401
|
Hu C, Jia W. Multi-omics profiling: the way towards precision medicine in metabolic diseases. J Mol Cell Biol 2021; 13:mjab051. [PMID: 34406397 PMCID: PMC8697344 DOI: 10.1093/jmcb/mjab051] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 12/12/2022] Open
Abstract
Metabolic diseases including type 2 diabetes mellitus (T2DM), non-alcoholic fatty liver disease (NAFLD), and metabolic syndrome (MetS) are alarming health burdens around the world, while therapies for these diseases are far from satisfying as their etiologies are not completely clear yet. T2DM, NAFLD, and MetS are all complex and multifactorial metabolic disorders based on the interactions between genetics and environment. Omics studies such as genetics, transcriptomics, epigenetics, proteomics, and metabolomics are all promising approaches in accurately characterizing these diseases. And the most effective treatments for individuals can be achieved via omics pathways, which is the theme of precision medicine. In this review, we summarized the multi-omics studies of T2DM, NAFLD, and MetS in recent years, provided a theoretical basis for their pathogenesis and the effective prevention and treatment, and highlighted the biomarkers and future strategies for precision medicine.
Collapse
Affiliation(s)
- Cheng Hu
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus,
Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth
People's Hospital, Shanghai 200233, China
- Institute for Metabolic Disease, Fengxian Central Hospital, The Third School of
Clinical Medicine, Southern Medical University, Shanghai 201499, China
| | - Weiping Jia
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus,
Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth
People's Hospital, Shanghai 200233, China
| |
Collapse
|
402
|
Watanabe K, Yamano M, Masujima Y, Ohue-Kitano R, Kimura I. Curdlan intake changes gut microbial composition, short-chain fatty acid production, and bile acid transformation in mice. Biochem Biophys Rep 2021; 27:101095. [PMID: 34401531 PMCID: PMC8358642 DOI: 10.1016/j.bbrep.2021.101095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 11/17/2022] Open
Abstract
Indigestible polysaccharides, such as dietary fibers, benefit the host by improving the intestinal environment. Short-chain fatty acids (SCFAs) produced by gut microbial fermentation from dietary fibers exert various physiological effects. The bacterial polysaccharide curdlan benefits the host intestinal environment, although its effect on energy metabolism and SCFA production remains unclear. Hence, this study aimed to elucidate the effect of curdlan intake on gut microbial profiles, SCFA production, and energy metabolism in a high-fat diet (HFD)-induced obese mouse model. Gut microbial composition of fecal samples from curdlan-supplemented HFD-fed mice indicated an elevated abundance of Bacteroidetes, whereas a reduced abundance of Firmicutes was noted at the phylum level compared with that in cellulose-supplemented HFD-fed mice. Moreover, curdlan supplementation resulted in an abundance of the family Bacteroidales S24-7 and Erysipelotrichaceae, and a reduction in Deferribacteres in the feces. Furthermore, curdlan supplementation elevated fecal SCFA levels, particularly butyrate. Although body weight and fat mass were not affected by curdlan supplementation in HFD-induced obese mice, HFD-induced hyperglycemia was significantly suppressed with an increase in plasma insulin and incretin GLP-1 levels. Curdlan supplementation elevated fecal bile acid and SCFA production, improved host metabolic functions by altering the gut microbial composition in mice. Curdlan improves gut microbial composition in high-fat diet-fed (HFD) mice. The effects of HFD-induced hyperglycemia are mitigated by curdlan supplementation. Curdlan supplementation increases plasma insulin and GLP-1 levels. Curdlan increases fecal short-chain fatty acids (SCFAs) and secondary bile acids.
Collapse
Affiliation(s)
- Keita Watanabe
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Mayu Yamano
- Laboratory of Molecular Neurobiology, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Yuki Masujima
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Kyoto-shi, Kyoto, 606-8501, Japan
| | - Ryuji Ohue-Kitano
- Laboratory of Molecular Neurobiology, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan.,Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Kyoto-shi, Kyoto, 606-8501, Japan
| | - Ikuo Kimura
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, 183-8509, Japan.,Laboratory of Molecular Neurobiology, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan.,Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Kyoto-shi, Kyoto, 606-8501, Japan.,AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo, 100-0004, Japan
| |
Collapse
|
403
|
Intestinal-derived FGF15 protects against deleterious effects of vertical sleeve gastrectomy in mice. Nat Commun 2021; 12:4768. [PMID: 34362888 PMCID: PMC8346483 DOI: 10.1038/s41467-021-24914-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 07/14/2021] [Indexed: 12/18/2022] Open
Abstract
Bariatric surgeries such as the Vertical Sleeve Gastrectomy (VSG) are invasive but provide the most effective improvements in obesity and Type 2 diabetes. We hypothesized a potential role for the gut hormone Fibroblast-Growth Factor 15/19 which is increased after VSG and pharmacologically can improve energy homeostasis and glucose handling. We generated intestinal-specific FGF15 knockout (FGF15INT-KO) mice which were maintained on high-fat diet. FGF15INT-KO mice lost more weight after VSG as a result of increased lean tissue loss. FGF15INT-KO mice also lost more bone density and bone marrow adipose tissue after VSG. The effect of VSG to improve glucose tolerance was also absent in FGF15INT-KO. VSG resulted in increased plasma bile acid levels but were considerably higher in VSG-FGF15INT-KO mice. These data point to an important role after VSG for intestinal FGF15 to protect the organism from deleterious effects of VSG potentially by limiting the increase in circulating bile acids. The mechanisms that mediate the effects of weight loss surgeries such as vertical sleeve gastrectomy (VSG) are incompletely understood. Here the authors show that intestinal FGF15 is necessary to improve glucose tolerance and to prevent the loss of muscle and bone mass after VSG, potentially via protection against bile acid toxicity.
Collapse
|
404
|
Cunningham AL, Stephens JW, Harris DA. Gut microbiota influence in type 2 diabetes mellitus (T2DM). Gut Pathog 2021; 13:50. [PMID: 34362432 PMCID: PMC8343927 DOI: 10.1186/s13099-021-00446-0] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/25/2021] [Indexed: 12/12/2022] Open
Abstract
A strong and expanding evidence base supports the influence of gut microbiota in human metabolism. Altered glucose homeostasis is associated with altered gut microbiota, and is clearly associated with the development of type 2 diabetes mellitus (T2DM) and associated complications. Understanding the causal association between gut microbiota and metabolic risk has the potential role of identifying susceptible individuals to allow early targeted intervention.
Collapse
Affiliation(s)
- A L Cunningham
- Department of Surgery, Swansea Bay University Health Board, Singleton Hospital, Swansea, SA2 8QA, Wales. .,School of Medicine, Swansea University Medical School, Institute of Life Science 2, Swansea, SA2 8QA, Wales.
| | - J W Stephens
- Department of Surgery, Swansea Bay University Health Board, Singleton Hospital, Swansea, SA2 8QA, Wales.,School of Medicine, Swansea University Medical School, Institute of Life Science 2, Swansea, SA2 8QA, Wales
| | - D A Harris
- Department of Surgery, Swansea Bay University Health Board, Singleton Hospital, Swansea, SA2 8QA, Wales.,School of Medicine, Swansea University Medical School, Institute of Life Science 2, Swansea, SA2 8QA, Wales
| |
Collapse
|
405
|
Abstract
Deiodinases modify the biological activity of thyroid hormone (TH) molecules, ie, they may activate thyroxine (T4) to 3,5,3'-triiodothyronine (T3), or they may inactivate T3 to 3,3'-diiodo-L-thyronine (T2) or T4 to reverse triiodothyronine (rT3). Although evidence of deiodination of T4 to T3 has been available since the 1950s, objective evidence of TH metabolism was not established until the 1970s. The modern paradigm considers that the deiodinases not only play a role in the homeostasis of circulating T3, but they also provide dynamic control of TH signaling: cells that express the activating type 2 deiodinase (D2) have enhanced TH signaling due to intracellular build-up of T3; the opposite is seen in cells that express type 3 deiodinase (D3), the inactivating deiodinase. D2 and D3 are expressed in metabolically relevant tissues such as brown adipose tissue, skeletal muscle and liver, and their roles have been investigated using cell, animal, and human models. During development, D2 and D3 expression customize for each tissue/organ the timing and intensity of TH signaling. In adult cells, D2 is induced by cyclic adenosine monophosphate (cAMP), and its expression is invariably associated with enhanced T3 signaling, expression of PGC1 and accelerated energy expenditure. In contrast, D3 expression is induced by hypoxia-inducible factor 1α (HIF-1a), dampening T3 signaling and the metabolic rate. The coordinated expression of these enzymes adjusts TH signaling in a time- and tissue-specific fashion, affecting metabolic pathways in health and disease states.
Collapse
Affiliation(s)
- Samuel C Russo
- Section of Endocrinology, Diabetes & Metabolism, University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Federico Salas-Lucia
- Section of Endocrinology, Diabetes & Metabolism, University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Antonio C Bianco
- Section of Endocrinology, Diabetes & Metabolism, University of Chicago Medical Center, Chicago, IL 60637, USA
| |
Collapse
|
406
|
Nayor M, Shah SH, Murthy V, Shah RV. Molecular Aspects of Lifestyle and Environmental Effects in Patients With Diabetes: JACC Focus Seminar. J Am Coll Cardiol 2021; 78:481-495. [PMID: 34325838 DOI: 10.1016/j.jacc.2021.02.070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/07/2021] [Accepted: 02/01/2021] [Indexed: 01/04/2023]
Abstract
Diabetes is characterized as an integrated condition of dysregulated metabolism across multiple tissues, with well-established consequences on the cardiovascular system. Recent advances in precision phenotyping in biofluids and tissues in large human observational and interventional studies have afforded a unique opportunity to translate seminal findings in models and cellular systems to patients at risk for diabetes and its complications. Specifically, techniques to assay metabolites, proteins, and transcripts, alongside more recent assessment of the gut microbiome, underscore the complexity of diabetes in patients, suggesting avenues for precision phenotyping of risk, response to intervention, and potentially novel therapies. In addition, the influence of external factors and inputs (eg, activity, diet, medical therapies) on each domain of molecular characterization has gained prominence toward better understanding their role in prevention. Here, the authors provide a broad overview of the role of several of these molecular domains in human translational investigation in diabetes.
Collapse
Affiliation(s)
- Matthew Nayor
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA. https://twitter.com/MattNayor
| | - Svati H Shah
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina, USA; Division of Cardiology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA. https://twitter.com/SvatiShah
| | - Venkatesh Murthy
- Division of Cardiovascular Medicine, Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA; Frankel Cardiovascular Center, University of Michigan, Ann Arbor, Michigan, USA. https://twitter.com/venkmurthy
| | - Ravi V Shah
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
407
|
Koelfat KVK, van Mierlo KMC, Lodewick TM, Bloemen JG, van der Kroft G, Amygdalos I, Neumann UP, Dejong CHC, Jansen PLM, Olde Damink SWM, Schaap FG. Bile Salt and FGF19 Signaling in the Early Phase of Human Liver Regeneration. Hepatol Commun 2021; 5:1400-1411. [PMID: 34430784 PMCID: PMC8369949 DOI: 10.1002/hep4.1728] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/07/2021] [Accepted: 02/19/2021] [Indexed: 02/04/2023] Open
Abstract
The involvement of bile salt-fibroblast growth factor 19 (FGF19) signaling in human liver regeneration (LR) is not well studied. Therefore, we studied aspects of bile salt-FGF19 signaling shortly after liver resection in patients. We compared plasma bile salt and FGF19 levels in arterial, portal and hepatic venous blood, calculated venous-arterial differences (ΔVA), and determined hepatic transcript levels on two intra-operative time points: before (< 1 hour) and immediately after (> 2-3 hours) liver resection (i.e., following surgery). Postoperative bile salt and FGF19 levels were assessed on days 1, 2, and 3. LR was studied by computed tomography (CT)-liver volumetry. Following surgery, the liver, arterial, and portal bile salt levels were elevated (P < 0.05). Furthermore, an increased amount of bile salts was released in portal blood and extracted by the remnant liver (P < 0.05). Postoperatively, bile salt levels were elevated from day 1 onward (P < 0.001). For FGF19, intra-operative or postoperative changes of ΔVA or plasma levels were not observed. The bile salt-homeostatic regulator farnesoid X receptor (FXR) was markedly up-regulated following surgery (P < 0.001). Cell-cycle re-entry priming factors (interleukin 6 [IL-6], signal transducer and activator of transcription 3 [STAT3], and cJUN) were up-regulated following surgery and were positively correlated with FXR expression (P < 0.05). Postoperative hyperbilirubinemia was preceded by postsurgery low FXR and high Na+/Taurocholate cotransporting polypeptide (NTCP) expression in the remnant liver coupled with higher liver bile salt content (P < 0.05). Finally, bile salt levels on postoperative day 1 were an independent predictor of LR (P < 0.05). Conclusion: Systemic, portal, and liver bile salt levels are rapidly elevated after liver resection. Postoperative bile salts were positively associated with liver volume gain. In the studied time frame, FGF19 levels remained unaltered, suggesting that FGF19 plays a minor role in human LR. These findings indicate a more relevant role of bile salts in human LR.
Collapse
Affiliation(s)
- Kiran V K Koelfat
- Department of SurgeryNUTRIM School of Nutrition and Translational Research in MetabolismMaastricht UniversityMaastrichtThe Netherlands
| | - Kim M C van Mierlo
- Department of SurgeryNUTRIM School of Nutrition and Translational Research in MetabolismMaastricht UniversityMaastrichtThe Netherlands
| | - Toine M Lodewick
- Department of RadiologyMaastricht University Medical Center+MaastrichtThe Netherlands
| | - Johanne G Bloemen
- Department of SurgeryNUTRIM School of Nutrition and Translational Research in MetabolismMaastricht UniversityMaastrichtThe Netherlands
| | - Gregory van der Kroft
- Department of General, Visceral and Transplantation SurgeryRWTH University Hospital AachenAachenGermany
| | - Iakovos Amygdalos
- Department of General, Visceral and Transplantation SurgeryRWTH University Hospital AachenAachenGermany
| | - Ulf P Neumann
- Department of SurgeryNUTRIM School of Nutrition and Translational Research in MetabolismMaastricht UniversityMaastrichtThe Netherlands.,Department of General, Visceral and Transplantation SurgeryRWTH University Hospital AachenAachenGermany
| | - Cornelis H C Dejong
- Department of SurgeryNUTRIM School of Nutrition and Translational Research in MetabolismMaastricht UniversityMaastrichtThe Netherlands.,Department of General, Visceral and Transplantation SurgeryRWTH University Hospital AachenAachenGermany
| | - Peter L M Jansen
- Department of SurgeryNUTRIM School of Nutrition and Translational Research in MetabolismMaastricht UniversityMaastrichtThe Netherlands
| | - Steven W M Olde Damink
- Department of SurgeryNUTRIM School of Nutrition and Translational Research in MetabolismMaastricht UniversityMaastrichtThe Netherlands.,Department of General, Visceral and Transplantation SurgeryRWTH University Hospital AachenAachenGermany
| | - Frank G Schaap
- Department of SurgeryNUTRIM School of Nutrition and Translational Research in MetabolismMaastricht UniversityMaastrichtThe Netherlands.,Department of General, Visceral and Transplantation SurgeryRWTH University Hospital AachenAachenGermany
| |
Collapse
|
408
|
Mohan M, Prabhu SS, Pullattayil AK, Lindow S. A meta-analysis of the prevalence of gestational diabetes in patients diagnosed with obstetrical cholestasis. AJOG GLOBAL REPORTS 2021; 1:100013. [PMID: 36277255 PMCID: PMC9563540 DOI: 10.1016/j.xagr.2021.100013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Gestational diabetes and obstetrical cholestasis are common clinical conditions seen in clinical practice. There is evidence suggesting a coexisting relationship that could have a potential clinical implication related to stillbirth outcomes. OBJECTIVE This study aimed to determine the prevalence of gestational diabetes in women with obstetrical cholestasis. STUDY DESIGN A predefined protocol with a literature search was used to obtain all possible articles. A systematic review and meta-analysis of observational studies with quantifiable data published since 2010 were performed. Articles were evaluated and included in the study with specified criteria for the risk of bias using the Newcastle-Ottawa Scale. A meta-analysis was performed using Meta-analysis of Observational Studies in Epidemiology specifications to determine the prevalence of gestational diabetes in women with obstetrical cholestasis. RESULTS A total of 16,748 patients with obstetrical cholestasis from 21 studies were included. The prevalence of gestational diabetes in women with obstetrical cholestasis was 13.9% (20 studies analyzed). Gestational diabetes was more common in women with obstetrical cholestasis than in women without obstetrical cholestasis (odds ratio, 2.129; 95% confidence interval, 1.697-2.670;10 studies). Gestational diabetes is twice more common in women with severe cholestasis than in women with mild cholestasis (odds ratio, 2.168; 95% confidence interval, 1.429-3.289; 4 studies). CONCLUSION There is an increase in the prevalence of gestational diabetes among women diagnosed with obstetrical cholestasis. Compared with women with mild cholestasis, the increased risk of gestational diabetes in women with severe cholestatis is more than doubled. This suggests that the 2 conditions may have some biological similarities that affect clinical outcomes.
Collapse
Affiliation(s)
- Manoj Mohan
- Department of Obstetrics and Gynecology, Aster DM Healthcare, Doha, Qatar (Dr Mohan)
| | | | | | - Stephen Lindow
- Department of Obstetrics and Gynaecology, Coombe Women and Infants University Hospital, Dublin, Ireland (Dr Lindow)
| |
Collapse
|
409
|
Kaur I, Tiwari R, Naidu VGM, Ramakrishna S, Tripathi DM, Kaur S. Bile Acids as Metabolic Inducers of Hepatocyte Proliferation and Liver Regeneration. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2021. [DOI: 10.1007/s40883-021-00221-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
410
|
Visekruna A, Luu M. The Role of Short-Chain Fatty Acids and Bile Acids in Intestinal and Liver Function, Inflammation, and Carcinogenesis. Front Cell Dev Biol 2021; 9:703218. [PMID: 34381785 PMCID: PMC8352571 DOI: 10.3389/fcell.2021.703218] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022] Open
Abstract
During the past decade, researchers have investigated the role of microbiota in health and disease. Recent findings support the hypothesis that commensal bacteria and in particular microbiota-derived metabolites have an impact on development of inflammation and carcinogenesis. Major classes of microbial-derived molecules such as short-chain fatty acids (SCFA) and secondary bile acids (BAs) were shown to have immunomodulatory potential in various autoimmune, inflammatory as well as cancerous disease models and are dependent on diet-derived substrates. The versatile mechanisms underlying both beneficial and detrimental effects of bacterial metabolites comprise diverse regulatory pathways in lymphocytes and non-immune cells including changes in the signaling, metabolic and epigenetic status of these. Consequently, SCFAs as strong modulators of immunometabolism and histone deacetylase (HDAC) inhibitors have been investigated as therapeutic agents attenuating inflammatory and autoimmune disorders. Moreover, BAs were shown to modulate the microbial composition, adaptive and innate immune response. In this review, we will discuss the recent findings in the field of microbiota-derived metabolites, especially with respect to the molecular and cellular mechanisms of SCFA and BA biology in the context of intestinal and liver diseases.
Collapse
Affiliation(s)
- Alexander Visekruna
- Institute for Medical Microbiology and Hygiene, Philipps-University Marburg, Marburg, Germany
| | - Maik Luu
- Institute for Medical Microbiology and Hygiene, Philipps-University Marburg, Marburg, Germany.,Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| |
Collapse
|
411
|
Zhu X, Li Y, Jiang Y, Zhang J, Duan R, Liu L, Liu C, Xu X, Yu L, Wang Q, Xiong F, Ni C, Xu L, He Q. Prediction of Gut Microbial Community Structure and Function in Polycystic Ovary Syndrome With High Low-Density Lipoprotein Cholesterol. Front Cell Infect Microbiol 2021; 11:665406. [PMID: 34350129 PMCID: PMC8326754 DOI: 10.3389/fcimb.2021.665406] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022] Open
Abstract
Gut microbiota has been proved to be involved in the occurrence and development of many diseases, such as type 2 diabetes, obesity, coronary heart disease, etcetera. It provides a new idea for the pathogenesis of polycystic ovary syndrome (PCOS). Our study showed that the gut microbial community of PCOS with high low-density lipoprotein cholesterol (LDLC) has a noticeable imbalance. Gut microbiota of PCOS patients was significantly changed compared with CON, and these changes were closely related to LDLC. Gut microbiota may affect the metabolic level of PCOS patients through multiple metabolic pathways, and lipid metabolism disorder may further aggravate the imbalance of gut microbiota. Actinomycetaceae, Enterobacteriaceae and Streptococcaceae had high accuracy in the diagnosis of PCOS and the differentiation of subgroups, suggesting that they may play an important role in the diagnosis and treatment of PCOS in the future. Also, the model we built showed good specificity and sensitivity for distinguishing PCOS from CON (including L_CON and L_PCOS, H_CON and H_PCOS). In conclusion, this is the first report on the gut microbiota of PCOS with high LDLC, suggesting that in the drug development or treatment of PCOS patients, the difference of gut microbiota in PCOS patients with different LDLC levels should be fully considered.
Collapse
Affiliation(s)
- Xuping Zhu
- Department of Endocrinology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Nanjing Medical University, Wuxi, China
| | - Yanyu Li
- Department of Endocrinology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Nanjing Medical University, Wuxi, China
| | - Yanmin Jiang
- Department of Endocrinology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Nanjing Medical University, Wuxi, China
| | - Jisheng Zhang
- Department of Good Clinical Practice (GCP), The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Ru Duan
- Department of Good Clinical Practice (GCP), The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Lin Liu
- Department of Endocrinology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Nanjing Medical University, Wuxi, China
| | - Chao Liu
- Department of Endocrinology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Nanjing Medical University, Wuxi, China
| | - Xiang Xu
- Department of Endocrinology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Nanjing Medical University, Wuxi, China
| | - Lu Yu
- Department of Endocrinology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Nanjing Medical University, Wuxi, China
| | - Qian Wang
- Department of Endocrinology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Nanjing Medical University, Wuxi, China
| | - Fan Xiong
- Department of Endocrinology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Nanjing Medical University, Wuxi, China
| | - Chengming Ni
- Department of Endocrinology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Nanjing Medical University, Wuxi, China
| | - Lan Xu
- Department of Endocrinology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Nanjing Medical University, Wuxi, China
| | - Qing He
- Department of Good Clinical Practice (GCP), The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| |
Collapse
|
412
|
Cunningham AL, Stephens JW, Harris DA. A review on gut microbiota: a central factor in the pathophysiology of obesity. Lipids Health Dis 2021; 20:65. [PMID: 34233682 PMCID: PMC8262044 DOI: 10.1186/s12944-021-01491-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/17/2021] [Indexed: 12/13/2022] Open
Abstract
Obesity and its complications constitute a substantial burden. Considerable published research describes the novel relationships between obesity and gut microbiota communities. It is becoming evident that microbiota behave in a pivotal role in their ability to influence homeostatic mechanisms either to the benefit or detriment of host health, the extent of which is not fully understood. A greater understanding of the contribution of gut microbiota towards host pathophysiology is revealing new therapeutic avenues to tackle the global obesity epidemic. This review focuses on causal relationships and associations with obesity, proposed central mechanisms encouraging the development of obesity and promising prospective methods for microbiota manipulation.
Collapse
Affiliation(s)
- A L Cunningham
- Department of Surgery, Swansea Bay University Health Board, Swansea, SA2 8QA, UK. .,Swansea University Medical School, Swansea University, Swansea, SA2 8QA, UK.
| | - J W Stephens
- Swansea University Medical School, Swansea University, Swansea, SA2 8QA, UK
| | - D A Harris
- Department of Surgery, Swansea Bay University Health Board, Swansea, SA2 8QA, UK.,Swansea University Medical School, Swansea University, Swansea, SA2 8QA, UK
| |
Collapse
|
413
|
Castellanos-Jankiewicz A, Guzmán-Quevedo O, Fénelon VS, Zizzari P, Quarta C, Bellocchio L, Tailleux A, Charton J, Fernandois D, Henricsson M, Piveteau C, Simon V, Allard C, Quemener S, Guinot V, Hennuyer N, Perino A, Duveau A, Maitre M, Leste-Lasserre T, Clark S, Dupuy N, Cannich A, Gonzales D, Deprez B, Mithieux G, Dombrowicz D, Bäckhed F, Prevot V, Marsicano G, Staels B, Schoonjans K, Cota D. Hypothalamic bile acid-TGR5 signaling protects from obesity. Cell Metab 2021; 33:1483-1492.e10. [PMID: 33887197 DOI: 10.1016/j.cmet.2021.04.009] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/30/2021] [Accepted: 04/14/2021] [Indexed: 12/25/2022]
Abstract
Bile acids (BAs) improve metabolism and exert anti-obesity effects through the activation of the Takeda G protein-coupled receptor 5 (TGR5) in peripheral tissues. TGR5 is also found in the brain hypothalamus, but whether hypothalamic BA signaling is implicated in body weight control and obesity pathophysiology remains unknown. Here we show that hypothalamic BA content is reduced in diet-induced obese mice. Central administration of BAs or a specific TGR5 agonist in these animals decreases body weight and fat mass by activating the sympathetic nervous system, thereby promoting negative energy balance. Conversely, genetic downregulation of hypothalamic TGR5 expression in the mediobasal hypothalamus favors the development of obesity and worsens established obesity by blunting sympathetic activity. Lastly, hypothalamic TGR5 signaling is required for the anti-obesity action of dietary BA supplementation. Together, these findings identify hypothalamic TGR5 signaling as a key mediator of a top-down neural mechanism that counteracts diet-induced obesity.
Collapse
Affiliation(s)
| | - Omar Guzmán-Quevedo
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France; Laboratory of Neuronutrition and Metabolic Disorders, Instituto Tecnológico Superior de Tacámbaro, 61650 Tacámbaro, Michoacán, Mexico; Pós-Graduação em Neuropsiquiatria e Ciências do Comportamento, Universidade Federal de Pernambuco, 50732-970 Recife, Pernambuco, Brazil
| | - Valérie S Fénelon
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Philippe Zizzari
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Carmelo Quarta
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Luigi Bellocchio
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Anne Tailleux
- University of Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59019 Lille, France
| | - Julie Charton
- University of Lille, INSERM, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, EGID, F-59000 Lille, France
| | - Daniela Fernandois
- University of Lille, INSERM, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, F-59000, Lille, France
| | - Marcus Henricsson
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden
| | - Catherine Piveteau
- University of Lille, INSERM, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000 Lille, France
| | - Vincent Simon
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Camille Allard
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Sandrine Quemener
- University of Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59019 Lille, France
| | - Valentine Guinot
- University of Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59019 Lille, France
| | - Nathalie Hennuyer
- University of Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59019 Lille, France
| | - Alessia Perino
- Institute of Bioengineering, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Alexia Duveau
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Marlène Maitre
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | | | - Samantha Clark
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Nathalie Dupuy
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Astrid Cannich
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Delphine Gonzales
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Benoit Deprez
- University of Lille, INSERM, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, EGID, F-59000 Lille, France
| | - Gilles Mithieux
- INSERM U1213 Nutrition, Diabetes and the Brain, University of Lyon 1 Faculté de Médecine Lyon-Est, 69372 Lyon, France
| | - David Dombrowicz
- University of Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59019 Lille, France
| | - Fredrik Bäckhed
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health Sciences, University of Copenhagen, 2200 N Copenhagen, Denmark; Region Västra Götaland, Sahlgrenska University Hospital, Department of Clinical Physiology, Gothenburg, Sweden
| | - Vincent Prevot
- University of Lille, INSERM, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, F-59000, Lille, France
| | - Giovanni Marsicano
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Bart Staels
- University of Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59019 Lille, France
| | - Kristina Schoonjans
- Institute of Bioengineering, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Daniela Cota
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France.
| |
Collapse
|
414
|
Abstract
Bile acids (BAs) are a family of hydroxylated steroids secreted by the liver that aid in the breakdown and absorption of dietary fats. BAs also function as nutrient and inflammatory signaling molecules, acting through cognate receptors, to coordinate host metabolism. Commensal bacteria in the gastrointestinal tract are functional modifiers of the BA pool, affecting composition and abundance. Deconjugation of host BAs creates a molecular network that inextricably links gut microtia with their host. In this review we highlight the roles of BAs in mediating this mutualistic relationship with a focus on those events that impact host physiology and metabolism.
Collapse
Affiliation(s)
- James C Poland
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - C Robb Flynn
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
415
|
Ito K, Okumura A, Takeuchi JS, Watashi K, Inoue R, Yamauchi T, Sakamoto K, Yamashita Y, Iguchi Y, Une M, Wakita T, Umezawa K, Yoneda M. Dual Agonist of Farnesoid X Receptor and Takeda G Protein-Coupled Receptor 5 Inhibits Hepatitis B Virus Infection In Vitro and In Vivo. Hepatology 2021; 74:83-98. [PMID: 33434356 DOI: 10.1002/hep.31712] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 11/24/2020] [Accepted: 12/21/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS Chronic HBV infection is a major health problem worldwide. Currently, the first-line treatment for HBV is nucleos(t)ide analogs or interferons; however, efficient therapeutic approaches that enable cure are lacking. Therefore, anti-HBV agents with mechanisms distinct from those of current drugs are needed. Sodium taurocholate cotransporting polypeptide (NTCP) was previously identified as an HBV receptor that is inhibited by several compounds. Farnesoid X receptor (FXR) activation also inhibits NTCP function. APPROACH AND RESULTS In this study, we investigated the inhibitory effect of bile acid (BA) derivatives-namely obeticholic acid (OCA), 6α-ethyl-24-nor-5β-cholane-3α,7α,23-triol-23 sulfate sodium salt (INT-767; a dual agonist of FXR and Takeda G protein-coupled receptor [TGR5]), and 6α-ethyl-23(S)-methyl-cholic acid (INT-777; a TGR5 agonist)-3-(2,6-dichlorophenyl)-4-(3'-carboxy-2-chlorostilben-4-yl)oxymethyl-5-isopropylisoxazole (GW4064; a FXR agonist), cyclosporin A, and irbesartan. OCA and INT-777 suppressed HBV infection in HepG2-human NTCP-C4 cells. Interestingly, INT-767 showed potent inhibition by attaching to HBV particles rather than binding to NTCP. As an entry inhibitor, INT-767 was stronger than various natural BAs. Furthermore, in chimeric mice with humanized liver, INT-767 markedly delayed the initial rise of HBsAg, HBeAg, and HBV DNA and reduced covalently closed circular DNA. The strong inhibitory effect of INT-767 may be due to the cumulative effect of its ability to inhibit the entry of HBV and to stimulate FXR downstream signaling, which affects the postentry step. CONCLUSIONS Our results suggest that BA derivatives, particularly INT-767, are prospective candidate anti-HBV agents. Clarifying the underlying mechanisms of BA derivatives would facilitate the development of anti-HBV agents.
Collapse
Affiliation(s)
- Kiyoaki Ito
- Department of Gastroenterology, Aichi Medical University, Nagakute, Japan
| | - Akinori Okumura
- Department of Gastroenterology, Aichi Medical University, Nagakute, Japan
| | - Junko S Takeuchi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Rieko Inoue
- Department of Gastroenterology, Aichi Medical University, Nagakute, Japan
| | - Taeko Yamauchi
- Department of Gastroenterology, Aichi Medical University, Nagakute, Japan
| | - Kazumasa Sakamoto
- Department of Gastroenterology, Aichi Medical University, Nagakute, Japan
| | - Yukiko Yamashita
- Faculty of Pharmaceutical Sciences, Hiroshima International University, Kure, Japan
| | - Yusuke Iguchi
- Faculty of Pharmaceutical Sciences, Hiroshima International University, Kure, Japan
| | - Mizuho Une
- Faculty of Pharmaceutical Sciences, Hiroshima International University, Kure, Japan
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kazuo Umezawa
- Department of Molecular Target Medicine Screening, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Masashi Yoneda
- Department of Gastroenterology, Aichi Medical University, Nagakute, Japan
| |
Collapse
|
416
|
Wang B, Wang L, Wang H, Dai H, Lu X, Lee YK, Gu Z, Zhao J, Zhang H, Chen W, Wang G. Targeting the Gut Microbiota for Remediating Obesity and Related Metabolic Disorders. J Nutr 2021; 151:1703-1716. [PMID: 33982127 DOI: 10.1093/jn/nxab103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/19/2021] [Accepted: 03/19/2021] [Indexed: 12/19/2022] Open
Abstract
The rate of obesity is rapidly increasing and has become a health and economic burden worldwide. As recent studies have revealed that the gut microbiota is closely linked to obesity, researchers have used various approaches to modulate the gut microbiota to treat the condition. Dietary composition and energy intake strongly affect the composition and function of the gut microbiota. Intestinal microbial changes alter the composition of bile acids and fatty acids and regulate bacterial lipopolysaccharide production, all of which influence energy metabolism and immunity. Evidence also suggests that remodeling the gut microbiota through intake of probiotics, prebiotics, fermented foods, and dietary plants, as well as by fecal microbiota transplantation, are feasible methods to remediate obesity.
Collapse
Affiliation(s)
- Botao Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Linlin Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Haojue Wang
- The Department of Obstetrics and Gynecology, Wuxi Xishan People's Hospital, Wuxi, P. R. China
| | - Hongyan Dai
- The Department of Obstetrics and Gynecology, Wuxi Xishan People's Hospital, Wuxi, P. R. China
| | - Xianyi Lu
- The Department of Obstetrics and Gynecology, Wuxi Xishan People's Hospital, Wuxi, P. R. China
| | - Yuan-Kun Lee
- Department of Microbiology & Immunology, National University of Singapore, Singapore, Singapore
| | - Zhennan Gu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China.,International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, P. R. China.,(Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, P. R. China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China.,(Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, P. R. China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, P. R. China.,Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, P. R. China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, P. R. China
| | - Gang Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China.,International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, P. R. China.,(Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, P. R. China
| |
Collapse
|
417
|
FXR/TGR5 mediates inflammasome activation and host resistance to bacterial infection. Biochem Biophys Rep 2021; 27:101051. [PMID: 34179517 PMCID: PMC8214033 DOI: 10.1016/j.bbrep.2021.101051] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 05/20/2021] [Accepted: 06/07/2021] [Indexed: 12/12/2022] Open
Abstract
Bacterial infections are a major cause of chronic infections and mortality. Innate immune control is crucial for protection against bacterial pathogens. Bile acids facilitate intestinal absorption of lipid-soluble nutrients and modulate various metabolic pathways through the farnesoid X receptor (FXR) and Takeda G-protein-coupled receptor 5 (TGR5). Here, we identified a new role of FXR and TGR5 in promoting inflammasome activation during bacterial infection. Caspase-1/11 activation and release of cleaved interleukin (IL)-1β in FXR- and TGR5-deficient mouse bone marrow-derived macrophages upon Listeria monocytogenes or Escherichia coli infection was significantly reduced. In contrast, FXR- or TGR5-deficiency did not affect the transcription of caspase-1/11 and IL-1β. Inflammasome activation is critical for host immune defense against bacterial infections. Consistent with this, the deletion of FXR or TGR5 impaired effective clearance of L. monocytogenes or E. coli in vitro and in vivo, which was associated with greater mortality and bacterial burden than that of wild-type mice. Pretreatment with an FXR agonist decreased bacterial burden in vitro and increased survival in vivo. Thus, FXR and TGR5 promote inflammasome-mediated antimicrobial responses and may represent novel antibacterial therapeutic targets. FXR- or TGR5-deficiency decreases inflammasome activation upon Listeria monocytogenes or Escherichia coli infection. FXR- or TGR5-deficiency impaired effective clearance of L. monocytogenes or E. coli. FXR and TGR5 promote inflammasome-mediated antimicrobial responses.
Collapse
|
418
|
Endoplasmic reticulum stress in intestinal inflammation: implications of bile acids. PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY 2021. [DOI: 10.1007/s43538-021-00031-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
419
|
Jiang L, Schnabl B. Gut Microbiota in Liver Disease: What Do We Know and What Do We Not Know? Physiology (Bethesda) 2021; 35:261-274. [PMID: 32490750 DOI: 10.1152/physiol.00005.2020] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The gut and the liver have a bidirectional communication via the biliary system and the portal vein. The intestinal microbiota and microbial products play an important role for modulating liver diseases such as alcohol-associated liver disease, non-alcoholic fatty liver disease and steatohepatitis, and cholestatic liver diseases. Here, we review the role of the gut microbiota and its products for the pathogenesis and therapy of chronic liver diseases.
Collapse
Affiliation(s)
- Lu Jiang
- Department of Medicine, University of California San Diego, La Jolla, California; and Department of Medicine, VA San Diego Healthcare System, San Diego, California
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, California; and Department of Medicine, VA San Diego Healthcare System, San Diego, California
| |
Collapse
|
420
|
Quante M, Iske J, Heinbokel T, Desai BN, Cetina Biefer HR, Nian Y, Krenzien F, Matsunaga T, Uehara H, Maenosono R, Azuma H, Pratschke J, Falk CS, Lo T, Sheu E, Tavakkoli A, Abdi R, Perkins D, Alegre ML, Banks AS, Zhou H, Elkhal A, Tullius SG. Restored TDCA and valine levels imitate the effects of bariatric surgery. eLife 2021; 10:e62928. [PMID: 34155969 PMCID: PMC8257250 DOI: 10.7554/elife.62928] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 05/20/2021] [Indexed: 12/12/2022] Open
Abstract
Background Obesity is widespread and linked to various co-morbidities. Bariatric surgery has been identified as the only effective treatment, promoting sustained weight loss and the remission of co-morbidities. Methods Metabolic profiling was performed on diet-induced obese (DIO) mice, lean mice, and DIO mice that underwent sleeve gastrectomies (SGx). In addition, mice were subjected to intraperitoneal (i.p.) injections with taurodeoxycholic acid (TDCA) and valine. Indirect calorimetry was performed to assess food intake and energy expenditure. Expression of appetite-regulating hormones was assessed through quantification of isolated RNA from dissected hypothalamus tissue. Subsequently, i.p. injections with a melanin-concentrating hormone (MCH) antagonist and intrathecal administration of MCH were performed and weight loss was monitored. Results Mass spectrometric metabolomic profiling revealed significantly reduced systemic levels of TDCA and L-valine in DIO mice. TDCA and L-valine levels were restored after SGx in both human and mice to levels comparable with lean controls. Systemic treatment with TDCA and valine induced a profound weight loss analogous to effects observed after SGx. Utilizing indirect calorimetry, we confirmed reduced food intake as causal for TDCA/valine-mediated weight loss via a central inhibition of the MCH. Conclusions In summary, we identified restored TDCA/valine levels as an underlying mechanism of SGx-derived effects on weight loss. Of translational relevance, TDCA and L-valine are presented as novel agents promoting weight loss while reversing obesity-associated metabolic disorders. Funding This work has been supported in part by a grant from NIH (UO-1 A1 132898 to S.G.T., DP and MA). M.Q. was supported by the IFB Integrated Research and Treatment Centre Adiposity Diseases (Leipzig, Germany) and the German Research Foundation (QU 420/1-1). J.I. was supported by the Biomedical Education Program (BMEP) of the German Academic Exchange Service (DAAD). T.H. (HE 7457/1-1) and F.K. (KR 4362/1-1) were supported by the German Research Foundation (DFG). H.R.C.B. was supported the Swiss Society of Cardiac Surgery. Y.N. was supported by the Chinese Scholarship Council (201606370196) and Central South University. H.U., T.M. and R.M. were supported by the Osaka Medical Foundation. C.S.F. was supported by the German Research Foundation (DFG, SFB738, B3).
Collapse
Affiliation(s)
- Markus Quante
- Division of Transplant Surgery & Transplant Surgery Research Laboratory, Brigham and Women's Hospital, Harvard Medical SchoolBostonUnited States
- Department of General, Visceral and Transplant Surgery, University Hospital TübingenTübingenGermany
| | - Jasper Iske
- Division of Transplant Surgery & Transplant Surgery Research Laboratory, Brigham and Women's Hospital, Harvard Medical SchoolBostonUnited States
- Institute of Transplant Immunology, Hannover Medical SchoolHannover, Lower SaxonyGermany
| | - Timm Heinbokel
- Division of Transplant Surgery & Transplant Surgery Research Laboratory, Brigham and Women's Hospital, Harvard Medical SchoolBostonUnited States
- Department of Pathology, Charité Universitätsmedizin BerlinBerlinGermany
| | - Bhavna N Desai
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical CenterBostonUnited States
| | - Hector Rodriguez Cetina Biefer
- Division of Transplant Surgery & Transplant Surgery Research Laboratory, Brigham and Women's Hospital, Harvard Medical SchoolBostonUnited States
- Department of Cardiovascular Surgery, Charité Universitätsmedizin BerlinBerlinGermany
| | - Yeqi Nian
- Division of Transplant Surgery & Transplant Surgery Research Laboratory, Brigham and Women's Hospital, Harvard Medical SchoolBostonUnited States
- Department of Urology, The Second Xiangya Hospital, Central South UniversityChangshaChina
| | - Felix Krenzien
- Department of Visceral, Abdominal and Transplantation Surgery, Charité Universitätsmedizin BerlinBerlinGermany
| | - Tomohisa Matsunaga
- Division of Transplant Surgery & Transplant Surgery Research Laboratory, Brigham and Women's Hospital, Harvard Medical SchoolBostonUnited States
- Department of Urology, Faculty of Medicine, Osaka Medical and Pharmaceutical UniversityOsakaJapan
| | - Hirofumi Uehara
- Division of Transplant Surgery & Transplant Surgery Research Laboratory, Brigham and Women's Hospital, Harvard Medical SchoolBostonUnited States
- Department of Urology, Faculty of Medicine, Osaka Medical and Pharmaceutical UniversityOsakaJapan
| | - Ryoichi Maenosono
- Division of Transplant Surgery & Transplant Surgery Research Laboratory, Brigham and Women's Hospital, Harvard Medical SchoolBostonUnited States
- Department of Urology, Faculty of Medicine, Osaka Medical and Pharmaceutical UniversityOsakaJapan
| | - Haruhito Azuma
- Department of Urology, Faculty of Medicine, Osaka Medical and Pharmaceutical UniversityOsakaJapan
| | - Johann Pratschke
- Department of Visceral, Abdominal and Transplantation Surgery, Charité Universitätsmedizin BerlinBerlinGermany
| | - Christine S Falk
- Institute of Transplant Immunology, Hannover Medical SchoolHannover, Lower SaxonyGermany
| | - Tammy Lo
- Division of Gastrointestinal and General Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical SchoolBostonUnited States
| | - Eric Sheu
- Division of Gastrointestinal and General Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical SchoolBostonUnited States
| | - Ali Tavakkoli
- Division of Gastrointestinal and General Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical SchoolBostonUnited States
| | - Reza Abdi
- Renal Division, Brigham and Women’s Hospital, Harvard Medical SchoolBostonUnited States
| | - David Perkins
- Division of Nephrology, Department of Medicine, University of Illinois at ChicagoChicagoUnited States
| | - Maria-Luisa Alegre
- Department of Medicine, Section of Rheumatology, The University of ChicagoChicagoUnited States
| | - Alexander S Banks
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical CenterBostonUnited States
| | - Hao Zhou
- Division of Transplant Surgery & Transplant Surgery Research Laboratory, Brigham and Women's Hospital, Harvard Medical SchoolBostonUnited States
| | - Abdallah Elkhal
- Division of Transplant Surgery & Transplant Surgery Research Laboratory, Brigham and Women's Hospital, Harvard Medical SchoolBostonUnited States
| | - Stefan G Tullius
- Division of Transplant Surgery & Transplant Surgery Research Laboratory, Brigham and Women's Hospital, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
421
|
Tang C, Kong L, Shan M, Lu Z, Lu Y. Protective and ameliorating effects of probiotics against diet-induced obesity: A review. Food Res Int 2021; 147:110490. [PMID: 34399486 DOI: 10.1016/j.foodres.2021.110490] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 05/05/2021] [Accepted: 05/23/2021] [Indexed: 02/07/2023]
Abstract
Diet-induced obesity is one of the major public health concerns all over the world, and obesity also contributes to the development of other chronic diseases such as non-alcoholic fatty acid liver disease, type 2 diabetes mellitus and cardiovascular diseases. Evidence shows that the pathogenesis of obesity and obesity-associated chronic diseases are closely related to dysregulation of lipid metabolism, glucose metabolism and cholesterol metabolism, and oxidative stress, endoplasmic reticulum stress, abnormal gut microbiome and chronic low-grade inflammation. Recently, in view of potential effects on lipid metabolism, glucose metabolism, cholesterol metabolism and intestinal microbiome, as well as anti-oxidative and anti-inflammatory activities, natural probiotics, including live and dead probiotics, and probiotic components and metabolites, have attracted increasing attention and are considered as novel strategies for preventing and ameliorating obesity and obesity-related chronic diseases. Specifically, this review is presented on the anti-obesity effects of probiotics and underlying molecular mechanisms, which will provide a theoretical basis of anti-obesity probiotics for the development of functional foods.
Collapse
Affiliation(s)
- Chao Tang
- College of Food Science & Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Liangyu Kong
- College of Food Science & Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Mengyuan Shan
- College of Food Science & Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhaoxin Lu
- College of Food Science & Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yingjian Lu
- College of Food Science & Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China.
| |
Collapse
|
422
|
Ding L, Yang Q, Zhang E, Wang Y, Sun S, Yang Y, Tian T, Ju Z, Jiang L, Wang X, Wang Z, Huang W, Yang L. Notoginsenoside Ft1 acts as a TGR5 agonist but FXR antagonist to alleviate high fat diet-induced obesity and insulin resistance in mice. Acta Pharm Sin B 2021; 11:1541-1554. [PMID: 34221867 PMCID: PMC8245856 DOI: 10.1016/j.apsb.2021.03.038] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/07/2021] [Accepted: 03/10/2021] [Indexed: 02/08/2023] Open
Abstract
Obesity and its associated complications are highly related to a current public health crisis around the world. A growing body of evidence has indicated that G-protein coupled bile acid (BA) receptor TGR5 (also known as Gpbar-1) is a potential drug target to treat obesity and associated metabolic disorders. We have identified notoginsenoside Ft1 (Ft1) from Panax notoginseng as an agonist of TGR5 in vitro. However, the pharmacological effects of Ft1 on diet-induced obese (DIO) mice and the underlying mechanisms are still elusive. Here we show that Ft1 (100 mg/100 diet) increased adipose lipolysis, promoted fat browning in inguinal adipose tissue and induced glucagon-like peptide-1 (GLP-1) secretion in the ileum of wild type but not Tgr5 -/- obese mice. In addition, Ft1 elevated serum free and taurine-conjugated bile acids (BAs) by antagonizing Fxr transcriptional activities in the ileum to activate Tgr5 in the adipose tissues. The metabolic benefits of Ft1 were abolished in Cyp27a1 -/- mice which have much lower BA levels. These results identify Ft1 as a single compound with opposite activities on two key BA receptors to alleviate high fat diet-induced obesity and insulin resistance in mice.
Collapse
Key Words
- ANOVA, analysis of variance
- AUC, area under the curve
- BAT, brown adipose tissue
- BAs, bile acids
- Bile acids
- DIO, diet-induced obesity
- FGF, fibroblast growth factor
- FXR
- Ft1, notoginsenoside Ft1
- Fxr, nuclear farnesoid X receptor
- GLP-1
- GLP-1, glucagon-like peptide-1
- GTT, glucose tolerance test
- HFD, high fat diet
- ITT, insulin tolerance test
- Insulin resistance
- KO, knockout
- Metabolic disorders
- Notoginsenoside Ft1
- Obesity
- TGR5
- Tgr5, membrane-bound G protein-coupled receptor
- Ucp, uncoupling protein
- Wt, wild-type
- cAMP, adenosine 3′,5′ cyclic monophosphate
- eWAT, epididymal white adipose tissue
- iWAT, inguinal white adipose tissue
Collapse
Affiliation(s)
- Lili Ding
- Shanghai Key Laboratory of Complex Prescriptions and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Qiaoling Yang
- Shanghai Key Laboratory of Complex Prescriptions and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
- Department of Pharmacy, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200040, China
| | - Eryun Zhang
- Shanghai Key Laboratory of Complex Prescriptions and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Yangmeng Wang
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Siming Sun
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Yingbo Yang
- Shanghai Key Laboratory of Complex Prescriptions and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tong Tian
- Shanghai Key Laboratory of Complex Prescriptions and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhengcai Ju
- Shanghai Key Laboratory of Complex Prescriptions and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Linshan Jiang
- Shanghai Key Laboratory of Complex Prescriptions and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xunjiang Wang
- Shanghai Key Laboratory of Complex Prescriptions and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhengtao Wang
- Shanghai Key Laboratory of Complex Prescriptions and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wendong Huang
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
- Graduate School of Biological Science, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Li Yang
- Shanghai Key Laboratory of Complex Prescriptions and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
423
|
Duarte L, Gasaly N, Poblete-Aro C, Uribe D, Echeverria F, Gotteland M, Garcia-Diaz DF. Polyphenols and their anti-obesity role mediated by the gut microbiota: a comprehensive review. Rev Endocr Metab Disord 2021; 22:367-388. [PMID: 33387285 DOI: 10.1007/s11154-020-09622-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/17/2020] [Indexed: 12/11/2022]
Abstract
Obesity is a global public health problem that results in chronic pathologies such as diabetes, cardiovascular diseases, and cancer. The treatment approach based on energy restriction and promotion of physical activity is ineffective in the long term. Due to the high prevalence of this pathology, complementary treatments such as brown adipose tissue activation (BAT) and white adipose tissue browning (WAT) have been proposed. Dietary polyphenols are plant secondary metabolites that can stimulate browning and thermogenesis of adipose tissue. They have also been shown to prevent body weight gain, and decrease systemic inflammation produced by high-fat diets. Ingested dietary polyphenols that reach the colon are metabolized by the gut microbiota (GM), regulating its composition and generating a great array of metabolites. GM is involved in the production of short chain fatty acids and secondary bile salts that regulate energetic metabolism. The alteration in the composition of GM observed in metabolic diseases such as obesity and type 2 diabetes can be attenuated by polyphenols. Recent studies support the hypothesis that GM would mediate WAT browning and BAT thermogenesis activation induced by polyphenol administration. Together, these results indicate that GM in the presence of polyphenols plays a fundamental role in the control of obesity possible through BAT activation.
Collapse
Affiliation(s)
- Lissette Duarte
- Departamento de Nutricion, Facultad de Medicina, Universidad de Chile, Independencia, 1027, Santiago, Chile
| | - Naschla Gasaly
- Departamento de Nutricion, Facultad de Medicina, Universidad de Chile, Independencia, 1027, Santiago, Chile
- Instituto de Ciencias Biomedicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Carlos Poblete-Aro
- Laboratorio de Ciencias de la Actividad Fisica, el Deporte y la Salud. Escuela de Ciencias de la Actividad Fisica y Salud, Facultad de Ciencias Medicas, Universidad de Santiago de Chile, Santiago, Chile
- Centro de Investigacion en Rehabilitacion y Salud CIRES, Universidad de las Americas, Santiago, Chile
| | - Denisse Uribe
- Escuela de Nutricion, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Francisca Echeverria
- Departamento de Nutricion, Facultad de Medicina, Universidad de Chile, Independencia, 1027, Santiago, Chile
| | - Martin Gotteland
- Departamento de Nutricion, Facultad de Medicina, Universidad de Chile, Independencia, 1027, Santiago, Chile
| | - Diego F Garcia-Diaz
- Departamento de Nutricion, Facultad de Medicina, Universidad de Chile, Independencia, 1027, Santiago, Chile.
| |
Collapse
|
424
|
Wang H, Tan YZ, Mu RH, Tang SS, Liu X, Xing SY, Long Y, Yuan DH, Hong H. Takeda G Protein-Coupled Receptor 5 Modulates Depression-like Behaviors via Hippocampal CA3 Pyramidal Neurons Afferent to Dorsolateral Septum. Biol Psychiatry 2021; 89:1084-1095. [PMID: 33536132 DOI: 10.1016/j.biopsych.2020.11.018] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/03/2020] [Accepted: 11/13/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Takeda G protein-coupled receptor 5 (TGR5) is recognized as a promising target for type 2 diabetes and metabolic syndrome; its expression has been demonstrated in the brain and is thought to be neuroprotective. Here, we hypothesize that dysfunction of central TGR5 may contribute to the pathogenesis of depression. METHODS In well-established chronic social defeat stress (CSDS) and chronic restraint stress (CRS) models of depression, we investigated the functional roles of TGR5 in CA3 pyramidal neurons (PyNs) and underlying mechanisms of the neuronal circuit in depression (for in vivo studies, n = 10; for in vitro studies, n = 5-10) using fiber photometry; optogenetic, chemogenetic, pharmacological, and molecular profiling techniques; and behavioral tests. RESULTS Both CSDS and CRS most significantly reduced TGR5 expression of hippocampal CA3 PyNs. Genetic overexpression of TGR5 in CA3 PyNs or intra-CA3 infusion of INT-777, a specific agonist, protected against CSDS and CRS, exerting significant antidepressant-like effects that were mediated via CA3 PyN activation. Conversely, genetic knockout or TGR5 knockdown in CA3 facilitated stress-induced depression-like behaviors. Re-expression of TGR5 in CA3 PyNs rather than infusion of INT-777 significantly improved depression-like behaviors in Tgr5 knockout mice exposed to CSDS or CRS. Silencing and stimulation of CA3 PyNs→somatostatin-GABAergic (gamma-aminobutyric acidergic) neurons of the dorsolateral septum circuit bidirectionally regulated depression-like behaviors, and blockade of this circuit abrogated the antidepressant-like effects from TGR5 activation of CA3 PyNs. CONCLUSIONS These findings indicate that TGR5 can regulate depression via CA3 PyNs→somatostatin-GABAergic neurons of dorsolateral septum transmission, suggesting that TGR5 could be a novel target for developing antidepressants.
Collapse
Affiliation(s)
- Hao Wang
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing, China
| | - Yuan-Zhi Tan
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing, China
| | - Rong-Hao Mu
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing, China
| | - Su-Su Tang
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing, China
| | - Xiao Liu
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing, China
| | - Shu-Yun Xing
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing, China
| | - Yan Long
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing, China
| | - Dan-Hua Yuan
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing, China
| | - Hao Hong
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
425
|
Hoozemans J, de Brauw M, Nieuwdorp M, Gerdes V. Gut Microbiome and Metabolites in Patients with NAFLD and after Bariatric Surgery: A Comprehensive Review. Metabolites 2021; 11:353. [PMID: 34072995 PMCID: PMC8227414 DOI: 10.3390/metabo11060353] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 12/12/2022] Open
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD) is increasing, as are other manifestations of metabolic syndrome such as obesity and type 2 diabetes. NAFLD is currently the number one cause of chronic liver disease worldwide. The pathophysiology of NAFLD and disease progression is poorly understood. A potential contributing role for gut microbiome and metabolites in NAFLD is proposed. Currently, bariatric surgery is an effective therapy to prevent the progression of NAFLD and other manifestations of metabolic syndrome such as obesity and type 2 diabetes. This review provides an overview of gut microbiome composition and related metabolites in individuals with NAFLD and after bariatric surgery. Causality remains to be proven. Furthermore, the clinical effects of bariatric surgery on NAFLD are illustrated. Whether the gut microbiome and metabolites contribute to the metabolic improvement and improvement of NAFLD seen after bariatric surgery has not yet been proven. Future microbiome and metabolome research is necessary for elucidating the pathophysiology and underlying metabolic pathways and phenotypes and providing better methods for diagnostics, prognostics and surveillance to optimize clinical care.
Collapse
Affiliation(s)
- Jacqueline Hoozemans
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, AMC, 1105 AZ Amsterdam, The Netherlands; (M.N.); (V.G.)
- Department of Bariatric and General Surgery, Spaarne Hospital, 2134 TM Hoofddorp, The Netherlands;
| | - Maurits de Brauw
- Department of Bariatric and General Surgery, Spaarne Hospital, 2134 TM Hoofddorp, The Netherlands;
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, AMC, 1105 AZ Amsterdam, The Netherlands; (M.N.); (V.G.)
| | - Victor Gerdes
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, AMC, 1105 AZ Amsterdam, The Netherlands; (M.N.); (V.G.)
- Department of Internal Medicine, Spaarne Hospital, 2134 TM Hoofddorp, The Netherlands
| |
Collapse
|
426
|
The Microbiota and the Gut-Brain Axis in Controlling Food Intake and Energy Homeostasis. Int J Mol Sci 2021; 22:ijms22115830. [PMID: 34072450 PMCID: PMC8198395 DOI: 10.3390/ijms22115830] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 12/12/2022] Open
Abstract
Obesity currently represents a major societal and health challenge worldwide. Its prevalence has reached epidemic proportions and trends continue to rise, reflecting the need for more effective preventive measures. Hypothalamic circuits that control energy homeostasis in response to food intake are interesting targets for body-weight management, for example, through interventions that reinforce the gut-to-brain nutrient signalling, whose malfunction contributes to obesity. Gut microbiota-diet interactions might interfere in nutrient sensing and signalling from the gut to the brain, where the information is processed to control energy homeostasis. This gut microbiota-brain crosstalk is mediated by metabolites, mainly short chain fatty acids, secondary bile acids or amino acids-derived metabolites and subcellular bacterial components. These activate gut-endocrine and/or neural-mediated pathways or pass to systemic circulation and then reach the brain. Feeding time and dietary composition are the main drivers of the gut microbiota structure and function. Therefore, aberrant feeding patterns or unhealthy diets might alter gut microbiota-diet interactions and modify nutrient availability and/or microbial ligands transmitting information from the gut to the brain in response to food intake, thus impairing energy homeostasis. Herein, we update the scientific evidence supporting that gut microbiota is a source of novel dietary and non-dietary biological products that may beneficially regulate gut-to-brain communication and, thus, improve metabolic health. Additionally, we evaluate how the feeding time and dietary composition modulate the gut microbiota and, thereby, the intraluminal availability of these biological products with potential effects on energy homeostasis. The review also identifies knowledge gaps and the advances required to clinically apply microbiome-based strategies to improve the gut-brain axis function and, thus, combat obesity.
Collapse
|
427
|
Sun R, Xu C, Feng B, Gao X, Liu Z. Critical roles of bile acids in regulating intestinal mucosal immune responses. Therap Adv Gastroenterol 2021; 14:17562848211018098. [PMID: 34104213 PMCID: PMC8165529 DOI: 10.1177/17562848211018098] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 04/27/2021] [Indexed: 02/04/2023] Open
Abstract
Bile acids are a class of cholesterol derivatives that have been known for a long time for their critical roles in facilitating the digestion and absorption of lipid from the daily diet. The transformation of primary bile acids produced by the liver to secondary bile acids appears under the action of microbiota in the intestine, greatly expanding the molecular diversity of the intestinal environment. With the discovery of several new receptors of bile acids and signaling pathways, bile acids are considered as a family of important metabolites that play pleiotropic roles in regulating many aspects of human overall health, especially in the maintenance of the microbiota homeostasis and the balance of the mucosal immune system in the intestine. Accordingly, disruption of the process involved in the metabolism or circulation of bile acids is implicated in many disorders that mainly affect the intestine, such as inflammatory bowel disease and colon cancer. In this review, we discuss the different metabolism profiles in diseases associated with the intestinal mucosa and the diverse roles of bile acids in regulating the intestinal immune system. Furthermore, we also summarize recent advances in the field of new drugs that target bile acid signaling and highlight the importance of bile acids as a new target for disease intervention.
Collapse
Affiliation(s)
| | | | | | - Xiang Gao
- Department of Gastroenterology, The Shanghai Tenth People’s Hospital of Tongji University, Shanghai, China
| | | |
Collapse
|
428
|
Sojitra C, Dholakia C, Sudhakar P, Singh KK, Agarwal S. Identification of degradation impurity of TGR5 receptor agonist-ZY12201 by LC-MS technique during force degradation study. SN APPLIED SCIENCES 2021; 3:660. [PMID: 34056545 PMCID: PMC8144688 DOI: 10.1007/s42452-021-04660-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/13/2021] [Indexed: 11/03/2022] Open
Abstract
Forced degradation study is a systemic characterization of degradation products of active pharmaceutical ingredient (API) at conditions which posses more harsh environment that accelerates degradation of API. Forced degradation and stability studies would be useful in selection of proper, packaging material and storage conditions of the API. These are also useful to demonstrate degradation pathways and degradation products of the API and further characterisation of the degradation products using mass spectrometry. TGR5 is a G protein-coupled receptor, activation of which promotes secretion of glucagon-like peptide-1 (GLP-1) and modulates insulin secretion. The potent and orally bioavailable TGR5 agonist, ZY12201, shows activation of TGR5 which increase secretion of GLP-1 and help in lowering blood glucose level in animal models. Hence it is necessary to establish and study degradation pathway and stability of API for better handling and regulatory approval. Force degradation studies of ZY12201 have shown presence of one oxidative impurity during oxidative degradation in HPLC analysis. The oxidized product is further characterized by LC-MS to elucidate structure of impurity and characterize its degradation pathway. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s42452-021-04660-y.
Collapse
Affiliation(s)
- Chandrakant Sojitra
- API Division, Cadila Healthcare Limited, Sarkhej-Bavla N.H. No. 8 A, Changodar, Ahmedabad, 382 210 India
- Department of Chemistry, Faculty of Science, M.S. University of Baroda, Baroda, 390 002 India
- Zydus Research Centre, Cadila Healthcare Ltd., Sarkhej-Bavla N.H. No. 8 A, Moraiya, Ahmedabad, 382 210 India
| | - Chintan Dholakia
- API Division, Cadila Healthcare Limited, Sarkhej-Bavla N.H. No. 8 A, Changodar, Ahmedabad, 382 210 India
| | - Padmaja Sudhakar
- Department of Chemistry, Faculty of Science, M.S. University of Baroda, Baroda, 390 002 India
| | - Kumar K. Singh
- API Division, Cadila Healthcare Limited, Sarkhej-Bavla N.H. No. 8 A, Changodar, Ahmedabad, 382 210 India
| | - Sameer Agarwal
- Zydus Research Centre, Cadila Healthcare Ltd., Sarkhej-Bavla N.H. No. 8 A, Moraiya, Ahmedabad, 382 210 India
| |
Collapse
|
429
|
Ahmed S, Spence JD. Sex differences in the intestinal microbiome: interactions with risk factors for atherosclerosis and cardiovascular disease. Biol Sex Differ 2021; 12:35. [PMID: 34001264 PMCID: PMC8130173 DOI: 10.1186/s13293-021-00378-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 04/29/2021] [Indexed: 02/06/2023] Open
Abstract
Background There are clearly sex differences in cardiovascular disease. On average, women experience cardiovascular events at an older age, and at any age, women, on average, have less atherosclerotic plaque than men. The role of the human intestinal microbiome in health and disease has garnered significant interest in recent years, and there have been indications of sex differences in the intestinal microbiome. The purpose of this narrative review was to evaluate evidence of sex differences in the interaction between the intestinal microbiome and risk factors for cardiovascular disease. Several studies have demonstrated changes in microbiota composition and metabolic profile as a function of diet, sex hormones, and host metabolism, among other factors. This dysbiosis has consequently been associated with several disease states, including atherosclerosis and cardiovascular disease. In this respect, there is a growing appreciation for the microbiota and its secreted metabolites, including trimethylamine N-oxide (TMAO), derived from intestinal bacterial metabolic pathways involving dietary choline and l-carnitine, as novel risk factors for atherosclerosis and cardiovascular outcomes. Although traditional risk factors for vascular disease have been studied broadly over the years, there exists little research to evaluate interactions of cardiovascular risk factors with a potentially sexually dimorphic intestinal microbiome. This review evaluates the role of sex differences in the composition of the intestinal microbiome, including effects of sex hormones on the microbiome, and the effects of these sex differences on cardiovascular risk factors. Diabetes and obesity exhibit sexual dimorphism, while the data concerning hypertension and dyslipidemia remain inconclusive based on the available literature. In addition, an increased proportion of gram-negative species capable of driving metabolic endotoxemia and a low-grade inflammatory response, as well as decreased numbers of butyrate-producing species, have been observed in relation to traditional vascular risk factors. In this context, circulating SCFAs and TMAO are recognized as key metabolites of the intestinal microbiome that can be readily measured in the blood for the evaluation of metabolic profile. Conclusion Novel strategies focused on resolving intestinal dysbiosis as a means to slow progression of atherosclerosis and reduce the risk of cardiovascular disease should be evaluated through a lens of sex differences.
Collapse
Affiliation(s)
- Shamon Ahmed
- University of British Columbia Faculty of Medicine, Vancouver, British Columbia, Canada
| | - J David Spence
- Stroke Prevention and Atherosclerosis Research Centre, Robarts Research Institute, Western University, 1400 Western Road, London, Ontario, N6G 2V4, Canada.
| |
Collapse
|
430
|
Sultan S, El-Mowafy M, Elgaml A, El-Mesery M, El Shabrawi A, Elegezy M, Hammami R, Mottawea W. Alterations of the Treatment-Naive Gut Microbiome in Newly Diagnosed Hepatitis C Virus Infection. ACS Infect Dis 2021; 7:1059-1068. [PMID: 33119247 DOI: 10.1021/acsinfecdis.0c00432] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Gut microbiota dysbiosis has been linked to many heath disorders including hepatitis C virus (HCV) infection. However, profiles of the gut microbiota alterations in HCV are inconsistent in the literature and are affected by the treatment regimens. Using samples collected prior to treatment from newly diagnosed patients, we characterized the gut microbiota structure in HCV patients as compared to healthy controls. Treatment-naive HCV microbiota showed increased diversity, an increased abundance of Prevotella, Succinivibrio, Catenibacterium, Megasphaera, and Ruminococcaceae, and a lower abundance of Bacteroides, Dialister, Bilophila, Streptococcus, parabacteroides, Enterobacteriaceae, Erysipelotrichaceae, Rikenellaceae, and Alistipes. Predicted community metagenomic functions showed a depletion of carbohydrate and lipid metabolism in HCV microbiota along with perturbations of amino acid metabolism. Receiver-operating characteristic analysis identified five disease-specific operational taxonomic units (OTUs) as potential biomarkers of HCV infections. Collectively, our findings reveal the alteration of gut microbiota in treatment naive HCV patients and suggest that gut microbiota may hold diagnostic promise in HCV infection.
Collapse
Affiliation(s)
- Salma Sultan
- Faculty of Health Sciences, School of Nutrition Sciences, University of Ottawa, Ottawa, Ontario K1H8M5, Canada
| | | | - Abdelaziz Elgaml
- Faculty of Pharmacy, Department of Microbiology and Immunology, Horus University, New Damietta 34518, Egypt
| | | | | | | | - Riadh Hammami
- Faculty of Health Sciences, School of Nutrition Sciences, University of Ottawa, Ottawa, Ontario K1H8M5, Canada
| | - Walid Mottawea
- Faculty of Health Sciences, School of Nutrition Sciences, University of Ottawa, Ottawa, Ontario K1H8M5, Canada
| |
Collapse
|
431
|
Loomba R, Friedman SL, Shulman GI. Mechanisms and disease consequences of nonalcoholic fatty liver disease. Cell 2021; 184:2537-2564. [PMID: 33989548 DOI: 10.1016/j.cell.2021.04.015] [Citation(s) in RCA: 1136] [Impact Index Per Article: 284.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/21/2021] [Accepted: 04/09/2021] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the leading chronic liver disease worldwide. Its more advanced subtype, nonalcoholic steatohepatitis (NASH), connotes progressive liver injury that can lead to cirrhosis and hepatocellular carcinoma. Here we provide an in-depth discussion of the underlying pathogenetic mechanisms that lead to progressive liver injury, including the metabolic origins of NAFLD, the effect of NAFLD on hepatic glucose and lipid metabolism, bile acid toxicity, macrophage dysfunction, and hepatic stellate cell activation, and consider the role of genetic, epigenetic, and environmental factors that promote fibrosis progression and risk of hepatocellular carcinoma in NASH.
Collapse
Affiliation(s)
- Rohit Loomba
- NAFLD Research Center, Division of Gastroenterology, Department of Medicine, University of California at San Diego, La Jolla, CA 92093, USA.
| | - Scott L Friedman
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Gerald I Shulman
- Departments of Internal Medicine and Cellular & Molecular Physiology, Yale Diabetes Research Center, Yale School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
432
|
Ge-Gen-Jiao-Tai-Wan Affects Type 2 Diabetic Rats by Regulating Gut Microbiota and Primary Bile Acids. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5585952. [PMID: 33953783 PMCID: PMC8064793 DOI: 10.1155/2021/5585952] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/27/2022]
Abstract
The Ge-Gen-Jiao-Tai-Wan (GGJTW) formula has been used to treat type 2 diabetes mellitus (T2DM) in China for a long time. Our previous study has proved that GGJTW could alleviate the type 2 diabetic symptoms, but the underlying mechanisms are still unclear. This study aimed to investigate the changes in gut microbiota and primary bile acids (PBAs) to determine the potential mechanisms of GGJTW in treating T2DM.The fecal transplant method and pseudogerm-free rats were used in our study.The16S rRNA gene sequencing method was used to analyze the changes in the intestinal flora, and PBAs in the colon contents were detected. Finally, the expression of farnesoid X receptor (FXR), G protein-coupled membrane receptor 5 (TGR5), and glucagon-like peptide-1 (GLP-1) was assessed. Following GGJTW treatment, we observed a decrease in blood glucose levels and improvements in glucose tolerance and serum lipid levels. Furthermore, we found that GGJTW could regulate the composition of the gut microbiota and upregulate the diabetic beneficial phylum Firmicutes and bile-acid-related genus Lactobacillus. PBAs in the colon contents were increased in the GGJTW-treated group, accompanied by upregulated expression of the bile acid receptors FXR and TGR5 and increased concentrations of GLP-1. These results indicated that GGJTW could alleviate symptoms of type 2 diabetic rats by regulating the gut microbiota, promoting the production of PBAs, and upregulating the PBA-FXR/TGR5-GLP-1 pathway.
Collapse
|
433
|
Lugiņina J, Linden M, Bazulis M, Kumpiņš V, Mishnev A, Popov SA, Golubeva TS, Waldvogel SR, Shults EE, Turks M. Electrosynthesis of Stable Betulin‐Derived Nitrile Oxides and their Application in Synthesis of Cytostatic Lupane‐Type Triterpenoid‐Isoxazole Conjugates. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jevgeņija Lugiņina
- Faculty of Materials Science and Applied Chemistry RigaTechnical University P. Valdena Str.3 Riga 1007 Latvia
| | - Martin Linden
- Department of Chemistry Johannes Gutenberg University Mainz Duesbergweg 10–14 Mainz 55128 Germany
| | - Māris Bazulis
- Faculty of Materials Science and Applied Chemistry RigaTechnical University P. Valdena Str.3 Riga 1007 Latvia
| | - Viktors Kumpiņš
- Faculty of Materials Science and Applied Chemistry RigaTechnical University P. Valdena Str.3 Riga 1007 Latvia
| | - Anatoly Mishnev
- Latvian Institute of Organic Synthesis Aizkraukles Str. 21 Riga 1006 Latvia
| | - Sergey A. Popov
- Novosibirsk Institute of Organic Chemistry Academician Lavrentjev Ave. 9 Novosibirsk 630090 Russia
| | - Tatiana S. Golubeva
- The Federal Research Center Institute of Cytology and Genetics Acad. Lavrentyev Ave., 10 Novosibirsk 630090 Russia
| | - Siegfried R. Waldvogel
- Department of Chemistry Johannes Gutenberg University Mainz Duesbergweg 10–14 Mainz 55128 Germany
| | - Elvira E. Shults
- Novosibirsk Institute of Organic Chemistry Academician Lavrentjev Ave. 9 Novosibirsk 630090 Russia
| | - Māris Turks
- Faculty of Materials Science and Applied Chemistry RigaTechnical University P. Valdena Str.3 Riga 1007 Latvia
| |
Collapse
|
434
|
Targeting Energy Expenditure-Drugs for Obesity Treatment. Pharmaceuticals (Basel) 2021; 14:ph14050435. [PMID: 34066399 PMCID: PMC8148206 DOI: 10.3390/ph14050435] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/18/2021] [Accepted: 04/29/2021] [Indexed: 12/15/2022] Open
Abstract
Obesity and overweight are associated with lethal diseases. In this context, obese and overweight individuals infected by COVID-19 are at greater risk of dying. Obesity is treated by three main pharmaceutical approaches, namely suppressing appetite, reducing energy intake by impairing absorption, and increasing energy expenditure. Most compounds used for the latter were first envisaged for other medical uses. However, several candidates are now being developed explicitly for targeting obesity by increasing energy expenditure. This review analyzes the compounds that show anti-obesity activity exerted through the energy expenditure pathway. They are classified on the basis of their development status: FDA-approved, Withdrawn, Clinical Trials, and Under Development. The chemical nature, target, mechanisms of action, and description of the current stage of development are described for each one.
Collapse
|
435
|
Fiorucci S, Biagioli M, Baldoni M, Ricci P, Sepe V, Zampella A, Distrutti E. The identification of farnesoid X receptor modulators as treatment options for nonalcoholic fatty liver disease. Expert Opin Drug Discov 2021; 16:1193-1208. [PMID: 33849361 DOI: 10.1080/17460441.2021.1916465] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION The farnesoid-x-receptor (FXR) is a ubiquitously expressed nuclear receptor selectively activated by primary bile acids. AREA COVERED FXR is a validated pharmacological target. Herein, the authors review preclinical and clinical data supporting the development of FXR agonists in the treatment of nonalcoholic fatty liver disease. EXPERT OPINION Development of systemic FXR agonists to treat the metabolic liver disease has been proven challenging because the side effects associated with these agents including increased levels of cholesterol and LDL-c and reduced HDL-c raising concerns over their long-term cardiovascular safety. Additionally, pruritus has emerged as a common, although poorly explained, dose-related side effect with all FXR ligands, but is especially common with OCA. FXR agonists that are currently undergoing phase 2/3 trials are cilofexor, tropifexor, nidufexor and MET409. Some of these agents are currently being developed as combination therapies with other agents including cenicriviroc, a CCR2/CCR5 inhibitor, or firsocostat an acetyl CoA carboxylase inhibitor. Additional investigations are needed to evaluate the beneficial effects of combination of these agents with statins. It is expected that in the coming years, FXR agonists will be developed as a combination therapy to minimize side effects and increase likelihood of success by targeting different metabolic pathways.
Collapse
Affiliation(s)
- Stefano Fiorucci
- Dipartimento Di Medicina E Chirurgia, Università Di Perugia, Perugia, Italy
| | - Michele Biagioli
- Dipartimento Di Medicina E Chirurgia, Università Di Perugia, Perugia, Italy
| | - Monia Baldoni
- Dipartimento Di Medicina E Chirurgia, Università Di Perugia, Perugia, Italy
| | - Patrizia Ricci
- Dipartimento Di Medicina E Chirurgia, Università Di Perugia, Perugia, Italy
| | - Valentina Sepe
- Department of Pharmacy University of Napoli, Federico II, Napoli, Italy
| | - Angela Zampella
- Department of Pharmacy University of Napoli, Federico II, Napoli, Italy
| | - Eleonora Distrutti
- SC Di Gastroenterologia Ed Epatologia, Azienda Ospedaliera Di Perugia, Perugia, Italy
| |
Collapse
|
436
|
Host-microbial interactions in the metabolism of different dietary fats. Cell Metab 2021; 33:857-872. [PMID: 33951472 DOI: 10.1016/j.cmet.2021.04.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 03/29/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023]
Abstract
Although generally presumed to be isocaloric, dietary fats can differ in their energetic contributions and metabolic effects. Here, we show how an explicit consideration of the gut microbiome and its interactions with human physiology can enrich our understanding of dietary fat metabolism. We outline how variable human metabolic responses to different dietary fats, such as altered ileal digestibility or bile acid production, have downstream effects on the gut microbiome that differentially promote energy gain and inflammation. By incorporating host-microbial interactions into energetic models of human nutrition, we can achieve greater insight into the underlying mechanisms of diet-driven metabolic disease.
Collapse
|
437
|
Arora T, Vanslette AM, Hjorth SA, Bäckhed F. Microbial regulation of enteroendocrine cells. MED 2021; 2:553-570. [DOI: 10.1016/j.medj.2021.03.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 02/08/2023]
|
438
|
Abstract
PURPOSE OF REVIEW Nonalcoholic fatty liver disease (NAFLD) is the leading cause of chronic liver disease in the United States and increasing globally. The progressive form of NAFLD, nonalcoholic steatohepatitis (NASH), can lead to cirrhosis and complications of end-stage liver disease. No FDA-approved therapy for NAFLD/NASH exists. Treatment of NAFLD/NASH includes effective and sustained life-style modification and weight loss. This review reports on the recent findings of bariatric surgery in the management of NASH. RECENT FINDINGS NAFLD, at all stages, is common in those who meet indication for bariatric surgery. Bariatric surgery resolves NAFLD/NASH and reverses early stages of fibrosis. Although randomized controlled trials of bariatric surgery in NASH are infeasible, studies defining the metabolic changes induced by bariatric surgery, and their effect on NASH, provide insight for plausible pharmacologic targets for the nonsurgical treatment of NASH. SUMMARY Resolution of NASH and fibrosis regression can occur after bariatric surgery. Although the exact mechanism(s) underlying the improvement of NASH and hepatic fibrosis following bariatric surgery is not fully elucidated, emerging data on this topic is vitally important for lending insight into the pharmacotherapies for NASH for patients who are not otherwise suitable candidates for bariatric surgery.
Collapse
|
439
|
Figge A, Sydor S, Wenning C, Manka P, Assmuth S, Vilchez-Vargas R, Link A, Jähnert A, Brodesser S, Lucas C, Nevzorova YA, Faber KN, Moshage H, Porsch-Özcürümez M, Gerken G, Cubero FJ, Canbay A, Bechmann LP. Gender and gut microbiota composition determine hepatic bile acid, metabolic and inflammatory response to a single fast-food meal in healthy adults. Clin Nutr 2021; 40:2609-2619. [PMID: 33933727 DOI: 10.1016/j.clnu.2021.04.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/16/2021] [Accepted: 04/02/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND & AIMS Regular consumption of fast-food (FF) as a form of typical Western style diet is associated with obesity and the metabolic syndrome, including its hepatic manifestation nonalcoholic fatty liver disease. Currently, it remains unclear how intermittent excess FF consumption may influence liver metabolism. The study aimed to characterize the effects of a single FF binge on hepatic steatosis, inflammation, bile acid (BA), glucose and lipid metabolism. METHODS Twenty-five healthy individuals received a FF meal and were asked to continue eating either for a two-hour period or until fully saturated. Serum levels of transaminases, fasting BA, lipid profile, glucose and cytokine levels as well as transient elastography and controlled attenuation parameter (CAP; to assess hepatic steatosis) were analyzed before (day 0) and the day after FF binge (day 1). Feces was collected prior and after the FF challenge for microbiota analysis. RESULTS The FF meal induced a modest increase in CAP, which was accompanied by a robust increase of fasting serum BA levels. Surprisingly, levels of cholesterol and bilirubin were significantly lower after the FF meal. Differentiating individuals with a relevant delta BA (>1 μmol/l) increase vs. individuals without (delta BA ≤1 μmol/l), identified several gut microbiota, as well as gender to be associated with the BA increase and the observed alterations in liver function, metabolism and inflammation. CONCLUSION A single binge FF meal leads to a robust increase in serum BA levels and alterations in parameters of liver injury and metabolism, indicating a novel metabolic aspect of the gut-liver axis.
Collapse
Affiliation(s)
- A Figge
- Department of Internal Medicine, University Hospital Knappschaftskrankenhaus, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany
| | - S Sydor
- Department of Internal Medicine, University Hospital Knappschaftskrankenhaus, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany
| | - C Wenning
- Department of Gastroenterology and Hepatology, University Hospital Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - P Manka
- Department of Internal Medicine, University Hospital Knappschaftskrankenhaus, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany; Department of Gastroenterology and Hepatology, University Hospital Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - S Assmuth
- Department of Gastroenterology and Hepatology, University Hospital Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - R Vilchez-Vargas
- Department of Gastroenterology, Hepatology, and Infectious Diseases, Otto-von-Guericke-University Hospital Magdeburg, Leipziger Strasse 44, 39120 Magdeburg, Germany
| | - A Link
- Department of Gastroenterology, Hepatology, and Infectious Diseases, Otto-von-Guericke-University Hospital Magdeburg, Leipziger Strasse 44, 39120 Magdeburg, Germany
| | - A Jähnert
- Department of Internal Medicine, University Hospital Knappschaftskrankenhaus, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany
| | - S Brodesser
- CECAD Research Center, CECAD Lipidomics Facility, University of Cologne Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - C Lucas
- CECAD Research Center, CECAD Lipidomics Facility, University of Cologne Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Y A Nevzorova
- Department of Immunology, Opthalmology and ORL, Complutense University School of Medicine, Avenida de Séneca 2, 28040 Madrid, Spain; 12 de Octubre Health Research Institute (imas 12), Madrid, Spain
| | - K N Faber
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands; Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| | - H Moshage
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands; Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| | - M Porsch-Özcürümez
- Department of Internal Medicine, University Hospital Knappschaftskrankenhaus, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany
| | - G Gerken
- Department of Gastroenterology and Hepatology, University Hospital Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - F J Cubero
- Department of Immunology, Opthalmology and ORL, Complutense University School of Medicine, Avenida de Séneca 2, 28040 Madrid, Spain; 12 de Octubre Health Research Institute (imas 12), Madrid, Spain
| | - A Canbay
- Department of Internal Medicine, University Hospital Knappschaftskrankenhaus, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany
| | - L P Bechmann
- Department of Internal Medicine, University Hospital Knappschaftskrankenhaus, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany.
| |
Collapse
|
440
|
Perino A, Velázquez-Villegas LA, Bresciani N, Sun Y, Huang Q, Fénelon VS, Castellanos-Jankiewicz A, Zizzari P, Bruschetta G, Jin S, Baleisyte A, Gioiello A, Pellicciari R, Ivanisevic J, Schneider BL, Diano S, Cota D, Schoonjans K. Central anorexigenic actions of bile acids are mediated by TGR5. Nat Metab 2021; 3:595-603. [PMID: 34031591 PMCID: PMC7610881 DOI: 10.1038/s42255-021-00398-4] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 04/26/2021] [Indexed: 12/21/2022]
Abstract
Bile acids (BAs) are signalling molecules that mediate various cellular responses in both physiological and pathological processes. Several studies report that BAs can be detected in the brain1, yet their physiological role in the central nervous system is still largely unknown. Here we show that postprandial BAs can reach the brain and activate a negative-feedback loop controlling satiety in response to physiological feeding via TGR5, a G-protein-coupled receptor activated by multiple conjugated and unconjugated BAs2 and an established regulator of peripheral metabolism3-8. Notably, peripheral or central administration of a BA mix or a TGR5-specific BA mimetic (INT-777) exerted an anorexigenic effect in wild-type mice, while whole-body, neuron-specific or agouti-related peptide neuronal TGR5 deletion caused a significant increase in food intake. Accordingly, orexigenic peptide expression and secretion were reduced after short-term TGR5 activation. In vitro studies demonstrated that activation of the Rho-ROCK-actin-remodelling pathway decreases orexigenic agouti-related peptide/neuropeptide Y (AgRP/NPY) release in a TGR5-dependent manner. Taken together, these data identify a signalling cascade by which BAs exert acute effects at the transition between fasting and feeding and prime the switch towards satiety, unveiling a previously unrecognized role of physiological feedback mediated by BAs in the central nervous system.
Collapse
Affiliation(s)
- Alessia Perino
- Institute of Bioengineering, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Laura A Velázquez-Villegas
- Institute of Bioengineering, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México D.F., Mexico
| | - Nadia Bresciani
- Institute of Bioengineering, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Yu Sun
- Institute of Bioengineering, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Qingyao Huang
- Institute of Bioengineering, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Valérie S Fénelon
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300, Bordeaux, France
| | | | - Philippe Zizzari
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300, Bordeaux, France
| | - Giuseppe Bruschetta
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Sungho Jin
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, NY, USA
| | - Aiste Baleisyte
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Antimo Gioiello
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | | | - Julijana Ivanisevic
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Bernard L Schneider
- Bertarelli Platform for Gene Therapy, Ecole Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Sabrina Diano
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, NY, USA
| | - Daniela Cota
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300, Bordeaux, France
| | - Kristina Schoonjans
- Institute of Bioengineering, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
441
|
Circulating bile acids as a link between the gut microbiota and cardiovascular health: impact of prebiotics, probiotics and polyphenol-rich foods. Nutr Res Rev 2021; 35:161-180. [PMID: 33926590 DOI: 10.1017/s0954422421000081] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Beneficial effects of probiotic, prebiotic and polyphenol-rich interventions on fasting lipid profiles have been reported, with changes in the gut microbiota composition believed to play an important role in lipid regulation. Primary bile acids, which are involved in the digestion of fats and cholesterol metabolism, can be converted by the gut microbiota to secondary bile acids, some species of which are less well reabsorbed and consequently may be excreted in the stool. This can lead to increased hepatic bile acid neo-synthesis, resulting in a net loss of circulating low-density lipoprotein. Bile acids may therefore provide a link between the gut microbiota and cardiovascular health. This narrative review presents an overview of bile acid metabolism and the role of probiotics, prebiotics and polyphenol-rich foods in modulating circulating cardiovascular disease (CVD) risk markers and bile acids. Although findings from human studies are inconsistent, there is growing evidence for associations between these dietary components and improved lipid CVD risk markers, attributed to modulation of the gut microbiota and bile acid metabolism. These include increased bile acid neo-synthesis, due to bile sequestering action, bile salt metabolising activity and effects of short-chain fatty acids generated through bacterial fermentation of fibres. Animal studies have demonstrated effects on the FXR/FGF-15 axis and hepatic genes involved in bile acid synthesis (CYP7A1) and cholesterol synthesis (SREBP and HMGR). Further human studies are needed to determine the relationship between diet and bile acid metabolism and whether circulating bile acids can be utilised as a potential CVD risk biomarker.
Collapse
|
442
|
Cai Z, Yuan S, Zhong Y, Deng L, Li J, Tan X, Feng J. Amelioration of Endothelial Dysfunction in Diabetes: Role of Takeda G Protein-Coupled Receptor 5. Front Pharmacol 2021; 12:637051. [PMID: 33995040 PMCID: PMC8113688 DOI: 10.3389/fphar.2021.637051] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/22/2021] [Indexed: 12/25/2022] Open
Abstract
Diabetes mellitus (DM) eventually leads to chronic vascular complications, resulting in cardiovascular diseases. DM-associated endothelial dysfunction (ED) plays an important role in the development of chronic vascular complications. Low endothelial nitric oxide synthase (eNOS) activity, inflammation, and oxidative stress all contribute to ED. The G protein-coupled receptor Takeda G protein-coupled receptor 5 (TGR5) is a membrane receptor for bile acids that plays an important role in the regulation of glucose metabolism. Recent studies have shown that TGR5 is involved in the regulation of various mediators of ED, which suggests that TGR5 may represent a target for the treatment of DM-associated ED. In this review, we summarize the principal mechanisms of DM-associated ED, then propose TGR5 as a novel therapeutic target on the basis of its mechanistic involvement, and suggest potential directions for future research.
Collapse
Affiliation(s)
- Zhengyao Cai
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Suxin Yuan
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Yi Zhong
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Li Deng
- Department of Rheumatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jiafu Li
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Xiaoqiu Tan
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Jian Feng
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| |
Collapse
|
443
|
Zhang J, Tang Q, Zhu L. Could the Gut Microbiota Serve as a Therapeutic Target in Ischemic Stroke? EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:1391384. [PMID: 33959182 PMCID: PMC8075659 DOI: 10.1155/2021/1391384] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 03/17/2021] [Accepted: 04/07/2021] [Indexed: 02/08/2023]
Abstract
The brain-gut axis is a relatively recent discovery of a two-way regulation system between the gut and brain, suggesting that the gut microbiota may be a promising targeted prevention and treatment strategy for patients with a high risk of acute cerebral ischemia/reperfusion injury. There are many risk factors for ischemic stroke, and many studies have shown that the gut microbiota affects the absorption and metabolism of the body, as well as the risk factors of stroke, such as blood pressure, blood glucose, blood lipids, and atherosclerosis, either directly or indirectly. Furthermore, the gut microbiota can affect the occurrence and prognosis of ischemic stroke by regulating risk factors or immune responses. Therefore, this study aimed to collect evidence of the interaction between gut microbiota and ischemic stroke, summarize the interaction mechanism between the two, and explore the gut microbiota as a new targeted prevention and treatment strategy for patients with high ischemic risk.
Collapse
Affiliation(s)
- Jiyao Zhang
- Graduate School, Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin 150040, Heilongjiang, China
| | - Qiang Tang
- Rehabilitation Center, Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, 411 Guogeli Street, Nangang District, Harbin 150001, Heilongjiang, China
| | - Luwen Zhu
- Rehabilitation Center, Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, 411 Guogeli Street, Nangang District, Harbin 150001, Heilongjiang, China
- Brain Function and Neurorehabilitation Laboratory, Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, 411 Guogeli Street, Nangang District, Harbin 150001, Heilongjiang, China
| |
Collapse
|
444
|
Cornejo-Pareja I, Molina-Vega M, Gómez-Pérez AM, Damas-Fuentes M, Tinahones FJ. Factors Related to Weight Loss Maintenance in the Medium-Long Term after Bariatric Surgery: A Review. J Clin Med 2021; 10:jcm10081739. [PMID: 33923789 PMCID: PMC8073104 DOI: 10.3390/jcm10081739] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/27/2021] [Accepted: 04/09/2021] [Indexed: 12/15/2022] Open
Abstract
Despite bariatric surgery being the most effective treatment for obesity, some individuals do not respond adequately, especially in the long term. Identifying the predictors of correct weight maintenance in the medium (from 1 to 3 years after surgery) and long term (from 3 years and above) is of vital importance to reduce failure after bariatric surgery; therefore, we summarize the evidence about certain factors, among which we highlight surgical technique, psychological factors, physical activity, adherence to diet, gastrointestinal hormones or neurological factors related to appetite control. We conducted a search in PubMed focused on the last five years (2015–2021). Main findings are as follows: despite Roux-en-Y gastric bypass being more effective in the long term, sleeve gastrectomy shows a more beneficial effectiveness–complications balance; pre-surgical psychological and behavioral evaluation along with post-surgical treatment improve long-term surgical outcomes; physical activity programs after bariatric surgery, in addition to continuous and comprehensive care interventions regarding diet habits, improve weight loss maintenance, but it is necessary to improve adherence; the impact of bariatric surgery on the gut–brain axis seems to influence weight maintenance. In conclusion, although interesting findings exist, the evidence is contradictory in some places, and long-term clinical trials are necessary to draw more robust conclusions.
Collapse
Affiliation(s)
- Isabel Cornejo-Pareja
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, 29010 Málaga, Spain; (I.C.-P.); (M.D.-F.); (F.J.T.)
- Instituto de Investigación Biomédica de Málaga (IBIMA), Virgen de la Victoria University Hospital, 29010 Málaga, Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - María Molina-Vega
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, 29010 Málaga, Spain; (I.C.-P.); (M.D.-F.); (F.J.T.)
- Instituto de Investigación Biomédica de Málaga (IBIMA), Virgen de la Victoria University Hospital, 29010 Málaga, Spain
- Correspondence: (M.M.-V.); (A.M.G.-P.); Tel.: +34-95-1034-044 (M.M.-V. & A.M.G.-P.)
| | - Ana María Gómez-Pérez
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, 29010 Málaga, Spain; (I.C.-P.); (M.D.-F.); (F.J.T.)
- Instituto de Investigación Biomédica de Málaga (IBIMA), Virgen de la Victoria University Hospital, 29010 Málaga, Spain
- Correspondence: (M.M.-V.); (A.M.G.-P.); Tel.: +34-95-1034-044 (M.M.-V. & A.M.G.-P.)
| | - Miguel Damas-Fuentes
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, 29010 Málaga, Spain; (I.C.-P.); (M.D.-F.); (F.J.T.)
- Instituto de Investigación Biomédica de Málaga (IBIMA), Virgen de la Victoria University Hospital, 29010 Málaga, Spain
| | - Francisco J. Tinahones
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, 29010 Málaga, Spain; (I.C.-P.); (M.D.-F.); (F.J.T.)
- Instituto de Investigación Biomédica de Málaga (IBIMA), Virgen de la Victoria University Hospital, 29010 Málaga, Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
445
|
Gut microbiota, determined by dietary nutrients, drive modification of the plasma lipid profile and insulin resistance. iScience 2021; 24:102445. [PMID: 33997711 PMCID: PMC8105675 DOI: 10.1016/j.isci.2021.102445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/13/2021] [Accepted: 04/14/2021] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota metabolizes the nutrients to produce various metabolites that play crucial roles in host metabolism. However, the links between the microbiota established by different nutrients and the microbiota-influenced changes in the plasma lipids remain unclear. Diets rich in cornstarch, fructose, branched chain amino acids, soybean oil (SO), or lard established a unique microbiota and had influence on glucose metabolism, which was partially reproduced by transferring the microbiota. Comparison of plasma lipidomic analysis between germ-free and colonized mice revealed significant impacts of the microbiota on various lipid classes, and of note, the microbiota established by the SO diet, which was associated with the greatest degree of glucose intolerance, caused the maximum alteration of the plasma lipid profile. Thus, the gut microbiota composed of dietary nutrients was associated with dynamic changes in the lipids potentially having differential effects on glucose metabolism. Diets with different nutrient compositions differentially affect glucose metabolism Gut microbiota established by soybean oil-rich (SO) diet impairs glucose metabolism Gut microbiota established by diets has dynamic effects on the plasma lipid profile SO diet has the greatest impact on the plasma lipid profile through gut microbiota
Collapse
|
446
|
Liang C, Zhou XH, Gong PM, Niu HY, Lyu LZ, Wu YF, Han X, Zhang LW. Lactiplantibacillus plantarum H-87 prevents high-fat diet-induced obesity by regulating bile acid metabolism in C57BL/6J mice. Food Funct 2021; 12:4315-4324. [PMID: 34031676 DOI: 10.1039/d1fo00260k] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Bile salt hydrolase (BSH)-producing bacteria are negatively related to the body weight gain and energy storage of the host. We aimed to obtain a novel BSH-producing strain with excellent anti-obesity effect and explained its mechanism. Here, we selected a strain named Lactiplantibacillus plantarum H-87 (H-87) with excellent ability to hydrolyze glycochenodeoxycholic acid (GCDCA) and tauroursodeoxycholic acid (TUDCA) in vitro from 12 lactobacilli, and evaluated its anti-obesity effect in high-fat diet (HFD)-fed C57BL/6J mice. The results suggested that H-87 could inhibit HFD-induced body weight gain, fat accumulation, liver lipogenesis and injury, insulin resistance and dyslipidemia. In addition, H-87 could colonize in the ileum and hydrolyze GCDCA and TUDCA, reflected as changes in the concentrations of GCDCA, TUDCA, CDCA and UDCA in the ileum or liver. Furthermore, the study identified that H-87 reduced TUDCA and GCDCA levels in the ileum, which decreased the GLP-1 secretion by L cells to alleviate insulin resistance in HFD-fed mice. Furthermore, H-87 increased the CDCA level in the ileum and liver to activate FXR signaling pathways to inhibit liver lipogenesis in HFD-fed mice. In addition, the decrease of intestinal conjugated bile acids (TUDCA and GCDCA) also increased fecal lipid content and decreased intestinal lipid digestibility. In conclusion, H-87 could inhibit liver fat deposition, insulin resistance and lipid digestion by changing bile acid enterohepatic circulation, and eventually alleviate HFD-induced obesity.
Collapse
Affiliation(s)
- Cong Liang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150010, China.
| | | | | | | | | | | | | | | |
Collapse
|
447
|
Zheng X, Chen T, Jiang R, Zhao A, Wu Q, Kuang J, Sun D, Ren Z, Li M, Zhao M, Wang S, Bao Y, Li H, Hu C, Dong B, Li D, Wu J, Xia J, Wang X, Lan K, Rajani C, Xie G, Lu A, Jia W, Jiang C, Jia W. Hyocholic acid species improve glucose homeostasis through a distinct TGR5 and FXR signaling mechanism. Cell Metab 2021; 33:791-803.e7. [PMID: 33338411 DOI: 10.1016/j.cmet.2020.11.017] [Citation(s) in RCA: 250] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 07/31/2020] [Accepted: 11/20/2020] [Indexed: 02/08/2023]
Abstract
Hyocholic acid (HCA) and its derivatives are found in trace amounts in human blood but constitute approximately 76% of the bile acid (BA) pool in pigs, a species known for its exceptional resistance to type 2 diabetes. Here, we show that BA depletion in pigs suppressed secretion of glucagon-like peptide-1 (GLP-1) and increased blood glucose levels. HCA administration in diabetic mouse models improved serum fasting GLP-1 secretion and glucose homeostasis to a greater extent than tauroursodeoxycholic acid. HCA upregulated GLP-1 production and secretion in enteroendocrine cells via simultaneously activating G-protein-coupled BA receptor, TGR5, and inhibiting farnesoid X receptor (FXR), a unique mechanism that is not found in other BA species. We verified the findings in TGR5 knockout, intestinal FXR activation, and GLP-1 receptor inhibition mouse models. Finally, we confirmed in a clinical cohort, that lower serum concentrations of HCA species were associated with diabetes and closely related to glycemic markers.
Collapse
MESH Headings
- Animals
- Blood Glucose/analysis
- Cell Line
- Cholic Acids/blood
- Cholic Acids/chemistry
- Cholic Acids/pharmacology
- Cholic Acids/therapeutic use
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Glucagon-Like Peptide 1/metabolism
- Glucagon-Like Peptide-1 Receptor/antagonists & inhibitors
- Glucagon-Like Peptide-1 Receptor/metabolism
- Glucose/metabolism
- Humans
- Isoxazoles/pharmacology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, G-Protein-Coupled/deficiency
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Signal Transduction/drug effects
- Swine
Collapse
Affiliation(s)
- Xiaojiao Zheng
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus and Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Tianlu Chen
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus and Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Runqiu Jiang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210093, China
| | - Aihua Zhao
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus and Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Qing Wu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, and the Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China
| | - Junliang Kuang
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus and Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Dongnan Sun
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus and Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Zhenxing Ren
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus and Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Mengci Li
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus and Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Mingliang Zhao
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus and Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Shouli Wang
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus and Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Yuqian Bao
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Diabetes Institute, Shanghai 200233, China
| | - Huating Li
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Diabetes Institute, Shanghai 200233, China
| | - Cheng Hu
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Diabetes Institute, Shanghai 200233, China
| | - Bing Dong
- National Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - Defa Li
- National Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - Jiayu Wu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, and the Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China
| | - Jialin Xia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, and the Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China
| | - Xuemei Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, and the Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China
| | - Ke Lan
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Cynthia Rajani
- University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Guoxiang Xie
- University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Aiping Lu
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Weiping Jia
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Diabetes Institute, Shanghai 200233, China.
| | - Changtao Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, and the Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China.
| | - Wei Jia
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus and Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China; University of Hawaii Cancer Center, Honolulu, HI 96813, USA; School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| |
Collapse
|
448
|
Alterations of gut microbiota and serum bile acids are associated with parenteral nutrition-associated liver disease. J Pediatr Surg 2021; 56:738-744. [PMID: 32732165 DOI: 10.1016/j.jpedsurg.2020.06.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/10/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Parenteral nutrition-associated liver disease (PNALD) is a major complication of long-term parenteral nutrition (PN). The pathogenesis of PNALD remains unclear. We investigated the changes in taxonomic and functional composition of gut microbiota and serum bile acid levels in a rat model of PNALD. METHODS Male 4-week-old Sprague Dawley rats received either total parenteral nutrition or standard chow with 0.9% saline for 7 days. The taxonomic composition of cecal microbiota and its functional composition associated with bile acid metabolism were measured. RESULTS There were differences in taxonomic composition between the two groups. The abundance of the secondary bile acid biosynthesis pathway was higher in the TPN group (p < 0.05) with an increase in the percentage of bacteria expressing 7-alpha-hydroxysteroid dehydrogenase (p < 0.05). The abundance of enzymes associated with bile salt hydrolase was also higher (p < 0.05) in the TPN group. The TPN group showed a distinct bile acid profile characterized by a higher ratio of secondary bile acids to primary bile acids. CONCLUSIONS The alteration of bile acid-associated microbiota may lead to increased secondary bile acid production in a rat model of PNALD.
Collapse
|
449
|
Chen W, Yin H, Zhang N, Liu W, Qu Q, Xiao J, Gong F, He X. Improvement of Postprandial Lipid Metabolism After Ileal Transposition in Non-obese Diabetic Rats. Obes Surg 2021; 31:1572-1578. [PMID: 33409975 DOI: 10.1007/s11695-020-05158-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND Ileal transposition (IT) could reduce obesity and improve type 2 diabetes mellitus (T2DM). The main aim of our study was to investigate lipid metabolism changes in T2DM rats after IT without a weight reduction effect. METHODS Thirty male diabetic rats were randomly divided into IT, sham IT (SI), and control groups. The levels of plasma cholesterol, high-density lipoprotein (HDL), low-density lipoprotein (LDL), triglycerides (TGs), and bile acid were measured. After sacrifice, the white adipose tissue, brown adipose tissue and liver were weighed. RESULTS IT induced significant improvement in glucose and lipid metabolism. There were no significant differences in the levels of cholesterol (P = 0.87), HDL (P = 0.70), LDL (P = 0.96), or TGs (P = 0.97) among the groups before surgery. After IT, the levels of cholesterol (P = 0.019), LDL (P = 0.004), and TGs (P < 0.001) were lower than those in the SI and control groups, while the level of HDL was not significantly different compared to those of the other groups (P = 0.437). Higher bile acid level (P = 0.001), lower white adipose tissue/total body weight ratio (P < 0.001), and lower liver/total body weight ratio (P = 0.003) were found in the IT group. The BAT/total body weight ratio in the IT group was higher than that in the SI or control groups (P = 0.002). CONCLUSIONS IT could improve lipid metabolism in diabetic rats.
Collapse
Affiliation(s)
- Weijie Chen
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuaifuyuan 1#, Beijing, 100730, People's Republic of China
| | - Haixin Yin
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuaifuyuan 1#, Beijing, 100730, People's Republic of China
| | - Ning Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuaifuyuan 1#, Beijing, 100730, People's Republic of China
| | - Wei Liu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuaifuyuan 1#, Beijing, 100730, People's Republic of China
| | - Qiang Qu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuaifuyuan 1#, Beijing, 100730, People's Republic of China
| | - Jianchun Xiao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuaifuyuan 1#, Beijing, 100730, People's Republic of China
| | - Fengying Gong
- Department of Endocrinology, Key Laboratory of Endocrinology of the Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuaifuyuan 1#, Beijing, 100730, People's Republic of China
| | - Xiaodong He
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuaifuyuan 1#, Beijing, 100730, People's Republic of China.
| |
Collapse
|
450
|
Xie C, Huang W, Young RL, Jones KL, Horowitz M, Rayner CK, Wu T. Role of Bile Acids in the Regulation of Food Intake, and Their Dysregulation in Metabolic Disease. Nutrients 2021; 13:1104. [PMID: 33800566 PMCID: PMC8066182 DOI: 10.3390/nu13041104] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 02/07/2023] Open
Abstract
Bile acids are cholesterol-derived metabolites with a well-established role in the digestion and absorption of dietary fat. More recently, the discovery of bile acids as natural ligands for the nuclear farnesoid X receptor (FXR) and membrane Takeda G-protein-coupled receptor 5 (TGR5), and the recognition of the effects of FXR and TGR5 signaling have led to a paradigm shift in knowledge regarding bile acid physiology and metabolic health. Bile acids are now recognized as signaling molecules that orchestrate blood glucose, lipid and energy metabolism. Changes in FXR and/or TGR5 signaling modulates the secretion of gastrointestinal hormones including glucagon-like peptide-1 (GLP-1) and peptide YY (PYY), hepatic gluconeogenesis, glycogen synthesis, energy expenditure, and the composition of the gut microbiome. These effects may contribute to the metabolic benefits of bile acid sequestrants, metformin, and bariatric surgery. This review focuses on the role of bile acids in energy intake and body weight, particularly their effects on gastrointestinal hormone secretion, the changes in obesity and T2D, and their potential relevance to the management of metabolic disorders.
Collapse
Affiliation(s)
- Cong Xie
- Adelaide Medical School, Center of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5005, Australia; (C.X.); (W.H.); (R.L.Y.); (K.L.J.); (M.H.); (C.K.R.)
| | - Weikun Huang
- Adelaide Medical School, Center of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5005, Australia; (C.X.); (W.H.); (R.L.Y.); (K.L.J.); (M.H.); (C.K.R.)
- The ARC Center of Excellence for Nanoscale BioPhotonics, Institute for Photonics and Advanced Sensing, School of Physical Sciences, The University of Adelaide, Adelaide 5005, Australia
| | - Richard L. Young
- Adelaide Medical School, Center of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5005, Australia; (C.X.); (W.H.); (R.L.Y.); (K.L.J.); (M.H.); (C.K.R.)
- Nutrition, Diabetes & Gut Health, Lifelong Health Theme South Australian Health & Medical Research Institute, Adelaide 5005, Australia
| | - Karen L. Jones
- Adelaide Medical School, Center of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5005, Australia; (C.X.); (W.H.); (R.L.Y.); (K.L.J.); (M.H.); (C.K.R.)
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide 5005, Australia
| | - Michael Horowitz
- Adelaide Medical School, Center of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5005, Australia; (C.X.); (W.H.); (R.L.Y.); (K.L.J.); (M.H.); (C.K.R.)
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide 5005, Australia
| | - Christopher K. Rayner
- Adelaide Medical School, Center of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5005, Australia; (C.X.); (W.H.); (R.L.Y.); (K.L.J.); (M.H.); (C.K.R.)
- Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide 5005, Australia
| | - Tongzhi Wu
- Adelaide Medical School, Center of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5005, Australia; (C.X.); (W.H.); (R.L.Y.); (K.L.J.); (M.H.); (C.K.R.)
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide 5005, Australia
- Institute of Diabetes, School of Medicine, Southeast University, Nanjing 210009, China
| |
Collapse
|