1
|
Damme KSF, Ristanovic I, Mittal VA. Reduced hippocampal volume unmasks distinct impacts of cumulative adverse childhood events (ACEs) on psychotic-like experiences in late childhood and early adolescence. Psychoneuroendocrinology 2024; 169:107149. [PMID: 39128397 DOI: 10.1016/j.psyneuen.2024.107149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/17/2024] [Accepted: 07/25/2024] [Indexed: 08/13/2024]
Abstract
Stress is associated with increased vulnerability to psychosis, yet the mechanisms that contribute to these effects are poorly understood. Substantial literature has linked reduced hippocampal volume to both psychosis risk and early life stress. However, less work has explored the direct and indirect effects of stress on psychosis through the hippocampus in preclinical samples- when vulnerability for psychosis is accumulating. The current paper leverages the Adolescent Brain Cognitive Development (ABCD) Study sample to examine whether objective psychosocial stressors, specifically adverse childhood experiences (ACE), are linked to vulnerability for psychosis, measured by psychotic-like experiences (PLE) severity, in late childhood and early adolescence, both directly and indirectly through the deleterious effects of stress on the hippocampus. Baseline data from 11,728 individuals included previously examined and validated items to assess ACE exposure, hippocampal volume, and PLE severity - a developmentally appropriate metric of risk for psychosis. Objective psychosocial stress exposure in childhood was associated with elevated PLE severity during the transition from childhood to adolescence. Hippocampal volume was significantly reduced in individuals with greater PLE severity and greater childhood stress exposure compared to peers with low symptoms or low stress exposure. These findings are consistent with a hippocampal vulnerability model of psychosis risk. Stress exposure may cumulatively impact hippocampal volume and may also reflect a direct pathway of psychosis risk. Objective psychosocial stress should be considered as a treatment target that may impact neurodevelopment and psychosis risk.
Collapse
Affiliation(s)
- Katherine S F Damme
- Department of Psychology, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA; Department of Psychology, Northwestern University, Evanston, IL, USA; Institute for Innovations in Developmental Sciences (DevSci), Northwestern University, Evanston and Chicago, IL, USA; Department of Psychiatry, Northwestern University, Chicago, IL, USA.
| | - Ivanka Ristanovic
- Department of Psychology, Northwestern University, Evanston, IL, USA; Institute for Innovations in Developmental Sciences (DevSci), Northwestern University, Evanston and Chicago, IL, USA
| | - Vijay A Mittal
- Department of Psychology, Northwestern University, Evanston, IL, USA; Institute for Innovations in Developmental Sciences (DevSci), Northwestern University, Evanston and Chicago, IL, USA; Department of Psychiatry, Northwestern University, Chicago, IL, USA; Medical Social Sciences, Northwestern University, Chicago, IL, USA; Institute for Policy Research (IPR), Northwestern University, Chicago, IL, USA
| |
Collapse
|
2
|
Armio RL, Laurikainen H, Ilonen T, Walta M, Sormunen E, Tolvanen A, Salokangas RKR, Koutsouleris N, Tuominen L, Hietala J. Longitudinal study on hippocampal subfields and glucose metabolism in early psychosis. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:66. [PMID: 39085221 PMCID: PMC11291638 DOI: 10.1038/s41537-024-00475-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 05/11/2024] [Indexed: 08/02/2024]
Abstract
Altered hippocampal morphology and metabolic pathology, but also hippocampal circuit dysfunction, are established phenomena seen in psychotic disorders. Thus, we tested whether hippocampal subfield volume deficits link with deviations in glucose metabolism commonly seen in early psychosis, and whether the glucose parameters or subfield volumes change during follow-up period using one-year longitudinal study design of 78 first-episode psychosis patients (FEP), 48 clinical high-risk patients (CHR) and 83 controls (CTR). We also tested whether hippocampal morphology and glucose metabolism relate to clinical outcome. Hippocampus subfields were segmented with Freesurfer from 3T MRI images and parameters of glucose metabolism were determined in fasting plasma samples. Hippocampal subfield volumes were consistently lower in FEPs, and findings were more robust in non-affective psychoses, with strongest decreases in CA1, molecular layer and hippocampal tail, and in hippocampal tail of CHRs, compared to CTRs. These morphometric differences remained stable at one-year follow-up. Both non-diabetic CHRs and FEPs had worse glucose parameters compared to CTRs at baseline. We found that, insulin levels and insulin resistance increased during the follow-up period only in CHR, effect being largest in the CHRs converting to psychosis, independent of exposure to antipsychotics. The worsening of insulin resistance was associated with deterioration of function and symptoms in CHR. The smaller volume of hippocampal tail was associated with higher plasma insulin and insulin resistance in FEPs, at the one-year follow-up. Our longitudinal study supports the view that temporospatial hippocampal subfield volume deficits are stable near the onset of first psychosis, being more robust in non-affective psychoses, but less prominent in the CHR group. Specific subfield defects were related to worsening glucose metabolism during the progression of psychosis, suggesting that hippocampus is part of the circuits regulating aberrant glucose metabolism in early psychosis. Worsening of glucose metabolism in CHR group was associated with worse clinical outcome measures indicating a need for heightened clinical attention to metabolic problems already in CHR.
Collapse
Grants
- Turun Yliopistollisen Keskussairaalan Koulutus- ja Tutkimussäätiö (TYKS-säätiö)
- Alfred Kordelinin Säätiö (Alfred Kordelin Foundation)
- Finnish Cultural Foundation | Varsinais-Suomen Rahasto (Varsinais-Suomi Regional Fund)
- Suomalainen Lääkäriseura Duodecim (Finnish Medical Society Duodecim)
- Turun Yliopisto (University of Turku)
- This work was supported by funding for the VAMI-project (Turku University Hospital, state research funding, no. P3848), partly supported by EU FP7 grants (PRONIA, grant a # 602152 and METSY grant #602478). Dr. Armio received personal funding from Doctoral Programme in Clinical Research at the University of Turku, grants from State Research Funding, Turunmaa Duodecim Society, Finnish Psychiatry Research Foundation, Finnish University Society of Turku (Valto Takala Foundation), Tyks-foundation, The Finnish Medical Foundation (Maija and Matti Vaskio fund), University of Turku, The Alfred Kordelin Foundation, Finnish Cultural Foundation (Terttu Enckell fund and Ritva Helminen fund) and The Alfred Kordelin foundation. Further, Dr. Tuominen received personal grant from Sigrid Juselius and Orion research foundation and NARSAD Young Investigator Grant from the Brain & Behavior Research Foundation.
- This work was supported by funding for the VAMI-project (Turku University Hospital, state research funding, no. P3848), partly supported by EU FP7 grants (PRONIA, grant a # 602152 and METSY grant #602478). Dr. Tuominen received personal grant from Sigrid Juselius and Orion research foundation and NARSAD Young Investigator Grant from the Brain & Behavior Research Foundation.
Collapse
Affiliation(s)
- Reetta-Liina Armio
- PET Centre, Turku University Hospital, 20520, Turku, Finland.
- Department of Psychiatry, University of Turku, 20700, Turku, Finland.
- Department of Psychiatry, Turku University Hospital, 20520, Turku, Finland.
| | - Heikki Laurikainen
- PET Centre, Turku University Hospital, 20520, Turku, Finland
- Department of Psychiatry, University of Turku, 20700, Turku, Finland
- Department of Psychiatry, Turku University Hospital, 20520, Turku, Finland
| | - Tuula Ilonen
- Department of Psychiatry, University of Turku, 20700, Turku, Finland
| | - Maija Walta
- PET Centre, Turku University Hospital, 20520, Turku, Finland
- Department of Psychiatry, University of Turku, 20700, Turku, Finland
- Department of Psychiatry, Turku University Hospital, 20520, Turku, Finland
| | - Elina Sormunen
- PET Centre, Turku University Hospital, 20520, Turku, Finland
- Department of Psychiatry, University of Turku, 20700, Turku, Finland
- Department of Psychiatry, Turku University Hospital, 20520, Turku, Finland
| | - Arvi Tolvanen
- Department of Psychiatry, University of Turku, 20700, Turku, Finland
| | | | - Nikolaos Koutsouleris
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian University, D-80336, Munich, Germany
| | - Lauri Tuominen
- Department of Psychiatry, Turku University Hospital, 20520, Turku, Finland
- The Royal's Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
- Department of Psychiatry, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Jarmo Hietala
- PET Centre, Turku University Hospital, 20520, Turku, Finland
- Department of Psychiatry, University of Turku, 20700, Turku, Finland
- Department of Psychiatry, Turku University Hospital, 20520, Turku, Finland
| |
Collapse
|
3
|
Alexandros Lalousis P, Schmaal L, Wood SJ, L E P Reniers R, Cropley VL, Watson A, Pantelis C, Suckling J, Barnes NM, Pariante C, Jones PB, Joyce E, Barnes TRE, Lawrie SM, Husain N, Dazzan P, Deakin B, Shannon Weickert C, Upthegrove R. Inflammatory subgroups of schizophrenia and their association with brain structure: A semi-supervised machine learning examination of heterogeneity. Brain Behav Immun 2023; 113:166-175. [PMID: 37423513 DOI: 10.1016/j.bbi.2023.06.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 05/15/2023] [Accepted: 06/26/2023] [Indexed: 07/11/2023] Open
Abstract
OBJECTIVE Immune system dysfunction is hypothesised to contribute to structural brain changes through aberrant synaptic pruning in schizophrenia. However, evidence is mixed and there is a lack of evidence of inflammation and its effect on grey matter volume (GMV) in patients. We hypothesised that inflammatory subgroups can be identified and that the subgroups will show distinct neuroanatomical and neurocognitive profiles. METHODS The total sample consisted of 1067 participants (chronic patients with schizophrenia n = 467 and healthy controls (HCs) n = 600) from the Australia Schizophrenia Research Bank (ASRB) dataset, together with 218 recent-onset patients with schizophrenia from the external Benefit of Minocycline on Negative Symptoms of Psychosis: Extent and Mechanism (BeneMin) dataset. HYDRA (HeterogeneitY through DiscRiminant Analysis) was used to separate schizophrenia from HC and define disease-related subgroups based on inflammatory markers. Voxel-based morphometry and inferential statistics were used to explore GMV alterations and neurocognitive deficits in these subgroups. RESULTS An optimal clustering solution revealed five main schizophrenia groups separable from HC: Low Inflammation, Elevated CRP, Elevated IL-6/IL-8, Elevated IFN-γ, and Elevated IL-10 with an adjusted Rand index of 0.573. When compared with the healthy controls, the IL-6/IL-8 cluster showed the most widespread, including the anterior cingulate, GMV reduction. The IFN-γ inflammation cluster showed the least GMV reduction and impairment of cognitive performance. The CRP and the Low Inflammation clusters dominated in the younger external dataset. CONCLUSIONS Inflammation in schizophrenia may not be merely a case of low vs high, but rather there are pluripotent, heterogeneous mechanisms at play which could be reliably identified based on accessible, peripheral measures. This could inform the successful development of targeted interventions.
Collapse
Affiliation(s)
- Paris Alexandros Lalousis
- Institute for Mental Health, University of Birmingham, Birmingham, United Kingdom; Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom; Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom.
| | - Lianne Schmaal
- Orygen, Parkville, Australia; Centre for Youth Mental Health, The University of Melbourne, Parkville, Australia
| | - Stephen J Wood
- Institute for Mental Health, University of Birmingham, Birmingham, United Kingdom; Orygen, Parkville, Australia; Centre for Youth Mental Health, The University of Melbourne, Parkville, Australia
| | - Renate L E P Reniers
- Institute for Mental Health, University of Birmingham, Birmingham, United Kingdom; Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom; Institute of Clinical Sciences, University of Birmingham, United Kingdom
| | - Vanessa L Cropley
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne, Melbourne, Australia
| | - Andrew Watson
- The Department of Clinical and Motor Neuroscience, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne, Melbourne, Australia; NorthWestern Mental Health, Western Hospital Sunshine, St. Albans, Vicroria, Australia
| | - John Suckling
- Brain Mapping Unit, Department of Psychiatry, Herchel Smith Building for Brain and Mind Sciences, University of Cambridge, United Kingdom; Cambridgeshire & Peterborough NHS Foundation Trust, Cambridge, United Kingdom
| | - Nicholas M Barnes
- Institute for Clinical Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Carmine Pariante
- Stress, Psychiatry and Immunology Lab & Perinatal Psychiatry, The Maurice Wohl Clinical Neuroscience Institute, King's College London, London, United Kingdom
| | - Peter B Jones
- Brain Mapping Unit, Department of Psychiatry, Herchel Smith Building for Brain and Mind Sciences, University of Cambridge, United Kingdom; Cambridgeshire & Peterborough NHS Foundation Trust, Cambridge, United Kingdom
| | - Eileen Joyce
- The Department of Clinical and Motor Neuroscience, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Thomas R E Barnes
- Division of Psychiatry, Imperial College London, London United Kingdom
| | - Stephen M Lawrie
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Nusrat Husain
- Division of Psychology and Mental Health, University of Manchester & Mersey Care NHS Foundation Trust
| | - Paola Dazzan
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Bill Deakin
- Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, United Kingdom
| | - Cynthia Shannon Weickert
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, USA; Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, New South Wales, Australia; School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
| | - Rachel Upthegrove
- Institute for Mental Health, University of Birmingham, Birmingham, United Kingdom; Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom; Birmingham Early Interventions Service, Birmingham Women's and Children's NHS Foundation Trust, United Kingdom
| |
Collapse
|
4
|
Wilkes FA, Jakabek D, Walterfang M, Velakoulis D, Poudel GR, Stout JC, Chua P, Egan GF, Looi JCL, Georgiou-Karistianis N. Hippocampal morphology in Huntington's disease, implications for plasticity and pathogenesis: The IMAGE-HD study. Psychiatry Res Neuroimaging 2023; 335:111694. [PMID: 37598529 DOI: 10.1016/j.pscychresns.2023.111694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/10/2023] [Accepted: 07/26/2023] [Indexed: 08/22/2023]
Abstract
While striatal changes in Huntington's Disease (HD) are well established, few studies have investigated changes in the hippocampus, a key neuronal hub. Using MRI scans obtained from the IMAGE-HD study, hippocampi were manually traced and then analysed with the Spherical Harmonic Point Distribution Method (SPHARM-PDM) in 36 individuals with presymptomatic-HD, 37 with early symptomatic-HD, and 36 healthy matched controls. There were no significant differences in overall hippocampal volume between groups. Interestingly we found decreased bilateral hippocampal volume in people with symptomatic-HD who took selective serotonin reuptake inhibitors compared to those who did not, despite no significant differences in anxiety, depressive symptoms, or motor incapacity between the two groups. In symptomatic-HD, there was also significant shape deflation in the right hippocampal head, showing the utility of using manual tracing and SPHARM-PDM to characterise subtle shape changes which may be missed by other methods. This study confirms previous findings of the lack of hippocampal volumetric differentiation in presymptomatic-HD and symptomatic-HD compared to controls. We also find novel shape and volume findings in those with symptomatic-HD, especially in relation to decreased hippocampal volume in those treated with SSRIs.
Collapse
Affiliation(s)
- Fiona A Wilkes
- Research Centre for the Neurosciences of Ageing, Academic Unit of Psychiatry and Addiction Medicine, Australian National University Medical School, Canberra Hospital, Canberra, Australia.
| | | | - Mark Walterfang
- Neuropsychiatry Unit, Royal Melbourne Hospital, Melbourne Neuropsychiatry Centre, University of Melbourne and Northwestern Mental Health, Melbourne, Australia; Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | - Dennis Velakoulis
- Neuropsychiatry Unit, Royal Melbourne Hospital, Melbourne Neuropsychiatry Centre, University of Melbourne and Northwestern Mental Health, Melbourne, Australia; Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | - Govinda R Poudel
- Mary Mackillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
| | - Julie C Stout
- School of Psychological Sciences and the Turner Institute of Brain and Mental Health, Monash University, Melbourne, Australia
| | - Phyllis Chua
- Department of Psychiatry, School of Clinical Sciences, Monash University, Monash Medical Centre, Melbourne, Australia
| | - Gary F Egan
- School of Psychological Sciences and the Turner Institute of Brain and Mental Health, Monash University, Melbourne, Australia
| | - Jeffrey C L Looi
- Research Centre for the Neurosciences of Ageing, Academic Unit of Psychiatry and Addiction Medicine, Australian National University Medical School, Canberra Hospital, Canberra, Australia; Neuroscience Research Australia, Sydney, Australia
| | - Nellie Georgiou-Karistianis
- School of Psychological Sciences and the Turner Institute of Brain and Mental Health, Monash University, Melbourne, Australia
| |
Collapse
|
5
|
Ago Y, Van C, Condro MC, Hrncir H, Diep AL, Rajbhandari AK, Fanselow MS, Hashimoto H, MacKenzie-Graham AJ, Waschek JA. Overexpression of VIPR2 in mice results in microencephaly with paradoxical increased white matter volume. Exp Neurol 2023; 362:114339. [PMID: 36717013 DOI: 10.1016/j.expneurol.2023.114339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 01/10/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023]
Abstract
Large scale studies in populations of European and Han Chinese ancestry found a series of rare gain-of-function microduplications in VIPR2, encoding VPAC2, a receptor that binds vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide with high affinity, that were associated with an up to 13-fold increased risk for schizophrenia. To address how VPAC2 receptor overactivity might affect brain development, we used a well-characterized Nestin-Cre mouse strain and a knock-in approach to overexpress human VPAC2 in the central nervous system. Mice that overexpressed VPAC2 were found to exhibit a significant reduction in brain weight. Magnetic resonance imaging analysis confirmed a decrease in brain size, a specific reduction in the hippocampus grey matter volume and a paradoxical increase in whole-brain white matter volume. Sex-specific changes in behavior such as impaired prepulse inhibition and contextual fear memory were observed in VPAC2 overexpressing mice. The data indicate that the VPAC2 receptor may play a critical role in brain morphogenesis and suggest that overactive VPAC2 signaling during development plays a mechanistic role in some forms of schizophrenia.
Collapse
Affiliation(s)
- Yukio Ago
- Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan; Department of Cellular and Molecular Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Hiroshima 734-8553, Japan.
| | - Christina Van
- Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Interdepartmental Doctoral Program, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Michael C Condro
- Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Haley Hrncir
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Anna L Diep
- Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Abha K Rajbhandari
- Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; Department of Psychology, Brain Research Institute, University of California Los Angeles, Los Angeles, CA 90095, USA; Staglin Center for Brain and Behavioral Health, University of California Los Angeles, Los Angeles, CA 90095, USA; Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michael S Fanselow
- Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; Department of Psychology, Brain Research Institute, University of California Los Angeles, Los Angeles, CA 90095, USA; Staglin Center for Brain and Behavioral Health, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Hitoshi Hashimoto
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan; Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Osaka 565-0871, Japan; Division of Bioscience, Institute for Datability Science, Osaka University, Suita, Osaka 565-0871, Japan; Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka 565-0871, Japan; Department of Molecular Pharmaceutical Science, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Allan J MacKenzie-Graham
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - James A Waschek
- Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
6
|
Kafadar E, Fisher VL, Quagan B, Hammer A, Jaeger H, Mourgues C, Thomas R, Chen L, Imtiaz A, Sibarium E, Negreira AM, Sarisik E, Polisetty V, Benrimoh D, Sheldon AD, Lim C, Mathys C, Powers AR. Conditioned Hallucinations and Prior Overweighting Are State-Sensitive Markers of Hallucination Susceptibility. Biol Psychiatry 2022; 92:772-780. [PMID: 35843743 PMCID: PMC10575690 DOI: 10.1016/j.biopsych.2022.05.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/08/2022] [Accepted: 05/02/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Recent advances in computational psychiatry have identified latent cognitive and perceptual states that predispose to psychotic symptoms. Behavioral data fit to Bayesian models have demonstrated an overreliance on priors (i.e., prior overweighting) during perception in select samples of individuals with hallucinations, corresponding to increased precision of prior expectations over incoming sensory evidence. However, the clinical utility of this observation depends on the extent to which it reflects static symptom risk or current symptom state. METHODS To determine whether task performance and estimated prior weighting relate to specific elements of symptom expression, a large, heterogeneous, and deeply phenotyped sample of hallucinators (n = 249) and nonhallucinators (n = 209) performed the conditioned hallucination (CH) task. RESULTS We found that CH rates predicted stable measures of hallucination status (i.e., peak frequency). However, CH rates were more sensitive to hallucination state (i.e., recent frequency), significantly correlating with recent hallucination severity and driven by heightened reliance on past experiences (priors). To further test the sensitivity of CH rate and prior weighting to symptom severity, a subset of participants with hallucinations (n = 40) performed a repeated-measures version of the CH task. Changes in both CH frequency and prior weighting varied with changes in auditory hallucination frequency on follow-up. CONCLUSIONS These results indicate that CH rate and prior overweighting are state markers of hallucination status, potentially useful in tracking disease development and treatment response.
Collapse
Affiliation(s)
- Eren Kafadar
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, Connecticut
| | - Victoria L Fisher
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, Connecticut
| | - Brittany Quagan
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, Connecticut
| | - Allison Hammer
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, Connecticut
| | - Hale Jaeger
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, Connecticut
| | - Catalina Mourgues
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, Connecticut
| | - Rigi Thomas
- School of Naturopathic Medicine, Southwest College of Naturopathic Medicine and Health Sciences, Tempe, Arizona
| | - Linda Chen
- Faculty of Science, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ayyub Imtiaz
- Department of Psychiatry, St Elizabeth's Hospital, Washington, DC
| | - Ely Sibarium
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, Connecticut
| | | | - Elif Sarisik
- Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey; Max Planck Institute for Psychiatry, Munich, Germany
| | - Vasishta Polisetty
- Department of Psychiatry, All India Institute of Medical Sciences, New Delhi, India
| | - David Benrimoh
- McGill University School of Medicine, Montreal, Quebec, Canada
| | - Andrew D Sheldon
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, Connecticut
| | - Chris Lim
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, Connecticut
| | - Christoph Mathys
- Interacting Minds Centre, Aarhus University, Aarhus C, Denmark; Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zürich and ETH Zürich, Zurich, Switzerland; Neuroscience Area, Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy
| | - Albert R Powers
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, Connecticut.
| |
Collapse
|
7
|
Yang Y, Sun Y, Zhang Y, Jin X, Li Z, Ding M, Shi H, Liu Q, Zhang L, Su X, Shao M, Song M, Zhang Y, Li W, Yue W, Liu B, Lv L. Abnormal patterns of regional homogeneity and functional connectivity across the adolescent first-episode, adult first-episode and adult chronic schizophrenia. Neuroimage Clin 2022; 36:103198. [PMID: 36116163 PMCID: PMC9486119 DOI: 10.1016/j.nicl.2022.103198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/03/2022] [Accepted: 09/13/2022] [Indexed: 01/10/2023]
Abstract
Functional deficits in schizophrenia (SZ) are observed prior to the onset of psychosis and differ at different stages of SZ. However, there is a paucity of studies focused on adolescent first-episode SZ (AOS), adult first-episode SZ (AFES), and adult chronic SZ (CHSZ). In this study, we investigated regional activity and corresponding functional connectivity alterations that have aimed to compare the three disease stages simultaneously. The subjects comprised 49 patients with AOS, 57 patients with AFES, 51 patients with CHSZ, 41 adolescent healthy controls, and 138 adult healthy controls. We compared regional homogeneity (ReHo) between patients at each disease stage with matched healthy controls. We focused on the shared brain regions that showed significant differences between SZ patients at the three different disease stages and healthy controls. Further analysis was conducted to explore whether the patterns of the whole brain functional connectivity alterations were similar. The putamen and medial frontal gyrus (MFG) showed consistently abnormal patterns in AOS, AFES, and CHSZ. Commonly decreased ReHo values in the MFG and increased ReHo values in the bilateral putamen were found in AOS, AFES, and CHSZ. Functional connectivity of MFG remained common abnormality in different SZ stage. In conclusion, ReHo abnormalities in the MFG and the putamen may be common abnormal patterns of brain function in the three different stages of SZ. The vmPFC-dlPFC FC abnormality common occurs in adolescence and adulthood.. This study may provide a more comprehensive understanding of the neurodevelopmental abnormality across the AOS, AFES, and CHSZ.
Collapse
Affiliation(s)
- Yongfeng Yang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China
| | - Yuqing Sun
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China; Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Yuliang Zhang
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China; Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Xueyan Jin
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China
| | - Zheng Li
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China
| | - Minli Ding
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China
| | - Han Shi
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China
| | - Qing Liu
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China
| | - Luwen Zhang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China
| | - Xi Su
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China
| | - Minglong Shao
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China
| | - Meng Song
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China
| | - Yan Zhang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China
| | - Wenqiang Li
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China
| | - Weihua Yue
- Institute of Mental Health, Peking University, Beijing 100191, China; Key Laboratory for Mental Health, Ministry of Health, Beijing 100191, China
| | - Bing Liu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China; Chinese Institute for Brain Research, Beijing 102206, China.
| | - Luxian Lv
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China.
| |
Collapse
|
8
|
Structural and Functional Deviations of the Hippocampus in Schizophrenia and Schizophrenia Animal Models. Int J Mol Sci 2022; 23:ijms23105482. [PMID: 35628292 PMCID: PMC9143100 DOI: 10.3390/ijms23105482] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 01/04/2023] Open
Abstract
Schizophrenia is a grave neuropsychiatric disease which frequently onsets between the end of adolescence and the beginning of adulthood. It is characterized by a variety of neuropsychiatric abnormalities which are categorized into positive, negative and cognitive symptoms. Most therapeutical strategies address the positive symptoms by antagonizing D2-dopamine-receptors (DR). However, negative and cognitive symptoms persist and highly impair the life quality of patients due to their disabling effects. Interestingly, hippocampal deviations are a hallmark of schizophrenia and can be observed in early as well as advanced phases of the disease progression. These alterations are commonly accompanied by a rise in neuronal activity. Therefore, hippocampal formation plays an important role in the manifestation of schizophrenia. Furthermore, studies with animal models revealed a link between environmental risk factors and morphological as well as electrophysiological abnormalities in the hippocampus. Here, we review recent findings on structural and functional hippocampal abnormalities in schizophrenic patients and in schizophrenia animal models, and we give an overview on current experimental approaches that especially target the hippocampus. A better understanding of hippocampal aberrations in schizophrenia might clarify their impact on the manifestation and on the outcome of this severe disease.
Collapse
|
9
|
Hendrikse J, Chye Y, Thompson S, Rogasch NC, Suo C, Coxon JP, Yücel M. Regular aerobic exercise is positively associated with hippocampal structure and function in young and middle-aged adults. Hippocampus 2021; 32:137-152. [PMID: 34961996 DOI: 10.1002/hipo.23397] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/03/2021] [Accepted: 12/05/2021] [Indexed: 01/21/2023]
Abstract
Regular exercise has numerous benefits for brain health, including the structure and function of the hippocampus. The hippocampus plays a critical role in memory function, and is altered in a number of psychiatric disorders associated with memory impairments (e.g., depression and schizophrenia), as well as healthy aging. While many studies have focused on how regular exercise may improve hippocampal integrity in older individuals, less is known about these effects in young to middle-aged adults. Therefore, we assessed the associations of regular exercise and cardiorespiratory fitness with hippocampal structure and function in these age groups. We recruited 40 healthy young to middle-aged adults, comprised of two groups (n = 20) who self-reported either high or low levels of exercise, according to World Health Organization guidelines. We assessed cardiorespiratory fitness using a graded exercise test (VO2 max) and hippocampal structure via manual tracing of T1-weighted magnetic resonance images. We also assessed hippocampal function using magnetic resonance spectroscopy to derive estimates of N-acetyl-aspartate concentration and hippocampal-dependent associative memory and pattern separation tasks. We observed evidence of increased N-acetyl-aspartate concentration and associative memory performance in individuals engaging in high levels of exercise. However, no differences in hippocampal volume or pattern separation capacity were observed between groups. Cardiorespiratory fitness was positively associated with left and right hippocampal volume and N-acetyl-aspartate concentration. However, no associations were observed between cardiorespiratory fitness and associative memory or pattern separation. Therefore, we provide evidence that higher levels of exercise and cardiorespiratory fitness are associated with improved hippocampal structure and function. Exercise may provide a low-risk, effective method of improving hippocampal integrity in an early-to-mid-life stage.
Collapse
Affiliation(s)
- Joshua Hendrikse
- Turner Institute for Brain and Mental Health and School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Yann Chye
- Turner Institute for Brain and Mental Health and School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Sarah Thompson
- Turner Institute for Brain and Mental Health and School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Nigel C Rogasch
- Turner Institute for Brain and Mental Health and School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia.,Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia.,Discipline of Psychiatry, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Chao Suo
- Turner Institute for Brain and Mental Health and School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| | - James P Coxon
- Turner Institute for Brain and Mental Health and School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Murat Yücel
- Turner Institute for Brain and Mental Health and School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
10
|
Choy KHC, Luo JK, Wannan CMJ, Laskaris L, Merritt A, Syeda WT, Sexton PM, Christopoulos A, Pantelis C, Nithianantharajah J. Cognitive behavioral markers of neurodevelopmental trajectories in rodents. Transl Psychiatry 2021; 11:556. [PMID: 34718322 PMCID: PMC8557208 DOI: 10.1038/s41398-021-01662-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/13/2021] [Accepted: 09/27/2021] [Indexed: 12/20/2022] Open
Abstract
Between adolescence and adulthood, the brain critically undergoes maturation and refinement of synaptic and neural circuits that shape cognitive processing. Adolescence also represents a vulnerable period for the onset of symptoms in neurodevelopmental psychiatric disorders. Despite the wide use of rodent models to unravel neurobiological mechanisms underlying neurodevelopmental disorders, there is a surprising paucity of rigorous studies focusing on normal cognitive-developmental trajectories in such models. Here, we sought to behaviorally capture maturational changes in cognitive trajectories during adolescence and into adulthood in male and female mice using distinct behavioral paradigms. C57 BL/6J mice (4.5, 6, and 12 weeks of age) were assessed on three behavioral paradigms: drug-induced locomotor hyperactivity, prepulse inhibition, and a novel validated version of a visuospatial paired-associate learning touchscreen task. We show that the normal maturational trajectories of behavioral performance on these paradigms are dissociable. Responses in drug-induced locomotor hyperactivity and prepulse inhibition both displayed a 'U-shaped' developmental trajectory; lower during mid-adolescence relative to early adolescence and adulthood. In contrast, visuospatial learning and memory, memory retention, and response times indicative of motivational processing progressively improved with age. Our study offers a framework to investigate how insults at different developmental stages might perturb normal trajectories in cognitive development. We provide a brain maturational approach to understand resilience factors of brain plasticity in the face of adversity and to examine pharmacological and non-pharmacological interventions directed at ameliorating or rescuing perturbed trajectories in neurodevelopmental and neuropsychiatric disorders.
Collapse
Affiliation(s)
- K. H. Christopher Choy
- grid.1002.30000 0004 1936 7857Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC Australia
| | - Jiaqi K. Luo
- grid.418025.a0000 0004 0606 5526The Florey Institute of Neuroscience and Mental Health, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Florey Neuroscience, University of Melbourne, Melbourne, VIC Australia
| | - Cassandra M. J. Wannan
- grid.1008.90000 0001 2179 088XMelbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne, Melbourne, VIC Australia
| | - Liliana Laskaris
- grid.1008.90000 0001 2179 088XMelbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne, Melbourne, VIC Australia
| | - Antonia Merritt
- grid.1008.90000 0001 2179 088XMelbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne, Melbourne, VIC Australia
| | - Warda T. Syeda
- grid.1008.90000 0001 2179 088XMelbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne, Melbourne, VIC Australia
| | - Patrick M. Sexton
- grid.1002.30000 0004 1936 7857Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC Australia ,grid.1002.30000 0004 1936 7857ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC Australia
| | - Arthur Christopoulos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia. .,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia.
| | - Christos Pantelis
- The Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia. .,Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne, Melbourne, VIC, Australia.
| | - Jess Nithianantharajah
- The Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia. .,Department of Florey Neuroscience, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
11
|
Roeske MJ, Konradi C, Heckers S, Lewis AS. Hippocampal volume and hippocampal neuron density, number and size in schizophrenia: a systematic review and meta-analysis of postmortem studies. Mol Psychiatry 2021; 26:3524-3535. [PMID: 32724199 PMCID: PMC7854798 DOI: 10.1038/s41380-020-0853-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/16/2020] [Accepted: 07/21/2020] [Indexed: 12/12/2022]
Abstract
Reduced hippocampal volume is a consistent finding in neuroimaging studies of individuals with schizophrenia. While these studies have the advantage of large-sample sizes, they are unable to quantify the cellular basis of structural or functional changes. In contrast, postmortem studies are well suited to explore subfield and cellular alterations, but low sample sizes and subject heterogeneity impede establishment of statistically significant differences. Here we use a meta-analytic approach to synthesize the extant literature of hippocampal subfield volume and cellular composition in schizophrenia patients and healthy control subjects. Following pre-registration (PROSPERO CRD42019138280), PubMed, Web of Science, and PsycINFO were searched using the term: (schizophrenia OR schizoaffective) AND (post-mortem OR postmortem) AND hippocampus. Subjects were adult men and women with schizophrenia or schizoaffective disorder or non-psychiatric control subjects, and key outcomes, stratified by hippocampal hemisphere and subfield, were volume, neuron number, neuron density, and neuron size. A random effects meta-analysis was performed. Thirty-two studies were included (413 patients, 415 controls). In patients, volume and neuron number were significantly reduced in multiple hippocampal subfields in left, but not right hippocampus, whereas neuron density was not significantly different in any hippocampal subfield. Neuron size, averaged bilaterally, was also significantly reduced in all calculated subfields. Heterogeneity was minimal to moderate, with rare evidence of publication bias. Meta-regression of age and illness duration did not explain heterogeneity of total hippocampal volume effect sizes. These results extend neuroimaging findings of smaller hippocampal volume in schizophrenia patients and further our understanding of regional and cellular neuropathology in schizophrenia.
Collapse
Affiliation(s)
- Maxwell J Roeske
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, 37212, USA
| | - Christine Konradi
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, 37212, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37232, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA
- Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, 37212, USA
| | - Stephan Heckers
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, 37212, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37232, USA
- Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, 37212, USA
| | - Alan S Lewis
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, 37212, USA.
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37232, USA.
- Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, 37212, USA.
- Center for Cognitive Medicine, Vanderbilt University Medical Center, Nashville, TN, 37212, USA.
| |
Collapse
|
12
|
Bielawski T, Albrechet-Souza L, Frydecka D. Endocannabinoid system in trauma and psychosis: distant guardian of mental stability. Rev Neurosci 2021; 32:707-722. [PMID: 33656307 DOI: 10.1515/revneuro-2020-0102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 01/08/2021] [Indexed: 11/15/2022]
Abstract
Central endocannabinoid system (eCBS) is a neuromodulatory system that inhibits potentially harmful, excessive synaptic activation. Endocannabinoid receptors are abundant among brain structures pivotal in different mental disorders development (for example, hippocampus, amygdala, medial-prefrontal cortex, hypothalamus). Here, we review eCBS function in etiology of psychosis, emphasizing its role in dealing with environmental pressures such as traumatic life events. Moreover, we explore eCBS as a guard against hypothalamic-pituitary-adrenal axis over-activation, and discuss its possible role in etiology of different psychopathologies. Additionally, we review eCBS function in creating adaptive behavioral patterns, as we explore its involvement in the memory formation process, extinction learning and emotional response. We discuss eCBS in the context of possible biomarkers of trauma, and in preclinical psychiatric conditions, such as at-risk mental states and clinical high risk states for psychosis. Finally, we describe the role of eCBS in the cannabinoid self-medication-theory and extinction learning.
Collapse
Affiliation(s)
- Tomasz Bielawski
- Department of Psychiatry, Wroclaw Medical University, 10 Pasteur Street, 50-367Wroclaw, Poland.,Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA70112, USA
| | - Lucas Albrechet-Souza
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA70112, USA.,Alcohol & Drug Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA70112, USA
| | - Dorota Frydecka
- Department of Psychiatry, Wroclaw Medical University, 10 Pasteur Street, 50-367Wroclaw, Poland
| |
Collapse
|
13
|
Avery SN, McHugo M, Armstrong K, Blackford JU, Woodward ND, Heckers S. Stable habituation deficits in the early stage of psychosis: a 2-year follow-up study. Transl Psychiatry 2021; 11:20. [PMID: 33414431 PMCID: PMC7791099 DOI: 10.1038/s41398-020-01167-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 12/01/2020] [Accepted: 12/09/2020] [Indexed: 01/29/2023] Open
Abstract
Neural habituation, the decrease in brain response to repeated stimuli, is a fundamental, highly conserved mechanism that acts as an essential filter for our complex sensory environment. Convergent evidence indicates neural habituation is disrupted in both early and chronic stages of schizophrenia, with deficits co-occurring in brain regions that show inhibitory dysfunction. As inhibitory deficits have been proposed to contribute to the onset and progression of illness, habituation may be an important treatment target. However, a crucial first step is clarifying whether habituation deficits progress with illness. In the present study, we measured neural habituation in 138 participants (70 early psychosis patients (<2 years of illness), 68 healthy controls), with 108 participants assessed longitudinally at both baseline and 2-year follow-up. At follow-up, all early psychosis patients met criteria for a schizophrenia spectrum disorder (i.e., schizophreniform disorder, schizophrenia, schizoaffective disorder). Habituation slopes (i.e., rate of fMRI signal change) to repeated images were computed for the anterior hippocampus, occipital cortex, and the fusiform face area. Habituation slopes were entered into a linear mixed model to test for effects of group and time by region. We found that early psychosis patients showed habituation deficits relative to healthy control participants across brain regions, and that these deficits were maintained, but did not worsen, over two years. These results suggest a stable period of habituation deficits in the early stage of schizophrenia.
Collapse
Affiliation(s)
- Suzanne N. Avery
- grid.412807.80000 0004 1936 9916Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN USA
| | - Maureen McHugo
- grid.412807.80000 0004 1936 9916Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN USA
| | - Kristan Armstrong
- grid.412807.80000 0004 1936 9916Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN USA
| | - Jennifer Urbano Blackford
- grid.412807.80000 0004 1936 9916Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN USA ,grid.413806.8Research Health Scientist, Research and Development, Department of Veterans Affairs Medical Center, Nashville, TN USA
| | - Neil D. Woodward
- grid.412807.80000 0004 1936 9916Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN USA
| | - Stephan Heckers
- grid.412807.80000 0004 1936 9916Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN USA
| |
Collapse
|
14
|
Palmos AB, Duarte RRR, Smeeth DM, Hedges EC, Nixon DF, Thuret S, Powell TR. Telomere length and human hippocampal neurogenesis. Neuropsychopharmacology 2020; 45:2239-2247. [PMID: 32920596 PMCID: PMC7784985 DOI: 10.1038/s41386-020-00863-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 12/18/2022]
Abstract
Short telomere length is a risk factor for age-related disease, but it is also associated with reduced hippocampal volumes, age-related cognitive decline and psychiatric disorder risk. The current study explored whether telomere shortening might have an influence on cognitive function and psychiatric disorder pathophysiology, via its hypothesised effects on adult hippocampal neurogenesis. We modelled telomere shortening in human hippocampal progenitor cells in vitro using a serial passaging protocol that mimics the end-replication problem. Serially passaged progenitors demonstrated shorter telomeres (P ≤ 0.05), and reduced rates of cell proliferation (P ≤ 0.001), with no changes in the ability of cells to differentiate into neurons or glia. RNA-sequencing and gene-set enrichment analyses revealed an effect of cell ageing on gene networks related to neurogenesis, telomere maintenance, cell senescence and cytokine production. Downregulated transcripts in our model showed a significant overlap with genes regulating cognitive function (P ≤ 1 × 10-5), and risk for schizophrenia (P ≤ 1 × 10-10) and bipolar disorder (P ≤ 0.005). Collectively, our results suggest that telomere shortening could represent a mechanism that moderates the proliferative capacity of human hippocampal progenitors, which may subsequently impact on human cognitive function and psychiatric disorder pathophysiology.
Collapse
Affiliation(s)
- Alish B. Palmos
- grid.13097.3c0000 0001 2322 6764Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Rodrigo R. R. Duarte
- grid.13097.3c0000 0001 2322 6764Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK ,grid.5386.8000000041936877XDivision of Infectious Diseases, Weill Cornell Medicine, Cornell University, New York, NY USA
| | - Demelza M. Smeeth
- grid.13097.3c0000 0001 2322 6764Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Erin C. Hedges
- grid.13097.3c0000 0001 2322 6764Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Douglas F. Nixon
- grid.5386.8000000041936877XDivision of Infectious Diseases, Weill Cornell Medicine, Cornell University, New York, NY USA
| | - Sandrine Thuret
- grid.13097.3c0000 0001 2322 6764Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK ,Department of Neurology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Timothy R. Powell
- grid.13097.3c0000 0001 2322 6764Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK ,grid.5386.8000000041936877XDivision of Infectious Diseases, Weill Cornell Medicine, Cornell University, New York, NY USA
| |
Collapse
|
15
|
An H, Qin J, Fan H, Fan F, Tan S, Wang Z, Shi J, Yang F, Tan Y, Huang XF. Decreased serum NCAM is positively correlated with hippocampal volumes and negatively correlated with positive symptoms in first-episode schizophrenia patients. J Psychiatr Res 2020; 131:108-113. [PMID: 32950707 DOI: 10.1016/j.jpsychires.2020.09.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Neural cell adhesion molecule (NCAM) plays an important role in neurodevelopmental processes and regulates hippocampal plasticity. This study investigated the relationship between the serum NCAM concentrations and hippocampal volume and psychotic symptoms in first-episode drug naïve schizophrenia (FES) patients. METHODS Forty-four FES patients and forty-four healthy controls (HC) were recruited in this study. Serum concentrations of NCAM were measured by ELISA. Psychiatric symptoms were assessed by the positive and negative syndrome scale (PANSS). Brain structural images were obtained using a 3T MRI Scanner and obtained T1 images were processed in order to determine hippocampal grey matter volumes. RESULTS Schizophrenia patients revealed significantly decreased serum NCAM concentrations (p = 0.017), which were positively correlated with the left (r = 0.523, p < 0.001) and right (r = 0.449, p = 0.041) hippocampal volumes, but negatively correlated with the PANSS positive symptom scores (r = -0.522 p = 0.001). However, no such correlations existed in the HC group. CONCLUSIONS This is the first time to report that decreased serum NCAM concentrations were associated with hippocampal volumes and symptom severity in FES patients. Our data indicate that the low NCAM is possible neuropathology that is associated with the decreased hippocampus in FES patients.
Collapse
Affiliation(s)
- Huimei An
- Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Jun Qin
- Radiology Department, Civil Aviation General Hospital, Peking University, Beijing, China
| | - Hongzhen Fan
- Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Fengmei Fan
- Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Shuping Tan
- Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Zhiren Wang
- Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Jing Shi
- Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Fude Yang
- Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Yunlong Tan
- Beijing HuiLongGuan Hospital, Peking University, Beijing, China.
| | - Xu-Feng Huang
- Illawarra Health and Medical Research Institute and School of Medicine, University of Wollongong, NSW, 2522, Australia.
| |
Collapse
|
16
|
Bermudez C, Remedios SW, Ramadass K, McHugo M, Heckers S, Huo Y, Landman BA. Generalizing deep whole-brain segmentation for post-contrast MRI with transfer learning. J Med Imaging (Bellingham) 2020; 7:064004. [PMID: 33381612 PMCID: PMC7757519 DOI: 10.1117/1.jmi.7.6.064004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 12/01/2020] [Indexed: 11/14/2022] Open
Abstract
Purpose: Generalizability is an important problem in deep neural networks, especially with variability of data acquisition in clinical magnetic resonance imaging (MRI). Recently, the spatially localized atlas network tiles (SLANT) can effectively segment whole brain, non-contrast T1w MRI with 132 volumetric labels. Transfer learning (TL) is a commonly used domain adaptation tool to update the neural network weights for local factors, yet risks degradation of performance on the original validation/test cohorts. Approach: We explore TL using unlabeled clinical data to address these concerns in the context of adapting SLANT to scanning protocol variations. We optimize whole-brain segmentation on heterogeneous clinical data by leveraging 480 unlabeled pairs of clinically acquired T1w MRI with and without intravenous contrast. We use labels generated on the pre-contrast image to train on the post-contrast image in a five-fold cross-validation framework. We further validated on a withheld test set of 29 paired scans over a different acquisition domain. Results: Using TL, we improve reproducibility across imaging pairs measured by the reproducibility Dice coefficient (rDSC) between the pre- and post-contrast image. We showed an increase over the original SLANT algorithm (rDSC 0.82 versus 0.72) and the FreeSurfer v6.0.1 segmentation pipeline ( rDSC = 0.53 ). We demonstrate the impact of this work decreasing the root-mean-squared error of volumetric estimates of the hippocampus between paired images of the same subject by 67%. Conclusion: This work demonstrates a pipeline for unlabeled clinical data to translate algorithms optimized for research data to generalize toward heterogeneous clinical acquisitions.
Collapse
Affiliation(s)
- Camilo Bermudez
- Vanderbilt University, Department of Biomedical Engineering, Nashville, Tennessee, United States
| | - Samuel W. Remedios
- Henry Jackson Foundation, Center for Neuroscience and Regenerative Medicine, Bethesda, Maryland, United States
| | - Karthik Ramadass
- Vanderbilt University, Department of Electrical Engineering, Nashville, Tennessee, United States
| | - Maureen McHugo
- Vanderbilt University Medical Center, Department of Psychiatry and Behavioral Sciences, Nashville, Tennessee, United States
| | - Stephan Heckers
- Vanderbilt University Medical Center, Department of Psychiatry and Behavioral Sciences, Nashville, Tennessee, United States
| | - Yuankai Huo
- Vanderbilt University, Department of Computer Science, Nashville, Tennessee, United States
| | - Bennett A. Landman
- Vanderbilt University, Department of Biomedical Engineering, Nashville, Tennessee, United States
- Vanderbilt University, Department of Electrical Engineering, Nashville, Tennessee, United States
- Vanderbilt University Medical Center, Department of Psychiatry and Behavioral Sciences, Nashville, Tennessee, United States
| |
Collapse
|
17
|
Kubota S, Masaoka Y, Sugiyama H, Yoshida M, Yoshikawa A, Koiwa N, Honma M, Kinno R, Watanabe K, Iizuka N, Ida M, Ono K, Izumizaki M. Hippocampus and Parahippocampus Volume Reduction Associated With Impaired Olfactory Abilities in Subjects Without Evidence of Cognitive Decline. Front Hum Neurosci 2020; 14:556519. [PMID: 33192392 PMCID: PMC7556227 DOI: 10.3389/fnhum.2020.556519] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/07/2020] [Indexed: 01/02/2023] Open
Abstract
The aim of this study was to investigate the relationship between olfactory recognition and morphological changes in olfactory brain regions including the amygdala, hippocampus, rectus, parahippocampus, orbitofrontal cortex, and medial frontal cortex in 27 elderly subjects and 27 younger healthy controls. The specific aim of the study was to determine which brain areas are associated with the initial decline of olfaction in elderly subjects, which occurs before the onset of dementia. All subjects underwent magnetic resonance imaging to measure anatomical brain volume and cortical thickness, and subjects were assessed using tests of olfactory acuity and cognitive function measured with the Montreal Cognitive Assessment. Overall brain volume reductions were observed in elderly subjects compared with young healthy controls, but only reduction in the volume of the left hippocampus was associated with decreased olfactory ability. The parahippocampus of elderly subjects was not different from that of controls; the extent of the reduction of parahippocampus volume varied among individuals, and reduction in this region was associated with olfactory decline. Similarly, parahippocampus thinning was associated with decreased olfactory function. The path analysis showed direct and indirect effects of hippocampus and parahippocampus volume on olfactory ability and that volume reductions in these areas were not associated with cognitive function. Parahippocampus volume reduction and thinning exhibited individual variation; this may be the first appearance of pathological changes and may lead to dysfunction in the connection of olfactory memory to the neocortex. Parahippocampus change may reflect the first sign of olfactory impairment prior to pathological changes in the hippocampus, amygdala and orbitofrontal cortex.
Collapse
Affiliation(s)
- Satomi Kubota
- Department of Physiology, Showa University School of Medicine, Tokyo, Japan.,Division of Neurology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Yuri Masaoka
- Department of Physiology, Showa University School of Medicine, Tokyo, Japan
| | | | - Masaki Yoshida
- Department of Ophthalmology, Jikei Medical University, Tokyo, Japan
| | - Akira Yoshikawa
- Department of Physiology, Showa University School of Medicine, Tokyo, Japan
| | - Nobuyoshi Koiwa
- Department of Health and Science, University of Human Arts and Sciences, Saitama, Japan
| | - Motoyasu Honma
- Department of Physiology, Showa University School of Medicine, Tokyo, Japan
| | - Ryuta Kinno
- Division of Neurology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Keiko Watanabe
- Division of Neurology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Natsuko Iizuka
- Department of Physiology, Showa University School of Medicine, Tokyo, Japan.,Division of Neurology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Masahiro Ida
- National Hospital Organization Mito Medical Center, Ibaraki, Japan
| | - Kenjiro Ono
- Division of Neurology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Masahiko Izumizaki
- Department of Physiology, Showa University School of Medicine, Tokyo, Japan
| |
Collapse
|
18
|
Fisher E, Wood SJ, Elsworthy RJ, Upthegrove R, Aldred S. Exercise as a protective mechanism against the negative effects of oxidative stress in first-episode psychosis: a biomarker-led study. Transl Psychiatry 2020; 10:254. [PMID: 32709912 PMCID: PMC7382474 DOI: 10.1038/s41398-020-00927-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 06/25/2020] [Accepted: 07/03/2020] [Indexed: 12/23/2022] Open
Abstract
First-episode psychosis (FEP) is a psychiatric disorder, characterised by positive and negative symptoms, usually emerging during adolescence and early adulthood. FEP represents an early intervention opportunity for intervention in psychosis. Redox disturbance and subsequent oxidative stress have been linked to the pathophysiology of FEP. Exercise training can perturb oxidative stress and rebalance the antioxidant system and thus represents an intervention with the potential to interact with a mechanism of disease. The aim of this study was to assess the effect of exercise on markers of redox status in FEP. Twenty-two young men were recruited from Birmingham Early Intervention services and randomised to either a 12-week exercise programme or treatment as usual (control). Measures of blood and brain glutathione (GSH), markers of oxidative damage, inflammation, neuronal health, symptomology and habitual physical activity were assessed. Exercise training was protective against changes related to continued psychosis. Symptomatically, those in the exercise group showed reductions in positive and general psychopathology, and stable negative symptoms (compared to increased negative symptoms in the control group). Peripheral GSH was increased by 5.6% in the exercise group, compared to a significant decrease (24.4%) (p = 0.04) in the control group. Exercise attenuated negative changes in markers of neuronal function (brain-derived neurotrophic factor), lipid damage (thiobarbituric acid-reactive substances) and total antioxidant capacity. C-reactive protein and tumour necrosis factor-α also decreased in the exercise group, although protein and DNA oxidation were unchanged. Moderate-intensity exercise training has the ability to elicit changes in markers of oxidative stress and antioxidant concentration, with subsequent improvements in symptoms of psychosis.
Collapse
Affiliation(s)
- Emily Fisher
- grid.6572.60000 0004 1936 7486School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, B15 2TT UK
| | - Stephen J. Wood
- grid.488501.0Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, Melbourne, VIC 3052 Australia ,grid.1008.90000 0001 2179 088XSchool of Psychology, University of Melbourne, Melbourne, VIC 3010 Australia ,grid.1008.90000 0001 2179 088XCentre for Youth Mental Health, University of Melbourne, Melbourne, VIC 3010 Australia
| | - Richard J. Elsworthy
- grid.6572.60000 0004 1936 7486School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, B15 2TT UK
| | - Rachel Upthegrove
- grid.6572.60000 0004 1936 7486Institute for Mental Health, University of Birmingham, Edgbaston, B15 2TT UK ,grid.6572.60000 0004 1936 7486Department of Psychiatry, University of Birmingham, Edgbaston, B15 2TT UK
| | - Sarah Aldred
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, B15 2TT, UK. .,Institute for Mental Health, University of Birmingham, Edgbaston, B15 2TT, UK.
| |
Collapse
|
19
|
Sahakyan L, Meller T, Evermann U, Schmitt S, Pfarr JK, Sommer J, Kwapil TR, Nenadić I. Anterior vs Posterior Hippocampal Subfields in an Extended Psychosis Phenotype of Multidimensional Schizotypy in a Nonclinical Sample. Schizophr Bull 2020; 47:207-218. [PMID: 32691055 PMCID: PMC8208318 DOI: 10.1093/schbul/sbaa099] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Numerous studies have implicated involvement of the hippocampus in the etiology and expression of schizophrenia-spectrum psychopathology, and reduced hippocampal volume is one of the most robust brain abnormalities reported in schizophrenia. Recent studies indicate that early stages of schizophrenia are specifically characterized by reductions in anterior hippocampal volume; however, studies have not examined hippocampal volume reductions in subclinical schizotypy. The present study was the first to examine the associations of positive, negative, and disorganized schizotypy dimensions with hippocampal subfield volumes in a large sample (n = 195) of nonclinically ascertained young adults, phenotyped using the Multidimensional Schizotypy Scale (MSS). Hippocampal subfields were analyzed from high-resolution 3 Tesla structural magnetic resonance imaging scans testing anatomical models, including anterior vs posterior regions and the cornu ammonis (CA), dentate gyrus (DG), and subiculum subfields separately for the left and right hemispheres. We demonstrate differential spatial effects across anterior vs posterior hippocampus segments across different dimensions of the schizotypy risk phenotype. The interaction of negative and disorganized schizotypy robustly predicted left hemisphere volumetric reductions for the anterior and total hippocampus, and anterior CA and DG, and the largest reductions were seen in participants high in negative and disorganized schizotypy. These findings extend previous early psychosis studies and together with behavioral studies of hippocampal-related memory impairments provide the basis for a dimensional neurobiological hippocampal model of schizophrenia risk. Subtle hippocampal subfield volume reductions may be prevalent prior to the onset of detectable prodromal clinical symptoms of psychosis and play a role in the etiology and development of such conditions.
Collapse
Affiliation(s)
- Lili Sahakyan
- Department of Psychology and Beckman Institute for Advanced Science and
Technology, University of Illinois, Champaign, IL
| | - Tina Meller
- Cognitive Neuropsychiatry Lab, Department of Psychiatry and Psychotherapy,
Philipps-University Marburg, Marburg, Germany,Center for Mind, Brain, and Behavior (CMBB), Marburg, Germany
| | - Ulrika Evermann
- Cognitive Neuropsychiatry Lab, Department of Psychiatry and Psychotherapy,
Philipps-University Marburg, Marburg, Germany,Center for Mind, Brain, and Behavior (CMBB), Marburg, Germany
| | - Simon Schmitt
- Cognitive Neuropsychiatry Lab, Department of Psychiatry and Psychotherapy,
Philipps-University Marburg, Marburg, Germany,Center for Mind, Brain, and Behavior (CMBB), Marburg, Germany
| | - Julia-Katharina Pfarr
- Cognitive Neuropsychiatry Lab, Department of Psychiatry and Psychotherapy,
Philipps-University Marburg, Marburg, Germany,Center for Mind, Brain, and Behavior (CMBB), Marburg, Germany
| | - Jens Sommer
- Core Facility BrainImaging, School of Medicine, Philipps-University
Marburg, Marburg, Germany
| | - Thomas R Kwapil
- Department of Psychology and Beckman Institute for Advanced Science and
Technology, University of Illinois, Champaign, IL
| | - Igor Nenadić
- Cognitive Neuropsychiatry Lab, Department of Psychiatry and Psychotherapy,
Philipps-University Marburg, Marburg, Germany,Center for Mind, Brain, and Behavior (CMBB), Marburg, Germany,To whom correspondence should be addressed; Department of Psychiatry and
Psychotherapy, Philipps-University Marburg, Rudolf-Bultmann-Str. 8, 35039 Marburg,
Germany; tel: +49-6421-58-65002, fax: +49-6421-58-68939, e-mail:
| |
Collapse
|
20
|
Avery SN, Armstrong K, McHugo M, Vandekar S, Blackford JU, Woodward ND, Heckers S. Relational Memory in the Early Stage of Psychosis: A 2-Year Follow-up Study. Schizophr Bull 2020; 47:75-86. [PMID: 32657351 PMCID: PMC7825006 DOI: 10.1093/schbul/sbaa081] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Relational memory, the ability to bind information into complex memories, is moderately impaired in early psychosis and severely impaired in chronic schizophrenia, suggesting relational memory may worsen throughout the course of illness. METHODS We examined relational memory in 66 early psychosis patients and 64 healthy control subjects, with 59 patients and 52 control subjects assessed longitudinally at baseline and 2-year follow-up. Relational memory was assessed with 2 complementary tasks, to test how individuals learn relationships between items (face-scene binding task) and make inferences about trained relationships (associative inference task). RESULTS The early psychosis group showed impaired relational memory in both tasks relative to the healthy control group. The ability to learn relationships between items remained impaired in early psychosis patients, while the ability to make inferences about trained relationships improved, although never reaching the level of healthy control performance. Early psychosis patients who did not progress to schizophrenia at follow-up had better relational memory than patients who did. CONCLUSIONS Relational memory impairments, some of which improve and are less severe in patients who do not progress to schizophrenia, are a target for intervention in early psychosis.
Collapse
Affiliation(s)
- Suzanne N Avery
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN
| | - Kristan Armstrong
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN
| | - Maureen McHugo
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN
| | - Simon Vandekar
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN
| | - Jennifer Urbano Blackford
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN,Department of Research and Development, Veterans Affairs Medical Center, Nashville, TN
| | - Neil D Woodward
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN
| | - Stephan Heckers
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN,To whom correspondence should be addressed; Vanderbilt Psychiatric Hospital, 1601 23rd Avenue South, Room 3060, Nashville, TN 37212; tel: (615)-322-2665, fax: (615)-343-8400, e-mail:
| |
Collapse
|
21
|
Lorenzetti V, Chye Y, Suo C, Walterfang M, Lubman DI, Takagi M, Whittle S, Verdejo-Garcia A, Cousijn J, Pantelis C, Seal M, Fornito A, Yücel M, Solowij N. Neuroanatomical alterations in people with high and low cannabis dependence. Aust N Z J Psychiatry 2020; 54:68-75. [PMID: 31298035 DOI: 10.1177/0004867419859077] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVES We aimed to investigate whether severity of cannabis dependence is associated with the neuroanatomy of key brain regions of the stress and reward brain circuits. METHODS To examine dependence-specific regional brain alterations, we compared the volumes of regions relevant to reward and stress, between high-dependence cannabis users (CD+, n = 25), low-dependence cannabis users (CD-, n = 20) and controls (n = 37). RESULTS Compared to CD- and/or controls, the CD+ group had lower cerebellar white matter and hippocampal volumes, and deflation of the right hippocampus head and tail. CONCLUSION These findings provide initial support for neuroadaptations involving stress and reward circuits that are specific to high-dependence cannabis users.
Collapse
Affiliation(s)
- Valentina Lorenzetti
- School of Behavioural and Health Sciences, Faculty of Health Sciences, Australian Catholic University, Fitzroy, VIC, Australia.,Department of Psychological Sciences, Institute of Psychology Health and Society, University of Liverpool, Liverpool, UK
| | - Yann Chye
- Brain Mind and Society Research Hub, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Chao Suo
- Brain Mind and Society Research Hub, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Mark Walterfang
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Melbourne, VIC, Australia.,Florey Institute of Neuroscience and Mental Health, The University of Melbourne.,Neuropsychiatry Unit, Royal Melbourne Hospital, Australia
| | - Dan I Lubman
- Turning Point, Eastern Health and Eastern Health Clinical School, Monash University, Melbourne, VIC Australia
| | - Michael Takagi
- Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Sarah Whittle
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Melbourne, VIC, Australia
| | - Antonio Verdejo-Garcia
- Brain Mind and Society Research Hub, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Janna Cousijn
- Department of Developmental Psychology, University of Amsterdam, Amsterdam, The Netherlands
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Melbourne, VIC, Australia.,Florey Institute of Neuroscience and Mental Health, The University of Melbourne
| | - Marc Seal
- Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Alex Fornito
- Brain Mind and Society Research Hub, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Murat Yücel
- Brain Mind and Society Research Hub, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Nadia Solowij
- School of Psychology and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
22
|
Lieberman JA, Small SA, Girgis RR. Early Detection and Preventive Intervention in Schizophrenia: From Fantasy to Reality. Am J Psychiatry 2019; 176:794-810. [PMID: 31569988 DOI: 10.1176/appi.ajp.2019.19080865] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Scientific progress in understanding human disease can be measured by the effectiveness of its treatment. Antipsychotic drugs have been proven to alleviate acute psychotic symptoms and prevent their recurrence in schizophrenia, but the outcomes of most patients historically have been suboptimal. However, a series of findings in studies of first-episode schizophrenia patients transformed the psychiatric field's thinking about the pathophysiology, course, and potential for disease-modifying effects of treatment. These include the relationship between the duration of untreated psychotic symptoms and outcome; the superior responses of first-episode patients to antipsychotics compared with patients with chronic illness, and the reduction in brain gray matter volume over the course of the illness. Studies of the effectiveness of early detection and intervention models of care have provided encouraging but inconclusive results in limiting the morbidity and modifying the course of illness. Nevertheless, first-episode psychosis studies have established an evidentiary basis for considering a team-based, coordinated specialty approach as the standard of care for treating early psychosis, which has led to their global proliferation. In contrast, while clinical high-risk research has developed an evidence-based care model for decreasing the burden of attenuated symptoms, no treatment has been shown to reduce risk or prevent the transition to syndromal psychosis. Moreover, the current diagnostic criteria for clinical high risk lack adequate specificity for clinical application. What limits our ability to realize the potential of early detection and intervention models of care are the lack of sensitive and specific diagnostic criteria for pre-syndromal schizophrenia, validated biomarkers, and proven therapeutic strategies. Future research requires methodologically rigorous studies in large patient samples, across multiple sites, that ideally are guided by scientifically credible pathophysiological theories for which there is compelling evidence. These caveats notwithstanding, we can reasonably expect future studies to build on the research of the past four decades to advance our knowledge and enable this game-changing model of care to become a reality.
Collapse
Affiliation(s)
- Jeffrey A Lieberman
- Department of Psychiatry (Lieberman, Small, Girgis) and Department of Neurology (Small), College of Physicians and Surgeons, Columbia University, New York; New York State Psychiatric Institute, New York (Lieberman, Small, Girgis)
| | - Scott A Small
- Department of Psychiatry (Lieberman, Small, Girgis) and Department of Neurology (Small), College of Physicians and Surgeons, Columbia University, New York; New York State Psychiatric Institute, New York (Lieberman, Small, Girgis)
| | - Ragy R Girgis
- Department of Psychiatry (Lieberman, Small, Girgis) and Department of Neurology (Small), College of Physicians and Surgeons, Columbia University, New York; New York State Psychiatric Institute, New York (Lieberman, Small, Girgis)
| |
Collapse
|
23
|
Striatal volume and functional connectivity correlate with weight gain in early-phase psychosis. Neuropsychopharmacology 2019; 44:1948-1954. [PMID: 31315130 PMCID: PMC6785100 DOI: 10.1038/s41386-019-0464-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 06/14/2019] [Accepted: 07/08/2019] [Indexed: 11/09/2022]
Abstract
Second-generation antipsychotic drugs (SGAs) are essential in the treatment of psychotic disorders, but are well-known for inducing substantial weight gain and obesity. Critically, weight gain may reduce life expectancy for up to 20-30 years in patients with psychotic disorders, and prognostic biomarkers are generally lacking. Even though other receptors are also implicated, the dorsal striatum, rich in dopamine D2 receptors, which are antagonized by antipsychotic medications, plays a key role in the human reward system and in appetite regulation, suggesting that altered dopamine activity in the striatal reward circuitry may be responsible for increased food craving and weight gain. Here, we measured striatal volume and striatal resting-state functional connectivity at baseline, and weight gain over the course of 12 weeks of antipsychotic treatment in 81 patients with early-phase psychosis. We also included a sample of 58 healthy controls. Weight measurements were completed at baseline, and then weekly for 4 weeks, and every 2 weeks until week 12. We used linear mixed models to compute individual weight gain trajectories. Striatal volume and whole-brain striatal connectivity were then calculated for each subject, and used to assess the relationship between striatal structure and function and individual weight gain in multiple regression models. Patients had similar baseline weights and body mass indices (BMI) compared with healthy controls. There was no evidence that prior drug exposure or duration of untreated psychosis correlated with baseline BMI. Higher left putamen volume and lower sensory motor connectivity correlated with the magnitude of weight gain in patients, and these effects multiplied when the structure-function interaction was considered in an additional exploratory analysis. In conclusion, these results provide evidence for a correlation of striatal structure and function with antipsychotic-induced weight gain. Lower striatal connectivity was associated with more weight gain, and this relationship was stronger for higher compared with lower left putamen volumes.
Collapse
|
24
|
Wannan CMJ, Cropley VL, Chakravarty MM, Van Rheenen TE, Mancuso S, Bousman C, Everall I, McGorry PD, Pantelis C, Bartholomeusz CF. Hippocampal subfields and visuospatial associative memory across stages of schizophrenia-spectrum disorder. Psychol Med 2019; 49:2452-2462. [PMID: 30511607 DOI: 10.1017/s0033291718003458] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND While previous studies have identified relationships between hippocampal volumes and memory performance in schizophrenia, these relationships are not apparent in healthy individuals. Further, few studies have examined the role of hippocampal subfields in illness-related memory deficits, and no study has examined potential differences across varying illness stages. The current study aimed to investigate whether individuals with early and established psychosis exhibited differential relationships between visuospatial associative memory and hippocampal subfield volumes. METHODS Measurements of visuospatial associative memory performance and grey matter volume were obtained from 52 individuals with a chronic schizophrenia-spectrum disorder, 28 youth with recent-onset psychosis, 52 older healthy controls, and 28 younger healthy controls. RESULTS Both chronic and recent-onset patients had impaired visuospatial associative memory performance, however, only chronic patients showed hippocampal subfield volume loss. Both chronic and recent-onset patients demonstrated relationships between visuospatial associative memory performance and hippocampal subfield volumes in the CA4/dentate gyrus and the stratum that were not observed in older healthy controls. There were no group by volume interactions when chronic and recent-onset patients were compared. CONCLUSIONS The current study extends the findings of previous studies by identifying particular hippocampal subfields, including the hippocampal stratum layers and the dentate gyrus, that appear to be related to visuospatial associative memory ability in individuals with both chronic and first-episode psychosis.
Collapse
Affiliation(s)
- Cassandra M J Wannan
- Department of Psychiatry, Melbourne Neuropsychiatry Centre, The University of Melbourne and Melbourne Health, Carlton South, Victoria, Australia
- Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, Victoria, Australia
- The Centre for Youth Mental Health, The University of Melbourne, Parkville, Victoria, Australia
- The Cooperative Research Centre for Mental Health, Melbourne, Australia
- North Western Mental Health, Melbourne Health, Parkville, VIC, Australia
| | - Vanessa L Cropley
- Department of Psychiatry, Melbourne Neuropsychiatry Centre, The University of Melbourne and Melbourne Health, Carlton South, Victoria, Australia
- Centre for Mental Health, Faculty of Health, Arts and Design, School of Health Sciences, Swinburne University, Melbourne, Australia
| | - M Mallar Chakravarty
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Canada
- Departments of Psychiatry and Biological and Biomedical Engineering, McGill University, Montreal, Canada
| | - Tamsyn E Van Rheenen
- Department of Psychiatry, Melbourne Neuropsychiatry Centre, The University of Melbourne and Melbourne Health, Carlton South, Victoria, Australia
- Centre for Mental Health, Faculty of Health, Arts and Design, School of Health Sciences, Swinburne University, Melbourne, Australia
| | - Sam Mancuso
- Department of Psychiatry, The University of Melbourne, Parkville, Victoria, Australia
| | - Chad Bousman
- Departments of Medical Genetics, Psychiatry, and Physiology & Pharmacology, University of Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada
| | - Ian Everall
- The Cooperative Research Centre for Mental Health, Melbourne, Australia
- Department of Psychiatry, The University of Melbourne, Parkville, Victoria, Australia
- Department of Electrical and Electronic Engineering, Centre for Neural Engineering, University of Melbourne, South Carlton, Victoria, Australia
- Institute of Psychiatry, Psychology, and Neuroscience, King's College London, UK
- Florey Institute for Neuroscience & Mental Health, Parkville, VIC, Australia
| | - Patrick D McGorry
- Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, Victoria, Australia
| | - Christos Pantelis
- Department of Psychiatry, Melbourne Neuropsychiatry Centre, The University of Melbourne and Melbourne Health, Carlton South, Victoria, Australia
- The Cooperative Research Centre for Mental Health, Melbourne, Australia
- North Western Mental Health, Melbourne Health, Parkville, VIC, Australia
- Department of Psychiatry, The University of Melbourne, Parkville, Victoria, Australia
- Department of Electrical and Electronic Engineering, Centre for Neural Engineering, University of Melbourne, South Carlton, Victoria, Australia
- Florey Institute for Neuroscience & Mental Health, Parkville, VIC, Australia
| | - Cali F Bartholomeusz
- Department of Psychiatry, Melbourne Neuropsychiatry Centre, The University of Melbourne and Melbourne Health, Carlton South, Victoria, Australia
- Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, Victoria, Australia
- The Centre for Youth Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
25
|
Sahakyan L, Kwapil TR, Lo Y, Jiang L. Examination of relational memory in multidimensional schizotypy. Schizophr Res 2019; 211:36-43. [PMID: 31383512 DOI: 10.1016/j.schres.2019.07.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 06/15/2019] [Accepted: 07/21/2019] [Indexed: 11/26/2022]
Abstract
We report the first study to examine the association of positive, negative, and disorganized schizotypy with relational memory. Relational memory refers to memory for relations among multiple elements of an experience, and this form of episodic memory is different from memory for individual elements themselves. Using a cornerstone task from the neurocognitive literature that is designed specifically to assess relational memory, we found that negative schizotypy, but not positive or disorganized schizotypy, is associated with impaired relational memory performance. The deficit was observed both in poorer accuracy and slower response time. The results demonstrate the importance of examining schizotypy as a multidimensional construct, and indicate that using a total schizotypy score both obscures the nature of the association with various dimensions of schizotypy and also explains only half of the variance accounted for by taking into consideration the multidimensionality of schizotypy. These results add to previous findings that negative schizotypy is associated with a wide array of episodic memory deficits linked to impairment in retrieval and processing of contextual information.
Collapse
Affiliation(s)
- Lili Sahakyan
- Department of Psychology, University of Illinois at Urbana-Champaign, United States of America; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, United States of America.
| | - Thomas R Kwapil
- Department of Psychology, University of Illinois at Urbana-Champaign, United States of America
| | - Yipei Lo
- Department of Psychology, University of Illinois at Urbana-Champaign, United States of America
| | - Lydia Jiang
- Department of Psychology, University of Illinois at Urbana-Champaign, United States of America
| |
Collapse
|
26
|
Chye Y, Lorenzetti V, Suo C, Batalla A, Cousijn J, Goudriaan AE, Jenkinson M, Martin‐Santos R, Whittle S, Yücel M, Solowij N. Alteration to hippocampal volume and shape confined to cannabis dependence: a multi-site study. Addict Biol 2019; 24:822-834. [PMID: 30022573 DOI: 10.1111/adb.12652] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/13/2018] [Accepted: 05/21/2018] [Indexed: 12/21/2022]
Abstract
Cannabis use is highly prevalent and often considered to be relatively harmless. Nonetheless, a subset of regular cannabis users may develop dependence, experiencing poorer quality of life and greater mental health problems relative to non-dependent users. The neuroanatomy characterizing cannabis use versus dependence is poorly understood. We aimed to delineate the contributing role of cannabis use and dependence on morphology of the hippocampus, one of the most consistently altered brain regions in cannabis users, in a large multi-site dataset aggregated across four research sites. We compared hippocampal volume and vertex-level hippocampal shape differences (1) between 121 non-using controls and 140 cannabis users; (2) between 106 controls, 50 non-dependent users and 70 dependent users; and (3) between a subset of 41 controls, 41 non-dependent users and 41 dependent users, matched on sample characteristics and cannabis use pattern (onset age and dosage). Cannabis users did not differ from controls in hippocampal volume or shape. However, cannabis-dependent users had significantly smaller right and left hippocampi relative to controls and non-dependent users, irrespective of cannabis dosage. Shape analysis indicated localized deflations in the superior-medial body of the hippocampus. Our findings support neuroscientific theories postulating dependence-specific neuroadaptations in cannabis users. Future efforts should uncover the neurobiological risk and liabilities separating dependent and non-dependent use of cannabis.
Collapse
Affiliation(s)
- Yann Chye
- Brain and Mental Health Laboratory, Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological SciencesMonash University Australia
| | - Valentina Lorenzetti
- Brain and Mental Health Laboratory, Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological SciencesMonash University Australia
- Melbourne Neuropsychiatry Centre with School of PsychologyFaculty of Health, Australian Catholic University Australia
- Department of Psychological Sciences, Institute of Psychology, Health and SocietyThe University of Liverpool UK
| | - Chao Suo
- Brain and Mental Health Laboratory, Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological SciencesMonash University Australia
| | - Albert Batalla
- Department of Psychiatry, Donders Institute for Brain, Cognition and BehaviourRadboud University Medical Centre The Netherlands
- Department of Psychiatry and Psychology, Hospital Clinic, IDIBAPS, CIBERSAM and Institute of NeuroscienceUniversity of Barcelona Spain
| | - Janna Cousijn
- Department of Developmental PsychologyUniversity of Amsterdam The Netherlands
| | - Anna E. Goudriaan
- Department of Psychiatry, Amsterdam Institute for Addiction Research, Academic Medical CentreUniversity of Amsterdam The Netherlands
- Arkin Mental Health Care The Netherlands
| | - Mark Jenkinson
- FMRIB Centre, John Radcliffe HospitalUniversity of Oxford UK
| | - Rocio Martin‐Santos
- Department of Psychiatry and Psychology, Hospital Clinic, IDIBAPS, CIBERSAM and Institute of NeuroscienceUniversity of Barcelona Spain
| | - Sarah Whittle
- Melbourne Neuropsychiatry Centre, Department of PsychiatryUniversity of Melbourne Australia
| | - Murat Yücel
- Brain and Mental Health Laboratory, Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological SciencesMonash University Australia
| | - Nadia Solowij
- School of Psychology and Illawarra Health and Medical Research InstituteUniversity of Wollongong Australia
- The Australian Centre for Cannabinoid Clinical and Research Excellence (ACRE) Australia
| |
Collapse
|
27
|
Yoo JG, Jakabek D, Ljung H, Velakoulis D, van Westen D, Looi JCL, Källén K. MRI morphology of the hippocampus in drug-resistant temporal lobe epilepsy: Shape inflation of left hippocampus and correlation of right-sided hippocampal volume and shape with visuospatial function in patients with right-sided TLE. J Clin Neurosci 2019; 67:68-74. [PMID: 31221579 DOI: 10.1016/j.jocn.2019.06.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/10/2019] [Indexed: 11/27/2022]
Abstract
We sought to quantify the morphology in vivo of hippocampi in patients with drug resistant temporal lobe epilepsy (TLE) via magnetic resonance imaging (MRI), prior to temporal lobe resection, and the correlation of surface-based shape analysis of morphology and clinical cognitive function. Thirty patients with drug-resistant TLE and twenty healthy controls underwent clinical neuropsychological testing, and brain MRI at Lund University Hospital prior to hippocampal resection. A neuroradiologist categorised radiological findings into normal hippocampus, subtle changes or definite hippocampal sclerosis. We manually segmented MRI of the hippocampus of participants using ANALYZE 11.0 software; and analysed hippocampal shape using SPHARM-PDM software. For radiologist visual-ratings of definite left hippocampal sclerosis in those with left-sided TLE, hippocampal volumes were significantly smaller compared to normal controls. In right-sided TLE we found contralateral shape inflation of the left hippocampus, partially confirming previous shape analytic studies of the hippocampus in TLE. We found significant correlation of volume and surface deflation of the right hippocampus in right-sided TLE with reduced performance on the two right-lateralised visuospatial memory tests, the Rey Complex Figure Test (Immediate and Delayed recall) and the Recognition Memory Test for faces. Decreased hippocampal volume was correlated with poorer performance on these tasks. The morphology of the hippocampus can be quantified via neuroimaging shape analysis in TLE. Contralateral shape inflation of the left hippocampus in right-sided TLE is intriguing, and may result from functional compensation and/or abnormal tissue. In right-sided TLE, hippocampal structural integrity, quantified as hippocampal shape, is correlated with lateralised visuospatial function.
Collapse
Affiliation(s)
- Jae-Gon Yoo
- Academic Unit of Psychiatry and Addiction Medicine, Australian National University Medical School, Canberra Hospital, ACT, Australia
| | - David Jakabek
- Graduate School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| | - Hanna Ljung
- Skåne University Hospital, Department of Neurology and Rehabilitation Medicine, Lund, Sweden
| | - Dennis Velakoulis
- Neuropsychiatry Unit, Royal Melbourne Hospital, Department of Psychiatry, University of Melbourne Medical School, Melbourne, Victoria, Australia
| | - Danielle van Westen
- Diagnostic Radiology, Department of Clinical Sciences, Lund University, Lund, Sweden; Image and Function, Skane University Hospital, Lund, Sweden
| | - Jeffrey C L Looi
- Academic Unit of Psychiatry and Addiction Medicine, Australian National University Medical School, Canberra Hospital, ACT, Australia; Neuropsychiatry Unit, Royal Melbourne Hospital, Department of Psychiatry, University of Melbourne Medical School, Melbourne, Victoria, Australia.
| | - Kristina Källén
- Division of Clinical Sciences, Helsingborg, Sweden & Department of Clinical Sciences, Lund, Sweden; Neurology, Lund, Sweden & Faculty of Medicine, Lund University, Lund, Sweden
| |
Collapse
|
28
|
Abstract
The concept of staging is applied in medicine since many years, in order to better adapt treatment to patients' needs. Some authors have suggested one should also apply this concept to psychiatric disorders. If this approach seems to make sense, concrete progress in the domain are still limited. It is in the field of psychosis that most development have occurred, in the favorable context of early intervention programs. Some very detailed models have recently been proposed where successive stages of psychotic disorders are defined and corresponding treatment options are proposed. However, the limited reliability of clinical diagnoses systems and the absence of biomarkers allowing a more objective delineation of these various stages still hampers the concrete application of such strategies. Despite these limitations, the staging concept has already started to modify the mental health offer, especially for adolescents and young adults, for example through the development of the Headspace centers in Australia and other countries. These centers constitute accessible entry point for help seekers with mental health issues where treatment is defined according to the stage of illness. If such programs seem promising, a better understanding of the mechanisms underlying the development of psychiatric disorders seems important in order to facilitate the identification of stages and define the nature of the treatment needed for each of them, considering such knowledge has been the crucial for the development of the staging model in somatic disorders.
Collapse
|
29
|
Li M, Becker B, Zheng J, Zhang Y, Chen H, Liao W, Duan X, Liu H, Zhao J, Chen H. Dysregulated Maturation of the Functional Connectome in Antipsychotic-Naïve, First-Episode Patients With Adolescent-Onset Schizophrenia. Schizophr Bull 2019; 45:689-697. [PMID: 29850901 PMCID: PMC6483582 DOI: 10.1093/schbul/sby063] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Schizophrenia has been conceptualized as a brain network disorder rooted in dysregulated neurodevelopmental processes. Recent neuroimaging studies revealed disrupted brain connectomic organization in adult schizophrenia patients. However, altered developmental trajectories of the functional connectome during the adolescent maturational stage have not been examined. METHODS The present study combined functional MRI with a graph theoretical approach to examine functional network topology and its age-related development in 39 medication naïve, first-episode patients with adolescent-onset schizophrenia and 31 matched controls (age range: 12-18 years). RESULTS Patients demonstrated impaired large-scale integration as reflected by reduced global efficiency as well as decreased regional nodal efficiency in highly integrative network hubs, most consistently the hippocampal formation and the precuneus. Furthermore, the left hippocampus showed opposite age-efficiency associations in healthy controls and patients, indicating dysregulated maturational trajectories in adolescent schizophrenia and a particular vulnerability of this region during early pathological attack. CONCLUSIONS The findings allow an integrative perspective on network and neurodevelopmental perspectives on schizophrenia, suggesting that dysregulated maturation of the functional connectome during adolescence might reflect an early marker for the disorder.
Collapse
Affiliation(s)
- Meiling Li
- The Clinical Hospital of Chengdu Brain Science Institute, Ministry of Education Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China,School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Benjamin Becker
- The Clinical Hospital of Chengdu Brain Science Institute, Ministry of Education Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China,School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Junjie Zheng
- The Clinical Hospital of Chengdu Brain Science Institute, Ministry of Education Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China,School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yan Zhang
- Department of Psychiatry, the Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Heng Chen
- The Clinical Hospital of Chengdu Brain Science Institute, Ministry of Education Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China,School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Wei Liao
- The Clinical Hospital of Chengdu Brain Science Institute, Ministry of Education Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China,School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xujun Duan
- The Clinical Hospital of Chengdu Brain Science Institute, Ministry of Education Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China,School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hesheng Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Jingping Zhao
- Institute of Mental Health, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, Ministry of Education Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China,School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China,To whom correspondence should be addressed; School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China; tel: 86 13808003171, fax: 86 2883208238, e-mail:
| |
Collapse
|
30
|
Synaptic loss in schizophrenia: a meta-analysis and systematic review of synaptic protein and mRNA measures. Mol Psychiatry 2019; 24:549-561. [PMID: 29511299 PMCID: PMC6004314 DOI: 10.1038/s41380-018-0041-5] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/05/2018] [Accepted: 01/31/2018] [Indexed: 02/06/2023]
Abstract
Although synaptic loss is thought to be core to the pathophysiology of schizophrenia, the nature, consistency and magnitude of synaptic protein and mRNA changes has not been systematically appraised. Our objective was thus to systematically review and meta-analyse findings. The entire PubMed database was searched for studies from inception date to the 1st of July 2017. We selected case-control postmortem studies in schizophrenia quantifying synaptic protein or mRNA levels in brain tissue. The difference in protein and mRNA levels between cases and controls was extracted and meta-analysis conducted. Among the results, we found a significant reduction in synaptophysin in schizophrenia in the hippocampus (effect size: -0.65, p < 0.01), frontal (effect size: -0.36, p = 0.04), and cingulate cortices (effect size: -0.54, p = 0.02), but no significant changes for synaptophysin in occipital and temporal cortices, and no changes for SNAP-25, PSD-95, VAMP, and syntaxin in frontal cortex. There were insufficient studies for meta-analysis of complexins, synapsins, rab3A and synaptotagmin and mRNA measures. Findings are summarised for these, which generally show reductions in SNAP-25, PSD-95, synapsin and rab3A protein levels in the hippocampus but inconsistency in other regions. Our findings of moderate-large reductions in synaptophysin in hippocampus and frontal cortical regions, and a tendency for reductions in other pre- and postsynaptic proteins in the hippocampus are consistent with models that implicate synaptic loss in schizophrenia. However, they also identify potential differences between regions and proteins, suggesting synaptic loss is not uniform in nature or extent.
Collapse
|
31
|
Cheetham A, Allen NB, Whittle S, Simmons J, Yücel M, Lubman DI. Amygdala volume mediates the relationship between externalizing symptoms and daily smoking in adolescence: A prospective study. Psychiatry Res Neuroimaging 2018; 276:46-52. [PMID: 29661490 DOI: 10.1016/j.pscychresns.2018.03.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 01/31/2018] [Accepted: 03/07/2018] [Indexed: 11/28/2022]
Abstract
The current study examined amygdala and orbitofrontal cortex (OFC) volumes as mediators of the relationship between externalizing symptoms and daily smoking in adolescence. Externalizing behaviors are among the most robust predictors of adolescent smoking, and there is emerging evidence that volume reductions in the amygdala and OFC are associated with risk for substance misuse as well as aggressive, impulsive, and disinhibited tendencies. Using a prospective longitudinal design, we recruited 109 adolescents who provided data on brain volume and externalizing behaviors at age 12, and on smoking at age 18. Daily smoking at age 18 (n = 27) was predicted by externalizing behaviors (measured by the self-report Child Behavior Checklist, CBCL) as well as smaller right amygdala volumes. Right amygdala volumes mediated the relationship between externalizing symptoms and later smoking. These findings provide important insight into the neurobiological risk factors associated with adolescent smoking, and, more generally, into factors that may be associated with vulnerability to substance use disorders and related psychopathology.
Collapse
Affiliation(s)
- Ali Cheetham
- Turning Point, Eastern Health, Australia; Eastern Health Clinical School, Monash University, Australia
| | - Nicholas B Allen
- Orygen, The National Centre of Excellence in Youth Mental Health, University of Melbourne, Australia; Melbourne School of Psychological Sciences, University of Melbourne, Australia; Department of Psychology, University of Oregon, USA
| | - Sarah Whittle
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne, Australia
| | - Julian Simmons
- Melbourne School of Psychological Sciences, University of Melbourne, Australia; Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne, Australia
| | - Murat Yücel
- Monash Clinical and Imaging Neuroscience, School of Psychology and Psychiatry, Monash University, Australia
| | - Dan I Lubman
- Turning Point, Eastern Health, Australia; Eastern Health Clinical School, Monash University, Australia.
| |
Collapse
|
32
|
Baglivo V, Cao B, Mwangi B, Bellani M, Perlini C, Lasalvia A, Dusi N, Bonetto C, Cristofalo D, Alessandrini F, Zoccatelli G, Ciceri E, Dario L, Enrico C, Francesca P, Mazzi F, Paolo S, Balestrieri M, Soares JC, Ruggeri M, Brambilla P. Hippocampal Subfield Volumes in Patients With First-Episode Psychosis. Schizophr Bull 2018; 44:552-559. [PMID: 29897598 PMCID: PMC5890476 DOI: 10.1093/schbul/sbx108] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Background Hippocampal abnormalities have been largely reported in patients with schizophrenia and bipolar disorder, and are considered to be involved in the pathophysiology of the psychosis. The hippocampus consists of several subfields but it remains unclear their involvement in the early stages of psychosis. Aim The aim of this study was to investigate volumetric alterations in hippocampal subfields in patients at the first-episode psychosis (FEP). Methods Magnetic resonance imaging (MRI) data were collected in 134 subjects (58 FEP patients; 76 healthy controls [HC]). A novel automated hippocampal segmentation algorithm was used to segment the hippocampal subfields, based on an atlas constructed from ultra-high resolution imaging on ex vivo hippocampal tissue. The general linear model was used to investigate volume differences between FEP patients and HC, with age, gender and total intracranial volume as covariates. Results We found significantly lower volumes of bilateral CA1, CA4, and granule cell layer (GCL), and of left CA3, and left molecular layer (ML) in FEP patients compared to HC. Only the volumes of the left hippocampus and its subfields were significantly lower in FEP than HC at the False Discovery Rate (FDR) of 0.1. No correlation was found between hippocampal subfield volume and duration of illness, age of onset, duration of medication, and Positive and Negative Syndrome Scale (PANSS). Conclusion We report abnormally low volumes of left hippocampal subfields in patients with FEP, sustaining its role as a putative neural marker of psychosis onset.
Collapse
Affiliation(s)
- Valentina Baglivo
- Unit of Psychiatry, Department of Medicine, University of Udine, Udine, Italy
| | - Bo Cao
- UT Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX
| | - Benson Mwangi
- UT Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX
| | - Marcella Bellani
- UOC Psychiatry, Azienda Ospedaliera Universitaria Integrata Verona (AOUI), Verona, Italy
- InterUniversity Centre for Behavioural Neurosciences (ICBN), University of Verona, Verona, Italy
| | - Cinzia Perlini
- InterUniversity Centre for Behavioural Neurosciences (ICBN), University of Verona, Verona, Italy
- Department of Public Health and Community Medicine, Section of Clinical Psychology, University of Verona, Verona, Italy
| | - Antonio Lasalvia
- UOC Psychiatry, Azienda Ospedaliera Universitaria Integrata Verona (AOUI), Verona, Italy
| | - Nicola Dusi
- UOC Psychiatry, Azienda Ospedaliera Universitaria Integrata Verona (AOUI), Verona, Italy
- InterUniversity Centre for Behavioural Neurosciences (ICBN), University of Verona, Verona, Italy
| | - Chiara Bonetto
- Section of Psychiatry, Department of Neurological, Biomedical and Movement Sciences, University of Verona, Verona, Italy
| | - Doriana Cristofalo
- Section of Psychiatry, Department of Neurological, Biomedical and Movement Sciences, University of Verona, Verona, Italy
| | | | - Giada Zoccatelli
- Neuroradiology Department, Azienda Ospedaliera Universitaria, Verona, Italy
| | - Elisa Ciceri
- Neuroradiology Department, Azienda Ospedaliera Universitaria, Verona, Italy
| | - Lamonaca Dario
- Department of Psychiatry, CSM AULSS 21 Legnago, Verona, Italy
| | - Ceccato Enrico
- Department of Mental Health, Hospital of Montecchio Maggiore, Vicenza, Italy
| | | | | | | | - Matteo Balestrieri
- Unit of Psychiatry, Department of Medicine, University of Udine, Udine, Italy
| | - Jair C Soares
- UT Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX
| | - Mirella Ruggeri
- UOC Psychiatry, Azienda Ospedaliera Universitaria Integrata Verona (AOUI), Verona, Italy
- Section of Psychiatry, Department of Neurological, Biomedical and Movement Sciences, University of Verona, Verona, Italy
| | - Paolo Brambilla
- UT Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - GET UP Group
- Unit of Psychiatry, Department of Medicine, University of Udine, Udine, Italy
| |
Collapse
|
33
|
Trisha C, Golnoush A, Jan-Marie K, Torres IJ, Yatham LN. Cognitive functioning in first episode bipolar I disorder patients with and without history of psychosis. J Affect Disord 2018; 227:109-116. [PMID: 29055258 DOI: 10.1016/j.jad.2017.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 09/03/2017] [Accepted: 10/01/2017] [Indexed: 11/25/2022]
Abstract
BACKGROUND Psychosis in bipolar I disorder (BDI) has been associated with increased cognitive dysfunction, which may relate to poorer functional outcomes. However, it is not known whether cognition differs between BDI patients with (BDP+) or without (BDP-) history of psychosis early in the disease course, or if it is impacted by the presence of mood congruent (MCP) versus incongruent (MIC) psychotic features. We compare cognition between these groups in BDI patients recently recovered from first episode of mania. METHODS Attention, verbal learning/memory, processing speed and executive functioning were compared between: 1) all BDI patients (n = 73) and healthy controls (HC, n = 45), 2) BDP+ (n = 60) and BDP- (n = 13) patients and 3) MCP (n = 27) and MIC (n = 33) patients. Post-hoc analyses compared all patient groups with HC. RESULTS While BDI patients performed worse than HC in all domains, there were no significant differences between BDP+ and BDP-, or MCP and MIC, patients. However, BDP+ and MIC groups demonstrated different patterns of impairment compared to HC then did BDP- or MCP. Executive functioning and cognitive flexibility in particular appeared to be a deficit area in BDP+ patients. LIMITATIONS This study may have been underpowered to detect differences in direct comparison between BDP+ and BDP- patients. CONCLUSION While replication in larger samples is required, these results suggest that subtle cognitive differences between BDP+ and BDP-, and between MIC and MCP, patients may be present shortly after disease onset. These patient subsets may therefore be of interest in examining early intensive strategies to preserve cognition.
Collapse
Affiliation(s)
- Chakrabarty Trisha
- Department of Psychiatry, University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, Canada V6T 2A1
| | - Alamian Golnoush
- Department of Psychology, University of Montreal, C.P. 6128, Succursale Centre-ville, Montréal, QC, Canada H3C 3J7
| | - Kozicky Jan-Marie
- Department of Psychiatry, University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, Canada V6T 2A1
| | - Ivan J Torres
- Department of Psychiatry, University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, Canada V6T 2A1
| | - Lakshmi N Yatham
- Department of Psychiatry, University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, Canada V6T 2A1.
| |
Collapse
|
34
|
Batalla A, Lorenzetti V, Chye Y, Yücel M, Soriano-Mas C, Bhattacharyya S, Torrens M, Crippa JAS, Martín-Santos R. The Influence of DAT1, COMT, and BDNF Genetic Polymorphisms on Total and Subregional Hippocampal Volumes in Early Onset Heavy Cannabis Users. Cannabis Cannabinoid Res 2018; 3:1-10. [PMID: 29404409 PMCID: PMC5797324 DOI: 10.1089/can.2017.0021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Introduction: Hippocampal neuroanatomy is affected by genetic variations in dopaminergic candidate genes and environmental insults, such as early onset of chronic cannabis exposure. Here, we examine how hippocampal total and subregional volumes are affected by cannabis use and functional polymorphisms of dopamine-relevant genes, including the catechol-O-methyltransferase (COMT), dopamine transporter (DAT1), and the brain-derived neurotrophic factor (BDNF) genes. Material and Methods: We manually traced total hippocampal volumes and automatically segmented hippocampal subregions using high-resolution MRI images, and performed COMT, DAT1, and BDNF genotyping in 59 male Caucasian young adults aged 18–30 years. These included 30 chronic cannabis users with early-onset (regular use at <16 years) and 29 age-, education-, and intelligence-matched controls. Results: Cannabis use and dopaminergic gene polymorphism had both distinct and interactive effects on the hippocampus. We found emerging alterations of hippocampal total and specific subregional volumes in cannabis users relative to controls (i.e., CA1, CA2/3, and CA4), and associations between cannabis use levels and total and specific subregional volumes. Furthermore, total hippocampal volume and the fissure subregion were affected by cannabis×DAT1 polymorphism (i.e., 9/9R and in 10/10R alleles), reflecting high and low levels of dopamine availability. Conclusion: These findings suggest that cannabis exposure alters the normal relationship between DAT1 polymorphism and the anatomy of total and subregional hippocampal volumes, and that specific hippocampal subregions may be particularly affected.
Collapse
Affiliation(s)
- Albert Batalla
- Department of Psychiatry, Clinical Institute of Neuroscience, Hospital Clínic, IDIBAPS, CIBERSAM and Department of Psychiatry and Clinical Psychobiology, University of Barcelona, Barcelona, Spain.,Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.,Nijmegen Institute for Scientist-Practitioners in Addiction (NISPA), Radboud University, Nijmegen, The Netherlands
| | - Valentina Lorenzetti
- School of Psychological Sciences, Institute of Psychology Health and Society, The University of Liverpool, Liverpool, United Kingdom.,Laboratory for Brain and Mental Health, Monash Institute of Cognitive and Clinical Neurosciences and School of Psychological Sciences, Monash University, Clayton, VIC, Australia
| | - Yann Chye
- Laboratory for Brain and Mental Health, Monash Institute of Cognitive and Clinical Neurosciences and School of Psychological Sciences, Monash University, Clayton, VIC, Australia
| | - Murat Yücel
- Laboratory for Brain and Mental Health, Monash Institute of Cognitive and Clinical Neurosciences and School of Psychological Sciences, Monash University, Clayton, VIC, Australia
| | - Carles Soriano-Mas
- Department of Psychiatry, Bellvitge University Hospital-IDIBELL, CIBERSAM G-17, and Department of Psychobiology and Methodology in Health Sciences, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Sagnik Bhattacharyya
- Department of Psychosis Studies, King's College London, Institute of Psychiatry, Psychology and Neuroscience, London, United Kingdom
| | - Marta Torrens
- Institute of Neuropsychiatry and Addictions, Hospital del Mar, IMIM (Institut Hospital del Mar d'Investigacions Mèdiques), Psychiatric Department of Universitat Autònoma de Barcelona, Barcelona, Spain
| | - José A S Crippa
- Department of Neuroscience and Behavior, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.,Instituto Nacional de Ciência e Tecnologia Translacional em Medicina Translational Medicine (INCT-TM), National Council for Scientific and Technological Development, São Paulo, Brazil
| | - Rocío Martín-Santos
- Department of Psychiatry, Clinical Institute of Neuroscience, Hospital Clínic, IDIBAPS, CIBERSAM and Department of Psychiatry and Clinical Psychobiology, University of Barcelona, Barcelona, Spain.,Institute of Neuropsychiatry and Addictions, Hospital del Mar, IMIM (Institut Hospital del Mar d'Investigacions Mèdiques), Psychiatric Department of Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Neuroscience and Behavior, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.,Instituto Nacional de Ciência e Tecnologia Translacional em Medicina Translational Medicine (INCT-TM), National Council for Scientific and Technological Development, São Paulo, Brazil
| |
Collapse
|
35
|
Hunter SA, Lawrie SM. Imaging and Genetic Biomarkers Predicting Transition to Psychosis. Curr Top Behav Neurosci 2018; 40:353-388. [PMID: 29626338 DOI: 10.1007/7854_2018_46] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The search for diagnostic and prognostic biomarkers in schizophrenia care and treatment is the focus of many within the research community. Longitudinal cohorts of patients presenting at elevated genetic and clinical risk have provided a wealth of data that has informed our understanding of the development of schizophrenia and related psychotic disorders.Imaging follow-up of high-risk cohorts has demonstrated changes in cerebral grey matter of those that eventually transition to schizophrenia that predate the onset of symptoms and evolve over the course of illness. Longitudinal follow-up studies demonstrate that observed grey matter changes can be employed to differentiate those who will transition to schizophrenia from those who will not prior to the onset of the disorder.In recent years our understanding of the genetic makeup of schizophrenia has advanced significantly. The development of modern analysis techniques offers researchers the ability to objectively quantify genetic risk; these have been successfully applied within a high-risk paradigm to assist in differentiating between high-risk individuals who will subsequently become unwell and those who will not.This chapter will discuss the application of imaging and genetic biomarkers within high-risk groups to predict future transition to schizophrenia and related psychotic disorders. We aim to provide an overview of current approaches focussing on grey matter changes that are predictive of future transition to illness, the developing field of genetic risk scores and other methods being developed to aid clinicians in diagnosis and prognosis.
Collapse
Affiliation(s)
- Stuart A Hunter
- Division of Psychiatry, Royal Edinburgh Hospital, University of Edinburgh, Edinburgh, UK.
| | - Stephen M Lawrie
- Division of Psychiatry, Royal Edinburgh Hospital, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
36
|
Berger GE, Bartholomeusz CF, Wood SJ, Ang A, Phillips LJ, Proffitt T, Brewer WJ, Smith DJ, Nelson B, Lin A, Borgwardt S, Velakoulis D, Yung AR, McGorry PD, Pantelis C. Ventricular volumes across stages of schizophrenia and other psychoses. Aust N Z J Psychiatry 2017; 51:1041-1051. [PMID: 28670977 DOI: 10.1177/0004867417715914] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Ventricular enlargement is common in established schizophrenia; however, data from ultra high-risk for psychosis and first-episode psychosis studies are inconclusive. This study aims to investigate ventricular volumes at different stages of psychosis. METHODS Ventricular volumes were measured using a semi-automated and highly reliable method, for 89 established schizophrenia, 162 first-episode psychosis, 135 ultra high-risk for psychosis and 87 healthy controls using 1.5T magnetic resonance images. Clinical outcome diagnoses for ultra high-risk for psychosis were evaluated at long-term follow-up (mean: 7.5 years). RESULTS Compared to controls, we identified significant ventricular enlargement of 36.2% in established schizophrenia ( p < 0.001). Ventricular enlargement was not significant in first-episode psychosis (6%) or ultra high-risk for psychosis (-3%). Examination across stages of schizophrenia-spectrum diagnoses subgroups revealed a significant linear trend ( p = 0.006; established schizophrenia = 36.2%, first-episode psychosis schizophrenia = 18.5%, first-episode psychosis schizophreniform = -4.2% and ultra high-risk for psychosis-schizophrenia converters = -18.5%). CONCLUSION Ventricular enlargement is apparent in patients with established schizophrenia but is not a feature at the earliest stages of illness (ultra high-risk for psychosis and first-episode psychosis). Further research is needed to fully characterize the nature and timing of ventricular volume changes early in the course of illness and how these changes impact outcomes.
Collapse
Affiliation(s)
- Gregor E Berger
- 1 Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, VIC, Australia.,2 Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia.,3 Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland.,Joint first authors, these authors contributed equally to the writing of this manuscript
| | - Cali F Bartholomeusz
- 1 Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, VIC, Australia.,2 Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia.,4 Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Parkville, VIC, Australia.,Joint first authors, these authors contributed equally to the writing of this manuscript
| | - Stephen J Wood
- 1 Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, VIC, Australia.,2 Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia.,4 Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Parkville, VIC, Australia.,5 School of Psychology, University of Birmingham, Birmingham, UK
| | - Anthony Ang
- 4 Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Parkville, VIC, Australia
| | - Lisa J Phillips
- 6 Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Tina Proffitt
- 1 Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, VIC, Australia.,2 Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Warrick J Brewer
- 1 Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, VIC, Australia.,2 Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Deidre J Smith
- 7 The Melbourne Clinic, Department of Psychiatry, The University of Melbourne, Richmond, VIC, Australia
| | - Barnaby Nelson
- 1 Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, VIC, Australia.,2 Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Ashleigh Lin
- 8 Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia
| | - Stefan Borgwardt
- 9 Department of Psychiatry, University of Basel, Basel, Switzerland
| | - Dennis Velakoulis
- 4 Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Parkville, VIC, Australia
| | - Alison R Yung
- 10 Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,11 Greater Manchester West NHS Mental Health Foundation Trust, Manchester, UK
| | - Patrick D McGorry
- 1 Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, VIC, Australia.,2 Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Christos Pantelis
- 4 Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Parkville, VIC, Australia
| |
Collapse
|
37
|
Linking persistent negative symptoms to amygdala-hippocampus structure in first-episode psychosis. Transl Psychiatry 2017; 7:e1195. [PMID: 28786981 PMCID: PMC5611735 DOI: 10.1038/tp.2017.168] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/12/2017] [Accepted: 05/15/2017] [Indexed: 01/07/2023] Open
Abstract
Early persistent negative symptoms (PNS) following a first episode of psychosis (FEP) are linked to poor functional outcome. Reports of reduced amygdalar and hippocampal volumes in early psychosis have not accounted for heterogeneity of symptoms. Age is also seldom considered in this population, a factor that has the potential to uncover symptom-specific maturational biomarkers pertaining to volume and shape changes within the hippocampus and amygdala. T1-weighted volumes were acquired for early (N=21), secondary (N=30), non-(N=44) PNS patients with a FEP, and controls (N=44). Amygdalar-hippocampal volumes and surface area (SA) metrics were extracted with the Multiple Automatically Generated Templates (MAGeT)-Brain algorithm. Linear mixed models were applied to test for a main effect of group and age × group interactions. Early PNS patients had significantly reduced left amygdalar and right hippocampal volumes, as well as similarly lateralized negative age × group interactions compared to secondary PNS patients (P<0.017, corrected). Morphometry revealed decreased SA in early PNS compared with other patient groups in left central amygdala, and in a posterior region when compared with controls. Early and secondary PNS patients had significantly decreased SA as a function of age compared with patients without such symptoms within the right hippocampal tail (P<0.05, corrected). Significant amygdalar-hippocampal changes with age are linked to PNS after a FEP, with converging results from volumetric and morphometric analyses. Differential age trajectories suggest an aberrant maturational process within FEP patients presenting with PNS, which could represent dynamic endophenotypes setting these patients apart from their non-symptomatic peers. Studies are encouraged to parse apart such symptom constructs when examining neuroanatomical changes emerging after a FEP.
Collapse
|
38
|
Koenders L, Lorenzetti V, de Haan L, Suo C, Vingerhoets WAM, van den Brink W, Wiers RW, Meijer CJ, Machielsen MWJ, Goudriaan AE, Veltman DJ, Yücel M, Cousijn J. Longitudinal study of hippocampal volumes in heavy cannabis users. J Psychopharmacol 2017; 31:1027-1034. [PMID: 28741422 PMCID: PMC5544121 DOI: 10.1177/0269881117718380] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Cannabis exposure, particularly heavy cannabis use, has been associated with neuroanatomical alterations in regions rich with cannabinoid receptors such as the hippocampus in some but not in other (mainly cross-sectional) studies. However, it remains unclear whether continued heavy cannabis use alters hippocampal volume, and whether an earlier age of onset and/or a higher dosage exacerbate these changes. METHODS Twenty heavy cannabis users (mean age 21 years, range 18-24 years) and 23 matched non-cannabis using healthy controls were submitted to a comprehensive psychological assessment and magnetic resonance imaging scan at baseline and at follow-up (average of 39 months post-baseline; standard deviation=2.4). Cannabis users started smoking around 16 years and smoked on average five days per week. A novel aspect of the current study is that hippocampal volume estimates were obtained from manual tracing the hippocampus on T1-weighted anatomical magnetic resonance imaging scans, using a previously validated protocol. RESULTS Compared to controls, cannabis users did not show hippocampal volume alterations at either baseline or follow-up. Hippocampal volumes increased over time in both cannabis users and controls, following similar trajectories of increase. Cannabis dose and age of onset of cannabis use did not affect hippocampal volumes. CONCLUSIONS Continued heavy cannabis use did not affect hippocampal neuroanatomical changes in early adulthood. This contrasts with prior evidence on alterations in this region in samples of older adult cannabis users. In young adults using cannabis at this level, cannabis use may not be heavy enough to affect hippocampal neuroanatomy.
Collapse
Affiliation(s)
- L Koenders
- Department of Psychiatry, University of Amsterdam, Amsterdam, the Netherlands
| | - V Lorenzetti
- School of Psychological Sciences, University of Liverpool, Liverpool, UK
- Melbourne Neuropsychiatry Centre, The University of Melbourne and Melbourne Health, Melbourne, Australia
| | - L de Haan
- Department of Psychiatry, University of Amsterdam, Amsterdam, the Netherlands
| | - C Suo
- Brain and Mental Health Laboratory, Monash University, Clayton, Australia
| | - WAM Vingerhoets
- Department of Nuclear Medicine, University of Amsterdam, Amsterdam, the Netherlands
- Department of Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - W van den Brink
- Department of Psychiatry, University of Amsterdam, Amsterdam, the Netherlands
| | - RW Wiers
- Addiction Development and Psychopathology (ADAPT)-lab, University of Amsterdam, Amsterdam, the Netherlands
| | - CJ Meijer
- Department of Psychiatry, University of Amsterdam, Amsterdam, the Netherlands
| | - MWJ Machielsen
- Department of Psychiatry, University of Amsterdam, Amsterdam, the Netherlands
| | - AE Goudriaan
- Amsterdam Institute for Addiction Research, University of Amsterdam, Amsterdam, the Netherlands
- Arkin Mental Health Care, Amsterdam, the Netherlands
| | - DJ Veltman
- VU Medical Center, Amsterdam, the Netherlands
| | - M Yücel
- Brain and Mental Health Laboratory, Monash University, Clayton, Australia
- Melbourne Neuropsychiatry Centre, The University of Melbourne and Melbourne Health, Melbourne, Australia
| | - J Cousijn
- Addiction Development and Psychopathology (ADAPT)-lab, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
39
|
Paracingulate Sulcus Asymmetry in the Human Brain: Effects of Sex, Handedness, and Race. Sci Rep 2017; 7:42033. [PMID: 28195205 PMCID: PMC5307317 DOI: 10.1038/srep42033] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 01/05/2017] [Indexed: 11/19/2022] Open
Abstract
The anterior cingulate cortex (ACC), which is thought to play a key role in cognitive and affective regulation, has been widely reported to have a high degree of morphological inter-individual variability and asymmetry. An obvious difference is in the morphology of the paracingulate sulcus (PCS). Three types of PCS have been identified: prominent, present, and absent. In this study, we examined the relationship between PCS asymmetry and whether the asymmetry of the PCS is affected by sex, handedness, or race. PCS measurements were obtained from four datasets. The statistical results revealed that the PCS was more often prominent and present in the left hemisphere than in the right. The percentage of right-handed males with a prominent PCS was greater than that of right-handed females, but the percentage of left-handed males with a prominent PCS was lower than that of left-handed females. In addition, both male and female and both left-handed and right-handed subjects showed a leftward asymmetry of the PCS. Furthermore there were no significant racial differences in the leftward asymmetry of the PCS. Our findings about the morphological characteristics of the PCS may facilitate future clinical and cognitive studies of this area.
Collapse
|
40
|
Pruessner M, Cullen AE, Aas M, Walker EF. The neural diathesis-stress model of schizophrenia revisited: An update on recent findings considering illness stage and neurobiological and methodological complexities. Neurosci Biobehav Rev 2017; 73:191-218. [DOI: 10.1016/j.neubiorev.2016.12.013] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 12/09/2016] [Accepted: 12/12/2016] [Indexed: 01/29/2023]
|
41
|
Ho NF, Iglesias JE, Sum MY, Kuswanto CN, Sitoh YY, De Souza J, Hong Z, Fischl B, Roffman JL, Zhou J, Sim K, Holt DJ. Progression from selective to general involvement of hippocampal subfields in schizophrenia. Mol Psychiatry 2017; 22:142-152. [PMID: 26903271 PMCID: PMC4995163 DOI: 10.1038/mp.2016.4] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 10/19/2015] [Accepted: 12/07/2015] [Indexed: 11/08/2022]
Abstract
Volume deficits of the hippocampus in schizophrenia have been consistently reported. However, the hippocampus is anatomically heterogeneous; it remains unclear whether certain portions of the hippocampus are affected more than others in schizophrenia. In this study, we aimed to determine whether volume deficits in schizophrenia are confined to specific subfields of the hippocampus and to measure the subfield volume trajectories over the course of the illness. Magnetic resonance imaging scans were obtained from Data set 1: 155 patients with schizophrenia (mean duration of illness of 7 years) and 79 healthy controls, and Data set 2: an independent cohort of 46 schizophrenia patients (mean duration of illness of 18 years) and 46 healthy controls. In addition, follow-up scans were collected for a subset of Data set 1. A novel, automated method based on an atlas constructed from ultra-high resolution, post-mortem hippocampal tissue was used to label seven hippocampal subfields. Significant cross-sectional volume deficits in the CA1, but not of the other subfields, were found in the schizophrenia patients of Data set 1. However, diffuse cross-sectional volume deficits across all subfields were found in the more chronic and ill schizophrenia patients of Data set 2. Consistent with this pattern, the longitudinal analysis of Data set 1 revealed progressive illness-related volume loss (~2-6% per year) that extended beyond CA1 to all of the other subfields. This decline in volume correlated with symptomatic worsening. Overall, these findings provide converging evidence for early atrophy of CA1 in schizophrenia, with extension to other hippocampal subfields and accompanying clinical sequelae over time.
Collapse
Affiliation(s)
- N F Ho
- Research Division, Institute of Mental Health, Singapore
- Center for Cognitive Neuroscience, Neuroscience and Behavioral Disorders Program, Duke-National University of Singapore Graduate Medical School, Singapore
| | - J E Iglesias
- Basque Center on Cognition, Brain and Language, Spain
- AA Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - M Y Sum
- Research Division, Institute of Mental Health, Singapore
| | - C N Kuswanto
- Research Division, Institute of Mental Health, Singapore
| | - Y Y Sitoh
- Department of Neuroradiology, National Neuroscience Institute, Singapore
| | - J De Souza
- Center for Cognitive Neuroscience, Neuroscience and Behavioral Disorders Program, Duke-National University of Singapore Graduate Medical School, Singapore
| | - Z Hong
- Center for Cognitive Neuroscience, Neuroscience and Behavioral Disorders Program, Duke-National University of Singapore Graduate Medical School, Singapore
| | - B Fischl
- AA Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - J L Roffman
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - J Zhou
- Center for Cognitive Neuroscience, Neuroscience and Behavioral Disorders Program, Duke-National University of Singapore Graduate Medical School, Singapore
| | - K Sim
- Research Division, Institute of Mental Health, Singapore
- Department of General Psychiatry, General Psychiatry, Institute of Mental Health, Singapore
| | - D J Holt
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
42
|
Walter A, Suenderhauf C, Harrisberger F, Lenz C, Smieskova R, Chung Y, Cannon TD, Bearden CE, Rapp C, Bendfeldt K, Borgwardt S, Vogel T. Hippocampal volume in subjects at clinical high-risk for psychosis: A systematic review and meta-analysis. Neurosci Biobehav Rev 2016; 71:680-690. [DOI: 10.1016/j.neubiorev.2016.10.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 10/09/2016] [Accepted: 10/11/2016] [Indexed: 01/16/2023]
|
43
|
Johnstone B, Velakoulis D, Yuan CY, Ang A, Steward C, Desmond P, O'Brien TJ. Early childhood trauma and hippocampal volumes in patients with epileptic and psychogenic seizures. Epilepsy Behav 2016; 64:180-185. [PMID: 27743551 DOI: 10.1016/j.yebeh.2016.09.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 09/07/2016] [Accepted: 09/08/2016] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Exposure to early life childhood trauma has been implicated as resulting in a vulnerability to epileptic and psychogenic nonepileptic seizures (PNES), hippocampal atrophy, and psychiatric disorders. This study aimed to explore the relationships between childhood trauma, epilepsy, PNES, and hippocampal volume in patients admitted to a video-electroencephalogram monitoring (VEM) unit. METHODS One hundred thirty-one patients were recruited from the Royal Melbourne Hospital VEM unit. The diagnostic breakdown of this group was: temporal lobe epilepsy (TLE) (32), other epilepsy syndromes (35), PNES (47), other nonepileptic syndromes (5), both epilepsy and PNES (6), and uncertain diagnosis (6). All patients completed a questionnaire assessing exposure to childhood trauma, the Childhood Trauma Questionnaire (CTQ), as well as questionnaires assessing psychiatric symptomatology (SCL-90-R), Anxiety and Depression (HADS), quality of life (QOLIE-98) and cognition (NUCOG). Volumetric coronal T1 MRI scans were available for 84 patients. Hippocampal volumes were manually traced by a blinded operator. RESULTS The prevalence of childhood trauma in patients with PNES was higher than in patients with other diagnoses (p=0.005), and the group with PNES overall scored significantly higher on the CTQ (p=0.002). No association was found between CTQ scores and hippocampal volumes; however, patients with a history of sexual abuse were found to have smaller left hippocampal volumes than patients who had not (p=0.043). Patients reporting having experienced childhood trauma scored lower on measures of quality of life and higher on measures of psychiatric symptomatology. SIGNIFICANCE Patients with PNES report having experienced significantly more childhood trauma than those with epileptic seizures, and in both groups there was a relationship between a history of having experienced sexual abuse and reduced left hippocampal volume. Patients with PNES and those with epilepsy who have a history of childhood trauma have overall worse quality of life and more psychiatric symptomatology.
Collapse
Affiliation(s)
- Benjamin Johnstone
- The Departments of Medicine, Radiology, Neurology and Psychiatry, The Royal Melbourne Hospital, The University of Melbourne, Victoria, Australia
| | - Dennis Velakoulis
- The Departments of Medicine, Radiology, Neurology and Psychiatry, The Royal Melbourne Hospital, The University of Melbourne, Victoria, Australia
| | - Cheng Yi Yuan
- The Departments of Medicine, Radiology, Neurology and Psychiatry, The Royal Melbourne Hospital, The University of Melbourne, Victoria, Australia
| | - Anthony Ang
- The Departments of Medicine, Radiology, Neurology and Psychiatry, The Royal Melbourne Hospital, The University of Melbourne, Victoria, Australia
| | - Chris Steward
- The Departments of Medicine, Radiology, Neurology and Psychiatry, The Royal Melbourne Hospital, The University of Melbourne, Victoria, Australia
| | - Patricia Desmond
- The Departments of Medicine, Radiology, Neurology and Psychiatry, The Royal Melbourne Hospital, The University of Melbourne, Victoria, Australia
| | - Terence J O'Brien
- The Departments of Medicine, Radiology, Neurology and Psychiatry, The Royal Melbourne Hospital, The University of Melbourne, Victoria, Australia.
| |
Collapse
|
44
|
Hýža M, Kuhn M, Češková E, Ustohal L, Kašpárek T. Hippocampal volume in first-episode schizophrenia and longitudinal course of the illness. World J Biol Psychiatry 2016; 17:429-38. [PMID: 27403591 DOI: 10.1080/15622975.2016.1199893] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVES Several lines of evidence suggest an adverse effect of psychotic episodes on brain morphology. It is not clear if this relationship reflects the cumulative effect of psychotic outbursts on the gradual progressive reduction of hippocampal tissue or an increased tendency toward psychotic episodes in patients with a smaller hippocampus at the beginning of the illness. METHODS This is a longitudinal 4-year prospective study of patients with first-episode schizophrenia (FES, N = 58). Baseline brain anatomical scans (at FES) were analysed using voxel-based morphometry and atlas-based volumetry of the hippocampal subfields. The effects of first-episode duration on the hippocampal morphology, and the effect of baseline hippocampal morphology on illness course with relapses, number of psychotic episodes and residual symptoms were analysed. RESULTS A significant negative correlation was detected between first-episode duration and baseline hippocampal morphology. Relapse, number of psychotic episodes and residual symptoms had no correlation with baseline hippocampal volume. CONCLUSIONS We replicated the effect of psychosis duration on hippocampal volume already at the time first-episode, which supports the concept of toxicity of psychosis. The indices of a later unfavourable course of schizophrenia had no correlation with baseline brain morphology, suggesting that there is no baseline morphological abnormality of the hippocampus that predisposes the patient to frequent psychotic outbursts.
Collapse
Affiliation(s)
- Martin Hýža
- a Department of Psychiatry, Faculty of Medicine , Masaryk University , Brno , Czech Republic
| | - Matyáš Kuhn
- b Behavioral and Social Neuroscience Group , Ceitec-MU, Masaryk University , Brno , Czech Republic
| | - Eva Češková
- a Department of Psychiatry, Faculty of Medicine , Masaryk University , Brno , Czech Republic ;,c Department of Psychiatry , University Hospital Brno , Brno , Czech Republic
| | - Libor Ustohal
- a Department of Psychiatry, Faculty of Medicine , Masaryk University , Brno , Czech Republic ;,c Department of Psychiatry , University Hospital Brno , Brno , Czech Republic
| | - Tomáš Kašpárek
- a Department of Psychiatry, Faculty of Medicine , Masaryk University , Brno , Czech Republic ;,b Behavioral and Social Neuroscience Group , Ceitec-MU, Masaryk University , Brno , Czech Republic ;,c Department of Psychiatry , University Hospital Brno , Brno , Czech Republic
| |
Collapse
|
45
|
Fusar-Poli P, Meyer-Lindenberg A. Forty years of structural imaging in psychosis: promises and truth. Acta Psychiatr Scand 2016; 134:207-24. [PMID: 27404479 DOI: 10.1111/acps.12619] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/09/2016] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Since the first study published in the Lancet in 1976, structural neuroimaging has been used in psychosis with the promise of imminent clinical utility. The actual impact of structural neuroimaging in psychosis is still unclear. METHOD We present here a critical review of studies involving structural magnetic resonance imaging techniques in patients with psychosis published between 1976 and 2015 in selected journals of relevance for the field. For each study, we extracted summary descriptive variables. Additionally, we qualitatively described the main structural findings of each article in summary notes and we employed a biomarker rating system based on quality of evidence (scored 1-4) and effect size (scored 1-4). RESULTS Eighty studies meeting the inclusion criteria were retrieved. The number of studies increased over time, reflecting an increased structural imaging research in psychosis. However, quality of evidence was generally impaired by small samples and unclear biomarker definitions. In particular, there was little attempt of replication of previous findings. The effect sizes ranged from small to modest. No diagnostic or prognostic biomarker for clinical use was identified. CONCLUSIONS Structural neuroimaging in psychosis research has not yet delivered on the clinical applications that were envisioned.
Collapse
Affiliation(s)
- P Fusar-Poli
- Institute of Psychiatry Psychology Neuroscience, King's College London, London, UK.,OASIS Clinic, SLaM NHS Foundation Trust, London, UK
| | - A Meyer-Lindenberg
- Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
46
|
Barker V, Bois C, Neilson E, Johnstone EC, Owens DGC, Whalley HC, McIntosh AM, Lawrie SM. Childhood adversity and hippocampal and amygdala volumes in a population at familial high risk of schizophrenia. Schizophr Res 2016; 175:42-47. [PMID: 27179666 DOI: 10.1016/j.schres.2016.04.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 04/13/2016] [Accepted: 04/18/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND There is an established link between childhood adversity (CA) and schizophrenia. Hippocampus and amygdala abnormalities pre-date onset in those at high familial risk (fHR) of schizophrenia, but it is not clear whether these alterations are associated with CA in those at elevated risk of schizophrenia. METHODS We examined hippocampal and amygdala volumes in those at fHR who had been referred to a social worker or the Children's Panel compared to those who had not. RESULTS The right hippocampus and left amygdala were significantly smaller in those that had been referred to social work and Children's Panel. CONCLUSIONS Our findings suggest that CA can influence structural changes in the brain in a cohort at fHR of schizophrenia. These findings provide further evidence that while genetic factors contribute to the structural changes found in schizophrenia, environmental factors such as CA can have a lasting impact on specific brain regions.
Collapse
Affiliation(s)
- V Barker
- Division of Psychiatry, Centre for Brain Sciences, School of Clinical Sciences, University of Edinburgh, Royal Edinburgh Hospital, Morningside Park, Edinburgh EH10 5HF, United Kingdom; Royal Edinburgh Hospital, Morningside Park, Edinburgh EH10 5HF, United Kingdom.
| | - C Bois
- Division of Psychiatry, Centre for Brain Sciences, School of Clinical Sciences, University of Edinburgh, Royal Edinburgh Hospital, Morningside Park, Edinburgh EH10 5HF, United Kingdom
| | - E Neilson
- Division of Psychiatry, Centre for Brain Sciences, School of Clinical Sciences, University of Edinburgh, Royal Edinburgh Hospital, Morningside Park, Edinburgh EH10 5HF, United Kingdom
| | - E C Johnstone
- Division of Psychiatry, Centre for Brain Sciences, School of Clinical Sciences, University of Edinburgh, Royal Edinburgh Hospital, Morningside Park, Edinburgh EH10 5HF, United Kingdom
| | - D G C Owens
- Division of Psychiatry, Centre for Brain Sciences, School of Clinical Sciences, University of Edinburgh, Royal Edinburgh Hospital, Morningside Park, Edinburgh EH10 5HF, United Kingdom; Royal Edinburgh Hospital, Morningside Park, Edinburgh EH10 5HF, United Kingdom
| | - H C Whalley
- Division of Psychiatry, Centre for Brain Sciences, School of Clinical Sciences, University of Edinburgh, Royal Edinburgh Hospital, Morningside Park, Edinburgh EH10 5HF, United Kingdom
| | - A M McIntosh
- Division of Psychiatry, Centre for Brain Sciences, School of Clinical Sciences, University of Edinburgh, Royal Edinburgh Hospital, Morningside Park, Edinburgh EH10 5HF, United Kingdom; Royal Edinburgh Hospital, Morningside Park, Edinburgh EH10 5HF, United Kingdom
| | - S M Lawrie
- Division of Psychiatry, Centre for Brain Sciences, School of Clinical Sciences, University of Edinburgh, Royal Edinburgh Hospital, Morningside Park, Edinburgh EH10 5HF, United Kingdom; Royal Edinburgh Hospital, Morningside Park, Edinburgh EH10 5HF, United Kingdom
| |
Collapse
|
47
|
Bron TI, Bijlenga D, Verduijn J, Penninx BWJH, Beekman ATF, Kooij JJS. Prevalence of ADHD symptoms across clinical stages of major depressive disorder. J Affect Disord 2016; 197:29-35. [PMID: 26970265 DOI: 10.1016/j.jad.2016.02.053] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 01/15/2016] [Accepted: 02/26/2016] [Indexed: 01/05/2023]
Abstract
BACKGROUND Depression and ADHD often co-occur in clinical samples. Depression severity may be linked to ADHD symptomatology. We therefore assessed ADHD symptoms across clinical stages of major depressive disorder (MDD). METHODS We used 4-year follow-up data of the Netherlands Study of Depression and Anxiety (September 2008 until April 2011), including healthy controls, groups with remitted and current MDD (N=2053; age range 21-69 years; 66.8% females). Probable ADHD was defined as having current ADHD symptoms on the Conners Adult ADHD Rating Scale and a positive score on childhood or early-adolescent ADHD indicators. We examined ADHD symptom rates across (i) those with and without lifetime MDD, (ii) clinical characteristics of MDD including severity, course and outcomes, (iii) clinical stages of MDD. RESULTS (i) The prevalence of ADHD symptoms was 0.4% in healthy controls, 5.7% in remitted MDD and 22.1% in current MDD (OR=4.5; 95% CI 3.1-6.5). (ii) ADHD symptom rates and odds were significantly increased among those with more severe depression (29.4%; OR=6.8; 95% CI 2.9-16.1), chronic depression (21.8%; OR=3.8; 95% CI 2.5-5.7), earlier age of onset of depressive symptoms (9.9%; OR=1.5; 95% CI 1.0-2.3), and comorbid anxiety disorders (29.0%; OR=3.4; 95% CI 2.0-5.7). (iii) ADHD symptom rates increased across clinical stages of MDD, up to 22.5% in chronic MDD. LIMITATIONS We used self-reports on ADHD symptoms. Also, clinical staging models have not yet been validated for mental disorders. CONCLUSIONS ADHD symptoms are very common among MDD patients, especially among those in recurrent and chronic stages of MDD. Considering ADHD may be an important step forward in improving the treatment of depression.
Collapse
Affiliation(s)
- Tannetje I Bron
- PsyQ Expertise Center Adult ADHD, The Hague, The Netherlands.
| | - Denise Bijlenga
- PsyQ Expertise Center Adult ADHD, The Hague, The Netherlands
| | - Judith Verduijn
- Department of Psychiatry and EMGO+Institute for Health and Care Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Brenda W J H Penninx
- Department of Psychiatry and EMGO+Institute for Health and Care Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Aartjan T F Beekman
- Department of Psychiatry and EMGO+Institute for Health and Care Research, VU University Medical Center, Amsterdam, The Netherlands
| | - J J Sandra Kooij
- PsyQ Expertise Center Adult ADHD, The Hague, The Netherlands; Department of Psychiatry and EMGO+Institute for Health and Care Research, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
48
|
Pina-Camacho L, Del Rey-Mejías Á, Janssen J, Bioque M, González-Pinto A, Arango C, Lobo A, Sarró S, Desco M, Sanjuan J, Lacalle-Aurioles M, Cuesta MJ, Saiz-Ruiz J, Bernardo M, Parellada M. Age at First Episode Modulates Diagnosis-Related Structural Brain Abnormalities in Psychosis. Schizophr Bull 2016; 42:344-57. [PMID: 26371339 PMCID: PMC4753597 DOI: 10.1093/schbul/sbv128] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Brain volume and thickness abnormalities have been reported in first-episode psychosis (FEP). However, it is unclear if and how they are modulated by brain developmental stage (and, therefore, by age at FEP as a proxy). This is a multicenter cross-sectional case-control brain magnetic resonance imaging (MRI) study. Patients with FEP (n = 196), 65.3% males, with a wide age at FEP span (12-35 y), and healthy controls (HC) (n = 157), matched for age, sex, and handedness, were scanned at 6 sites. Gray matter volume and thickness measurements were generated for several brain regions using FreeSurfer software. The nonlinear relationship between age at scan (a proxy for age at FEP in patients) and volume and thickness measurements was explored in patients with schizophrenia spectrum disorders (SSD), affective psychoses (AFP), and HC. Earlier SSD cases (ie, FEP before 15-20 y) showed significant volume and thickness deficits in frontal lobe, volume deficits in temporal lobe, and volume enlargements in ventricular system and basal ganglia. First-episode AFP patients had smaller cingulate cortex volume and thicker temporal cortex only at early age at FEP (before 18-20 y). The AFP group also had age-constant (12-35-y age span) volume enlargements in the frontal and parietal lobe. Our study suggests that age at first episode modulates the structural brain abnormalities found in FEP patients in a nonlinear and diagnosis-dependent manner. Future MRI studies should take these results into account when interpreting samples with different ages at onset and diagnosis.
Collapse
Affiliation(s)
| | - Ángel Del Rey-Mejías
- Ciber del Area de Salud Mental (CIBERSAM), Spain;,Child and Adolescent Psychiatry Department, Hospital General Universitario Gregorio Marañón, School of Medicine, Universidad Complutense, IiSGM, Madrid, Spain;,Department of Methodology, School of Psychology, Universidad Complutense, Madrid, Spain
| | - Joost Janssen
- Ciber del Area de Salud Mental (CIBERSAM), Spain;,Child and Adolescent Psychiatry Department, Hospital General Universitario Gregorio Marañón, School of Medicine, Universidad Complutense, IiSGM, Madrid, Spain
| | - Miquel Bioque
- Ciber del Area de Salud Mental (CIBERSAM), Spain;,Barcelona Clínic Schizophrenia Unit, Neurosciences Institute, Hospital Clínic, Barcelona, Spain
| | - Ana González-Pinto
- Ciber del Area de Salud Mental (CIBERSAM), Spain;,Department of Psychiatry, Hospital Universitario de Álava (Sede Santiago), EHU/University of the Basque Country, Vitoria, Spain
| | - Celso Arango
- Ciber del Area de Salud Mental (CIBERSAM), Spain;,Child and Adolescent Psychiatry Department, Hospital General Universitario Gregorio Marañón, School of Medicine, Universidad Complutense, IiSGM, Madrid, Spain
| | - Antonio Lobo
- Ciber del Area de Salud Mental (CIBERSAM), Spain;,Department of Medicine and Psychiatry, Hospital Clínico, University of Zaragoza, IIS Aragón, Zaragoza, Spain
| | - Salvador Sarró
- Ciber del Area de Salud Mental (CIBERSAM), Spain;,FIDMAG Hermanas Hospitalarias,Barcelona, Spain
| | - Manuel Desco
- Ciber del Area de Salud Mental (CIBERSAM), Spain;,Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid, Madrid, Spain;,Medicina y Cirugía Experimental, Hospital General Universitario Gregorio Marañón, IiSGM, Madrid, Spain
| | - Julio Sanjuan
- Ciber del Area de Salud Mental (CIBERSAM), Spain;,Department of Psychiatry, Hospital Clinic, University of Valencia, INCLIVA, Valencia, Spain
| | - Maria Lacalle-Aurioles
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid, Madrid, Spain;,Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada
| | - Manuel J. Cuesta
- Department of Psychiatry, Complejo Hospitalario de Navarra, IdiSNA, Pamplona, Spain
| | - Jerónimo Saiz-Ruiz
- Ciber del Area de Salud Mental (CIBERSAM), Spain;,Department of Psychiatry, Hospital Ramon y Cajal, IRYCIS, Universidad de Alcala, Madrid, Spain
| | - Miguel Bernardo
- Ciber del Area de Salud Mental (CIBERSAM), Spain;,Barcelona Clínic Schizophrenia Unit, Neurosciences Institute, Hospital Clínic, Barcelona, Spain;,Department of Psychiatry and Clinical Psychobiology, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Mara Parellada
- Ciber del Area de Salud Mental (CIBERSAM), Spain;,Child and Adolescent Psychiatry Department, Hospital General Universitario Gregorio Marañón, School of Medicine, Universidad Complutense, IiSGM, Madrid, Spain
| | | |
Collapse
|
49
|
Flinkkilä E, Keski-Rahkonen A, Marttunen M, Raevuori A. Prenatal Inflammation, Infections and Mental Disorders. Psychopathology 2016; 49:317-333. [PMID: 27529630 DOI: 10.1159/000448054] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/25/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND The objective of this descriptive review is to summarize the current scientific evidence on the effect of prenatal exposure to maternal infection and immune response on the offspring's risk for mental disorders (schizophrenia spectrum disorders, autism spectrum disorders, attention-deficit hyperactivity disorder, anorexia nervosa, and mood disorders). SAMPLING AND METHODS Studies were searched from PubMed and Ovid MEDLINE (R) databases with the following keywords: 'prenatal exposure delayed effects' and 'infection', and 'inflammation' and 'mental disorders'. A comprehensive manual search, including a search from the reference list of included articles, was also performed. RESULTS Prenatal exposure to maternal influenza appears to increase the offspring's risk for schizophrenia spectrum disorders, although studies are not fully consistent. Prenatal exposure to maternal fever and elevated cytokine levels seems to be related to the elevated risk for autism spectrum disorders in the offspring. No replicated findings of an association between prenatal infectious exposure and other mental disorders exist. CONCLUSIONS Evidence for the effect of prenatal exposure to maternal infection on risk for mental disorders exists for several different infections, suggesting that common factors occurring in infections (e.g. elevated cytokine levels and fever), rather than the infectious agent itself, might be the underlying factor in increasing the risk for mental disorders. Additionally, it is likely that genetic liability to these disorders operates in conjunction with the exposure. Therefore, genetically sensitive study designs are needed in future studies.
Collapse
Affiliation(s)
- Eerika Flinkkilä
- Clinicum, Department of Public Health, University of Helsinki, Helsinki, Finland
| | | | | | | |
Collapse
|
50
|
Bulayeva K, Lesch KP, Bulayev O, Walsh C, Glatt S, Gurgenova F, Omarova J, Berdichevets I, Thompson PM. Genomic structural variants are linked with intellectual disability. J Neural Transm (Vienna) 2015; 122:1289-301. [PMID: 25626716 PMCID: PMC4517986 DOI: 10.1007/s00702-015-1366-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 01/11/2015] [Indexed: 10/24/2022]
Abstract
Mutations in more than 500 genes have been associated with intellectual disability (ID) and related disorders of cognitive function, such as autism and schizophrenia. Here we aimed to unravel the molecular epidemiology of non-specific ID in a genetic isolate using a combination of population and molecular genetic approaches. A large multigenerational pedigree was ascertained within a Dagestan Genetic Heritage research program in a genetic isolate of indigenous ethnics. Clinical characteristics of the affected members were based on combining diagnoses from regional psychiatric hospitals with our own clinical assessment, using a Russian translation of the structured psychiatric interviews, the Diagnostic Interview for Genetic Studies and the Family Interview for Genetic Studies, based on DSM-IV criteria. Weber/CHLC 9.0 STRs set was used for multipoint parametric linkage analyses (Simwalk2.91). Next, we checked CNVs and LOH (based on Affymetrix SNP 5.0 data) in the linked with ID genomic regions with the aim to identify candidate genes associated with mutations in linked regions. The number of statistically significant (p ≤ 0.05) suggestive linkage peaks with 1.3 < LOD < 3.0 we detected in a total of 10 genomic regions: 1q41, 2p25.3-p24.2, 3p13-p12.1, 4q13.3, 10p11, 11q23, 12q24.22-q24.31, 17q24.2-q25.1, 21q22.13 and 22q12.3-q13.1. Three significant linkage signals with LOD >3 were obtained at 2p25.3-p24.2 under the dominant model, with a peak at 21 cM flanked by loci D2S2976 and D2S2952; at 12q24.22-q24.31 under the recessive model, with a peak at -120 cM flanked by marker D12S2070 and D12S395 and at 22q12.3 under the dominant model, with a peak at 32 cM flanked by marker D22S683 and D22S445. After a set of genes had been designated as possible candidates in these specific chromosomal regions,we conducted an exploratory search for LOH and CNV based on microarray data to detect structural genomic variants within five ID-linked regions with LOD scores between 2.0 and 3.9. In these selected regions we obtained 173 ROH segments and 98 CN segments. Further analysis of region 2p25.3-p24.2 revealed deletions within genes encoding MYTL, SNTG2 and TPO among five of 21 affected cases at 2p25.3-p24.2. In the ID-linked region at 12q24.22-12q24.31 19 out of 21 ID cases carried segmental CNV and 20 of 21 them displayed ROH segments with mean size lengths for ID cases 2512 kb (500-6,472 kb) and for healthy control 682 kb (531-986 kb), including the genes MED13L, HRK, FBXW8, TESC, CDK2AP1 and SBNO1. Seven of 21 affected pedigree members displayed segmental deletions at 22q12.3 that includes the gene LARGE. Eight affected pedigree members carried ROH segments and 6 CN segments at 10p11.23-p11.21 containing the genes ZEB1, c10orf68 and EPC1. Our linkage and structural genomic variation analyses in a remote highland genetic isolate with aggregation of ID demonstrated that even highly isolated single kindred ID has oligo/polygenic pathogenesis. The results obtained implicate 10 genomic regions linked with ID that contain some of previously reported candidate genes, including HRK, FBXW8, TESC, CDK2AP1 and SBNO1 at 12q24 that were shown in recent studies as associated with brain measures derived from MRI scans.
Collapse
Affiliation(s)
- Kazima Bulayeva
- N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkin str. 3, Moscow, 119991, Russia,
| | | | | | | | | | | | | | | | | |
Collapse
|