401
|
Le Magueresse-Battistoni B. Adipose Tissue and Endocrine-Disrupting Chemicals: Does Sex Matter? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17249403. [PMID: 33333918 PMCID: PMC7765367 DOI: 10.3390/ijerph17249403] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 12/21/2022]
Abstract
Obesity and metabolic-related diseases, among which diabetes, are prominent public health challenges of the 21st century. It is now well acknowledged that pollutants are a part of the equation, especially endocrine-disrupting chemicals (EDCs) that interfere with the hormonal aspect. The aim of the review is to focus on adipose tissue, a central regulator of energy balance and metabolic homeostasis, and to highlight the significant differences in the endocrine and metabolic aspects of adipose tissue between males and females which likely underlie the differences of the response to exposure to EDCs between the sexes. Moreover, the study also presents an overview of several mechanisms of action by which pollutants could cause adipose tissue dysfunction. Indeed, a better understanding of the mechanism by which environmental chemicals target adipose tissue and cause metabolic disturbances, and how these mechanisms interact and sex specificities are essential for developing mitigating and sex-specific strategies against metabolic diseases of chemical origin. In particular, considering that a scenario without pollutant exposure is not a realistic option in our current societies, attenuating the deleterious effects of exposure to pollutants by acting on the gut-adipose tissue axis may constitute a new direction of research.
Collapse
Affiliation(s)
- Brigitte Le Magueresse-Battistoni
- Univ-Lyon, CarMeN Laboratory, INSERM U1060, INRAé U1397, Université Claude Bernard Lyon1, F-69310 Pierre-Bénite, France; ; Tel.: +33-(0)-426235919; Fax: +33-(0)-426235916
- CarMeN Laboratory, INSERM U1060, Hopital Lyon-Sud, Bâtiment CENS ELI-2D, 165 Chemin du Grand Revoyet, 69310 Pierre-Bénite, France
| |
Collapse
|
402
|
Mallia V, Verhaegen S, Styrishave B, Eriksen GS, Johannsen ML, Ropstad E, Uhlig S. Microcystins and Microcystis aeruginosa PCC7806 extracts modulate steroidogenesis differentially in the human H295R adrenal model. PLoS One 2020; 15:e0244000. [PMID: 33320886 PMCID: PMC7737990 DOI: 10.1371/journal.pone.0244000] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 12/02/2020] [Indexed: 11/30/2022] Open
Abstract
The aim of this study was to investigate the potential interference of cyanobacterial metabolites, in particular microcystins (MCs), with steroid hormone biosynthesis. Steroid hormones control many fundamental processes in an organism, thus alteration of their tissue concentrations may affect normal homeostasis. We used liquid chromatography–tandem mass spectrometry (LC–MS/MS) to investigate the modulation of 14 hormones involved in the adrenal steroid biosynthesis pathway using forskolin-treated H295R cells, following exposure with either microcystin-LR (MC-LR) alone, a mixture made up of MC-LR together with eight other MCs and nodularin-R (NOD-R), or extracts from the MC-LR-producing Microcystis aeruginosa PCC7806 strain or its MC-deficient mutant PCC7806mcyB−. Production of 17-hydroxypregnenolone and dehydroepiandrosterone (DHEA) was increased in the presence of MC-LR in a dose-dependent manner, indicating an inhibitory effect on 3β-hydroxysteroid dehydrogenase (3β-HSD). This effect was not observed following exposure with a MCs/NOD-R mixture, and thus the effect of MC-LR on 3β-HSD appears to be stronger than for other congeners. Exposure to extracts from both M. aeruginosa PCC7806 and M. aeruginosa PCC7806mcyB− had an opposite effect on 3β-HSD, i.e. concentrations of pregnenolone, 17-hydroxypregnenolone and DHEA were significantly decreased, showing that there are other cyanobacterial metabolites that outcompete the effect of MC-LR, and possibly result instead in net-induction. Another finding was a possible concentration-dependent inhibition of CYP21A2 or CYP11β1, which catalyse oxidation reactions leading to cortisol and cortisone, by MC-LR and the MCs/NOD-R mixture. However, both M. aeruginosa PCC7806 and M. aeruginosa PCC7806mcyB− extracts had an opposite effect resulting in a substantial increase in cortisol levels. Our results suggest that MCs can modulate steroidogenesis, but the net effect of the M. aeruginosa metabolome on steroidogenesis is different from that of pure MC-LR and independent of MC production.
Collapse
Affiliation(s)
- Vittoria Mallia
- Toxinology Research Group, Norwegian Veterinary Institute, Oslo, Norway
- Department of Chemistry, University of Oslo, Oslo, Norway
| | - Steven Verhaegen
- Faculty of Veterinary Medicine, Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Bjarne Styrishave
- Faculty of Health and Medical Sciences, Toxicology and Drug Metabolism Group, Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | | | - Malene Louise Johannsen
- Faculty of Health and Medical Sciences, Toxicology and Drug Metabolism Group, Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Erik Ropstad
- Faculty of Veterinary Medicine, Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Silvio Uhlig
- Toxinology Research Group, Norwegian Veterinary Institute, Oslo, Norway
- * E-mail:
| |
Collapse
|
403
|
Buoso E, Masi M, Racchi M, Corsini E. Endocrine-Disrupting Chemicals' (EDCs) Effects on Tumour Microenvironment and Cancer Progression: Emerging Contribution of RACK1. Int J Mol Sci 2020; 21:E9229. [PMID: 33287384 PMCID: PMC7729595 DOI: 10.3390/ijms21239229] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/26/2020] [Accepted: 12/01/2020] [Indexed: 02/06/2023] Open
Abstract
Endocrine disruptors (EDCs) can display estrogenic and androgenic effects, and their exposure has been linked to increased cancer risk. EDCs have been shown to directly affect cancer cell regulation and progression, but their influence on tumour microenvironment is still not completely elucidated. In this context, the signalling hub protein RACK1 (Receptor for Activated C Kinase 1) could represent a nexus between cancer and the immune system due to its roles in cancer progression and innate immune activation. Since RACK1 is a relevant EDCs target that responds to steroid-active compounds, it could be considered a molecular bridge between the endocrine-regulated tumour microenvironment and the innate immune system. We provide an analysis of immunomodulatory and cancer-promoting effects of different EDCs in shaping tumour microenvironment, with a final focus on the scaffold protein RACK1 as a pivotal molecular player due to its dual role in immune and cancer contexts.
Collapse
Affiliation(s)
- Erica Buoso
- Dipartimento di Scienze del Farmaco, Università Degli Studi di Pavia, Viale Taramelli 12/14, 27100 Pavia, Italy; (M.M.); (M.R.)
| | - Mirco Masi
- Dipartimento di Scienze del Farmaco, Università Degli Studi di Pavia, Viale Taramelli 12/14, 27100 Pavia, Italy; (M.M.); (M.R.)
- Classe di Scienze Umane e della Vita (SUV), Scuola Universitaria Superiore IUSS, Piazza della Vittoria 15, 27100 Pavia, Italy
| | - Marco Racchi
- Dipartimento di Scienze del Farmaco, Università Degli Studi di Pavia, Viale Taramelli 12/14, 27100 Pavia, Italy; (M.M.); (M.R.)
| | - Emanuela Corsini
- Laboratory of Toxicology, Dipartimento di Scienze Politiche ed Ambientali, Università Degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy;
| |
Collapse
|
404
|
The dynamic assessment of toxicity and pathological process of DEHP in germ cells of male Sprague Dawley rats. Reprod Biol 2020; 20:465-473. [DOI: 10.1016/j.repbio.2020.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 06/11/2020] [Accepted: 07/11/2020] [Indexed: 12/20/2022]
|
405
|
Bariani MV, Rangaswamy R, Siblini H, Yang Q, Al-Hendy A, Zota AR. The role of endocrine-disrupting chemicals in uterine fibroid pathogenesis. Curr Opin Endocrinol Diabetes Obes 2020; 27:380-387. [PMID: 33044243 PMCID: PMC8240765 DOI: 10.1097/med.0000000000000578] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW Uterine leiomyoma (fibroids) is a gynecologic disorder impacting the majority of women in the United States. When symptomatic, these noncancerous tumors can cause severe morbidity including pelvic pain, menorrhagia, and infertility. Endocrine-disrupting chemicals (EDCs) may represent a modifiable risk factor. The aim of this review is to summarize recent human and experimental evidence on EDCs exposures and fibroids. RECENT FINDINGS Multiple EDCs are associated with fibroid outcomes and/or processes including phthalates, parabens, environmental phenols, alternate plasticizers, Diethylstilbestrol, organophosphate esters, and tributyltin. Epidemiologic studies suggest exposure to certain EDCs, such as di-(2-ethylhxyl)-phthalate (DEHP), are associated with increased fibroid risk and severity. Both human and experimental studies indicate that epigenetic processes may play an important role in linking EDCs to fibroid pathogenesis. In-vitro and in-vivo studies show that DEHP, bisphenol A, and diethylstilbestrol can impact biological pathways critical to fibroid pathogenesis. SUMMARY While research on EDCs and fibroids is still evolving, recent evidence suggests EDC exposures may contribute to fibroid risk and progression. Further research is needed to examine the impacts of EDC mixtures and to identify critical biological pathways and windows of exposure. These results could open the door to new prevention strategies for fibroids.
Collapse
Affiliation(s)
| | - Roshni Rangaswamy
- Department of Environmental and Occupational Health, The George Washington University Milken Institute School of Public Health, Washington, DC, USA
| | - Hiba Siblini
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Qiwei Yang
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL
| | - Ami R. Zota
- Department of Environmental and Occupational Health, The George Washington University Milken Institute School of Public Health, Washington, DC, USA
| |
Collapse
|
406
|
Vandenberg LN, Najmi A, Mogus JP. Agrochemicals with estrogenic endocrine disrupting properties: Lessons Learned? Mol Cell Endocrinol 2020; 518:110860. [PMID: 32407980 PMCID: PMC9448509 DOI: 10.1016/j.mce.2020.110860] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/16/2020] [Accepted: 05/04/2020] [Indexed: 02/07/2023]
Abstract
Many agrochemicals have endocrine disrupting properties. A subset of these chemicals is characterized as "estrogenic". In this review, we describe several distinct ways that chemicals used in crop production can affect estrogen signaling. Using three agrochemicals as examples (DDT, endosulfan, and atrazine), we illustrate how screening tests such as the US EPA's EDSP Tier 1 assays can be used as a first-pass approach to evaluate agrochemicals for endocrine activity. We then apply the "Key Characteristics" approach to illustrate how chemicals like DDT can be evaluated, together with the World Health Organization's definition of an endocrine disruptor, to identify data gaps. We conclude by describing important issues that must be addressed in the evaluation and regulation of hormonally active agrochemicals including mixture effects, efforts to reduce vertebrate animal use, chemical prioritization, and improvements in hazard, exposure, and risk assessments.
Collapse
Affiliation(s)
- Laura N Vandenberg
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, USA.
| | - Aimal Najmi
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, USA
| | - Joshua P Mogus
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, USA
| |
Collapse
|
407
|
Eve L, Fervers B, Le Romancer M, Etienne-Selloum N. Exposure to Endocrine Disrupting Chemicals and Risk of Breast Cancer. Int J Mol Sci 2020; 21:E9139. [PMID: 33266302 PMCID: PMC7731339 DOI: 10.3390/ijms21239139] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023] Open
Abstract
Breast cancer (BC) is the second most common cancer and the fifth deadliest in the world. Exposure to endocrine disrupting pollutants has been suggested to contribute to the increase in disease incidence. Indeed, a growing number of researchershave investigated the effects of widely used environmental chemicals with endocrine disrupting properties on BC development in experimental (in vitro and animal models) and epidemiological studies. The complex effects of endocrine disrupting chemicals (EDCs) on hormonal pathways, involving carcinogenic effects and an increase in mammary gland susceptibility to carcinogenesis-together with the specific characteristics of the mammary gland evolving over the course of life and the multifactorial etiology of BC-make the evaluation of these compounds a complex issue. Among the many EDCs suspected of increasing the risk of BC, strong evidence has only been provided for few EDCs including diethylstilbestrol, dichlorodiphenyltrichloroethane, dioxins and bisphenol A. However, given the ubiquitous nature and massive use of EDCs, it is essential to continue to assess their long-term health effects, particularly on carcinogenesis, to eradicate the worst of them and to sensitize the population to minimize their use.
Collapse
Affiliation(s)
- Louisane Eve
- Faculté de Pharmacie, Université de Strasbourg, F-67000 Strasbourg, France;
- Université Claude Bernard Lyon 1, F-69000 Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Béatrice Fervers
- Centre de Lutte Contre le Cancer Léon-Bérard, F-69000 Lyon, France;
- Inserm UA08, Radiations, Défense, Santé, Environnement, Center Léon Bérard, F-69000 Lyon, France
| | - Muriel Le Romancer
- Université Claude Bernard Lyon 1, F-69000 Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Nelly Etienne-Selloum
- Faculté de Pharmacie, Université de Strasbourg, F-67000 Strasbourg, France;
- Service de Pharmacie, Institut de Cancérologie Strasbourg Europe, F-67000 Strasbourg, France
- CNRS UMR7021/Unistra, Laboratoire de Bioimagerie et Pathologies, Faculté de Pharmacie, Université de Strasbourg, F-67000 Strasbourg, France
| |
Collapse
|
408
|
Ultrastructural Mechanisms of Impaired Aldosterone Synthesis in Rats Exposed to DDT during Prenatal and Postnatal Development. Bull Exp Biol Med 2020; 170:101-105. [PMID: 33231799 DOI: 10.1007/s10517-020-05013-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Indexed: 02/03/2023]
Abstract
The study is aimed at elucidation of ultrastructural mechanisms underlying impaired aldosterone synthesis by glomerulosa cells in Wistar rats exposed to low doses of endocrine disrupter DDT during prenatal and postnatal development. Analysis of rat zona glomerulosa histology and function during the pubertal and postpubertal periods showed that exposure to endocrine disrupter DDT disturbs its development and reduced the production of aldosterone. Electron microscopy showed that changes in the aldosterone synthesis are related to impaired reorganization of the mitochondrial apparatus, one of the leading factors in the regulation of steroidogenesis, in glomerulosa cells in DDT-exposed rats during puberty.
Collapse
|
409
|
Lizcano F, Arroyave F. Control of Adipose Cell Browning and Its Therapeutic Potential. Metabolites 2020; 10:metabo10110471. [PMID: 33227979 PMCID: PMC7699191 DOI: 10.3390/metabo10110471] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/20/2020] [Accepted: 11/02/2020] [Indexed: 12/20/2022] Open
Abstract
Adipose tissue is the largest endocrine organ in humans and has an important influence on many physiological processes throughout life. An increasing number of studies have described the different phenotypic characteristics of fat cells in adults. Perhaps one of the most important properties of fat cells is their ability to adapt to different environmental and nutritional conditions. Hypothalamic neural circuits receive peripheral signals from temperature, physical activity or nutrients and stimulate the metabolism of white fat cells. During this process, changes in lipid inclusion occur, and the number of mitochondria increases, giving these cells functional properties similar to those of brown fat cells. Recently, beige fat cells have been studied for their potential role in the regulation of obesity and insulin resistance. In this context, it is important to understand the embryonic origin of beige adipocytes, the response of adipocyte to environmental changes or modifications within the body and their ability to transdifferentiate to elucidate the roles of these cells for their potential use in therapeutic strategies for obesity and metabolic diseases. In this review, we discuss the origins of the different fat cells and the possible therapeutic properties of beige fat cells.
Collapse
Affiliation(s)
- Fernando Lizcano
- Center of Biomedical Investigation, (CIBUS), Universidad de La Sabana, 250008 Chia, Colombia
- Correspondence:
| | - Felipe Arroyave
- Doctoral Program in Biociencias, Universidad de La Sabana, 250008 Chia, Colombia
| |
Collapse
|
410
|
Abstract
Endocrine-disrupting compounds (EDCs) are environmental contaminants that modulate estrogen, androgen, and thyroid hormone receptor signaling and it has been hypothesized that human exposures to EDCs induce multiple adverse health effects. Some of these responses include male and female reproductive tract problems, obesity, and neurological/neurobehavior deficits. Extensive laboratory animal and some human studies support the EDC hypothesis. However, there is a debate among scientists and regulators regarding the adverse human health impacts of EDCs and this review highlights and gives examples of some of the concerns.
Collapse
Affiliation(s)
- Stephen Safe
- Department of Veterinary Physiology & Pharmacology, Texas A&M University, Texas, USA
| |
Collapse
|
411
|
Nagahama Y, Chakraborty T, Paul-Prasanth B, Ohta K, Nakamura M. Sex determination, gonadal sex differentiation, and plasticity in vertebrate species. Physiol Rev 2020; 101:1237-1308. [PMID: 33180655 DOI: 10.1152/physrev.00044.2019] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A diverse array of sex determination (SD) mechanisms, encompassing environmental to genetic, have been found to exist among vertebrates, covering a spectrum from fixed SD mechanisms (mammals) to functional sex change in fishes (sequential hermaphroditic fishes). A major landmark in vertebrate SD was the discovery of the SRY gene in 1990. Since that time, many attempts to clone an SRY ortholog from nonmammalian vertebrates remained unsuccessful, until 2002, when DMY/dmrt1by was discovered as the SD gene of a small fish, medaka. Surprisingly, however, DMY/dmrt1by was found in only 2 species among more than 20 species of medaka, suggesting a large diversity of SD genes among vertebrates. Considerable progress has been made over the last 3 decades, such that it is now possible to formulate reasonable paradigms of how SD and gonadal sex differentiation may work in some model vertebrate species. This review outlines our current understanding of vertebrate SD and gonadal sex differentiation, with a focus on the molecular and cellular mechanisms involved. An impressive number of genes and factors have been discovered that play important roles in testicular and ovarian differentiation. An antagonism between the male and female pathway genes exists in gonads during both sex differentiation and, surprisingly, even as adults, suggesting that, in addition to sex-changing fishes, gonochoristic vertebrates including mice maintain some degree of gonadal sexual plasticity into adulthood. Importantly, a review of various SD mechanisms among vertebrates suggests that this is the ideal biological event that can make us understand the evolutionary conundrums underlying speciation and species diversity.
Collapse
Affiliation(s)
- Yoshitaka Nagahama
- Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki, Japan.,South Ehime Fisheries Research Center, Ehime University, Ainan, Japan.,Faculty of Biological Science and Technology, Kanazawa University, Ishikawa, Japan
| | - Tapas Chakraborty
- Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki, Japan.,South Ehime Fisheries Research Center, Ehime University, Ainan, Japan.,Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukouka, Japan.,Karatsu Satellite of Aqua-Bioresource Innovation Center, Kyushu University, Karatsu, Japan
| | - Bindhu Paul-Prasanth
- Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki, Japan.,Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidapeetham, Kochi, Kerala, India
| | - Kohei Ohta
- Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukouka, Japan
| | - Masaru Nakamura
- Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan.,Research Center, Okinawa Churashima Foundation, Okinawa, Japan
| |
Collapse
|
412
|
Azhagiya Singam ER, Tachachartvanich P, Fourches D, Soshilov A, Hsieh JCY, La Merrill MA, Smith MT, Durkin KA. Structure-based virtual screening of perfluoroalkyl and polyfluoroalkyl substances (PFASs) as endocrine disruptors of androgen receptor activity using molecular docking and machine learning. ENVIRONMENTAL RESEARCH 2020; 190:109920. [PMID: 32795691 DOI: 10.1016/j.envres.2020.109920] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/04/2020] [Indexed: 06/11/2023]
Abstract
Perfluoroalkyl and polyfluoroalkyl substances (PFASs) pose a substantial threat as endocrine disruptors, and thus early identification of those that may interact with steroid hormone receptors, such as the androgen receptor (AR), is critical. In this study we screened 5,206 PFASs from the CompTox database against the different binding sites on the AR using both molecular docking and machine learning techniques. We developed support vector machine models trained on Tox21 data to classify the active and inactive PFASs for AR using different chemical fingerprints as features. The maximum accuracy was 95.01% and Matthew's correlation coefficient (MCC) was 0.76 respectively, based on MACCS fingerprints (MACCSFP). The combination of docking-based screening and machine learning models identified 29 PFASs that have strong potential for activity against the AR and should be considered priority chemicals for biological toxicity testing.
Collapse
Affiliation(s)
| | | | - Denis Fourches
- Department of Chemistry, North Carolina State University, Raleigh, NC, USA
| | - Anatoly Soshilov
- Division of Scientific Programs, Pesticide and Environmental Toxicology Branch, Water Toxicology Section, Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, USA
| | - Jennifer C Y Hsieh
- Division of Scientific Programs, Reproductive and Cancer Hazard Assessment Branch, Cancer Toxicology and Epidemiology Section, Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, USA
| | - Michele A La Merrill
- Department of Environmental Toxicology, University of California, Davis, CA, USA
| | - Martyn T Smith
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA.
| | - Kathleen A Durkin
- Molecular Graphics and Computation Facility, College of Chemistry, University of California, Berkeley, CA, USA.
| |
Collapse
|
413
|
Zahra A, Sisu C, Silva E, De Aguiar Greca SC, Randeva HS, Chatha K, Kyrou I, Karteris E. Is There a Link between Bisphenol A (BPA), a Key Endocrine Disruptor, and the Risk for SARS-CoV-2 Infection and Severe COVID-19? J Clin Med 2020; 9:E3296. [PMID: 33066495 PMCID: PMC7602132 DOI: 10.3390/jcm9103296] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 01/08/2023] Open
Abstract
Infection by the severe acute respiratory syndrome (SARS) coronavirus-2 (SARS-CoV-2) is the causative agent of a new disease (COVID-19). The risk of severe COVID-19 is increased by certain underlying comorbidities, including asthma, cancer, cardiovascular disease, hypertension, diabetes, and obesity. Notably, exposure to hormonally active chemicals called endocrine-disrupting chemicals (EDCs) can promote such cardio-metabolic diseases, endocrine-related cancers, and immune system dysregulation and thus, may also be linked to higher risk of severe COVID-19. Bisphenol A (BPA) is among the most common EDCs and exerts its effects via receptors which are widely distributed in human tissues, including nuclear oestrogen receptors (ERα and ERβ), membrane-bound oestrogen receptor (G protein-coupled receptor 30; GPR30), and human nuclear receptor oestrogen-related receptor gamma. As such, this paper focuses on the potential role of BPA in promoting comorbidities associated with severe COVID-19, as well as on potential BPA-induced effects on key SARS-CoV-2 infection mediators, such as angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2). Interestingly, GPR30 appears to exhibit greater co-localisation with TMPRSS2 in key tissues like lung and prostate, suggesting that BPA exposure may impact on the local expression of these SARS-CoV-2 infection mediators. Overall, the potential role of BPA on the risk and severity of COVID-19 merits further investigation.
Collapse
Affiliation(s)
- Aeman Zahra
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.Z.); (C.S.); (E.S.); (S.-C.D.A.G.)
| | - Cristina Sisu
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.Z.); (C.S.); (E.S.); (S.-C.D.A.G.)
| | - Elisabete Silva
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.Z.); (C.S.); (E.S.); (S.-C.D.A.G.)
| | - Sophie-Christine De Aguiar Greca
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.Z.); (C.S.); (E.S.); (S.-C.D.A.G.)
| | - Harpal S. Randeva
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK; (H.S.R.); (I.K.)
- Aston Medical Research Institute, Aston Medical School, Aston University, Birmingham B4 7ET, UK
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK;
| | - Kamaljit Chatha
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK;
- Department of Biochemistry and Immunology, University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
| | - Ioannis Kyrou
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK; (H.S.R.); (I.K.)
- Aston Medical Research Institute, Aston Medical School, Aston University, Birmingham B4 7ET, UK
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK;
| | - Emmanouil Karteris
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.Z.); (C.S.); (E.S.); (S.-C.D.A.G.)
| |
Collapse
|
414
|
Smith MT, Guyton KZ, Kleinstreuer N, Borrel A, Cardenas A, Chiu WA, Felsher DW, Gibbons CF, Goodson WH, Houck KA, Kane AB, La Merrill MA, Lebrec H, Lowe L, McHale CM, Minocherhomji S, Rieswijk L, Sandy MS, Sone H, Wang A, Zhang L, Zeise L, Fielden M. The Key Characteristics of Carcinogens: Relationship to the Hallmarks of Cancer, Relevant Biomarkers, and Assays to Measure Them. Cancer Epidemiol Biomarkers Prev 2020; 29:1887-1903. [PMID: 32152214 PMCID: PMC7483401 DOI: 10.1158/1055-9965.epi-19-1346] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/15/2020] [Accepted: 03/04/2020] [Indexed: 12/21/2022] Open
Abstract
The key characteristics (KC) of human carcinogens provide a uniform approach to evaluating mechanistic evidence in cancer hazard identification. Refinements to the approach were requested by organizations and individuals applying the KCs. We assembled an expert committee with knowledge of carcinogenesis and experience in applying the KCs in cancer hazard identification. We leveraged this expertise and examined the literature to more clearly describe each KC, identify current and emerging assays and in vivo biomarkers that can be used to measure them, and make recommendations for future assay development. We found that the KCs are clearly distinct from the Hallmarks of Cancer, that interrelationships among the KCs can be leveraged to strengthen the KC approach (and an understanding of environmental carcinogenesis), and that the KC approach is applicable to the systematic evaluation of a broad range of potential cancer hazards in vivo and in vitro We identified gaps in coverage of the KCs by current assays. Future efforts should expand the breadth, specificity, and sensitivity of validated assays and biomarkers that can measure the 10 KCs. Refinement of the KC approach will enhance and accelerate carcinogen identification, a first step in cancer prevention.See all articles in this CEBP Focus section, "Environmental Carcinogenesis: Pathways to Prevention."
Collapse
Affiliation(s)
- Martyn T Smith
- Division of Environmental Health Sciences, School of Public Health, University of California Berkeley, Berkeley, California.
| | - Kathryn Z Guyton
- Monographs Programme, International Agency for Research on Cancer, Lyon, France
| | - Nicole Kleinstreuer
- Division of Intramural Research, Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina
- National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Alexandre Borrel
- Division of Intramural Research, Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina
| | - Andres Cardenas
- Division of Environmental Health Sciences, School of Public Health, University of California Berkeley, Berkeley, California
| | - Weihsueh A Chiu
- Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas
| | - Dean W Felsher
- Division of Oncology, Departments of Medicine and Pathology, Stanford University School of Medicine, Stanford, California
| | - Catherine F Gibbons
- Office of Research and Development, US Environmental Protection Agency, Washington, D.C
| | - William H Goodson
- California Pacific Medical Center Research Institute, San Francisco, California
| | - Keith A Houck
- Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, North Carolina
| | - Agnes B Kane
- Department of Pathology and Laboratory Medicine, Alpert Medical School, Brown University, Providence, Rhode Island
| | - Michele A La Merrill
- Department of Environmental Toxicology, University of California, Davis, California
| | - Herve Lebrec
- Comparative Biology & Safety Sciences, Amgen Research, Amgen Inc., Thousand Oaks, California
| | - Leroy Lowe
- Getting to Know Cancer, Truro, Nova Scotia, Canada
| | - Cliona M McHale
- Division of Environmental Health Sciences, School of Public Health, University of California Berkeley, Berkeley, California
| | - Sheroy Minocherhomji
- Comparative Biology & Safety Sciences, Amgen Research, Amgen Inc., Thousand Oaks, California
| | - Linda Rieswijk
- Division of Environmental Health Sciences, School of Public Health, University of California Berkeley, Berkeley, California
- Institute of Data Science, Maastricht University, Maastricht, the Netherlands
| | - Martha S Sandy
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, California
| | - Hideko Sone
- Yokohama University of Pharmacy and National Institute for Environmental Studies, Tsukuba Ibaraki, Japan
| | - Amy Wang
- Office of the Report on Carcinogens, Division of National Toxicology Program, The National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Luoping Zhang
- Division of Environmental Health Sciences, School of Public Health, University of California Berkeley, Berkeley, California
| | - Lauren Zeise
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, California
| | - Mark Fielden
- Expansion Therapeutics Inc, San Diego, California
| |
Collapse
|
415
|
Gilbert ME, O'Shaughnessy KL, Axelstad M. Regulation of Thyroid-disrupting Chemicals to Protect the Developing Brain. Endocrinology 2020; 161:bqaa106. [PMID: 32615585 PMCID: PMC8650774 DOI: 10.1210/endocr/bqaa106] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/30/2020] [Indexed: 12/18/2022]
Abstract
Synthetic chemicals with endocrine disrupting properties are pervasive in the environment and are present in the bodies of humans and wildlife. As thyroid hormones (THs) control normal brain development, and maternal hypothyroxinemia is associated with neurological impairments in children, chemicals that interfere with TH signaling are of considerable concern for children's health. However, identifying thyroid-disrupting chemicals (TDCs) in vivo is largely based on measuring serum tetraiodothyronine in rats, which may be inadequate to assess TDCs with disparate mechanisms of action and insufficient to evaluate the potential neurotoxicity of TDCs. In this review 2 neurodevelopmental processes that are dependent on TH action are highlighted, neuronal migration and maturation of gamma amino butyric acid-ergic interneurons. We discuss how interruption of these processes by TDCs may contribute to abnormal brain circuitry following developmental TH insufficiency. Finally, we identify issues in evaluating the developmental neurotoxicity of TDCs and the strengths and limitations of current approaches designed to regulate them. It is clear that an enhanced understanding of how THs affect brain development will lead to refined toxicity testing, reducing uncertainty and improving our ability to protect children's health.
Collapse
Affiliation(s)
- Mary E Gilbert
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Research Triangle Park, North Carolina
| | - Katherine L O'Shaughnessy
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Research Triangle Park, North Carolina
| | - Marta Axelstad
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
416
|
Walley SN, Krumm EA, Yasrebi A, Kwiecinski J, Wright V, Baker C, Roepke TA. Maternal organophosphate flame-retardant exposure alters offspring energy and glucose homeostasis in a sexually dimorphic manner in mice. J Appl Toxicol 2020; 41:572-586. [PMID: 32969501 DOI: 10.1002/jat.4066] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/19/2020] [Accepted: 08/19/2020] [Indexed: 12/22/2022]
Abstract
Persistent organic pollutants such as organophosphate flame retardants (OPFRs) can accumulate in the body and interact with nuclear receptors that control energy homeostasis. One sensitive window of exposure is during development, either in utero or neonatal. Therefore, we investigated if maternal exposure to a mixture of OPFRs alters metabolism on a low-fat diet (LFD) or a high-fat diet (HFD) in both male and female offspring. Wild-type C57Bl/6J dams were orally dosed with vehicle (sesame oil) or an OPFR mixture (1 mg/kg each of tris(1,3-dichloro-2-propyl)phosphate, triphenyl phosphate, and tricresyl phosphate) from gestation day 7 to postnatal day 14. After weaning, pups were fed LFD or HFD. To assess metabolism, we measured body weight and food intake weekly and determined body composition, metabolism, activity, and glucose homeostasis at 6 months of age. Although maternal OPFR exposure did not alter body weight or adiposity, OPFR exposure altered substrate utilization and energy expenditure depending on diet in both sexes. Systolic and diastolic blood pressure was increased by OPFR in male offspring. OPFR exposure interacted with HFD to increase fasting glucose in females and alter glucose and insulin tolerance in male offspring. Plasma leptin was reduced in male and female offspring when fed HFD, whereas liver expression of Pepck was increased in females and Esr1 (estrogen receptor α) was increased in both sex. The physiological implications indicate maternal exposure to OPFRs programs peripheral organs including the liver and adipose tissue, in a sex-dependent manner, thus changing the response to an obesogenic diet and altering adult offspring energy homeostasis.
Collapse
Affiliation(s)
- Sabrina N Walley
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA.,Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Elizabeth A Krumm
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA.,Graduate Program in Endocrinology and Animal Biosciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Ali Yasrebi
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA.,Graduate Program in Endocrinology and Animal Biosciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Justine Kwiecinski
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Victoria Wright
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Chloe Baker
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Troy A Roepke
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA.,Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA.,Graduate Program in Endocrinology and Animal Biosciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA.,Environmental and Occupational Health Science Institute, Rutgers, The State University of New Jersey, 170 Frelinghuysen Road, Piscataway, NJ, USA.,Rutgers Center for Lipid Research, Center for Nutrition, Microbiome, and Health, and New Jersey Institute of Food, Nutrition, and Health, Rutgers, The State University of New Jersey, 61 Dudley Road, New Brunswick, NJ, USA
| |
Collapse
|
417
|
Lim JE, Choi B, Jee SH. Urinary bisphenol A, phthalate metabolites, and obesity: do gender and menopausal status matter? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:34300-34310. [PMID: 32557043 DOI: 10.1007/s11356-020-09570-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
Previous studies of urinary bisphenol A (BPA), phthalate metabolites, and obesity risk have shown inconsistent results. Menopausal status is one of the main factors that affect hormone secretion change in women. In this study, we examined whether urinary BPA and phthalate metabolite levels are associated with obesity and whether the associations differ by sex and menopausal status in a sample of Korean adult populations. We recruited participants at three branches (Yeouido, Gangnam, and Gwanghwamun) of the Korea Medical Institute, a nationwide health check-up center, from 2015 to 2016. Urinary BPA level was measured by high-performance liquid chromatography-tandem mass spectrometry (Agilent 6490 Triple Quad LC-MS/MS; Agilent Technologies, CA, USA). Urinary six phthalate metabolites were analyzed with ultra-high-performance liquid chromatography-tandem mass spectrometry (TSQ Quantum Access Mass; Thermo Fisher Scientific, MA, USA). Participants with body mass index ≥ 25 kg/m2 were defined as general obesity group. Men with waist circumference (WC) ≥ 90 cm and women with WC ≥ 85 cm were defined as abdominal obesity group. Age, sex, alcohol intake, smoking, and exercise were considered in multivariate logistic regression models. Among the total of 702 participants, 211 participants were classified into the general obesity group, and 131 participants were classified into the abdominal obesity group. Urinary phthalate metabolite levels were not associated with general and abdominal obesity in men and women. However, in women, urinary BPA concentration was positively associated with abdominal obesity (OR = 1.50, 95% CI 1.00-2.26). Also, the association was stronger in postmenopausal women (OR = 2.23, 1.01-4.92), while it was weak in premenopausal women (OR = 1.31, 0.78-2.20). In this study, urinary BPA concentration was associated with abdominal obesity in women, especially postmenopausal women. Future studies should consider sex and menopausal status when investigating associations between urinary BPA, phthalate metabolites levels, and obesity.
Collapse
Affiliation(s)
- Jung-Eun Lim
- Institute for Health Promotion & Department of Epidemiology and Health Promotion, Graduate School of Public Health, Yonsei University, Seoul, Republic of Korea
- Center for Occupational and Environmental Health, Department of Medicine, University of California, Irvine, CA, USA
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - BongKyoo Choi
- Center for Occupational and Environmental Health, Department of Medicine, University of California, Irvine, CA, USA
- Center for Work and Health Research, Irvine, CA, USA
| | - Sun Ha Jee
- Institute for Health Promotion & Department of Epidemiology and Health Promotion, Graduate School of Public Health, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
418
|
Pillai MR, Keylock KT, Cromwell HC, Meserve LA. Exercise influences the impact of polychlorinated biphenyl exposure on immune function. PLoS One 2020; 15:e0237705. [PMID: 32833973 PMCID: PMC7444807 DOI: 10.1371/journal.pone.0237705] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 07/25/2020] [Indexed: 12/17/2022] Open
Abstract
Polychlorinated biphenyls (PCBs) are environmental pollutants and endocrine disruptors, harmfully affecting reproductive, endocrine, neurological and immunological systems. This broad influence has implications for processes such as wound healing, which is modulated by the immunological response of the body. Conversely, while PCBs can be linked to diminished wound healing, outside of PCB pollution systems, exercise has been shown to accelerate wound healing. However, the potential for moderate intensity exercise to modulate or offset the harmful effects of a toxin like PCB are yet unknown. A key aim of the present study was to examine how PCB exposure at different doses (0, 100, 500, 1000 ppm i.p.) altered wound healing in exercised versus non-exercised subgroups of mice. We examined PCB effects on immune function in more depth by analyzing the concentrations of cytokines, interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), Interleukin-6 (IL-6) and granulocyte macrophage colony stimulating factor (GM-CSF) in these wounds inflicted by punch biopsy. Mice were euthanized at Day 3 or Day 5 after PCB injection (n = 3-6) and skin excised from the wound area was homogenized and analyzed for cytokine content. Results revealed that wound healing was not signficantly impacted by either PCB exposure or exercise, but there were patterns of delays in healing that depended on PCB dose. Changes in cytokines were also observed and depended on PCB dose and exercise experience. For example, IL-1β concentrations in Day 5 mice without PCB administration were 33% less in exercised mice than mice not exercised. However, IL-1β concentrations in Day 3 mice administered 100 ppm were 130% greater in exercised mice than not exercisedmice. Changes in the other measured cytokines varied with mainly depressions at lesser PCB doses and elevations at higher doses. Exercise had diverse effects on cytokine levels, but increased cytokine levels in the two greater doses. Explanations for these diverse effects include the use of young animals with more rapid wound healing rates less affected by toxin exposure, as well as PCB-mediated compensatory effects at specific doses which could actually enhance immune function. Future work should examine these interactions in more detail across a developmental time span. Understanding how manipulating the effects of exposure to environemntal contaminants using behavioral modification could be very useful in certain high risk populations or exposed individuals.
Collapse
Affiliation(s)
- Mahesh R. Pillai
- Dept. of Biological Sciences, Bowling Green State University, Bowling Green, Ohio, United States of America
| | - K. Todd Keylock
- Dept. of Exercise Science, Bowling Green State University, Bowling Green, Ohio, United States of America
| | - Howard C. Cromwell
- Dept. of Psychology and J.P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, Ohio, United States of America
| | - Lee A. Meserve
- Dept. of Biological Sciences, Bowling Green State University, Bowling Green, Ohio, United States of America
| |
Collapse
|
419
|
Nanudorn P, Thiengmag S, Whangsuk W, Mongkolsuk S, Loprasert S. Potential use of two aryl sulfotransferase cell-surface display systems to detoxify the endocrine disruptor bisphenol A. Biochem Biophys Res Commun 2020; 528:691-697. [PMID: 32513533 DOI: 10.1016/j.bbrc.2020.05.129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 05/18/2020] [Indexed: 11/27/2022]
Abstract
Bisphenol A (BPA) is one of the most common toxic endocrine disruptors in the environment. A fast, efficient and environmental-friendly method for BPA detoxification is urgently needed. In this study, we show that the enzymatic transformation of BPA into a non-estrogenic BPA sulfate can be performed by the aryl sulfotransferase (ASTB) from Desulfitobacterium hafniense. We developed and compared two Escherichia coli ASTB cell-surface displaying systems using the outer membrane porin F (OprF) and the lipoprotein outer membrane A (Lpp-OmpA) as carriers. The surface localization of both fusion proteins was confirmed by Western blot and flow cytometry analysis as well as the enzymatic activity assay of the outer membrane fractions. Unfortunately, Lpp-OmpA-ASTB cells had an adverse effect on cell growth. In contrast, the OprF-ASTB cell biocatalyst was stable, expressing 70% of enzyme activity for 7 days. It also efficiently sulfated 90% of 5 mM BPA (1 mg/mL) in wastewater within 6 h.
Collapse
Affiliation(s)
- Pakjira Nanudorn
- Applied Biological Sciences Program, Chulabhorn Graduate Institute, Bangkok, 10210, Thailand
| | - Sirinthra Thiengmag
- Applied Biological Sciences Program, Chulabhorn Graduate Institute, Bangkok, 10210, Thailand
| | - Wirongrong Whangsuk
- Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Skorn Mongkolsuk
- Applied Biological Sciences Program, Chulabhorn Graduate Institute, Bangkok, 10210, Thailand; Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, 10210, Thailand; Center of Excellence on Environmental Health and Toxicology, Ministry of Education, Bangkok, 10400, Thailand
| | - Suvit Loprasert
- Applied Biological Sciences Program, Chulabhorn Graduate Institute, Bangkok, 10210, Thailand; Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, 10210, Thailand; Center of Excellence on Environmental Health and Toxicology, Ministry of Education, Bangkok, 10400, Thailand.
| |
Collapse
|
420
|
Kassotis CD, Vandenberg LN, Demeneix BA, Porta M, Slama R, Trasande L. Endocrine-disrupting chemicals: economic, regulatory, and policy implications. Lancet Diabetes Endocrinol 2020; 8:719-730. [PMID: 32707119 PMCID: PMC7437819 DOI: 10.1016/s2213-8587(20)30128-5] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/12/2022]
Abstract
Endocrine-disrupting chemicals (EDCs) substantially cost society as a result of increases in disease and disability but-unlike other toxicant classes such as carcinogens-have yet to be codified into regulations as a hazard category. This Series paper examines economic, regulatory, and policy approaches to limit human EDC exposures and describes potential improvements. In the EU, general principles for EDCs call for minimisation of human exposure, identification as substances of very high concern, and ban on use in pesticides. In the USA, screening and testing programmes are focused on oestrogenic EDCs exclusively, and regulation is strictly risk-based. Minimisation of human exposure is unlikely without a clear overarching definition for EDCs and relevant pre-marketing test requirements. We call for a multifaceted international programme (eg, modelled on the International Agency for Research in Cancer) to address the effects of EDCs on human health-an approach that would proactively identify hazards for subsequent regulation.
Collapse
Affiliation(s)
| | - Laura N Vandenberg
- School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, USA
| | - Barbara A Demeneix
- Centre National de la Recherche Scientifique, UMR 7221, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Sorbonne, Paris, France
| | - Miquel Porta
- Hospital del Mar Medical Research Institute, PSMAR, Barcelona, Spain; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública, Barcelona, Spain; School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain; Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, NC, USA
| | - Remy Slama
- Team of Environmental Epidemiology applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences, INSERM, U1209, CNRS, UMR 5309, Université Grenoble Alpes, Grenoble, France
| | - Leonardo Trasande
- Department of Pediatrics, Environmental Medicine, and Population Health, New York University Grossman School of Medicine, New York, NY, USA; NYU College of Global Public Health, New York, NY, USA.
| |
Collapse
|
421
|
Knapen D, Stinckens E, Cavallin JE, Ankley GT, Holbech H, Villeneuve DL, Vergauwen L. Toward an AOP Network-Based Tiered Testing Strategy for the Assessment of Thyroid Hormone Disruption. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:8491-8499. [PMID: 32584560 PMCID: PMC7477622 DOI: 10.1021/acs.est.9b07205] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
A growing number of environmental pollutants are known to adversely affect the thyroid hormone system, and major gaps have been identified in the tools available for the identification, and the hazard and risk assessment of these thyroid hormone disrupting chemicals. We provide an example of how the adverse outcome pathway (AOP) framework and associated data generation can address current testing challenges in the context of fish early life stage tests, and fish tests in general. We demonstrate how a suite of assays covering biological processes involved in the underlying toxicological pathways can be implemented in a tiered screening and testing approach for thyroid hormone disruption, using the levels of assessment of the OECD's Conceptual Framework for the Testing and Assessment of Endocrine Disrupting Chemicals as a guide.
Collapse
Affiliation(s)
- Dries Knapen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Evelyn Stinckens
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Jenna E Cavallin
- Badger Technical Services, United States Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, 6201 Congdon Blvd, Duluth, MN 55804, USA
| | - Gerald T Ankley
- United States Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, 6201 Congdon Blvd, Duluth, MN 55804, USA
| | - Henrik Holbech
- Ecotoxicology Lab, Department of Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Daniel L Villeneuve
- United States Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, 6201 Congdon Blvd, Duluth, MN 55804, USA
| | - Lucia Vergauwen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| |
Collapse
|
422
|
Ramadan M, Cooper B, Posnack NG. Bisphenols and phthalates: Plastic chemical exposures can contribute to adverse cardiovascular health outcomes. Birth Defects Res 2020; 112:1362-1385. [PMID: 32691967 DOI: 10.1002/bdr2.1752] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 12/18/2022]
Abstract
Phthalates and bisphenols are high production volume chemicals that are used in the manufacturing of consumer and medical products. Given the ubiquity of bisphenol and phthalate chemicals in the environment, biomonitoring studies routinely detect these chemicals in 75-90% of the general population. Accumulating evidence suggests that such chemical exposures may influence human health outcomes, including cardiovascular health. These associations are particularly worrisome for sensitive populations, including fetal, infant and pediatric groups-with underdeveloped metabolic capabilities and developing organ systems. In the presented article, we aimed to review the literature on environmental and clinical exposures to bisphenols and phthalates, highlight experimental work that suggests that these chemicals may exert a negative influence on cardiovascular health, and emphasize areas of concern that relate to vulnerable pediatric groups. Gaps in our current knowledge are also discussed, so that future endeavors may resolve the relationship between chemical exposures and the impact on pediatric cardiovascular physiology.
Collapse
Affiliation(s)
- Manelle Ramadan
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, District of Columbia, USA.,Children's National Heart Institute, Children's National Hospital, Washington, District of Columbia, USA
| | - Blake Cooper
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, District of Columbia, USA
| | - Nikki Gillum Posnack
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, District of Columbia, USA.,Children's National Heart Institute, Children's National Hospital, Washington, District of Columbia, USA.,Department of Pediatrics, George Washington University, School of Medicine, Washington, District of Columbia, USA.,Department of Pharmacology & Physiology, George Washington University, School of Medicine, Washington, District of Columbia, USA
| |
Collapse
|
423
|
Lisco G, De Tullio A, Giagulli VA, De Pergola G, Triggiani V. Interference on Iodine Uptake and Human Thyroid Function by Perchlorate-Contaminated Water and Food. Nutrients 2020; 12:E1669. [PMID: 32512711 PMCID: PMC7352877 DOI: 10.3390/nu12061669] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Perchlorate-induced natrium-iodide symporter (NIS) interference is a well-recognized thyroid disrupting mechanism. It is unclear, however, whether a chronic low-dose exposure to perchlorate delivered by food and drinks may cause thyroid dysfunction in the long term. Thus, the aim of this review was to overview and summarize literature results in order to clarify this issue. METHODS Authors searched PubMed/MEDLINE, Scopus, Web of Science, institutional websites and Google until April 2020 for relevant information about the fundamental mechanism of the thyroid NIS interference induced by orally consumed perchlorate compounds and its clinical consequences. RESULTS Food and drinking water should be considered relevant sources of perchlorate. Despite some controversies, cross-sectional studies demonstrated that perchlorate exposure affects thyroid hormone synthesis in infants, adolescents and adults, particularly in the case of underlying thyroid diseases and iodine insufficiency. An exaggerated exposure to perchlorate during pregnancy leads to a worse neurocognitive and behavioral development outcome in infants, regardless of maternal thyroid hormone levels. DISCUSSION AND CONCLUSION The effects of a chronic low-dose perchlorate exposure on thyroid homeostasis remain still unclear, leading to concerns especially for highly sensitive patients. Specific studies are needed to clarify this issue, aiming to better define strategies of detection and prevention.
Collapse
Affiliation(s)
- Giuseppe Lisco
- ASL Brindisi, Unit of Endocrinology, Metabolism & Clinical Nutrition, Hospital “A. Perrino”, Strada per Mesagne 7, 72100 Brindisi, Puglia, Italy;
| | - Anna De Tullio
- Interdisciplinary Department of Medicine—Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, University of Bari “Aldo Moro”, School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Puglia, Italy; (A.D.T.); (V.A.G.)
| | - Vito Angelo Giagulli
- Interdisciplinary Department of Medicine—Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, University of Bari “Aldo Moro”, School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Puglia, Italy; (A.D.T.); (V.A.G.)
- Clinic of Endocrinology and Metabolic Disease, Conversano Hospital, Via Edmondo de Amicis 36, 70014 Conversano, Bari, Puglia, Italy
| | - Giovanni De Pergola
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine and Clinical Oncology, University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70124 Bari, Puglia, Italy;
| | - Vincenzo Triggiani
- Interdisciplinary Department of Medicine—Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, University of Bari “Aldo Moro”, School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Puglia, Italy; (A.D.T.); (V.A.G.)
| |
Collapse
|
424
|
Rotondo E, Chiarelli F. Endocrine-Disrupting Chemicals and Insulin Resistance in Children. Biomedicines 2020; 8:E137. [PMID: 32481506 PMCID: PMC7344713 DOI: 10.3390/biomedicines8060137] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/24/2020] [Accepted: 05/25/2020] [Indexed: 12/25/2022] Open
Abstract
The purpose of this article is to review the evidence linking background exposure to endocrine-disrupting chemicals (EDCs) with insulin resistance in children. Although evidence in children is scarce since very few prospective studies exist even in adults, evidence that EDCs might be involved in the development of insulin resistance and related diseases such as obesity and diabetes is accumulating. We reviewed the literature on both cross-sectional and prospective studies in humans and experimental studies. Epidemiological studies show a statistical link between exposure to pesticides, polychlorinated bisphenyls, bisphenol A, phthalates, aromatic polycyclic hydrocarbides, or dioxins and insulin resistance.
Collapse
Affiliation(s)
- Eleonora Rotondo
- Department of Pediatrics, University of Chieti, I-66100 Chieti, Italy;
| | | |
Collapse
|
425
|
Björvang RD, Damdimopoulou P. Persistent environmental endocrine-disrupting chemicals in ovarian follicular fluid and in vitro fertilization treatment outcome in women. Ups J Med Sci 2020; 125:85-94. [PMID: 32093529 PMCID: PMC7721012 DOI: 10.1080/03009734.2020.1727073] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/27/2020] [Accepted: 02/04/2020] [Indexed: 02/07/2023] Open
Abstract
Several international organizations have recently highlighted endocrine-disrupting chemicals (EDCs) as factors of concern in human reproduction. Since successful reproduction is dependent on timely and appropriate action of hormones, disruption of the endocrine system could lead to difficulties in conceiving or carrying a pregnancy to term. EDCs are chemicals that disrupt the endocrine system by activating or inhibiting receptors of the endocrine system, and/or altering hormone receptor expression; signal transduction; epigenetic marks; hormone synthesis, transport, distribution, and metabolism; and the fate of hormone-producing cells. Due to the increasing production of industrial chemicals over the past century and their lenient control, EDCs are now common contaminants in the environment. Consequently, everyone faces a life-long exposure to mixtures of chemicals, some of which have been identified as EDCs. As birth rates in humans are declining and the use of assisted reproductive technologies increasing, it is timely to consider possible effects of EDCs on human reproduction and fertility. In this review, we focus on persistent EDCs, their occurrence in ovarian follicular fluid, and associations to treatment outcomes in assisted reproduction. Our summary shows that despite being banned decades ago, mixtures of persistent EDCs are still detected in the ovarian follicular fluid, demonstrating direct exposure of oocytes to these chemicals. In addition, there are several reported associations between exposure and worse outcome in in vitro fertilization. Further research is therefore warranted to prove causality, which will lead towards better regulation and exposure reduction.
Collapse
Affiliation(s)
- Richelle D. Björvang
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Pauliina Damdimopoulou
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
426
|
Rais Y, Drabovich AP. Gasoline-derived methyl tert-butyl ether as a potential obesogen linked to metabolic syndrome. J Environ Sci (China) 2020; 91:209-211. [PMID: 32172969 DOI: 10.1016/j.jes.2020.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Affiliation(s)
- Yasmine Rais
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Andrei P Drabovich
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada.
| |
Collapse
|
427
|
Sex- and age-dependent effects of maternal organophosphate flame-retardant exposure on neonatal hypothalamic and hepatic gene expression. Reprod Toxicol 2020; 94:65-74. [PMID: 32360330 DOI: 10.1016/j.reprotox.2020.04.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 03/31/2020] [Accepted: 04/03/2020] [Indexed: 12/29/2022]
Abstract
After the phase-out of polybrominated diphenyl ethers, their replacement compounds, organophosphate flame retardants (OPFRs) became ubiquitous in home and work environments. OPFRs, which may act as endocrine disruptors, are detectable in human urine, breast milk, and blood samples collected from pregnant women. However, the effects of perinatal OPFR exposure on offspring homeostasis and gene expression remain largely underexplored. To address this knowledge gap, virgin female mice were mated and dosed with either a sesame oil vehicle or an OPFR mixture (tris(1,3-dichloro-2-propyl)phosphate, tricresyl phosphate, and triphenyl phosphate, 1 mg/kg each) from gestational day (GD) 7 to postnatal day (PND) 14. Hypothalamic and hepatic tissues were collected from one female and one male pup per litter on PND 0 and PND 14. Expression of genes involved in energy homeostasis, reproduction, glucose metabolism, and xenobiotic metabolism were analyzed using quantitative real-time PCR. In the mediobasal hypothalamus, OPFR increased Pdyn, Tac2, Esr1, and Pparg in PND 14 females. In the liver, OPFR increased Pparg and suppressed Insr, G6pc, and Fasn in PND 14 males and increased Esr1, Foxo1, Dgat2, Fasn, and Cyb2b10 in PND 14 females. We also observed striking sex differences in gene expression that were dependent on the age of the pup. Collectively, these data suggest that maternal OPFR exposure alters hypothalamic and hepatic development by influencing neonatal gene expression in a sex-dependent manner. The long-lasting consequences of these changes in expression may disrupt puberty, hormone sensitivity, and metabolism of glucose, fatty acids, and triglycerides in the maturing juvenile.
Collapse
|
428
|
Miyazaki I, Kikuoka R, Isooka N, Takeshima M, Sonobe K, Arai R, Funakoshi H, Quin KE, Smart J, Zensho K, Asanuma M. Effects of maternal bisphenol A diglycidyl ether exposure during gestation and lactation on behavior and brain development of the offspring. Food Chem Toxicol 2020; 138:111235. [DOI: 10.1016/j.fct.2020.111235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/17/2020] [Accepted: 02/27/2020] [Indexed: 10/24/2022]
|
429
|
Porta M. Why You Should and How You Can Lower Your Chemical Body Burden. Am J Public Health 2020. [DOI: 10.2105/ajph.2019.305560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Miquel Porta
- Miquel Porta is with the Hospital del Mar Institute of Medical Research, Universitat Autònoma de Barcelona, Consortium for Biomedical Research in Epidemiology & Public Health de Epidemiología y Salud Pública, Barcelona, Spain, and the Gillings School of Global Public Health, University of North Carolina, Chapel Hill
| |
Collapse
|
430
|
Nicole W. Potential Male and Female Reproductive Toxicants: Applying the Key Characteristics Approach. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:34001. [PMID: 32116005 PMCID: PMC7137908 DOI: 10.1289/ehp6214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 06/10/2023]
|
431
|
Carlson LM, Champagne FA, Cory-Slechta DA, Dishaw L, Faustman E, Mundy W, Segal D, Sobin C, Starkey C, Taylor M, Makris SL, Kraft A. Potential frameworks to support evaluation of mechanistic data for developmental neurotoxicity outcomes: A symposium report. Neurotoxicol Teratol 2020; 78:106865. [PMID: 32068112 PMCID: PMC7160758 DOI: 10.1016/j.ntt.2020.106865] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 02/05/2020] [Accepted: 02/10/2020] [Indexed: 12/16/2022]
Abstract
A key challenge in systematically incorporating mechanistic data into human health assessments is that, compared to studies of apical health endpoints, these data are both more abundant (mechanistic studies routinely outnumber other studies by several orders of magnitude) and more heterogeneous (e.g. different species, test system, tissue, cell type, exposure paradigm, or specific assays performed). A structured decision-making process for organizing, integrating, and weighing mechanistic DNT data for use in human health risk assessments will improve the consistency and efficiency of such evaluations. At the Developmental Neurotoxicology Society (DNTS) 2016 annual meeting, a symposium was held to address the application of existing organizing principles and frameworks for evaluation of mechanistic data relevant to interpreting neurotoxicology data. Speakers identified considerations with potential to advance the use of mechanistic DNT data in risk assessment, including considering the context of each exposure, since epigenetics, tissue type, sex, stress, nutrition and other factors can modify toxicity responses in organisms. It was also suggested that, because behavior is a manifestation of complex nervous system function, the presence and absence of behavioral change itself could be used to organize the interpretation of multiple complex simultaneous mechanistic changes. Several challenges were identified with frameworks and their implementation, and ongoing research to develop these approaches represents an early step toward full evaluation of mechanistic DNT data for assessments.
Collapse
Affiliation(s)
- Laura M Carlson
- Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, RTP, NC.
| | | | - Deborah A Cory-Slechta
- Department of Environmental Medicine, University of Rochester Medical School Rochester, NY
| | - Laura Dishaw
- Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, RTP, NC
| | - Elaine Faustman
- School of Public Health, Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, WA
| | - William Mundy
- Neurotoxicologist, Durham, NC (formerly National Health and Environmental Effects Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, RTP, NC))
| | - Deborah Segal
- Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Washington, DC
| | - Christina Sobin
- Dept of Public Health Sciences, The University of Texas at El Paso, El Paso, Texas, USA
| | - Carol Starkey
- Booz Allen Hamilton (formerly research fellow with the Oak Ridge Institute for Science and Engineering (ORISE) with Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Washington DC))
| | - Michele Taylor
- Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, RTP, NC
| | - Susan L Makris
- Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Washington, DC
| | - Andrew Kraft
- Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Washington, DC; Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, RTP, NC
| |
Collapse
|
432
|
Naidenko OV. Application of the Food Quality Protection Act children's health safety factor in the U.S. EPA pesticide risk assessments. Environ Health 2020; 19:16. [PMID: 32041625 PMCID: PMC7011289 DOI: 10.1186/s12940-020-0571-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 02/03/2020] [Indexed: 05/06/2023]
Abstract
BACKGROUND The Food Quality Protection Act of 1996, or FQPA, required the Environmental Protection Agency to set allowable levels for pesticides in a way that would "ensure that there is a reasonable certainty that no harm will result to infants and children from aggregate exposure to the pesticide chemical residue." The act stipulated that an additional tenfold margin of safety for pesticide risk assessments shall be applied to account for pre- and postnatal toxicity and for any data gaps regarding pesticide exposure and toxicity, unless there are reliable data to demonstrate that a different margin would be safe for infants and children. DISCUSSION To examine the implementation of the FQPA-mandated additional margin of safety, this analysis reviews 59 pesticide risk assessments published by the EPA between 2011 and 2019. The list includes 12 pesticides used in the largest amount in the U.S.; a group of 35 pesticides detected on fruits and vegetables; and 12 organophosphate pesticides. For the non-organophosphate pesticides reviewed here, the EPA applied an additional children's health safety factor in 13% of acute dietary exposure scenarios and 12% of chronic dietary exposure scenarios. For incidental oral, dermal and inhalation exposures, additional FQPA factors were applied for 15, 31, and 41%, respectively, of the non-organophosphate pesticides, primarily due to data uncertainties. For the organophosphate pesticides as a group, a tenfold children's health safety factor was proposed in 2015. Notably, in 2017 that decision was reversed for chlorpyrifos. CONCLUSIONS For the majority of pesticides reviewed in this study, the EPA did not apply an additional FQPA safety factor, missing an opportunity to fully use the FQPA authority for protecting children's health.
Collapse
Affiliation(s)
- Olga V Naidenko
- Environmental Working Group, 1436 U St NW, Suite 100, Washington DC, 20009, USA.
| |
Collapse
|
433
|
Baralić K, Buha Djordjevic A, Živančević K, Antonijević E, Anđelković M, Javorac D, Ćurčić M, Bulat Z, Antonijević B, Đukić-Ćosić D. Toxic Effects of the Mixture of Phthalates and Bisphenol A-Subacute Oral Toxicity Study in Wistar Rats. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E746. [PMID: 31979393 PMCID: PMC7037109 DOI: 10.3390/ijerph17030746] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/18/2020] [Accepted: 01/21/2020] [Indexed: 12/24/2022]
Abstract
Phthalates and bisphenol A, classified as endocrine disruptors, have weak estrogenic, anti-androgenic properties, and affect thyroid hormone regulation. The aim of this study on male rats was to compare the subacute toxic effects of low doses of single compounds (bis (2 -ethylhexyl) phthalate (DEHP), dibutyl phthalate (DBP), and bisphenol A (BPA)) with the effects of their mixture through different biochemical, hormonal, and hematological parameters. Rats were divided into five experimental groups: Control (corn oil), DEHP (50 mg/kg b.w./day), DBP (50 mg/kg b.w./day), BPA (25 mg/kg b.w./day), and MIX (50 mg/kg b.w./day DEHP + 50 mg/kg b.w/day DBP + 25 mg/kg b.w./day BPA). Animals were sacrificed after 28 days of oral treatment and blood was collected for further analysis. The results demonstrated that the mixture produced significant changes in lipid profile, liver-related biochemical parameters, and glucose level. Furthermore, the opposite effects of single substances on the thyroxine level have been shown in comparison with the mixture, as well as a more pronounced effect of the mixture on testosterone level. This study contributes to the body of knowledge on the toxicology of mixtures and gives one more evidence of the paramount importance of mixture toxicity studies, especially in assessing the endocrine disruptive effects of chemicals.
Collapse
Affiliation(s)
- Katarina Baralić
- Department of Toxicology “Akademik Danilo Soldatović”, University of Belgrade—Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia; (A.B.D.); (K.Ž.); (E.A.); (M.A.); (D.J.); (M.Ć.); (Z.B.); (B.A.); (D.Đ.-Ć.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
434
|
Celino-Brady FT, Lerner DT, Seale AP. Experimental Approaches for Characterizing the Endocrine-Disrupting Effects of Environmental Chemicals in Fish. Front Endocrinol (Lausanne) 2020; 11:619361. [PMID: 33716955 PMCID: PMC7947849 DOI: 10.3389/fendo.2020.619361] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/30/2020] [Indexed: 12/22/2022] Open
Abstract
Increasing industrial and agricultural activities have led to a disturbing increase of pollutant discharges into the environment. Most of these pollutants can induce short-term, sustained or delayed impacts on developmental, physiological, and behavioral processes that are often regulated by the endocrine system in vertebrates, including fish, thus they are termed endocrine-disrupting chemicals (EDCs). Physiological impacts resulting from the exposure of these vertebrates to EDCs include abnormalities in growth and reproductive development, as many of the prevalent chemicals are capable of binding the receptors to sex steroid hormones. The approaches employed to investigate the action and impact of EDCs is largely dependent on the specific life history and habitat of each species, and the type of chemical that organisms are exposed to. Aquatic vertebrates, such as fish, are among the first organisms to be affected by waterborne EDCs, an attribute that has justified their wide-spread use as sentinel species. Many fish species are exposed to these chemicals in the wild, for either short or prolonged periods as larvae, adults, or both, thus, studies are typically designed to focus on either acute or chronic exposure at distinct developmental stages. The aim of this review is to provide an overview of the approaches and experimental methods commonly used to characterize the effects of some of the environmentally prevalent and emerging EDCs, including 17 α-ethinylestradiol, nonylphenol, BPA, phthalates, and arsenic; and the pervasive and potential carriers of EDCs, microplastics, on reproduction and growth. In vivo and in vitro studies are designed and employed to elucidate the direct effects of EDCs at the organismal and cellular levels, respectively. In silico approaches, on the other hand, comprise computational methods that have been more recently applied with the potential to replace extensive in vitro screening of EDCs. These approaches are discussed in light of model species, age and duration of EDC exposure.
Collapse
Affiliation(s)
- Fritzie T. Celino-Brady
- Department of Human Nutrition, Food and Animal Sciences, University of Hawai’i at Mānoa, Honolulu, HI, United States
| | - Darren T. Lerner
- University of Hawai’i Sea Grant College Program, University of Hawai’i at Mānoa, Honolulu, HI, United States
| | - Andre P. Seale
- Department of Human Nutrition, Food and Animal Sciences, University of Hawai’i at Mānoa, Honolulu, HI, United States
- *Correspondence: Andre P. Seale,
| |
Collapse
|
435
|
Milczarek-Banach J, Rachoń D, Bednarczuk T, Myśliwiec-Czajka K, Wasik A, Miśkiewicz P. Exposure to Bisphenol A Analogs and the Thyroid Function and Volume in Women of Reproductive Age-Cross-Sectional Study. Front Endocrinol (Lausanne) 2020; 11:587252. [PMID: 33542704 PMCID: PMC7851079 DOI: 10.3389/fendo.2020.587252] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 12/01/2020] [Indexed: 12/24/2022] Open
Abstract
Bisphenols (BPs) are commonly known plastifiers that are widely used in industry. The knowledge about the impact of BPs on thyroid function is scarce. Proper thyroid functioning is especially important for women of reproductive age, as hypothyroidism affects fertility, pregnancy outcomes and the offspring. There are no studies analyzing the influence of BPs on thyroid function and volume in non-pregnant young women. The aim of this cross-sectional study was to evaluate the relationship between bisphenol A and its 10 analogs (BPS, BPC, BPE, BPF, BPG, BPM, BPP, BPZ, BPFL, and BPBP) on thyroid function and volume in women of reproductive age. Inclusion criteria were: female sex, age 18-40 years. Exclusion criteria were history of any thyroid disease, pharmacotherapy influencing thyroid function, pregnancy or puerperium, and diagnosis of autoimmune thyroid disease during this study. Venous blood was drawn for measurement of thyrotropin (TSH), free thyroxine, thyroid peroxidase antibodies, thyroglobulin antibodies, BPs. Urine samples were analyzed for: ioduria and BPs. Ultrasound examination of thyroid gland was performed. One hundred eighty participants were included into the study. A negative correlation was found between urine BPC and the thyroid volume (R = -0.258; p = 0.0005). Patients with detected urine BPC presented smaller thyroid glands than those with not-detected urine BPC (p = 0.0008). A positive correlation was found between TSH and urine BPC (R = 0.228; p = 0.002). Patients with detected urine BPC presented higher concentrations of TSH versus those with not-detected urine BPC (p = 0.003). There were no relationships between any of serum BPs as well as the other urine BPs and thyroid function and its volume. The only BP that demonstrated the relationship between thyroid function and its volume was BPC, probably because of its chemical structure that most resembles thyroxine. Exposure to this BP may result in the development of hypothyroidism that could have a negative impact on pregnancy and the offspring.
Collapse
Affiliation(s)
| | - Dominik Rachoń
- Department of Clinical and Experimental Endocrinology, Medical University of Gdańsk, Gdańsk, Poland
| | - Tomasz Bednarczuk
- Department of Internal Medicine and Endocrinology, Medical University of Warsaw, Warsaw, Poland
| | | | - Andrzej Wasik
- Department of Analytical Chemistry, Chemical Faculty, Gdańsk University of Technology, Gdańsk, Poland
| | - Piotr Miśkiewicz
- Department of Internal Medicine and Endocrinology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|