401
|
Kassotis CD, Trasande L. Endocrine disruptor global policy. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 92:1-34. [PMID: 34452684 DOI: 10.1016/bs.apha.2021.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Over the past several decades, scientific consensus has grown around the concept and evidence for human health impacts from exposure to endocrine disrupting chemicals (EDCs). A series of publications have now demonstrated considerable economic costs of EDC exposure-induced adverse health outcomes. This research has suggested economic burdens in the hundreds of billions, even considering only a small subset of EDCs and health. As of yet, regulatory efforts and policies to protect and decrease human exposure to most EDCs have been insufficient and have not kept pace with the science. Given the overwhelming scientific evidence, referenced throughout this collection, as well as the economic costs of inaction, described here, regulations are clearly needed. The EU and some other countries have taken promising steps towards protective regulation of EDCs, though the response of the US and many other countries has been limited or altogether lacking. Regulatory bodies that have and continue to apply risk-based approaches to regulating EDCs have also failed to consider the complete economic impacts of EDC-related health impacts. In this chapter, we will discuss broad strategies taken to regulate EDCs, examine the approaches currently taken to regulate EDCs in a global context (discussing the strengths and weaknesses of these regulations), discuss the economic costs of EDC exposures (detailing where consideration of health and economic costs could improve regulations), and discuss next steps and novel approaches to adapting existing regulatory frameworks to this class of chemicals.
Collapse
Affiliation(s)
- Christopher D Kassotis
- Institute of Environmental Health Sciences and Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, United States.
| | - Leonardo Trasande
- Departments of Pediatrics, New York University School of Medicine, New York, NY, United States; Department of Environmental Medicine, New York University School of Medicine, New York, NY, United States; Department of Population Health, New York University School of Medicine, New York, NY, United States; NYU College of Global Public Health, New York, NY, United States
| |
Collapse
|
402
|
Jeon BK, Jang Y, Lee EM, Jung DW, Moon JH, Lee HJ, Lee DY. A systematic approach to metabolic characterization of thyroid-disrupting chemicals and their in vitro biotransformants based on prediction-assisted metabolomic analysis. J Chromatogr A 2021; 1649:462222. [PMID: 34034111 DOI: 10.1016/j.chroma.2021.462222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 11/20/2022]
Abstract
Thyroid-disrupting compounds (TDCs) are chemicals that modify thyroid gland function and disrupt hormonal homeostasis. Like other endocrine-disrupting chemicals (EDCs), TDCs often show altered activities following post-metabolic modification via endogenous enzymatic reaction. Hence, we developed evaluation system consisting of (1) in vitro metabolic reaction module, (2) high-resolution mass-spectrometry, and (3) human cell-based reporter gene assay. We developed the reaction module using rat S9 fraction where levothyroxine (T4) as a model compound, was subjected to phase-I or phase-I+II biotransformation. The metabolic profiles of the biotransformants were systematically configured based on in-silico prediction of potential products and experimental validation using liquid-chromatography Orbitrap mass-spectrometry. Thyroid agonistic activities of the biotransformants were evaluated by thyroid receptor-mediated stably transfected transcriptional activation assay using hTRE_HeLa cells. Indeed, we detected the increased activities following metabolic conversion of T4 in a dose-dependent manner. Note that the activity by phase-I+II reaction was much greater than by phase-I reaction (3.8-fold increase). Subsequently, we explored metabolic signatures, which potentially contributed to the hyperactivity by phase-I+II reaction. A total of 77 metabolic features were annotated based on the in-silico prediction, which included biotransformants with deiodination and conjugation. The glucuronide-conjugated form was found at the highest fold-increase (970-fold increase) whereas marginal increases were determined in the deiodinized forms (1.6-fold increase in T3 and 2.0-fold increase in rT3). Further, the systematic approach was evaluated and comparably analyzed by the metabolic profiles of bithionol, which is structurally related to T4. Our current result suggested the potential application of in vitro evaluation system to risk assessment of thyroid-disrupting activity.
Collapse
Affiliation(s)
- Byung Kwan Jeon
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea
| | - Yurim Jang
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul 08826, Republic of Korea
| | - Eun Mi Lee
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Sciences, CALS, Seoul National University, Seoul 08826, Republic of Korea
| | - Da Woon Jung
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Sciences, CALS, Seoul National University, Seoul 08826, Republic of Korea
| | - Ji Hyun Moon
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Hong Jin Lee
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Do Yup Lee
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul 08826, Republic of Korea; Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Sciences, CALS, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
403
|
Du Y, Shi X, Ma W, Wen P, Yu P, Wang X, Fang P, Chen A, Gao Z, Cui K. Phthalates promote the invasion of hepatocellular carcinoma cells by enhancing the interaction between Pregnane X receptor and E26 transformation specific sequence 1. Pharmacol Res 2021; 169:105648. [PMID: 33965509 DOI: 10.1016/j.phrs.2021.105648] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/02/2021] [Accepted: 04/26/2021] [Indexed: 02/06/2023]
Abstract
Phthalates (PAEs) are considered endocrine-disrupting chemicals (EDCs), a series of compounds able to disrupt the normal regulation of the human endocrine-system. In the present study, we investigated the roles of four PAEs, butyl benzyl phthalate (BBP), dibutyl phthalate (DBP), dimethyl phthalate (DMP), and diethyl phthalate (DEP), in hepatocellular carcinoma (HCC) cells. We define novel roles for the PAEs on the migration of HCC cells via their enhancing of the interaction between the pregnane X receptor (PXR) and E26 transformation specific sequence 1 (ETS-1). Our results indicate that PAEs induced the transcriptional activation of ETS-1 and PXR. PXR activated by PAEs could bind to ETS-1 directly and enhanced the activity of ETS-1, which resulted in the induction of invasion-related ETS-1 target genes. The "LXXLL" motif in the ETS-1C-terminal was essential for the interaction between PXR and ETS-1 induced by PAEs. Treatment of PAEs promoted the nuclear accumulation of ETS-1 or the recruitment of ETS-1, but not in cells expressing ETS-1 with a mutated LXXLL motif in its downstream gene promoter region, or following transfection of PXR siRNA. Treatment with the PXR antagonist ketoconazole almost completely inhibited the effects of PAEs. Moreover, PAEs enhanced the in vitro or in vivo invasion of HCC cells via PXR/ETS-1. Therefore, our results not only contribute to a better understanding of HCC, but also extended the roles of EDCs regulating human malignancies.
Collapse
Affiliation(s)
- Yabing Du
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, PR China.
| | - Xiaoyi Shi
- Department of Hepatobiliary and Pancreatic Surgery/Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities/ZhengZhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, PR China.
| | - Wang Ma
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, PR China.
| | - Peihao Wen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, PR China.
| | - Pu Yu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, PR China.
| | - Xin Wang
- School of Environmental Science and Engineering, Chang'an University, Xi'an 710064, Shaanxi Province, PR China.
| | - Pengli Fang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, PR China.
| | - Aixia Chen
- Department of Radiotherapy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, PR China.
| | - Zhiqiang Gao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, PR China.
| | - Kang Cui
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, PR China.
| |
Collapse
|
404
|
Zahra A, Dong Q, Hall M, Jeyaneethi J, Silva E, Karteris E, Sisu C. Identification of Potential Bisphenol A (BPA) Exposure Biomarkers in Ovarian Cancer. J Clin Med 2021; 10:jcm10091979. [PMID: 34062972 PMCID: PMC8125610 DOI: 10.3390/jcm10091979] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/16/2021] [Accepted: 04/24/2021] [Indexed: 02/07/2023] Open
Abstract
Endocrine-disrupting chemicals (EDCs) can exert multiple deleterious effects and have been implicated in carcinogenesis. The xenoestrogen Bisphenol A (BPA) that is found in various consumer products has been involved in the dysregulation of numerous signalling pathways. In this paper, we present the analysis of a set of 94 genes that have been shown to be dysregulated in presence of BPA in ovarian cancer cell lines since we hypothesised that these genes might be of biomarker potential. This study sought to identify biomarkers of disease and biomarkers of disease-associated exposure. In silico analyses took place using gene expression data extracted from The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) databases. Differential expression was further validated at protein level using immunohistochemistry on an ovarian cancer tissue microarray. We found that 14 out of 94 genes are solely dysregulated in the presence of BPA, while the remaining 80 genes are already dysregulated (p-value < 0.05) in their expression pattern as a consequence of the disease. We also found that seven genes have prognostic power for the overall survival in OC in relation to their expression levels. Out of these seven genes, Keratin 4 (KRT4) appears to be a biomarker of exposure-associated ovarian cancer, whereas Guanylate Binding Protein 5 (GBP5), long intergenic non-protein coding RNA 707 (LINC00707) and Solute Carrier Family 4 Member 11 (SLC4A11) are biomarkers of disease. BPA can exert a plethora of effects that can be tissue- or cancer-specific. Our in silico findings generate a hypothesis around biomarkers of disease and exposure that could potentially inform regulation and policy making.
Collapse
Affiliation(s)
- Aeman Zahra
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.Z.); (Q.D.); (M.H.); (J.J.); (E.S.)
| | - Qiduo Dong
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.Z.); (Q.D.); (M.H.); (J.J.); (E.S.)
| | - Marcia Hall
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.Z.); (Q.D.); (M.H.); (J.J.); (E.S.)
- Mount Vernon Cancer Centre, Northwood HA6 2RN, UK
| | - Jeyarooban Jeyaneethi
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.Z.); (Q.D.); (M.H.); (J.J.); (E.S.)
| | - Elisabete Silva
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.Z.); (Q.D.); (M.H.); (J.J.); (E.S.)
| | - Emmanouil Karteris
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.Z.); (Q.D.); (M.H.); (J.J.); (E.S.)
- Correspondence: (E.K.); (C.S.)
| | - Cristina Sisu
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.Z.); (Q.D.); (M.H.); (J.J.); (E.S.)
- Correspondence: (E.K.); (C.S.)
| |
Collapse
|
405
|
Hall JM, Korach KS. Endocrine disrupting chemicals (EDCs) and sex steroid receptors. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 92:191-235. [PMID: 34452687 DOI: 10.1016/bs.apha.2021.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Sex-steroid receptors (SSRs) are essential mediators of estrogen, progestin, and androgen signaling that are critical in vast aspects of human development and multi-organ homeostasis. Dysregulation of SSR function has been implicated in numerous pathologies including cancers, obesity, Type II diabetes mellitus, neuroendocrine disorders, cardiovascular disease, hyperlipidemia, male and female infertility, and other reproductive disorders. Endocrine disrupting chemicals (EDCs) modulate SSR function in a wide variety of cell and tissues. There exists strong experimental, clinical, and epidemiological evidence that engagement of EDCs with SSRs may disrupt endogenous hormone signaling leading to physiological abnormalities that may manifest in disease. In this chapter, we discuss the molecular mechanisms by which EDCs interact with estrogen, progestin, and androgen receptors and alter SSR functions in target cells. In addition, the pathological consequences of disruption of SSR action in reproductive and other organs by EDCs is described with an emphasis on underlying mechanisms of receptors dysfunction.
Collapse
Affiliation(s)
- Julianne M Hall
- Quinnipiac University Frank H. Netter MD School of Medicine, Hamden, CT, United States.
| | - Kenneth S Korach
- National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States
| |
Collapse
|
406
|
Muñoz JP, Bleak TC, Calaf GM. Glyphosate and the key characteristics of an endocrine disruptor: A review. CHEMOSPHERE 2021; 270:128619. [PMID: 33131751 DOI: 10.1016/j.chemosphere.2020.128619] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 09/30/2020] [Accepted: 10/12/2020] [Indexed: 05/27/2023]
Abstract
Glyphosate is a large-spectrum herbicide that was introduced on the market in 1974. Due to its important impact on the crop industry, it has been significantly diversified and expanded being considered the most successful herbicide in history. Currently, its massive use has led to a wide environmental diffusion and its human consumption through food products has made possible to detect it in urine, serum, and breast milk samples. Nevertheless, recent studies have questioned its safety and international agencies have conflicting opinions about its effects on human health, mainly as an endocrine-disrupting chemical (EDC) and its carcinogenic capacity. Here, we conduct a comprehensive review where we describe the most important findings of the glyphosate effects in the endocrine system and asses the mechanistic evidence to classify it as an EDC. We use as guideline the ten key characteristics (KCs) of EDC proposed in the expert consensus statement published in 2020 (La Merrill et al., 2020) and discuss the scopes of some epidemiological studies for the evaluation of glyphosate as possible EDC. We conclude that glyphosate satisfies at least 8 KCs of an EDC, however, prospective cohort studies are still needed to elucidate the real effects in the human endocrine system.
Collapse
Affiliation(s)
- Juan P Muñoz
- Instituto de Alta Investigación (IAI), Universidad de Tarapacá, Antofagasta 1520, Arica, 1000000, Chile.
| | - Tammy C Bleak
- Instituto de Alta Investigación (IAI), Universidad de Tarapacá, Antofagasta 1520, Arica, 1000000, Chile.
| | - Gloria M Calaf
- Instituto de Alta Investigación (IAI), Universidad de Tarapacá, Antofagasta 1520, Arica, 1000000, Chile; Center for Radiological Research, VC11-218, Columbia University Medical Center, 630 West 168th Street, New York, NY, 10032, USA.
| |
Collapse
|
407
|
Vandenberg LN. Endocrine disrupting chemicals: strategies to protect present and future generations. Expert Rev Endocrinol Metab 2021; 16:135-146. [PMID: 33973826 DOI: 10.1080/17446651.2021.1917991] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/12/2021] [Indexed: 12/22/2022]
Abstract
Introduction: Endocrine-disrupting chemicals (EDCs) are chemicals that alter the actions of hormones. In the 21st Century, numerous expert groups of clinicians, scientists, and environmental activists have called for action to protect present and future generations from the harm induced by EDC exposures. These demands for regulatory responses come because of the strong weight of the evidence from epidemiology, wildlife, and controlled laboratory studies.Areas covered: In this review, we examine the conclusions drawn by experts from different scientific and medical disciplines. We also address several areas where recent findings or work has changed the landscape of EDC work including new approaches to identify and evaluate the evidence for EDCs using a key characteristics approach, the need to expand our understanding of vulnerable periods of development, and the increasing concern that traditional methods used to evaluate toxicity of environmental chemicals are insufficient for EDCs and how collaborative science could help to address these gaps.Expert opinion: The science is clear: there is more than enough evidence to demonstrate that EDCs affect the health of humans and wildlife. Waiting to act is a decision that puts the health of current and future generations at risk.
Collapse
Affiliation(s)
- Laura N Vandenberg
- School of Public Health & Health Sciences, Department of Environmental Health Sciences, University of Massachusetts, Amherst, MA USA
| |
Collapse
|
408
|
Mesnage R, Teixeira M, Mandrioli D, Falcioni L, Ibragim M, Ducarmon QR, Zwittink RD, Amiel C, Panoff JM, Bourne E, Savage E, Mein CA, Belpoggi F, Antoniou MN. Multi-omics phenotyping of the gut-liver axis reveals metabolic perturbations from a low-dose pesticide mixture in rats. Commun Biol 2021; 4:471. [PMID: 33854195 PMCID: PMC8046807 DOI: 10.1038/s42003-021-01990-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/15/2021] [Indexed: 12/24/2022] Open
Abstract
Health effects of pesticides are not always accurately detected using the current battery of regulatory toxicity tests. We compared standard histopathology and serum biochemistry measures and multi-omics analyses in a subchronic toxicity test of a mixture of six pesticides frequently detected in foodstuffs (azoxystrobin, boscalid, chlorpyrifos, glyphosate, imidacloprid and thiabendazole) in Sprague-Dawley rats. Analysis of water and feed consumption, body weight, histopathology and serum biochemistry showed little effect. Contrastingly, serum and caecum metabolomics revealed that nicotinamide and tryptophan metabolism were affected, which suggested activation of an oxidative stress response. This was not reflected by gut microbial community composition changes evaluated by shotgun metagenomics. Transcriptomics of the liver showed that 257 genes had their expression changed. Gene functions affected included the regulation of response to steroid hormones and the activation of stress response pathways. Genome-wide DNA methylation analysis of the same liver samples showed that 4,255 CpG sites were differentially methylated. Overall, we demonstrated that in-depth molecular profiling in laboratory animals exposed to low concentrations of pesticides allows the detection of metabolic perturbations that would remain undetected by standard regulatory biochemical measures and which could thus improve the predictability of health risks from exposure to chemical pollutants.
Collapse
Affiliation(s)
- Robin Mesnage
- Gene Expression and Therapy Group, King's College London, Faculty of Life Sciences & Medicine, Department of Medical and Molecular Genetics, Guy's Hospital, London, UK
| | - Maxime Teixeira
- UR Aliments Bioprocédés Toxicologie Environnements, EA 4651, University of Caen Normandy (UCN), Caen, France
| | | | | | - Mariam Ibragim
- Gene Expression and Therapy Group, King's College London, Faculty of Life Sciences & Medicine, Department of Medical and Molecular Genetics, Guy's Hospital, London, UK
| | - Quinten Raymond Ducarmon
- Center for Microbiome Analyses and Therapeutics, Leiden University Medical Center, Leiden, The Netherlands
| | - Romy Daniëlle Zwittink
- Center for Microbiome Analyses and Therapeutics, Leiden University Medical Center, Leiden, The Netherlands
| | - Caroline Amiel
- UR Aliments Bioprocédés Toxicologie Environnements, EA 4651, University of Caen Normandy (UCN), Caen, France
| | - Jean-Michel Panoff
- UR Aliments Bioprocédés Toxicologie Environnements, EA 4651, University of Caen Normandy (UCN), Caen, France
| | - Emma Bourne
- Genome Centre, Barts and the London School of Medicine and Dentistry, Blizard Institute, London, UK
| | - Emanuel Savage
- Genome Centre, Barts and the London School of Medicine and Dentistry, Blizard Institute, London, UK
| | - Charles A Mein
- Genome Centre, Barts and the London School of Medicine and Dentistry, Blizard Institute, London, UK
| | | | - Michael N Antoniou
- Gene Expression and Therapy Group, King's College London, Faculty of Life Sciences & Medicine, Department of Medical and Molecular Genetics, Guy's Hospital, London, UK.
| |
Collapse
|
409
|
Lisco G, Giagulli VA, Iovino M, Guastamacchia E, Pergola GD, Triggiani V. Endocrine-Disrupting Chemicals: Introduction to the Theme. Endocr Metab Immune Disord Drug Targets 2021; 22:677-685. [PMID: 33847259 DOI: 10.2174/1871530321666210413124425] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/03/2021] [Accepted: 02/18/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Endocrine-disrupting chemicals (EDCs) are natural or synthetic compounds deriving from different human activities and are widely spread into the environment, contributing to indoor and outdoor pollution. EDCs may be conveyed by food and water consumption and skin, airways, placental, and breastfeeding. Upon entering the circulation, they can interfere with endocrine system homeostasis by several mechanisms. AIM In this narrative review, the authors overviewed the leading mechanisms by which EDCs interact and disrupt the endocrine system, leading to possible human health concerns. RESULTS The leading mechanisms of EDCs-related toxicity have been illustrated in in vitro studies and animal models and may be summarized as follows: receptor agonism and antagonism; modulation of hormone receptor expression; interference with signal transduction in hormone-responsive cells; epigenetic modifications in hormone-producing or hormone-responsive cells; interference with hormone synthesis; interference with hormone transport across cell membranes; interference with hormone metabolism or clearance; interference with the destiny of hormone-producing or hormone-responsive cells. DISCUSSION Despite these well-defined mechanisms, some limitations do not allow for conclusive assumptions. Indeed, epidemiological and ecological studies are currently lacking and usually refer to a specific cluster of patients (occupational exposure). Methodological aspects could further complicate the issue since these studies could require a long time to provide useful information. The lack of a real unexposed group in environmental conditions, possible interference of EDCs mixture on biological results, and unpredictable dose-response curves for some EDCs should also be considered significant limitations. CONCLUSION Given these limitations, specific observational and long-term studies are needed to identify at-risk populations for adequate treatment of exposed patients and effective prevention plans against excessive exposure to EDCs.
Collapse
Affiliation(s)
- Giuseppe Lisco
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases. University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124 Bari. Italy
| | - Vito Angelo Giagulli
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases. University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124 Bari. Italy
| | - Michele Iovino
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases. University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124 Bari. Italy
| | - Edoardo Guastamacchia
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases. University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124 Bari. Italy
| | - Giovanni De Pergola
- Clinical Nutrition Unit, Medical Oncology, Department of Internal Medicine and Clinical Oncology, University of Bari, School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124 Bari. Italy
| | - Vincenzo Triggiani
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases. University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124 Bari. Italy
| |
Collapse
|
410
|
Knudsen TB, Fitzpatrick SC, De Abrew KN, Birnbaum LS, Chappelle A, Daston GP, Dolinoy DC, Elder A, Euling S, Faustman EM, Fedinick KP, Franzosa JA, Haggard DE, Haws L, Kleinstreuer NC, Buck Louis GM, Mendrick DL, Rudel R, Saili KS, Schug TT, Tanguay RL, Turley AE, Wetmore BA, White KW, Zurlinden TJ. FutureTox IV Workshop Summary: Predictive Toxicology for Healthy Children. Toxicol Sci 2021; 180:198-211. [PMID: 33555348 PMCID: PMC8041457 DOI: 10.1093/toxsci/kfab013] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
FutureTox IV, a Society of Toxicology Contemporary Concepts in Toxicology workshop, was held in November 2018. Building upon FutureTox I, II, and III, this conference focused on the latest science and technology for in vitro profiling and in silico modeling as it relates to predictive developmental and reproductive toxicity (DART). Publicly available high-throughput screening data sets are now available for broad in vitro profiling of bioactivities across large inventories of chemicals. Coupling this vast amount of mechanistic data with a deeper understanding of molecular embryology and post-natal development lays the groundwork for using new approach methodologies (NAMs) to evaluate chemical toxicity, drug efficacy, and safety assessment for embryo-fetal development. NAM is a term recently adopted in reference to any technology, methodology, approach, or combination thereof that can be used to provide information on chemical hazard and risk assessment to avoid the use of intact animals (U.S. Environmental Protection Agency [EPA], Strategic plan to promote the development and implementation of alternative test methods within the tsca program, 2018, https://www.epa.gov/sites/production/files/2018-06/documents/epa_alt_strat_plan_6-20-18_clean_final.pdf). There are challenges to implementing NAMs to evaluate chemicals for developmental toxicity compared with adult toxicity. This forum article reviews the 2018 workshop activities, highlighting challenges and opportunities for applying NAMs for adverse pregnancy outcomes (eg, preterm labor, malformations, low birth weight) as well as disorders manifesting postnatally (eg, neurodevelopmental impairment, breast cancer, cardiovascular disease, fertility). DART is an important concern for different regulatory statutes and test guidelines. Leveraging advancements in such approaches and the accompanying efficiencies to detecting potential hazards to human development are the unifying concepts toward implementing NAMs in DART testing. Although use of NAMs for higher level regulatory decision making is still on the horizon, the conference highlighted novel testing platforms and computational models that cover multiple levels of biological organization, with the unique temporal dynamics of embryonic development, and novel approaches for estimating toxicokinetic parameters essential in supporting in vitro to in vivo extrapolation.
Collapse
Affiliation(s)
- Thomas B Knudsen
- U.S. Environmental Protection Agency, ORD, Research Triangle Park, North Carolina, USA
| | | | | | - Linda S Birnbaum
- National Institute of Environmental Health Science, NIH, Research Triangle Park, North Carolina, USA
| | - Anne Chappelle
- Chappelle Toxicology Consulting, LLC, Chadds Ford, Pennsylvania, USA
| | | | | | - Alison Elder
- University of Rochester, Rochester, New York, USA
| | - Susan Euling
- U.S. Environmental Protection Agency, Office of Children’s Health Protection, Washington, District of Columbia, USA
| | | | | | - Jill A Franzosa
- U.S. Environmental Protection Agency, ORD, Research Triangle Park, North Carolina, USA
| | - Derik E Haggard
- U.S. Environmental Protection Agency, ORD, Research Triangle Park, North Carolina, USA
- Oak Ridge Institute for Science and Education (ORISE);, Texas, USA
| | | | | | | | - Donna L Mendrick
- U.S. Food and Drug Administration, NCTR, Silver Spring, Maryland, USA
| | | | - Katerine S Saili
- U.S. Environmental Protection Agency, ORD, Research Triangle Park, North Carolina, USA
| | - Thaddeus T Schug
- National Institute of Environmental Health Science, NIH, Research Triangle Park, North Carolina, USA
| | | | | | - Barbara A Wetmore
- U.S. Environmental Protection Agency, ORD, Research Triangle Park, North Carolina, USA
| | - Kimberly W White
- American Chemistry Council, Washington, District of Columbia, USA
| | - Todd J Zurlinden
- U.S. Environmental Protection Agency, ORD, Research Triangle Park, North Carolina, USA
| |
Collapse
|
411
|
Di Lorenzo M, Mileo A, Laforgia V, De Falco M, Rosati L. Alkyphenol Exposure Alters Steroidogenesis in Male Lizard Podarcis siculus. Animals (Basel) 2021; 11:1003. [PMID: 33918463 PMCID: PMC8065914 DOI: 10.3390/ani11041003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Nonylphenol (NP) and Octylphenol (OP) are persistent and non-biodegradable environmental contaminants classified as endocrine disruptor chemicals (EDCs). These compounds are widely used in several industrial applications and present estrogen-like properties, which have extensively been studied in aquatic organisms. The present study aimed to verify the interference of these compounds alone, and in mixture, on the reproductive cycle of the male terrestrial vertebrate Podarcis siculus, focusing mainly on the steroidogenesis process. METHODS Male lizards have been treated with different injections of both NP and OP alone and in mixture, and evaluation has been carried out using a histological approach. RESULTS Results obtained showed that both substances are able to alter both testis histology and localization of key steroidogenic enzymes, such as 3β-hydroxysteroid dehydrogenase (3β-HSD), 17β- hydroxysteroid dehydrogenase (17β-HSD) and P450 aromatase. Moreover, OP exerts a preponderant effect, and the P450 aromatase represents the major target of both chemicals. CONCLUSIONS In conclusion, NP and OP inhibit steroidogenesis, which in turn may reduce the reproductive capacity of the specimens.
Collapse
Affiliation(s)
- Mariana Di Lorenzo
- Department of Biology, University of Naples ‘‘Federico II’’, 80126 Naples, Italy; (M.D.L.); (A.M.); (V.L.); (L.R.)
| | - Aldo Mileo
- Department of Biology, University of Naples ‘‘Federico II’’, 80126 Naples, Italy; (M.D.L.); (A.M.); (V.L.); (L.R.)
| | - Vincenza Laforgia
- Department of Biology, University of Naples ‘‘Federico II’’, 80126 Naples, Italy; (M.D.L.); (A.M.); (V.L.); (L.R.)
- National Institute of Biostructures and Biosystems (INBB), 00136 Rome, Italy
| | - Maria De Falco
- Department of Biology, University of Naples ‘‘Federico II’’, 80126 Naples, Italy; (M.D.L.); (A.M.); (V.L.); (L.R.)
- National Institute of Biostructures and Biosystems (INBB), 00136 Rome, Italy
- Center for Studies on Bioinspired Agro-environmental Technology (BAT Center), 80055 Portici, Italy
| | - Luigi Rosati
- Department of Biology, University of Naples ‘‘Federico II’’, 80126 Naples, Italy; (M.D.L.); (A.M.); (V.L.); (L.R.)
- Center for Studies on Bioinspired Agro-environmental Technology (BAT Center), 80055 Portici, Italy
| |
Collapse
|
412
|
Kornhuber M, Dunst S, Schönfelder G, Oelgeschläger M. The E-Morph Assay: Identification and characterization of environmental chemicals with estrogenic activity based on quantitative changes in cell-cell contact organization of breast cancer cells. ENVIRONMENT INTERNATIONAL 2021; 149:106411. [PMID: 33549916 DOI: 10.1016/j.envint.2021.106411] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/11/2021] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
Adverse health effects that are caused by endocrine disrupting chemicals (EDCs) in the environment, food or consumer products are of high public concern. The identification and characterization of EDCs including substances with estrogenic activity still necessitates the use of animal testing as most of the approved alternative test methods only address single mechanistic events of endocrine activity. Therefore, novel human-relevant in vitro assays covering more complex functional endpoints of adversity, including hormone-related tumor formation and progression, are needed. This study describes the development and evaluation of a novel high-throughput screening-compatible assay called "E-Morph Assay". This image-based phenotypic screening assay facilitates robust predictions of the estrogenic potential of environmental chemicals using quantitative changes in the cell-cell contact morphology of human breast cancer cells as a novel functional endpoint. Based on a classification model, which was developed using six reference substances with known estrogenic activity, the E-Morph Assay correctly classified an additional set of 11 reference chemicals commonly used in OECD Test Guidelines and the U.S. EPA ToxCast program. For each of the tested substances, a relative ER bioactivity score was derived that allowed their grouping into four main categories of estrogenic activity, i.e. 'strong' (>0.9; four substances, i.e. natural hormones or pharmaceutical products), 'moderate' (0.9-0.6; six substances, i.e. phytoestrogens and Bisphenol AF), 'weak' (<0.6; three substances, i.e Bisphenol S, B, and A), and 'negative' (0.0; four substances). The E-Morph Assay considerably expands the portfolio of test methods providing the possibility to characterize the influence of environmental chemicals on estrogen-dependent tumor progression.
Collapse
Affiliation(s)
- Marja Kornhuber
- German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), 10589 Berlin, Germany; Freie Universität Berlin, 14195 Berlin, Germany
| | - Sebastian Dunst
- German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), 10589 Berlin, Germany
| | - Gilbert Schönfelder
- German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), 10589 Berlin, Germany; Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Michael Oelgeschläger
- German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), 10589 Berlin, Germany.
| |
Collapse
|
413
|
Young AS, Zoeller T, Hauser R, James-Todd T, Coull BA, Behnisch PA, Brouwer A, Zhu H, Kannan K, Allen JG. Assessing Indoor Dust Interference with Human Nuclear Hormone Receptors in Cell-Based Luciferase Reporter Assays. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:47010. [PMID: 33851871 PMCID: PMC8045486 DOI: 10.1289/ehp8054] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS), organophosphate esters (OPEs), and polybrominated diphenyl ethers (PBDEs) are hormone-disrupting chemicals that migrate from building materials into air and dust. OBJECTIVES We aimed to quantify the hormonal activities of 46 dust samples and identify chemicals driving the observed activities. METHODS We evaluated associations between hormonal activities of extracted dust in five cell-based luciferase reporter assays and dust concentrations of 42 measured PFAS, OPEs, and PBDEs, transformed as either raw or potency-weighted concentrations based on Tox21 high-throughput screening data. RESULTS All dust samples were hormonally active, showing antagonistic activity toward peroxisome proliferator-activated receptor (PPARγ2) (100%; 46 of 46 samples), thyroid hormone receptor (TRβ) (89%; 41 samples), and androgen receptor (AR) (87%; 40 samples); agonist activity on estrogen receptor (ERα) (96%; 44 samples); and binding competition with thyroxine (T4) on serum transporter transthyretin (TTR) (98%; 45 samples). Effects were observed with as little as 4μg of extracted dust. In regression models for each chemical class, interquartile range increases in potency-weighted or unknown-potency chemical concentrations were associated with higher hormonal activities of dust extracts (potency-weighted: ΣPFAS-TRβ, ↑28%, p<0.05; ΣOPEs-TRβ, ↑27%, p=0.08; ΣPBDEs-TRβ, ↑20%, p<0.05; ΣPBDEs-ERα, ↑7.7%, p=0.08; unknown-potency: ΣOPEs-TTR, ↑34%, p<0.05; ΣOPEs-AR, ↑13%, p=0.06), adjusted for chemicals with active, inactive, and unknown Tox21 designations. DISCUSSION All indoor dust samples exhibited hormonal activities, which were associated with PFAS, PBDE, and OPE levels. Reporter gene cell-based assays are relatively inexpensive, health-relevant evaluations of toxic loads of chemical mixtures that building occupants are exposed to. https://doi.org/10.1289/EHP8054.
Collapse
Affiliation(s)
- Anna S. Young
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Population Health Sciences, Harvard Graduate School of Arts and Sciences, Cambridge, Massachusetts, USA
| | - Thomas Zoeller
- Department of Biology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Russ Hauser
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Tamarra James-Todd
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Brent A. Coull
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | | | | | - Hongkai Zhu
- Department of Pediatrics and Department of Environmental Medicine, New York University School of Medicine, New York, New York, USA
| | - Kurunthachalam Kannan
- Department of Pediatrics and Department of Environmental Medicine, New York University School of Medicine, New York, New York, USA
| | - Joseph G. Allen
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
414
|
Lorenzetti S, Plösch T, Teller IC. Antioxidative Molecules in Human Milk and Environmental Contaminants. Antioxidants (Basel) 2021; 10:550. [PMID: 33916168 PMCID: PMC8065843 DOI: 10.3390/antiox10040550] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 12/21/2022] Open
Abstract
Breastfeeding provides overall beneficial health to the mother-child dyad and is universally recognized as the preferred feeding mode for infants up to 6-months and beyond. Human milk provides immuno-protection and supplies nutrients and bioactive compounds whose concentrations vary with lactation stage. Environmental and dietary factors potentially lead to excessive chemical exposure in critical windows of development such as neonatal life, including lactation. This review discusses current knowledge on these environmental and dietary contaminants and summarizes the known effects of these chemicals in human milk, taking into account the protective presence of antioxidative molecules. Particular attention is given to short- and long-term effects of these contaminants, considering their role as endocrine disruptors and potential epigenetic modulators. Finally, we identify knowledge gaps and indicate potential future research directions.
Collapse
Affiliation(s)
- Stefano Lorenzetti
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità (ISS), 00161 Rome, Italy;
| | - Torsten Plösch
- Perinatal Neurobiology, Department of Human Medicine, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany;
- Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | | |
Collapse
|
415
|
Soto AM, Schaeberle CM, Sonnenschein C. From Wingspread to CLARITY: a personal trajectory. Nat Rev Endocrinol 2021; 17:247-256. [PMID: 33514909 PMCID: PMC9662687 DOI: 10.1038/s41574-020-00460-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/09/2020] [Indexed: 01/30/2023]
Abstract
In the three decades since endocrine disruption was conceptualized at the Wingspread Conference, we have witnessed the growth of this multidisciplinary field and the accumulation of evidence showing the deleterious health effects of endocrine-disrupting chemicals. It is only within the past decade that, albeit slowly, some changes regarding regulatory measures have taken place. In this Perspective, we address some historical points regarding the advent of the endocrine disruption field and the conceptual changes that endocrine disruption brought about. We also provide our personal recollection of the events triggered by our serendipitous discovery of oestrogenic activity in plastic, a founder event in the field of endocrine disruption. This recollection ends with the CLARITY study as an example of a discordance between 'science for its own sake' and 'regulatory science' and leads us to offer a perspective that could be summarized by the motto attributed to Ludwig Boltzmann: "Nothing is more practical than a good theory".
Collapse
Affiliation(s)
- Ana M Soto
- Department of Immunology, Tufts University, School of Medicine, Boston, MA, USA.
| | - Cheryl M Schaeberle
- Department of Immunology, Tufts University, School of Medicine, Boston, MA, USA
| | - Carlos Sonnenschein
- Department of Immunology, Tufts University, School of Medicine, Boston, MA, USA
| |
Collapse
|
416
|
Endocrine disrupting chemicals in the pathogenesis of hypospadias; developmental and toxicological perspectives. Curr Res Toxicol 2021; 2:179-191. [PMID: 34345859 PMCID: PMC8320613 DOI: 10.1016/j.crtox.2021.03.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/11/2022] Open
Abstract
Penis development is regulated by a tight balance of androgens and estrogens. EDCs that impact androgen/estrogen balance during development cause hypospadias. Cross-disciplinary collaborations are needed to define a mechanistic link.
Hypospadias is a defect in penile urethral closure that occurs in approximately 1/150 live male births in developed nations, making it one of the most common congenital abnormalities worldwide. Alarmingly, the frequency of hypospadias has increased rapidly over recent decades and is continuing to rise. Recent research reviewed herein suggests that the rise in hypospadias rates can be directly linked to our increasing exposure to endocrine disrupting chemicals (EDCs), especially those that affect estrogen and androgen signalling. Understanding the mechanistic links between endocrine disruptors and hypospadias requires toxicologists and developmental biologists to define exposures and biological impacts on penis development. In this review we examine recent insights from toxicological, developmental and epidemiological studies on the hormonal control of normal penis development and describe the rationale and evidence for EDC exposures that impact these pathways to cause hypospadias. Continued collaboration across these fields is imperative to understand the full impact of endocrine disrupting chemicals on the increasing rates of hypospadias.
Collapse
Key Words
- Androgen
- BBP, benzyl butyl phthalate
- BPA, bisphenol A
- DBP, Σdibutyl phthalate
- DDT, dichlorodiphenyltrichloroethane
- DEHP, Σdi-2(ethylhexyl)-phthalate
- DHT, dihydrotestosterone
- EDC, endocrine disrupting chemicals
- EMT, epithelial to mesenchymal transition
- ER, estrogen receptor
- Endocrine disruptors
- Estrogen
- GT, genital tubercle
- Hypospadias
- NOAEL, no observed adverse effect level
- PBB, polybrominated biphenyl
- PBDE, polybrominated diphenyl ether
- PCB, polychlorinated biphenyl
- PCE, tetrachloroethylene
- Penis
Collapse
|
417
|
Abstract
The widespread use of plastic packaging for storing, transporting, and conveniently preparing or serving foodstuffs is significantly contributing to the global plastic pollution crisis. This has led to many efforts directed toward amending plastic packaging’s end of life, such as recycling, or alternative material approaches, like increasingly using paper for food packaging. But these approaches often neglect the critical issue of chemical migration: When contacting foodstuffs, chemicals that are present in packaging transfer into food and thus unwittingly become part of the human diet. Hazardous chemicals, such as endocrine disrupters, carcinogens, or substances that bioaccumulate, are collectively referred to as “chemicals of concern.” They can transfer from plastic packaging into food, together with other unknown or toxicologically uncharacterized chemicals. This chemical transfer is scientifically undisputed and makes plastic packaging a known, and avoidable, source of human exposure to synthetic, hazardous, and untested chemicals. Here, I discuss this issue and highlight aspects in need of improvement, namely the way that chemicals present in food packaging are assessed for toxicity. Further, I provide an outlook on how chemical contamination from food packaging could be addressed in the future. Robust innovations must attempt systemic change and tackle the issue of plastic pollution and chemical migration in a way that integrates all existing knowledge. The widespread use of plastic packaging for storing, transporting, and conveniently preparing or serving foodstuffs is significantly contributing to the global plastic pollution crisis. This Essay exhorts us to change the conversation about plastic packaging and address the chemicals that migrate into food.
Collapse
Affiliation(s)
- Jane Muncke
- Food Packaging Forum Foundation, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
418
|
Ivell R, Anand-Ivell R. The Physiology of Reproduction - Quo vadis? Front Physiol 2021; 12:650550. [PMID: 33859571 PMCID: PMC8042151 DOI: 10.3389/fphys.2021.650550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/11/2021] [Indexed: 11/13/2022] Open
Abstract
The reproductive system in males and females reflects a highly dynamic underlying physiology. Yet our current understanding of this system is still largely based upon relatively simplistic snapshots of individual component cells and tissues. Gamete production as well as gonadal hormone synthesis and its influence are the manifestations of dynamic and redundant informational networks and processes, whose qualitative and quantitative dimensions, especially through development from embryo through puberty and adulthood into ageing, are still largely uncharted. Whilst the recent huge advances in molecular science have helped to describe the components of the reproductive system in ever greater detail, how these interact and function in space and time dimensions is still largely obscure. Recent developments in microfluidics, stem cell biology, and the integration of single-cell transcriptomics with tissue dynamics are offering possible methodological solutions to this issue. Such knowledge is essential if we are to understand not only the normal healthy functioning of this system, but also how and why it is affected in disease or by external impacts such as those from environmental endocrine disruptors, or in ageing. Moreover, operating within a complex network of other physiological systems, its integrational capacity is much more than the generation of male and female gametes and their roles in fertility and infertility; rather, it represents the underpinning support for health and well-being across the lifespan, through pregnancy, puberty, and adulthood, into old age.
Collapse
Affiliation(s)
- Richard Ivell
- School of Biosciences, University of Nottingham, Nottingham, United Kingdom
| | | |
Collapse
|
419
|
Liu J, Wu D, Yu Y, Liu J, Li G, Wu Y. Highly sensitive determination of endocrine disrupting chemicals in foodstuffs through magnetic solid-phase extraction followed by high-performance liquid chromatography-tandem mass spectrometry. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:1666-1675. [PMID: 32888325 DOI: 10.1002/jsfa.10787] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/15/2020] [Accepted: 09/05/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Endocrine disrupting chemicals (EDCs), proved to be potential carcinogenic threats to human health, have received great concerns in food field. It was essential to develop effective methods to detect EDCs in food samples. The present study proposed an efficient method to determine trace EDCs including estrone (E1), 17β-estradiol (E2), estriol (E3) and bisphenol A (BPA) based on magnetic solid-phase extraction (MSPE) coupled high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) in meat samples. RESULTS Fe3 O4 @COF(TpBD)/TiO2 nanocomposites were synthesized via functionalization of magnetic covalent organic frameworks (COFs) with titanium dioxide (TiO2 ) nanoparticles, and used as absorbents of MSPE to enrich EDCs. The efficient EDCs enrichment relies on π-π stacking interaction, hydrogen bonding, and the interaction between titanium ions (IV, Ti4+ ) and hydroxyl groups in EDCs, which improves the selectivity and sensitivity. Under the optimized conditions, target EDCs were rapidly extracted through MSPE with 5 min. Combining Fe3 O4 @COF(TpBD)/TiO2 based MSPE and HPLC-MS/MS to determine EDCs, good linearities were observed with correlation coefficient (R2 ) ≥ 0.9989. The limits of detection (LODs) and limits of quantification (LOQs) were 0.13-0.41 μg kg-1 and 0.66-1.49 μg kg-1 , respectively. Moreover, the proposed method was successfully applied to real samples analysis. CONCLUSIONS The established MSPE-HPLC-MS/MS method was successfully applied to determine EDCs in meat samples with rapidness, improved selectivity and sensitivity. It shows great prospects for EDCs detection in other complicated matrices. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jianghua Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Di Wu
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - Yanxin Yu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Jichao Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Guoliang Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Yongning Wu
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China
| |
Collapse
|
420
|
Soto AM, Sonnenschein C. From Evidence of Harm to Public Health Policy: Is There Light at the End of the Tunnel? Response to: "Update on the Health Effects of bisphenol A: Overwhelming Evidence of Harm". Endocrinology 2021; 162:6126609. [PMID: 33530103 PMCID: PMC7850092 DOI: 10.1210/endocr/bqaa203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Indexed: 11/19/2022]
Affiliation(s)
- Ana M Soto
- Tufts University School of Medicine, Boston, MA, USA
- Centre Cavaillès, Ecole Normale Supérieure, Paris, France
- Correspondence: Ana M. Soto, Tufts University School of Medicine, Boston, MA 02111, USA.
| | - Carlos Sonnenschein
- Tufts University School of Medicine, Boston, MA, USA
- Centre Cavaillès, Ecole Normale Supérieure, Paris, France
| |
Collapse
|
421
|
vom Saal FS, Vandenberg LN. Update on the Health Effects of Bisphenol A: Overwhelming Evidence of Harm. Endocrinology 2021; 162:6124507. [PMID: 33516155 PMCID: PMC7846099 DOI: 10.1210/endocr/bqaa171] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Indexed: 12/14/2022]
Abstract
In 1997, the first in vivo bisphenol A (BPA) study by endocrinologists reported that feeding BPA to pregnant mice induced adverse reproductive effects in male offspring at the low dose of 2 µg/kg/day. Since then, thousands of studies have reported adverse effects in animals administered low doses of BPA. Despite more than 100 epidemiological studies suggesting associations between BPA and disease/dysfunction also reported in animal studies, regulatory agencies continue to assert that BPA exposures are safe. To address this disagreement, the CLARITY-BPA study was designed to evaluate traditional endpoints of toxicity and modern hypothesis-driven, disease-relevant outcomes in the same set of animals. A wide range of adverse effects was reported in both the toxicity and the mechanistic endpoints at the lowest dose tested (2.5 µg/kg/day), leading independent experts to call for the lowest observed adverse effect level (LOAEL) to be dropped 20 000-fold from the current outdated LOAEL of 50 000 µg/kg/day. Despite criticism by members of the Endocrine Society that the Food and Drug Administration (FDA)'s assumptions violate basic principles of endocrinology, the FDA rejected all low-dose data as not biologically plausible. Their decisions rely on 4 incorrect assumptions: dose responses must be monotonic, there exists a threshold below which there are no effects, both sexes must respond similarly, and only toxicological guideline studies are valid. This review details more than 20 years of BPA studies and addresses the divide that exists between regulatory approaches and endocrine science. Ultimately, CLARITY-BPA has shed light on why traditional methods of evaluating toxicity are insufficient to evaluate endocrine disrupting chemicals.
Collapse
Affiliation(s)
- Frederick S vom Saal
- University of Missouri – Columbia, Division of Biological Sciences, Columbia, Missouri
- Correspondence: Dr. Frederick vom Saal, University of Missouri-Columbia, Division of Biological Sciences, 105 Lefevre Hall, Columbia, MO, 65211, USA. E-mail:
| | - Laura N Vandenberg
- University of Massachusetts – Amherst, Department of Environmental Health Sciences, Amherst, Massachusetts
| |
Collapse
|
422
|
Li X, Li J, Hao S, Han A, Yang Y, Fang G, Liu J, Wang S. Enzyme mimics based membrane reactor for di(2-ethylhexyl) phthalate degradation. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123873. [PMID: 33264945 DOI: 10.1016/j.jhazmat.2020.123873] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 08/27/2020] [Accepted: 08/30/2020] [Indexed: 06/12/2023]
Abstract
Di(2-ethylhexyl) phthalate (DEHP), the most abundantly used plasticizer, was considered to be a hazardous chemical that was difficult to be degraded naturally. In this study, inspired by the "catalytic triad'' in serine proteases, an enzyme mimic material was developed by combining the proteases's active sites of serine, histidine and aspartate (S-H-D) with the self-assembling sequence of LKLKLKL and the aromatic group of fluorenylmethyloxycarbonyl (Fmoc). By mixing the monomer of peptides containing separate S, H and D residues with a ratio of 2:1:1, the enzyme mimics were found to co- assemble into nanofibers (Co-HSD) and showed the highest activity towards DEHP degradation because of the synergistic effects of active sites, orderly secondary structure and stable molecular conformation. To further improve ability and applicability, the high active mimetic enzyme was immobilized onto regenerated cellulose (RC) membranes for DEHP degradation in a continuous recycling mode. The RC membranes were first functionalized by the NaIO4 oxidation method to form aldehyde groups and then conjugated with the enzyme mimics via Schiff-base reaction. As a biocatalytic membrane, this membrane could not only effectively degrade DEHP, but also showed good stability, thus establishing a promising biomaterial for large scale biodegradation of DEHP in water decontamination and liquid food depollution.
Collapse
Affiliation(s)
- Xia Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Jianpeng Li
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, PR China
| | - Sijia Hao
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Ailing Han
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Yayu Yang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Guozhen Fang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Jifeng Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, PR China.
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, PR China; Research Center of Food Science and Human Health, School of Medicine, Nankai University, Tianjin, 300071, PR China.
| |
Collapse
|
423
|
Amato AA, Wheeler HB, Blumberg B. Obesity and endocrine-disrupting chemicals. Endocr Connect 2021; 10:R87-R105. [PMID: 33449914 PMCID: PMC7983487 DOI: 10.1530/ec-20-0578] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/06/2021] [Indexed: 12/13/2022]
Abstract
Obesity is now a worldwide pandemic. The usual explanation given for the prevalence of obesity is that it results from consumption of a calorie dense diet coupled with physical inactivity. However, this model inadequately explains rising obesity in adults and in children over the past few decades, indicating that other factors must be important contributors. An endocrine-disrupting chemical (EDC) is an exogenous chemical, or mixture that interferes with any aspect of hormone action. EDCs have become pervasive in our environment, allowing humans to be exposed daily through ingestion, inhalation, and direct dermal contact. Exposure to EDCs has been causally linked with obesity in model organisms and associated with obesity occurrence in humans. Obesogens promote adipogenesis and obesity, in vivo, by a variety of mechanisms. The environmental obesogen model holds that exposure to obesogens elicits a predisposition to obesity and that such exposures may be an important yet overlooked factor in the obesity pandemic. Effects produced by EDCs and obesogen exposure may be passed to subsequent, unexposed generations. This "generational toxicology" is not currently factored into risk assessment by regulators but may be another important factor in the obesity pandemic as well as in the worldwide increases in the incidence of noncommunicable diseases that plague populations everywhere. This review addresses the current evidence on how obesogens affect body mass, discusses long-known chemicals that have been more recently identified as obesogens, and how the accumulated knowledge can help identify EDCs hazards.
Collapse
Affiliation(s)
- Angelica Amorim Amato
- Department of Pharmaceutical Sciences, University of Brasilia, Brasilia, Brazil
- Department of Developmental and Cell Biology, University of California, Irvine, California, USA
| | - Hailey Brit Wheeler
- Department of Developmental and Cell Biology, University of California, Irvine, California, USA
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, University of California, Irvine, California, USA
- Department of Pharmaceutical Sciences, University of California, Irvine, California, USA
- Department of Biomedical Engineering, University of California, Irvine, California, USA
| |
Collapse
|
424
|
Marroqui L, Martinez-Pinna J, Castellano-Muñoz M, Dos Santos RS, Medina-Gali RM, Soriano S, Quesada I, Gustafsson JA, Encinar JA, Nadal A. Bisphenol-S and Bisphenol-F alter mouse pancreatic β-cell ion channel expression and activity and insulin release through an estrogen receptor ERβ mediated pathway. CHEMOSPHERE 2021; 265:129051. [PMID: 33250229 DOI: 10.1016/j.chemosphere.2020.129051] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
Bisphenol-S (BPS) and Bisphenol-F (BPF) are current Bisphenol-A (BPA) substitutes. Here we used pancreatic β-cells from wild type (WT) and estrogen receptor β (ERβ) knockout (BERKO) mice to investigate the effects of BPS and BPF on insulin secretion, and the expression and activity of ion channels involved in β-cell function. BPS or BPF rapidly increased insulin release and diminished ATP-sensitive K+ (KATP) channel activity. Similarly, 48 h treatment with BPS or BPF enhanced insulin release and decreased the expression of several ion channel subunits in β-cells from WT mice, yet no effects were observed in cells from BERKO mice. PaPE-1, a ligand designed to preferentially trigger extranuclear-initiated ER pathways, mimicked the effects of bisphenols, suggesting the involvement of extranuclear-initiated ERβ pathways. Molecular dynamics simulations indicated differences in ERβ ligand-binding domain dimer stabilization and solvation free energy among different bisphenols and PaPE-1. Our data suggest a mode of action involving ERβ whose activation alters three key cellular events in β-cell, namely ion channel expression and activity, and insulin release. These results may help to improve the hazard identification of bisphenols.
Collapse
Affiliation(s)
- Laura Marroqui
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, Elche, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Juan Martinez-Pinna
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, Elche, Spain; Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
| | - Manuel Castellano-Muñoz
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Reinaldo S Dos Santos
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, Elche, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Regla M Medina-Gali
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, Elche, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Sergi Soriano
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, Elche, Spain; Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
| | - Ivan Quesada
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, Elche, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Jan-Ake Gustafsson
- Department of Cell Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX, USA; Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - José A Encinar
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, Elche, Spain
| | - Angel Nadal
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, Elche, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain.
| |
Collapse
|
425
|
Talia C, Connolly L, Fowler PA. The insulin-like growth factor system: A target for endocrine disruptors? ENVIRONMENT INTERNATIONAL 2021; 147:106311. [PMID: 33348104 DOI: 10.1016/j.envint.2020.106311] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/11/2020] [Accepted: 11/27/2020] [Indexed: 05/15/2023]
Abstract
The insulin-like growth factor (IGF) system is a critical regulator of growth, especially during fetal development, while also playing a central role in metabolic homeostasis. Endocrine disruptors (EDs) are ubiquitous compounds able to interfere with hormone action and impact human health. For example, exposure to EDs is associated with decreased birthweight and increased incidence of metabolic disorders. Therefore, the IGF system is a potential target for endocrine disruption. This review summarises the state of the science regarding effects of exposure to major classes of endocrine disruptors (dioxins and dioxin-like compounds, polycyclic aromatic hydrocarbons, polybrominated diphenyl ethers, phthalates, perfluoroalkyl substances and bisphenol A) on the IGF system. Evidence from both experimental models (in vitro and in vivo) and epidemiological studies is presented. In addition, possible molecular mechanisms of action and effects on methylation are discussed. There is a large body of evidence supporting the link between dioxins and dioxin-like compounds and IGF disruption, but mixed findings have been reported in human studies. On the other hand, although only a few animal studies have investigated the effects of phthalates on the IGF system, their negative association with IGF levels and methylation status has been more consistently reported in humans. For polybrominated diphenyl ethers, perfluoroalkyl substances and bisphenol A the evidence is still limited. Despite a lack of studies for some ED classes linking ED exposure to changes in IGF levels, and the need for further research to improve reproducibility and determine the degree of risk posed by EDs to the IGF system, this is clearly an area of concern.
Collapse
Affiliation(s)
- Chiara Talia
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Lisa Connolly
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Northern Ireland BT9 5DL, UK
| | - Paul A Fowler
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.
| |
Collapse
|
426
|
Vandenberg LN, Bugos J. Assessing the Public Health Implications of the Food Preservative Propylparaben: Has This Chemical Been Safely Used for Decades. Curr Environ Health Rep 2021; 8:54-70. [PMID: 33415721 DOI: 10.1007/s40572-020-00300-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE Parabens are chemicals containing alkyl-esters of p-hydroxybenzoic acid, which give them antimicrobial, antifungal, and preservative properties. Propylparaben (PP) is one paraben that has been widely used in personal care products, cosmetics, pharmaceuticals, and food. In this review, we address the ongoing controversy over the safety of parabens, and PP specifically. These chemicals have received significant public attention after studies published almost 20 years ago suggested plausible associations between PP exposures and breast cancer. RECENT FINDINGS Here, we use key characteristics, a systematic approach to evaluate the endocrine disrupting properties of PP based on features of "known" endocrine disruptors, and consider whether its classification as a "weak" estrogen should alleviate public health concerns over human exposures. We also review the available evidence from rodent and human studies to illustrate how the large data gaps that exist in hazard assessments raise concerns about current evaluations by regulatory agencies that PP use is safe. Finally, we address the circular logic that is used to suggest that because PP has been used for several decades, it must be safe. We conclude that inadequate evidence has been provided for the safe use of PP in food, cosmetics, and consumer products.
Collapse
Affiliation(s)
- Laura N Vandenberg
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, 171C Goessmann, 686 N. Pleasant Street, Amherst, MA, 01003, USA.
| | - Jennifer Bugos
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, 171C Goessmann, 686 N. Pleasant Street, Amherst, MA, 01003, USA
| |
Collapse
|
427
|
Intrauterine Exposure to Acetaminophen and Adverse Developmental Outcomes: Epidemiological Findings and Methodological Issues. Curr Environ Health Rep 2021; 8:23-33. [PMID: 33398668 DOI: 10.1007/s40572-020-00301-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2020] [Indexed: 02/08/2023]
Abstract
PURPOSE OF REVIEW Acetaminophen (or paracetamol) is one of the most commonly used medications during pregnancy. We reviewed recent epidemiological evidence regarding intrauterine exposure to acetaminophen and risk for asthma, neurodevelopment disorders, and reproductive health in childhood. RECENT FINDINGS An increasing number of cohort studies have suggested that maternal use of acetaminophen during pregnancy was associated with increased risk for asthma; neurodevelopmental disorders, especially ADHD and behavioral problems; and genital malformations in the offspring. Oxidative stress and inflammation or endocrine effects are plausible shared biological mechanisms for the exposure to influence multiple developmental outcomes. We discussed methodological challenges that can threaten the validity of these observational data, including confounding and measurement errors. Novel statistical methods and research designs that can be used to mitigate these issues were introduced. Given the high prevalence of use, findings regarding intrauterine exposure to acetaminophen on multiple child health outcomes raise concerns. Research on causal and non-causal mechanisms that might explain these associations should be a priority.
Collapse
|
428
|
Roy N, Mascolo E, Lazzaretti C, Paradiso E, D’Alessandro S, Zaręba K, Simoni M, Casarini L. Endocrine Disruption of the Follicle-Stimulating Hormone Receptor Signaling During the Human Antral Follicle Growth. Front Endocrinol (Lausanne) 2021; 12:791763. [PMID: 34956099 PMCID: PMC8692709 DOI: 10.3389/fendo.2021.791763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/23/2021] [Indexed: 12/21/2022] Open
Abstract
An increasing number of pollutants with endocrine disrupting potential are accumulating in the environment, increasing the exposure risk for humans. Several of them are known or suspected to interfere with endocrine signals, impairing reproductive functions. Follicle-stimulating hormone (FSH) is a glycoprotein playing an essential role in supporting antral follicle maturation and may be a target of disrupting chemicals (EDs) likely impacting female fertility. EDs may interfere with FSH-mediated signals at different levels, since they may modulate the mRNA or protein levels of both the hormone and its receptor (FSHR), perturb the functioning of partner membrane molecules, modify intracellular signal transduction pathways and gene expression. In vitro studies and animal models provided results helpful to understand ED modes of action and suggest that they could effectively play a role as molecules interfering with the female reproductive system. However, most of these data are potentially subjected to experimental limitations and need to be confirmed by long-term observations in human.
Collapse
Affiliation(s)
- Neena Roy
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, Ospedale Civile Sant’Agostino-Estense, University of Modena and Reggio Emilia, Modena, Italy
| | - Elisa Mascolo
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, Ospedale Civile Sant’Agostino-Estense, University of Modena and Reggio Emilia, Modena, Italy
| | - Clara Lazzaretti
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, Ospedale Civile Sant’Agostino-Estense, University of Modena and Reggio Emilia, Modena, Italy
- International PhD School in Clinical and Experimental Medicine (CEM), University of Modena and Reggio Emilia, Modena, Italy
| | - Elia Paradiso
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, Ospedale Civile Sant’Agostino-Estense, University of Modena and Reggio Emilia, Modena, Italy
- International PhD School in Clinical and Experimental Medicine (CEM), University of Modena and Reggio Emilia, Modena, Italy
| | - Sara D’Alessandro
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, Ospedale Civile Sant’Agostino-Estense, University of Modena and Reggio Emilia, Modena, Italy
- International PhD School in Clinical and Experimental Medicine (CEM), University of Modena and Reggio Emilia, Modena, Italy
| | - Kornelia Zaręba
- First Department of Obstetrics and Gynecology, Center of Postgraduate Medical Education, Warsaw, Poland
| | - Manuela Simoni
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, Ospedale Civile Sant’Agostino-Estense, University of Modena and Reggio Emilia, Modena, Italy
- Center for Genomic Research, University of Modena and Reggio Emilia, Modena, Italy
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
| | - Livio Casarini
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, Ospedale Civile Sant’Agostino-Estense, University of Modena and Reggio Emilia, Modena, Italy
- Center for Genomic Research, University of Modena and Reggio Emilia, Modena, Italy
- *Correspondence: Livio Casarini,
| |
Collapse
|
429
|
Yaglova N, Yaglov V. Endocrine Disruptors as a New Etiologic Factor of Bone Tissue Diseases (Review). Sovrem Tekhnologii Med 2021; 13:84-94. [PMID: 34513081 PMCID: PMC8353721 DOI: 10.17691/stm2021.13.2.10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Indexed: 01/11/2023] Open
Abstract
At present, diseases of bones and joints stand third after cardiovascular and oncological pathologies which demands the necessity of searching for new etiological factors and pathogenetical mechanisms of these illnesses. The accumulating data show the association between the impairment of bone tissue development and regeneration and endocrine disruptor impact. Endocrine disruptors are chemical substances, mainly of anthropogenic origin, capable of affecting endocrine system functioning and interfering with organ morphogenesis and physiological functions. The development and regeneration of bone tissues have a complex hormonal regulation and therefore bone tissue cells, osteoblasts, and osteoclasts can be considered as potential targets for endocrine disruptors. Endocrine disruptors have been established to be able to impair calcium metabolism which also contributes to the development of musculoskeletal system pathology. Data on histogenesis of bone tissue and regeneration, calcium metabolism as well as on hormonal regulation of bone growth and remodeling processes are presented in this work. Recent information on the effect of the main endocrine disruptor classes (diethylstilbestrol, organochlorine pesticides, alkylphenols, bisphenol A, dioxins, polychlorinated biphenyls, and phthalic acid esters) on the development and remodeling of bone tissues and calcium metabolism has been summarized. The established physiological and molecular mechanisms of their action have been also considered.
Collapse
Affiliation(s)
- N.V. Yaglova
- Head of the Laboratory of Endocrine System Development, Research Institute of Human Morphology, 3 Tsyurupy St., Moscow, 117418, Russia
| | - V.V. Yaglov
- Chief Researcher, Laboratory of Endocrine System Development, Research Institute of Human Morphology, 3 Tsyurupy St., Moscow, 117418, Russia
| |
Collapse
|
430
|
Pizent A. Developmental toxicity of endocrine-disrupting chemicals: Challenges and future directions. ARHIV ZA FARMACIJU 2021. [DOI: 10.5937/arhfarm71-34457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Maternal exposure to a mixture of various endocrine disruptors (EDCs) may have a substantial impact on postnatal health of her offspring(s) and increase the risk for health disorders and diseases in adulthood. Research efforts to better understand the health risk associated with endocrine disruptor exposures in early life have increased in recent decades. This paper provides a short overview of the current challenges that researchers continue to face in selecting appropriate epidemiologic methods and study designs to identify endocrine disruptors and evaluate their adverse health effects during this critical developmental window. Major challenges involve the selection of a representative biomarker that reflects the foetal internal dose of the biologically active chemical or its metabolite(s) that may be associated with adverse health effects with regard to variable level and duration of exposure and the latency between exposure and disorder/disease manifestation. Future studies should pay more attention to identifying factors that contribute to interindividual variability in susceptibility to various EDCs and other toxicants.
Collapse
|
431
|
Ayhan G, Rouget F, Giton F, Costet N, Michineau L, Monfort C, Thomé JP, Kadhel P, Cordier S, Oliva A, Multigner L. In Utero Chlordecone Exposure and Thyroid, Metabolic, and Sex-Steroid Hormones at the Age of Seven Years: A Study From the TIMOUN Mother-Child Cohort in Guadeloupe. Front Endocrinol (Lausanne) 2021; 12:771641. [PMID: 34880833 PMCID: PMC8648082 DOI: 10.3389/fendo.2021.771641] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/05/2021] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Chlordecone is an endocrine-disrupting chemical with well recognized estrogenic and progestagenic properties. This organochlorine insecticide was extensively used in the French West Indies from 1973 to 1993 to control the banana root borer. Due to its poor degradation in the environment, permanently polluted soil is responsible for the current contamination of the food chain and human beings. We aimed to examine the relationship of in utero exposure to chlordecone and thyroid (thyroid stimulating hormone [TSH], free tri-iodothyronine [FT3], free thyroxine [FT4]), metabolic (insulin growth-factor 1, leptin, adiponectin), and sex-steroid (dehydroepiandrosterone [DHEA], total testosterone [TT], dihydrotestosterone [DHT], estradiol [E2]) hormone levels in children at the age of seven years who participated in TIMOUN, an ongoing birth cohort in Guadeloupe. METHODS Chlordecone concentrations were measured in cord-blood at delivery. Thyroid, metabolic, and sex-steroid hormone levels were determined in the blood of children at seven years of age. Associations between in utero chlordecone exposure and hormone levels at seven years of age were assessed by multiple linear or logistic regression, controlling for confounding factors. RESULTS Among the study population (210 boys and 228 girls), chlordecone and hormone measurements were available for 124 boys and 161 girls. We found the third quartile of in utero chlordecone exposure relative to the lowest quartile to be associated with elevated TSH levels in girls and elevated DHEA, TT, and DHT levels in both sexes. Complementary non-linear analysis (spline regression) confirmed a significant non-linear trend for TSH in girls and DHEA and DHT in boys. CONCLUSION In utero chlordecone exposure was associated with elevated levels of selected thyroid (TSH) and sex-steroid (DHEA, TT, and DHT) hormones at seven years in a non-monotonic dose response (inverted U) relationship. The implications for future health and reproductive function in puberty and adulthood should be determined.
Collapse
Affiliation(s)
- Gülen Ayhan
- Centre Hospitalier Universitaire (CHU) de Guadeloupe, Univ Antilles, Inserm, École des Hautes Études en Santé Publique (EHESP), Irset (Institut de recherche en santé, environnement et travail) -UMR_S 1085, Rennes, France
- *Correspondence: Gülen Ayhan,
| | - Florence Rouget
- Centre Hospitalier Universitaire (CHU) de Rennes, Univ Rennes, Inserm, École des Hautes Études en Santé Publique (EHESP), Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Frank Giton
- Assistance Publique - Hôpitaux de Paris (AP-HP) Hôpital Henri Mondor, Pôle Biologie-Pathologie, IMRB U955, Créteil, France
| | - Nathalie Costet
- Univ Rennes, Inserm, École des Hautes Études en Santé Publique (EHESP), Irset (Institut de recherche en santé, environnement et travail) -UMR_S 1085, Pointe à Pitre, France
| | - Léah Michineau
- Univ Rennes, Inserm, École des Hautes Études en Santé Publique (EHESP), Irset (Institut de recherche en santé, environnement et travail) -UMR_S 1085, Pointe à Pitre, France
| | - Christine Monfort
- Univ Rennes, Inserm, École des Hautes Études en Santé Publique (EHESP), Irset (Institut de recherche en santé, environnement et travail) -UMR_S 1085, Pointe à Pitre, France
| | - Jean-Pierre Thomé
- LEAE-CART (Laboratoire d’Ecologie Animale et d’Ecotoxicologie-Centre de Recherche Analytique et Technologique), Université de Liège, Liège, Belgium
| | - Philippe Kadhel
- Centre Hospitalier Universitaire (CHU) de Guadeloupe, Univ Antilles, Inserm, École des Hautes Études en Santé Publique (EHESP), Irset (Institut de recherche en santé, environnement et travail) -UMR_S 1085, Rennes, France
| | - Sylvaine Cordier
- Univ Rennes, Inserm, École des Hautes Études en Santé Publique (EHESP), Irset (Institut de recherche en santé, environnement et travail) -UMR_S 1085, Pointe à Pitre, France
| | - Alejandro Oliva
- Center for Interdisciplinary Studies, National University of Rosario, Rosario, Argentina
| | - Luc Multigner
- Univ Rennes, Inserm, École des Hautes Études en Santé Publique (EHESP), Irset (Institut de recherche en santé, environnement et travail) -UMR_S 1085, Pointe à Pitre, France
| |
Collapse
|
432
|
Komarowska MD, Grubczak K, Czerniecki J, Hermanowicz A, Hermanowicz JM, Debek W, Matuszczak E. Identification of the Bisphenol A (BPA) and the Two Analogues BPS and BPF in Cryptorchidism. Front Endocrinol (Lausanne) 2021; 12:694669. [PMID: 34335471 PMCID: PMC8318035 DOI: 10.3389/fendo.2021.694669] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/29/2021] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE to explore the association of plasma concentrations of bisphenol A (BPA), bisphenol S (BPS), and bisphenol F (BPF) with unilateral cryptorchidism. In addition, to analyze selected demographic and intraoperative characteristics. DESIGN Retrospective analysis to determine plasma concentrations of total BPA, BPS and BPF using gas chromatography - mass spectrometry (GC-MS) among prepubertal boys with cryptorchidism and prebupertal male control subjects. During operation, the size, turgor and location of the cryptorchid testes were assessed. MAIN OUTCOME MEASURE Plasma concentrations of total BPA, BPS and BPF. RESULTS In children with cryptorchidism, plasma levels of BPA, BPS and BPF were significantly higher compared to the control subjects. For BPA, it was: median value: 9.95 ng/mL vs. 5.54 ng/mL, p<0.05. For BPS, it was: median value: 3.93 ng/mL vs. 1.45 ng/mL, p<0.001. For BPF, it was: median value: 3.56 ng/mL vs. 1.83 ng/mL, p<0.05. In cryptorchid group, BPA was detected in 61.4% samples, BPS in 19.3% and BPF in 19.3%. All the three bisphenols were detected in plasma samples of both the healthy subjects and the study cohort. In the latter group, we found significant higher levels of BPA in boys from urban areas. We found a weak positive correlation between the levels of BPS and BPF and reduced turgor of the testes. Furthermore, results showed weak positive correlations between BPA and BPS levels and the age of the children as well as between BPS and BPF concentrations and the place of residence. CONCLUSIONS Results provide a first characterization of prepubertal boys suffering from cryptorchidism and exposed to different kind of bisphenols. Our study suggests that cryptorchid boys are widely exposed to BPA and, to a lesser extent, also to its alternatives, such as BPS and BPF.
Collapse
Affiliation(s)
- Marta Diana Komarowska
- Department of Pediatric Surgery and Urology, Faculty of Medicine, Medical University of Bialystok, Białystok, Poland
- *Correspondence: Marta Diana Komarowska, ; Justyna Magdalena Hermanowicz,
| | - Kamil Grubczak
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Białystok, Poland
| | - Jan Czerniecki
- Department of Biology and Pathology of Human Reproduction, Institute of Animal Reproduction and Food Research Polish Academy of Sciences, Olsztyn, Poland
| | - Adam Hermanowicz
- Department of Pharmacodynamics, Medical University of Bialystok, Białystok, Poland
| | - Justyna Magdalena Hermanowicz
- Department of Pharmacodynamics, Medical University of Bialystok, Białystok, Poland
- Department of Clinical Pharmacy, Medical University of Bialystok, Białystok, Poland
- *Correspondence: Marta Diana Komarowska, ; Justyna Magdalena Hermanowicz,
| | - Wojciech Debek
- Department of Pediatric Surgery and Urology, Faculty of Medicine, Medical University of Bialystok, Białystok, Poland
| | - Ewa Matuszczak
- Department of Pediatric Surgery and Urology, Faculty of Medicine, Medical University of Bialystok, Białystok, Poland
| |
Collapse
|
433
|
Hu M, Quan Y, Yang S, Su R, Liu H, Gao M, Chen L, Yang J. Self-cleaning semiconductor heterojunction substrate: ultrasensitive detection and photocatalytic degradation of organic pollutants for environmental remediation. MICROSYSTEMS & NANOENGINEERING 2020; 6:111. [PMID: 34567718 PMCID: PMC8433404 DOI: 10.1038/s41378-020-00222-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 09/06/2020] [Accepted: 10/12/2020] [Indexed: 05/06/2023]
Abstract
Emerging technologies in the field of environmental remediation are becoming increasingly significant owing to the increasing demand for eliminating significant amounts of pollution in water, soil, and air. We designed and synthesized MoS2/Fe2O3 heterojunction nanocomposites (NCs) as multifunctional materials that are easily separated and reused. The trace detection performance of the prepared sample was examined using bisphenol A (BPA) as the probe molecule, with limits of detection as low as 10-9 M; this detection limit is the lowest among all reported semiconductor substrates. BPA was subjected to rapid photocatalytic degradation by MoS2/Fe2O3 NCs under ultraviolet irradiation. The highly recyclable MoS2/Fe2O3 NCs exhibited photo-Fenton catalytic activity for BPA and good detection ability when reused as a surface-enhanced Raman scattering (SERS) substrate after catalysis. The SERS and photocatalysis mechanisms were proposed while considering the effects of the Z-scheme charge-transfer paths, three-dimensional flower-like structures, and dipole-dipole coupling. Moreover, the prepared MoS2/Fe2O3 NCs were successfully applied in the detection of BPA in real lake water and milk samples. Herein, we present insights into the development of MoS2/Fe2O3 materials, which can be used as multifunctional materials in chemical sensors and in photocatalytic wastewater treatments for the removal of recalcitrant organic pollutants.
Collapse
Affiliation(s)
- Mingyue Hu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, 130103 Changchun, People’s Republic of China
- National Demonstration Centre for Experimental Physics Education, Jilin Normal University, 136000 Siping, People’s Republic of China
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Jilin Normal University, Ministry of Education, 130103 Changchun, People’s Republic of China
| | - Yingnan Quan
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, 130103 Changchun, People’s Republic of China
- National Demonstration Centre for Experimental Physics Education, Jilin Normal University, 136000 Siping, People’s Republic of China
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Jilin Normal University, Ministry of Education, 130103 Changchun, People’s Republic of China
| | - Shuo Yang
- College of Science, Changchun University, 130022 Changchun, People’s Republic of China
| | - Rui Su
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 130103 Changchun, People’s Republic of China
| | - Huilian Liu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, 130103 Changchun, People’s Republic of China
- National Demonstration Centre for Experimental Physics Education, Jilin Normal University, 136000 Siping, People’s Republic of China
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Jilin Normal University, Ministry of Education, 130103 Changchun, People’s Republic of China
| | - Ming Gao
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, 130103 Changchun, People’s Republic of China
- National Demonstration Centre for Experimental Physics Education, Jilin Normal University, 136000 Siping, People’s Republic of China
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Jilin Normal University, Ministry of Education, 130103 Changchun, People’s Republic of China
| | - Lei Chen
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, 130103 Changchun, People’s Republic of China
- National Demonstration Centre for Experimental Physics Education, Jilin Normal University, 136000 Siping, People’s Republic of China
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Jilin Normal University, Ministry of Education, 130103 Changchun, People’s Republic of China
| | - Jinghai Yang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, 130103 Changchun, People’s Republic of China
- National Demonstration Centre for Experimental Physics Education, Jilin Normal University, 136000 Siping, People’s Republic of China
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Jilin Normal University, Ministry of Education, 130103 Changchun, People’s Republic of China
| |
Collapse
|
434
|
Márton É, Varga A, Széles L, Göczi L, Penyige A, Nagy B, Szilágyi M. The Cell-Free Expression of MiR200 Family Members Correlates with Estrogen Sensitivity in Human Epithelial Ovarian Cells. Int J Mol Sci 2020; 21:ijms21249725. [PMID: 33419253 PMCID: PMC7766742 DOI: 10.3390/ijms21249725] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/11/2020] [Accepted: 12/17/2020] [Indexed: 12/15/2022] Open
Abstract
Exposure to physiological estrogens or xenoestrogens (e.g., zearalenone or bisphenol A) increases the risk for cancer. However, little information is available on their significance in ovarian cancer. We present a comprehensive study on the effect of estradiol, zearalenone and bisphenol A on the phenotype, mRNA, intracellular and cell-free miRNA expression of human epithelial ovarian cell lines. Estrogens induced a comparable effect on the rate of cell proliferation and migration as well as on the expression of estrogen-responsive genes (GREB1, CA12, DEPTOR, RBBP8) in the estrogen receptor α (ERα)-expressing PEO1 cell line, which was not observable in the absence of this receptor (in A2780 cells). The basal intracellular and cell-free expression of miR200s and miR203a was higher in PEO1, which was accompanied with low ZEB1 and high E-cadherin expression. These miRNAs showed a rapid but intermittent upregulation in response to estrogens that was diminished by an ERα-specific antagonist. The role of ERα in the regulation of the MIR200B-MIR200A-MIR429 locus was further supported by publicly available ChIP-seq data. MiRNA expression of cell lysates correlated well with cell-free miRNA expression. We conclude that cell-free miR200s might be promising biomarkers to assess estrogen sensitivity of ovarian cells.
Collapse
Affiliation(s)
- Éva Márton
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (É.M.); (A.V.); (L.S.); (L.G.); (A.P.); (B.N.)
| | - Alexandra Varga
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (É.M.); (A.V.); (L.S.); (L.G.); (A.P.); (B.N.)
| | - Lajos Széles
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (É.M.); (A.V.); (L.S.); (L.G.); (A.P.); (B.N.)
| | - Lóránd Göczi
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (É.M.); (A.V.); (L.S.); (L.G.); (A.P.); (B.N.)
| | - András Penyige
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (É.M.); (A.V.); (L.S.); (L.G.); (A.P.); (B.N.)
- Faculty of Pharmacology, University of Debrecen, H-4032 Debrecen, Hungary
| | - Bálint Nagy
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (É.M.); (A.V.); (L.S.); (L.G.); (A.P.); (B.N.)
| | - Melinda Szilágyi
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (É.M.); (A.V.); (L.S.); (L.G.); (A.P.); (B.N.)
- Correspondence:
| |
Collapse
|
435
|
Le Magueresse-Battistoni B. Adipose Tissue and Endocrine-Disrupting Chemicals: Does Sex Matter? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17249403. [PMID: 33333918 PMCID: PMC7765367 DOI: 10.3390/ijerph17249403] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 12/21/2022]
Abstract
Obesity and metabolic-related diseases, among which diabetes, are prominent public health challenges of the 21st century. It is now well acknowledged that pollutants are a part of the equation, especially endocrine-disrupting chemicals (EDCs) that interfere with the hormonal aspect. The aim of the review is to focus on adipose tissue, a central regulator of energy balance and metabolic homeostasis, and to highlight the significant differences in the endocrine and metabolic aspects of adipose tissue between males and females which likely underlie the differences of the response to exposure to EDCs between the sexes. Moreover, the study also presents an overview of several mechanisms of action by which pollutants could cause adipose tissue dysfunction. Indeed, a better understanding of the mechanism by which environmental chemicals target adipose tissue and cause metabolic disturbances, and how these mechanisms interact and sex specificities are essential for developing mitigating and sex-specific strategies against metabolic diseases of chemical origin. In particular, considering that a scenario without pollutant exposure is not a realistic option in our current societies, attenuating the deleterious effects of exposure to pollutants by acting on the gut-adipose tissue axis may constitute a new direction of research.
Collapse
Affiliation(s)
- Brigitte Le Magueresse-Battistoni
- Univ-Lyon, CarMeN Laboratory, INSERM U1060, INRAé U1397, Université Claude Bernard Lyon1, F-69310 Pierre-Bénite, France; ; Tel.: +33-(0)-426235919; Fax: +33-(0)-426235916
- CarMeN Laboratory, INSERM U1060, Hopital Lyon-Sud, Bâtiment CENS ELI-2D, 165 Chemin du Grand Revoyet, 69310 Pierre-Bénite, France
| |
Collapse
|
436
|
Mallia V, Verhaegen S, Styrishave B, Eriksen GS, Johannsen ML, Ropstad E, Uhlig S. Microcystins and Microcystis aeruginosa PCC7806 extracts modulate steroidogenesis differentially in the human H295R adrenal model. PLoS One 2020; 15:e0244000. [PMID: 33320886 PMCID: PMC7737990 DOI: 10.1371/journal.pone.0244000] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 12/02/2020] [Indexed: 11/30/2022] Open
Abstract
The aim of this study was to investigate the potential interference of cyanobacterial metabolites, in particular microcystins (MCs), with steroid hormone biosynthesis. Steroid hormones control many fundamental processes in an organism, thus alteration of their tissue concentrations may affect normal homeostasis. We used liquid chromatography–tandem mass spectrometry (LC–MS/MS) to investigate the modulation of 14 hormones involved in the adrenal steroid biosynthesis pathway using forskolin-treated H295R cells, following exposure with either microcystin-LR (MC-LR) alone, a mixture made up of MC-LR together with eight other MCs and nodularin-R (NOD-R), or extracts from the MC-LR-producing Microcystis aeruginosa PCC7806 strain or its MC-deficient mutant PCC7806mcyB−. Production of 17-hydroxypregnenolone and dehydroepiandrosterone (DHEA) was increased in the presence of MC-LR in a dose-dependent manner, indicating an inhibitory effect on 3β-hydroxysteroid dehydrogenase (3β-HSD). This effect was not observed following exposure with a MCs/NOD-R mixture, and thus the effect of MC-LR on 3β-HSD appears to be stronger than for other congeners. Exposure to extracts from both M. aeruginosa PCC7806 and M. aeruginosa PCC7806mcyB− had an opposite effect on 3β-HSD, i.e. concentrations of pregnenolone, 17-hydroxypregnenolone and DHEA were significantly decreased, showing that there are other cyanobacterial metabolites that outcompete the effect of MC-LR, and possibly result instead in net-induction. Another finding was a possible concentration-dependent inhibition of CYP21A2 or CYP11β1, which catalyse oxidation reactions leading to cortisol and cortisone, by MC-LR and the MCs/NOD-R mixture. However, both M. aeruginosa PCC7806 and M. aeruginosa PCC7806mcyB− extracts had an opposite effect resulting in a substantial increase in cortisol levels. Our results suggest that MCs can modulate steroidogenesis, but the net effect of the M. aeruginosa metabolome on steroidogenesis is different from that of pure MC-LR and independent of MC production.
Collapse
Affiliation(s)
- Vittoria Mallia
- Toxinology Research Group, Norwegian Veterinary Institute, Oslo, Norway
- Department of Chemistry, University of Oslo, Oslo, Norway
| | - Steven Verhaegen
- Faculty of Veterinary Medicine, Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Bjarne Styrishave
- Faculty of Health and Medical Sciences, Toxicology and Drug Metabolism Group, Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | | | - Malene Louise Johannsen
- Faculty of Health and Medical Sciences, Toxicology and Drug Metabolism Group, Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Erik Ropstad
- Faculty of Veterinary Medicine, Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Silvio Uhlig
- Toxinology Research Group, Norwegian Veterinary Institute, Oslo, Norway
- * E-mail:
| |
Collapse
|
437
|
Buoso E, Masi M, Racchi M, Corsini E. Endocrine-Disrupting Chemicals' (EDCs) Effects on Tumour Microenvironment and Cancer Progression: Emerging Contribution of RACK1. Int J Mol Sci 2020; 21:E9229. [PMID: 33287384 PMCID: PMC7729595 DOI: 10.3390/ijms21239229] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/26/2020] [Accepted: 12/01/2020] [Indexed: 02/06/2023] Open
Abstract
Endocrine disruptors (EDCs) can display estrogenic and androgenic effects, and their exposure has been linked to increased cancer risk. EDCs have been shown to directly affect cancer cell regulation and progression, but their influence on tumour microenvironment is still not completely elucidated. In this context, the signalling hub protein RACK1 (Receptor for Activated C Kinase 1) could represent a nexus between cancer and the immune system due to its roles in cancer progression and innate immune activation. Since RACK1 is a relevant EDCs target that responds to steroid-active compounds, it could be considered a molecular bridge between the endocrine-regulated tumour microenvironment and the innate immune system. We provide an analysis of immunomodulatory and cancer-promoting effects of different EDCs in shaping tumour microenvironment, with a final focus on the scaffold protein RACK1 as a pivotal molecular player due to its dual role in immune and cancer contexts.
Collapse
Affiliation(s)
- Erica Buoso
- Dipartimento di Scienze del Farmaco, Università Degli Studi di Pavia, Viale Taramelli 12/14, 27100 Pavia, Italy; (M.M.); (M.R.)
| | - Mirco Masi
- Dipartimento di Scienze del Farmaco, Università Degli Studi di Pavia, Viale Taramelli 12/14, 27100 Pavia, Italy; (M.M.); (M.R.)
- Classe di Scienze Umane e della Vita (SUV), Scuola Universitaria Superiore IUSS, Piazza della Vittoria 15, 27100 Pavia, Italy
| | - Marco Racchi
- Dipartimento di Scienze del Farmaco, Università Degli Studi di Pavia, Viale Taramelli 12/14, 27100 Pavia, Italy; (M.M.); (M.R.)
| | - Emanuela Corsini
- Laboratory of Toxicology, Dipartimento di Scienze Politiche ed Ambientali, Università Degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy;
| |
Collapse
|
438
|
The dynamic assessment of toxicity and pathological process of DEHP in germ cells of male Sprague Dawley rats. Reprod Biol 2020; 20:465-473. [DOI: 10.1016/j.repbio.2020.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 06/11/2020] [Accepted: 07/11/2020] [Indexed: 12/20/2022]
|
439
|
Bariani MV, Rangaswamy R, Siblini H, Yang Q, Al-Hendy A, Zota AR. The role of endocrine-disrupting chemicals in uterine fibroid pathogenesis. Curr Opin Endocrinol Diabetes Obes 2020; 27:380-387. [PMID: 33044243 PMCID: PMC8240765 DOI: 10.1097/med.0000000000000578] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW Uterine leiomyoma (fibroids) is a gynecologic disorder impacting the majority of women in the United States. When symptomatic, these noncancerous tumors can cause severe morbidity including pelvic pain, menorrhagia, and infertility. Endocrine-disrupting chemicals (EDCs) may represent a modifiable risk factor. The aim of this review is to summarize recent human and experimental evidence on EDCs exposures and fibroids. RECENT FINDINGS Multiple EDCs are associated with fibroid outcomes and/or processes including phthalates, parabens, environmental phenols, alternate plasticizers, Diethylstilbestrol, organophosphate esters, and tributyltin. Epidemiologic studies suggest exposure to certain EDCs, such as di-(2-ethylhxyl)-phthalate (DEHP), are associated with increased fibroid risk and severity. Both human and experimental studies indicate that epigenetic processes may play an important role in linking EDCs to fibroid pathogenesis. In-vitro and in-vivo studies show that DEHP, bisphenol A, and diethylstilbestrol can impact biological pathways critical to fibroid pathogenesis. SUMMARY While research on EDCs and fibroids is still evolving, recent evidence suggests EDC exposures may contribute to fibroid risk and progression. Further research is needed to examine the impacts of EDC mixtures and to identify critical biological pathways and windows of exposure. These results could open the door to new prevention strategies for fibroids.
Collapse
Affiliation(s)
| | - Roshni Rangaswamy
- Department of Environmental and Occupational Health, The George Washington University Milken Institute School of Public Health, Washington, DC, USA
| | - Hiba Siblini
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Qiwei Yang
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL
| | - Ami R. Zota
- Department of Environmental and Occupational Health, The George Washington University Milken Institute School of Public Health, Washington, DC, USA
| |
Collapse
|
440
|
Vandenberg LN, Najmi A, Mogus JP. Agrochemicals with estrogenic endocrine disrupting properties: Lessons Learned? Mol Cell Endocrinol 2020; 518:110860. [PMID: 32407980 PMCID: PMC9448509 DOI: 10.1016/j.mce.2020.110860] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/16/2020] [Accepted: 05/04/2020] [Indexed: 02/07/2023]
Abstract
Many agrochemicals have endocrine disrupting properties. A subset of these chemicals is characterized as "estrogenic". In this review, we describe several distinct ways that chemicals used in crop production can affect estrogen signaling. Using three agrochemicals as examples (DDT, endosulfan, and atrazine), we illustrate how screening tests such as the US EPA's EDSP Tier 1 assays can be used as a first-pass approach to evaluate agrochemicals for endocrine activity. We then apply the "Key Characteristics" approach to illustrate how chemicals like DDT can be evaluated, together with the World Health Organization's definition of an endocrine disruptor, to identify data gaps. We conclude by describing important issues that must be addressed in the evaluation and regulation of hormonally active agrochemicals including mixture effects, efforts to reduce vertebrate animal use, chemical prioritization, and improvements in hazard, exposure, and risk assessments.
Collapse
Affiliation(s)
- Laura N Vandenberg
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, USA.
| | - Aimal Najmi
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, USA
| | - Joshua P Mogus
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, USA
| |
Collapse
|
441
|
Eve L, Fervers B, Le Romancer M, Etienne-Selloum N. Exposure to Endocrine Disrupting Chemicals and Risk of Breast Cancer. Int J Mol Sci 2020; 21:E9139. [PMID: 33266302 PMCID: PMC7731339 DOI: 10.3390/ijms21239139] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023] Open
Abstract
Breast cancer (BC) is the second most common cancer and the fifth deadliest in the world. Exposure to endocrine disrupting pollutants has been suggested to contribute to the increase in disease incidence. Indeed, a growing number of researchershave investigated the effects of widely used environmental chemicals with endocrine disrupting properties on BC development in experimental (in vitro and animal models) and epidemiological studies. The complex effects of endocrine disrupting chemicals (EDCs) on hormonal pathways, involving carcinogenic effects and an increase in mammary gland susceptibility to carcinogenesis-together with the specific characteristics of the mammary gland evolving over the course of life and the multifactorial etiology of BC-make the evaluation of these compounds a complex issue. Among the many EDCs suspected of increasing the risk of BC, strong evidence has only been provided for few EDCs including diethylstilbestrol, dichlorodiphenyltrichloroethane, dioxins and bisphenol A. However, given the ubiquitous nature and massive use of EDCs, it is essential to continue to assess their long-term health effects, particularly on carcinogenesis, to eradicate the worst of them and to sensitize the population to minimize their use.
Collapse
Affiliation(s)
- Louisane Eve
- Faculté de Pharmacie, Université de Strasbourg, F-67000 Strasbourg, France;
- Université Claude Bernard Lyon 1, F-69000 Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Béatrice Fervers
- Centre de Lutte Contre le Cancer Léon-Bérard, F-69000 Lyon, France;
- Inserm UA08, Radiations, Défense, Santé, Environnement, Center Léon Bérard, F-69000 Lyon, France
| | - Muriel Le Romancer
- Université Claude Bernard Lyon 1, F-69000 Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Nelly Etienne-Selloum
- Faculté de Pharmacie, Université de Strasbourg, F-67000 Strasbourg, France;
- Service de Pharmacie, Institut de Cancérologie Strasbourg Europe, F-67000 Strasbourg, France
- CNRS UMR7021/Unistra, Laboratoire de Bioimagerie et Pathologies, Faculté de Pharmacie, Université de Strasbourg, F-67000 Strasbourg, France
| |
Collapse
|
442
|
Ultrastructural Mechanisms of Impaired Aldosterone Synthesis in Rats Exposed to DDT during Prenatal and Postnatal Development. Bull Exp Biol Med 2020; 170:101-105. [PMID: 33231799 DOI: 10.1007/s10517-020-05013-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Indexed: 02/03/2023]
Abstract
The study is aimed at elucidation of ultrastructural mechanisms underlying impaired aldosterone synthesis by glomerulosa cells in Wistar rats exposed to low doses of endocrine disrupter DDT during prenatal and postnatal development. Analysis of rat zona glomerulosa histology and function during the pubertal and postpubertal periods showed that exposure to endocrine disrupter DDT disturbs its development and reduced the production of aldosterone. Electron microscopy showed that changes in the aldosterone synthesis are related to impaired reorganization of the mitochondrial apparatus, one of the leading factors in the regulation of steroidogenesis, in glomerulosa cells in DDT-exposed rats during puberty.
Collapse
|
443
|
Lizcano F, Arroyave F. Control of Adipose Cell Browning and Its Therapeutic Potential. Metabolites 2020; 10:metabo10110471. [PMID: 33227979 PMCID: PMC7699191 DOI: 10.3390/metabo10110471] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/20/2020] [Accepted: 11/02/2020] [Indexed: 12/20/2022] Open
Abstract
Adipose tissue is the largest endocrine organ in humans and has an important influence on many physiological processes throughout life. An increasing number of studies have described the different phenotypic characteristics of fat cells in adults. Perhaps one of the most important properties of fat cells is their ability to adapt to different environmental and nutritional conditions. Hypothalamic neural circuits receive peripheral signals from temperature, physical activity or nutrients and stimulate the metabolism of white fat cells. During this process, changes in lipid inclusion occur, and the number of mitochondria increases, giving these cells functional properties similar to those of brown fat cells. Recently, beige fat cells have been studied for their potential role in the regulation of obesity and insulin resistance. In this context, it is important to understand the embryonic origin of beige adipocytes, the response of adipocyte to environmental changes or modifications within the body and their ability to transdifferentiate to elucidate the roles of these cells for their potential use in therapeutic strategies for obesity and metabolic diseases. In this review, we discuss the origins of the different fat cells and the possible therapeutic properties of beige fat cells.
Collapse
Affiliation(s)
- Fernando Lizcano
- Center of Biomedical Investigation, (CIBUS), Universidad de La Sabana, 250008 Chia, Colombia
- Correspondence:
| | - Felipe Arroyave
- Doctoral Program in Biociencias, Universidad de La Sabana, 250008 Chia, Colombia
| |
Collapse
|
444
|
Abstract
Endocrine-disrupting compounds (EDCs) are environmental contaminants that modulate estrogen, androgen, and thyroid hormone receptor signaling and it has been hypothesized that human exposures to EDCs induce multiple adverse health effects. Some of these responses include male and female reproductive tract problems, obesity, and neurological/neurobehavior deficits. Extensive laboratory animal and some human studies support the EDC hypothesis. However, there is a debate among scientists and regulators regarding the adverse human health impacts of EDCs and this review highlights and gives examples of some of the concerns.
Collapse
Affiliation(s)
- Stephen Safe
- Department of Veterinary Physiology & Pharmacology, Texas A&M University, Texas, USA
| |
Collapse
|
445
|
Nagahama Y, Chakraborty T, Paul-Prasanth B, Ohta K, Nakamura M. Sex determination, gonadal sex differentiation, and plasticity in vertebrate species. Physiol Rev 2020; 101:1237-1308. [PMID: 33180655 DOI: 10.1152/physrev.00044.2019] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A diverse array of sex determination (SD) mechanisms, encompassing environmental to genetic, have been found to exist among vertebrates, covering a spectrum from fixed SD mechanisms (mammals) to functional sex change in fishes (sequential hermaphroditic fishes). A major landmark in vertebrate SD was the discovery of the SRY gene in 1990. Since that time, many attempts to clone an SRY ortholog from nonmammalian vertebrates remained unsuccessful, until 2002, when DMY/dmrt1by was discovered as the SD gene of a small fish, medaka. Surprisingly, however, DMY/dmrt1by was found in only 2 species among more than 20 species of medaka, suggesting a large diversity of SD genes among vertebrates. Considerable progress has been made over the last 3 decades, such that it is now possible to formulate reasonable paradigms of how SD and gonadal sex differentiation may work in some model vertebrate species. This review outlines our current understanding of vertebrate SD and gonadal sex differentiation, with a focus on the molecular and cellular mechanisms involved. An impressive number of genes and factors have been discovered that play important roles in testicular and ovarian differentiation. An antagonism between the male and female pathway genes exists in gonads during both sex differentiation and, surprisingly, even as adults, suggesting that, in addition to sex-changing fishes, gonochoristic vertebrates including mice maintain some degree of gonadal sexual plasticity into adulthood. Importantly, a review of various SD mechanisms among vertebrates suggests that this is the ideal biological event that can make us understand the evolutionary conundrums underlying speciation and species diversity.
Collapse
Affiliation(s)
- Yoshitaka Nagahama
- Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki, Japan.,South Ehime Fisheries Research Center, Ehime University, Ainan, Japan.,Faculty of Biological Science and Technology, Kanazawa University, Ishikawa, Japan
| | - Tapas Chakraborty
- Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki, Japan.,South Ehime Fisheries Research Center, Ehime University, Ainan, Japan.,Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukouka, Japan.,Karatsu Satellite of Aqua-Bioresource Innovation Center, Kyushu University, Karatsu, Japan
| | - Bindhu Paul-Prasanth
- Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki, Japan.,Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidapeetham, Kochi, Kerala, India
| | - Kohei Ohta
- Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukouka, Japan
| | - Masaru Nakamura
- Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan.,Research Center, Okinawa Churashima Foundation, Okinawa, Japan
| |
Collapse
|
446
|
Azhagiya Singam ER, Tachachartvanich P, Fourches D, Soshilov A, Hsieh JCY, La Merrill MA, Smith MT, Durkin KA. Structure-based virtual screening of perfluoroalkyl and polyfluoroalkyl substances (PFASs) as endocrine disruptors of androgen receptor activity using molecular docking and machine learning. ENVIRONMENTAL RESEARCH 2020; 190:109920. [PMID: 32795691 DOI: 10.1016/j.envres.2020.109920] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/04/2020] [Indexed: 06/11/2023]
Abstract
Perfluoroalkyl and polyfluoroalkyl substances (PFASs) pose a substantial threat as endocrine disruptors, and thus early identification of those that may interact with steroid hormone receptors, such as the androgen receptor (AR), is critical. In this study we screened 5,206 PFASs from the CompTox database against the different binding sites on the AR using both molecular docking and machine learning techniques. We developed support vector machine models trained on Tox21 data to classify the active and inactive PFASs for AR using different chemical fingerprints as features. The maximum accuracy was 95.01% and Matthew's correlation coefficient (MCC) was 0.76 respectively, based on MACCS fingerprints (MACCSFP). The combination of docking-based screening and machine learning models identified 29 PFASs that have strong potential for activity against the AR and should be considered priority chemicals for biological toxicity testing.
Collapse
Affiliation(s)
| | | | - Denis Fourches
- Department of Chemistry, North Carolina State University, Raleigh, NC, USA
| | - Anatoly Soshilov
- Division of Scientific Programs, Pesticide and Environmental Toxicology Branch, Water Toxicology Section, Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, USA
| | - Jennifer C Y Hsieh
- Division of Scientific Programs, Reproductive and Cancer Hazard Assessment Branch, Cancer Toxicology and Epidemiology Section, Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, USA
| | - Michele A La Merrill
- Department of Environmental Toxicology, University of California, Davis, CA, USA
| | - Martyn T Smith
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA.
| | - Kathleen A Durkin
- Molecular Graphics and Computation Facility, College of Chemistry, University of California, Berkeley, CA, USA.
| |
Collapse
|
447
|
Zahra A, Sisu C, Silva E, De Aguiar Greca SC, Randeva HS, Chatha K, Kyrou I, Karteris E. Is There a Link between Bisphenol A (BPA), a Key Endocrine Disruptor, and the Risk for SARS-CoV-2 Infection and Severe COVID-19? J Clin Med 2020; 9:E3296. [PMID: 33066495 PMCID: PMC7602132 DOI: 10.3390/jcm9103296] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 01/08/2023] Open
Abstract
Infection by the severe acute respiratory syndrome (SARS) coronavirus-2 (SARS-CoV-2) is the causative agent of a new disease (COVID-19). The risk of severe COVID-19 is increased by certain underlying comorbidities, including asthma, cancer, cardiovascular disease, hypertension, diabetes, and obesity. Notably, exposure to hormonally active chemicals called endocrine-disrupting chemicals (EDCs) can promote such cardio-metabolic diseases, endocrine-related cancers, and immune system dysregulation and thus, may also be linked to higher risk of severe COVID-19. Bisphenol A (BPA) is among the most common EDCs and exerts its effects via receptors which are widely distributed in human tissues, including nuclear oestrogen receptors (ERα and ERβ), membrane-bound oestrogen receptor (G protein-coupled receptor 30; GPR30), and human nuclear receptor oestrogen-related receptor gamma. As such, this paper focuses on the potential role of BPA in promoting comorbidities associated with severe COVID-19, as well as on potential BPA-induced effects on key SARS-CoV-2 infection mediators, such as angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2). Interestingly, GPR30 appears to exhibit greater co-localisation with TMPRSS2 in key tissues like lung and prostate, suggesting that BPA exposure may impact on the local expression of these SARS-CoV-2 infection mediators. Overall, the potential role of BPA on the risk and severity of COVID-19 merits further investigation.
Collapse
Affiliation(s)
- Aeman Zahra
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.Z.); (C.S.); (E.S.); (S.-C.D.A.G.)
| | - Cristina Sisu
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.Z.); (C.S.); (E.S.); (S.-C.D.A.G.)
| | - Elisabete Silva
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.Z.); (C.S.); (E.S.); (S.-C.D.A.G.)
| | - Sophie-Christine De Aguiar Greca
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.Z.); (C.S.); (E.S.); (S.-C.D.A.G.)
| | - Harpal S. Randeva
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK; (H.S.R.); (I.K.)
- Aston Medical Research Institute, Aston Medical School, Aston University, Birmingham B4 7ET, UK
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK;
| | - Kamaljit Chatha
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK;
- Department of Biochemistry and Immunology, University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
| | - Ioannis Kyrou
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK; (H.S.R.); (I.K.)
- Aston Medical Research Institute, Aston Medical School, Aston University, Birmingham B4 7ET, UK
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK;
| | - Emmanouil Karteris
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.Z.); (C.S.); (E.S.); (S.-C.D.A.G.)
| |
Collapse
|
448
|
Smith MT, Guyton KZ, Kleinstreuer N, Borrel A, Cardenas A, Chiu WA, Felsher DW, Gibbons CF, Goodson WH, Houck KA, Kane AB, La Merrill MA, Lebrec H, Lowe L, McHale CM, Minocherhomji S, Rieswijk L, Sandy MS, Sone H, Wang A, Zhang L, Zeise L, Fielden M. The Key Characteristics of Carcinogens: Relationship to the Hallmarks of Cancer, Relevant Biomarkers, and Assays to Measure Them. Cancer Epidemiol Biomarkers Prev 2020; 29:1887-1903. [PMID: 32152214 PMCID: PMC7483401 DOI: 10.1158/1055-9965.epi-19-1346] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/15/2020] [Accepted: 03/04/2020] [Indexed: 12/21/2022] Open
Abstract
The key characteristics (KC) of human carcinogens provide a uniform approach to evaluating mechanistic evidence in cancer hazard identification. Refinements to the approach were requested by organizations and individuals applying the KCs. We assembled an expert committee with knowledge of carcinogenesis and experience in applying the KCs in cancer hazard identification. We leveraged this expertise and examined the literature to more clearly describe each KC, identify current and emerging assays and in vivo biomarkers that can be used to measure them, and make recommendations for future assay development. We found that the KCs are clearly distinct from the Hallmarks of Cancer, that interrelationships among the KCs can be leveraged to strengthen the KC approach (and an understanding of environmental carcinogenesis), and that the KC approach is applicable to the systematic evaluation of a broad range of potential cancer hazards in vivo and in vitro We identified gaps in coverage of the KCs by current assays. Future efforts should expand the breadth, specificity, and sensitivity of validated assays and biomarkers that can measure the 10 KCs. Refinement of the KC approach will enhance and accelerate carcinogen identification, a first step in cancer prevention.See all articles in this CEBP Focus section, "Environmental Carcinogenesis: Pathways to Prevention."
Collapse
Affiliation(s)
- Martyn T Smith
- Division of Environmental Health Sciences, School of Public Health, University of California Berkeley, Berkeley, California.
| | - Kathryn Z Guyton
- Monographs Programme, International Agency for Research on Cancer, Lyon, France
| | - Nicole Kleinstreuer
- Division of Intramural Research, Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina
- National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Alexandre Borrel
- Division of Intramural Research, Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina
| | - Andres Cardenas
- Division of Environmental Health Sciences, School of Public Health, University of California Berkeley, Berkeley, California
| | - Weihsueh A Chiu
- Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas
| | - Dean W Felsher
- Division of Oncology, Departments of Medicine and Pathology, Stanford University School of Medicine, Stanford, California
| | - Catherine F Gibbons
- Office of Research and Development, US Environmental Protection Agency, Washington, D.C
| | - William H Goodson
- California Pacific Medical Center Research Institute, San Francisco, California
| | - Keith A Houck
- Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, North Carolina
| | - Agnes B Kane
- Department of Pathology and Laboratory Medicine, Alpert Medical School, Brown University, Providence, Rhode Island
| | - Michele A La Merrill
- Department of Environmental Toxicology, University of California, Davis, California
| | - Herve Lebrec
- Comparative Biology & Safety Sciences, Amgen Research, Amgen Inc., Thousand Oaks, California
| | - Leroy Lowe
- Getting to Know Cancer, Truro, Nova Scotia, Canada
| | - Cliona M McHale
- Division of Environmental Health Sciences, School of Public Health, University of California Berkeley, Berkeley, California
| | - Sheroy Minocherhomji
- Comparative Biology & Safety Sciences, Amgen Research, Amgen Inc., Thousand Oaks, California
| | - Linda Rieswijk
- Division of Environmental Health Sciences, School of Public Health, University of California Berkeley, Berkeley, California
- Institute of Data Science, Maastricht University, Maastricht, the Netherlands
| | - Martha S Sandy
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, California
| | - Hideko Sone
- Yokohama University of Pharmacy and National Institute for Environmental Studies, Tsukuba Ibaraki, Japan
| | - Amy Wang
- Office of the Report on Carcinogens, Division of National Toxicology Program, The National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Luoping Zhang
- Division of Environmental Health Sciences, School of Public Health, University of California Berkeley, Berkeley, California
| | - Lauren Zeise
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, California
| | - Mark Fielden
- Expansion Therapeutics Inc, San Diego, California
| |
Collapse
|
449
|
Gilbert ME, O'Shaughnessy KL, Axelstad M. Regulation of Thyroid-disrupting Chemicals to Protect the Developing Brain. Endocrinology 2020; 161:bqaa106. [PMID: 32615585 PMCID: PMC8650774 DOI: 10.1210/endocr/bqaa106] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/30/2020] [Indexed: 12/18/2022]
Abstract
Synthetic chemicals with endocrine disrupting properties are pervasive in the environment and are present in the bodies of humans and wildlife. As thyroid hormones (THs) control normal brain development, and maternal hypothyroxinemia is associated with neurological impairments in children, chemicals that interfere with TH signaling are of considerable concern for children's health. However, identifying thyroid-disrupting chemicals (TDCs) in vivo is largely based on measuring serum tetraiodothyronine in rats, which may be inadequate to assess TDCs with disparate mechanisms of action and insufficient to evaluate the potential neurotoxicity of TDCs. In this review 2 neurodevelopmental processes that are dependent on TH action are highlighted, neuronal migration and maturation of gamma amino butyric acid-ergic interneurons. We discuss how interruption of these processes by TDCs may contribute to abnormal brain circuitry following developmental TH insufficiency. Finally, we identify issues in evaluating the developmental neurotoxicity of TDCs and the strengths and limitations of current approaches designed to regulate them. It is clear that an enhanced understanding of how THs affect brain development will lead to refined toxicity testing, reducing uncertainty and improving our ability to protect children's health.
Collapse
Affiliation(s)
- Mary E Gilbert
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Research Triangle Park, North Carolina
| | - Katherine L O'Shaughnessy
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Research Triangle Park, North Carolina
| | - Marta Axelstad
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
450
|
Walley SN, Krumm EA, Yasrebi A, Kwiecinski J, Wright V, Baker C, Roepke TA. Maternal organophosphate flame-retardant exposure alters offspring energy and glucose homeostasis in a sexually dimorphic manner in mice. J Appl Toxicol 2020; 41:572-586. [PMID: 32969501 DOI: 10.1002/jat.4066] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/19/2020] [Accepted: 08/19/2020] [Indexed: 12/22/2022]
Abstract
Persistent organic pollutants such as organophosphate flame retardants (OPFRs) can accumulate in the body and interact with nuclear receptors that control energy homeostasis. One sensitive window of exposure is during development, either in utero or neonatal. Therefore, we investigated if maternal exposure to a mixture of OPFRs alters metabolism on a low-fat diet (LFD) or a high-fat diet (HFD) in both male and female offspring. Wild-type C57Bl/6J dams were orally dosed with vehicle (sesame oil) or an OPFR mixture (1 mg/kg each of tris(1,3-dichloro-2-propyl)phosphate, triphenyl phosphate, and tricresyl phosphate) from gestation day 7 to postnatal day 14. After weaning, pups were fed LFD or HFD. To assess metabolism, we measured body weight and food intake weekly and determined body composition, metabolism, activity, and glucose homeostasis at 6 months of age. Although maternal OPFR exposure did not alter body weight or adiposity, OPFR exposure altered substrate utilization and energy expenditure depending on diet in both sexes. Systolic and diastolic blood pressure was increased by OPFR in male offspring. OPFR exposure interacted with HFD to increase fasting glucose in females and alter glucose and insulin tolerance in male offspring. Plasma leptin was reduced in male and female offspring when fed HFD, whereas liver expression of Pepck was increased in females and Esr1 (estrogen receptor α) was increased in both sex. The physiological implications indicate maternal exposure to OPFRs programs peripheral organs including the liver and adipose tissue, in a sex-dependent manner, thus changing the response to an obesogenic diet and altering adult offspring energy homeostasis.
Collapse
Affiliation(s)
- Sabrina N Walley
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA.,Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Elizabeth A Krumm
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA.,Graduate Program in Endocrinology and Animal Biosciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Ali Yasrebi
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA.,Graduate Program in Endocrinology and Animal Biosciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Justine Kwiecinski
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Victoria Wright
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Chloe Baker
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Troy A Roepke
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA.,Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA.,Graduate Program in Endocrinology and Animal Biosciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA.,Environmental and Occupational Health Science Institute, Rutgers, The State University of New Jersey, 170 Frelinghuysen Road, Piscataway, NJ, USA.,Rutgers Center for Lipid Research, Center for Nutrition, Microbiome, and Health, and New Jersey Institute of Food, Nutrition, and Health, Rutgers, The State University of New Jersey, 61 Dudley Road, New Brunswick, NJ, USA
| |
Collapse
|