401
|
Geloso MC, Giannetti S, Cenciarelli C, Budoni M, Casalbore P, Maira G, Michetti F. Transplantation of foetal neural stem cells into the rat hippocampus during trimethyltin-induced neurodegeneration. Neurochem Res 2007; 32:2054-2061. [PMID: 17457672 DOI: 10.1007/s11064-007-9353-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2006] [Accepted: 04/05/2007] [Indexed: 01/19/2023]
Abstract
The present study investigates the survival and fate of neural stem cells/progenitor cells (NSC/NPCs) homografted into the hippocampus of rats treated with trimethyltin (TMT), a potent neurotoxicant considered a useful tool to obtain a well characterized model of neurodegeneration, to evaluate their possible role in the reparative mechanisms that accompany neurodegenerative events. NSC/NPCs expressing eGFP by lentivirus-mediated infection were stereotaxically grafted into the hippocampus of TMT-treated animals and controls. Two weeks after transplantation surviving NSC/NPCs were detectable in 60% of TMT-treated animals and 30% of controls, while 30 days after transplantation only 40% of TMT-treated animals showed surviving grafted cells, which were undetectable in controls. At both times investigated, while grafted NSC/NPCs differentiated into neurons or astrocytes could be observed in addition to undifferentiated NSC/NPCs, we did not find evidence of structural integration of grafted cells into the main site of hippocampal lesion leading to appreciable repair.
Collapse
Affiliation(s)
- Maria Concetta Geloso
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
402
|
Mukhida K, Mendez I, McLeod M, Kobayashi N, Haughn C, Milne B, Baghbaderani B, Sen A, Behie LA, Hong M. Spinal GABAergic Transplants Attenuate Mechanical Allodynia in a Rat Model of Neuropathic Pain. Stem Cells 2007; 25:2874-85. [PMID: 17702982 DOI: 10.1634/stemcells.2007-0326] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Injury to the spinal cord or peripheral nerves can lead to the development of allodynia due to the loss of inhibitory tone involved in spinal sensory function. The potential of intraspinal transplants of GABAergic cells to restore inhibitory tone and thus decrease pain behaviors in a rat model of neuropathic pain was investigated. Allodynia of the left hind paw was induced in rats by unilateral L5- 6 spinal nerve root ligation. Mechanical sensitivity was assessed using von Frey filaments. Postinjury, transgenic fetal green fluorescent protein mouse GABAergic cells or human neural precursor cells (HNPCs) expanded in suspension bioreactors and differentiated into a GABAergic phenotype were transplanted into the spinal cord. Control rats received undifferentiated HNPCs or cell suspension medium only. Animals that received either fetal mouse GABAergic cell or differentiated GABAergic HNPC intraspinal transplants demonstrated a significant increase in paw withdrawal thresholds at 1 week post-transplantation that was sustained for 6 weeks. Transplanted fetal mouse GABAergic cells demonstrated immunoreactivity for glutamic acid decarboxylase and GABA that colocalized with green fluorescent protein. Intraspinally transplanted differentiated GABAergic HNPCs demonstrated immunoreactivity for GABA and beta-III tubulin. In contrast, intraspinal transplantation of undifferentiated HNPCs, which predominantly differentiated into astrocytes, or cell suspension medium did not affect any behavioral recovery. Intraspinally transplanted GABAergic cells can reduce allodynia in a rat model of neuropathic pain. In addition, HNPCs expanded in a standardized fashion in suspension bioreactors and differentiated into a GABAergic phenotype may be an alternative to fetal cells for cell-based therapies to treat chronic pain syndromes.
Collapse
Affiliation(s)
- Karim Mukhida
- Cell Restoration Laboratory, Department of Anatomy and Neurobiology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
403
|
Yamasaki TR, Blurton-Jones M, Morrissette DA, Kitazawa M, Oddo S, LaFerla FM. Neural stem cells improve memory in an inducible mouse model of neuronal loss. J Neurosci 2007; 27:11925-33. [PMID: 17978032 PMCID: PMC6673368 DOI: 10.1523/jneurosci.1627-07.2007] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Revised: 09/12/2007] [Accepted: 09/14/2007] [Indexed: 01/19/2023] Open
Abstract
Neuronal loss is a major pathological outcome of many common neurological disorders, including ischemia, traumatic brain injury, and Alzheimer disease. Stem cell-based approaches have received considerable attention as a potential means of treatment, although it remains to be determined whether stem cells can ameliorate memory dysfunction, a devastating component of these disorders. We generated a transgenic mouse model in which the tetracycline-off system is used to regulate expression of diphtheria toxin A chain. After induction, we find progressive neuronal loss primarily within the hippocampus, leading to specific impairments in memory. We find that neural stem cells transplanted into the brain after neuronal ablation survive, migrate, differentiate and, most significantly, improve memory. These results show that stem cells may have therapeutic value in diseases and conditions that result in memory loss.
Collapse
Affiliation(s)
- Tritia R. Yamasaki
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, California 92697
| | - Mathew Blurton-Jones
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, California 92697
| | - Debbi A. Morrissette
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, California 92697
| | - Masashi Kitazawa
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, California 92697
| | - Salvatore Oddo
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, California 92697
| | - Frank M. LaFerla
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, California 92697
| |
Collapse
|
404
|
Lu FG, Wong CS. Time-dependent neurosphere-forming ability of adult rat spinal cord after irradiation. Radiat Res 2007; 168:453-61. [PMID: 17903029 DOI: 10.1667/rr0591.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2006] [Accepted: 06/06/2007] [Indexed: 11/03/2022]
Abstract
To determine whether there was evidence for long-term time-dependent changes in neurosphere-forming ability of rat spinal cord after irradiation, a 15-mm length of spinal cord (C2-T2) of 10-week-old female rats was irradiated with a single dose of 2, 5, 10 or 19 Gy. Cells were isolated from the central 10-mm segment of the irradiated spinal cord immediately or at 0.5, 1, 2 or 5 months to form neurospheres. The number and sizes of neurospheres were determined at day 10, 12, 14 and 16 in vitro. The multipotential properties of neurosphere cells were assessed by immunocytochemistry using lineage-specific markers for neurons and glia. In nonirradiated controls, the number and size of the neurospheres decreased with increasing age of the animals. Regardless of the time after irradiation, there was a dose-dependent decrease in the number and size of neurospheres obtained from the irradiated cord compared to age-matched controls. Using three-way ANOVA, the number of neurospheres was dependent on radiation dose (P < 0.0001), time after irradiation (P < 0.0001), and day of counting in vitro (P < 0.0001). Compared to cells cultured immediately after irradiation, there was an increase in the relative plating efficiency of neurospheres cultured 1 month after irradiation. However, no further increase was apparent up to 5 months after irradiation. The multipotential properties of neurosphere cells in vitro remained unchanged with increasing time after irradiation. These results may suggest a time-dependent recovery of radiation damage using neurosphere-forming ability as the end point and agree with data that show time-dependent recovery of radiation damage in spinal cord using histological or functional end points.
Collapse
Affiliation(s)
- Fred G Lu
- Department of Radiation Oncology, Discipline of Cell and Molecular Biology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, M4N 3M5, Canada
| | | |
Collapse
|
405
|
Darsalia V, Kallur T, Kokaia Z. Survival, migration and neuronal differentiation of human fetal striatal and cortical neural stem cells grafted in stroke-damaged rat striatum. Eur J Neurosci 2007; 26:605-14. [PMID: 17686040 DOI: 10.1111/j.1460-9568.2007.05702.x] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Stroke is a neurodegenerative disorder and the leading cause of disability in adult humans. Treatments to support efficient recovery in stroke patients are lacking. Several studies have demonstrated the ability of grafted neural stem cells (NSCs) to partly improve impaired neurological functions in stroke-subjected animals. Recently, we reported that NSCs from human fetal striatum and cortex exhibit region-specific differentiation in vitro, but survive, migrate and form neurons to a similar extent after intrastriatal transplantation in newborn rats. Here, we have transplanted the same cells into the stroke-damaged striatum of adult rats. The two types of NSCs exhibited a similar robust survival (30%) at 1 month after transplantation, and migrated throughout the damaged striatum. Striatal NSCs migrated farther and occupied a larger volume of striatum. In the transplantation core, cells were undifferentiated and expressed nestin and, to a lesser extent, also GFAP, betaIII-tubulin, DCX and calretinin, markers of immature neural lineage. Immunocytochemistry using markers of proliferation (p-H3 and Ki67) revealed a very low content of proliferating cells (<1%) in the grafts. Human cells outside the transplantation core differentiated, exhibited mature neuronal morphology and expressed mature neuronal markers such as HuD, calbindin and parvalbumin. Interestingly, striatal NSCs generated a greater number of parvalbumin+ and calbindin+ neurons. Virtually none of the grafted cells differentiated into astrocytes or oligodendrocytes. Based on these data, human fetal striatum- and cortex-derived NSCs could be considered potentially safe and viable for transplantation, with strong neurogenic potential, for further exploration in animal models of stroke.
Collapse
Affiliation(s)
- Vladimer Darsalia
- Laboratory of Neural Stem Cell Biology, Section of Restorative Neurology, Lund Strategic Research Center for Stem Cell Biology and Cell Therapy, University Hospital BMC B10, Klinikgatan 26, SE-221 84 Lund, Sweden
| | | | | |
Collapse
|
406
|
Role of SDF-1/CXCR4 system in survival and migration of bone marrow stromal cells after transplantation into mice cerebral infarct. Brain Res 2007; 1183:138-47. [PMID: 17976542 DOI: 10.1016/j.brainres.2007.08.091] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2007] [Revised: 08/25/2007] [Accepted: 08/30/2007] [Indexed: 01/07/2023]
Abstract
Recent studies have indicated that bone marrow stromal cells (BMSC) have the potential to improve neurological function when transplanted into animal models of cerebral infarction. However, it is still obscure how the transplanted BMSC restore the lost neurological function. In this study, therefore, we aimed to elucidate the role of stromal cell-derived factor-1 (SDF-1) and its specific receptor, CXCR4, in BMSC transplantation into the brain subjected to cerebral infarction. The BMSC were harvested from the wild type (WT) and CXCR4-knockout (CXCR4-KO) mice and were cultured. The mice were subjected to permanent middle cerebral artery occlusion. The WT or CXCR4-KO BMSC was injected into the ipsilateral striatum 7 days after the insult. Motor function of the animals was serially evaluated, using a rotarod treadmill. Using fluorescence immunohistochemistry, we evaluated the distribution and phenotype of the transplanted cells 4 weeks after transplantation. Recovery of motor function in the WT BMSC-transplanted mice was more pronounced than in the CXCR4-KO-transplanted mice and the vehicle-treated ones. SDF-1 was extensively expressed in peri-infarct area. In the WT BMSC-transplanted mice, the transplanted cells were extensively distributed in the ipsilateral hemisphere, and many of them migrated towards the peri-infarct area and expressed the proteins specific for neurons and astrocytes, although these findings were not observed in the CXCR4-KO-transplanted mice. The results suggest that the SDF-1/CXCR4 system may play a critical role in the survival, proliferation and migration of the transplanted BMSC and contribute to recovery of neurological function.
Collapse
|
407
|
Peng H, Kolb R, Kennedy JE, Zheng J. Differential expression of CXCL12 and CXCR4 during human fetal neural progenitor cell differentiation. J Neuroimmune Pharmacol 2007; 2:251-8. [PMID: 18040858 PMCID: PMC2169289 DOI: 10.1007/s11481-007-9081-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Accepted: 06/01/2007] [Indexed: 12/26/2022]
Abstract
Stromal cell-derived factor 1 alpha (SDF-1alpha, CXCL12) and its receptor CXCR4 play an important role in the central nervous system (CNS) development and adulthood by mediating cell migration, enhancing precursor cell proliferation, assisting in neuronal circuit formation, and possibly regulating migration during repair. The expression pattern of CXCR4 and CXCL12 during neurogenesis has not been thoroughly elucidated. In this study, we investigated the expression of CXCL12 and CXCR4 during neural progenitor cells (NPC) differentiation by microarray analysis and reverse transcriptase-polymerase chain reaction (RT-PCR) using human fetal NPC as a model system. The production of CXCL12 was measured by enzyme-linked immunosorbent assay (ELISA). CXCR4 expression was determined by florescence-activated cell sorting (FACS) analysis, immunocytochemical staining, and CXCR4-mediated inhibition of cyclic AMP (cAMP) accumulation. Our data demonstrated that CXCR4 expression is significantly upregulated when NPC are differentiated into neuronal precursors, whereas CXCL12 is upregulated when differentiated into astrocytes. We also provide evidence that CXCR4 localization changes as neurons mature. In neuronal precursors, CXCR4 is localized in both neuronal processes and the cell body, whereas in mature neurons, it is primarily expressed on axons and dendrites. This differential expression of CXCR4 and CXCL12 may be important for the temporal regulation of neuronal migration and circuit formation during development and possibly in adult neurogenesis and repair.
Collapse
Affiliation(s)
- Hui Peng
- Laboratory of Neurotoxicology, Center for Neurovirology and Neurodegenerative Disorders, Department of Pharmacology/Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | | | | | | |
Collapse
|
408
|
Li F, Liu Y, Zhu S, Wang X, Yang H, Liu C, Zhang Y, Zhang Z. Therapeutic time window and effect of intracarotid neural stem cells transplantation for intracerebral hemorrhage. Neuroreport 2007; 18:1019-23. [PMID: 17558288 DOI: 10.1097/wnr.0b013e328165d170] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
This study investigated the therapeutic effect of neural stem cells transplanted via the carotid artery at different times after intracerebral hemorrhage. A great number of 5-bromo-2-deoxyuridine-positive cells were observed surviving and distributed evenly in the perihematoma areas. Phenotypes of grafted cells depended upon time of transplantation, and the later the cells were transplanted, the larger the percentage of cells that differentiated into neurons. Animals treated at 7 and 14 days after injury exhibited the most significant improvements in behavioral tests. Therefore,intracarotid injection allows efficient delivery of cells to the injured hemisphere, especially during the period 7-14 days after injury, and may potentially be applicable in humans.
Collapse
Affiliation(s)
- Feng Li
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
409
|
Isidori A, Motta MR, Tani M, Terragna C, Zinzani P, Curti A, Rizzi S, Taioli S, Giudice V, D'Addio A, Gugliotta G, Conte R, Baccarani M, Lemoli RM. Positive selection and transplantation of autologous highly purified CD133(+) stem cells in resistant/relapsed chronic lymphocytic leukemia patients results in rapid hematopoietic reconstitution without an adequate leukemic cell purging. Biol Blood Marrow Transplant 2007; 13:1224-32. [PMID: 17889360 DOI: 10.1016/j.bbmt.2007.07.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Accepted: 07/10/2007] [Indexed: 01/19/2023]
Abstract
We assessed the capacity of positively selected autologous CD133(+) hematopoietic stem cells (HSCs) to reconstitute lymphomyelopoiesis in chronic lymphocytic leukemia (CLL) patients receiving myeloablative chemotherapy. Ten resistant/relapsed CLL patients underwent HSC mobilization with chemotherapy and granulocyte-colony stimulating factor (G-CSF). Positive selection of circulating CD133(+) HSCs was performed by immunomagnetic technique. Highly purified HSCs were reinfused after busulphan/melphalan myeloablative treatment. A median number of 4.2 x 10(6) CD34(+) cells/kg and of 3.14 x 10(6) CD133(+) cells/kg were collected. Immunomagnetic selection resulted in the reinfusion of a median number of 2.45 x 10(6) CD133(+) cells/kg (median purity: 94.8%; median recovery: 84%) and 2.4 x 10(6) CD34(+) cells/kg (median purity: 93%; median recovery: 71%). HSC selection resulted in a median T cell and CD19(+)/CD5(+) cell depletion of 3.85 log and 2.8 log, respectively. At the molecular level, however, 7 of 8 valuable purified HSC fractions were contaminated by leukemic cells. All CLL patients showed rapid and sustained myeloid engraftment after reinfusion of purified CD133(+) cells. Immunologic reconstitution was comparable to that routinely observed in patients reinfused with unmanipulated leukapheresis products and no late infectious complications were observed. With a median follow-up of 28 months for transplanted patients, 5 patients are in clinical complete remission, 3 are in partial remission, and 1 is in progression. In conclusion, the reinfusion of highly purified CD133(+) HSCs allowed the rapid and sustained recovery of hematopoiesis after myeloablative treatment in resistant/relapsed CLL patients. However, the purging potential of positive selection of CD133(+) cells is not adequate to achieve tumor-free autografts.
Collapse
Affiliation(s)
- Alessandro Isidori
- Institute of Hematology and Medical Oncology, "L. & A. Seràgnoli," University of Bologna, Bologna, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
410
|
Olstorn H, Moe MC, Røste GK, Bueters T, Langmoen IA. Transplantation of stem cells from the adult human brain to the adult rat brain. Neurosurgery 2007; 60:1089-98; discussion 1098-9. [PMID: 17538384 DOI: 10.1227/01.neu.0000255461.91892.0d] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVE To investigate the migration, proliferation, and differentiation of stem cells and neural progenitor cells (NPCs) from the adult human brain after transplantation into adult rodent brains. METHODS Adult human NPCs were obtained from temporal lobe specimens removed because of medical intractable epilepsy. The cells were transplanted into the posterior periventricular region above the hippocampus in the brains of either healthy adult rats (control) or rats with selective injury of the hippocampal CA1 region (global ischemia). RESULTS In the control animals, grafted cells were mainly distributed from the site of transplantation toward the midline along white matter tracts. The density of transplanted cells elsewhere, including the hippocampus, was low and apparently random. In animals with CA1 damage, NPCs showed targeted migration into the injured area. Cell survival at 10 weeks was 4.7 +/- 0.3% (control, n = 3) and 3.7 +/- 1.1% (ischemia, n = 3); at 16 weeks, cell survival was 3.4 +/- 0.6% (control, n = 2) and 7.2 +/- 1.5% (ischemia, n = 2), i.e., comparable to what has been observed earlier when transplanting embryonic tissue into the human brain or progenitor cells between inbred rats. The number of dividing cells decreased with time. Sixteen weeks after transplantation, 4 +/- 1% (n = 4) of the cells showed proliferative activity. We did not observe signs of tumor formation or aberrant cell morphology. Neuronal differentiation was much slower than what has been observed earlier in vitro or after transplantation to the developing nervous system, and 16 weeks after transplantation many surviving cells were still in maturation. CONCLUSION The present study shows that adult human NPCs survive, show targeted migration, proliferate, and differentiate after grafting into the adult rat brain.
Collapse
Affiliation(s)
- Havard Olstorn
- Vilhelm Magnus Center, Institute for Surgical Research, and Department of Neurosurgery, Ullevål University Hospital and Rikshospitalet, University of Oslo, Norway.
| | | | | | | | | |
Collapse
|
411
|
Bacigaluppi M, Pluchino S, Martino G, Kilic E, Hermann DM. Neural stem/precursor cells for the treatment of ischemic stroke. J Neurol Sci 2007; 265:73-7. [PMID: 17610905 DOI: 10.1016/j.jns.2007.06.012] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2007] [Revised: 06/04/2007] [Accepted: 06/14/2007] [Indexed: 12/23/2022]
Abstract
In ischemic stroke, the third most frequent cause of mortality in industrialized countries, therapeutic options have until now been limited to the first hours after disease onset. Cell transplantation has emerged in various neurological disorders, including experimental stroke, as a successful recovery-promoting approach also in the post-acute stroke phase. However, before envisaging any translation into humans of such promising cell-based approaches we still need to clarify: (i) the ideal cell source for transplantation, (ii) the most appropriate route of cell administration, and, last but not least, (iii) the best approach to achieve an appropriate and functional integration of transplanted cells into the host tissue. Here we discuss, with special emphasis on neural stem/precursor cells, potential mechanisms that may be involved in the action of cell-based therapies in stroke.
Collapse
Affiliation(s)
- Marco Bacigaluppi
- Department of Neurology, University Hospital Zurich (USZ), Frauenklinikstr, 26, CH-8091 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
412
|
Raedt R, Van Dycke A, Vonck K, Boon P. Cell therapy in models for temporal lobe epilepsy. Seizure 2007; 16:565-78. [PMID: 17566770 DOI: 10.1016/j.seizure.2007.05.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Revised: 04/03/2007] [Accepted: 05/08/2007] [Indexed: 12/18/2022] Open
Abstract
For patients with refractory epilepsy it is important to search for alternative treatments. One of these potential treatments could be introducing new cells or modulating endogenous neurogenesis to reconstruct damaged epileptic circuits or to bring neurotransmitter function back into balance. In this review the scientific basis of these cell therapy strategies is discussed and the results are critically evaluated. Research on cell transplantation strategies has mainly been performed in animal models for temporal lobe epilepsy, in which seizure foci or seizure propagation pathways are targeted. Promising results have been obtained, although there remains a lot of debate about the relevance of the animal models, the appropriate target for transplantation, the suitable cell source and the proper time point for transplantation. From the presented studies it should be evident that transplanted cells can survive and sometimes even integrate in an epileptic brain and in a brain that is subjected to epileptogenic interventions. There is evidence that transplanted cells can partially restore damaged structures and/or release substances that modulate existent or induced hyperexcitability. Even though several studies show encouraging results, more studies need to be done in animal models with spontaneous seizures in order to have a better comparison to the human situation.
Collapse
Affiliation(s)
- R Raedt
- Laboratory for Clinical and Experimental Neurophysiology, Department of Neurology, Ghent University Hospital, De Pintelaan 145, B-9000 Ghent, Belgium.
| | | | | | | |
Collapse
|
413
|
Guzman R, Uchida N, Bliss TM, He D, Christopherson KK, Stellwagen D, Capela A, Greve J, Malenka RC, Moseley ME, Palmer TD, Steinberg GK. Long-term monitoring of transplanted human neural stem cells in developmental and pathological contexts with MRI. Proc Natl Acad Sci U S A 2007; 104:10211-6. [PMID: 17553967 PMCID: PMC1891235 DOI: 10.1073/pnas.0608519104] [Citation(s) in RCA: 253] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Noninvasive monitoring of stem cells, using high-resolution molecular imaging, will be instrumental to improve clinical neural transplantation strategies. We show that labeling of human central nervous system stem cells grown as neurospheres with magnetic nanoparticles does not adversely affect survival, migration, and differentiation or alter neuronal electrophysiological characteristics. Using MRI, we show that human central nervous system stem cells transplanted either to the neonatal, the adult, or the injured rodent brain respond to cues characteristic for the ambient microenvironment resulting in distinct migration patterns. Nanoparticle-labeled human central nervous system stem cells survive long-term and differentiate in a site-specific manner identical to that seen for transplants of unlabeled cells. We also demonstrate the impact of graft location on cell migration and describe magnetic resonance characteristics of graft cell death and subsequent clearance. Knowledge of migration patterns and implementation of noninvasive stem cell tracking might help to improve the design of future clinical neural stem cell transplantation.
Collapse
Affiliation(s)
- Raphael Guzman
- *Department of Neurosurgery, Stanford University School of Medicine, 300 Pasteur Drive, R200, Stanford, CA 94305-5327
| | - Nobuko Uchida
- StemCells, Inc., 3155 Porter Drive, Palo Alto, CA 94304-1213
| | - Tonya M. Bliss
- *Department of Neurosurgery, Stanford University School of Medicine, 300 Pasteur Drive, R200, Stanford, CA 94305-5327
| | - Dongping He
- StemCells, Inc., 3155 Porter Drive, Palo Alto, CA 94304-1213
| | | | - David Stellwagen
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, MSLS P104, Stanford, CA 94305-5485; and
| | - Alexandra Capela
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, MSLS P104, Stanford, CA 94305-5485; and
| | - Joan Greve
- Department of Radiology, Lucas Magnetic Resonance Spectroscopy and Imaging Center, Stanford University School of Medicine, P286, Stanford, CA 94022
| | - Robert C. Malenka
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, MSLS P104, Stanford, CA 94305-5485; and
| | - Michael E. Moseley
- Department of Radiology, Lucas Magnetic Resonance Spectroscopy and Imaging Center, Stanford University School of Medicine, P286, Stanford, CA 94022
| | - Theo D. Palmer
- *Department of Neurosurgery, Stanford University School of Medicine, 300 Pasteur Drive, R200, Stanford, CA 94305-5327
| | - Gary K. Steinberg
- *Department of Neurosurgery, Stanford University School of Medicine, 300 Pasteur Drive, R200, Stanford, CA 94305-5327
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
414
|
Kim DY, Park SH, Lee SU, Choi DH, Park HW, Paek SH, Shin HY, Kim EY, Park SP, Lim JH. Effect of human embryonic stem cell-derived neuronal precursor cell transplantation into the cerebral infarct model of rat with exercise. Neurosci Res 2007; 58:164-75. [PMID: 17408791 DOI: 10.1016/j.neures.2007.02.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Revised: 02/01/2007] [Accepted: 02/17/2007] [Indexed: 01/19/2023]
Abstract
We analyzed the therapeutic effect of the transplantation of the human embryonic stem cell (NIH Code: MB01)-derived neuronal precursor (hES-NP) cell and post-ischemic exercise in rats with the middle cerebral artery (MCA) infarct model. A cortical infarct was induced in 20 adult Sprague-Dawley rats by occlusion and reperfusion of the MCA. The rats were divided into four groups: hES-NP cell transplantation and exercise, transplantation only, exercise only, and Sham-operated with no exercise. In the cell-transplanted group, hES-NP cells were transplanted by stereotactic inoculation into the ipsilateral basal ganglia 7 days after infarct. We evaluated the clinical recovery of deficit, the size of infarct and the survival, migration, and differentiation of the transplanted cells. The transplanted hES-NP cells survived robustly in the ischemic brains 3 weeks post transplant. The majority of migrating cells in the ischemic rats had a neuronal phenotype. The clinical scores of all of the experimental groups were better than those of the Sham-operated group. Whereas the exercise-only group showed continuous clinical improvement, the cell-transplanted groups manifested less improvement than the exercise-only group. Moreover, the cell-transplanted groups did not differ in clinical improvement according to postinfarct-exercise or not. The infarct size was significantly reduced in both the cell-transplanted groups and the post-ischemic exercise group, compared with the Sham-operated group; however, the reduction of infarct size was most prominent in the exercise-only group. In our study, the inoculated site of the basal ganglia showed some damage induced by inoculation, such as loss of neuroglial cells, reactive gliosis and microcalcification, which was found in the Sham-operated group as well, and yet no inoculation-site injury has ever been reported. Our study revealed that stem cell transplantation can have a positive effect on behavioral recovery and reduction of infarct size, but the effect shown was no better than the effect of the exercise, which finding reconfirmed the importance of post-infarct rehabilitation. In addition, it was found that cell inoculation should be replaced by a noninvasive procedure.
Collapse
Affiliation(s)
- Dae-Yul Kim
- Department of Rehabilitation Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
415
|
Yan YP, Sailor KA, Lang BT, Park SW, Vemuganti R, Dempsey RJ. Monocyte chemoattractant protein-1 plays a critical role in neuroblast migration after focal cerebral ischemia. J Cereb Blood Flow Metab 2007; 27:1213-24. [PMID: 17191078 DOI: 10.1038/sj.jcbfm.9600432] [Citation(s) in RCA: 209] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Transient focal ischemia is known to induce proliferation of neural progenitors in adult rodent brain. We presently report that doublecortin positive neuroblasts formed in the subventricular zone (SVZ) and the posterior peri-ventricle region migrate towards the cortical and striatal penumbra after transient middle cerebral artery occlusion (MCAO) in adult rodents. Cultured neural progenitor cells grafted into the non-infarcted area of the ipsilateral cortex migrated preferentially towards the infarct. As chemokines are known to induce cell migration, we investigated if monocyte chemoattractant protein-1 (MCP-1) has a role in post-ischemic neuroblast migration. Transient MCAO induced an increased expression of MCP-1 mRNA in the ipsilateral cortex and striatum. Immunostaining showed that the expression of MCP-1 was localized in the activated microglia and astrocytes present in the ischemic areas between days 1 and 3 of reperfusion. Furthermore, infusion of MCP-1 into the normal striatum induced neuroblast migration to the infusion site. The migrating neuroblasts expressed the MCP-1 receptor CCR2. In knockout mice that lacked either MCP-1 or its receptor CCR2, there was a significant decrease in the number of migrating neuroblasts from the ipsilateral SVZ to the ischemic striatum. These results show that MCP-1 is one of the factors that attract the migration of newly formed neuroblasts from neurogenic regions to the damaged regions of brain after focal ischemia.
Collapse
Affiliation(s)
- Yi-Ping Yan
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, Wisconsin 53792, USA
| | | | | | | | | | | |
Collapse
|
416
|
Foroni C, Galli R, Cipelletti B, Caumo A, Alberti S, Fiocco R, Vescovi A. Resilience to transformation and inherent genetic and functional stability of adult neural stem cells ex vivo. Cancer Res 2007; 67:3725-33. [PMID: 17440085 DOI: 10.1158/0008-5472.can-06-4577] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recent observations have suggested that extensive culturing of adult neural stem cells (ANSCs) by exploiting the NeuroSphere assay might select for aggressive cell clones, endowed with neoplastic potential, that overgrow the rest of the native stem cells. However, a detailed study of the propensity of ANSCs to transform has never been thoroughly undertaken. Here, we report the first demonstration that ANSCs can be propagated in vitro for over a year, maintaining a strikingly stable profile with regard to self-renewal, differentiation, growth factor dependence, karyotype, and molecular profiling. Most importantly, the long-term culturing of ANSCs did not result in the formation of tumors in vivo, even when ANSCs were transduced with Myc and Ras oncogenes. The cancer resistance could depend on specific mechanisms aimed at protecting ANSCs and preserved by optimal nonstressful culture conditions. In conclusion, besides a plentiful and safe source of cells for therapeutic applications, ANSCs provide an ideal model to study aging and cancer in the context of stemness.
Collapse
Affiliation(s)
- Chiara Foroni
- Stem Cell Research Institute-DIBIT, San Raffaele Scientific Institute, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
417
|
Teixeira AI, Duckworth JK, Hermanson O. Getting the right stuff: controlling neural stem cell state and fate in vivo and in vitro with biomaterials. Cell Res 2007; 17:56-61. [PMID: 17211445 DOI: 10.1038/sj.cr.7310141] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Stem cell therapy holds great promises in medical treatment by, e.g., replacing lost cells, re-constitute healthy cell populations and also in the use of stem cells as vehicles for factor and gene delivery. Embryonic stem cells have rightfully attracted a large interest due to their proven capacity of differentiating into any cell type in the embryo in vivo. Tissue-specific stem cells are however already in use in medical practice, and recently the first systematic medical trials involving human neural stem cell (NSC) therapy have been launched. There are yet many obstacles to overcome and procedures to improve. To ensure progress in the medical use of stem cells increased basic knowledge of the molecular mechanisms that govern stem cell characteristics is necessary. Here we provide a review of the literature on NSCs in various aspects of cell therapy, with the main focus on the potential of using biomaterials to control NSC characteristics, differentiation, and delivery. We summarize results from studies on the characteristics of endogenous and transplanted NSCs in rodent models of neurological and cancer diseases, and highlight recent advancements in polymer compatibility and applicability in regulating NSC state and fate. We suggest that the development of specially designed polymers, such as hydrogels, is a crucial issue to improve the outcome of stem cell therapy in the central nervous system.
Collapse
Affiliation(s)
- Ana I Teixeira
- Center of Excellence in Developmental Biology, Organic Bioelectronics (OBOE), Department of Neuroscience, Karolinska Institutet, SE17177 Stockholm, Sweden.
| | | | | |
Collapse
|
418
|
Capone C, Frigerio S, Fumagalli S, Gelati M, Principato MC, Storini C, Montinaro M, Kraftsik R, Curtis MD, Parati E, Simoni MGD. Neurosphere-derived cells exert a neuroprotective action by changing the ischemic microenvironment. PLoS One 2007; 2:e373. [PMID: 17440609 PMCID: PMC1847533 DOI: 10.1371/journal.pone.0000373] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Accepted: 03/26/2007] [Indexed: 01/19/2023] Open
Abstract
Background Neurosphere-derived cells (NC), containing neural stem cells, various progenitors and more differentiated cells, were obtained from newborn C57/BL6 mice and infused in a murine model of focal ischemia with reperfusion to investigate if: 1) they decreased ischemic injury and restored brain function; 2) they induced changes in the environment in which they are infused; 3) changes in brain environment consequent to transient ischemia were relevant for NC action. Methodology/Principal Findings NC were infused intracerebroventricularly 4 h or 7 d after 30 min middle cerebral artery occlusion. In ischemic mice receiving cells at 4 h, impairment of open field performance was significantly improved and neuronal loss significantly reduced 7–14 d after ischemia compared to controls and to ischemic mice receiving cells at 7 d. Infusion of murine foetal fibroblast in the same experimental conditions was not effective. Assessment of infused cell distribution revealed that they migrated from the ventricle to the parenchyma, progressively decreased in number but they were observable up to 14 d. In mice receiving NC at 7 d and in sham-operated mice, few cells could be observed only at 24 h, indicating that the survival of these cells in brain tissue relates to the ischemic environment. The mRNA expression of trophic factors such as Insulin Growth Factor-1, Vascular Endothelial Growth Factor-A, Transforming Growth Factor-β1, Brain Derived Neurotrophic Factor and Stromal Derived Factor−1α, as well as microglia/macrophage activation, increased 24 h after NC infusion in ischemic mice treated at 4 h compared to sham-operated and to mice receiving cells at 7 d. Conclusions/Significance NC reduce functional impairment and neuronal damage after ischemia/reperfusion injury. Several lines of evidence indicate that the reciprocal interaction between NC and the ischemic environment is crucial for NC protective actions. Based on these results we propose that a bystander control of the ischemic environment may be the mechanism used by NC to rapidly restore acutely injured brain function.
Collapse
Affiliation(s)
- Carmen Capone
- Laboratory of Inflammation and Nervous System Diseases, Mario Negri Institute, Milano, Italy
| | - Simona Frigerio
- Laboratory of Neurobiology and Neuroregenerative Therapies, Carlo Besta Neurological Institute, Milano, Italy
| | - Stefano Fumagalli
- Laboratory of Inflammation and Nervous System Diseases, Mario Negri Institute, Milano, Italy
| | - Maurizio Gelati
- Laboratory of Neurobiology and Neuroregenerative Therapies, Carlo Besta Neurological Institute, Milano, Italy
| | | | - Claudio Storini
- Laboratory of Inflammation and Nervous System Diseases, Mario Negri Institute, Milano, Italy
| | - Mery Montinaro
- Laboratory of Inflammation and Nervous System Diseases, Mario Negri Institute, Milano, Italy
| | - Rudolf Kraftsik
- Department of Cell Biology and Morphology, University of Lausanne, Lausanne, Switzerland
| | - Marco De Curtis
- Clinical Epileptology and Experimental Neurophysiology Unit, Carlo Besta Neurological Institute, Milano, Italy
| | - Eugenio Parati
- Laboratory of Neurobiology and Neuroregenerative Therapies, Carlo Besta Neurological Institute, Milano, Italy
| | - Maria-Grazia De Simoni
- Laboratory of Inflammation and Nervous System Diseases, Mario Negri Institute, Milano, Italy
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
419
|
Abstract
No treatment currently exists to restore lost neurological function after stroke. A growing number of studies highlight the potential of stem cell transplantation as a novel therapeutic approach for stroke. In this review we summarize these studies, discuss potential mechanisms of action of the transplanted cells, and emphasize the need to determine parameters that are critical for transplantation success.
Collapse
Affiliation(s)
- Tonya Bliss
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | | | | | | |
Collapse
|
420
|
Kallur T, Darsalia V, Lindvall O, Kokaia Z. Human fetal cortical and striatal neural stem cells generate region-specific neurons in vitro and differentiate extensively to neurons after intrastriatal transplantation in neonatal rats. J Neurosci Res 2007; 84:1630-44. [PMID: 17044030 DOI: 10.1002/jnr.21066] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Human fetal brain is a potential source of neural stem cells (NSCs) for cell replacement therapy in neurodegenerative diseases. We explored whether NSCs isolated from cortex and striatum of human fetuses, aged 6-9 weeks post-conception, maintain their regional identity and differentiate into specific neuron types in culture and after intrastriatal transplantation in neonatal rats. We observed no differences between cortex- and striatum-derived NSCs expanded as neurospheres in proliferative capacity, growth rate, secondary sphere formation, and expression of neural markers. After 4 weeks of differentiation in vitro, cortical and striatal NSCs gave rise to similar numbers of GABAergic and VMAT2- and parvalbumin-containing neurons. However, whereas cortical NSCs produced higher number of glutamatergic and tyrosine hydroxylase- and calretinin-positive neurons, several-fold more neurons expressing the striatal projection neuron marker, DARPP-32, were observed in cultures of striatal NSCs. Human cortical and striatal NSCs survived and migrated equally well after transplantation. The two NSC types also generated similar numbers of mature NeuN-positive neurons, which were several-fold higher at 4 months as compared to at 1 month after grafting. At 4 months, the grafts contained cells with morphologic characteristics of neurons, astrocytes, and oligodendrocytes. Many of neurons were expressing parvalbumin. Our data show that NSCs derived from human fetal cortex and striatum exhibit region-specific differentiation in vitro, and survive, migrate, and form mature neurons to the same extent after intrastriatal transplantation in newborn rats.
Collapse
Affiliation(s)
- Therése Kallur
- Laboratory of Neural Stem Cell Biology, Section of Restorative Neurology, Stem Cell Institute, University Hospital, Lund, Sweden
| | | | | | | |
Collapse
|
421
|
Capowski EE, Schneider BL, Ebert AD, Seehus CR, Szulc J, Zufferey R, Aebischer P, Svendsen CN. Lentiviral vector-mediated genetic modification of human neural progenitor cells for ex vivo gene therapy. J Neurosci Methods 2007; 163:338-49. [PMID: 17397931 DOI: 10.1016/j.jneumeth.2007.02.022] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Revised: 02/27/2007] [Accepted: 02/27/2007] [Indexed: 01/18/2023]
Abstract
Human neural progenitor cells (hNPC) hold great potential as an ex vivo system for delivery of therapeutic proteins to the central nervous system. When cultured as aggregates, termed neurospheres, hNPC are capable of significant in vitro expansion. In the current study, we present a robust method for lentiviral vector-mediated gene delivery into hNPC that maintains the differentiation and proliferative properties of neurosphere cultures while minimizing the amount of viral vector used and controlling the number of insertion sites per population. This method results in long-term, stable expression even after differentiation of the hNPC to neurons and astrocytes and allows for generation of equivalent transgenic populations of hNPC. In addition, the in vitro analysis presented predicts the behavior of transgenic lines in vivo when transplanted into a rodent model of Parkinson's disease. The methods presented provide a powerful tool for assessing the impact of factors such as promoter systems or different transgenes on the therapeutic utility of these cells.
Collapse
Affiliation(s)
- Elizabeth E Capowski
- Stem Cell Research Program, Waisman Center, University of Wisconsin-Madison, 1500 Highland Ave, Madison, WI 53705, USA.
| | | | | | | | | | | | | | | |
Collapse
|
422
|
Wang Q, Tang XN, Yenari MA. The inflammatory response in stroke. J Neuroimmunol 2007; 184:53-68. [PMID: 17188755 PMCID: PMC1868538 DOI: 10.1016/j.jneuroim.2006.11.014] [Citation(s) in RCA: 919] [Impact Index Per Article: 51.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Accepted: 11/17/2006] [Indexed: 12/17/2022]
Abstract
Recent works in the area of stroke and brain ischemia has demonstrated the significance of the inflammatory response accompanying necrotic brain injury. Acutely, this response appears to contribute to ischemic pathology, and anti-inflammatory strategies have become popular. This chapter will discuss the current knowledge of the contribution of systemic and local inflammation in experimental stroke. It will review the role of specific cell types including leukocytes, endothelium, glia, microglia, the extracellular matrix and neurons. Intracellular inflammatory signaling pathways such as nuclear factor kappa beta and mitogen-activated protein kinases, and mediators produced by inflammatory cells such as cytokines, chemokines, reactive oxygen species and arachidonic acid metabolites will be reviewed as well as the potential for therapy in stroke and hypoxic-ischemic injury.
Collapse
Affiliation(s)
- Qing Wang
- Department of Neurology, University of California, San Francisco and the San Francisco Veterans Affairs Medical Center, San Francisco, CA
- Department of Anesthesia, Stanford University School of Medicine, Stanford, CA
| | - Xian Nan Tang
- Department of Neurology, University of California, San Francisco and the San Francisco Veterans Affairs Medical Center, San Francisco, CA
- Department of Anesthesia, Stanford University School of Medicine, Stanford, CA
| | - Midori A. Yenari
- Department of Neurology, University of California, San Francisco and the San Francisco Veterans Affairs Medical Center, San Francisco, CA
| |
Collapse
|
423
|
Hicks AU, Hewlett K, Windle V, Chernenko G, Ploughman M, Jolkkonen J, Weiss S, Corbett D. Enriched environment enhances transplanted subventricular zone stem cell migration and functional recovery after stroke. Neuroscience 2007; 146:31-40. [PMID: 17320299 DOI: 10.1016/j.neuroscience.2007.01.020] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2006] [Revised: 12/19/2006] [Accepted: 01/09/2007] [Indexed: 12/27/2022]
Abstract
Stroke patients suffer from severe impairments and significant effort is under way to develop therapies to improve functional recovery. Stem cells provide a promising form of therapy to replace neuronal circuits lost to injury. Indeed, previous studies have shown that a variety of stem cell types can provide some functional recovery in animal models of stroke. However, it is unlikely that replacement therapy alone will be sufficient to maximize recovery. The aim of the present study was to determine if rodent stem cell transplants combined with rehabilitation resulted in enhanced functional recovery after focal ischemia in rats. Middle cerebral artery occlusion was induced by injection of the vasoconstrictive peptide endothelin-1 adjacent to the middle cerebral artery. Seven days after stroke the rats received adult neural stem cell transplants isolated from mouse subventricular zone or vehicle injection and then subsequently were housed in enriched or standard conditions. The rats in the enriched housing also had access to running wheels once a week. Enriched housing and voluntary running exercise enhanced migration of transplanted stem cells toward the region of injury after stroke and there was a trend toward increased survival of stem cells. Enrichment also increased the number of endogenous progenitor cells in the subventricular zone of transplanted animals. Finally, functional recovery measured in the cylinder test was facilitated only when the stem cell transplants were combined with enrichment and running exercise 7 days after the transplant. These results suggest that the ability of transplanted stem cells in promoting recovery can be augmented by environmental factors such as rehabilitation.
Collapse
Affiliation(s)
- A U Hicks
- Basic Medical Sciences, Faculty of Medicine, Memorial University, St. John's, NL, Canada A1B3V6
| | | | | | | | | | | | | | | |
Collapse
|
424
|
Tran PB, Banisadr G, Ren D, Chenn A, Miller RJ. Chemokine receptor expression by neural progenitor cells in neurogenic regions of mouse brain. J Comp Neurol 2007; 500:1007-33. [PMID: 17183554 PMCID: PMC2758702 DOI: 10.1002/cne.21229] [Citation(s) in RCA: 196] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We previously demonstrated that chemokine receptors are expressed by neural progenitors grown as cultured neurospheres. To examine the significance of these findings for neural progenitor function in vivo, we investigated whether chemokine receptors were expressed by cells having the characteristics of neural progenitors in neurogenic regions of the postnatal brain. Using in situ hybridization we demonstrated the expression of CCR1, CCR2, CCR5, CXCR3, and CXCR4 chemokine receptors by cells in the dentate gyrus (DG), subventricular zone of the lateral ventricle, and olfactory bulb. The pattern of expression for all of these receptors was similar, including regions where neural progenitors normally reside. In addition, we attempted to colocalize chemokine receptors with markers for neural progenitors. In order to do this we used nestin-EGFP and TLX-LacZ transgenic mice, as well as labeling for Ki67, a marker for dividing cells. In all three areas of the brain we demonstrated colocalization of chemokine receptors with these three markers in populations of cells. Expression of chemokine receptors by neural progenitors was further confirmed using CXCR4-EGFP BAC transgenic mice. Expression of CXCR4 in the DG included cells that expressed nestin and GFAP as well as cells that appeared to be immature granule neurons expressing PSA-NCAM, calretinin, and Prox-1. CXCR4-expressing cells in the DG were found in close proximity to immature granule neurons that expressed the chemokine SDF-1/CXCL12. Cells expressing CXCR4 frequently coexpressed CCR2 receptors. These data support the hypothesis that chemokine receptors are important in regulating the migration of progenitor cells in postnatal brain.
Collapse
Affiliation(s)
- Phuong B. Tran
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Medical School, Chicago, Illinois 60611
| | - Ghazal Banisadr
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Medical School, Chicago, Illinois 60611
| | - Dongjun Ren
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Medical School, Chicago, Illinois 60611
| | - Anjen Chenn
- Department of Pathology, Northwestern University Medical School, Chicago, Illinois 60611
| | - Richard J. Miller
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Medical School, Chicago, Illinois 60611
| |
Collapse
|
425
|
Lee HJ, Kim KS, Park IH, Kim SU. Human neural stem cells over-expressing VEGF provide neuroprotection, angiogenesis and functional recovery in mouse stroke model. PLoS One 2007; 2:e156. [PMID: 17225860 PMCID: PMC1764718 DOI: 10.1371/journal.pone.0000156] [Citation(s) in RCA: 182] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Accepted: 11/27/2006] [Indexed: 12/27/2022] Open
Abstract
Background Intracerebral hemorrhage (ICH) is a lethal stroke type. As mortality approaches 50%, and current medical therapy against ICH shows only limited effectiveness, an alternative approach is required, such as stem cell-based cell therapy. Previously we have shown that intravenously transplanted human neural stem cells (NSCs) selectively migrate to the brain and induce behavioral recovery in rat ICH model, and that combined administration of NSCs and vascular endothelial growth factor (VEGF) results in improved structural and functional outcome from cerebral ischemia. Methods and Findings We postulated that human NSCs overexpressing VEGF transplanted into cerebral cortex overlying ICH lesion could provide improved survival of grafted NSCs, increased angiogenesis and behavioral recovery in mouse ICH model. ICH was induced in adult mice by unilateral injection of bacterial collagenase into striatum. HB1.F3.VEGF human NSC line produced an amount of VEGF four times higher than parental F3 cell line in vitro, and induced behavioral improvement and 2–3 fold increase in cell survival at two weeks and eight weeks post-transplantation. Conclusions Brain transplantation of F3 human NSCs over-expressing VEGF near ICH lesion sites provided differentiation and survival of grafted human NSCs and renewed angiogenesis of host brain and functional recovery of ICH animals. These results suggest a possible application of the human neural stem cell line, which is genetically modified to over-express VEGF, as a therapeutic agent for ICH-stroke.
Collapse
Affiliation(s)
- Hong J. Lee
- Brain Disease Research Center, Ajou University School of Medicine, Suwon, Korea
- College of Bioscience and Biotechnology, Korea University, Seoul, Korea
- Division of Neurology, Department of Medicine, University of British Columbia Hospital, University of British Columbia, Vancouver, Canada
| | - Kwang S. Kim
- Brain Disease Research Center, Ajou University School of Medicine, Suwon, Korea
- Division of Neurology, Department of Medicine, University of British Columbia Hospital, University of British Columbia, Vancouver, Canada
| | - In H. Park
- Brain Disease Research Center, Ajou University School of Medicine, Suwon, Korea
| | - Seung U. Kim
- Brain Disease Research Center, Ajou University School of Medicine, Suwon, Korea
- Division of Neurology, Department of Medicine, University of British Columbia Hospital, University of British Columbia, Vancouver, Canada
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
426
|
Lee HJ, Kim KS, Kim EJ, Choi HB, Lee KH, Park IH, Ko Y, Jeong SW, Kim SU. Brain transplantation of immortalized human neural stem cells promotes functional recovery in mouse intracerebral hemorrhage stroke model. Stem Cells 2007; 25:1204-12. [PMID: 17218400 DOI: 10.1634/stemcells.2006-0409] [Citation(s) in RCA: 170] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We have generated stable, immortalized cell lines of human NSCs from primary human fetal telencephalon cultures via a retroviral vector encoding v-myc. HB1.F3, one of the human NSC lines, expresses a normal human karyotype of 46, XX, and nestin, a cell type-specific marker for NSCs. F3 has the ability to proliferate continuously and differentiate into cells of neuronal and glial lineage. The HB1.F3 human NSC line was used for cell therapy in a mouse model of intracerebral hemorrhage (ICH) stroke. Experimental ICH was induced in adult mice by intrastriatal administration of bacterial collagenase; 1 week after surgery, the rats were randomly divided into two groups so as to receive intracerebrally either human NSCs labeled with beta-galactosidase (n = 31) or phosphate-buffered saline (PBS) (n = 30). Transplanted NSCs were detected by 5-bromo-4-chloro-3-indolyl-beta-d-galactoside histochemistry or double labeling with beta-galactosidase (beta-gal) and mitogen-activated protein (MAP)2, neurofilaments (both for neurons), or glial fibrillary acidic protein (GFAP) (for astrocytes). Behavior of the animals was evaluated for period up to 8 weeks using modified Rotarod tests and a limb placing test. Transplanted human NSCs were identified in the perihematomal areas and differentiated into neurons (beta-gal/MAP2(+) and beta-gal/NF(+)) or astrocytes (beta-gal/GFAP(+)). The NSC-transplanted group showed markedly improved functional performance on the Rotarod test and limb placing after 2-8 weeks compared with the control PBS group (p < .001). These results indicate that the stable immortalized human NSCs are a valuable source of cells for cell replacement and gene transfer for the treatment of ICH and other human neurological disorders. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Hong J Lee
- Division of Neurology, Department of Medicine, University of British Columbia Hospital, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
427
|
Abstract
Stroke causes cell death but also birth and migration of new neurons within sites of ischemic damage. The cellular environment that induces neuronal regeneration and migration after stroke has not been defined. We have used a model of long-distance migration of newly born neurons from the subventricular zone to cortex after stroke to define the cellular cues that induce neuronal regeneration after CNS injury. Mitotic, genetic, and viral labeling and chemokine/growth factor gain- and loss-of-function studies show that stroke induces neurogenesis from a GFAP-expressing progenitor cell in the subventricular zone and migration of newly born neurons into a unique neurovascular niche in peri-infarct cortex. Within this neurovascular niche, newly born, immature neurons closely associate with the remodeling vasculature. Neurogenesis and angiogenesis are causally linked through vascular production of stromal-derived factor 1 (SDF1) and angiopoietin 1 (Ang1). Furthermore, SDF1 and Ang1 promote post-stroke neuroblast migration and behavioral recovery. These experiments define a novel brain environment for neuronal regeneration after stroke and identify molecular mechanisms that are shared between angiogenesis and neurogenesis during functional recovery from brain injury.
Collapse
Affiliation(s)
- John J. Ohab
- Department of Neurology, University of California, Los Angeles, Los Angeles, California 90095-1735, and
| | - Sheila Fleming
- Department of Neurology, University of California, Los Angeles, Los Angeles, California 90095-1735, and
| | - Armin Blesch
- Department of Neuroscience, University of California, San Diego, La Jolla, California 92093-0626
| | - S. Thomas Carmichael
- Department of Neurology, University of California, Los Angeles, Los Angeles, California 90095-1735, and
| |
Collapse
|
428
|
|
429
|
Lin T, Islam O, Heese K. ABC transporters, neural stem cells and neurogenesis – a different perspective. Cell Res 2006; 16:857-71. [PMID: 17088897 DOI: 10.1038/sj.cr.7310107] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Stem cells intrigue. They have the ability to divide exponentially, recreate the stem cell compartment, as well as create differentiated cells to generate tissues. Therefore, they should be natural candidates to provide a renewable source of cells for transplantation applied in regenerative medicine. Stem cells have the capacity to generate specific tissues or even whole organs like the blood, heart, or bones. A subgroup of stem cells, the neural stem cells (NSCs), is characterized as a self-renewing population that generates neurons and glia of the developing brain. They can be isolated, genetically manipulated and differentiated in vitro and reintroduced into a developing, adult or a pathologically altered central nervous system. NSCs have been considered for use in cell replacement therapies in various neurodegenerative diseases such as Parkinson's disease and Alzheimer's disease. Characterization of genes with tightly controlled expression patterns during differentiation represents an approach to understanding the regulation of stem cell commitment. The regulation of stem cell biology by the ATP-binding cassette (ABC) transporters has emerged as an important new field of investigation. As a major focus of stem cell research is in the manipulation of cells to enable differentiation into a targeted cell population; in this review, we discuss recent literatures on ABC transporters and stem cells, and propose an integrated view on the role of the ABC transporters, especially ABCA2, ABCA3, ABCB1 and ABCG2, in NSCs' proliferation, differentiation and regulation, along with comparisons to that in hematopoietic and other stem cells.
Collapse
Affiliation(s)
- Tingting Lin
- Department of Molecular and Cell Biology, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | | | | |
Collapse
|
430
|
Cacci E, Villa A, Parmar M, Cavallaro M, Mandahl N, Lindvall O, Martinez-Serrano A, Kokaia Z. Generation of human cortical neurons from a new immortal fetal neural stem cell line. Exp Cell Res 2006; 313:588-601. [PMID: 17156776 DOI: 10.1016/j.yexcr.2006.11.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Revised: 10/30/2006] [Accepted: 11/01/2006] [Indexed: 01/17/2023]
Abstract
Isolation and expansion of neural stem cells (NSCs) of human origin are crucial for successful development of cell therapy approaches in neurodegenerative diseases. Different epigenetic and genetic immortalization strategies have been established for long-term maintenance and expansion of these cells in vitro. Here we report the generation of a new, clonal NSC (hc-NSC) line, derived from human fetal cortical tissue, based on v-myc immortalization. Using immunocytochemistry, we show that these cells retain the characteristics of NSCs after more than 50 passages. Under proliferation conditions, when supplemented with epidermal and basic fibroblast growth factors, the hc-NSCs expressed neural stem/progenitor cell markers like nestin, vimentin and Sox2. When growth factors were withdrawn, proliferation and expression of v-myc and telomerase were dramatically reduced, and the hc-NSCs differentiated into glia and neurons (mostly glutamatergic and GABAergic, as well as tyrosine hydroxylase-positive, presumably dopaminergic neurons). RT-PCR analysis showed that the hc-NSCs retained expression of Pax6, Emx2 and Neurogenin2, which are genes associated with regionalization and cell commitment in cortical precursors during brain development. Our data indicate that this hc-NSC line could be useful for exploring the potential of human NSCs to replace dead or damaged cortical cells in animal models of acute and chronic neurodegenerative diseases. Taking advantage of its clonality and homogeneity, this cell line will also be a valuable experimental tool to study the regulatory role of intrinsic and extrinsic factors in human NSC biology.
Collapse
Affiliation(s)
- E Cacci
- Laboratory of Neural Stem Cell Biology, Section of Restorative Neurology, Lund Strategic Research Center for Stem Cell Biology and Cell Therapy, BMC B10, Klinikgatan 26, University Hospital, SE-221 84 Lund, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
431
|
Jomura S, Uy M, Mitchell K, Dallasen R, Bode CJ, Xu Y. Potential treatment of cerebral global ischemia with Oct-4+ umbilical cord matrix cells. Stem Cells 2006; 25:98-106. [PMID: 16960128 DOI: 10.1634/stemcells.2006-0055] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Potential therapeutic effects of Oct-4-positive rat umbilical cord matrix (RUCM) cells in treating cerebral global ischemia were evaluated using a reproducible model of cardiac arrest (CA) and resuscitation in rats. Animals were randomly assigned to four groups: A, sham-operated; B, 8-minute CA without pretreatment; C, 8-minute CA pretreated with defined media; and D, 8-minute CA pretreated with Oct-4(+) RUCM cells. Pretreatment was done 3 days before CA by 2.5-microl microinjection of defined media or approximately 10(4) Oct-4(+) RUCM cells in left thalamic nucleus, hippocampus, corpus callosum, and cortex. Damage was assessed histologically 7 days after CA and was quantified by the percentage of injured neurons in hippocampal CA1 regions. Little damage (approximately 3%-4%) was found in the sham group, whereas 50%-68% CA1 pyramidal neurons were injured in groups B and C. Pretreatment with Oct-4(+) RUCM cells significantly (p < .001) reduced neuronal loss to 25%-32%. Although the transplanted cells were found to have survived in the brain with significant migration, few were found directly in CA1. Therefore, transdifferentiation and fusion with host cells cannot be the predominant mechanisms for the observed protection. The Oct-4(+) RUCM cells might repair nonfocal tissue damage by an extracellular signaling mechanism. Treating cerebral global ischemia with umbilical cord matrix cells seems promising and worthy of further investigation.
Collapse
Affiliation(s)
- Sachiko Jomura
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260, USA
| | | | | | | | | | | |
Collapse
|
432
|
Abstract
AbstractThe lysosomal lumen contains numerous acidic hydrolases involved in the degradation of carbohydrates, lipids, proteins, and nucleic acids, which are basic cell components that turn over continuously within the cell and/or are ingested from outside of the cell. Deficiency in almost any of these hydrolases causes accumulation of the undigested material in secondary lysosomes, which manifests itself as a form of lysosomal storage disorder (LSD). Mutations in tripeptidyl-peptidase I (TPP I) underlie the classic late-infantile form of neuronal ceroid lipofuscinoses (CLN2), the most common neurodegenerative disorders of childhood. TPP I is an aminopeptidase with minor endopeptidase activity and Ser475 serving as an active-site nucleophile. The enzyme is synthesized as a highly glycosylated precursor transported by mannose-6-phosphate receptors to lysosomes, where it undergoes proteolytic maturation. This review summarizes recent progress in understanding of TPP I biology and molecular pathology of the CLN2 disease process, including distribution of the enzyme, its biosynthesis, glycosylation, transport and activation, as well as catalytic mechanisms and their potential implications for pathogenesis and treatment of the underlying disease. Promising data from gene and stem cell therapy in laboratory animals raise hope that CLN2 will be the first neurodegenerative LSD for which causative treatment will become available for humans.
Collapse
Affiliation(s)
- Adam A Golabek
- Department of Developmental Neurobiology, NYS Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314, USA.
| | | |
Collapse
|
433
|
Abstract
Many common neurological disorders, such as Parkinson's disease, stroke and multiple sclerosis, are caused by a loss of neurons and glial cells. In recent years, neurons and glia have been generated successfully from stem cells in culture, fueling efforts to develop stem-cell-based transplantation therapies for human patients. More recently, efforts have been extended to stimulating the formation and preventing the death of neurons and glial cells produced by endogenous stem cells within the adult central nervous system. The next step is to translate these exciting advances from the laboratory into clinically useful therapies.
Collapse
Affiliation(s)
- Olle Lindvall
- Laboratory of Neurogenesis and Cell Therapy, Section of Restorative Neurology, Wallenberg Neuroscience Center, SE-221 84 Lund, Sweden.
| | | |
Collapse
|
434
|
Abstract
Recent evidence shows that transplantation of neural stem/precursor cells may protect the central nervous system from inflammatory damage through a 'bystander' mechanism that is alternative to cell replacement. This novel mechanism, which might improve the success of transplantation procedures, is exerted by undifferentiated neural stem cells, the functional characteristics of which are regulated by important stem cell regulators released by CNS-resident and blood-borne inflammatory cells. Here, we discuss this alternative bystander mechanism in the context of the atypical ectopic perivascular niche. We propose that it is the most challenging example of reciprocal therapeutic crosstalk between the inflamed CNS and systemically transplanted neural stem cells.
Collapse
Affiliation(s)
- Gianvito Martino
- Neuroimmunology Unit, DIBIT, and Department of Neurology and Neurophysiology, San Raffaele Scientific Institute, via Olgettina 58, 20132, Milano, Italy.
| | | |
Collapse
|
435
|
Yasuhara T, Matsukawa N, Yu G, Xu L, Mays RW, Kovach J, Deans R, Hess DC, Carroll JE, Borlongan CV. Transplantation of cryopreserved human bone marrow-derived multipotent adult progenitor cells for neonatal hypoxic-ischemic injury: targeting the hippocampus. Rev Neurosci 2006; 17:215-25. [PMID: 16703953 DOI: 10.1515/revneuro.2006.17.1-2.215] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
There is currently no treatment for neonatal hypoxic-ischemic (HI) injury. Although limited clinical trials of stem cell therapy have been initiated in a number of neurological disorders, the preclinical evidence of a cell-based therapy for neonatal HI injury remains in its infancy. Stem cell therapy, via stimulation of endogenous stem cells or transplantation of exogenous stem cells, has targeted neurogenic sites, such as the hippocampus, for brain protection and repair. The hippocampus has also been shown to secrete growth factors, especially during the postnatal period, suggesting that this brain region presents a highly conducive microenvironment for cell survival. Based on its neurogenic and neurotrophic factor-secreting features, the hippocampus stands as an appealing target for stem cell therapy. In the present study, we investigated the efficacy of intrahippocampal transplantation of multipotent adult progenitor cells (MAPCs), which are pluripotent progenitor cells with the ability to differentiate into a neuronal lineage. Seven-day old Sprague-Dawley rats were initially subjected to unilateral HI injury, that involved permanent ligation of the right common carotid artery and subsequent exposure to hypoxic environment. At day 7 after HI
Collapse
Affiliation(s)
- Takao Yasuhara
- Department of Neurology, Medical College of Georgia, 1120 15th Street, Augusta, GA 30912-3200, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
436
|
Wennersten A, Holmin S, Al Nimer F, Meijer X, Wahlberg LU, Mathiesen T. Sustained survival of xenografted human neural stem/progenitor cells in experimental brain trauma despite discontinuation of immunosuppression. Exp Neurol 2006; 199:339-47. [PMID: 16490195 DOI: 10.1016/j.expneurol.2005.12.035] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2005] [Revised: 12/22/2005] [Accepted: 12/29/2005] [Indexed: 01/19/2023]
Abstract
Neural stem cells have emerged as a promising therapeutic tool in CNS disease and injuries. In the clinical setting, cultured human neural stem/progenitor cells (hNSC) are an attractive possibility for transplantation to the damaged brain. However, transplantation of hNSC requires toxic immunosuppressive treatment to avoid rejection. The aim of the current study was to evaluate if shortening the duration of immunosuppression by cyclosporin A would affect hNSC survival and differentiation after transplantation to the site of a focal brain injury in the rat. hNSC were xenografted to the hippocampus and the medial limit of an experimentally induced cortical contusion. The animals received immunosuppression for either 6 or 3 weeks or no immunosuppression. The status of the grafted human cells was analysed by immunohistochemistry. No statistically significant differences were observed between the two immunosuppressed groups regarding graft survival, migration or proliferation at 6 weeks post-transplantation. In contrast, the graft survival was extremely poor in the non-immunosuppressed group. Furthermore, the expression of the differentiation markers nestin, neuronal nuclei (NeuN) and glial fibrillary acidic protein (GFAP) in the transplanted cells did not differ significantly between the two immunosuppressed groups. Moreover, a fourth group of eight animals that were immunosuppressed for 3 weeks were allowed to survive for 6 months. Five of these rats demonstrated robust graft survival in the hippocampus and scattered cells in the cortex. This study demonstrates the importance of immunosuppression but also the possibility of shortening immunosuppression without impacting on the phenotype of the grafted hNSC.
Collapse
Affiliation(s)
- André Wennersten
- Department of Clinical Neuroscience, Section of Clinical CNS Research, Karolinska Institutet, S-171 76 Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
437
|
Pagani F, Lauro C, Fucile S, Catalano M, Limatola C, Eusebi F, Grassi F. Functional properties of neurons derived from fetal mouse neurospheres are compatible with those of neuronal precursors in vivo. J Neurosci Res 2006; 83:1494-501. [PMID: 16547970 DOI: 10.1002/jnr.20835] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Neural stem cells can be propagated in culture as neurospheres, yielding neurons and glial cells upon differentiation. Although the neurosphere model is widely used, the functional properties of the neurosphere-derived neurons have been only partially characterized, and it is unclear whether repeated passaging alters their functional properties. In this study, we analyzed voltage- and transmitter-gated responses in neuron-like cells obtained by differentiating fetal mouse neurospheres at increasing passages in culture. We report that neurons fire overshooting action potentials in response to depolarizing currents up to passage 10 but loose this capability at later passages, as the density of voltage-gated Na(+) and K(+) currents decreases. In contrast, the immunoreactivity for the neuronal marker beta-tubulin remains unaltered up to passage 21, indicating that this marker is not representative of cell function. In almost all neurons, gamma-aminobutyric acid (GABA) evoked bicuculline-sensitive whole-cell currents, resulting from the activation of GABA(A) receptors, which appeared to be excitatory, insofar as the reversal potential of GABA-gated current was about -50 mV. Much smaller currents were elicited by the glutamatergic agonist AMPA, and only occasional responses to glycine were detected. In these functional aspects, neurosphere-derived neurons are similar to immature neurons differentiating in vivo. Therefore, at least for a limited number of passages in vitro, neurospheres provide an adequate model of in vivo neurogenesis.
Collapse
Affiliation(s)
- Francesca Pagani
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Fisiologia Umana e Farmacologia and Centro di Eccellenza BEMM, Universitá di Roma La Sapienza, Roma, Italy
| | | | | | | | | | | | | |
Collapse
|
438
|
Wieloch T, Nikolich K. Mechanisms of neural plasticity following brain injury. Curr Opin Neurobiol 2006; 16:258-64. [PMID: 16713245 DOI: 10.1016/j.conb.2006.05.011] [Citation(s) in RCA: 241] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2006] [Accepted: 05/08/2006] [Indexed: 01/19/2023]
Abstract
Brain insults cause rapid cell death, and a disruption of functional circuits, in the affected regions. As the injured tissue recovers from events associated with cell death, regenerative processes are activated that over months lead to a certain degree of functional recovery. Factors produced by new neurons and glia, axonal sprouting of surviving neurons, and new synapse formation help to re-establish some of the lost functions. The timing and location of such events is crucial in the success of the regenerative process. Comprehensive gene expression profiling and proteomic analyses have enabled a deeper molecular and cellular mechanistic understanding of post-injury brain regeneration. These new mechanistic insights are aiding the design of novel therapeutic modalities that enhance regeneration.
Collapse
Affiliation(s)
- Tadeusz Wieloch
- Laboratory for Experimental Brain Research, Wallenberg Neuroscience Center, University of Lund, BMCA13, 221 85 Lund, Sweden.
| | | |
Collapse
|
439
|
An Y, Tsang KKS, Zhang H. Potential of stem cell based therapy and tissue engineering in the regeneration of the central nervous system. Biomed Mater 2006; 1:R38-44. [PMID: 18460755 DOI: 10.1088/1748-6041/1/2/r02] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The insufficiency of self-repair and regeneration of the central nervous system (CNS) leads to difficulty of rehabilitation of the injured brain. In the past few decades, the significant progress in cell therapy and tissue engineering has contributed to the functional recovery of the CNS to a great extent. The present review focuses on the potential role of stem cell based therapy and tissue engineering in the regeneration of the CNS.
Collapse
Affiliation(s)
- Yihua An
- Department of Neural Stem Cell, Beijing Neurosurgical Institute affiliated to Capital University of Medical Sciences, Beijing 100050, People's Republic of China
| | | | | |
Collapse
|
440
|
Abstract
Human neuroblastoma is an embryonic cancer of the neural crest. Cellular heterogeneity is a characteristic feature of both tumors and derived cell lines. Recent studies have revealed that both cell lines and tumors contain cancer stem cells. In culture, these cells are self-renewing, multipotent, and highly malignant; in tumors their frequency correlates with a worse prognosis. Their identification and characterization should now permit a targeted approach to more effective treatment of this often fatal childhood cancer.
Collapse
Affiliation(s)
- Robert A Ross
- Laboratory of Neurobiology, Department of Biological Sciences, 441 East Fordham Road, Fordham University, Bronx, NY 10458, USA.
| | | |
Collapse
|
441
|
Davis SF, Hood J, Thomas A, Bunnell BA. Isolation of Adult Rhesus Neural Stem and Progenitor Cells and Differentiation into Immature Oligodendrocytes. Stem Cells Dev 2006; 15:191-9. [PMID: 16646665 DOI: 10.1089/scd.2006.15.191] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Neural stem and progenitor cells (NSPCs) have been isolated from several regions of the brain from mice, rats, and humans. These cells possess the characteristics of self-renewal and differentiation along all major neural lineages. Herein, the first isolation of NSPCs from the adult rhesus macaque brain and characterization of these cells based on their gene and protein expression profile, self-renewal, and ability to differentiate along an oligodendrocyte lineage are described. Flow cytometric analysis revealed that this cell population is CD90(+)/CD164(+)/CD34(-) and, therefore, resembles a nonhematopoietic stem cell population. Similar to other mesenchymal and neural stem cell populations, rhesus NSPCs cells express stemness-related genes, including the transcription factors Oct-4, Rex-1, and Sox-2 and the gene encoding for the intermediate filament protein nestin. The co-expression of the neural and glial markers MAP2ab, GFAP, NF-L, and NeuroD was also observed at both the mRNA and protein levels. When rhesus NSPCs were induced to differentiate with a cocktail of retinoic acid and the neurotrophins (NGF, BDNF, and NT-3), they underwent morphologic changes including taking on an oligodendrocyte precursor morphology. Along with these phenotypic changes, a decrease in MAP2ab expression and new expression of the oligodendrocyte precursor protein O4 were observed. Taken together, these results demonstrate the existence of a stem and progenitor cell-like population in the nonhuman primate brain, which may have the potential to generate oligodendroglia for use in the development of cellular therapies for demyelinating diseases.
Collapse
Affiliation(s)
- Scott F Davis
- Division of Gene Therapy, Tulane National Primate Center, Tulane University Health Sciences Center, Covington, LA 70433, USA
| | | | | | | |
Collapse
|
442
|
Abstract
Neural stem cells are a self-renewing population that generates the neurons and glia of the developing brain. They can be isolated, proliferated, genetically manipulated and differentiated in vitro and reintroduced into a developing, adult or pathologically altered CNS. Neural stem cells have been considered for use in cell replacement therapies in various neurodegenerative diseases, and an unexpected and potentially valuable characteristic of these cells has recently been revealed--they are highly migratory and seem to be attracted to areas of brain pathology such as ischaemic and neoplastic lesions. Here, we speculate on the ways in which neural stem cells might be exploited as delivery vehicles for gene therapy in the CNS.
Collapse
|
443
|
Belmadani A, Tran PB, Ren D, Miller RJ. Chemokines regulate the migration of neural progenitors to sites of neuroinflammation. J Neurosci 2006; 26:3182-91. [PMID: 16554469 PMCID: PMC2740990 DOI: 10.1523/jneurosci.0156-06.2006] [Citation(s) in RCA: 249] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Revised: 02/05/2006] [Accepted: 02/07/2006] [Indexed: 01/09/2023] Open
Abstract
Many studies have shown that transplanted or endogenous neural progenitor cells will migrate toward damaged areas of the brain. However, the mechanism underlying this effect is not clear. Here we report that, using hippocampal slice cultures, grafted neural progenitor cells (NPs) migrate toward areas of neuroinflammation and that chemokines are a major regulator of this process. Migration of NPs was observed after injecting an inflammatory stimulus into the area of the fimbria and transplanting enhanced green fluorescent protein (EGFP)-labeled NPs into the dentate gyrus of cultured hippocampal slices. Three to 7 d after transplantation, EGFP-NPs in control slices showed little tendency to migrate and had differentiated into neurons and glia. In contrast, in slices injected with inflammatory stimuli, EGFP-NPs migrated toward the site of the injection. NPs in these slices also survived less well. The inflammatory stimuli used were a combination of the cytokines tumor necrosis factor-alpha and interferon-gamma, the bacterial toxin lipopolysaccharide, the human immunodeficiency virus-1 coat protein glycoprotein 120, or a beta-amyloid-expressing adenovirus. We showed that these inflammatory stimuli increased the synthesis of numerous chemokines and cytokines by hippocampal slices. When EGFP-NPs from CC chemokine receptor CCR2 knock-out mice were transplanted into slices, they exhibited little migration toward sites of inflammation. Similarly, wild-type EGFP-NPs exhibited little migration toward inflammatory sites when transplanted into slices prepared from monocyte chemoattractant protein-1 (MCP-1) knock-out mice. These data indicate that factors secreted by sites of neuroinflammation are attractive to neural progenitors and suggest that chemokines such as MCP-1 play an important role in this process.
Collapse
|
444
|
Pollock K, Stroemer P, Patel S, Stevanato L, Hope A, Miljan E, Dong Z, Hodges H, Price J, Sinden JD. A conditionally immortal clonal stem cell line from human cortical neuroepithelium for the treatment of ischemic stroke. Exp Neurol 2006; 199:143-55. [PMID: 16464451 DOI: 10.1016/j.expneurol.2005.12.011] [Citation(s) in RCA: 209] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2005] [Accepted: 12/05/2005] [Indexed: 01/19/2023]
Abstract
Transplantation of neural stem cells into the brain is a novel approach to the treatment of chronic stroke disability. For clinical application, safety and efficacy of defined, stable cell lines produced under GMP conditions are required. To this end, a human neural stem cell line, CTX0E03, was derived from human somatic stem cells following genetic modification with a conditional immortalizing gene, c-mycER(TAM). This transgene generates a fusion protein that stimulates cell proliferation in the presence of a synthetic drug 4-hydroxy-tamoxifen (4-OHT). The cell line is clonal, expands rapidly in culture (doubling time 50-60 h) and has a normal human karyotype (46 XY). In the absence of growth factors and 4-OHT, the cells undergo growth arrest and differentiate into neurons and astrocytes. Transplantation of CTX0E03 in a rat model of stroke (MCAo) caused statistically significant improvements in both sensorimotor function and gross motor asymmetry at 6-12 weeks post-grafting. In addition, cell migration and long-term survival in vivo were not associated with significant cell proliferation. These data indicate that CTX0E03 has the appropriate biological and manufacturing characteristics necessary for development as a therapeutic cell line.
Collapse
Affiliation(s)
- Kenneth Pollock
- ReNeuron Ltd., 10 Nugent Road, Surrey Research Park, Guildford, Surrey GU2 7AF, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
445
|
Visnyei K, Tatsukawa KJ, Erickson RI, Simonian S, Oknaian N, Carmichael ST, Kornblum HI. Neural progenitor implantation restores metabolic deficits in the brain following striatal quinolinic acid lesion. Exp Neurol 2006; 197:465-74. [PMID: 16310773 DOI: 10.1016/j.expneurol.2005.10.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2005] [Revised: 10/10/2005] [Accepted: 10/13/2005] [Indexed: 01/10/2023]
Abstract
Neural progenitor transplantation is a potential treatment for neurodegenerative diseases, including Huntington's disease (HD). In the current study, we tested the potential of rat embryonic neural progenitors expanded in vitro as therapy in the rat quinolinic acid-lesioned striatum, a model that demonstrates some of the pathological features of HD. We used positron emission tomography (PET) to demonstrate that the intrastriatal injection of cultured rat neural progenitors results in improved metabolic function in the striatum and overlying cortex when compared to media-injected controls. Transplanted progenitors were capable of surviving, migrating long distances and differentiating into neurons and glia. The cortices of transplanted animals contained greater numbers of neurons in regions that had shown metabolic improvement. However, histological analysis revealed that only a small fraction of these increased neurons could be accounted for by engrafted cells, indicating that the metabolic sparing was likely the result of a trophic action of the transplanted cells on the host. Behavioral testing of the implanted animals did not reveal improvement in apomorphine-induced rotation. These data demonstrate that progenitor cell implantation results in enhanced metabolic function and sparing of neuron number, but that these functions do not necessarily result in the restoration of complex circuitry.
Collapse
Affiliation(s)
- Koppany Visnyei
- Department of Molecular and Medical Pharmacology, UCLA School of Medicine, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | |
Collapse
|
446
|
Bliss TM, Kelly S, Shah AK, Foo WC, Kohli P, Stokes C, Sun GH, Ma M, Masel J, Kleppner SR, Schallert T, Palmer T, Steinberg GK. Transplantation of hNT neurons into the ischemic cortex: Cell survival and effect on sensorimotor behavior. J Neurosci Res 2006; 83:1004-14. [PMID: 16496370 DOI: 10.1002/jnr.20800] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Cell transplantation offers a potential new treatment for stroke. Animal studies using models that produce ischemic damage in both the striatum and the frontal cortex have shown beneficial effects when hNT cells (postmitotic immature neurons) were transplanted into the ischemic striatum. In this study, we investigated the effect of hNT cells in a model of stroke in which the striatum remains intact and damage is restricted to the cortex. hNT cells were transplanted into the ischemic cortex 1 week after stroke induced by distal middle cerebral artery occlusion (dMCAo). The cells exhibited robust survival at 4 weeks posttransplant even at the lesion border. hNT cells did not migrate, but they did extend long neurites into the surrounding parenchyma mainly through the white matter. Neurite extension was predominantly toward the lesion in ischemic animals but was bidirectional in uninjured animals. Extension of neurites through the cortex toward the lesion was also seen when there was some surviving cortical tissue between the graft and the infarct. Prolonged deficits were obtained in four tests of sensory-motor function. hNT-transplanted animals showed a significant improvement in functional recovery on one motor test, but there was no effect on the other three tests relative to control animals. Thus, despite clear evidence of graft survival and neurite extension, the functional benefit of hNT cells after ischemia is not guaranteed. Functional benefit could depend on other variables, such as infarct location, whether the cells mature, the behavioral tests employed, rehabilitation training, or as yet unidentified factors.
Collapse
Affiliation(s)
- T M Bliss
- Department of Neurosurgery, Stanford University, Stanford, California, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
447
|
Tarasenko YI, Gao J, Nie L, Johnson KM, Grady JJ, Hulsebosch CE, McAdoo DJ, Wu P. Human fetal neural stem cells grafted into contusion-injured rat spinal cords improve behavior. J Neurosci Res 2006; 85:47-57. [PMID: 17075895 DOI: 10.1002/jnr.21098] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Grafted human neural stem cells (hNSCs) may help to alleviate functional deficits resulting from spinal cord injury by bridging gaps, replacing lost neurons or oligodendrocytes, and providing neurotrophic factors. Previously, we showed that primed hNSCs differentiated into cholinergic neurons in an intact spinal cord. In this study, we tested the fate of hNSCs transplanted into a spinal cord T10 contusion injury model. When grafted into injured spinal cords of adult male rats on either the same day or 3 or 9 days after a moderate contusion injury, both primed and unprimed hNSCs survived for 3 months postengraftment only in animals that received grafts at 9 days postinjury. Histological analyses revealed that primed hNSCs tended to survive better and differentiated at higher rates into neurons and oligodendrocytes than did unprimed counterparts. Furthermore, only primed cells gave rise to cholinergic neurons. Animals receiving primed hNSC grafts on the ninth day postcontusion improved trunk stability, as determined by rearing activity measurements 3 months after grafting. This study indicates that human neural stem cell fate determination in vivo is influenced by the predifferentiation stage of stem cells prior to grafting. Furthermore, stem cell-mediated facilitation of functional improvement depends on the timing of transplantation after injury, the grafting sites, and the survival of newly differentiated neurons and oligodendrocytes.
Collapse
Affiliation(s)
- Yevgeniya I Tarasenko
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | | | | | | | | | | | | | | |
Collapse
|
448
|
Zhang RL, Zhang ZG, Chopp M. Neurogenesis in the adult ischemic brain: generation, migration, survival, and restorative therapy. Neuroscientist 2005; 11:408-16. [PMID: 16151043 DOI: 10.1177/1073858405278865] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This article reviews current data on the induction of neurogenesis after stroke in the adult brain. The discussion of neurogenesis is divided into production, migration, and survival of these newly formed cells. For production, the subpopulations and the types of cell division are presented. Discussion of cell migration entails presenting data on both the pathways as well as the molecular targeting of newly formed neural progenitor cells to sites of injury. The role of the vascular and the astrocytic microenvironment in promoting the survival and integration of progenitor cells is also presented. Cell-based and pharmacological therapies designed to restore neurological function that promote neurogenesis are described. These therapies also induce angiogenesis and astrocytic changes that brain tissue, which prime the ischemic brain to foster the survival of the newly formed progenitor cells. Signaling pathways that regulate neurogenesis and angiogenesis are also addressed. This review summarizes recent data on neurogenesis and provides insight into the potential for restorative treatments of stroke.
Collapse
Affiliation(s)
- Rui Lan Zhang
- Department of Neurology, Henry Ford Health Sciences Center, Detroit, Michigan 48202, USA
| | | | | |
Collapse
|
449
|
|
450
|
Wong AM, Hodges H, Horsburgh K. Neural stem cell grafts reduce the extent of neuronal damage in a mouse model of global ischaemia. Brain Res 2005; 1063:140-50. [PMID: 16289485 DOI: 10.1016/j.brainres.2005.09.049] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2005] [Revised: 09/13/2005] [Accepted: 09/25/2005] [Indexed: 12/27/2022]
Abstract
The therapeutic potential of neural stem cell transplantation has been well demonstrated in many models of focal brain damage. However, few studies have sought to determine whether neural stem cells are therapeutic in models of diffuse brain injury, such as observed in Alzheimer's disease and global ischaemia. The present study investigated the effects of transplanted MHP36 neural stem cells on the extent of ischaemic damage in a mouse model of global ischaemia and the effects of the immunosuppressive agent cyclosporin A (CsA). C57Bl/6J mice received an intrastriatal graft of MHP36 neural stem cells 3 days after selective neuronal damage had been induced by global ischaemia. The experimental group was subdivided into CsA or saline controls. We discovered that grafts of MHP36 neural stem cells were able to differentiate into neurons and reduce the extent of ischaemic neuronal damage. This reduction was particularly apparent at 4 week post-transplantation and is independent of CsA immunosuppression. MHP36 cells survived robustly in host ischaemic brain and migrated away from the injection tract towards the caudate nucleus and corpus callosum. Although MHP36 grafts were associated with an acute inflammatory response from reactive astrocytes and microglia at 1 week post-transplantation, this decreased markedly by 4 weeks post-transplantation even in the absence of CsA immunosuppression. This is the first study showing a therapeutic benefit of neural stem cells in a highly diffuse brain injury, further highlighting the possibilities of stem cell transplantation for all types of neurodegenerative disease.
Collapse
Affiliation(s)
- Andrew M Wong
- Centre for Neuroscience Research, University of Edinburgh, 1 George Square, Edinburgh EH8 9LS, UK.
| | | | | |
Collapse
|