401
|
What have human experimental overfeeding studies taught us about adipose tissue expansion and susceptibility to obesity and metabolic complications? Int J Obes (Lond) 2017; 41:853-865. [PMID: 28077863 DOI: 10.1038/ijo.2017.4] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 12/08/2016] [Accepted: 12/18/2016] [Indexed: 02/07/2023]
Abstract
Overfeeding experiments, in which we impose short-term positive energy balance, help unravel the cellular, physiological and behavioural adaptations to nutrient excess. These studies mimic longer-term mismatched energy expenditure and intake. There is considerable inter-individual heterogeneity in the magnitude of weight gain when exposed to similar relative caloric excess reflecting variable activation of compensatory adaptive mechanisms. Significantly, given similar relative weight gain, individuals may be protected from/predisposed to metabolic complications (insulin resistance, dyslipidaemia, hypertension), non-alcoholic fatty liver disease and cardiovascular disease. Similar mechanistic considerations underpinning the heterogeneity of overfeeding responses are pertinent in understanding emerging metabolic phenotypes, for example, metabolically unhealthy normal weight and metabolically healthy obesity. Intrinsic and extrinsic factors modulate individuals' overfeeding response: intrinsic factors include gender/hormonal status, genetic/ethnic background, baseline metabolic health and cardiorespiratory fitness; extrinsic factors include macronutrient (fat vs carbohydrate) content, fat/carbohydrate composition and overfeeding pattern. Subcutaneous adipose tissue (SAT) analysis, coupled with metabolic assessment, with overfeeding have revealed how SAT remodels to accommodate excess nutrients. SAT remodelling occurs either by hyperplasia (increased adipocyte number) or by hypertrophy (increased adipocyte size). Biological responses of SAT also govern the extent of ectopic (visceral/liver) triglyceride deposition. Body composition analysis by DEXA/MRI (dual energy X-ray absorptiometry/magnetic resonance imaging) have determined the relative expansion of SAT (including abdominal/gluteofemoral SAT) vs ectopic fat with overfeeding. Such studies have contributed to the adipose expandability hypothesis whereby SAT has a finite capacity to expand (governed by intrinsic biological characteristics), and once capacity is exceeded ectopic triglyceride deposition occurs. The potential for SAT expandability confers protection from/predisposes to the adverse metabolic responses to overfeeding. The concept of a personal fat threshold suggests a large inter-individual variation in SAT capacity with ectopic depot expansion/metabolic decompensation once one's own threshold is exceeded. This review summarises insight gained from overfeeding studies regarding susceptibility to obesity and related complications with nutrient excess.
Collapse
|
402
|
Liu L, Wan J, Lang H, Si M, Zhu J, Zhou Y, Mi M. Dihydromyricetin delays the onset of hyperglycemia and ameliorates insulin resistance without excessive weight gain in Zucker diabetic fatty rats. Mol Cell Endocrinol 2017; 439:105-115. [PMID: 27984083 DOI: 10.1016/j.mce.2016.10.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 10/25/2016] [Accepted: 10/26/2016] [Indexed: 01/23/2023]
Abstract
Many flavonoids are reported to be partial agonists of PPARγ and exert antidiabetic effects with fewer side effects compared with full agonists. Here, we assessed the effects of flavonoid dihydromyricetin (DHM) on glucose homeostasis in male Zucker diabetic fatty rats. Animals were treated with DHM (50-200 mg kg-1) or rosiglitazone (4 mg kg-1) once a day for 8 weeks. We found that DHM reduced fasting blood glucose and delayed the onset of hyperglycemia by 4 weeks. Furthermore, DHM preserved pancreatic β-cell mass, elevated adiponectin and improved lipid profile more vigorously than rosiglitazone. Notably, DHM decreased body weight gain and fat accumulation in both liver and adipose tissue, while rosiglitazone caused a significant increase of body weight and fat accumulation. DHM inhibited phosphorylation of PPARγ at serine 273 more efficiently than rosiglitazone. These results suggest that DHM exerts antidiabetic effects without causing excessive body weight gain via inhibition of PPARγ phosphorylation.
Collapse
Affiliation(s)
- Lei Liu
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, China.
| | - Jing Wan
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, China.
| | - Hedong Lang
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, China.
| | - Mingyu Si
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, China.
| | - Jundong Zhu
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, China.
| | - Yong Zhou
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, China.
| | - Mantian Mi
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, China.
| |
Collapse
|
403
|
Tang HN, Tang CY, Man XF, Tan SW, Guo Y, Tang J, Zhou CL, Zhou HD. Plasticity of adipose tissue in response to fasting and refeeding in male mice. Nutr Metab (Lond) 2017; 14:3. [PMID: 28070205 PMCID: PMC5217231 DOI: 10.1186/s12986-016-0159-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 12/27/2016] [Indexed: 12/24/2022] Open
Abstract
Background Fasting is the most widely prescribed and self-imposed strategy for treating excessive weight gain and obesity, and has been shown to exert a number of beneficial effects. The aim of the present study was to determine the exact role of fasting and subsequent refeeding on fat distribution in mice. Methods C57/BL6 mice fasted for 24 to 72 h and were then subjected to refeeding for 72 h. At 24, 48 and 72 h of fasting, and 12, 24, 48 and 72 h of refeeding, the mice were sacrificed, and serum and various adipose tissues were collected. Serum biochemical parameters, adipose tissue masses and histomorphological analysis of different depots were detected. MRNA was isolated from various adipose tissues, and the expressions of thermogenesis, visceral signature and lipid metabolism-related genes were examined. The phenotypes of adipose tissues between juvenile and adult mice subjected to fasting and refeeding were also compared. Results Fasting preferentially consumed mesenteric fat mass and decreased the cell size of mesenteric depots; however, refeeding recovered the mass and morphology of inguinal adipose tissues preferentially compared with visceral depots. Thermogenesis-related gene expression in the inguinal WAT and interscapular BAT were suppressed. Mitochondrial biogenesis was affected by fasting in a depot-specific manner. Furthermore, a short period of fasting led to an increase in visceral signature genes (Wt1, Tcf21) in subcutaneous adipose tissue, while the expression of these genes decreased sharply as the fasting time increased. Additionally, lipogenesis-related markers were enhanced to a greater extent greater in subcutaneous depots compared with those in visceral adipose tissues by refeeding. Although similar phenotypic changes in adipose tissue were observed between juvenile mice and adult mice subjected to fasting and refeeding, the alterations appeared earlier and more sensitively in juvenile mice. Conclusions Fasting preferentially consumes lipids in visceral adipose tissues, whereas refeeding recovers lipids predominantly in subcutaneous adipose tissues, which indicated the significance of plasticity of adipose organs for fat distribution when subject to food deprivation or refeeding. Electronic supplementary material The online version of this article (doi:10.1186/s12986-016-0159-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hao-Neng Tang
- Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, 139 Ren-Min Middle Road, Changsha, Hunan 410011 China ; Department of Laboratory Medicine, The Second XiangYa Hospital, Central South University, Changsha, Hunan 410011 China
| | - Chen-Yi Tang
- Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, 139 Ren-Min Middle Road, Changsha, Hunan 410011 China
| | - Xiao-Fei Man
- Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, 139 Ren-Min Middle Road, Changsha, Hunan 410011 China
| | - Shu-Wen Tan
- Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, 139 Ren-Min Middle Road, Changsha, Hunan 410011 China
| | - Yue Guo
- Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, 139 Ren-Min Middle Road, Changsha, Hunan 410011 China
| | - Jun Tang
- Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, 139 Ren-Min Middle Road, Changsha, Hunan 410011 China
| | - Ci-La Zhou
- Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, 139 Ren-Min Middle Road, Changsha, Hunan 410011 China
| | - Hou-De Zhou
- Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, 139 Ren-Min Middle Road, Changsha, Hunan 410011 China
| |
Collapse
|
404
|
Glöde A, Naumann J, Gnad T, Cannone V, Kilic A, Burnett JC, Pfeifer A. Divergent effects of a designer natriuretic peptide CD-NP in the regulation of adipose tissue and metabolism. Mol Metab 2017; 6:276-287. [PMID: 28271034 PMCID: PMC5323888 DOI: 10.1016/j.molmet.2016.12.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/20/2016] [Accepted: 12/29/2016] [Indexed: 01/06/2023] Open
Abstract
Objective Obesity is defined as an abnormal increase in white adipose tissue (WAT) and is a major risk factor for type 2 diabetes and cardiovascular disease. Brown adipose tissue (BAT) dissipates energy and correlates with leanness. Natriuretic peptides have been shown to be beneficial for brown adipocyte differentiation and browning of WAT. Methods Here, we investigated the effects of an optimized designer natriuretic peptide (CD-NP) on murine adipose tissues in vitro and in vivo. Results In murine brown and white adipocytes, CD-NP activated cGMP production, promoted adipogenesis, and increased thermogenic markers. Consequently, mice treated for 10 days with CD-NP exhibited increased “browning” of WAT. To study CD-NP effects on diet-induced obesity (DIO), we delivered CD-NP for 12 weeks. Although CD-NP reduced inflammation in WAT, CD-NP treated DIO mice exhibited a significant increase in body mass, worsened glucose tolerance, and hepatic steatosis. Long-term CD-NP treatment resulted in an increased expression of the NP scavenging receptor (NPR-C) and decreased lipolytic activity. Conclusions NP effects differed depending on the duration of treatment raising questions about the rational of natriuretic peptide treatment in obese patients. The optimized designer natriuretic peptide CD-NP promotes adipogenesis. Duration of treatment is decisive: short-term promotes browning whereas long-term treatment exacerbates obesity and diabetes. Long-term CD-NP treatment reduces WAT inflammation and increases adiponectin expression.
Collapse
Affiliation(s)
- Anja Glöde
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, Bonn, Germany; Bonn International Graduate School of Drug Sciences BIGSDrugS, University of Bonn, Bonn, Germany
| | - Jennifer Naumann
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, Bonn, Germany
| | - Thorsten Gnad
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, Bonn, Germany
| | - Valentina Cannone
- Cardiorenal Research Laboratory, Department of Cardiovascular Diseases, Mayo Clinic, Rochester, USA
| | - Ana Kilic
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, Bonn, Germany
| | - John C Burnett
- Cardiorenal Research Laboratory, Department of Cardiovascular Diseases, Mayo Clinic, Rochester, USA
| | - Alexander Pfeifer
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, Bonn, Germany; Bonn International Graduate School of Drug Sciences BIGSDrugS, University of Bonn, Bonn, Germany.
| |
Collapse
|
405
|
Lotta LA, Gulati P, Day FR, Payne F, Ongen H, van de Bunt M, Gaulton KJ, Eicher JD, Sharp SJ, Luan J, De Lucia Rolfe E, Stewart ID, Wheeler E, Willems SM, Adams C, Yaghootkar H, EPIC-InterAct Consortium, Cambridge FPLD1 Consortium, Forouhi NG, Khaw KT, Johnson AD, Semple RK, Frayling T, Perry JRB, Dermitzakis E, McCarthy MI, Barroso I, Wareham NJ, Savage DB, Langenberg C, O’Rahilly S, Scott RA. Integrative genomic analysis implicates limited peripheral adipose storage capacity in the pathogenesis of human insulin resistance. Nat Genet 2017; 49:17-26. [PMID: 27841877 PMCID: PMC5774584 DOI: 10.1038/ng.3714] [Citation(s) in RCA: 422] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 10/10/2016] [Indexed: 02/07/2023]
Abstract
Insulin resistance is a key mediator of obesity-related cardiometabolic disease, yet the mechanisms underlying this link remain obscure. Using an integrative genomic approach, we identify 53 genomic regions associated with insulin resistance phenotypes (higher fasting insulin levels adjusted for BMI, lower HDL cholesterol levels and higher triglyceride levels) and provide evidence that their link with higher cardiometabolic risk is underpinned by an association with lower adipose mass in peripheral compartments. Using these 53 loci, we show a polygenic contribution to familial partial lipodystrophy type 1, a severe form of insulin resistance, and highlight shared molecular mechanisms in common/mild and rare/severe insulin resistance. Population-level genetic analyses combined with experiments in cellular models implicate CCDC92, DNAH10 and L3MBTL3 as previously unrecognized molecules influencing adipocyte differentiation. Our findings support the notion that limited storage capacity of peripheral adipose tissue is an important etiological component in insulin-resistant cardiometabolic disease and highlight genes and mechanisms underpinning this link.
Collapse
Affiliation(s)
- Luca A. Lotta
- MRC Epidemiology Unit, University of Cambridge, Cambridge, United
Kingdom
| | - Pawan Gulati
- Metabolic Research Laboratories, Institute of Metabolic Science,
University of Cambridge, Cambridge, United Kingdom
| | - Felix R. Day
- MRC Epidemiology Unit, University of Cambridge, Cambridge, United
Kingdom
| | - Felicity Payne
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United
Kingdom
| | - Halit Ongen
- Department of Genetic Medicine and Development, University of Geneva
Medical School, Geneva, Switzerland
| | - Martijn van de Bunt
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University
of Oxford, Oxford, United Kingdom
- Wellcome Trust Centre for Human Genetics, University of Oxford,
Oxford, United Kingdom
| | - Kyle J. Gaulton
- Department of Pediatrics, University of California San Diego, La
Jolla, USA
| | - John D. Eicher
- Population Sciences Branch, Division of Intramural Research,
National Heart, Lung and Blood Institute, Bethesda, USA
| | - Stephen J. Sharp
- MRC Epidemiology Unit, University of Cambridge, Cambridge, United
Kingdom
| | - Jian’an Luan
- MRC Epidemiology Unit, University of Cambridge, Cambridge, United
Kingdom
| | | | - Isobel D. Stewart
- MRC Epidemiology Unit, University of Cambridge, Cambridge, United
Kingdom
| | - Eleanor Wheeler
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United
Kingdom
| | - Sara M. Willems
- MRC Epidemiology Unit, University of Cambridge, Cambridge, United
Kingdom
| | - Claire Adams
- Metabolic Research Laboratories, Institute of Metabolic Science,
University of Cambridge, Cambridge, United Kingdom
| | - Hanieh Yaghootkar
- Genetics of Complex Traits, Institute of Biomedical and Clinical
Science, University of Exeter Medical School, Royal Devon and Exeter Hospital,
Exeter, United Kingdom
| | | | | | - Nita G. Forouhi
- MRC Epidemiology Unit, University of Cambridge, Cambridge, United
Kingdom
| | - Kay-Tee Khaw
- Department of Public Health and Primary Care, University of
Cambridge, Cambridge, United Kingdom
| | - Andrew D. Johnson
- Population Sciences Branch, Division of Intramural Research,
National Heart, Lung and Blood Institute, Bethesda, USA
| | - Robert K. Semple
- Metabolic Research Laboratories, Institute of Metabolic Science,
University of Cambridge, Cambridge, United Kingdom
| | - Timothy Frayling
- Genetics of Complex Traits, Institute of Biomedical and Clinical
Science, University of Exeter Medical School, Royal Devon and Exeter Hospital,
Exeter, United Kingdom
| | - John R. B. Perry
- MRC Epidemiology Unit, University of Cambridge, Cambridge, United
Kingdom
| | - Emmanouil Dermitzakis
- Department of Genetic Medicine and Development, University of Geneva
Medical School, Geneva, Switzerland
| | - Mark I. McCarthy
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University
of Oxford, Oxford, United Kingdom
- Wellcome Trust Centre for Human Genetics, University of Oxford,
Oxford, United Kingdom
| | - Inês Barroso
- Metabolic Research Laboratories, Institute of Metabolic Science,
University of Cambridge, Cambridge, United Kingdom
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United
Kingdom
| | | | - David B. Savage
- Metabolic Research Laboratories, Institute of Metabolic Science,
University of Cambridge, Cambridge, United Kingdom
| | - Claudia Langenberg
- MRC Epidemiology Unit, University of Cambridge, Cambridge, United
Kingdom
| | - Stephen O’Rahilly
- Metabolic Research Laboratories, Institute of Metabolic Science,
University of Cambridge, Cambridge, United Kingdom
| | - Robert A. Scott
- MRC Epidemiology Unit, University of Cambridge, Cambridge, United
Kingdom
| |
Collapse
|
406
|
Hubal MJ, Nadler EP, Ferrante SC, Barberio MD, Suh JH, Wang J, Dohm GL, Pories WJ, Mietus-Snyder M, Freishtat RJ. Circulating adipocyte-derived exosomal MicroRNAs associated with decreased insulin resistance after gastric bypass. Obesity (Silver Spring) 2017; 25:102-110. [PMID: 27883272 PMCID: PMC5182153 DOI: 10.1002/oby.21709] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/18/2016] [Accepted: 09/13/2016] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Exosomes from obese adipose contain dysregulated microRNAs linked to insulin signaling, as compared with lean controls, providing a direct connection between adiposity and insulin resistance. This study tested the hypotheses that gastric bypass surgery and its subsequent weight loss would normalize adipocyte-derived exosomal microRNAs associated with insulin signaling and the associated metabolome related to glucose homeostasis. METHODS African American female subjects with obesity (N = 6; age: 38.5 ± 6.8 years; BMI: 51.2 ± 8.8 kg/m2 ) were tested before and 1 year after surgery. Insulin resistance (HOMA), serum metabolomics, and global microRNA profiles of circulating adipocyte-derived exosomes were evaluated via ANCOVA and correlational analyses. RESULTS One year postsurgery, patients showed decreased BMI (-18.6 ± 5.1 kg/m2 ; P < 0.001), ameliorated insulin resistance (HOMA: 1.94 ± 0.6 presurgery, 0.49 ± 0.1 postsurgery; P < 0.001), and altered metabolites including branched chain amino acids (BCAA). Biological pathway analysis of predicted mRNA targets of 168 surgery-responsive microRNAs (P < 0.05) identified the insulin signaling pathway (P = 1.27E-10; 52/138 elements), among others, in the data set. The insulin signaling pathway was also a target of 10 microRNAs correlated to changes in HOMA (P < 0.05; r > 0.4), and 48 microRNAs correlated to changes in BCAA levels. CONCLUSIONS These data indicate that circulating adipocyte-derived exosomes are modified following gastric bypass surgery and correlate to improved postsurgery insulin resistance.
Collapse
Affiliation(s)
- Monica J Hubal
- Department of Integrative Systems Biology, George Washington University, Washington, DC
- Department of Exercise and Nutrition Sciences, George Washington University, Washington, DC
| | - Evan P Nadler
- Department of Integrative Systems Biology, George Washington University, Washington, DC
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Medical Center, Washington, DC
- Division of Pediatric Surgery, Children’s National Medical Center, Washington, DC
| | - Sarah C Ferrante
- Department of Integrative Systems Biology, George Washington University, Washington, DC
| | - Matthew D. Barberio
- Department of Integrative Systems Biology, George Washington University, Washington, DC
| | - Jung-Hyuk Suh
- Center for Nutrition and Metabolism, Children's Hospital Oakland Research Institute, Oakland, CA
| | - Justin Wang
- Department of Integrative Systems Biology, George Washington University, Washington, DC
| | - G. Lynis Dohm
- Department of Physiology, East Carolina University, Greenville, NC
| | | | | | - Robert J Freishtat
- Department of Integrative Systems Biology, George Washington University, Washington, DC
- Department of Pediatrics, Children’s National Medical Center, Washington, DC
- Division of Emergency Medicine, Children’s National Medical Center, Washington, DC
| |
Collapse
|
407
|
Shao M, Hepler C, Vishvanath L, MacPherson KA, Busbuso NC, Gupta RK. Fetal development of subcutaneous white adipose tissue is dependent on Zfp423. Mol Metab 2017; 6:111-124. [PMID: 28123942 PMCID: PMC5220400 DOI: 10.1016/j.molmet.2016.11.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 11/11/2016] [Accepted: 11/15/2016] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE Zfp423 is a multi zinc-finger transcription factor expressed in preadipocytes and mature adipocytes in vivo. Our recent work has revealed a critical role for Zfp423 in maintaining the fate of white adipocytes in adult mice through suppression of the beige cell thermogenic gene program; loss of Zfp423 in mature adipocytes of adult mice results in a white-to-beige phenotypic switch. However, the exact requirements of Zfp423 in the fetal stages of early adipose development in vivo have not been clarified. METHOD Here, we utilize two models that confer adipose-specific Zfp423 inactivation during fetal adipose development (Adiponectin-Cre; Zfp423loxP/loxP and Adiponectin-rtTA; TRE-Cre; Zfp423loxP/loxP). We assess the impact of fetal adipose Zfp423 deletion on the initial formation of adipose tissue and evaluate the metabolic consequences of challenging these animals with high-fat diet feeding. RESULTS Deletion of Zfp423 during fetal adipose development results in a different phenotype than is observed when deleting Zfp423 in adipocytes of adult mice. Inactivation of Zfp423 during fetal adipose development results in arrested differentiation, specifically of inguinal white adipocytes, rather than a white-to-beige phenotypic switch that occurs when Zfp423 is inactivated in adult mice. This is likely explained by the observation that adiponectin driven Cre expression is active at an earlier stage of the adipocyte life cycle during fetal subcutaneous adipose development than in adult mice. Upon high-fat diet feeding, obese adipose Zfp423-deficient animals undergo a pathological adipose tissue expansion, associated with ectopic lipid deposition and systemic insulin resistance. CONCLUSIONS Our results reveal that Zfp423 is essential for the terminal differentiation of subcutaneous white adipocytes during fetal adipose tissue development. Moreover, our data highlight the striking adverse effects of pathological subcutaneous adipose tissue remodeling on visceral adipose function and systemic nutrient homeostasis in obesity. Importantly, these data reveal the distinct phenotypes that can occur when adiponectin driven transgenes are activated in fetal vs. adult adipose tissue.
Collapse
Affiliation(s)
- Mengle Shao
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chelsea Hepler
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lavanya Vishvanath
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Karen A MacPherson
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Napoleon C Busbuso
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rana K Gupta
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
408
|
Kaburagi T, Kizuka Y, Kitazume S, Taniguchi N. The Inhibitory Role of α2,6-Sialylation in Adipogenesis. J Biol Chem 2016; 292:2278-2286. [PMID: 28031460 DOI: 10.1074/jbc.m116.747667] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 12/17/2016] [Indexed: 12/19/2022] Open
Abstract
Adipose tissue plays critical roles in obesity and related diseases such as diabetes and cardiovascular diseases. Previous reports suggest that glycans, the most common posttranslational modifications, are involved in obesity-related diseases, but what type of glycan regulates adipogenesis during obesity remains unclear. In this study, we first quantified the mRNA levels of 167 genes (encoding 144 glycosyltransferases and 23 related enzymes) in visceral adipose tissues (VATs) from control mice and high-fat diet (HFD)-induced obese mice. We found that a gene encoding β-galactoside α2,6-sialyltransferase-1 (St6gal1), a key enzyme responsible for the biosynthesis of α2,6-linked sialic acid in N-linked glycans, was most down-regulated in VATs from obese mice. We confirmed the reduction in α2,6-sialic acid in VATs from obese mice and differentiated adipocyte model 3T3-L1 cells. Using proteomic analysis, integrin-β1 was identified as one of the target α2,6-sialylated proteins in adipose tissues, and phosphorylation of its downstream molecule focal adhesion kinase was found to be decreased after HFD feeding. St6gal1 overexpression in differentiating 3T3-L1 cells inhibited adipogenesis with increased phosphorylation of focal adhesion kinase. Furthermore, St6gal1 knockout mice exhibited increased bodyweight and VAT weight after HFD feeding. The down-regulation of St6gal1 during adipogenesis was canceled by treatment with a DNA methyltransferase inhibitor, suggesting an involvement of epigenetic DNA methylation in St6gal1 silencing. Our findings suggest that ST6GAL1 has an inhibitory role in adipogenesis through integrin-β1 activation, providing new insights into the roles and regulation mechanisms of glycans in adipocytes during obesity.
Collapse
Affiliation(s)
- Tomoko Kaburagi
- From the Department of Health Science, Faculty of Sports and Health Sciences, Daito Bunka University, Higashi-Matsuyama, Saitama 355-8681, Japan and .,the Disease Glycomics Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, Global Research Cluster, RIKEN, Wako, Saitama 351-0198, Japan
| | - Yasuhiko Kizuka
- the Disease Glycomics Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, Global Research Cluster, RIKEN, Wako, Saitama 351-0198, Japan
| | - Shinobu Kitazume
- the Disease Glycomics Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, Global Research Cluster, RIKEN, Wako, Saitama 351-0198, Japan
| | - Naoyuki Taniguchi
- the Disease Glycomics Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, Global Research Cluster, RIKEN, Wako, Saitama 351-0198, Japan
| |
Collapse
|
409
|
Serra MC, Ryan AS, Goldberg AP. Reduced LPL and subcutaneous lipid storage capacity are associated with metabolic syndrome in postmenopausal women with obesity. Obes Sci Pract 2016; 3:106-114. [PMID: 28392937 PMCID: PMC5358073 DOI: 10.1002/osp4.86] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/01/2016] [Accepted: 11/04/2016] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES This study examines the hypothesis that lower adipose tissue lipoprotein lipase (LPL) activity and a limited capacity for subcutaneous adipocyte expansion will be associated with metabolic syndrome (MSyn) in postmenopausal women who are overweight and obese. METHODS Women (N = 150; age 60 ± 1 year; BMI: 31.5 ± 0.3 kg m-2; mean ± standard errors of the means [SEM]) with and without MSyn had dual-energy X-ray absorptiometry scans for total body fat, CT scans for visceral and subcutaneous abdominal adipose tissue areas, lipid and glucose metabolic profiles, and abdominal and gluteal fat aspirations for subcutaneous fat cell weight (FCW; N = 150) and LPL activity (N = 100). RESULTS Women with MSyn had similar total body fat, but 15% larger abdominal and 11% larger gluteal FCWs and more visceral fat (179 ± 7 vs. 134 ± 6 cm2) than women without MSyn (P's < 0.05). Abdominal LPL activity was 13% (P = 0.18) lower in women with than without MSyn and correlated with abdominal FCW (r = 0.49, P < 0.01) only in those without MSyn. Visceral fat and abdominal and gluteal FCWs correlated with MSyn components, and subcutaneous adipose tissue correlated with abdominal FCW (r = 0.43, P < 0.01) and LPL activity (r = 0.18, P < 0.05), independent of total body fat. CONCLUSIONS These results show that women with MSyn have lower LPL activity, limited capacity for subcutaneous adipocyte lipid storage and greater ectopic fat accumulation in viscera than women without MSyn of comparable obesity. This suggests that the development of novel therapies that would enhance adipocyte expandability might prevent the accumulation of ectopic fat and reduce the risk for MSyn in postmenopausal women with obesity.
Collapse
Affiliation(s)
- M C Serra
- Division of Gerontology and Geriatric Medicine University of Maryland School of Medicine Baltimore MD USA; Geriatric Research, Education and Clinical Center VA Maryland Health Care System Baltimore MD USA
| | - A S Ryan
- Division of Gerontology and Geriatric Medicine University of Maryland School of Medicine Baltimore MD USA; Geriatric Research, Education and Clinical Center VA Maryland Health Care System Baltimore MD USA
| | - A P Goldberg
- Division of Gerontology and Geriatric Medicine University of Maryland School of Medicine Baltimore MD USA; Geriatric Research, Education and Clinical Center VA Maryland Health Care System Baltimore MD USA
| |
Collapse
|
410
|
Abstract
PURPOSE OF REVIEW Purpose of review: It is becoming increasingly clear that some obese individuals do not develop dyslipidemia and instead remain healthy, while some normal weight individuals become dyslipidemic and unhealthy. RECENT FINDINGS The present review examines the similarities and differences between healthy and unhealthy individuals with and without obesity and discusses putative underlying mechanisms of dyslipidemia. The presence of dyslipidemia and compromised metabolic health in both lean and obese individuals suggests that the obese phenotype per se does not represent a main independent risk factor for the development of dyslipidemia and that dyslipidemia, rather than obesity, may be the driver of metabolic diseases. Notably, adipose tissue dysfunction and ectopic lipid deposition, in particular in the liver, seems a common trait of unhealthy individuals.
Collapse
Affiliation(s)
- David H Ipsen
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, 1870, Frederiksberg C, Denmark
| | - Pernille Tveden-Nyborg
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, 1870, Frederiksberg C, Denmark
| | - Jens Lykkesfeldt
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, 1870, Frederiksberg C, Denmark.
| |
Collapse
|
411
|
Casteras S, Abdul-Wahed A, Soty M, Vulin F, Guillou H, Campana M, Le Stunff H, Pirola L, Rajas F, Mithieux G, Gautier-Stein A. The suppression of hepatic glucose production improves metabolism and insulin sensitivity in subcutaneous adipose tissue in mice. Diabetologia 2016; 59:2645-2653. [PMID: 27631137 DOI: 10.1007/s00125-016-4097-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 08/05/2016] [Indexed: 12/13/2022]
Abstract
AIMS/HYPOTHESIS Despite the strong correlation between non-alcoholic fatty liver disease and insulin resistance, hepatic steatosis is associated with greater whole-body insulin sensitivity in several models. We previously reported that the inhibition of hepatic glucose production (HGP) protects against the development of obesity and diabetes despite severe steatosis, thanks to the secretion of specific hepatokines such as fibroblast growth factor 21 (FGF21) and angiopoietin-related growth factor. In this work, we focused on adipose tissue to assess whether liver metabolic fluxes might, by interorgan communication, control insulin signalling in lean animals. METHODS Insulin signalling was studied in the adipose tissue of mice lacking the catalytic subunit of glucose 6-phosphatase, the key enzyme in endogenous glucose production, in the liver (L-G6pc -/- mice). Morphological and metabolic changes in the adipose tissues were characterised by histological analyses, gene expression and protein content. RESULTS Mice lacking HGP exhibited improved insulin sensitivity of the phosphoinositide 3-kinase/Akt pathway in the subcutaneous adipose tissue associated with a browning of adipocytes. The suppression of HGP increased FGF21 levels in lean animals, and increased FGF21 was responsible for the metabolic changes in the subcutaneous adipose tissue but not for its greater insulin sensitivity. The latter might be linked to an increase in the ratio of monounsaturated to saturated fatty acids released by the liver. CONCLUSIONS Our work provides evidence that HGP controls subcutaneous adipose tissue browning and insulin sensitivity through two pathways: the release of beneficial hepatokines and changes in hepatic fatty acids profile.
Collapse
Affiliation(s)
- Sylvie Casteras
- Inserm U1213, Faculté Laennec, 7 rue Guillaume Paradin, 69372, Lyon cedex 08, France
- Université de Lyon, Lyon, France
- Université Lyon1, Villeurbanne, France
| | - Aya Abdul-Wahed
- Inserm U1213, Faculté Laennec, 7 rue Guillaume Paradin, 69372, Lyon cedex 08, France
- Université de Lyon, Lyon, France
- Université Lyon1, Villeurbanne, France
| | - Maud Soty
- Inserm U1213, Faculté Laennec, 7 rue Guillaume Paradin, 69372, Lyon cedex 08, France
- Université de Lyon, Lyon, France
- Université Lyon1, Villeurbanne, France
| | - Fanny Vulin
- Inserm U1213, Faculté Laennec, 7 rue Guillaume Paradin, 69372, Lyon cedex 08, France
- Université de Lyon, Lyon, France
- Université Lyon1, Villeurbanne, France
| | - Hervé Guillou
- INRA, ToxAlim UMR1331 (Research Center in Food Toxicology), Toulouse, France
| | - Mélanie Campana
- Unité Biologie Fonctionnelle et Adaptative -UMR CNRS 8251, Université Paris- Diderot (7), Paris, France
- I2BC - UMR 9198 Université Paris Sud, Gif sur Yvette, France
| | - Hervé Le Stunff
- Unité Biologie Fonctionnelle et Adaptative -UMR CNRS 8251, Université Paris- Diderot (7), Paris, France
- I2BC - UMR 9198 Université Paris Sud, Gif sur Yvette, France
| | - Luciano Pirola
- Université de Lyon, Lyon, France
- Université Lyon1, Villeurbanne, France
- Laboratoire de Recherche en Cardiovasculaire, Métabolisme, Diabétologie et Nutrition, CarMeN, Oullins, France
| | - Fabienne Rajas
- Inserm U1213, Faculté Laennec, 7 rue Guillaume Paradin, 69372, Lyon cedex 08, France
- Université de Lyon, Lyon, France
- Université Lyon1, Villeurbanne, France
| | - Gilles Mithieux
- Inserm U1213, Faculté Laennec, 7 rue Guillaume Paradin, 69372, Lyon cedex 08, France
- Université de Lyon, Lyon, France
- Université Lyon1, Villeurbanne, France
| | - Amandine Gautier-Stein
- Inserm U1213, Faculté Laennec, 7 rue Guillaume Paradin, 69372, Lyon cedex 08, France.
- Université de Lyon, Lyon, France.
- Université Lyon1, Villeurbanne, France.
| |
Collapse
|
412
|
Paniagua JA. Nutrition, insulin resistance and dysfunctional adipose tissue determine the different components of metabolic syndrome. World J Diabetes 2016; 7:483-514. [PMID: 27895819 PMCID: PMC5107710 DOI: 10.4239/wjd.v7.i19.483] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 08/16/2016] [Accepted: 09/07/2016] [Indexed: 02/05/2023] Open
Abstract
Obesity is an excessive accumulation of body fat that may be harmful to health. Today, obesity is a major public health problem, affecting in greater or lesser proportion all demographic groups. Obesity is estimated by body mass index (BMI) in a clinical setting, but BMI reports neither body composition nor the location of excess body fat. Deaths from cardiovascular diseases, cancer and diabetes accounted for approximately 65% of all deaths, and adiposity and mainly abdominal adiposity are associated with all these disorders. Adipose tissue could expand to inflexibility levels. Then, adiposity is associated with a state of low-grade chronic inflammation, with increased tumor necrosis factor-α and interleukin-6 release, which interfere with adipose cell differentiation, and the action pattern of adiponectin and leptin until the adipose tissue begins to be dysfunctional. In this state the subject presents insulin resistance and hyperinsulinemia, probably the first step of a dysfunctional metabolic system. Subsequent to central obesity, insulin resistance, hyperglycemia, hypertriglyceridemia, hypoalphalipoproteinemia, hypertension and fatty liver are grouped in the so-called metabolic syndrome (MetS). In subjects with MetS an energy balance is critical to maintain a healthy body weight, mainly limiting the intake of high energy density foods (fat). However, high-carbohydrate rich (CHO) diets increase postprandial peaks of insulin and glucose. Triglyceride-rich lipoproteins are also increased, which interferes with reverse cholesterol transport lowering high-density lipoprotein cholesterol. In addition, CHO-rich diets could move fat from peripheral to central deposits and reduce adiponectin activity in peripheral adipose tissue. All these are improved with monounsaturated fatty acid-rich diets. Lastly, increased portions of ω-3 and ω-6 fatty acids also decrease triglyceride levels, and complement the healthy diet that is recommended in patients with MetS.
Collapse
|
413
|
Contribution of adaptive thermogenesis to the hypothalamic regulation of energy balance. Biochem J 2016; 473:4063-4082. [DOI: 10.1042/bcj20160012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 08/13/2016] [Accepted: 08/30/2016] [Indexed: 12/12/2022]
Abstract
Obesity and its related disorders are among the most pervasive diseases in contemporary societies, and there is an urgent need for new therapies and preventive approaches. Given (i) our poor social capacity to correct unhealthy habits, and (ii) our evolutionarily genetic predisposition to store excess energy as fat, the current environment of caloric surplus makes the treatment of obesity extremely difficult. During the last few decades, an increasing number of methodological approaches have increased our knowledge of the neuroanatomical basis of the control of energy balance. Compelling evidence underlines the role of the hypothalamus as a homeostatic integrator of metabolic information and its ability to adjust energy balance. A greater understanding of the neural basis of the hypothalamic regulation of energy balance might indeed pave the way for new therapeutic targets. In this regard, it has been shown that several important peripheral signals, such as leptin, thyroid hormones, oestrogens and bone morphogenetic protein 8B, converge on common energy sensors, such as AMP-activated protein kinase to modulate sympathetic tone on brown adipose tissue. This knowledge may open new ways to counteract the chronic imbalance underlying obesity. Here, we review the current state of the art on the role of hypothalamus in the regulation of energy balance with particular focus on thermogenesis.
Collapse
|
414
|
Lee SA, Yuen JJ, Jiang H, Kahn BB, Blaner WS. Adipocyte-specific overexpression of retinol-binding protein 4 causes hepatic steatosis in mice. Hepatology 2016; 64:1534-1546. [PMID: 27227735 PMCID: PMC5074895 DOI: 10.1002/hep.28659] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 05/16/2016] [Indexed: 12/27/2022]
Abstract
UNLABELLED There is considerable evidence that both retinoids and retinol-binding protein 4 (RBP4) contribute to the development of liver disease. To understand the basis for this, we generated and studied transgenic mice that express human RBP4 (hRBP4) specifically in adipocytes. When fed a chow diet, these mice show an elevation in adipose total RBP4 (mouse RBP4 + hRBP4) protein levels. However, no significant differences in plasma RBP4 or retinol levels or in hepatic or adipose retinoid (retinol, retinyl ester, and all-trans-retinoic acid) levels were observed. Strikingly, male adipocyte-specific hRBP4 mice fed a standard chow diet display significantly elevated hepatic triglyceride levels at 3-4 months of age compared to matched littermate controls. When mice were fed a high-fat diet, this hepatic phenotype, as well as other metabolic phenotypes (obesity and glucose intolerance), worsened. Because adipocyte-specific hRBP4 mice have increased tumor necrosis factor-α and leptin expression and crown-like structures in adipose tissue, our data are consistent with the notion that adipose tissue is experiencing RBP4-induced inflammation that stimulates increased lipolysis within adipocytes. Our data further establish that elevated hepatic triglyceride levels result from increased hepatic uptake of adipose-derived circulating free fatty acids. We obtained no evidence that elevated hepatic triglyceride levels arise from increased hepatic de novo lipogenesis, decreased hepatic free fatty acid oxidation, or decreased very-low-density lipoprotein secretion. CONCLUSION Our investigations establish that RBP4 expressed in adipocytes induces hepatic steatosis arising from primary effects occurring in adipose tissue. (Hepatology 2016;64:1534-1546).
Collapse
Affiliation(s)
- Seung-Ah Lee
- Department of Medicine, College of Physicians and Surgeons, Columbia University, 650 W. 168th Street, New York, NY 10032
| | - Jason J. Yuen
- Department of Medicine, College of Physicians and Surgeons, Columbia University, 650 W. 168th Street, New York, NY 10032
| | - Hongfeng Jiang
- Department of Medicine, College of Physicians and Surgeons, Columbia University, 650 W. 168th Street, New York, NY 10032
| | - Barbara B. Kahn
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - William S. Blaner
- Department of Medicine, College of Physicians and Surgeons, Columbia University, 650 W. 168th Street, New York, NY 10032
| |
Collapse
|
415
|
Cederquist CT, Lentucci C, Martinez-Calejman C, Hayashi V, Orofino J, Guertin D, Fried SK, Lee MJ, Cardamone MD, Perissi V. Systemic insulin sensitivity is regulated by GPS2 inhibition of AKT ubiquitination and activation in adipose tissue. Mol Metab 2016; 6:125-137. [PMID: 28123943 PMCID: PMC5220281 DOI: 10.1016/j.molmet.2016.10.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 10/20/2016] [Accepted: 10/24/2016] [Indexed: 02/06/2023] Open
Abstract
Objective Insulin signaling plays a unique role in the regulation of energy homeostasis and the impairment of insulin action is associated with altered lipid metabolism, obesity, and Type 2 Diabetes. The main aim of this study was to provide further insight into the regulatory mechanisms governing the insulin signaling pathway by investigating the role of non-proteolytic ubiquitination in insulin-mediated activation of AKT. Methods The molecular mechanism of AKT regulation through ubiquitination is first dissected in vitro in 3T3-L1 preadipocytes and then validated in vivo using mice with adipo-specific deletion of GPS2, an endogenous inhibitor of Ubc13 activity (GPS2-AKO mice). Results Our results indicate that K63 ubiquitination is a critical component of AKT activation in the insulin signaling pathway and that counter-regulation of this step is provided by GPS2 preventing AKT ubiquitination through inhibition of Ubc13 enzymatic activity. Removal of this negative checkpoint, through GPS2 downregulation or genetic deletion, results in sustained activation of insulin signaling both in vitro and in vivo. As a result, the balance between lipid accumulation and utilization is shifted toward storage in the adipose tissue and GPS2-AKO mice become obese under normal laboratory chow diet. However, the adipose tissue of GPS2-AKO mice is not inflamed, the levels of circulating adiponectin are elevated, and systemic insulin sensitivity is overall improved. Conclusions Our findings characterize a novel layer of regulation of the insulin signaling pathway based on non-proteolytic ubiquitination of AKT and define GPS2 as a previously unrecognized component of the insulin signaling cascade. In accordance with this role, we have shown that GPS2 presence in adipocytes modulates systemic metabolism by restricting the activation of insulin signaling during the fasted state, whereas in absence of GPS2, the adipose tissue is more efficient at lipid storage, and obesity becomes uncoupled from inflammation and insulin resistance. Ubc13-mediated ubiquitination of AKT is required for activation of the insulin signaling pathway. GPS2 regulates insulin signaling by inhibiting AKT ubiquitination and activation. Adipo-specific deletion of GPS2 results in increased adiposity and altered lipid flux in the adipocytes. GPS2-AKO mice have higher levels of circulating adiponectin and are insulin sensitive despite being obese.
Collapse
Affiliation(s)
- Carly T Cederquist
- Department of Biochemistry, Boston University School of Medicine, 72 E. Concord St, Boston, MA 02118, USA
| | - Claudia Lentucci
- Department of Biochemistry, Boston University School of Medicine, 72 E. Concord St, Boston, MA 02118, USA
| | - Camila Martinez-Calejman
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation St, Worcester, MA 01605, USA
| | - Vanessa Hayashi
- Department of Biochemistry, Boston University School of Medicine, 72 E. Concord St, Boston, MA 02118, USA
| | - Joseph Orofino
- Department of Biochemistry, Boston University School of Medicine, 72 E. Concord St, Boston, MA 02118, USA
| | - David Guertin
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation St, Worcester, MA 01605, USA
| | - Susan K Fried
- Diabetes Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, 1 Gustav Levy Place, New York, NY 10029, USA
| | - Mi-Jeong Lee
- Department of Medicine, Boston University School of Medicine, 72 E. Concord St, Boston, MA 02118, USA
| | - M Dafne Cardamone
- Department of Biochemistry, Boston University School of Medicine, 72 E. Concord St, Boston, MA 02118, USA
| | - Valentina Perissi
- Department of Biochemistry, Boston University School of Medicine, 72 E. Concord St, Boston, MA 02118, USA.
| |
Collapse
|
416
|
Abstract
BACKGROUND AND AIMS Most physicians might consider that fatty liver would develop along with increasing body weight; however, an association between BMI history and incident fatty liver has not been clarified as yet. METHODS We carried out a population-based cohort study that included 4427 healthy Japanese individuals who received yearly health-checkup programs over a decade. Fatty liver was diagnosed using ultrasonography. RESULTS During the observational period, 38.7% (case/N=1002/2588) of men and 17.3% (319/1847) of women were diagnosed with fatty liver. Among these, only 18.9% (189 of 1002 participants) of men and 18.5% (59 of 319) of women developed fatty liver when they reached the lifetime maximum BMI. Adjusted odds ratio of the difference between lifetime maximum BMI and BMI at age 20 years (ΔBMImax-20 years) for incident fatty liver was 1.33 [95% confidence interval (CI) 1.28-1.39, P<0.001] in men or 1.40 (95% CI 1.33-1.49, P<0.001) in women. According to receiver operator characteristic (ROC) analysis, the optimal cut-off points of ΔBMImax-20 years for incident fatty liver were 4.82 kg/m [area under ROC curve 0.70 (95% CI 0.68-0.72), P<0.001] in men and 4.11 kg/m [area under ROC curve 0.76 (95% CI 0.73-0.79), P<0.001] in women. CONCLUSION The ΔBMImax-20 years was associated with an increased risk of incident fatty liver. In addition, more patients developed fatty liver not at the maximum point of BMI history, but after that. Therefore, it is useful to check ΔBMImax-20 years and to continue observing the individuals for detection of fatty liver.
Collapse
|
417
|
Vieira WA, Sadie-Van Gijsen H, Ferris WF. Free fatty acid G-protein coupled receptor signaling in M1 skewed white adipose tissue macrophages. Cell Mol Life Sci 2016; 73:3665-76. [PMID: 27173059 PMCID: PMC11108433 DOI: 10.1007/s00018-016-2263-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 04/28/2016] [Accepted: 04/29/2016] [Indexed: 12/13/2022]
Abstract
Obesity is associated with the establishment and maintenance of a low grade, chronically inflamed state in the white adipose tissue (WAT) of the body. The WAT macrophage population is a major cellular participant in this inflammatory process that significantly contributes to the pathophysiology of the disease, with the adipose depots of obese individuals, relative to lean counterparts, having an elevated number of macrophages that are skewed towards a pro-inflammatory phenotype. Alterations in the WAT lipid micro-environment, and specifically the availability of free fatty acids, are believed to contribute towards the obesity-related quantitative and functional changes observed in these cells. This review specifically addresses the involvement of the five G-protein coupled free fatty acid receptors which bind exogenous FFAs and signal in macrophages. Particular focus is placed on the involvement of these receptors in macrophage migration and cytokine production, two important aspects that modulate inflammation.
Collapse
Affiliation(s)
- Warren Antonio Vieira
- Division of Endocrinology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000, South Africa
| | - Hanél Sadie-Van Gijsen
- Division of Endocrinology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000, South Africa
| | - William Frank Ferris
- Division of Endocrinology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000, South Africa.
| |
Collapse
|
418
|
Maida A, Zota A, Sjøberg KA, Schumacher J, Sijmonsma TP, Pfenninger A, Christensen MM, Gantert T, Fuhrmeister J, Rothermel U, Schmoll D, Heikenwälder M, Iovanna JL, Stemmer K, Kiens B, Herzig S, Rose AJ. A liver stress-endocrine nexus promotes metabolic integrity during dietary protein dilution. J Clin Invest 2016; 126:3263-78. [PMID: 27548521 PMCID: PMC5004939 DOI: 10.1172/jci85946] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 07/07/2016] [Indexed: 02/06/2023] Open
Abstract
Dietary protein intake is linked to an increased incidence of type 2 diabetes (T2D). Although dietary protein dilution (DPD) can slow the progression of some aging-related disorders, whether this strategy affects the development and risk for obesity-associated metabolic disease such as T2D is unclear. Here, we determined that DPD in mice and humans increases serum markers of metabolic health. In lean mice, DPD promoted metabolic inefficiency by increasing carbohydrate and fat oxidation. In nutritional and polygenic murine models of obesity, DPD prevented and curtailed the development of impaired glucose homeostasis independently of obesity and food intake. DPD-mediated metabolic inefficiency and improvement of glucose homeostasis were independent of uncoupling protein 1 (UCP1), but required expression of liver-derived fibroblast growth factor 21 (FGF21) in both lean and obese mice. FGF21 expression and secretion as well as the associated metabolic remodeling induced by DPD also required induction of liver-integrated stress response-driven nuclear protein 1 (NUPR1). Insufficiency of select nonessential amino acids (NEAAs) was necessary and adequate for NUPR1 and subsequent FGF21 induction and secretion in hepatocytes in vitro and in vivo. Taken together, these data indicate that DPD promotes improved glucose homeostasis through an NEAA insufficiency-induced liver NUPR1/FGF21 axis.
Collapse
Affiliation(s)
- Adriano Maida
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, and Joint Heidelberg-IDC Translational Diabetes Program, Munich, Germany
| | - Annika Zota
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, and Joint Heidelberg-IDC Translational Diabetes Program, Munich, Germany
| | - Kim A. Sjøberg
- Section of Molecular Physiology, August Krogh Centre, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Jonas Schumacher
- Joint Research Division Molecular Metabolic Control, German Cancer Research Center, Center for Molecular Biology, Heidelberg University and Heidelberg University Hospital, Heidelberg, Germany
| | - Tjeerd P. Sijmonsma
- Joint Research Division Molecular Metabolic Control, German Cancer Research Center, Center for Molecular Biology, Heidelberg University and Heidelberg University Hospital, Heidelberg, Germany
- Division of Chronic Inflammation and Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Anja Pfenninger
- Sanofi-Aventis Deutschland GmbH, Industriepark Hoechst, Frankfurt, Germany
| | - Marie M. Christensen
- Section of Molecular Physiology, August Krogh Centre, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Gantert
- Joint Research Division Molecular Metabolic Control, German Cancer Research Center, Center for Molecular Biology, Heidelberg University and Heidelberg University Hospital, Heidelberg, Germany
| | - Jessica Fuhrmeister
- Joint Research Division Molecular Metabolic Control, German Cancer Research Center, Center for Molecular Biology, Heidelberg University and Heidelberg University Hospital, Heidelberg, Germany
| | - Ulrike Rothermel
- Division of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany
| | - Dieter Schmoll
- Sanofi-Aventis Deutschland GmbH, Industriepark Hoechst, Frankfurt, Germany
| | - Mathias Heikenwälder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Juan L. Iovanna
- Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Kerstin Stemmer
- Division of Metabolism and Cancer, Institute for Diabetes and Obesity, Helmholtz Centre Munich, Munich, Germany
| | - Bente Kiens
- Section of Molecular Physiology, August Krogh Centre, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Stephan Herzig
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, and Joint Heidelberg-IDC Translational Diabetes Program, Munich, Germany
| | - Adam J. Rose
- Joint Research Division Molecular Metabolic Control, German Cancer Research Center, Center for Molecular Biology, Heidelberg University and Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
419
|
Sun J, Gao Y, Yao T, Huang Y, He Z, Kong X, Yu KJ, Wang RT, Guo H, Yan J, Chang Y, Chen H, Scherer PE, Liu T, Williams KW. Adiponectin potentiates the acute effects of leptin in arcuate Pomc neurons. Mol Metab 2016; 5:882-891. [PMID: 27689001 PMCID: PMC5034606 DOI: 10.1016/j.molmet.2016.08.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 08/08/2016] [Accepted: 08/10/2016] [Indexed: 01/06/2023] Open
Abstract
Objective Adiponectin receptors (AdipoRs) are located on neurons of the hypothalamus involved in metabolic regulation – including arcuate proopiomelanocortin (Pomc) and Neuropeptide Y/Agouti-related peptide (NPY/AgRP) neurons. AdipoRs play a critical role in regulating glucose and fatty acid metabolism by initiating several signaling cascades overlapping with Leptin receptors (LepRs). However, the mechanism by which adiponectin regulates cellular activity in the brain remains undefined. Methods In order to resolve this issue, we utilized neuron-specific transgenic mouse models to identify Pomc and NPY/AgRP neurons which express LepRs for patch-clamp electrophysiology experiments. Results We found that leptin and adiponectin synergistically activated melanocortin neurons in the arcuate nucleus. Conversely, NPY/AgRP neurons were inhibited in response to adiponectin. The adiponectin-induced depolarization of arcuate Pomc neurons occurred via activation of Phosphoinositide-3-kinase (PI3K) signaling, independent of 5′ AMP-activated protein kinase (AMPK) activity. Adiponectin also activated melanocortin neurons at various physiological glucose levels. Conclusions Our results demonstrate a requirement for PI3K signaling in the acute adiponectin-induced effects on the cellular activity of arcuate melanocortin neurons. Moreover, these data provide evidence for PI3K as a substrate for both leptin and adiponectin to regulate energy balance and glucose metabolism via melanocortin activity. Adiponectin activates arcuate Pomc neurons. Adiponectin-induced activation of Pomc neurons requires PI3K (independent of AMPK). Adiponectin inhibits adjacent NPY/AgRP neurons (disinhibiting arcuate Pomc neurons). Leptin potentiates the effects of adiponectin arcuate Pomc neurons.
Collapse
Affiliation(s)
- Jia Sun
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, Guangzhou, China; Division of Hypothalamic Research, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Yong Gao
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Division of Hypothalamic Research, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Ting Yao
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, China; Division of Hypothalamic Research, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Yiru Huang
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China; Division of Hypothalamic Research, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Zhenyan He
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China; Division of Hypothalamic Research, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Xingxing Kong
- Division of Endocrinology, Beth Israel Deaconess Medical Center and Harvard Medical School, Harvard University, Boston, MA, 02115, USA
| | - Kai-Jiang Yu
- Department of Intensive Care Unit, The Third Affiliated Hospital, Harbin Medical University, No. 150 Haping St, Nangang District, Harbin, 150081, China
| | - Rui-Tao Wang
- Department of Intensive Care Unit, The Third Affiliated Hospital, Harbin Medical University, No. 150 Haping St, Nangang District, Harbin, 150081, China
| | - Hongbo Guo
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jianqun Yan
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, China
| | - Yongsheng Chang
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hong Chen
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Philipp E Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA
| | - Tiemin Liu
- Department of Intensive Care Unit, The Third Affiliated Hospital, Harbin Medical University, No. 150 Haping St, Nangang District, Harbin, 150081, China; Division of Hypothalamic Research, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Kevin W Williams
- Division of Hypothalamic Research, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA.
| |
Collapse
|
420
|
Aydin HI, Eser A, Kaygusuz I, Yildirim S, Celik T, Gunduz S, Kalman S. Adipokine, adropin and endothelin-1 levels in intrauterine growth restricted neonates and their mothers. J Perinat Med 2016; 44:669-76. [PMID: 26352058 DOI: 10.1515/jpm-2014-0353] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 07/09/2015] [Indexed: 12/28/2022]
Abstract
Intrauterine growth retardation/restriction (IUGR) is associated with fetal malnutrition. It has consequences for later life including increased incidence of obesity, diabetes mellitus, cardiovascular disease (CVD), and metabolic syndrome. Adipokines (adiponectin and leptin), adropin, and endothelin-1 are associated with obesity and metabolic syndrome regulation. Intrauterine changes in these mediators could affect programming of later adult obesity and metabolic syndrome. Our objectives were to compare the levels of these mediators in both cord and maternal blood between IUGR pregnancies and control, healthy pregnancies, and to study the correlation of adipokines with adropin and endothelin-1 in maternal and cord blood in IUGR pregnancies as well as in healthy control pregnancies. Maternal and cord blood samples were taken from 16 women with IUGR pregnancies and 16 women with healthy pregnancies. Serum levels of leptin, adiponectin, adropin, and endothelin-1 were measured by ELISA. Maternal blood adropin levels were significantly lower in the IUGR group than in the control group; the other mediators did not differ significantly. There was a positive correlation between maternal blood adropin and endothelin levels. (r=0.731, P=0.001) in the control but not the IUGR group. Cord blood adropin and adiponectin levels were significantly lower in the IUGR group compared with the control group, while leptin or endothelin-1 did not differ significantly. There was a negative correlation between adropin and leptin (r=-0.704, P=0.001) in the IUGR but not the control group cord blood. There were also positive correlations between endothelin and adropin for both groups (r=0.594, P=0.006; r=0.560, P=0.010, respectively); to the best of our knowledge, this is the first report of such a correlation. Differences in fetal expression of adropin and adiponectin in IUGR could influence programming of obesity, metabolic syndrome, diabetes, and CVD in later life.
Collapse
|
421
|
Nøhr MK, Kroager TP, Sanggaard KW, Knudsen AD, Stensballe A, Enghild JJ, Ølholm J, Richelsen B, Pedersen SB. SILAC-MS Based Characterization of LPS and Resveratrol Induced Changes in Adipocyte Proteomics - Resveratrol as Ameliorating Factor on LPS Induced Changes. PLoS One 2016; 11:e0159747. [PMID: 27438462 PMCID: PMC4954707 DOI: 10.1371/journal.pone.0159747] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 07/07/2016] [Indexed: 01/22/2023] Open
Abstract
Adipose tissue inflammation is believed to play a pivotal role in the development obesity-related morbidities such as insulin resistance. However, it is not known how this (low-grade) inflammatory state develops. It has been proposed that the leakage of lipopolysaccharides (LPS), originating from the gut microbiota, through the gut epithelium could drive initiation of inflammation. To get a better understanding of which proteins and intracellular pathways are affected by LPS in adipocytes, we performed SILAC proteomic analysis and identified proteins that were altered in expression. Furthermore, we tested the anti-inflammatory compound resveratrol. A total of 927 proteins were quantified by the SILAC method and of these 57- and 64 were significantly up- and downregulated by LPS, respectively. Bioinformatic analysis (GO analysis) revealed that the upregulated proteins were especially involved in the pathways of respiratory electron transport chain and inflammation. The downregulated proteins were especially involved in protein glycosylation. One of the latter proteins, GALNT2, has previously been described to regulate the expression of liver lipases such as ANGPTL3 and apoC-III affecting lipid metabolism. Furthermore, LPS treatment reduced the protein levels of the insulin sensitizing adipokine, adiponectin, and proteins participating in the final steps of triglyceride- and cholesterol synthesis. Generally, resveratrol opposed the effect induced by LPS and, as such, functioning as an ameliorating factor in disease state. Using an unbiased proteomic approach, we present novel insight of how the proteome is altered in adipocytes in response to LPS as seen in obesity. We suggest that LPS partly exerts its detrimental effects by altering glycosylation processes of the cell, which is starting to emerge as important posttranscriptional regulators of protein expression. Furthermore, resveratrol could be a prime candidate in ameliorating dysfunctioning adipose tissue induced by inflammatory stimulation.
Collapse
Affiliation(s)
- Mark K. Nøhr
- Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Toke P. Kroager
- Laboratory for Proteome Analysis and Protein Characterization, Department of Molecular Biology and Genetics and iNANO, Aarhus University, Aarhus, Denmark
| | - Kristian W. Sanggaard
- Laboratory for Proteome Analysis and Protein Characterization, Department of Molecular Biology and Genetics and iNANO, Aarhus University, Aarhus, Denmark
| | - Anders D. Knudsen
- Laboratory for Proteome Analysis and Protein Characterization, Department of Molecular Biology and Genetics and iNANO, Aarhus University, Aarhus, Denmark
| | - Allan Stensballe
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Jan J. Enghild
- Laboratory for Proteome Analysis and Protein Characterization, Department of Molecular Biology and Genetics and iNANO, Aarhus University, Aarhus, Denmark
| | - Jens Ølholm
- Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Bjørn Richelsen
- Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Steen B. Pedersen
- Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
422
|
Interactions between host genetics and gut microbiome in diabetes and metabolic syndrome. Mol Metab 2016; 5:795-803. [PMID: 27617202 PMCID: PMC5004229 DOI: 10.1016/j.molmet.2016.07.004] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 07/12/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Diabetes, obesity, and the metabolic syndrome are multifactorial diseases dependent on a complex interaction of host genetics, diet, and other environmental factors. Increasing evidence places gut microbiota as important modulators of the crosstalk between diet and development of obesity and metabolic dysfunction. In addition, host genetics can have important impact on the composition and function of gut microbiota. Indeed, depending on the genetic background of the host, diet and other environmental factors may produce different changes in gut microbiota, have different impacts on host metabolism, and create different interactions between the microbiome and the host. SCOPE OF REVIEW In this review, we highlight how appropriate animal models can help dissect the complex interaction of host genetics with the gut microbiome and how diet can lead to different degrees of weight gain, levels of insulin resistance, and metabolic outcomes, such as diabetes, in different individuals. We also discuss the challenges of identifying specific disease-associated microbiota and the limitations of simple metrics, such as phylogenetic diversity or the ratio of Firmicutes to Bacteroidetes. MAJOR CONCLUSIONS Understanding these complex interactions will help in the development of novel treatments for microbiome-related metabolic diseases. This article is part of a special issue on microbiota.
Collapse
|
423
|
Blanchard PG, Turcotte V, Côté M, Gélinas Y, Nilsson S, Olivecrona G, Deshaies Y, Festuccia WT. Peroxisome proliferator-activated receptor γ activation favours selective subcutaneous lipid deposition by coordinately regulating lipoprotein lipase modulators, fatty acid transporters and lipogenic enzymes. Acta Physiol (Oxf) 2016; 217:227-39. [PMID: 26918671 DOI: 10.1111/apha.12665] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 10/15/2015] [Accepted: 02/19/2016] [Indexed: 12/18/2022]
Abstract
AIM Peroxisome proliferator-activated receptor (PPAR) γ activation is associated with preferential lipoprotein lipase (LPL)-mediated fatty acid storage in peripheral subcutaneous fat depots. How PPARγ agonism acts upon the multi-level modulation of depot-specific lipid storage remains incompletely understood. METHODS We evaluated herein triglyceride-derived lipid incorporation into adipose tissue depots, LPL mass and activity, mRNA levels and content of proteins involved in the modulation of LPL activity and fatty acid transport, and the expression/activity of enzymes defining adipose tissue lipogenic potential in rats treated with the PPARγ ligand rosiglitazone (30 mg kg(-1) day(-1) , 23 days) after either a 10-h fasting period or a 17-h fast followed by 6 h of ad libitum refeeding. RESULTS Rosiglitazone stimulated lipid accretion in subcutaneous fat (SF) ~twofold and significantly reduced that of visceral fat (VF) to nearly half. PPARγ activation selectively increased LPL mass, activity and the expression of its chaperone LMF1 in SF. In VF, rosiglitazone had no effect on LPL activity and downregulated the mRNA levels of the transendothelial transporter GPIHBP1. Overexpression of lipid uptake and fatty acid transport proteins (FAT/CD36, FATP1 and FABP4) and stimulation of lipogenic enzyme activities (GPAT, AGPAT and DGAT) upon rosiglitazone treatment were of higher magnitude in SF. CONCLUSIONS Together these findings demonstrate that the depot-specific transcriptional control of LPL induced by PPARγ activation extends to its key interacting proteins and post-translational modulators to favour subcutaneous lipid storage.
Collapse
Affiliation(s)
- P. G. Blanchard
- Department of Medicine; Faculty of Medicine; Quebec Heart and Lung Institute; Laval University; Quebec QC Canada
| | - V. Turcotte
- Department of Medicine; Faculty of Medicine; Quebec Heart and Lung Institute; Laval University; Quebec QC Canada
| | - M. Côté
- Department of Medicine; Faculty of Medicine; Quebec Heart and Lung Institute; Laval University; Quebec QC Canada
| | - Y. Gélinas
- Department of Medicine; Faculty of Medicine; Quebec Heart and Lung Institute; Laval University; Quebec QC Canada
| | - S. Nilsson
- Department of Medical Biosciences/Physiological Chemistry; Umeå University; Umeå Sweden
| | - G. Olivecrona
- Department of Medical Biosciences/Physiological Chemistry; Umeå University; Umeå Sweden
| | - Y. Deshaies
- Department of Medicine; Faculty of Medicine; Quebec Heart and Lung Institute; Laval University; Quebec QC Canada
| | - W. T. Festuccia
- Department of Physiology and Biophysics; Institute of Biomedical Sciences; University of São Paulo; São Paulo Brazil
| |
Collapse
|
424
|
Nagasaki H, Ohta T. Extrauterine growth and adipocytokines in appropriate-for-gestational-age preterm infants. Pediatr Int 2016; 58:584-588. [PMID: 26717447 DOI: 10.1111/ped.12896] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 10/26/2015] [Accepted: 11/30/2015] [Indexed: 11/29/2022]
Abstract
BACKGROUND Extra-uterine growth retardation in preterm infants is associated with an increased risk for cardiometabolic diseases later in life. Adipocytokines are also associated with the development of cardiometabolic diseases. We examined the relationship between extra-uterine growth and serum concentrations of adipocytokines and metabolic hormones in preterm infants. METHODS Serum concentrations of leptin, adiponectin, insulin, IL-6, TNF-α, C-peptide, GIP, GLP-1 and glucagon were measured in 38 appropriate-for-gestational-age preterm infants at birth, and at 33 and 38 weeks of postmenstrual age using a Bio-Plex 200TM suspension array system. RESULTS Serum concentrations of leptin were not correlated with body weight at any time point. However, serum concentrations of adiponectin were correlated with body weight at all time points. Serum concentrations of IL-6 were decreased from birth to 33 and 38 weeks. Serum concentrations of TNF-α were not changed. Serum concentrations of C-peptide, GIP and glucagon increased from birth to 33 weeks, and decreased from 33 to 38 weeks. Serum concentrations of insulin and GLP-1 were not changed. CONCLUSION Changes in serum concentrations of leptin and adiponectin showed unique profiles, thereby suggesting maldevelopment of white adipose tissue. This may affect the future development of adipose tissue and lead to increased risk for cardio-metabolic disorders. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hiraku Nagasaki
- Department of Child Health and Welfare (Pediatrics), Graduate School of Medical Sciences, Ryukyu University, Nishihara, Japan
| | - Takao Ohta
- Department of Child Health and Welfare (Pediatrics), Graduate School of Medical Sciences, Ryukyu University, Nishihara, Japan
| |
Collapse
|
425
|
Waldman M, Bellner L, Vanella L, Schragenheim J, Sodhi K, Singh SP, Lin D, Lakhkar A, Li J, Hochhauser E, Arad M, Darzynkiewicz Z, Kappas A, Abraham NG. Epoxyeicosatrienoic Acids Regulate Adipocyte Differentiation of Mouse 3T3 Cells, Via PGC-1α Activation, Which Is Required for HO-1 Expression and Increased Mitochondrial Function. Stem Cells Dev 2016; 25:1084-94. [PMID: 27224420 DOI: 10.1089/scd.2016.0072] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Epoxyeicosatrienoic acid (EET) contributes to browning of white adipose stem cells to ameliorate obesity/diabetes and insulin resistance. In the current study, we show that EET altered preadipocyte function, enhanced peroxisome proliferation-activated receptor γ coactivator α (PGC-1α) expression, and increased mitochondrial function in the 3T3-L1 preadipocyte subjected to adipogenesis. Cells treated with EET resulted in an increase, P < 0.05, in PGC-1α and a decrease in mitochondria-derived ROS (MitoSox), P < 0.05. The EET increase in heme oxygenase-1 (HO-1) levels is dependent on activation of PGC-1α as cells deficient in PGC-1α (PGC-1α knockout adipocyte cell) have an impaired ability to express HO-1, P < 0.02. Additionally, adipocytes treated with EET exhibited an increase in mitochondrial superoxide dismutase (SOD) in a PGC-1α-dependent manner, P < 0.05. The increase in PGC-1α was associated with an increase in β-catenin, P < 0.05, adiponectin expression, P < 0.05, and lipid accumulation, P < 0.02. EET decreased heme levels and mitochondria-derived ROS (MitoSox), P < 0.05, compared to adipocytes that were untreated. EET also decreased mesoderm-specific transcript (MEST) mRNA and protein levels (P < 0.05). Adipocyte secretion of EET act in an autocrine/paracrine manner to increase PGC-1α is required for activation of HO-1 expression. This is the first study to dissect the mechanism by which the antiadipogenic and anti-inflammatory lipid, EET, induces the PGC-1α signaling cascade and reprograms the adipocyte phenotype by regulating mitochondrial function and HO-1 expression, leading to an increase in healthy, that is, small, adipocytes and a decrease in adipocyte enlargement and terminal differentiation. This is manifested by an increase in mitochondrial function and an increase in the canonical Wnt signaling cascade during adipocyte proliferation and terminal differentiation.
Collapse
Affiliation(s)
- Maayan Waldman
- 1 Department of Pharmacology, New York Medical College , Valhalla, New York.,2 Cardiac Research Laboratory, Felsenstein Medical Research Institute, Tel-Aviv University , Petah-Tikva, Israel
| | - Lars Bellner
- 1 Department of Pharmacology, New York Medical College , Valhalla, New York
| | - Luca Vanella
- 1 Department of Pharmacology, New York Medical College , Valhalla, New York.,3 University of Catania , Department of Drug Science/Section of Biochemistry, Catania, Italy
| | | | - Komal Sodhi
- 4 Departments of Medicine and Surgery, Joan C. Edwards School of Medicine, Marshall University , Huntington, West Virginia
| | - Shailendra P Singh
- 1 Department of Pharmacology, New York Medical College , Valhalla, New York
| | - Daohong Lin
- 1 Department of Pharmacology, New York Medical College , Valhalla, New York
| | - Anand Lakhkar
- 1 Department of Pharmacology, New York Medical College , Valhalla, New York
| | - Jiangwei Li
- 5 Department of Pathology, New York Medical College , Valhalla, New York
| | - Edith Hochhauser
- 2 Cardiac Research Laboratory, Felsenstein Medical Research Institute, Tel-Aviv University , Petah-Tikva, Israel
| | - Michael Arad
- 6 Leviev Heart Center, Sheba Medical Center, Tel Hashomer and Sackler School of Medicine, Tel Aviv University , Tel Hashomer, Israel
| | | | | | - Nader G Abraham
- 1 Department of Pharmacology, New York Medical College , Valhalla, New York.,4 Departments of Medicine and Surgery, Joan C. Edwards School of Medicine, Marshall University , Huntington, West Virginia.,7 The Rockefeller University , New York, New York.,8 Department of Medicine, New York Medical College , Valhalla, New York
| |
Collapse
|
426
|
Kusminski CM, Bickel PE, Scherer PE. Targeting adipose tissue in the treatment of obesity-associated diabetes. Nat Rev Drug Discov 2016; 15:639-660. [PMID: 27256476 DOI: 10.1038/nrd.2016.75] [Citation(s) in RCA: 519] [Impact Index Per Article: 57.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Adipose tissue regulates numerous physiological processes, and its dysfunction in obese humans is associated with disrupted metabolic homeostasis, insulin resistance and type 2 diabetes mellitus (T2DM). Although several US-approved treatments for obesity and T2DM exist, these are limited by adverse effects and a lack of effective long-term glucose control. In this Review, we provide an overview of the role of adipose tissue in metabolic homeostasis and assess emerging novel therapeutic strategies targeting adipose tissue, including adipokine-based strategies, promotion of white adipose tissue beiging as well as reduction of inflammation and fibrosis.
Collapse
Affiliation(s)
- Christine M Kusminski
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center
| | - Perry E Bickel
- Division of Endocrinology, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Philipp E Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center
| |
Collapse
|
427
|
Sun X, Sun H, Zhang J, Ji X. ArtemisiaExtract Improves Insulin Sensitivity in Women With Gestational Diabetes Mellitus by Up-Regulating Adiponectin. J Clin Pharmacol 2016; 56:1550-1554. [PMID: 27119600 DOI: 10.1002/jcph.755] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/08/2016] [Accepted: 04/18/2016] [Indexed: 01/12/2023]
Affiliation(s)
- Xia Sun
- Qingdao Municipal Hospital; Shinan District Qingdao Shandong China
| | - Hong Sun
- Qingdao Municipal Hospital; Shinan District Qingdao Shandong China
| | - Jing Zhang
- Qingdao Municipal Hospital; Shinan District Qingdao Shandong China
| | - Xianghong Ji
- Qingdao Municipal Hospital; Shinan District Qingdao Shandong China
| |
Collapse
|
428
|
Pellegrinelli V, Carobbio S, Vidal-Puig A. Adipose tissue plasticity: how fat depots respond differently to pathophysiological cues. Diabetologia 2016; 59:1075-88. [PMID: 27039901 PMCID: PMC4861754 DOI: 10.1007/s00125-016-3933-4] [Citation(s) in RCA: 291] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 02/23/2016] [Indexed: 02/07/2023]
Abstract
White adipose tissue (WAT) has key metabolic and endocrine functions and plays a role in regulating energy homeostasis and insulin sensitivity. WAT is characterised by its capacity to adapt and expand in response to surplus energy through processes of adipocyte hypertrophy and/or recruitment and proliferation of precursor cells in combination with vascular and extracellular matrix remodelling. However, in the context of sustained obesity, WAT undergoes fibro-inflammation, which compromises its functionality, contributing to increased risk of type 2 diabetes and cardiovascular diseases. Conversely, brown adipose tissue (BAT) and browning of WAT represent potential therapeutic approaches, since dysfunctional white adipocyte-induced lipid overspill can be halted by BAT/browning-mediated oxidative anti-lipotoxic effects. Better understanding of the cellular and molecular pathophysiological mechanisms regulating adipocyte size, number and depot-dependent expansion has become a focus of interest over recent decades. Here, we summarise the mechanisms contributing to adipose tissue (AT) plasticity and function including characteristics and cellular complexity of the various adipose depots and we discuss recent insights into AT origins, identification of adipose precursors, pathophysiological regulation of adipogenesis and its relation to WAT/BAT expandability in obesity and its associated comorbidities.
Collapse
Affiliation(s)
- Vanessa Pellegrinelli
- University of Cambridge Metabolic Research Laboratories, Level 4, Wellcome Trust-MRC Institute of Metabolic Science, Box 289, Addenbrooke's Hospital, Cambridge, CB2 OQQ, UK.
| | - Stefania Carobbio
- University of Cambridge Metabolic Research Laboratories, Level 4, Wellcome Trust-MRC Institute of Metabolic Science, Box 289, Addenbrooke's Hospital, Cambridge, CB2 OQQ, UK
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Antonio Vidal-Puig
- University of Cambridge Metabolic Research Laboratories, Level 4, Wellcome Trust-MRC Institute of Metabolic Science, Box 289, Addenbrooke's Hospital, Cambridge, CB2 OQQ, UK.
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK.
| |
Collapse
|
429
|
El Bekay R, Coín-Aragüez L, Fernández-García D, Oliva-Olivera W, Bernal-López R, Clemente-Postigo M, Delgado-Lista J, Diaz-Ruiz A, Guzman-Ruiz R, Vázquez-Martínez R, Lhamyani S, Roca-Rodríguez MM, Veledo SF, Vendrell J, Malagón MM, Tinahones FJ. Effects of glucagon-like peptide-1 on the differentiation and metabolism of human adipocytes. Br J Pharmacol 2016; 173:1820-34. [PMID: 26993859 PMCID: PMC4867741 DOI: 10.1111/bph.13481] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 02/15/2016] [Accepted: 02/29/2016] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND AND PURPOSE Glucagon-like peptide-1 (GLP-1) analogues improve glycaemic control in type 2 diabetic (T2D) patients and cause weight loss in obese subjects by as yet unknown mechanisms. We recently demonstrated that the GLP-1 receptor, which is present in adipocytes and the stromal vascular fraction of human adipose tissue (AT), is up-regulated in AT of insulin-resistant morbidly obese subjects compared with healthy lean subjects. The aim of this study was to explore the effects of in vitro and in vivo administration of GLP-1 and its analogues on AT and adipocyte functions from T2D morbidly obese subjects. EXPERIMENTAL APPROACH We analysed the effects of GLP-1 on human AT and isolated adipocytes in vitro and the effects of GLP-1 mimetics on AT of morbidly obese T2D subjects in vivo. KEY RESULTS GLP-1 down-regulated the expression of lipogenic genes when administered during in vitro differentiation of human adipocytes from morbidly obese patients. GLP-1 also decreased the expression of adipogenic/lipogenic genes in AT explants and mature adipocytes, while increasing that of lipolytic markers and adiponectin. In 3T3-L1 adipocytes, GLP-1 decreased free cytosolic Ca2+ concentration ([Ca2+]i). GLP-1-induced responses were only partially blocked by GLP-1 receptor antagonist exendin (9–39). Moreover, administration of exenatide or liraglutide reduced adipogenic and inflammatory marker mRNA in AT of T2D obese subjects. CONCLUSIONS AND IMPLICATIONS Our data suggest that the beneficial effects of GLP-1 are associated with changes in the adipogenic potential and ability of AT to expand, via activation of the canonical GLP-1 receptor and an additional, as yet unknown, receptor.
Collapse
Affiliation(s)
- Rajaa El Bekay
- CIBER Pathophysiology of Obesity and Nutrition CB06/03, Carlos III Health Institute, Malaga, Spain
- Laboratory of Biomedical Research, Virgen de la Victoria Clinical University Hospital, Málaga, Spain
| | - Leticia Coín-Aragüez
- CIBER Pathophysiology of Obesity and Nutrition CB06/03, Carlos III Health Institute, Malaga, Spain
- Laboratory of Biomedical Research, Virgen de la Victoria Clinical University Hospital, Málaga, Spain
| | - Diego Fernández-García
- CIBER Pathophysiology of Obesity and Nutrition CB06/03, Carlos III Health Institute, Malaga, Spain
- Endocrinology Service, Virgen de la Victoria Clinical University Hospital, Malaga, Spain
| | - Wilfredo Oliva-Olivera
- CIBER Pathophysiology of Obesity and Nutrition CB06/03, Carlos III Health Institute, Malaga, Spain
- Laboratory of Biomedical Research, Virgen de la Victoria Clinical University Hospital, Málaga, Spain
| | - Rosa Bernal-López
- CIBER Pathophysiology of Obesity and Nutrition CB06/03, Carlos III Health Institute, Malaga, Spain
- Laboratory of Biomedical Research, Virgen de la Victoria Clinical University Hospital, Málaga, Spain
| | - Mercedes Clemente-Postigo
- CIBER Pathophysiology of Obesity and Nutrition CB06/03, Carlos III Health Institute, Malaga, Spain
- Laboratory of Biomedical Research, Virgen de la Victoria Clinical University Hospital, Málaga, Spain
| | - Javier Delgado-Lista
- Lipids and Atherosclerosis Unit, Department of Medicine, IMIBIC/Reina Sofia University Hospital/University of Córdoba, Córdoba, Spain
| | - Alberto Diaz-Ruiz
- Department of Cell Biology, Physiology, and Immunology, IMIBIC/Reina Sofia University Hospital/Universidad de Cordoba, CIBERobn, Córdoba, Spain
| | - Rocío Guzman-Ruiz
- Department of Cell Biology, Physiology, and Immunology, IMIBIC/Reina Sofia University Hospital/Universidad de Cordoba, CIBERobn, Córdoba, Spain
| | - Rafael Vázquez-Martínez
- Department of Cell Biology, Physiology, and Immunology, IMIBIC/Reina Sofia University Hospital/Universidad de Cordoba, CIBERobn, Córdoba, Spain
| | - Said Lhamyani
- CIBER Pathophysiology of Obesity and Nutrition CB06/03, Carlos III Health Institute, Malaga, Spain
- Laboratory of Biomedical Research, Virgen de la Victoria Clinical University Hospital, Málaga, Spain
| | - María Mar Roca-Rodríguez
- CIBER Pathophysiology of Obesity and Nutrition CB06/03, Carlos III Health Institute, Malaga, Spain
- Laboratory of Biomedical Research, Virgen de la Victoria Clinical University Hospital, Málaga, Spain
| | | | - Joan Vendrell
- CIBERDEM, Joan XXIII University Hospital, Pere Virgili Institute, Tarragona, Spain
| | - María M Malagón
- Department of Cell Biology, Physiology, and Immunology, IMIBIC/Reina Sofia University Hospital/Universidad de Cordoba, CIBERobn, Córdoba, Spain
| | - Francisco José Tinahones
- CIBER Pathophysiology of Obesity and Nutrition CB06/03, Carlos III Health Institute, Malaga, Spain
- Endocrinology Service, Virgen de la Victoria Clinical University Hospital, Malaga, Spain
| |
Collapse
|
430
|
Scherer PE. The Multifaceted Roles of Adipose Tissue-Therapeutic Targets for Diabetes and Beyond: The 2015 Banting Lecture. Diabetes 2016; 65:1452-61. [PMID: 27222389 PMCID: PMC4878420 DOI: 10.2337/db16-0339] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 03/28/2016] [Indexed: 12/29/2022]
Abstract
The Banting Medal for Scientific Achievement is the highest scientific award of the American Diabetes Association (ADA). Given in memory of Sir Frederick Banting, one of the key investigators in the discovery of insulin, the Banting Medal is awarded annually for scientific excellence, recognizing significant long-term contributions to the understanding, treatment, or prevention of diabetes. Philipp E. Scherer, PhD, of the Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, TX, received the prestigious award at the ADA's 75th Scientific Sessions, 5-9 June 2015, in Boston, MA. He presented the Banting Lecture, "The Multifaceted Roles of Adipose Tissue-Therapeutic Targets for Diabetes and Beyond," on Sunday, 7 June 2015.A number of different cell types contribute to the cellular architecture of adipose tissue. Although the adipocyte is functionally making important contributions to systemic metabolic homeostatis, several additional cell types contribute a supportive role to bestow maximal flexibility on the tissue with respect to many biosynthetic and catabolic processes, depending on the metabolic state. These cells include vascular endothelial cells, a host of immune cells, and adipocyte precursor cells and fibroblasts. Combined, these cell types give rise to a tissue with remarkable flexibility with respect to expansion and contraction, while optimizing the ability of the tissue to act as an endocrine organ through the release of many protein factors, critically influencing systemic lipid homeostasis and biochemically contributing many metabolites. Using an example from each of these categories-adiponectin as a key adipokine, sphingolipids as critical mediators of insulin sensitivity, and uridine as an important metabolite contributed by the adipocyte to the systemic pool-I will discuss the emerging genesis of the adipocyte over the past 20 years from metabolic bystander to key driver of metabolic flexibility.
Collapse
Affiliation(s)
- Philipp E Scherer
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
431
|
Fasting induces a subcutaneous-to-visceral fat switch mediated by microRNA-149-3p and suppression of PRDM16. Nat Commun 2016; 7:11533. [PMID: 27240637 PMCID: PMC4895052 DOI: 10.1038/ncomms11533] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 04/06/2016] [Indexed: 01/22/2023] Open
Abstract
Visceral adiposity is strongly associated with metabolic disease risk, whereas
subcutaneous adiposity is comparatively benign. However, their relative
physiological importance in energy homeostasis remains unclear. Here, we show that
after 24-h fasting, the subcutaneous adipose tissue of mice acquires key properties
of visceral fat. During this fast-induced ‘visceralization',
upregulation of miR-149-3p directly targets PR domain containing 16 (PRDM16), a key
coregulatory protein required for the ‘browning' of white fat. In
cultured inguinal preadipocytes, overexpression of miR-149-3p promotes a
visceral-like switch during cell differentiation. Mice deficient in miR-149-3p
display an increase in whole-body energy expenditure, with enhanced thermogenesis of
inguinal fat. However, a visceral-like adipose phenotype is observed in inguinal
depots overexpressing miR-149-3p. These results indicate that in addition to the
capacity of ‘browning' to defend against hypothermia during cold
exposure, the subcutaneous adipose depot is also capable of ‘whitening'
to preserve energy during fasting, presumably to maintain energy balance, via
miR-149-3p-mediated regulation of PRDM16. Visceral adiposity is associated with metabolic diseases, whereas
subcutaneous adiposity is comparatively benign. Here, the authors report that
subcutaneous adipose tissue adopts visceral-like characteristics in response to
prolonged fasting, and show this is mediated by miR-149-3p and its target,
PRDM16.
Collapse
|
432
|
Stern JH, Rutkowski JM, Scherer PE. Adiponectin, Leptin, and Fatty Acids in the Maintenance of Metabolic Homeostasis through Adipose Tissue Crosstalk. Cell Metab 2016; 23:770-84. [PMID: 27166942 PMCID: PMC4864949 DOI: 10.1016/j.cmet.2016.04.011] [Citation(s) in RCA: 733] [Impact Index Per Article: 81.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metabolism research has made tremendous progress over the last several decades in establishing the adipocyte as a central rheostat in the regulation of systemic nutrient and energy homeostasis. Operating at multiple levels of control, the adipocyte communicates with organ systems to adjust gene expression, glucoregulatory hormone exocytosis, enzymatic reactions, and nutrient flux to equilibrate the metabolic demands of a positive or negative energy balance. The identification of these mechanisms has great potential to identify novel targets for the treatment of diabetes and related metabolic disorders. Herein, we review the central role of the adipocyte in the maintenance of metabolic homeostasis, highlighting three critical mediators: adiponectin, leptin, and fatty acids.
Collapse
Affiliation(s)
- Jennifer H Stern
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Joseph M Rutkowski
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Philipp E Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
433
|
Finan B, Müller TD, Clemmensen C, Perez-Tilve D, DiMarchi RD, Tschöp MH. Reappraisal of GIP Pharmacology for Metabolic Diseases. Trends Mol Med 2016; 22:359-376. [DOI: 10.1016/j.molmed.2016.03.005] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 03/15/2016] [Accepted: 03/17/2016] [Indexed: 12/31/2022]
|
434
|
Chusyd DE, Wang D, Huffman DM, Nagy TR. Relationships between Rodent White Adipose Fat Pads and Human White Adipose Fat Depots. Front Nutr 2016; 3:10. [PMID: 27148535 PMCID: PMC4835715 DOI: 10.3389/fnut.2016.00010] [Citation(s) in RCA: 235] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 03/26/2016] [Indexed: 01/09/2023] Open
Abstract
The objective of this review was to compare and contrast the physiological and metabolic profiles of rodent white adipose fat pads with white adipose fat depots in humans. Human fat distribution and its metabolic consequences have received extensive attention, but much of what has been tested in translational research has relied heavily on rodents. Unfortunately, the validity of using rodent fat pads as a model of human adiposity has received less attention. There is a surprisingly lack of studies demonstrating an analogous relationship between rodent and human adiposity on obesity-related comorbidities. Therefore, we aimed to compare known similarities and disparities in terms of white adipose tissue (WAT) development and distribution, sexual dimorphism, weight loss, adipokine secretion, and aging. While the literature supports the notion that many similarities exist between rodents and humans, notable differences emerge related to fat deposition and function of WAT. Thus, further research is warranted to more carefully define the strengths and limitations of rodent WAT as a model for humans, with a particular emphasis on comparable fat depots, such as mesenteric fat.
Collapse
Affiliation(s)
- Daniella E Chusyd
- Department of Nutrition Science, University of Alabama at Birmingham , Birmingham, AL , USA
| | - Donghai Wang
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Derek M Huffman
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Tim R Nagy
- Department of Nutrition Science, University of Alabama at Birmingham , Birmingham, AL , USA
| |
Collapse
|
435
|
Abstract
Nonalcoholic fatty liver disease (NAFLD) is commonly diagnosed in obese or overweight individuals. However, lean individuals with NAFLD are not rare but represent one significant end of the phenotypic spectrum of NAFLD. Although initial observations between obese and lean NAFLD reveal some metabolic parallels, these associations vary widely given differences in study populations and metabolic parameters assessed. The role of body composition in risk assessment is significant and incompletely assessed during most clinical encounters. Recent multinational investigation reveals an increased mortality in lean individuals with NASH. Many aspects of lean NAFLD need further exploration including epidemiology, clinical risk assessment, histologic changes unique to lean NAFLD, genetic and pathophysiologic mechanisms predisposing at risk individuals, natural history and treatment strategies in this underrecognized population.
Collapse
|
436
|
Kim S, Choe S, Lee DK. BMP-9 enhances fibroblast growth factor 21 expression and suppresses obesity. Biochim Biophys Acta Mol Basis Dis 2016; 1862:1237-46. [PMID: 27085971 DOI: 10.1016/j.bbadis.2016.04.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 04/04/2016] [Accepted: 04/11/2016] [Indexed: 12/21/2022]
Abstract
Although BMP-9 has been reported to induce browning of white adipose tissues (WATs) and suppress high fat diet-induced obesity, detailed molecular mechanism needs to be further elucidated. We report here that administration of MB109, a recombinant derivative of human BMP-9, into obese mice enhanced gene expression of fibroblast growth factor 21 (FGF21), a metabolic regulator, and alleviates a spectrum of pathological symptoms due to high fat diet-induced obesity. In addition, periodical injection of MB109 (500μg/kg/week) reduced an amount of lipid droplets in the liver, serum levels of alanine aminotransferase (ALT), and total cholesterol. These results indicate that MB109 is also effective to treat obesity-mediated non-alcoholic fatty liver disease (NAFLD).
Collapse
Affiliation(s)
- Sooho Kim
- Laboratory of Drugs to Medicine, Joint Center for Biosciences, Incheon 406-840, South Korea
| | - Senyon Choe
- Laboratory of Synthetic Biology, Joint Center for Biosciences, Incheon 406-840, South Korea; Drug Discovery Collaboratory, 9500 Gilman Drive, San Diego, CA 92093, USA.
| | - Dong Kun Lee
- Laboratory of Drugs to Medicine, Joint Center for Biosciences, Incheon 406-840, South Korea.
| |
Collapse
|
437
|
Ruan H, Dong LQ. Adiponectin signaling and function in insulin target tissues. J Mol Cell Biol 2016; 8:101-9. [PMID: 26993044 PMCID: PMC4816150 DOI: 10.1093/jmcb/mjw014] [Citation(s) in RCA: 285] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 01/08/2016] [Indexed: 12/13/2022] Open
Abstract
Obesity-linked type 2 diabetes is one of the paramount causes of morbidity and mortality worldwide, posing a major threat on human health, productivity, and quality of life. Despite great progress made towards a better understanding of the molecular basis of diabetes, the available clinical counter-measures against insulin resistance, a defect that is central to obesity-linked type 2 diabetes, remain inadequate. Adiponectin, an abundant adipocyte-secreted factor with a wide-range of biological activities, improves insulin sensitivity in major insulin target tissues, modulates inflammatory responses, and plays a crucial role in the regulation of energy metabolism. However, adiponectin as a promising therapeutic approach has not been thoroughly explored in the context of pharmacological intervention, and extensive efforts are being devoted to gain mechanistic understanding of adiponectin signaling and its regulation, and reveal therapeutic targets. Here, we discuss tissue- and cell-specific functions of adiponectin, with an emphasis on the regulation of adiponectin signaling pathways, and the potential crosstalk between the adiponectin and other signaling pathways involved in metabolic regulation. Understanding better just why and how adiponectin and its downstream effector molecules work will be essential, together with empirical trials, to guide us to therapies that target the root cause(s) of type 2 diabetes and insulin resistance.
Collapse
Affiliation(s)
- Hong Ruan
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Lily Q Dong
- Department of Cell and Structural Biology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| |
Collapse
|
438
|
Hui X, Feng T, Liu Q, Gao Y, Xu A. The FGF21-adiponectin axis in controlling energy and vascular homeostasis. J Mol Cell Biol 2016; 8:110-9. [PMID: 26993043 DOI: 10.1093/jmcb/mjw013] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 01/04/2016] [Indexed: 12/15/2022] Open
Abstract
Whole-body energy metabolism and cardiovascular homeostasis are tightly controlled processes that involve highly coordinated crosstalk among distal organs. This is mainly achieved by a large number of hormones released from each organ. Among them, fibroblast growth factor 21 (FGF21) and adiponectin have recently gained considerable attention, since both of them possess multiple profound protective effects against a myriad of cardio-metabolic disorders. Despite their distinct structures and production sites, these two hormones share striking functional similarity. This dichotomy is recently reconciled by the demonstration of the FGF21-adiponectin axis. In adipocytes, both transcription and secretion of adiponectin are strongly induced by FGF21, which is partially dependent on PPARγ activity. Furthermore, the glucose-lowering, lipid-clearing, and anti-atherosclerotic functions of FGF21 are diminished in adiponectin-null mice, suggesting that adiponectin serves as an obligatory mediator of FGF21-elicited metabolic and vascular benefits. However, in both animals and human subjects with obesity, circulating FGF21 levels are increased whereas plasma adiponectin concentrations are reduced, perhaps due to FGF21 resistance, suggesting that dysfunctional FGF21-adiponectin axis is an important contributor to the pathogenesis of obesity-related cardio-metabolic syndrome. The FGF21-adiponectin axis protects against a cluster of cardio-metabolic disorders via mediating multi-organ communications, and is a promising target for therapeutic interventions of these chronic diseases.
Collapse
Affiliation(s)
- Xiaoyan Hui
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Tianshi Feng
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China Department of Pharmacy and Pharmacology, The University of Hong Kong, Hong Kong, China
| | - Qing Liu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yuan Gao
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China Department of Medicine, The University of Hong Kong, Hong Kong, China Department of Pharmacy and Pharmacology, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
439
|
Luo Y, Burrington CM, Graff EC, Zhang J, Judd RL, Suksaranjit P, Kaewpoowat Q, Davenport SK, O'Neill AM, Greene MW. Metabolic phenotype and adipose and liver features in a high-fat Western diet-induced mouse model of obesity-linked NAFLD. Am J Physiol Endocrinol Metab 2016; 310:E418-39. [PMID: 26670487 PMCID: PMC4796265 DOI: 10.1152/ajpendo.00319.2015] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 12/04/2015] [Indexed: 12/15/2022]
Abstract
nonalcoholic fatty liver disease (NAFLD), an obesity and insulin resistance associated clinical condition - ranges from simple steatosis to nonalcoholic steatohepatitis. To model the human condition, a high-fat Western diet that includes liquid sugar consumption has been used in mice. Even though liver pathophysiology has been well characterized in the model, little is known about the metabolic phenotype (e.g., energy expenditure, activity, or food intake). Furthermore, whether the consumption of liquid sugar exacerbates the development of glucose intolerance, insulin resistance, and adipose tissue dysfunction in the model is currently in question. In our study, a high-fat Western diet (HFWD) with liquid sugar [fructose and sucrose (F/S)] induced acute hyperphagia above that observed in HFWD-fed mice, yet without changes in energy expenditure. Liquid sugar (F/S) exacerbated HFWD-induced glucose intolerance and insulin resistance and impaired the storage capacity of epididymal white adipose tissue (eWAT). Hepatic TG, plasma alanine aminotransferase, and normalized liver weight were significantly increased only in HFWD+F/S-fed mice. HFWD+F/S also resulted in increased hepatic fibrosis and elevated collagen 1a2, collagen 3a1, and TGFβ gene expression. Furthermore, HWFD+F/S-fed mice developed more profound eWAT inflammation characterized by adipocyte hypertrophy, macrophage infiltration, a dramatic increase in crown-like structures, and upregulated proinflammatory gene expression. An early hypoxia response in the eWAT led to reduced vascularization and increased fibrosis gene expression in the HFWD+F/S-fed mice. Our results demonstrate that sugary water consumption induces acute hyperphagia, limits adipose tissue expansion, and exacerbates glucose intolerance and insulin resistance, which are associated with NAFLD progression.
Collapse
Affiliation(s)
- Yuwen Luo
- Department of Nutrition, Auburn University, Auburn, Alabama
| | | | - Emily C Graff
- College of Veterinary Medicine, Auburn University, Auburn, Alabama; and
| | - Jian Zhang
- Department of Nutrition, Auburn University, Auburn, Alabama
| | - Robert L Judd
- College of Veterinary Medicine, Auburn University, Auburn, Alabama; and Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, Alabama
| | - Promporn Suksaranjit
- Department of Internal Medicine, Bassett Medical Center, Cooperstown, New York, and
| | | | | | | | - Michael W Greene
- Department of Nutrition, Auburn University, Auburn, Alabama; Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, Alabama; Bassett Research Institute, Bassett Medical Center, Cooperstown, New York;
| |
Collapse
|
440
|
Zhao L, Fang X, Marshall MR, Chung S. Regulation of Obesity and Metabolic Complications by Gamma and Delta Tocotrienols. Molecules 2016; 21:344. [PMID: 26978344 PMCID: PMC6274282 DOI: 10.3390/molecules21030344] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 03/07/2016] [Accepted: 03/08/2016] [Indexed: 12/22/2022] Open
Abstract
Tocotrienols (T3s) are a subclass of unsaturated vitamin E that have been extensively studied for their anti-proliferative, anti-oxidative and anti-inflammatory properties in numerous cancer studies. Recently, T3s have received increasing attention due to their previously unrecognized property to attenuate obesity and its associated metabolic complications. In this review, we comprehensively evaluated the recent published scientific literature about the influence of T3s on obesity, with a particular emphasis on the signaling pathways involved. T3s have been demonstrated in animal models or human subjects to reduce fat mass, body weight, plasma concentrations of free fatty acid, triglycerides and cholesterol, as well as to improve glucose and insulin tolerance. Their mechanisms of action in adipose tissue mainly include (1) modulation of fat cell adipogenesis and differentiation; (2) modulation of energy sensing; (3) induction of apoptosis in preadipocytes and (4) modulation of inflammation. Studies have also been conducted to investigate the effects of T3s on other targets, e.g., the immune system, liver, muscle, pancreas and bone. Since δT3 and γT3 are regarded as the most active isomers among T3s, their clinical relevance to reduce obesity should be investigated in human trials.
Collapse
Affiliation(s)
- Lu Zhao
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL 32611, USA.
| | - Xiefan Fang
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32611, USA.
| | - Maurice R Marshall
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL 32611, USA.
| | - Soonkyu Chung
- Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, NE 68583, USA.
| |
Collapse
|
441
|
Ballestri S, Nascimbeni F, Romagnoli D, Baldelli E, Lonardo A. The Role of Nuclear Receptors in the Pathophysiology, Natural Course, and Drug Treatment of NAFLD in Humans. Adv Ther 2016; 33:291-319. [PMID: 26921205 DOI: 10.1007/s12325-016-0306-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) describes steatosis, nonalcoholic steatohepatitis with or without fibrosis, and hepatocellular carcinoma, namely the entire alcohol-like spectrum of liver disease though observed in the nonalcoholic, dysmetabolic, individual free of competing causes of liver disease. NAFLD, which is a major public health issue, exhibits intrahepatic triglyceride storage giving rise to lipotoxicity. Nuclear receptors (NRs) are transcriptional factors which, activated by ligands, are master regulators of metabolism and also have intricate connections with circadian control accounting for cyclical patterns in the metabolic fate of nutrients. Several transcription factors, such as peroxisome proliferator-activated receptors, liver X receptors, farnesoid X receptors, and their molecular cascades, finely regulate energetic fluxes and metabolic pathways. Dysregulation of such pathways is heavily implicated in those metabolic derangements characterizing insulin resistance and metabolic syndrome and in the histogenesis of progressive NAFLD forms. We review the role of selected NRs in NAFLD pathogenesis. Secondly, we analyze the role of NRs in the natural history of human NAFLD. Next, we discuss the results observed in humans following administration of drug agonists or antagonists of the NRs pathogenically involved in NAFLD. Finally, general principles of treatment and lines of research in human NAFLD are briefly examined.
Collapse
Affiliation(s)
| | - Fabio Nascimbeni
- NOCSAE, Outpatient Liver Clinic and Operating Unit Internal Medicine, Azienda USL Modena, Modena, Italy
- University of Modena and Reggio Emilia, Modena, Italy
| | - Dante Romagnoli
- NOCSAE, Outpatient Liver Clinic and Operating Unit Internal Medicine, Azienda USL Modena, Modena, Italy
| | | | - Amedeo Lonardo
- NOCSAE, Outpatient Liver Clinic and Operating Unit Internal Medicine, Azienda USL Modena, Modena, Italy.
| |
Collapse
|
442
|
Peterson SJ, Vanella L, Gotlinger K, Jiang H, Singh SP, Sodhi K, Maher E, O’Hanlon K, Shapiro JI, Abraham NG. Oxidized HDL is a potent inducer of adipogenesis and causes activation of the Ang-II and 20-HETE systems in human obese females. Prostaglandins Other Lipid Mediat 2016; 123:68-77. [DOI: 10.1016/j.prostaglandins.2016.04.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 04/22/2016] [Accepted: 04/27/2016] [Indexed: 10/21/2022]
|
443
|
Pavan Kumar N, Nair D, Banurekha VV, Dolla C, Kumaran P, Sridhar R, Babu S. Type 2 diabetes mellitus coincident with pulmonary or latent tuberculosis results in modulation of adipocytokines. Cytokine 2016; 79:74-81. [PMID: 26771473 PMCID: PMC4729624 DOI: 10.1016/j.cyto.2015.12.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/28/2015] [Accepted: 12/29/2015] [Indexed: 12/15/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is recognized as major risk factor for the progress of active pulmonary tuberculosis (PTB), although the mechanistic link between diabetes and tuberculosis remains poorly characterized. Moreover, the influence of poorly controlled diabetes on the baseline levels of adipocytokines in the context of tuberculosis has not been explored in detail. To characterize the influence of coexistent DM on adipocytokine levels in pulmonary or latent TB (LTB), we examined circulating levels of adipocytokines in the plasma of individuals with PTB-DM or LTB-DM and compared them with those without DM (PTB or LTB). PTB-DM or LTB-DM is characterized by diminished circulating levels of adiponectin and adipsin and/or heightened circulating levels of leptin, visfatin and PAI-1. In addition, adiponectin and adipsin exhibit a significant negative correlation, whereas leptin, visfatin and PAI-1 display a significant positive correlation with HbA1C levels and random blood glucose levels. Therefore, our data reveal that PTB-DM or LTB-DM is characterized by alterations in the systemic levels of adipocytokines, indicating that altered adipose tissue inflammation underlying Type 2 diabetes potentially contributes to pathogenesis of TB disease.
Collapse
Affiliation(s)
- Nathella Pavan Kumar
- National Institutes of Health-International Center for Excellence in Research, Chennai, India; National Institute for Research in Tuberculosis, Chennai, India.
| | - Dina Nair
- National Institute for Research in Tuberculosis, Chennai, India
| | - V V Banurekha
- National Institute for Research in Tuberculosis, Chennai, India
| | | | - Paul Kumaran
- National Institute for Research in Tuberculosis, Chennai, India
| | | | - Subash Babu
- National Institutes of Health-International Center for Excellence in Research, Chennai, India
| |
Collapse
|
444
|
Senol-Cosar O, Flach RJR, DiStefano M, Chawla A, Nicoloro S, Straubhaar J, Hardy OT, Noh HL, Kim JK, Wabitsch M, Scherer PE, Czech MP. Tenomodulin promotes human adipocyte differentiation and beneficial visceral adipose tissue expansion. Nat Commun 2016; 7:10686. [PMID: 26880110 PMCID: PMC4757769 DOI: 10.1038/ncomms10686] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 01/12/2016] [Indexed: 12/14/2022] Open
Abstract
Proper regulation of energy storage in adipose tissue is crucial for maintaining insulin sensitivity and molecules contributing to this process have not been fully revealed. Here we show that type II transmembrane protein tenomodulin (TNMD) is upregulated in adipose tissue of insulin-resistant versus insulin-sensitive individuals, who were matched for body mass index (BMI). TNMD expression increases in human preadipocytes during differentiation, whereas silencing TNMD blocks adipogenesis. Upon high-fat diet feeding, transgenic mice overexpressing Tnmd develop increased epididymal white adipose tissue (eWAT) mass, and preadipocytes derived from Tnmd transgenic mice display greater proliferation, consistent with elevated adipogenesis. In Tnmd transgenic mice, lipogenic genes are upregulated in eWAT, as is Ucp1 in brown fat, while liver triglyceride accumulation is attenuated. Despite expanded eWAT, transgenic animals display improved systemic insulin sensitivity, decreased collagen deposition and inflammation in eWAT, and increased insulin stimulation of Akt phosphorylation. Our data suggest that TNMD acts as a protective factor in visceral adipose tissue to alleviate insulin resistance in obesity. Expansion of visceral adipose tissue is usually associated with insulin resistance and metabolic disease. Here, the authors show that the membrane protein TNMD is upregulated in visceral fat of insulin resistant obese individuals and promotes healthy adipose tissue expansion through increasing adipogenesis.
Collapse
Affiliation(s)
- Ozlem Senol-Cosar
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Rachel J Roth Flach
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Marina DiStefano
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Anil Chawla
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Sarah Nicoloro
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Juerg Straubhaar
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Olga T Hardy
- Department of Internal Medicine, Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Hye Lim Noh
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA.,Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Jason K Kim
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA.,Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm 89075, Germany
| | - Philipp E Scherer
- Department of Internal Medicine, Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Michael P Czech
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| |
Collapse
|
445
|
SREBP-1c/MicroRNA 33b Genomic Loci Control Adipocyte Differentiation. Mol Cell Biol 2016; 36:1180-93. [PMID: 26830228 DOI: 10.1128/mcb.00745-15] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 01/11/2016] [Indexed: 12/19/2022] Open
Abstract
White adipose tissue (WAT) is essential for maintaining metabolic function, especially during obesity. The intronic microRNAs miR-33a and miR-33b, located within the genes encoding sterol regulatory element-binding protein 2 (SREBP-2) and SREBP-1, respectively, are transcribed in concert with their host genes and function alongside them to regulate cholesterol, fatty acid, and glucose metabolism. SREBP-1 is highly expressed in mature WAT and plays a critical role in promoting in vitro adipocyte differentiation. It is unknown whether miR-33b is induced during or involved in adipogenesis. This is in part due to loss of miR-33b in rodents, precluding in vivo assessment of the impact of miR-33b using standard mouse models. This work demonstrates that miR-33b is highly induced upon differentiation of human preadipocytes, along with SREBP-1. We further report that miR-33b is an important regulator of adipogenesis, as inhibition of miR-33b enhanced lipid droplet accumulation. Conversely, overexpression of miR-33b impaired preadipocyte proliferation and reduced lipid droplet formation and the induction of peroxisome proliferator-activated receptor γ (PPARγ) target genes during differentiation. These effects may be mediated by targeting of HMGA2, cyclin-dependent kinase 6 (CDK6), and other predicted miR-33b targets. Together, these findings demonstrate a novel role of miR-33b in the regulation of adipocyte differentiation, with important implications for the development of obesity and metabolic disease.
Collapse
|
446
|
Jura M, Kozak LP. Obesity and related consequences to ageing. AGE (DORDRECHT, NETHERLANDS) 2016; 38:23. [PMID: 26846415 PMCID: PMC5005878 DOI: 10.1007/s11357-016-9884-3] [Citation(s) in RCA: 291] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 01/26/2016] [Indexed: 04/17/2023]
Abstract
Obesity has become a major public health problem. Given the current increase in life expectancy, the prevalence of obesity also raises steadily among older age groups. The increase in life expectancy is often accompanied with additional years of susceptibility to chronic ill health associated with obesity in the elderly. Both obesity and ageing are conditions leading to serious health problems and increased risk for disease and death. Ageing is associated with an increase in abdominal obesity, a major contributor to insulin resistance and the metabolic syndrome. Obesity in the elderly is thus a serious concern and comprehension of the key mechanisms of ageing and age-related diseases has become a necessary matter. Here, we aimed to identify similarities underlying mechanisms related to both obesity and ageing. We bring together evidence that age-related changes in body fat distribution and metabolism might be key factors of a vicious cycle that can accelerate the ageing process and onset of age-related diseases.
Collapse
Affiliation(s)
- Magdalena Jura
- Institute of Animal Reproduction and Food Research, Polish Academy of Science, ul. Tuwima 10, 10-748, Olsztyn, Poland.
| | - Leslie P Kozak
- Institute of Animal Reproduction and Food Research, Polish Academy of Science, ul. Tuwima 10, 10-748, Olsztyn, Poland.
| |
Collapse
|
447
|
Association between Dietary Vitamin C Intake and Non-Alcoholic Fatty Liver Disease: A Cross-Sectional Study among Middle-Aged and Older Adults. PLoS One 2016; 11:e0147985. [PMID: 26824361 PMCID: PMC4732670 DOI: 10.1371/journal.pone.0147985] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 01/11/2016] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) has become one of the most prevalent chronic liver disease all over the world. The objective of this study was to evaluate the association between dietary vitamin C intake and NAFLD. METHOD Subjects were diagnosed with NAFLD by abdominal ultrasound examination and the consumption of alcohol was less than 40g/day for men or less than 20g/day for women. Vitamin C intake was classified into four categories according to the quartile distribution in the study population: ≤74.80 mg/day, 74.81-110.15 mg/day, 110.16-146.06 mg/day, and ≥146.07 mg/day. The energy and multi-variable adjusted odds ratio (OR), as well as their corresponding 95% confidence interval (CI), were used to determine the relationship between dietary vitamin C intake and NAFLD through logistic regression. RESULT The present cross-sectional study included 3471 subjects. A significant inverse association between dietary vitamin C intake and NAFLD was observed in the energy-adjusted and the multivariable model. The multivariable adjusted ORs (95%CI) for NAFLD were 0.69 (95%CI: 0.54-0.89), 0.93 (95%CI: 0.72-1.20), and 0.71 (95%CI: 0.53-0.95) in the second, third and fourth dietary vitamin C intake quartiles, respectively, compared with the lowest (first) quartile. The relative odds of NAFLD was decreased by 0.71 times in the fourth quartile of dietary vitamin C intake compared with the lowest quartile. After stratifying data by sex or the status of obesity, the inverse association remained valid in the male population or non-obesity population, but not in the female population or obesity population. CONCLUSION There might be a moderate inverse association between dietary vitamin C intake and NAFLD in middle-aged and older adults, especially for the male population and non-obesity population.
Collapse
|
448
|
A mouse model for a partially inactive obesity-associated human MC3R variant. Nat Commun 2016; 7:10522. [PMID: 26818770 PMCID: PMC4738366 DOI: 10.1038/ncomms10522] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 12/22/2015] [Indexed: 12/30/2022] Open
Abstract
We previously reported children homozygous for two MC3R sequence variants (C17A+G241A) have greater fat mass than controls. Here we show, using homozygous knock-in mouse models in which we replace murine Mc3r with wild-type human (MC3RhWT/hWT) and double-mutant (C17A+G241A) human (MC3RhDM/hDM) MC3R, that MC3RhDM/hDM have greater weight and fat mass, increased energy intake and feeding efficiency, but reduced length and fat-free mass compared with MC3RhWT/hWT. MC3RhDM/hDM mice do not have increased adipose tissue inflammatory cell infiltration or greater expression of inflammatory markers despite their greater fat mass. Serum adiponectin levels are increased in MC3RhDM/hDM mice and MC3RhDM/hDM human subjects. MC3RhDM/hDM bone- and adipose tissue-derived mesenchymal stem cells (MSCs) differentiate into adipocytes that accumulate more triglyceride than MC3RhWT/hWT MSCs. MC3RhDM/hDM impacts nutrient partitioning to generate increased adipose tissue that appears metabolically healthy. These data confirm the importance of MC3R signalling in human metabolism and suggest a previously-unrecognized role for the MC3R in adipose tissue development. The melanocortin receptor, MC3R, regulates organismal energy homeostasis. Here, Lee et al. create knock-in mice with the a mutated version of the human MC3R receptor found in obese children, and show these mice have more fat and smaller bone, yet are by and large metabolically healthy.
Collapse
|
449
|
Caffeic Acid Phenethyl Ester Regulates PPAR's Levels in Stem Cells-Derived Adipocytes. PPAR Res 2016; 2016:7359521. [PMID: 26904104 PMCID: PMC4745343 DOI: 10.1155/2016/7359521] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 12/30/2015] [Indexed: 01/20/2023] Open
Abstract
Hypertrophic obesity inhibits activation of peroxisome proliferators-activated receptor gamma (PPARγ), considered the key mediator of the fully differentiated and insulin sensitive adipocyte phenotype. We examined the effects of Caffeic Acid Phenethyl Ester (Cape), isolated from propolis, a honeybee hive product, on Adipose Stem Cells (ASCs) differentiation to the adipocyte lineage. Finally we tested the effects of Cape on insulin-resistant adipocytes. Quantification of Oil Red O-stained cells showed that lipid droplets decreased following Cape treatment as well as radical oxygen species formation. Additionally, exposure of ASC to high glucose levels decreased adiponectin and increased proinflammatory cytokines mRNA levels, which were reversed by Cape-mediated increase of insulin sensitivity. Cape treatment resulted in decreased triglycerides synthesis and increased beta-oxidation. Exposure of ASCs to Lipopolysaccharide (LPS) induced a reduction of PPARγ, an increase of IL-6 levels associated with a well-known stimulation of lipolysis; Cape partially attenuated the LPS-mediated effects. These observations reveal the main role of PPARγ in the adipocyte function and during ASC differentiation. As there is now substantial interest in functional food and nutraceutical products, the observed therapeutic value of Cape in insulin-resistance related diseases should be taken into consideration.
Collapse
|
450
|
Samuel VT, Shulman GI. The pathogenesis of insulin resistance: integrating signaling pathways and substrate flux. J Clin Invest 2016; 126:12-22. [PMID: 26727229 DOI: 10.1172/jci77812] [Citation(s) in RCA: 905] [Impact Index Per Article: 100.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Insulin resistance arises when the nutrient storage pathways evolved to maximize efficient energy utilization are exposed to chronic energy surplus. Ectopic lipid accumulation in liver and skeletal muscle triggers pathways that impair insulin signaling, leading to reduced muscle glucose uptake and decreased hepatic glycogen synthesis. Muscle insulin resistance, due to ectopic lipid, precedes liver insulin resistance and diverts ingested glucose to the liver, resulting in increased hepatic de novo lipogenesis and hyperlipidemia. Subsequent macrophage infiltration into white adipose tissue (WAT) leads to increased lipolysis, which further increases hepatic triglyceride synthesis and hyperlipidemia due to increased fatty acid esterification. Macrophage-induced WAT lipolysis also stimulates hepatic gluconeogenesis, promoting fasting and postprandial hyperglycemia through increased fatty acid delivery to the liver, which results in increased hepatic acetyl-CoA content, a potent activator of pyruvate carboxylase, and increased glycerol conversion to glucose. These substrate-regulated processes are mostly independent of insulin signaling in the liver but are dependent on insulin signaling in WAT, which becomes defective with inflammation. Therapies that decrease ectopic lipid storage and diminish macrophage-induced WAT lipolysis will reverse the root causes of type 2 diabetes.
Collapse
|