated by the JAK/STAT pathway.
Collapse
Affiliation(s)
- Pinar Buket Demirel
- Maltepe University, Faculty of Medicine, Department of Medical Biology and Genetics, Istanbul, Turkey
| | - Umit Ozorhan
- Yeditepe University, Faculty of Medicine, Department of Medical Biology, Istanbul, Turkey
| | - Bilge Guvenc Tuna
- Yeditepe University, Faculty of Medicine, Department of Biophysics, Istanbul, Turkey
| | - Margot Cleary
- University of Minnesota, Hormel Institute Medical Research Center, MN, USA
| | - Soner Dogan
- Yeditepe University, Faculty of Medicine, Department of Medical Biology, Istanbul, Turkey
| |
Collapse
|
367
|
Balland E, Chen W, Tiganis T, Cowley MA. Persistent Leptin Signaling in the Arcuate Nucleus Impairs Hypothalamic Insulin Signaling and Glucose Homeostasis in Obese Mice. Neuroendocrinology 2019; 109:374-390. [PMID: 30995667 DOI: 10.1159/000500201] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/02/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND Obesity is associated with reduced physiological responses to leptin and insulin, leading to the concept of obesity-associated hormonal resistance. OBJECTIVES Here, we demonstrate that contrary to expectations, leptin signaling not only remains functional but also is constantly activated in the arcuate nucleus of the hypothalamus (ARH) neurons of obese mice. This state of persistent response to endogenous leptin underpins the lack of response to exogenous leptin. METHODS AND RESULTS The study of combined leptin and insulin signaling demonstrates that there is a common pool of ARH neurons responding to both hormones. More importantly, we show that the constant activation of leptin receptor neurons in the ARH prevents insulin signaling in these neurons, leading to impaired glucose tolerance. Accordingly, antagonising leptin signaling in diet-induced obese (DIO) mice restores insulin signaling in the ARH and improves glucose homeostasis. Direct inhibition of PTP1B in the CNS restores arcuate insulin signaling similarly to leptin inhibition; this effect is likely to be mediated by AgRP neurons since PTP1B deletion specifically in AgRP neurons restores glucose and insulin tolerance in DIO mice. CONCLUSIONS Finally, our results suggest that the constant activation of arcuate leptin signaling in DIO mice increases PTP1B expression, which exerts an inhibitory effect on insulin signaling leading to impaired glucose homeostasis.
Collapse
Affiliation(s)
- Eglantine Balland
- Department of Physiology, Metabolism, Diabetes and Obesity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia,
| | - Weiyi Chen
- Department of Physiology, Metabolism, Diabetes and Obesity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Tony Tiganis
- Department of Biochemistry and Molecular Biology , Metabolism, Diabetes and Obesity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Michael A Cowley
- Department of Physiology, Metabolism, Diabetes and Obesity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
368
|
Arora S, Madan K, Mohan A, Kalaivani M, Guleria R. Serum inflammatory markers and nutritional status in patients with stable chronic obstructive pulmonary disease. Lung India 2019; 36:393-398. [PMID: 31464210 PMCID: PMC6710956 DOI: 10.4103/lungindia.lungindia_494_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) is a systemic inflammatory disease. We investigated whether serum inflammatory markers, C-reactive protein (CRP), leptin, and nutritional status (assessed by measurement of serum levels of prealbumin and anthropometry) correlated with COPD severity. Materials and Methods One-hundred and two COPD patients (mean age 56.94 ± 10.95 years) were recruited and classified into severity categories based on the GOLD guidelines. Serum concentrations of CRP, prealbumin, and leptin were measured. Anthropometry included body mass index (BMI), mid-upper arm circumference (MUAC), and sum of four skinfold thicknesses (triceps, biceps, suprailiac, and subscapular). Results Twenty-one patients had moderate, 44 had severe, and 37 had very severe COPD. Levels of CRP (mg/dl) (mean ± standard error [SE]) in moderate, severe, and very severe COPD were 0.60 ± 0.096, 2.16 ± 0.39, and 4.15 ± 0.463, respectively. Levels of prealbumin (mg/dl) (mean ± SE) in moderate, severe, and very severe COPD were 15.7 3 ± 0.92, 10.95 ± 0.85, and 11.15 ± 0.79 mg/dl, respectively. Levels of leptin (ng/ml) (mean ± SE) in moderate, severe, and very severe COPD were 13.81 ± 3.88, 8.45 ± 2.25, and 4.40 ± 1.06, respectively. BMI values in the three groups were 23.44 ± 1.16 kg/m2, 20.33 ± 0.62 kg/m2, and 18.86 ± 0.52 kg/m2, respectively. Sum of four skinfold thickness and MUAC was significantly reduced in very severe group as compared to moderate and severe group. Very severe COPD patients had a significantly lower leptin, BMI, and 6-min walk test. Serum CRP was significantly higher in very severe COPD. Conclusion Patients with increasing severity of COPD had a significantly greater serum inflammatory marker level and poorer nutritional status.
Collapse
Affiliation(s)
- Sneh Arora
- Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Karan Madan
- Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Anant Mohan
- Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Mani Kalaivani
- Department of Biostatistics, All India Institute of Medical Sciences, New Delhi, India
| | - Randeep Guleria
- Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
369
|
Roujeau C, Jockers R, Dam J. Endospanin 1 Determines the Balance of Leptin-Regulated Hypothalamic Functions. Neuroendocrinology 2019; 108:132-141. [PMID: 30326479 DOI: 10.1159/000494557] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 10/16/2018] [Indexed: 11/19/2022]
Abstract
Endospanin 1 (Endo1), a protein encoded in humans by the same gene than the leptin receptor (ObR), and increased by diet-induced obesity, is an important regulator of ObR trafficking and cell surface exposure, determining leptin signaling strength. Defective intracellular trafficking of the leptin receptor to the neuronal plasma membrane has been proposed as a mechanism underlying the development of leptin resistance observed in human obesity. More recently, Endo1 has emerged as a mediator of "selective leptin resistance." The underlying mechanisms of the latter are not completely understood, but the possibility of differential activation of leptin signaling pathways was suggested among others. In this respect, the expression level of Endo1 is crucial for the appropriate balance between different leptin signaling pathways and leptin functions in the hypothalamus and is likely participating in selective leptin resistance for the control of energy and glucose homeostasis.
Collapse
Affiliation(s)
- Clara Roujeau
- Inserm U1016, CNRS UMR 8104, Institut Cochin, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Ralf Jockers
- Inserm U1016, CNRS UMR 8104, Institut Cochin, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Julie Dam
- Inserm U1016, CNRS UMR 8104, Institut Cochin, Université Paris Descartes, Sorbonne Paris Cité, Paris,
| |
Collapse
|
370
|
Heiston EM, Malin SK. Impact of Exercise on Inflammatory Mediators of Metabolic and Vascular Insulin Resistance in Type 2 Diabetes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1134:271-294. [PMID: 30919343 DOI: 10.1007/978-3-030-12668-1_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The development of obesity is cornerstone in the etiology of metabolic and vascular insulin resistance and consequently exacerbates glycemic control. Exercise is an efficacious first-line therapy for type 2 diabetes that improves insulin action through, in part, reducing hormone mediated inflammation. Together, improving the coordination of skeletal muscle metabolism with vascular delivery of glucose will be required for optimizing type 2 diabetes and cardiovascular disease treatment.
Collapse
Affiliation(s)
- Emily M Heiston
- Department of Kinesiology, University of Virginia, Charlottesville, VA, USA
| | - Steven K Malin
- Department of Kinesiology, University of Virginia, Charlottesville, VA, USA.
- Division of Endocrinology and Metabolism, University of Virginia, Charlottesville, VA, USA.
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
371
|
Audira G, Sarasamma S, Chen JR, Juniardi S, Sampurna BP, Liang ST, Lai YH, Lin GM, Hsieh MC, Hsiao CD. Zebrafish Mutants Carrying Leptin a (lepa) Gene Deficiency Display Obesity, Anxiety, Less Aggression and Fear, and Circadian Rhythm and Color Preference Dysregulation. Int J Mol Sci 2018; 19:ijms19124038. [PMID: 30551684 PMCID: PMC6320766 DOI: 10.3390/ijms19124038] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/05/2018] [Accepted: 12/11/2018] [Indexed: 01/14/2023] Open
Abstract
Leptin, a hormone secreted by peripheral adipose tissues, regulates the appetite in animals. Recently, evidence has shown that leptin also plays roles in behavioral response in addition to controlling appetite. In this study, we examined the potential function of leptin on non-appetite behaviors in zebrafish model. By using genome editing tool of Transcription activator-like effector nuclease (TALEN), we successfully knocked out leptin a (lepa) gene by deleting 4 bp within coding region to create a premature-translation stop. Morphological and appetite analysis showed the lepa KO fish display a phenotype with obese, good appetite and elevation of Agouti-related peptide (AgRP) and Ghrelin hormones, consistent with the canonical function of leptin in controlling food intake. By multiple behavior endpoint analyses, including novel tank, mirror biting, predator avoidance, social interaction, shoaling, circadian rhythm, and color preference assay, we found the lepa KO fish display an anxiogenic phenotype showing hyperactivity with rapid swimming, less freezing time, less fear to predator, loose shoaling area forming, and circadian rhythm and color preference dysregulations. Using biochemical assays, melatonin, norepinephrine, acetylcholine and serotonin levels in the brain were found to be significantly reduced in lepa KO fish, while the levels of dopamine, glycine and cortisol in the brain were significantly elevated. In addition, the brain ROS level was elevated, and the anti-oxidative enzyme catalase level was reduced. Taken together, by performing loss-of-function multiple behavior endpoint testing and biochemical analysis, we provide strong evidence for a critical role of lepa gene in modulating anxiety, aggression, fear, and circadian rhythm behaviors in zebrafish for the first time.
Collapse
Affiliation(s)
- Gilbert Audira
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
| | - Sreeja Sarasamma
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
| | - Jung-Ren Chen
- Department of Biological Science & Technology College of Medicine, I-Shou University, Kaohsiung, 82445, Taiwan.
| | - Stevhen Juniardi
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
| | | | - Sung-Tzu Liang
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
| | - Yu-Heng Lai
- Department of Chemistry, Chinese Culture University, Taipei 11114, Taiwan.
| | - Geng-Ming Lin
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, State OceanicAdministration, Xiamen 361005, China.
| | - Ming-Chia Hsieh
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Changhua Christian Hospital, Changhua 50094, Taiwan.
| | - Chung-Der Hsiao
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
- Center of Nanotechnology, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
- Center of Biomedical Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
| |
Collapse
|
372
|
Al-Najim W, Docherty NG, le Roux CW. Food Intake and Eating Behavior After Bariatric Surgery. Physiol Rev 2018; 98:1113-1141. [PMID: 29717927 DOI: 10.1152/physrev.00021.2017] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Obesity is an escalating global chronic disease. Bariatric surgery is a very efficacious treatment for obesity and its comorbidities. Alterations to gastrointestinal anatomy during bariatric surgery result in neurological and physiological changes affecting hypothalamic signaling, gut hormones, bile acids, and gut microbiota, which coalesce to exert a profound influence on eating behavior. A thorough understanding of the mechanisms underlying eating behavior is essential in the management of patients after bariatric surgery. Studies investigating candidate mechanisms have expanded dramatically in the last decade. Herein we review the proposed mechanisms governing changes in eating behavior, food intake, and body weight after bariatric surgery. Additive or synergistic effects of both conditioned and unconditioned factors likely account for the complete picture of changes in eating behavior. Considered application of strategies designed to support the underlying principles governing changes in eating behavior holds promise as a means of optimizing responses to surgery and long-term outcomes.
Collapse
Affiliation(s)
- Werd Al-Najim
- Diabetes Complications Research Centre, Conway Institute, School of Medicine and Medical Sciences, University College Dublin , Dublin , Ireland ; Department of Gastrosurgical Research and Education, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden ; and Investigative Science, Imperial College London , London , United Kingdom
| | - Neil G Docherty
- Diabetes Complications Research Centre, Conway Institute, School of Medicine and Medical Sciences, University College Dublin , Dublin , Ireland ; Department of Gastrosurgical Research and Education, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden ; and Investigative Science, Imperial College London , London , United Kingdom
| | - Carel W le Roux
- Diabetes Complications Research Centre, Conway Institute, School of Medicine and Medical Sciences, University College Dublin , Dublin , Ireland ; Department of Gastrosurgical Research and Education, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden ; and Investigative Science, Imperial College London , London , United Kingdom
| |
Collapse
|
373
|
Association of adiponectin gene polymorphism with type 2 diabetes and metabolic syndrome. TRANSLATIONAL METABOLIC SYNDROME RESEARCH 2018. [DOI: 10.1016/j.tmsr.2018.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
374
|
Caballero-Eraso C, Shin MK, Pho H, Kim LJ, Pichard LE, Wu ZJ, Gu C, Berger S, Pham L, Yeung HYB, Shirahata M, Schwartz AR, Tang WYW, Sham JSK, Polotsky VY. Leptin acts in the carotid bodies to increase minute ventilation during wakefulness and sleep and augment the hypoxic ventilatory response. J Physiol 2018; 597:151-172. [PMID: 30285278 DOI: 10.1113/jp276900] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/03/2018] [Indexed: 01/10/2023] Open
Abstract
KEY POINTS Leptin is a potent respiratory stimulant. A long functional isoform of leptin receptor, LepRb , was detected in the carotid body (CB), a key peripheral hypoxia sensor. However, the effect of leptin on minute ventilation (VE ) and the hypoxic ventilatory response (HVR) has not been sufficiently studied. We report that LepRb is present in approximately 74% of the CB glomus cells. Leptin increased carotid sinus nerve activity at baseline and in response to hypoxia in vivo. Subcutaneous infusion of leptin increased VE and HVR in C57BL/6J mice and this effect was abolished by CB denervation. Expression of LepRb in the carotid bodies of LepRb deficient obese db/db mice increased VE during wakefulness and sleep and augmented the HVR. We conclude that leptin acts on LepRb in the CBs to stimulate breathing and HVR, which may protect against sleep disordered breathing in obesity. ABSTRACT Leptin is a potent respiratory stimulant. The carotid bodies (CB) express the long functional isoform of leptin receptor, LepRb , but the role of leptin in CB has not been fully elucidated. The objectives of the current study were (1) to examine the effect of subcutaneous leptin infusion on minute ventilation (VE ) and the hypoxic ventilatory response to 10% O2 (HVR) in C57BL/6J mice before and after CB denervation; (2) to express LepRb in CB of LepRb -deficient obese db/db mice and examine its effects on breathing during sleep and wakefulness and on HVR. We found that leptin enhanced carotid sinus nerve activity at baseline and in response to 10% O2 in vivo. In C57BL/6J mice, leptin increased VE from 1.1 to 1.5 mL/min/g during normoxia (P < 0.01) and from 3.6 to 4.7 mL/min/g during hypoxia (P < 0.001), augmenting HVR from 0.23 to 0.31 mL/min/g/Δ F I O 2 (P < 0.001). The effects of leptin on VE and HVR were abolished by CB denervation. In db/db mice, LepRb expression in CB increased VE from 1.1 to 1.3 mL/min/g during normoxia (P < 0.05) and from 2.8 to 3.2 mL/min/g during hypoxia (P < 0.02), increasing HVR. Compared to control db/db mice, LepRb transfected mice showed significantly higher VE throughout non-rapid eye movement (20.1 vs. -27.7 mL/min respectively, P < 0.05) and rapid eye movement sleep (16.5 vs 23.4 mL/min, P < 0.05). We conclude that leptin acts in CB to augment VE and HVR, which may protect against sleep disordered breathing in obesity.
Collapse
Affiliation(s)
- Candela Caballero-Eraso
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Hospital Universitario Virgen del Rocío/Universidad de Sevilla, Sevilla, Spain
| | - Mi-Kyung Shin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Huy Pho
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lenise J Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Luis E Pichard
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zhi-Juan Wu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chenjuan Gu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Slava Berger
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Luu Pham
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ho-Yee Bonnie Yeung
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Machiko Shirahata
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Alan R Schwartz
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Wan-Yee Winnie Tang
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - James S K Sham
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Vsevolod Y Polotsky
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
375
|
Zhu TB, Zhang Z, Luo P, Wang SS, Peng Y, Chu SF, Chen NH. Lipid metabolism in Alzheimer's disease. Brain Res Bull 2018; 144:68-74. [PMID: 30472149 DOI: 10.1016/j.brainresbull.2018.11.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 10/11/2018] [Accepted: 11/20/2018] [Indexed: 12/18/2022]
Abstract
Since the metabolic disorder may be the high risk that contribute to the progress of Alzheimer's disease (AD). Overtaken of High-fat, high-glucose or high-cholesterol diet may hasten the incidence of AD in later life, due to the metabolic dysfunction. But the metabolism of lipid in brain and the exact effect of lipid to brain or to the AD's pathological remain controversial. Here we summarize correlates of lipid metabolism and AD to provide more foundation for the daily nursing of AD sensitive patients.
Collapse
Affiliation(s)
- Tian-Bi Zhu
- College of Pharmacy, Hunan University of Traditional Chinese Medicine, Changsha 410208, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhao Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Piao Luo
- College of Pharmacy, Hunan University of Traditional Chinese Medicine, Changsha 410208, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Sha-Sha Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; School of Basic Medicine, Shanxi University of Traditional Chinese Medicine, Taiyuan, 030000, China
| | - Ye Peng
- College of Pharmacy, Hunan University of Traditional Chinese Medicine, Changsha 410208, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shi-Feng Chu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Nai-Hong Chen
- College of Pharmacy, Hunan University of Traditional Chinese Medicine, Changsha 410208, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; School of Basic Medicine, Shanxi University of Traditional Chinese Medicine, Taiyuan, 030000, China.
| |
Collapse
|
376
|
Gannon OJ, Robison LS, Custozzo AJ, Zuloaga KL. Sex differences in risk factors for vascular contributions to cognitive impairment & dementia. Neurochem Int 2018; 127:38-55. [PMID: 30471324 DOI: 10.1016/j.neuint.2018.11.014] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/16/2018] [Accepted: 11/16/2018] [Indexed: 12/11/2022]
Abstract
Vascular contributions to cognitive impairment and dementia (VCID) is the second most common cause of dementia. While males overall appear to be at a slightly higher risk for VCID throughout most of the lifespan (up to age 85), some risk factors for VCID more adversely affect women. These include female-specific risk factors associated with pregnancy related disorders (e.g. preeclampsia), menopause, and poorly timed hormone replacement. Further, presence of certain co-morbid risk factors, such as diabetes, obesity and hypertension, also may more adversely affect women than men. In contrast, some risk factors more greatly affect men, such as hyperlipidemia, myocardial infarction, and heart disease. Further, stroke, one of the leading risk factors for VCID, has a higher incidence in men than in women throughout much of the lifespan, though this trend is reversed at advanced ages. This review will highlight the need to take biological sex and common co-morbidities for VCID into account in both preclinical and clinical research. Given that there are currently no treatments available for VCID, it is critical that we understand how to mitigate risk factors for this devastating disease in both sexes.
Collapse
Affiliation(s)
- O J Gannon
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Ave, Albany, NY, 12208, USA.
| | - L S Robison
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Ave, Albany, NY, 12208, USA.
| | - A J Custozzo
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Ave, Albany, NY, 12208, USA.
| | - K L Zuloaga
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Ave, Albany, NY, 12208, USA.
| |
Collapse
|
377
|
Insights into leptin signaling and male reproductive health: the missing link between overweight and subfertility? Biochem J 2018; 475:3535-3560. [DOI: 10.1042/bcj20180631] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/28/2018] [Accepted: 10/19/2018] [Indexed: 12/24/2022]
Abstract
Obesity stands as one of the greatest healthcare challenges of the 21st century. Obesity in reproductive-age men is ever more frequent and is reaching upsetting levels. At the same time, fertility has taken an inverse direction and is decreasing, leading to an increased demand for fertility treatments. In half of infertile couples, there is a male factor alone or combined with a female factor. Furthermore, male fertility parameters such as sperm count and concentration went on a downward spiral during the last few decades and are now approaching the minimum levels established to achieve successful fertilization. Hence, the hypothesis that obesity and deleterious effects in male reproductive health, as reflected in deterioration of sperm parameters, are somehow related is tempting. Most often, overweight and obese individuals present leptin levels directly proportional to the increased fat mass. Leptin, besides the well-described central hypothalamic effects, also acts in several peripheral organs, including the testes, thus highlighting a possible regulatory role in male reproductive function. In the last years, research focusing on leptin effects in male reproductive function has unveiled additional roles and molecular mechanisms of action for this hormone at the testicular level. Herein, we summarize the novel molecular signals linking metabolism and male reproductive function with a focus on leptin signaling, mitochondria and relevant pathways for the nutritional support of spermatogenesis.
Collapse
|
378
|
Huang Z, Xiao K. Electrophysiological Mechanism of Peripheral Hormones and Nutrients Regulating Energy Homeostasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1090:183-198. [PMID: 30390291 DOI: 10.1007/978-981-13-1286-1_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In organism, energy homeostasis is a biological process that involves the coordinated homeostatic regulation of energy intake (food intake) and energy expenditure. The human brain, particularly the hypothalamic proopiomelanocortin (POMC)- and agouti-related protein/neuropeptide Y (AgRP/NPY)-expressing neurons in the arcuate nucleus, plays an essential role in regulating energy homeostasis. The regulation process is mainly dependent upon peripheral hormones such as leptin and insulin, as well as nutrients such as glucose, amino acids, and fatty acids. Although many studies have attempted to illustrate the exact mechanisms of glucose and hormones action on these neurons, we still cannot clearly see the full picture of this regulation action. Therefore, in this review we will mainly discuss those established theories and recent progresses in this area, demonstrating the possible physiological mechanism by which glucose, leptin, and insulin affect neuronal excitability of POMC and AgRP neurons. In addition, we will also focus on some important ion channels which are expressed by POMC and AgRP neurons, such as KATP channels and TRPC channels, and explain how these channels are regulated by peripheral hormones and nutrients and thus regulate energy homeostasis.
Collapse
Affiliation(s)
- Zhuo Huang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China.
| | - Kuo Xiao
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| |
Collapse
|
379
|
Mills JG, Thomas SJ, Larkin TA, Pai NB, Deng C. Problematic eating behaviours, changes in appetite, and weight gain in Major Depressive Disorder: The role of leptin. J Affect Disord 2018; 240:137-145. [PMID: 30071417 DOI: 10.1016/j.jad.2018.07.069] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 06/22/2018] [Accepted: 07/22/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Appetite and weight changes are core symptoms of Major Depressive Disorder (MDD), and those with MDD are at increased risk of obesity, cardiovascular disease and metabolic disorders. Leptin promotes satiety, with leptin dysregulation and resistance noted in obesity. However, the role of leptin in weight changes in MDD is not established. This study investigates leptin levels in relation to appetite and weight changes and problematic eating behaviours in MDD. METHODS Plasma leptin levels, psychopathology and biometrics were compared between participants meeting DSM-5 diagnostic criteria for MDD (n = 63) and healthy controls (n = 60). Depressed participants were also sub-categorised according to increased, decreased or unchanged appetite and weight. The Dutch Eating Behaviour Questionnaire and Yale Food Addiction Scale were examined in a subset of participants with MDD. RESULTS Females with increased appetite/weight had higher leptin levels than those with stable or reduced appetite/weight, however males showed the opposite effect. Leptin levels were positively correlated with problematic eating behaviours. One quarter of the depressed subset, all females, met the Yale criteria for food addiction, approximately double the rates reported in general community samples. LIMITATIONS The study is limited by a cross sectional design and a small sample size in the subset analysis of eating behaviours. CONCLUSIONS The results provide new information about associations between leptin, sex-specific weight and appetite changes and problematic eating behaviours, which may be risk factors for cardiovascular and metabolic diseases in MDD, particularly in females. Future longitudinal research investigating leptin as a risk factor for weight gain in MDD is warranted, and may lead to early interventions aimed at preventing weight gain in at-risk individuals.
Collapse
Affiliation(s)
- Jessica G Mills
- School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, Australia; Illawarra Health and Medical Research Institute, University of Wollongong, Australia.
| | - Susan J Thomas
- School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, Australia; Illawarra Health and Medical Research Institute, University of Wollongong, Australia
| | - Theresa A Larkin
- School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, Australia; Illawarra Health and Medical Research Institute, University of Wollongong, Australia
| | - Nagesh B Pai
- School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, Australia; Illawarra Health and Medical Research Institute, University of Wollongong, Australia
| | - Chao Deng
- School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, Australia; Illawarra Health and Medical Research Institute, University of Wollongong, Australia; Antipsychotic Research Laboratory, University of Wollongong, Australia
| |
Collapse
|
380
|
Ariamoghaddam AR, Ebrahimi-Hosseinzadeh B, Hatamian-Zarmi A, Sahraeian R. In vivo anti-obesity efficacy of curcumin loaded nanofibers transdermal patches in high-fat diet induced obese rats. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 92:161-171. [DOI: 10.1016/j.msec.2018.06.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 05/28/2018] [Accepted: 06/13/2018] [Indexed: 02/04/2023]
|
381
|
McGregor G, Harvey J. Regulation of Hippocampal Synaptic Function by the Metabolic Hormone, Leptin: Implications for Health and Neurodegenerative Disease. Front Cell Neurosci 2018; 12:340. [PMID: 30386207 PMCID: PMC6198461 DOI: 10.3389/fncel.2018.00340] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 09/13/2018] [Indexed: 11/13/2022] Open
Abstract
The role of the endocrine hormone leptin in controlling energy homeostasis in the hypothalamus are well documented. However the CNS targets for leptin are not restricted to the hypothalamus as a high density of leptin receptors are also expressed in several parts of the brain involved in higher cognitive functions including the hippocampus. Numerous studies have identified that in the hippocampus, leptin has cognitive enhancing actions as exogenous application of this hormone facilitates hippocampal-dependent learning and memory, whereas lack or insensitivity to leptin results in significant memory deficits. Leptin also markedly influences some of the main cellular changes that are involved in learning and memory including NMDA-receptor dependent synaptic plasticity and glutamate receptor trafficking. Like other metabolic hormones, there is a significant decline in neuronal sensitivity to leptin during the ageing process. Indeed, the capacity of leptin to modulate the functioning of hippocampal synapses is substantially reduced in aged compared to adult tissue. Clinical studies have also identified an association between circulating leptin levels and the risk of certain neurodegenerative disorders such as Alzheimer’s disease (AD). In view of this, targeting leptin and/or its receptor/signaling mechanisms may be an innovative approach for developing therapies to treat AD. In support of this, accumulating evidence indicates that leptin has cognitive enhancing and neuroprotective actions in various models of AD. Here we assess recent evidence that supports an important regulatory role for leptin at hippocampal CA1 synapses, and we discuss how age-related alterations in this hormonal system influences neurodegenerative disease.
Collapse
Affiliation(s)
- Gemma McGregor
- Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | - Jenni Harvey
- Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
382
|
Kaeidi A, Hajializadeh Z, Jahandari F, Fatemi I. Leptin attenuates oxidative stress and neuronal apoptosis in hyperglycemic condition. Fundam Clin Pharmacol 2018; 33:75-83. [DOI: 10.1111/fcp.12411] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/03/2018] [Accepted: 09/06/2018] [Indexed: 01/04/2023]
Affiliation(s)
- Ayat Kaeidi
- Physiology-Pharmacology Research Center; Research Institute of Basic Medical Sciences; Rafsanjan University of Medical Sciences; Rafsanjan Iran
- Department of Physiology and Pharmacology; School of Medicine; Rafsanjan University of Medical Sciences; Rafsanjan Iran
| | - Zahra Hajializadeh
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences; Kerman University of Medical Sciences, Ebn-e Sina Avenue; Kerman 7619813159 Iran
| | - Farank Jahandari
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences; Kerman University of Medical Sciences, Ebn-e Sina Avenue; Kerman 7619813159 Iran
| | - Iman Fatemi
- Physiology-Pharmacology Research Center; Research Institute of Basic Medical Sciences; Rafsanjan University of Medical Sciences; Rafsanjan Iran
- Department of Physiology and Pharmacology; School of Medicine; Rafsanjan University of Medical Sciences; Rafsanjan Iran
| |
Collapse
|
383
|
Abstract
Taste buds are the dedicated sensory end organs of taste, comprising a complex and evolving profile of signaling elements. The sensation and ultimate perception of taste depends on the expression of a diverse array of receptors and channels that sense their respective tastes. Receptor regulation is a recognized and well-studied phenomenon in many systems, observed in opioid addiction, insulin resistance and caffeine tolerance. Results from human sensory studies suggest that receptor sensitivity or expression level may decrease after chronic exposure to respective tastants through diet. We review data supporting the theory that taste receptors may become downregulated with exposure to a specific tastant, along with presenting data from a small pilot study, showing the impact of long-term tastant exposure on taste receptor expression in mice. Mice treated with monosodium salt monohydrate (MSG), saccharin and NaCl (typically appetitive tastes) all displayed a significant decrease in mRNA expression for respective umami, sweet and salty receptors/sensory channels. Reduced sensitivity to appetitive tastes may promote overconsumption of foods high in such stimuli.
Collapse
|
384
|
Philbrick KA, Branscum AJ, Wong CP, Turner RT, Iwaniec UT. Leptin Increases Particle-Induced Osteolysis in Female ob/ob Mice. Sci Rep 2018; 8:14790. [PMID: 30287858 PMCID: PMC6172200 DOI: 10.1038/s41598-018-33173-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 09/17/2018] [Indexed: 11/09/2022] Open
Abstract
Particles generated from wear of prosthesis joint bearing surfaces induce inflammation-mediated periprosthetic bone resorption (osteolysis). Morbidly obese leptin-deficient ob/ob mice are resistant to polyethylene particle-induced bone loss, suggesting that leptin, a hormone produced by adipocytes that circulates in concentrations proportional to total body adiposity, increases osteolysis. To confirm that particles induce less osteolysis in leptin-deficient mice after controlling for cold stress (room temperature)-induced bone loss, ob/ob mice on a C57BL/6 (B6) background and colony B6 wildtype (WT) mice housed at thermoneutral temperature were randomized to control or particle treatment groups (N = 5/group). Polyethylene particles were implanted over calvaria and mice sacrificed 2 weeks later. Compared to particle-treated WT mice, particle-treated ob/ob mice had lower osteolysis score, less infiltration of immune cells, and less woven bone formation. To determine the role of leptin in particle-induced osteolysis, ob/ob mice were randomized into one of 4 groups (n = 6-8/group): (1) control, (2) particles, (3) particles + continuous leptin (osmotic pump, 6 μg/d), or (4) particles + intermittent leptin (daily injection, 40 μg/d). Leptin treatment increased particle-induced osteolysis in ob/ob mice, providing evidence that the adpiokine may play a role in inflammation-driven bone loss. Additional research is required to determine whether altering leptin levels within the physiological range results in corresponding changes in polyethylene-particle-induced osteolysis.
Collapse
Affiliation(s)
- Kenneth A Philbrick
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, 97331, USA
| | - Adam J Branscum
- Biostatistics Program, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, 97331, USA
| | - Carmen P Wong
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, 97331, USA
| | - Russell T Turner
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, 97331, USA.,Center for Healthy Aging Research, Oregon State University, Corvallis, OR, 97331, USA
| | - Urszula T Iwaniec
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, 97331, USA. .,Center for Healthy Aging Research, Oregon State University, Corvallis, OR, 97331, USA.
| |
Collapse
|
385
|
Cho J, Kim D, Jang J, Kim J, Kang H. Treadmill running suppresses the vulnerability of dopamine D2 receptor deficiency to obesity and metabolic complications: a pilot study. J Exerc Nutrition Biochem 2018; 22:42-50. [PMID: 30343561 PMCID: PMC6199485 DOI: 10.20463/jenb.2018.0023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/18/2018] [Accepted: 09/20/2018] [Indexed: 12/16/2022] Open
Abstract
PURPOSE To investigate the effect of treadmill running on D2R deficiency related susceptibility to high fat diet (HFD )-induced obesity and its metabolic complications. METHODS D2R-/- and +/- mice were obtained by backcrossing D2R+/- heterozygotes on wild type (WT) littermates (C57BL/6J background) for >10 generations. Mice were randomly assigned to 1) WT mice with standard chow (SC) (WT+SC); 2) WT mice with high-fat diet (WT+HFD); 3) WT mice with high-fat diet plus exercise (WT+HFD+EX), 4) heterozygous (HET) D2R mice with SC (HET+SC); 5) heterozygous D2R mice with HFD (HET+HFD); and 6) heterozygous D2R mice with HFD plus exercise (HET+HFD+EX). In addition, mice assigned to EX groups were subjected to running on a motor-driven rodent treadmill with a frequency of 5 days per week. RESULTS After a 10-week HFD treatment, HET D2R (+/-) mice exhibited significantly higher values for hepatic steatosis (p<0.001), areas under the curves (AUCs) for the glucose tolerance test (GTT) and the insulin tolerance test (ITT) (p<0.001 & p<0.001 respectively), serum leptin (p=0.005) and total cholesterol (TC ) (p=0.009), in conjunction with decreased locomotor activity (p=0.031), compared to HET mice exposed to standard chow. However, these HFD-induced elevations in hepatic steatosis (p<0.001), AUCs for GTT and ITT (p=0.032 & p=0.018, respectively), serum leptin (p=0.038) and TC (p=0.038) were significantly alleviated after 10 weeks of treadmill running. CONCLUSION The current findings of the study provide experimental evidence of treadmill running as an effective and non-pharmacologic strategy to treat the susceptibility of brain D2R deficiency to HFD-induced obesity and metabolic disorders.
Collapse
Affiliation(s)
- Jinkyung Cho
- College of Sport Science, Sungkyunkwan University, SuwonRepublic of Korea
| | - Donghyun Kim
- College of Sport Science, Sungkyunkwan University, SuwonRepublic of Korea
| | - Jungmoon Jang
- College of Sport Science, Sungkyunkwan University, SuwonRepublic of Korea
| | - Jeonghyeon Kim
- College of Sport Science, Sungkyunkwan University, SuwonRepublic of Korea
| | - Hyunsik Kang
- College of Sport Science, Sungkyunkwan University, SuwonRepublic of Korea
| |
Collapse
|
386
|
Abstract
During the last decades, research on adipose tissues has spread in parallel with the extension of obesity. Several observations converged on the idea that adipose tissues are organized in a large organ with endocrine and plastic properties. Two parenchymal components: white (WATs) and brown adipose tissues (BATs) are contained in subcutaneous and visceral compartments. Although both have endocrine properties, their function differs: WAT store lipids to allow intervals between meals, BAT burns lipids for thermogenesis. In spite of these opposite functions, they share the ability for reciprocal reversible transdifferentiation to tackle special physiologic needs. Thus, chronic need for thermogenesis induces browning and chronic positive energy balance induce whitening. Lineage tracing and data from explant studies strongly suggest other remodeling properties of this organ. During pregnancy and lactation breast WAT transdifferentiates into milk-secreting glands, composed by cells with abundant cytoplasmic lipids (pink adipocytes) and in the postlactation period pink adipocytes transdifferentiate back into WAT and BAT. The plastic properties of mature adipocytes are supported also by a liposecretion process in vitro where adult cell in culture transdifferentiate to differentiated fibroblast-like elements able to give rise to different phenotypes (rainbow adipocytes). In addition, the inflammasome system is activated in stressed adipocytes from obese adipose tissue. These adipocytes die and debris are reabsorbed by macrophages inducing a chronic low-grade inflammation, potentially contributing to insulin resistance and T2 diabetes. Thus, the plastic properties of this organ could open new therapeutic perspectives in the obesity-related metabolic disease and in breast pathologies. © 2018 American Physiological Society. Compr Physiol 8:1357-1431, 2018.
Collapse
Affiliation(s)
- Saverio Cinti
- Professor of Human Anatomy, Director, Center of Obesity, University of Ancona (Politecnica delle Marche), Ancona, Italy
| |
Collapse
|
387
|
Does circulating leptin play a role in energy expenditure? Nutrition 2018; 60:6-10. [PMID: 30508765 DOI: 10.1016/j.nut.2018.08.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/13/2018] [Accepted: 08/22/2018] [Indexed: 11/20/2022]
Abstract
OBJECTIVES It has been demonstrated that leptin influences the energy balance by regulating appetite and increasing energy expenditure (EE). However, the relationship between circulating leptin and EE is confounded owing to variations in body composition. The aim of this study was to determine the role of circulating leptin in energy regulation and to examine whether the leptin-mediated changes in EE are associated with adiposity among healthy adults living in Singapore. METHODS We conducted a cross-sectional study of 300 participants (112 men). Resting metabolic rate (RMR) was measured by indirect calorimetry. Body composition (i.e., fat mass [FM] and fat-free mass [FFM]) was measured by dual-energy x-ray absorptiometry. Serum leptin levels were determined by radioimmunoassay. RESULTS There were strong correlations between circulating leptin levels, FM, and RMR in healthy men and women. After normalization of RMR by a power function model (kcal·kg FFM0.86·d-1), the influence of FFM can be effectively removed. The normalized RMR was significantly associated with both FM (r = 0.28, P < 0.001) and log leptin (r = 0.35, P < 0.001). In the stepwise multiple regression analysis, leptin level is the major predictor for normalized RMR, accounting for 12% of the variation. In contrast, FM did not explain any variation in normalized RMR. CONCLUSION Leptin may be a more significant predictor of normalized RMR than FM per se. The contribution of FM to RMR could be via a mechanism that is related to leptin-dependent responses involved in energy homeostasis.
Collapse
|
388
|
Pérez-Morales M, Hurtado-Alvarado G, Morales-Hernández I, Gómez-González B, Domínguez-Salazar E, Velázquez-Moctezuma J. Postnatal overnutrition alters the orexigenic effects of melanin-concentrating hormone (MCH) and reduces MCHR1 hypothalamic expression on spontaneous feeding and fasting. Pharmacol Biochem Behav 2018; 175:53-61. [PMID: 30196088 DOI: 10.1016/j.pbb.2018.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 09/04/2018] [Accepted: 09/05/2018] [Indexed: 01/04/2023]
Abstract
One of the approaches to induce obesity in rodents consists in reducing litter size to 3 pups during the lactation period. Animals submitted to this manipulation are heavier, hyperphagic and develop several metabolic diseases for the rest of their lives. In the present study, under the premise that melanin-concentrating hormone (MCH), an orexigenic peptide synthesized by neurons of the lateral hypothalamus, is involved in food intake regulation, we aimed to measure the hypothalamic expression of its receptor, MCHR1, in adult early overfed obese animals and normoweight controls at both ad libitum and food deprived conditions. Additionally, we administered MCH, or an antiMCH antibody, into the third ventricle of ad libitum-fed rats, or fasted rats, respectively, and evaluated chow consumption. Typical nocturnal hyperphagia in rodents was elevated in obese animals compared to normoweight controls, accompanied by a lower expression of MCHR1 and leptin receptor (Ob-R). Following a 24 h fasting, MCHR1 remained lower in SL rats. After 4 h of re-feeding, obese animals ate more than normoweight controls. MCH failed to enhance appetite in early overfed obese animals and immunoneutralization of the peptide only reduced fasted induced-hyperphagia in normoweight controls. These results support the notion that both peptide and brain endogenous MCH exert a physiological relevant action in food intake regulation in normoweight rats, but that postnatal overnutrition disturbs this system, as reflected by MCHR1 downregulation at both ad libitum and fasted conditions and in the lack of response to MCH in both positive- and negative-energetic states in early overfed obese animals.
Collapse
Affiliation(s)
- Marcel Pérez-Morales
- Area of Neurosciences, Department of Biology of Reproduction, CBS, Universidad Autónoma Metropolitana, Unidad Iztapalapa, México City, México.
| | - Gabriela Hurtado-Alvarado
- Area of Neurosciences, Department of Biology of Reproduction, CBS, Universidad Autónoma Metropolitana, Unidad Iztapalapa, México City, México
| | - Itzel Morales-Hernández
- Area of Neurosciences, Department of Biology of Reproduction, CBS, Universidad Autónoma Metropolitana, Unidad Iztapalapa, México City, México
| | - Beatriz Gómez-González
- Area of Neurosciences, Department of Biology of Reproduction, CBS, Universidad Autónoma Metropolitana, Unidad Iztapalapa, México City, México.
| | - Emilio Domínguez-Salazar
- Area of Neurosciences, Department of Biology of Reproduction, CBS, Universidad Autónoma Metropolitana, Unidad Iztapalapa, México City, México
| | - Javier Velázquez-Moctezuma
- Area of Neurosciences, Department of Biology of Reproduction, CBS, Universidad Autónoma Metropolitana, Unidad Iztapalapa, México City, México.
| |
Collapse
|
389
|
Rasool S, Geetha T, Broderick TL, Babu JR. High Fat With High Sucrose Diet Leads to Obesity and Induces Myodegeneration. Front Physiol 2018; 9:1054. [PMID: 30258366 PMCID: PMC6143817 DOI: 10.3389/fphys.2018.01054] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 07/16/2018] [Indexed: 12/21/2022] Open
Abstract
Skeletal muscle utilizes both free fatty acids (FFAs) and glucose that circulate in the blood stream. When blood glucose levels acutely increase, insulin stimulates muscle glucose uptake, oxidation, and glycogen synthesis. Under these conditions, skeletal muscle preferentially oxidizes glucose while the oxidation of fatty acids (FAs) oxidation is reciprocally decreased. In metabolic disorders associated with insulin resistance, such as diabetes and obesity, both glucose uptake, and utilization muscle are significantly reduced causing FA oxidation to provide the majority of ATP for metabolic processes and contraction. Although the causes of this metabolic inflexibility or disrupted "glucose-fatty acid cycle" are largely unknown, a diet high in fat and sugar (HFS) may be a contributing factor. This metabolic inflexibility observed in models of obesity or with HFS feeding is detrimental because high rates of FA oxidation in skeletal muscle can lead to the buildup of toxic metabolites of fat metabolism and the accumulation of pro-inflammatory cytokines, which further exacerbate the insulin resistance. Further, HFS leads to skeletal muscle atrophy with a decrease in myofibrillar proteins and phenotypically characterized by loss of muscle mass and strength. Overactivation of ubiquitin proteasome pathway, oxidative stress, myonuclear apoptosis, and mitochondrial dysfunction are some of the mechanisms involved in muscle atrophy induced by obesity or in mice fed with HFS. In this review, we will discuss how HFS diet negatively impacts the various physiological and metabolic mechanisms in skeletal muscle.
Collapse
Affiliation(s)
- Suhail Rasool
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL, United States
| | - Thangiah Geetha
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL, United States
| | - Tom L Broderick
- Laboratory of Diabetes and Exercise Metabolism, Department of Physiology, Midwestern University, Glendale, AZ, United States
| | - Jeganathan R Babu
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL, United States
| |
Collapse
|
390
|
Mittenbühler MJ, Sprenger HG, Gruber S, Wunderlich CM, Kern L, Brüning JC, Wunderlich FT. Hepatic leptin receptor expression can partially compensate for IL-6Rα deficiency in DEN-induced hepatocellular carcinoma. Mol Metab 2018; 17:122-133. [PMID: 30224299 PMCID: PMC6197506 DOI: 10.1016/j.molmet.2018.08.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/28/2018] [Accepted: 08/29/2018] [Indexed: 02/07/2023] Open
Abstract
Objective The current obesity pandemic represents a major health burden, given that it predisposes to the development of numerous obesity-associated disorders. The obesity-derived adipokines not only impair systemic insulin action but also increase the incidence of hepatocellular carcinoma (HCC), a highly prevalent cancer with poor prognosis. Thus, worldwide incidences of HCC are expected to further increase, and defining the molecular as well as cellular mechanisms will allow for establishing new potential treatment options. The adipose tissue of obese individuals increases circulating leptin and interleukin-6 (IL-6) levels, which both share similar signaling capacities such as Signal Transducer and Activator of Transcription 3 (STAT3) and Phosphoinositide 3-kinase (PI3K)/Akt activation. While mouse models with deficient IL-6 signaling show an ameliorated but not absent Diethylnitrosamine (DEN)-induced HCC development, the morbid obesity in mice with mutant leptin signaling complicates the dissection of hepatic leptin receptor (LEPR) and IL-6 signaling in HCC development. Here we have investigated the function of compensating hepatic LEPR expression in HCC development of IL-6Rα-deficient mice. Methods We generated and characterized a mouse model of hepatic LEPR deficiency that was intercrossed with IL-6Rα-deficient mice. Cohorts of single and double knockout mice were subjected to the DEN-HCC model to ascertain liver cancer development and characterize metabolic alterations. Results We demonstrate that both high-fat diet (HFD)-induced obesity and IL-6Rα deficiency induce hepatic Lepr expression. Consistently, double knockout mice show a further reduction in tumor burden in DEN-induced HCC when compared to control and single LepRL−KO/IL-6Rα knock out mice, whereas metabolism remained largely unaltered between the genotypes. Conclusions Our findings reveal a compensatory role for hepatic LEPR in HCC development of IL-6Rα-deficient mice and suggest hepatocyte-specific leptin signaling as promoter of HCC under obese conditions. High fat diet feeding induces LEPR expression in hepatocytes. IL-6Rα deficiency induces LEPR expression in hepatocytes. Hepatic LEPR deficiency fails to affect body composition and metabolism. Hepatic LEPR deficiency ameliorates HCC burden in IL-6Rα-deficient mice.
Collapse
Affiliation(s)
- Melanie J Mittenbühler
- Max Planck Institute for Metabolism Research, Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), Cologne, 50931, Germany
| | - Hans-Georg Sprenger
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), Germany; Max Planck Institute for Biology of Ageing, Cologne, 50931, Germany
| | - Sabine Gruber
- Max Planck Institute for Metabolism Research, Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), Cologne, 50931, Germany
| | - Claudia M Wunderlich
- Max Planck Institute for Metabolism Research, Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), Cologne, 50931, Germany
| | - Lara Kern
- Max Planck Institute for Metabolism Research, Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), Cologne, 50931, Germany
| | - Jens C Brüning
- Max Planck Institute for Metabolism Research, Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), Cologne, 50931, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), Germany
| | - F Thomas Wunderlich
- Max Planck Institute for Metabolism Research, Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), Cologne, 50931, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), Germany.
| |
Collapse
|
391
|
Ferguson D, Blenden M, Hutson I, Du Y, Harris CA. Mouse Embryonic Fibroblasts Protect ob/ob Mice From Obesity and Metabolic Complications. Endocrinology 2018; 159:3275-3286. [PMID: 30085057 PMCID: PMC6109302 DOI: 10.1210/en.2018-00561] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 07/25/2018] [Indexed: 12/22/2022]
Abstract
The global obesity epidemic is fueling alarming rates of diabetes, associated with increased risk of cardiovascular disease and cancer. Leptin is a hormone secreted by adipose tissue that is a key regulator of body weight (BW) and energy expenditure. Leptin-deficient humans and mice are obese, diabetic, and infertile and have hepatic steatosis. Although leptin replacement therapy can alleviate the pathologies seen in leptin-deficient patients and mouse models, treatment is costly and requires daily injections. Because adipocytes are the source of leptin secretion, we investigated whether mouse embryonic fibroblasts (MEFs), capable of forming adipocytes, could be injected into ob/ob mice and prevent the metabolic phenotype seen in these leptin-deficient mice. We performed a single subcutaneous injection of MEFs into leptin-deficient ob/ob mice. The MEF injection formed a single fat pad that is histologically similar to white adipose tissue. The ob/ob mice receiving MEFs (obRs) had significantly lower BW compared with nontreated ob/ob mice, primarily because of decreased adipose tissue mass. Additionally, obR mice had significantly less liver steatosis and greater glucose tolerance and insulin sensitivity. obR mice also manifested lower food intake and greater energy expenditure than ob/ob mice, providing a mechanism underlying their metabolic improvement. Furthermore, obRs have sustained metabolic protection and restoration of fertility. Collectively, our studies show the importance of functional adipocytes in preventing metabolic abnormalities seen in leptin deficiency and point to the possibility of cell-based therapies for the treatment of leptin-deficient states.
Collapse
Affiliation(s)
- Daniel Ferguson
- Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, Missouri
| | - Mitchell Blenden
- Department of Medical Education, College of Medicine, University of Central Florida, Orlando, Florida
| | - Irina Hutson
- Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, Missouri
| | - Yingqiu Du
- Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, Missouri
| | - Charles A Harris
- Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, Missouri
- Department of Medicine, Veterans Affairs St. Louis Healthcare System, John Cochran Division, St. Louis, Missouri
| |
Collapse
|
392
|
Recombinant leptin attenuates abdominal aortic aneurysm formation in angiotensin II-infused apolipoprotein E-deficient mice. Biochem Biophys Res Commun 2018; 503:1450-1456. [DOI: 10.1016/j.bbrc.2018.07.062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 07/11/2018] [Indexed: 12/19/2022]
|
393
|
Jeung WH, Shim JJ, Woo SW, Sim JH, Lee JL. Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032 Cell Extracts Inhibit Adipogenesis in 3T3-L1 and HepG2 Cells. J Med Food 2018; 21:876-886. [PMID: 30148699 DOI: 10.1089/jmf.2017.4157] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Some lactic acid bacteria (LAB) and their cellular components have antiobesity effects. In this study, we evaluated the antiadipogenic effects of a mixture of two LAB-Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032-using 3T3-L1 preadipocytes and HepG2 hepatocarcinoma cells. 3T3-L1 cells treated with a 1:1 ratio of HY7601 and KY1032 during differentiation showed reduced lipid accumulation by Oil Red O staining, as well as decreased leptin secretion and mRNA expression of peroxisome proliferator-activated receptor-γ and CCAAT/enhancer binding protein-α. HY7601 and KY1032 treatment also suppressed mitochondrial biogenesis and inhibited the expression of genes encoding mitochondrial transcription factors, as well as those related to fatty acid synthesis in HepG2 cells. The antiadipogenic effects of LAB were associated with the cell membrane fraction. These results demonstrate that a mixture of two LAB (HY7601 and KY1032) inhibits adipogenesis in preadipocytes and liver cells and is a potential therapeutic strategy for the treatment of obesity.
Collapse
Affiliation(s)
| | - Jae-Jung Shim
- 1 R&BD Center , Korea Yakult Co. Ltd., Yongin, Korea.,2 College of Agriculture and Life Sciences, Seoul National University , Seoul, Korea
| | - Seon-Wook Woo
- 1 R&BD Center , Korea Yakult Co. Ltd., Yongin, Korea
| | - Jae-Hun Sim
- 1 R&BD Center , Korea Yakult Co. Ltd., Yongin, Korea
| | - Jung-Lyoul Lee
- 1 R&BD Center , Korea Yakult Co. Ltd., Yongin, Korea.,3 College of Veterinary Medicine, Konkuk University , Seoul, Korea
| |
Collapse
|
394
|
Marques-Oliveira GH, Silva TM, Lima WG, Valadares HMS, Chaves VE. Insulin as a hormone regulator of the synthesis and release of leptin by white adipose tissue. Peptides 2018; 106:49-58. [PMID: 29953915 DOI: 10.1016/j.peptides.2018.06.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/20/2018] [Accepted: 06/24/2018] [Indexed: 02/09/2023]
Abstract
Leptin and its receptor are widely distributed in several tissues, mainly in white adipose tissue. The serum leptin is highly correlated with body mass index in rodents and humans, being documented that leptin levels reduces in the fasting state and increase during refeeding, similarly to insulin release by pancreatic islets. Insulin appears to increase leptin mRNA and protein expression and its release by adipocytes. Some studies have suggested that insulin acts through the activation of the transcription factors: sterol regulatory element binding protein 1 (SREBP1), CCAAT enhancer binding protein-α (C/EBP-α) and specificity protein 1 (Sp1). Insulin stimulates the release of preformed and newly synthesized leptin by adipocytes through its signaling cascade. Its effects are blocked by inhibitors of the insulin signaling pathway, as well as by inhibitors of protein synthesis and agents that increase the intracellular cAMP. The literature data suggest that chronic hyperinsulinemia increases serum leptin levels in humans and rodents. In this review, we summarized the most updated knowledge on the effects of insulin on serum leptin levels, presenting the cell mechanisms that control leptin synthesis and release by the white adipose tissue.
Collapse
Affiliation(s)
| | - Thaís Marques Silva
- Laboratory of Physiology, Federal University of São João del-Rei, Divinópolis, Minas Gerais, Brazil
| | - William Gustavo Lima
- Laboratory of Physiology, Federal University of São João del-Rei, Divinópolis, Minas Gerais, Brazil
| | | | - Valéria Ernestânia Chaves
- Laboratory of Physiology, Federal University of São João del-Rei, Divinópolis, Minas Gerais, Brazil.
| |
Collapse
|
395
|
Sundaram S, Yan L. Time-restricted feeding mitigates high-fat diet-enhanced mammary tumorigenesis in MMTV-PyMT mice. Nutr Res 2018; 59:72-79. [PMID: 30442235 DOI: 10.1016/j.nutres.2018.07.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 07/02/2018] [Accepted: 07/29/2018] [Indexed: 12/13/2022]
Abstract
Erratic eating behavior disrupts the daily feeding and fasting pattern and leads to metabolic dysfunction and chronic diseases including cancer. In the present study, we tested the hypothesis that time-restricted feeding of a high-fat diet (HFD) to the dark phase does not enhance mammary tumorigenesis in MMTV-PyMT mice. Female mice were assigned to 3 groups and fed the standard AIN93G diet or an HFD with or without dark phase restricted feeding (12 hours). The duration of restricted feeding was 8 weeks. The HFD group had 24% more body fat mass than the AIN93G group; the body fat mass of the restricted group remained similar to that of the AIN93G group. Energy intake of the restricted group was similar to that of the HFD and AIN93G groups. The median mammary tumor latency was 5.8, 7.0, and 6.4 weeks for the AIN93G, HFD, and restricted groups, respectively. Mammary tumor progression was 241% higher in the HFD group than that in the AIN93G group; there was no significant difference in tumor progression between the restricted and AIN93G groups. Plasma concentrations of leptin, monocyte chemoattractant protein-1, plasminogen activator inhibitor-1, angiopoietin-2, vascular endothelial growth factor, and hepatocyte growth factor were significantly higher in the HFD group than those in the control group; these measurements were similar between the restricted and control groups. In conclusion, feeding restricted to the dark phase mitigates the HFD-enhanced mammary tumorigenesis; this may be related to the lower body adiposity and associated inflammatory and angiogenic signals.
Collapse
Affiliation(s)
- S Sundaram
- US Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND 58202, USA.
| | - L Yan
- US Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND 58202, USA.
| |
Collapse
|
396
|
Zhu Q, Chang A, Xu A, Luo K. The regulatory protein SnoN antagonizes activin/Smad2 protein signaling and thereby promotes adipocyte differentiation and obesity in mice. J Biol Chem 2018; 293:14100-14111. [PMID: 30030373 DOI: 10.1074/jbc.ra118.003678] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/17/2018] [Indexed: 12/25/2022] Open
Abstract
Ski-related oncogene SnoN (SnoN or SKIL) regulates multiple signaling pathways in a tissue- and developmental stage-dependent manner and has broad functions in embryonic angiogenesis, mammary gland alveologenesis, cancer, and aging. Here, we report that SnoN also plays a critical role in white adipose tissue (WAT) development by regulating mesenchymal stem cell (MSC) self-renewal and differentiation. We found that SnoN promotes MSC differentiation in the adipocyte lineage by antagonizing activin A/Smad2, but not TGFβ/Smad3 signaling. Mice lacking SnoN or expressing a mutant SnoN defective in binding to the Smads were protected from high-fat diet-induced obesity and insulin resistance, and MSCs lacking a functional SnoN exhibited defective differentiation. We further demonstrated that activin, via Smad2, appears to be the major regulator of WAT development in vivo We also noted that activin A is abundantly expressed in WAT and adipocytes through an autocrine mechanism and promotes MSC self-renewal and inhibits adipogenic differentiation by inducing expression of the gene encoding the homeobox transcription factor Nanog. Of note, SnoN repressed activin/Smad2 signaling and activin A expression, enabling expression of adipocyte-specific transcription factors and promoting adipogenic differentiation. In conclusion, our study has revealed that SnoN plays an important in vivo role in adipocyte differentiation and WAT development in vivo by decreasing activity in the activin/Smad2 signaling pathway.
Collapse
Affiliation(s)
- Qingwei Zhu
- From the Department of Molecular and Cell Biology, University of California, Berkeley, California 94720
| | - Amanda Chang
- From the Department of Molecular and Cell Biology, University of California, Berkeley, California 94720
| | - Albert Xu
- the Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco, California 94158-2140
| | - Kunxin Luo
- From the Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, .,the Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 and
| |
Collapse
|
397
|
Role for fatty acid amide hydrolase (FAAH) in the leptin-mediated effects on feeding and energy balance. Proc Natl Acad Sci U S A 2018; 115:7605-7610. [PMID: 29967158 DOI: 10.1073/pnas.1802251115] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Endocannabinoid signaling regulates feeding and metabolic processes and has been linked to obesity development. Several hormonal signals, such as glucocorticoids and ghrelin, regulate feeding and metabolism by engaging the endocannabinoid system. Similarly, studies have suggested that leptin interacts with the endocannabinoid system, yet the mechanism and functional relevance of this interaction remain elusive. Therefore, we explored the interaction between leptin and endocannabinoid signaling with a focus on fatty acid amide hydrolase (FAAH), the primary degradative enzyme for the endocannabinoid N-arachidonoylethanolamine (anandamide; AEA). Mice deficient in leptin exhibited elevated hypothalamic AEA levels and reductions in FAAH activity while leptin administration to WT mice reduced AEA content and increased FAAH activity. Following high fat diet exposure, mice developed resistance to the effects of leptin administration on hypothalamic AEA content and FAAH activity. At a functional level, pharmacological inhibition of FAAH was sufficient to prevent leptin-mediated effects on body weight and food intake. Using a novel knock-in mouse model recapitulating a common human polymorphism (FAAH C385A; rs324420), which reduces FAAH activity, we investigated whether human genetic variance in FAAH affects leptin sensitivity. While WT (CC) mice were sensitive to leptin-induced reductions in food intake and body weight gain, low-expressing FAAH (AA) mice were unresponsive. These data demonstrate that FAAH activity is required for leptin's hypophagic effects and, at a translational level, suggest that a genetic variant in the FAAH gene contributes to differences in leptin sensitivity in human populations.
Collapse
|
398
|
Ohlsson C, Hägg DA, Hammarhjelm F, Dalmau Gasull A, Bellman J, Windahl SH, Palsdottir V, Jansson JO. The Gravitostat Regulates Fat Mass in Obese Male Mice While Leptin Regulates Fat Mass in Lean Male Mice. Endocrinology 2018; 159:2676-2682. [PMID: 29800288 DOI: 10.1210/en.2018-00307] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 05/15/2018] [Indexed: 11/19/2022]
Abstract
Leptin has been the only known homeostatic regulator of fat mass, but we recently found evidence for a second one, named the gravitostat. In the current study, we compared the effects of leptin and increased loading (gravitostat stimulation) on fat mass in mice with different levels of body weight (lean, overweight, and obese). Leptin infusion suppressed body weight and fat mass in lean mice given normal chow but not in overweight or obese mice given a high-fat diet for 4 and 8 weeks, respectively. The maximum effect of leptin on body weight and fat mass was obtained already at <44 ng/mL of serum leptin. Increased loading using intraperitoneal capsules with different weights decreased body weight in overweight and obese mice. Although the implantation of an empty capsule reduced the body weight in lean mice, only a nonsignificant tendency of a specific effect of increased loading was observed in the lean mice. These findings demonstrate that the gravitostat regulates fat mass in obese mice, whereas leptin regulates fat mass only in lean mice with low endogenous serum leptin levels. We propose that activation of the gravitostat primarily protects against obesity, whereas low levels of leptin protect against undernutrition.
Collapse
Affiliation(s)
- Claes Ohlsson
- Center for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Daniel A Hägg
- Center for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Fredrik Hammarhjelm
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Adrià Dalmau Gasull
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jakob Bellman
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sara H Windahl
- Center for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Huddinge, Sweden
| | - Vilborg Palsdottir
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - John-Olov Jansson
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
399
|
Decara J, Serrano A, Pavón FJ, Rivera P, Arco R, Gavito A, Vargas A, Navarro JA, Tovar R, Lopez-Gambero AJ, Martínez A, Suárez J, Rodríguez de Fonseca F, Baixeras E. The adiponectin promoter activator NP-1 induces high levels of circulating TNFα and weight loss in obese (fa/fa) Zucker rats. Sci Rep 2018; 8:9858. [PMID: 29959379 PMCID: PMC6026175 DOI: 10.1038/s41598-018-27871-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 06/12/2018] [Indexed: 12/19/2022] Open
Abstract
Chronic NP-1 administration reduces body weight and hepatic steatosis despite induction of tolerance in adiponectin gene transcription with respect to the acute actions of this drug. This study explored the hypothesis that NP-1 could exert these effects through mechanisms independent of adiponectin. To this aim, we took advantage of the Zucker (fa/fa) rat model, which exhibits obesity, fatty liver and elevated leptin and adiponectin levels. Body weight and food intake were reduced after chronic NP-1 treatment. Plasma TNFα concentrations were elevated but no increase in adiponectin was found. Even so, NP-1 ameliorated fatty liver and corrected dyslipidemia by mechanisms probably associated with reduced feeding, transcription of Cpt1 and down-regulation of Hmgcr-CoA expression. In brown fat tissue NP-1 increased Dnmt1 (inhibitor of Adipoq) while it reduced Ucp1 expression and heat production, which excludes thermogenesis as a mechanism of the NP-1 slimming effect. The anti-obesity action of chronic NP-1 administration might be mediated by TNFα, which is known to have anorectic actions in the hypothalamus and to regulate both Dmnt1 and Ucp1 expression in adipose tissues. This finding opens up the possibility of using NP-1-mediated TNFα-induced weight loss as an innovative treatment of complicated obesity under strict pharmacologic control.
Collapse
Affiliation(s)
- Juan Decara
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga-Hospital Universitario Regional de Málaga, Avda. Carlos Haya 82, Pabellón de Gobierno, 29010, Málaga, Spain
| | - Antonia Serrano
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga-Hospital Universitario Regional de Málaga, Avda. Carlos Haya 82, Pabellón de Gobierno, 29010, Málaga, Spain
| | - Francisco Javier Pavón
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga-Hospital Universitario Regional de Málaga, Avda. Carlos Haya 82, Pabellón de Gobierno, 29010, Málaga, Spain
| | - Patricia Rivera
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga-Hospital Universitario Regional de Málaga, Avda. Carlos Haya 82, Pabellón de Gobierno, 29010, Málaga, Spain
| | - Rocio Arco
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga-Hospital Universitario Regional de Málaga, Avda. Carlos Haya 82, Pabellón de Gobierno, 29010, Málaga, Spain
| | - Ana Gavito
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga-Hospital Universitario Regional de Málaga, Avda. Carlos Haya 82, Pabellón de Gobierno, 29010, Málaga, Spain
| | - Antonio Vargas
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga-Hospital Universitario Regional de Málaga, Avda. Carlos Haya 82, Pabellón de Gobierno, 29010, Málaga, Spain
| | - Juan A Navarro
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga-Hospital Universitario Regional de Málaga, Avda. Carlos Haya 82, Pabellón de Gobierno, 29010, Málaga, Spain.,Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Ruben Tovar
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga-Hospital Universitario Regional de Málaga, Avda. Carlos Haya 82, Pabellón de Gobierno, 29010, Málaga, Spain.,Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Antonio J Lopez-Gambero
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga-Hospital Universitario Regional de Málaga, Avda. Carlos Haya 82, Pabellón de Gobierno, 29010, Málaga, Spain
| | - Ana Martínez
- Centro de Investigaciones Biológicas-CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Juan Suárez
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga-Hospital Universitario Regional de Málaga, Avda. Carlos Haya 82, Pabellón de Gobierno, 29010, Málaga, Spain
| | - Fernando Rodríguez de Fonseca
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga-Hospital Universitario Regional de Málaga, Avda. Carlos Haya 82, Pabellón de Gobierno, 29010, Málaga, Spain.
| | - Elena Baixeras
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga-Hospital Universitario Regional de Málaga, Avda. Carlos Haya 82, Pabellón de Gobierno, 29010, Málaga, Spain. .,Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Málaga, Málaga, Spain.
| |
Collapse
|
400
|
|