1
|
Mechanick JI, Butsch WS, Christensen SM, Hamdy O, Li Z, Prado CM, Heymsfield SB. Strategies for minimizing muscle loss during use of incretin-mimetic drugs for treatment of obesity. Obes Rev 2025; 26:e13841. [PMID: 39295512 PMCID: PMC11611443 DOI: 10.1111/obr.13841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 08/16/2024] [Accepted: 08/22/2024] [Indexed: 09/21/2024]
Abstract
The rapid and widespread clinical adoption of highly effective incretin-mimetic drugs (IMDs), particularly semaglutide and tirzepatide, for the treatment of obesity has outpaced the updating of clinical practice guidelines. Consequently, many patients may be at risk for adverse effects and uncertain long-term outcomes related to the use of these drugs. Of emerging concern is the loss of skeletal muscle mass and function that can accompany rapid substantial weight reduction; such losses can lead to reduced functional and metabolic health, weight cycling, compromised quality of life, and other adverse outcomes. Available evidence suggests that clinical trial participants receiving IMDs for the treatment of obesity lost 10% or more of their muscle mass during the 68- to 72-week interventions, approximately equivalent to 20 years of age-related muscle loss. The ability to maintain muscle mass during caloric restriction-induced weight reduction is influenced by two key factors: nutrition and physical exercise. Nutrition therapy should ensure adequate intake and absorption of high-quality protein and micronutrients, which may require the use of oral nutritional supplements. Additionally, concurrent physical activity, especially resistance training, has been shown to effectively minimize loss of muscle mass and function during weight reduction therapy. All patients receiving IMDs for obesity should participate in comprehensive treatment programs emphasizing adequate protein and micronutrient intakes, as well as resistance training, to preserve muscle mass and function, maximize the benefit of IMD therapy, and minimize potential risks.
Collapse
Affiliation(s)
- Jeffrey I. Mechanick
- Marie‐Josée and Henry R. Kravis Center for Clinical Cardiovascular Health at Mount Sinai Fuster Heart Hospital and the Division of Endocrinology, Diabetes, and Bone DiseaseIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - W. Scott Butsch
- Bariatric and Metabolic InstituteCleveland ClinicClevelandOhioUSA
| | | | - Osama Hamdy
- Harvard Medical School and Joslin Diabetes CenterBostonMassachusettsUSA
| | - Zhaoping Li
- Center for Human NutritionDavid Geffen School of Medicine, University of California, Los AngelesLos AngelesCaliforniaUSA
| | - Carla M. Prado
- Department of Agricultural, Food and Nutritional ScienceUniversity of AlbertaEdmontonCanada
| | - Steven B. Heymsfield
- Pennington Biomedical Research Center of the Louisiana State University SystemBaton RougeLouisianaUSA
| |
Collapse
|
2
|
Jamialahmadi T, Eid AH, Gadde KM, Almahmeed W, Kroh M, Al Zein M, Sahebkar A. Beyond fat: Does semaglutide affect lean mass? Clin Nutr 2025; 44:104-108. [PMID: 39647240 DOI: 10.1016/j.clnu.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/10/2024]
Abstract
This opinion paper aims to discuss the influence of semaglutide, a glucagon-like peptide-1 receptor agonist (GLP-1RA), on lean mass beyond its impact on weight loss. Although significant weight loss is achieved with semaglutide, the impact of this drug on lean mass remains controversial. Several investigations have demonstrated that semaglutide-induced weight loss is linked to decreases in lean mass as well as fat mass; on the other hand, the ratio of lean mass to total body mass rises. Nevertheless, larger clinical trials have reported converse findings and significant reductions in lean mass following treatment with semaglutide. This disparity in research findings emphasizes the necessity for additional studies on this subject because semaglutide use is rising quickly.
Collapse
Affiliation(s)
- Tannaz Jamialahmadi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Kishore M Gadde
- Department of Surgery, University of California Irvine Medical Center, Orange, CA, USA
| | - Wael Almahmeed
- Heart and Vascular Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Matthew Kroh
- Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Mohammad Al Zein
- Faculty of Medical Sciences, Lebanese University, Hadath, Beirut, Lebanon
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Shay JES, Yilmaz ÖH. Dietary and metabolic effects on intestinal stem cells in health and disease. Nat Rev Gastroenterol Hepatol 2025; 22:23-38. [PMID: 39358589 DOI: 10.1038/s41575-024-00980-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/05/2024] [Indexed: 10/04/2024]
Abstract
Diet and nutritional metabolites exhibit wide-ranging effects on health and disease partly by altering tissue composition and function. With rapidly rising rates of obesity, there is particular interest in how obesogenic diets influence tissue homeostasis and risk of tumorigenesis; epidemiologically, these diets have a positive correlation with various cancers, including colorectal cancer. The gastrointestinal tract is a highly specialized, continuously renewing tissue with a fundamental role in nutrient uptake and is, in turn, influenced by diet composition and host metabolic state. Intestinal stem cells are found at the base of the intestinal crypt and can generate all mature lineages that comprise the intestinal epithelium and are uniquely influenced by host diet, metabolic by-products and energy dynamics. Similarly, tumour growth and metabolism can also be shaped by nutrient availability and host diet. In this Review, we discuss how different diets and metabolic changes influence intestinal stem cells in homeostatic and pathological conditions, as well as tumorigenesis. We also discuss how dietary changes and composition affect the intestinal epithelium and its surrounding microenvironment.
Collapse
Affiliation(s)
- Jessica E S Shay
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA, USA
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ömer H Yilmaz
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA.
| |
Collapse
|
4
|
Beavers KM, Cortes TM, Foy CM, Dinkla L, Reyes San Martin F, Ard JD, Serra MC, Beavers DP. GLP1Ra-based therapies and DXA-acquired musculoskeletal health outcomes: a focused meta-analysis of placebo-controlled trials. Obesity (Silver Spring) 2024. [PMID: 39710882 DOI: 10.1002/oby.24172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 12/24/2024]
Abstract
OBJECTIVE The objective of this study was to evaluate the effect of glucagon-like peptide-1 receptor agonist (GLP1Ra)-based therapies on change in dual-energy x-ray absorptiometry (DXA)-acquired lean mass (LM) or bone mineral density (BMD). METHODS PubMed and Web of Science were searched from database inception through January 29, 2024, for randomized, placebo-controlled trials reporting on change in DXA-acquired LM or BMD measures associated with 12+ weeks of GLP1Ra-based treatment. Of 2618 articles, 9 trials met prespecified search criteria, with 7 reporting on change in total body LM and 2 reporting on change in BMD. For LM outcomes, a hierarchical Bayesian model was used to estimate treatment mean differences. BMD outcomes were described narratively. RESULTS LM was reported in a total of 659 participants (GLP1Ra-based therapies: n = 419; placebo: n = 240), with follow-up times ranging from mean (SD) 12 to 72 (33.5) weeks. At baseline, participants were aged mean (SD) 41.7 (7.6) years, and 75% were female, with BMI values ranging from 30 to 43 kg/m2. Compared with placebo, GLP1Ra-based treatment was associated with significantly reduced total body weight (-6.9 kg; 95% credible interval [CI]: -10.7 to -3.0). GLP1Ra-based treatment was also associated with significantly reduced LM (-1.9 kg; 95% CI: -3.5 to -0.2). CONCLUSIONS Approximately 30% of body weight lost with GLP1Ra-based therapy is LM. More data are needed assessing BMD outcomes.
Collapse
Affiliation(s)
- Kristen M Beavers
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Department of Health and Exercise Science, Wake Forest University, Winston-Salem, North Carolina, USA
| | - Tiffany M Cortes
- Division of Endocrinology, Department of Medicine, UT Health San Antonio, San Antonio, Texas, USA
- Sam and Ann Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, Texas, USA
- San Antonio Geriatric Research Education and Clinical Center (GRECC), South Texas Veterans Health Care System, San Antonio, Texas, USA
| | - Colleen M Foy
- Zachary Smith Reynolds Library, Wake Forest University, Winston-Salem, North Carolina, USA
| | - Lauren Dinkla
- Department of Health and Exercise Science, Wake Forest University, Winston-Salem, North Carolina, USA
| | | | - Jamy D Ard
- Department of Epidemiology and Prevention, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Monica C Serra
- Sam and Ann Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, Texas, USA
- San Antonio Geriatric Research Education and Clinical Center (GRECC), South Texas Veterans Health Care System, San Antonio, Texas, USA
- Division of Geriatrics, Gerontology & Palliative Medicine, UT Health San Antonio, San Antonio, Texas, USA
| | - Daniel P Beavers
- Department of Statistical Sciences, Wake Forest University, Winston-Salem, North Carolina, USA
| |
Collapse
|
5
|
Dubin RL, Heymsfield SB, Ravussin E, Greenway FL. Glucagon-like peptide-1 receptor agonist-based agents and weight loss composition: Filling the gaps. Diabetes Obes Metab 2024; 26:5503-5518. [PMID: 39344838 DOI: 10.1111/dom.15913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 10/01/2024]
Abstract
Excess adiposity is at the root of type 2 diabetes (T2D). Glucagon-like peptide-1 receptor agonists (GLP-1RAs) have emerged as first-line treatments for T2D based on significant weight loss results. The composition of weight loss using most diets consists of <25% fat-free mass (FFM) loss, with the remainder from fat stores. Higher amounts of weight loss (achieved with metabolic bariatric surgery) result in greater reductions in FFM. Our aim was to assess the impact that GLP-1RA-based treatments have on FFM. We analysed studies that reported changes in FFM with the following agents: exenatide, liraglutide, semaglutide, and the dual incretin receptor agonist tirzepatide. We performed an analysis of various weight loss interventions to provide a reference for expected changes in FFM. We evaluated studies using dual-energy X-ray absorptiometry (DXA) for measuring FFM (a crude surrogate for skeletal muscle). In evaluating the composition of weight loss, the percentage lost as fat-free mass (%FFML) was equal to ΔFFM/total weight change. The %FFML using GLP-1RA-based agents was between 20% and 40%. In the 28 clinical trials evaluated, the proportion of FFM loss was highly variable, but the majority reported %FFML exceeding 25%. Our review was limited to small substudies and the use of DXA, which does not measure skeletal muscle mass directly. Since FFM contains a variable amount of muscle (approximately 55%), this indirect measure may explain the heterogeneity in the data. Assessing quantity and quality of skeletal muscle using advanced imaging (magnetic resonance imaging) with functional testing will help fill the gaps in our current understanding.
Collapse
Affiliation(s)
- Robert L Dubin
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | | | - Eric Ravussin
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Frank L Greenway
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| |
Collapse
|
6
|
Novikoff A, Grandl G, Liu X, D. Müller T. Why are we still in need for novel anti-obesity medications? THE LANCET REGIONAL HEALTH. EUROPE 2024; 47:101098. [PMID: 39726721 PMCID: PMC11670685 DOI: 10.1016/j.lanepe.2024.101098] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 12/28/2024]
Abstract
From the pioneering moment in 1987 when the insulinotropic effect of glucagon-like peptide 1 (GLP-1) was first demonstrated in humans, to today's pharmaceutical gold rush for GLP-1-based treatments of obesity, the journey of GLP-1 pharmacology has been nothing short of extraordinary. The sequential conceptual developments of long-acting GLP-1 receptor (GLP-1R) mono-agonists, GLP-1R/glucose-dependent insulinotropic polypeptide receptor (GIPR) dual-agonists, and GLP-1R/GIPR/glucagon receptor (GcgR) triple agonists, have led to profound body weight-lowering capacities, with benefits that extend past obesity and towards obesity-associated diseases. The GLP-1R/GIPR dual-agonist tirzepatide has demonstrated a remarkable 23% body weight reduction in individuals with obesity over 72 weeks, eclipsing the average result achieved by certain types of bariatric surgery. Meanwhile, the GLP-1R/GIPR/GcgR triple-agonist retatrutide achieves similar body weight loss (∼25%) in just two-thirds of the time, potentially surpassing the efficacy of Roux-en-Y gastric bypass. These remarkable achievements rightfully raise the question whether and why there is still need for novel anti-obesity medications (AOMs) in the future.
Collapse
Affiliation(s)
- Aaron Novikoff
- Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Gerald Grandl
- Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Xue Liu
- Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Timo D. Müller
- Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University Munich, Germany
| |
Collapse
|
7
|
Garvey WT. Future Medications for Obesity and Clinical Implications. Diabetes Spectr 2024; 37:325-334. [PMID: 39649698 PMCID: PMC11623045 DOI: 10.2337/dsi24-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Semaglutide and tirzepatide have recently been approved for obesity and found to achieve ≥15% weight loss in clinical trials. These drugs have been referred to as second-generation medications because the unprecedented degree of weight loss they afford is sufficient to treat or prevent a broad array of obesity complications and related diseases. Many other medications are in development based on the actions of nutrient-regulated hormones (NRHs), including mono-, dual-, and triple-receptor agonists/antagonists for glucagon-like peptide 1, glucose-dependent insulinotropic polypeptide, amylin, peptide tyrosine-tyrosine, and glucagon. Clinical trial evidence is accumulating that these medications ameliorate multiple biomechanical, metabolic, and vascular complications of obesity. These tools enable a comprehensive complications-centric approach to care within the contextual framework of the diagnostic term adiposity-based chronic disease (ABCD). The potential to reduce patient suffering and the huge social burden of ABCD is profound. The current era of drug development based on NRHs could represent a landmark in the history of medicine provided that societies ensure access to these medications for the patients who need them.
Collapse
Affiliation(s)
- W. Timothy Garvey
- Department of Nutrition Sciences and the UAB Diabetes Research Center, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
8
|
Ni D, Kokkinos P, Nylen ES. Glucagon-Like Peptide-1 Receptor Agonists and Sodium Glucose Cotransporter-2 Inhibitors and Cardiorespiratory Fitness Interaction. Mil Med 2024; 189:2369-2373. [PMID: 38870042 DOI: 10.1093/milmed/usae311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/13/2024] [Accepted: 06/04/2024] [Indexed: 06/15/2024] Open
Abstract
INTRODUCTION Cardiorespiratory fitness (CRF) is a stronger predictor of mortality than traditional risk factors and is a neglected vital sign of health. Enhanced fitness is a cornerstone in diabetes management and is most often delivered concurrently with pharmacological agents, which can have an opposing impact, as has been reported with metformin. Considering the rapid evolution of diabetes medications with improved cardiovascular outcomes, such as glucagon-like peptide-1 receptor agonists and sodium glucose cotransporter-2 inhibitors, it is of importance to consider the influence of these vis-a-vis effects on CRF. MATERIALS AND METHODS Combining the words glucagon-like peptide-1 receptor agonists and sodium glucose cotransporter-2 inhibitors with cardiorespiratory fitness, an online search was done using PubMed, Embase, Scopus, Web of Science, Scientific Electronic Library Online, and Cochrane. RESULTS There were only a few randomized controlled studies that included CRF, and the results were mostly neutral. A handful of smaller studies detected improved CRF using sodium glucose cotransporter-2 inhibitors in patients with congestive heart failure. CONCLUSIONS Since CRF is a superior prognosticator for cardiovascular outcomes and both medications can cause lean muscle mass loss, the current review highlights the paucity of relevant interactive analysis.
Collapse
Affiliation(s)
- David Ni
- Department of Endocrinology, VAMC, Washington, DC 20422, USA
| | - Peter Kokkinos
- Department of Cardiology, VAMC, Washington, DC 20422, USA
- Department of Kinesiology and Health, School of Arts and Sciences, Rutgers University, Newark, NJ 07103, USA
- Department of Kinesiology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Eric S Nylen
- Department of Endocrinology, VAMC, Washington, DC 20422, USA
| |
Collapse
|
9
|
Mendes FC, Garcia-Larsen V, Moreira A. Obesity and Asthma: Implementing a Treatable Trait Care Model. Clin Exp Allergy 2024; 54:881-894. [PMID: 38938020 DOI: 10.1111/cea.14520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/29/2024]
Abstract
Recognition of obesity as a treatable trait of asthma, impacting its development, clinical presentation and management, is gaining widespread acceptance. Obesity is a significant risk factor and disease modifier for asthma, complicating treatment. Epidemiological evidence highlights that obese asthma correlates with poorer disease control, increased severity and persistence, compromised lung function and reduced quality of life. Various mechanisms contribute to the physiological and clinical complexities observed in individuals with obesity and asthma. These encompass different immune responses, including Type IVb, where T helper 2 cells are pivotal and driven by cytokines like interleukins 4, 5, 9 and 13, and Type IVc, characterised by T helper 17 cells and Type 3 innate lymphoid cells producing interleukin 17, which recruits neutrophils. Additionally, Type V involves immune response dysregulation with significant activation of T helper 1, 2 and 17 responses. Finally, Type VI is recognised as metabolic-induced immune dysregulation associated with obesity. Body mass index (BMI) stands out as a biomarker of a treatable trait in asthma, readily identifiable and targetable, with significant implications for disease management. There exists a notable gap in treatment options for individuals with obese asthma, where asthma management guidelines lack specificity. For example, there is currently no evidence supporting the use of incretin mimetics to improve asthma outcomes in asthmatic individuals without Type 2 diabetes mellitus (T2DM). In this review, we advocate for integrating BMI into asthma care models by establishing clear target BMI goals, promoting sustainable weight loss via healthy dietary choices and physical activity and implementing regular reassessment and referral as necessary.
Collapse
Affiliation(s)
- Francisca Castro Mendes
- EPIUnit-Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Laboratório Para a Investigação Integrativa e Translacional Em Saúde Populacional (ITR), Universidade do Porto, Porto, Portugal
- Basic and Clinical Immunology Unit, Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Vanessa Garcia-Larsen
- Program in Human Nutrition, Department of International Health, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, Maryland, USA
| | - André Moreira
- EPIUnit-Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Laboratório Para a Investigação Integrativa e Translacional Em Saúde Populacional (ITR), Universidade do Porto, Porto, Portugal
- Basic and Clinical Immunology Unit, Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
- Serviço de Imunoalergologia, Centro Hospitalar Universitário São João, Porto, Portugal
| |
Collapse
|
10
|
Žižka O, Haluzík M, Jude EB. Pharmacological Treatment of Obesity in Older Adults. Drugs Aging 2024; 41:881-896. [PMID: 39514148 PMCID: PMC11554829 DOI: 10.1007/s40266-024-01150-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2024] [Indexed: 11/16/2024]
Abstract
Obesity is a complex health issue with growing prevalence worldwide. It is also becoming more prevalent in the population of older adults (i.e., 65 years of age and older), affecting frequency and severity as well as other comorbidities, quality of life and consequently, life expectancy. In this article we review currently available data on pharmacotherapy of obesity in the population of older adults and its role in obesity management. Even though there is growing evidence, in particular in the general population, of favourable efficacy and safety profiles of glucagon-like peptide-1 (GLP-1) receptor agonists liraglutide and semaglutide, and recently dual GLP-1 and glucose-dependent insulinotropic polypeptide (GIP) agonist tirzepatide, concise guidelines for older adults are not available to this day. We further discuss specific approaches to frequently represented phenotype of obesity in older adults, in particular sarcopenic obesity and rationale when to treat and how. In older adults with obesity there is a need for more drug trials focusing not only on weight loss, but also on geriatric endpoints including muscle mass preservation, bone quality and favourable fat distribution changes to get enough data for evidence-based recommendation on obesity treatment in this growing sub-population.
Collapse
Affiliation(s)
- Ondřej Žižka
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czechia
- First Faculty of Medicine, Charles University, Prague, Czechia
| | - Martin Haluzík
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czechia.
- First Faculty of Medicine, Charles University, Prague, Czechia.
| | - Edward B Jude
- Department of Diabetes and Endocrinology, Tameside and Glossop Integrated Care NHS Foundation Trust and University of Manchester, Ashton under Lyne, UK.
| |
Collapse
|
11
|
Drucker DJ. Efficacy and Safety of GLP-1 Medicines for Type 2 Diabetes and Obesity. Diabetes Care 2024; 47:1873-1888. [PMID: 38843460 DOI: 10.2337/dci24-0003] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/14/2024] [Indexed: 10/23/2024]
Abstract
The development of glucagon-like peptide 1 receptor agonists (GLP-1RA) for type 2 diabetes and obesity was followed by data establishing the cardiorenal benefits of GLP-1RA in select patient populations. In ongoing trials investigators are interrogating the efficacy of these agents for new indications, including metabolic liver disease, peripheral artery disease, Parkinson disease, and Alzheimer disease. The success of GLP-1-based medicines has spurred the development of new molecular entities and combinations with unique pharmacokinetic and pharmacodynamic profiles, exemplified by tirzepatide, a GIP-GLP-1 receptor coagonist. Simultaneously, investigational molecules such as maritide block the GIP and activate the GLP-1 receptor, whereas retatrutide and survodutide enable simultaneous activation of the glucagon and GLP-1 receptors. Here I highlight evidence establishing the efficacy of GLP-1-based medicines, while discussing data that inform safety, focusing on muscle strength, bone density and fractures, exercise capacity, gastrointestinal motility, retained gastric contents and anesthesia, pancreatic and biliary tract disorders, and the risk of cancer. Rapid progress in development of highly efficacious GLP-1 medicines, and anticipated differentiation of newer agents in subsets of metabolic disorders, will provide greater opportunities for use of personalized medicine approaches to improve the health of people living with cardiometabolic disorders.
Collapse
Affiliation(s)
- Daniel J Drucker
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Canada
| |
Collapse
|
12
|
Kaur M, Misra S. Bimagrumab: an investigational human monoclonal antibody against activin type II receptors for treating obesity. J Basic Clin Physiol Pharmacol 2024; 35:325-334. [PMID: 39385353 DOI: 10.1515/jbcpp-2024-0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024]
Abstract
Bimagrumab is a human monoclonal antibody that prevents activin type II receptors (ActRII) from functioning. This antibody has a higher affinity for muscle activin-2 receptors than natural ligands such as activin and myostatin, which act as negative muscle growth regulators. Blocking the activin receptor with bimagrumab could be a new pharmaceutical approach for managing patients with obesity and type 2 diabetes mellitus (T2DM). Bimagrumab has anabolic effects on skeletal muscle mass by preventing myostatin binding and other negative muscle growth regulators. Preclinical animal models have also shown that ActRII blockade promotes actions beyond skeletal muscle, including effects on brown adipose tissue (BAT) differentiation and activity. In a phase 2 randomized clinical trial, ActRII blockade with bimagrumab led to significant loss of total body fat mass (FM), lean mass (LM) gain, and metabolic improvements over 48 weeks in overweight or obese patients with type 2 diabetes. The trial involved [number of participants], and the results showed [specific findings]. Currently, Bimagrumab is being evaluated for its potential to treat muscle wasting, functional loss in hip fractures and sarcopenia, as well as obesity. However, it is essential to note that Bimagrumab also blocks the effects of other ActRII ligands, which play a role in the neurohormonal axes, pituitary, gonads, and adrenal glands. These observations suggest that bimagrumab might represent a new approach for treating patients with obesity and related metabolic disturbances.
Collapse
MESH Headings
- Humans
- Activin Receptors, Type II/antagonists & inhibitors
- Obesity/drug therapy
- Animals
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibodies, Monoclonal, Humanized/therapeutic use
- Diabetes Mellitus, Type 2/drug therapy
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal/therapeutic use
Collapse
Affiliation(s)
- Manmeet Kaur
- Department of Pharmacology, Kalpana Chawla Government Medical College, Karnal, India
| | - Saurav Misra
- Department of Pharmacology, Kalpana Chawla Government Medical College, Karnal, India
| |
Collapse
|
13
|
Ogunsakin AA, Olakunde TI, Fehintola MD, Malmberg I, Olakunde A, Dokun AO. Updates in pharmacotherapy of obesity. J Natl Med Assoc 2024; 116:576-587. [PMID: 39477762 DOI: 10.1016/j.jnma.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/11/2024] [Accepted: 09/25/2024] [Indexed: 12/11/2024]
Abstract
Obesity is now recognized as a chronic, progressive condition requiring early intervention and long-term management to achieve health benefits and improve metabolic risk factors. The main objective of obesity pharmacotherapy is weight loss and weight loss maintenance. There is increasing acceptance of anti-obesity medications as an adjunct to lifestyle modifications and/or surgery. In recent years there has been an evolution in management approach and pharmacologic options for treatment. As a result, there is increased focus on the efficacy and safety of these agents. We provide a historical perspective, review of recent studies on anti-obesity medication outcomes showing efficacy, potential side effects and promising therapies in development.
Collapse
Affiliation(s)
- Amie A Ogunsakin
- The university of Iowa, Division of endocrinology and metabolism.
| | - Tomilola I Olakunde
- Centre for Implementation and Translation Research (CTAIR), University of Nigeria College of Medicine
| | | | | | | | - Ayotunde O Dokun
- The university of Iowa, Division of endocrinology and metabolism
| |
Collapse
|
14
|
Holst JJ. GLP-1 physiology in obesity and development of incretin-based drugs for chronic weight management. Nat Metab 2024; 6:1866-1885. [PMID: 39160334 DOI: 10.1038/s42255-024-01113-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/17/2024] [Indexed: 08/21/2024]
Abstract
The introduction of the highly potent incretin receptor agonists semaglutide and tirzepatide has marked a new era in the treatment of type 2 diabetes and obesity. With normalisation of glycated haemoglobin levels and weight losses around 15-25%, therapeutic goals that were previously unrealistic are now within reach, and clinical trials have documented that these effects are associated with reduced risk of cardiovascular events and premature mortality. Here, I review this remarkable development from the earliest observations of glucose lowering and modest weight losses with native glucagon-like peptide (GLP)-1 and short acting compounds, to the recent development of highly active formulations and new molecules. I will classify these agents as GLP-1-based therapies in the understanding that these compounds or combinations may have actions on other receptors as well. The physiology of GLP-1 is discussed as well as its mechanisms of actions in obesity, in particular, the role of sensory afferents and GLP-1 receptors in the brain. I provide details regarding the development of GLP-1 receptor agonists for anti-obesity therapy and discuss the possible mechanism behind their beneficial effects on adverse cardiovascular events. Finally, I highlight new pharmacological developments, including oral agents, and discuss important questions regarding maintenance therapy.
Collapse
Affiliation(s)
- Jens Juul Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research and Department of Biomedical Sciences. Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
15
|
Ilonze OJ, Parsly Read-Button L, Cogswell R, Hackman A, Breathett K, Saltzman E, Vest AR. Controversies and Conundrums in Cardiac Cachexia: Key Questions About Wasting in Patients With HFrEF. JACC. HEART FAILURE 2024; 12:1645-1660. [PMID: 38727650 DOI: 10.1016/j.jchf.2024.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 02/06/2024] [Accepted: 03/12/2024] [Indexed: 10/11/2024]
Abstract
Cardiac cachexia is characterized by unintentional catabolic weight loss, decreased appetite, and inflammation and is common in patients with stage D (advanced) heart failure with reduced ejection fraction (HFrEF). Cardiac cachexia and related muscle-wasting syndromes are markers of, and a consequence of, the heart failure (HF) syndrome. Although many potential modalities for identifying cardiac cachexia exist, the optimal definition, diagnostic tools, and treatment options for cardiac cachexia remain unclear. Furthermore, it remains unclear whether attempts to reverse muscle wasting prior to advanced HF surgeries, such as left ventricular assist devices and heart transplantation, can improve outcomes. It is important that HF clinicians and dietitians are aware of the pathophysiology and mechanisms of muscle-wasting syndromes in patients with HF, to aid in the recognition and risk stratification of advanced HFrEF. Although the opportunities and rationale for attempting to address cardiac cachexia prior to advanced HF surgeries are uncertain, recent publications suggest that control of the neurohumoral syndrome of advanced HF may be important to permit the recovery of skeletal muscle mass.
Collapse
Affiliation(s)
- Onyedika J Ilonze
- Division of Cardiovascular Medicine, Krannert Cardiovascular Research Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | - Rebecca Cogswell
- Cardiovascular Division, University of Minnesota, Minneapolis, Minnesota, USA
| | - Amy Hackman
- Heart and Vascular Center, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Khadijah Breathett
- Division of Cardiovascular Medicine, Krannert Cardiovascular Research Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Edward Saltzman
- Friedman School of Nutrition Science and Policy at Tufts University, Boston, Massachusetts, USA
| | - Amanda R Vest
- CardioVascular Center, Tufts Medical Center, Boston, Massachusetts, USA.
| |
Collapse
|
16
|
Wetzlich B, Nyakundi BB, Yang J. Therapeutic applications and challenges in myostatin inhibition for enhanced skeletal muscle mass and functions. Mol Cell Biochem 2024:10.1007/s11010-024-05120-y. [PMID: 39340593 DOI: 10.1007/s11010-024-05120-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/07/2024] [Indexed: 09/30/2024]
Abstract
Myostatin, a potent negative regulator of skeletal muscle mass, has garnered significant attention as a therapeutic target for muscle dystrophies. Despite extensive research and promising preclinical results, clinical trials targeting myostatin inhibition in muscle dystrophies have failed to yield substantial improvements in muscle function or fitness in patients. This review details the mechanisms behind myostatin's function and the various inhibitors that have been tested preclinically and clinically. It also examines the challenges encountered in clinical translation, including issues with drug specificity, differences in serum myostatin concentrations between animal models and humans, and the necessity of neural input for functional improvements. Additionally, we explore promising avenues of research beyond muscle dystrophies, particularly in the treatment of metabolic syndromes and orthopedic disorders. Insights from these alternative applications suggest that myostatin inhibition may hold the potential for addressing a broader range of pathologies, providing new directions for therapeutic development.
Collapse
Affiliation(s)
- Brock Wetzlich
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Benard B Nyakundi
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Jinzeng Yang
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, 96822, USA.
| |
Collapse
|
17
|
Sauter ER, Agurs-Collins T. Mechanisms by Which Pharmacotherapy May Impact Cancer Risk among Individuals with Overweight and Obesity. Cancers (Basel) 2024; 16:3275. [PMID: 39409896 PMCID: PMC11475810 DOI: 10.3390/cancers16193275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 09/21/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Diets geared to reduce cancer risk in overweight and obese individuals focus on (1) caloric restriction (every day, some days, or most hours of each day); (2) changes in macronutrient intake; or (3) a combination of the prior two strategies. Diets generally fail because of nonadherence or due to limited sustained weight loss. This is in contrast to a diet supplemented with a weight loss medication, so long as the participant continues the medication or after bariatric surgery, in which adherence tends to be much higher. Among individuals who regain weight after surgery, weight loss medications are proving beneficial in maintaining weight loss. Both maximum and sustained weight loss are essential for all forms of effective metabolic improvement, including cancer risk reduction. The focus of this report is to assess the state of research on the consequence of pharmacotherapy use on weight loss and proposed weight loss-independent effects on subsequent cancer risk reduction, including the potential role of medication use in conjunction with metabolic (bariatric) surgery (MBS). Finally, we present Notices of Funding Opportunities (NOFOs) by the National Cancer Institute (NCI) to better understand the mechanism(s) that are driving the efficacy of pharmacotherapy in cancer risk reduction.
Collapse
Affiliation(s)
- Edward R. Sauter
- Divisions of Cancer Prevention, National Cancer Institute/National Institutes of Health (NIH), 9609 Medical Center Drive, Rockville, MD 20850, USA
| | - Tanya Agurs-Collins
- Cancer Control and Population Sciences, National Cancer Institute/National Institutes of Health (NIH), 9609 Medical Center Drive, Rockville, MD 20850, USA;
| |
Collapse
|
18
|
Angelidi AM, Stefanakis K, Chou SH, Valenzuela-Vallejo L, Dipla K, Boutari C, Ntoskas K, Tokmakidis P, Kokkinos A, Goulis DG, Papadaki HA, Mantzoros CS. Relative Energy Deficiency in Sport (REDs): Endocrine Manifestations, Pathophysiology and Treatments. Endocr Rev 2024; 45:676-708. [PMID: 38488566 DOI: 10.1210/endrev/bnae011] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Indexed: 09/18/2024]
Abstract
Research on lean, energy-deficient athletic and military cohorts has broadened the concept of the Female Athlete Triad into the Relative Energy Deficiency in Sport (REDs) syndrome. REDs represents a spectrum of abnormalities induced by low energy availability (LEA), which serves as the underlying cause of all symptoms described within the REDs concept, affecting exercising populations of either biological sex. Both short- and long-term LEA, in conjunction with other moderating factors, may produce a multitude of maladaptive changes that impair various physiological systems and adversely affect health, well-being, and sport performance. Consequently, the comprehensive definition of REDs encompasses a broad spectrum of physiological sequelae and adverse clinical outcomes related to LEA, such as neuroendocrine, bone, immune, and hematological effects, ultimately resulting in compromised health and performance. In this review, we discuss the pathophysiology of REDs and associated disorders. We briefly examine current treatment recommendations for REDs, primarily focusing on nonpharmacological, behavioral, and lifestyle modifications that target its underlying cause-energy deficit. We also discuss treatment approaches aimed at managing symptoms, such as menstrual dysfunction and bone stress injuries, and explore potential novel treatments that target the underlying physiology, emphasizing the roles of leptin and the activin-follistatin-inhibin axis, the roles of which remain to be fully elucidated, in the pathophysiology and management of REDs. In the near future, novel therapies leveraging our emerging understanding of molecules and physiological axes underlying energy availability or lack thereof may restore LEA-related abnormalities, thus preventing and/or treating REDs-related health complications, such as stress fractures, and improving performance.
Collapse
Affiliation(s)
- Angeliki M Angelidi
- Department of Medicine, Boston VA Healthcare System, Boston, MA 02115, USA
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Konstantinos Stefanakis
- Department of Medicine, Boston VA Healthcare System, Boston, MA 02115, USA
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- First Propaedeutic Department of Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
- Department of Internal Medicine, 251 Air Force General Hospital, Athens 11525, Greece
| | - Sharon H Chou
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital (BWH), Harvard Medical School, Boston, MA 02115, USA
| | - Laura Valenzuela-Vallejo
- Department of Medicine, Boston VA Healthcare System, Boston, MA 02115, USA
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Konstantina Dipla
- Exercise Physiology and Biochemistry Laboratory, Department of Sports Science at Serres, Aristotle University of Thessaloniki, Serres 62100, Greece
| | - Chrysoula Boutari
- Second Propaedeutic Department of Internal Medicine, Hippokration Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki 54642, Greece
| | - Konstantinos Ntoskas
- Department of Internal Medicine, 251 Air Force General Hospital, Athens 11525, Greece
| | - Panagiotis Tokmakidis
- First Propaedeutic Department of Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
- Department of Internal Medicine, 251 Air Force General Hospital, Athens 11525, Greece
| | - Alexander Kokkinos
- First Propaedeutic Department of Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Dimitrios G Goulis
- Unit of Reproductive Endocrinology, First Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Helen A Papadaki
- Department of Hematology, University Hospital of Heraklion, School of Medicine, University of Crete, Heraklion 71500, Greece
| | - Christos S Mantzoros
- Department of Medicine, Boston VA Healthcare System, Boston, MA 02115, USA
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital (BWH), Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
19
|
Xie Q, Ma G, Song Y. Therapeutic Strategy and Clinical Path of Facioscapulohumeral Muscular Dystrophy: Review of the Current Literature. APPLIED SCIENCES 2024; 14:8222. [DOI: 10.3390/app14188222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant genetic disease, which is caused by the mistaken expression of double homeobox protein 4 protein 4 (DUX4) in skeletal muscle. Patients with FSHD are usually accompanied by degenerative changes in the face, shoulders, and upper muscles, gradually accumulating in the lower limb muscles. The severity of patients is quite different, and most patients end up using wheelchairs and losing their self-care ability. At present, the exploration of treatment strategies for FSHD has shifted from relieving symptoms to gene therapy, which brings hope to the future of patients, but the current gene therapy is only in the clinical trial stage. Here, we conducted a comprehensive search of the relevant literature using the keywords FSHD, DUX4, and gene therapy methods including ASOs, CRISPR, and RNAi in the PubMed and Web of Science databases. We discussed the current advancements in treatment strategies for FSHD, as well as ongoing preclinical and clinical trials related to FSHD. Additionally, we evaluated the advantages and limitations of various gene therapy approaches targeting DUX4 aimed at correcting the underlying genetic defect.
Collapse
Affiliation(s)
- Qi Xie
- School of Sports Science, Beijing Sport University, Beijing 100084, China
| | - Guangmei Ma
- Department of Physical Education Teaching and Research, Xinjiang University, Wulumuqi 830046, China
| | - Yafeng Song
- China Institute of Sport and Health Science, Beijing Sport University, Beijing 100084, China
| |
Collapse
|
20
|
Kanbay M, Siriopol D, Copur S, Hasbal NB, Güldan M, Kalantar-Zadeh K, Garfias-Veitl T, von Haehling S. Effect of Bimagrumab on body composition: a systematic review and meta-analysis. Aging Clin Exp Res 2024; 36:185. [PMID: 39251484 PMCID: PMC11385021 DOI: 10.1007/s40520-024-02825-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/30/2024] [Indexed: 09/11/2024]
Abstract
BACKGROUND Sarcopenia, a condition marked by progressive muscle mass and function decline, presents significant challenges in aging populations and those with chronic illnesses. Current standard treatments such as dietary interventions and exercise programs are often unsustainable. There is increasing interest in pharmacological interventions like bimagrumab, a monoclonal antibody that promotes muscle hypertrophy by inhibiting muscle atrophy ligands. Bimagrumab has shown effectiveness in various conditions, including sarcopenia. AIM The primary objective of this meta-analysis is to evaluate the impact of bimagrumab treatment on both physical performance and body composition among patients diagnosed with sarcopenia. MATERIALS AND METHODS This meta-analysis follows the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. We systematically searched PubMed, Ovid/Medline, Web of Science, and the Cochrane Library databases up to June 2024 using appropriate Medical Subject Headings (MeSH) terms and keywords related to bimagrumab and sarcopenia. Eligible studies were randomized controlled trials (RCTs) that assessed the effects of bimagrumab on physical performance (e.g., muscle strength, gait speed, six-minute walk distance) and body composition (e.g., muscle volume, fat-free body mass, fat body mass) in patients with sarcopenia. Data extraction was independently performed by two reviewers using a standardized form, with discrepancies resolved through discussion or consultation with a third reviewer. RESULTS From an initial search yielding 46 records, we screened titles, abstracts, and full texts to include seven RCTs in our meta-analysis. Bimagrumab treatment significantly increased thigh muscle volume (mean difference [MD] 5.29%, 95% confidence interval [CI] 4.08% to 6.50%, P < 0.001; moderate heterogeneity χ2 = 6.41, I2 = 38%, P = 0.17) and fat-free body mass (MD 1.90 kg, 95% CI 1.57 kg to 2.23 kg, P < 0.001; moderate heterogeneity χ2 = 8.60, I2 = 30%, P = 0.20), while decreasing fat body mass compared to placebo (MD - 4.55 kg, 95% CI - 5.08 kg to - 4.01 kg, P < 0.001; substantial heterogeneity χ2 = 27.44, I2 = 89%, P < 0.001). However, no significant improvement was observed in muscle strength or physical performance measures such as gait speed and six-minute walk distance with bimagrumab treatment, except among participants with slower baseline walking speeds or distances. DISCUSSION AND CONCLUSION This meta-analysis provides valuable insights into the effects of bimagrumab on sarcopenic patients, highlighting its significant improvements in body composition parameters but limited impact on functional outcomes. The observed heterogeneity in outcomes across studies underscores the need for cautious interpretation, considering variations in study populations, treatment durations, and outcome assessments. While bimagrumab shows promise as a safe pharmacological intervention for enhancing muscle mass and reducing fat mass in sarcopenia, its minimal effects on muscle strength and broader physical performance suggest potential limitations in translating body composition improvements into functional gains. Further research is needed to clarify its long-term efficacy, optimal dosing regimens, and potential benefits for specific subgroups of sarcopenic patients.
Collapse
Affiliation(s)
- Mehmet Kanbay
- Division of Nephrology, Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Dimitrie Siriopol
- Department of Nephrology, "Saint John the New" County Hospital, Suceava, Romania
- "Stefan Cel Mare" University, Suceava, Romania
| | - Sidar Copur
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Nuri Baris Hasbal
- Division of Nephrology, Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Mustafa Güldan
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Kam Kalantar-Zadeh
- Division of Nephrology and Hypertension, Department of Medicine, UCLA Medical Center, Harbor, Torrance, CA, USA
- UCLA David Geffen School of Medicine, Los Angeles, CA, USA
- The Lundquist Institute for Biomedical Innovation at Harbor, UCLA Medical Center, Torrance, CA, USA
- Tibor Rubin VA Medical Center, Long Beach VA Healthcare System, Long Beach, CA, USA
| | - Tania Garfias-Veitl
- Department of Cardiology and Pneumology, University of Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Stephan von Haehling
- Department of Cardiology and Pneumology, University of Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany.
| |
Collapse
|
21
|
Dichtel LE, Kimball A, Bollinger B, Scarff G, Gerweck AV, Bredella MA, Haines MS. Higher serum myostatin levels are associated with lower insulin sensitivity in adults with overweight/obesity. Physiol Rep 2024; 12:e16169. [PMID: 39261976 PMCID: PMC11390341 DOI: 10.14814/phy2.16169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 09/13/2024] Open
Abstract
Myostatin inhibition improves insulin sensitivity in preclinical and clinical models; however, studies investigating the relationship between serum myostatin levels and insulin sensitivity are discrepant. Sensitive and specific myostatin LC-MS/MS assays are now available to accurately assess serum myostatin level in vivo. We sought to determine whether higher serum myostatin levels are independently associated with lower insulin sensitivity in adults with overweight/obesity. Participants included 74 adults, 20-65 years old, BMI ≥25 kg/m2 without type 2 diabetes. Appendicular lean mass (ALM) was measured by dual-energy x-ray absorptiometry; visceral adipose tissue (VAT) was measured by computed tomography. Main outcome measures were serum myostatin levels (LC-MS/MS) and insulin sensitivity (Matsuda index). Mean age was 48 ± 12 years, and BMI was 33.1 ± 5.6 kg/m2 (mean ± SD). Men had higher mean serum myostatin levels versus women (8.3 ± 1.9 vs. 7.2 ± 1.9 ng/mL, p = 0.01) and higher serum myostatin levels were associated with higher ALM (R = 0.34, p = 0.003). Higher serum myostatin levels were associated with lower Matsuda index (R = -0.44, p = 0.0004), which remained significant after controlling for BMI, VAT, ALM, and sex. In conclusion, higher serum myostatin levels are independently associated with lower insulin sensitivity in adults with overweight/obesity and may be a marker of or play a mechanistic role in the development of insulin resistance.
Collapse
Affiliation(s)
- Laura E. Dichtel
- Neuroendocrine Unit, Department of MedicineMassachusetts General HospitalBostonMassachusettsUSA
- Harvard Medical SchoolBostonMassachusettsUSA
| | - Allison Kimball
- Neuroendocrine Unit, Department of MedicineMassachusetts General HospitalBostonMassachusettsUSA
- Harvard Medical SchoolBostonMassachusettsUSA
| | - Bryan Bollinger
- Neuroendocrine Unit, Department of MedicineMassachusetts General HospitalBostonMassachusettsUSA
| | - Geetanjali Scarff
- Neuroendocrine Unit, Department of MedicineMassachusetts General HospitalBostonMassachusettsUSA
| | - Anu V. Gerweck
- Neuroendocrine Unit, Department of MedicineMassachusetts General HospitalBostonMassachusettsUSA
| | - Miriam A. Bredella
- Harvard Medical SchoolBostonMassachusettsUSA
- Department of RadiologyMassachusetts General HospitalBostonMassachusettsUSA
| | - Melanie S. Haines
- Neuroendocrine Unit, Department of MedicineMassachusetts General HospitalBostonMassachusettsUSA
- Harvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
22
|
Dash S. Opportunities to optimize lifestyle interventions in combination with glucagon-like peptide-1-based therapy. Diabetes Obes Metab 2024; 26 Suppl 4:3-15. [PMID: 39157881 DOI: 10.1111/dom.15829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/28/2024] [Accepted: 07/10/2024] [Indexed: 08/20/2024]
Abstract
Obesity is a chronic multi-system disease and major driver of type 2 diabetes and cardiometabolic disease. Nutritional interventions form the cornerstone of obesity and type 2 diabetes management. Some interventions such as Mediterranean diet can reduce incident cardiovascular disease, probably independently of weight loss. Weight loss of 5% or greater can improve many adiposity-related comorbidities. Although this can be achieved with lifestyle intervention, it is often difficult to sustain in the longer term due to adaptive endocrine changes. In recent years glucagon-like-peptide-1 receptor agonists (GLP-1RAs) have emerged as effective treatments for both type 2 diabetes and obesity. Newer GLP-1RAs can achieve average weight loss of 15% or greater and improve cardiometabolic health. There is heterogeneity in the weight loss response to GLP-1RAs, with a substantial number of patients unable to achieve 5% or greater weight. Weight loss, on average, is lower in older adults, male patients and people with type 2 diabetes. Mechanistic studies are needed to understand the aetiology of this variable response. Gastrointestinal side effects leading to medication discontinuation are a concern with GLP-1RA treatment, based on real-world data. With weight loss of 20% or higher with newer GLP-1RAs, nutritional deficiency and sarcopenia are also potential concerns. Lifestyle interventions that may potentially mitigate the side effects of GLP-1RA treatment and enhance weight loss are discussed here. The efficacy of such interventions awaits confirmation with well-designed randomized controlled trials.
Collapse
Affiliation(s)
- Satya Dash
- Division of Endocrinology, University Health Network & University of Toronto, Toronto General Hospital, Toronto, Ontario, Canada
| |
Collapse
|
23
|
Neeland IJ, Linge J, Birkenfeld AL. Changes in lean body mass with glucagon-like peptide-1-based therapies and mitigation strategies. Diabetes Obes Metab 2024; 26 Suppl 4:16-27. [PMID: 38937282 DOI: 10.1111/dom.15728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/29/2024]
Abstract
Weight loss induced by glucagon-like peptide-1 receptor agonists (GLP-1RAs) and dual glucagon-like peptide-1 receptor (GLP-1R)/glucose-dependent insulinotropic polypeptide receptor agonists is coming closer to the magnitudes achieved with surgery. However, with greater weight loss there is concern about potential side effects on muscle quantity (mass), health and function. There is heterogeneity in the reported effects of GLP-1-based therapies on lean mass changes in clinical trials: in some studies, reductions in lean mass range between 40% and 60% as a proportion of total weight lost, while other studies show lean mass reductions of approximately 15% or less of total weight lost. There are several potential reasons underlying this heterogeneity, including population, drug-specific/molecular, and comorbidity effects. Furthermore, changes in lean mass may not always reflect changes in muscle mass as the former measure includes not only muscle but also organs, bone, fluids, and water in fat tissue. Based on contemporary evidence with the addition of magnetic resonance imaging-based studies, skeletal muscle changes with GLP-1RA treatments appear to be adaptive: reductions in muscle volume seem to be commensurate with what is expected given ageing, disease status, and weight loss achieved, and the improvement in insulin sensitivity and muscle fat infiltration likely contributes to an adaptive process with improved muscle quality, lowering the probability for loss in strength and function. Nevertheless, factors such as older age and severity of disease may influence the selection of appropriate candidates for these therapies due to risk of sarcopenia. To further improve muscle health during weight loss, several pharmacological treatments to maintain or improve muscle mass designed in combination with GLP-1-based therapies are under development. Future research on GLP-1-based and other therapies designed for weight loss should focus on more accurate and meaningful assessments of muscle mass, composition, as well as function, mobility or strength, to better define their impact on muscle health for the substantial number of patients who will likely be taking these medications well into the future.
Collapse
Affiliation(s)
- Ian J Neeland
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Division of Cardiovascular Medicine, University Hospitals Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Jennifer Linge
- AMRA Medical AB, Linköping, Sweden
- Division of Diagnostics and Specialist Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Andreas L Birkenfeld
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the Eberhard Karls University Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Department of Diabetology, Endocrinology, and Nephrology, University Clinic Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
- Department of Diabetes, Life Sciences & Medicine Cardiovascular Medicine & Sciences, Kings College London, London, UK
| |
Collapse
|
24
|
Liu T, Zhu C, Duan Z, Ma P, Ma X, Fan D. Network Pharmacological Analysis Combined with Experimental Verification to Explore the Effect of Ginseng Polypeptide on the Improvement of Diabetes Symptoms in db/db Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18537-18551. [PMID: 39129180 DOI: 10.1021/acs.jafc.4c04949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Diabetes mellitus is a typical metabolic disease that has become a major threat to human health worldwide. Ginseng polypeptide (GP), a small molecule active substance isolated from ginseng, has shown positive hypoglycemic effects in preliminary studies. However, its mechanism in ameliorating multiorgan damage in db/db mice is unclear. In this study, we utilized network pharmacology, molecular docking, and animal experiments to explore the targets and biological mechanisms of GP to ameliorate multiorgan damage in T2DM. The results showed that GP improves T2DM by inhibiting inflammation and oxidative damage, thereby alleviating hyperglycemia, insulin resistance, and multiorgan damage in db/db mice. These effects are potentially mediated through the PI3K-Akt signaling pathway and the MAPK signaling pathway. This study establishes GP's efficacy in alleviating T2DM and provides a robust theoretical basis for the development of new drugs or functional foods for treating this disease.
Collapse
Affiliation(s)
- Tianzhu Liu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| | - Chenhui Zhu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| | - Zhiguang Duan
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| | - Pei Ma
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| | - Xiaoxuan Ma
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| | - Daidi Fan
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| |
Collapse
|
25
|
Gudzune KA, Kushner RF. Medications for Obesity: A Review. JAMA 2024; 332:571-584. [PMID: 39037780 DOI: 10.1001/jama.2024.10816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Importance Obesity affects approximately 19% of women and 14% of men worldwide and is associated with increased morbidity. Antiobesity medications (AOMs) modify biological processes that affect appetite and significantly improve outcomes, such as type 2 diabetes, hypertension, and dyslipidemia. Observations AOMs should be administered in combination with lifestyle interventions and can be classified according to their mechanisms of action. Orlistat modifies digestive tract absorption and causes gastrointestinal adverse effects, such as oily fecal spotting and urgency, in more than 25% of patients. Centrally acting drugs, such as phentermine-topiramate and naltrexone-bupropion, regulate appetite in the brain and are associated with constipation in approximately 20% of patients, although the incidence of other adverse effects (eg, paresthesia, nausea) varies by medication. Nutrient-stimulated hormone-based medications, such as liraglutide, semaglutide, and tirzepatide, mimic the actions of enteropancreatic hormones that modify central appetite regulation and provide multiple cardiometabolic weight-loss benefits. Adverse effects of these drugs include nausea (28%-44%), diarrhea (21%-30%), and constipation (11%-24%). The relative potency of adult obesity medications has been studied in meta-analyses. Compared with placebo, orlistat was associated with 3.1% greater weight loss (52 randomized clinical trials [RCTs]; 16 964 participants), phentermine-topiramate was associated with 8.0% greater weight loss (5 RCTs; 3407 participants), naltrexone-bupropion was associated with 4.1% greater weight loss (6 RCTs; 9949 participants), liraglutide was associated with 4.7% greater weight loss (18 RCTs; 6321 participants), semaglutide was associated with 11.4% greater weight loss (5 RCTs; 4421 participants), and tirzepatide 15 mg was associated with 12.4% greater weight loss (6 RCTs; 1972 participants). Conclusion and Relevance Obesity is associated with increased morbidity. Antiobesity medications are effective adjunctive therapy to lifestyle changes for improved weight loss and health outcomes.
Collapse
Affiliation(s)
- Kimberly A Gudzune
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Health Policy and Management, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Robert F Kushner
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Department of Medical Education, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
26
|
Patoulias D, Koufakis T, Ruža I, El-Tanani M, Rizzo M. Therapeutic Advances in Obesity: How Real-World Evidence Impacts Affordability Beyond Standard of Care. Pragmat Obs Res 2024; 15:139-149. [PMID: 39130529 PMCID: PMC11316468 DOI: 10.2147/por.s471476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 08/01/2024] [Indexed: 08/13/2024] Open
Abstract
Obesity is currently considered a global epidemic, with rising prevalence worldwide and rather pessimistic projections. Based on its close interconnection with various co-morbidities, such as diabetes mellitus and cardiovascular disease, obesity is associated with significant increases in morbidity and mortality, while it also poses a substantial economic burden for national healthcare systems. Apparently, the majority of individuals classified as obese do not achieve adequate weight loss with the adoption of a healthy lifestyle intervention, including dietary modification and physical activity. Fortunately, during the last decade, a significant progress in pharmacotherapy of obesity has been observed, with the introduction of agents that have gained approval from regulatory authorities, namely semaglutide, liraglutide and tirzepatide, due to their impressive results in body weight reduction, alongside their beneficial, pleiotropic effects. The aim of the present review article is to discuss on evidence retrieved from real-world studies regarding the efficacy of those agents in obesity treatment, with emphasis on cost-effectiveness data, towards an effort to tackle efficiently the progression of obesity epidemic.
Collapse
Affiliation(s)
- Dimitrios Patoulias
- Outpatient Department of Cardiometabolic Medicine, Second Department of Cardiology, General Hospital “hippokration”, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Second Propedeutic Department of Internal Medicine, General Hospital “Hippokration”, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Theocharis Koufakis
- Second Propedeutic Department of Internal Medicine, General Hospital “Hippokration”, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ieva Ruža
- Department of Endocrinology, Riga Eastern Clinical University Hospital, Riga Eastern Clinical University, Riga, Latvia
| | - Mohamed El-Tanani
- Ras Al Khaimah Medical and Health Sciences University (RAKMHSU), Ras Al Khaimah, United Arab Emirates
| | - Manfredi Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, School of Medicine, University of Palermo, Palermo, Italy
| |
Collapse
|
27
|
Wilkinson TJ, Papamargaritis D, King JA, Sargeant JA, Sutcliffe C, Baker LA, Taheri S, Yates T, Davies MJ. Preservation of healthy lean body mass and function during weight loss. Clin Obes 2024; 14:e12683. [PMID: 38783586 DOI: 10.1111/cob.12683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Affiliation(s)
- T J Wilkinson
- Leicester Biomedical Research Centre (BRC), Leicester Diabetes Centre, Leicester, UK
| | - D Papamargaritis
- Leicester Biomedical Research Centre (BRC), Leicester Diabetes Centre, Leicester, UK
| | - J A King
- Leicester Biomedical Research Centre (BRC), Leicester Diabetes Centre, Leicester, UK
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - J A Sargeant
- Leicester Biomedical Research Centre (BRC), Leicester Diabetes Centre, Leicester, UK
| | - C Sutcliffe
- Leicester Biomedical Research Centre (BRC), Leicester Diabetes Centre, Leicester, UK
| | - L A Baker
- Leicester Biomedical Research Centre (BRC), Leicester Diabetes Centre, Leicester, UK
| | - S Taheri
- Department of Medicine, Weill Cornell Medicine Qatar, Doha, Qatar
- Hamad Medical Corporation, Doha, Qatar
| | - T Yates
- Leicester Biomedical Research Centre (BRC), Leicester Diabetes Centre, Leicester, UK
| | - M J Davies
- Leicester Biomedical Research Centre (BRC), Leicester Diabetes Centre, Leicester, UK
| |
Collapse
|
28
|
Szekeres Z, Nagy A, Jahner K, Szabados E. Impact of Selected Glucagon-like Peptide-1 Receptor Agonists on Serum Lipids, Adipose Tissue, and Muscle Metabolism-A Narrative Review. Int J Mol Sci 2024; 25:8214. [PMID: 39125786 PMCID: PMC11311305 DOI: 10.3390/ijms25158214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Glucagon-like peptide-1 receptor agonists (GLP-1 RA) are novel antihyperglycemic agents. By acting through the central nervous system, they increase satiety and reduce food intake, thus lowering body weight. Furthermore, they increase the secretion of insulin while decreasing the production of glucagon. However, recent studies suggest a more complex metabolic impact through the interaction with various other tissues. In our present review, we aim to provide a summary of the effects of GLP-1 RA on serum lipids, adipose tissue, and muscle metabolism. It has been found that GLP-1 RA therapy is associated with decreased serum cholesterol levels. Epicardial adipose tissue thickness, hepatic lipid droplets, and visceral fat volume were reduced in obese patients with cardiovascular disease. GLP-1 RA therapy decreased the level of proinflammatory adipokines and reduced the expression of inflammatory genes. They have been found to reduce endoplasmic reticulum stress in adipocytes, leading to better adipocyte function and metabolism. Furthermore, GLP-1 RA therapy increased microvascular blood flow in muscle tissue, resulting in increased myocyte metabolism. They inhibited muscle atrophy and increased muscle mass and function. It was also observed that the levels of muscle-derived inflammatory cytokines decreased, and insulin sensitivity increased, resulting in improved metabolism. However, some clinical trials have been conducted on a very small number of patients, which limits the strength of these observations.
Collapse
Affiliation(s)
- Zsolt Szekeres
- Department of Laboratory Medicine, Medical School, University of Pecs, 7624 Pecs, Hungary;
| | - Andras Nagy
- Faculty of Pharmacy, University of Pecs, 7624 Pecs, Hungary;
| | - Kamilla Jahner
- Department of Medical Imaging, Medical School, University of Pecs, 7624 Pecs, Hungary;
| | - Eszter Szabados
- 1st Department of Medicine, Division of Preventive Cardiology and Rehabilitation, Medical School, University of Pecs, 7624 Pecs, Hungary
| |
Collapse
|
29
|
Gross K, Brinkmann C. Why you should not skip tailored exercise interventions when using incretin mimetics for weight loss. Front Endocrinol (Lausanne) 2024; 15:1449653. [PMID: 39109078 PMCID: PMC11300307 DOI: 10.3389/fendo.2024.1449653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 07/09/2024] [Indexed: 08/10/2024] Open
Affiliation(s)
- Katharina Gross
- Department of Preventive and Rehabilitative Sport Medicine, Institute of Cardiovascular Research and Sport Medicine, German Sport University Cologne, Cologne, Germany
| | - Christian Brinkmann
- Department of Preventive and Rehabilitative Sport Medicine, Institute of Cardiovascular Research and Sport Medicine, German Sport University Cologne, Cologne, Germany
- Department of Fitness & Health, IST University of Applied Sciences, Düsseldorf, Germany
| |
Collapse
|
30
|
Kundra S, Kaur R, Pasricha C, Kumari P, Gurjeet Singh T, Singh R. Pathological insights into activin A: Molecular underpinnings and therapeutic prospects in various diseases. Int Immunopharmacol 2024; 139:112709. [PMID: 39032467 DOI: 10.1016/j.intimp.2024.112709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/14/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Activin A (Act A) is a member of the TGFβ (transforming growth factor β) superfamily. It communicates via the Suppressor of Mothers against Decapentaplegic Homolog (SMAD2/3) proteins which govern processes such as cell proliferation, wound healing, apoptosis, and metabolism. Act A produces its action by attaching to activin receptor type IIA (ActRIIA) or activin receptor type IIB (ActRIIB). Increasing circulating Act A increases ActRII signalling, which on phosphorylation initiates the ALK4 (activin receptor-like kinase 4) type 1 receptor which further turns on the SMAD pathway and hinders cell functioning. Once triggered, this route leads to gene transcription, differentiation, apoptosis, and extracellular matrix (ECM) formation. Act A also governs the immunological and inflammatory responses of the body, as well as cell death. Moreover, Act A levels have been observed to elevate in several disorders like renal fibrosis, CKD, asthma, NAFLD, cardiovascular diseases, cancer, inflammatory conditions etc. Here, we provide an update on the recent studies relevant to the role of Act A in the modulation of various pathological disorders, giving an overview of the biology of Act A and its signalling pathways, and discuss the possibility of incorporating activin-A targeting as a novel therapeutic approach for the control of various disorders. Pathways such as SMAD signaling, in which SMAD moves to the nucleus by making a complex and leads to tissue fibrosis in CKD, STAT3, which drives renal fibroblast activity and the production of ECM, Kidney injury molecule (KIM-1) in the synthesis, deposition of ECM proteins, SERCA2a (sarcoplasmic reticulum Ca2+ ATPase) in cardiac dysfunction, and NF-κB (Nuclear factor kappa-light-chain-enhancer of activated B cells) in inflammation are involved in Act A signaling, have also been discussed.
Collapse
Affiliation(s)
- Sejal Kundra
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Rupinder Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Chirag Pasricha
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Pratima Kumari
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | | - Ravinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| |
Collapse
|
31
|
Lee SJ, Spiegelman B, Campbell K. David J. Glass elected to the U.S. National Academy of Sciences. Skelet Muscle 2024; 14:14. [PMID: 38982533 PMCID: PMC11232304 DOI: 10.1186/s13395-024-00343-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024] Open
Affiliation(s)
- Se-Jin Lee
- The Jackson Laboratory, University of Connecticut School of Medicine, Farmington, USA.
| | - Bruce Spiegelman
- Dana Farber Cancer Institute, Harvard Medical School , Boston, USA
| | - Kevin Campbell
- University of Iowa Carver College of Medicine, Howard Hughes Medical Institute, Iowa City, USA
| |
Collapse
|
32
|
Alshahrani O, Almalki MS. The Efficacy of Pharmacotherapy in the Treatment of Obesity in Patients With Type 2 Diabetes: A Systematic Review. Cureus 2024; 16:e65242. [PMID: 39184671 PMCID: PMC11342142 DOI: 10.7759/cureus.65242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 08/27/2024] Open
Abstract
Obesity is a global public health challenge that poses a significant threat to the effective control and management of type 2 diabetes mellitus (T2DM). Being overweight/obese with T2DM is associated with a wide range of comorbidities, including cardiovascular, cerebrovascular, and renal diseases. This systematic review aimed to investigate the drug therapy used globally among this type of patients in the period between 2014 and 2024. Four databases (PubMed, Web of Science, Scopus, and Cochrane) were searched using the keywords "(Drug Therapy OR Pharmaceutical Preparations OR Pharmacotherapy) AND (Diabetes Mellitus, Type 2) AND (Obesity OR Overweight OR Weight Loss OR Weight reduction) in the title and abstract. All papers assessing the efficacy of any drug class on blood sugar and body weight (BW) were included in the systematic review. Out of 5,206 papers extracted through the database search, 25 randomized clinical trials (RCTs) were considered suitable for the systematic review. The articles included 8,208 participants who tested different drug classes, e.g., glucagon-like peptide-1 (GLP-1) and sodium-glucose co-transporter-2 (SGLT2), with or without metformin. All the reviewed drugs showed significant weight loss over 12-52 weeks. However, the magnitude of weight loss was modest, and the long-term health benefits and safety remain unclear. Interventions that combine pharmacologic therapy with lifestyle modifications may be more effective but need additional research. Continued development of new treatment options for obesity in T2DM is crucial to reduce morbidity and mortality among these patients.
Collapse
Affiliation(s)
- Omar Alshahrani
- Family Medicine, Prince Sultan Military Medical City, Riyadh, SAU
| | | |
Collapse
|
33
|
Wang H, Guo S, Gao H, Ding J, Li H, Kong X, Zhang S, He M, Feng Y, Wu W, Xu K, Chen Y, Zhang H, Liu T, Kong X. Myostatin regulates energy homeostasis through autocrine- and paracrine-mediated microenvironment communication. J Clin Invest 2024; 134:e178303. [PMID: 38889010 PMCID: PMC11324308 DOI: 10.1172/jci178303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 06/17/2024] [Indexed: 06/20/2024] Open
Abstract
Myostatin (MSTN) has long been recognized as a critical regulator of muscle mass. Recently, there has been increasing interest in its role in metabolism. In our study, we specifically knocked out MSTN in brown adipose tissue (BAT) from mice (MSTNΔUCP1) and found that the mice gained more weight than did controls when fed a high-fat diet, with progressive hepatosteatosis and impaired skeletal muscle activity. RNA-Seq analysis indicated signatures of mitochondrial dysfunction and inflammation in the MSTN-ablated BAT. Further studies demonstrated that Kruppel-like factor 4 (KLF4) was responsible for the metabolic phenotypes observed, whereas fibroblast growth factor 21 (FGF21) contributed to the microenvironment communication between adipocytes and macrophages induced by the loss of MSTN. Moreover, the MSTN/SMAD2/3-p38 signaling pathway mediated the expression of KLF4 and FGF21 in adipocytes. In summary, our findings suggest that brown adipocyte-derived MSTN regulated BAT thermogenesis via autocrine and paracrine effects on adipocytes or macrophages, ultimately regulating systemic energy homeostasis.
Collapse
Affiliation(s)
- Hui Wang
- State Key Laboratory of Genetic Engineering and School of Life Sciences, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Human Phenome Institute, Fudan University, Shanghai, China
| | - Shanshan Guo
- State Key Laboratory of Genetic Engineering and School of Life Sciences, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Human Phenome Institute, Fudan University, Shanghai, China
| | - Huanqing Gao
- State Key Laboratory of Genetic Engineering and School of Life Sciences, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Human Phenome Institute, Fudan University, Shanghai, China
| | - Jiyang Ding
- State Key Laboratory of Genetic Engineering and School of Life Sciences, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Human Phenome Institute, Fudan University, Shanghai, China
| | - Hongyun Li
- Department of Sports Medicine and Arthroscopy Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Xingyu Kong
- State Key Laboratory of Genetic Engineering and School of Life Sciences, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Human Phenome Institute, Fudan University, Shanghai, China
| | - Shuang Zhang
- State Key Laboratory of Genetic Engineering and School of Life Sciences, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Human Phenome Institute, Fudan University, Shanghai, China
| | - Muyang He
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Yonghao Feng
- Department of Endocrinology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Wei Wu
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Kexin Xu
- State Key Laboratory of Genetic Engineering and School of Life Sciences, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Human Phenome Institute, Fudan University, Shanghai, China
| | - Yuxuan Chen
- State Key Laboratory of Genetic Engineering and School of Life Sciences, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Human Phenome Institute, Fudan University, Shanghai, China
| | - Hanyin Zhang
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Tiemin Liu
- State Key Laboratory of Genetic Engineering and School of Life Sciences, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Human Phenome Institute, Fudan University, Shanghai, China
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
- School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Xingxing Kong
- State Key Laboratory of Genetic Engineering and School of Life Sciences, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Human Phenome Institute, Fudan University, Shanghai, China
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
34
|
Tzoulis P, Baldeweg SE. Semaglutide for weight loss: unanswered questions. Front Endocrinol (Lausanne) 2024; 15:1382814. [PMID: 38904050 PMCID: PMC11188346 DOI: 10.3389/fendo.2024.1382814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/22/2024] [Indexed: 06/22/2024] Open
Affiliation(s)
- Ploutarchos Tzoulis
- Department of Metabolism & Experimental Therapeutics, Division of Medicine, University College London, London, United Kingdom
| | | |
Collapse
|
35
|
Espino-Gonzalez E, Dalbram E, Mounier R, Gondin J, Farup J, Jessen N, Treebak JT. Impaired skeletal muscle regeneration in diabetes: From cellular and molecular mechanisms to novel treatments. Cell Metab 2024; 36:1204-1236. [PMID: 38490209 DOI: 10.1016/j.cmet.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/10/2024] [Accepted: 02/22/2024] [Indexed: 03/17/2024]
Abstract
Diabetes represents a major public health concern with a considerable impact on human life and healthcare expenditures. It is now well established that diabetes is characterized by a severe skeletal muscle pathology that limits functional capacity and quality of life. Increasing evidence indicates that diabetes is also one of the most prevalent disorders characterized by impaired skeletal muscle regeneration, yet underlying mechanisms and therapeutic treatments remain poorly established. In this review, we describe the cellular and molecular alterations currently known to occur during skeletal muscle regeneration in people with diabetes and animal models of diabetes, including its associated comorbidities, e.g., obesity, hyperinsulinemia, and insulin resistance. We describe the role of myogenic and non-myogenic cell types on muscle regeneration in conditions with or without diabetes. Therapies for skeletal muscle regeneration and gaps in our knowledge are also discussed, while proposing future directions for the field.
Collapse
Affiliation(s)
- Ever Espino-Gonzalez
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Emilie Dalbram
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Rémi Mounier
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du Muscle, Université Claude Bernard Lyon 1, CNRS UMR 5261, Inserm U1315, Univ Lyon, Lyon, France
| | - Julien Gondin
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du Muscle, Université Claude Bernard Lyon 1, CNRS UMR 5261, Inserm U1315, Univ Lyon, Lyon, France
| | - Jean Farup
- Department of Biomedicine, Aarhus University, Aarhus 8000, Denmark; Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus 8200, Denmark
| | - Niels Jessen
- Department of Biomedicine, Aarhus University, Aarhus 8000, Denmark; Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus 8200, Denmark; Department of Clinical Pharmacology, Aarhus University Hospital, Aarhus 8200, Denmark
| | - Jonas T Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark.
| |
Collapse
|
36
|
Ahn YJ, Maya J, Singhal V. Update on Pediatric Anti-obesity Medications-Current Landscape and Approach to Prescribing. Curr Obes Rep 2024; 13:295-312. [PMID: 38689134 DOI: 10.1007/s13679-024-00566-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/02/2024] [Indexed: 05/02/2024]
Abstract
PURPOSE OF REVIEW To review the current medical therapies available for treatment of obesity in children and adolescents less than 18 years old in the United States and outline the approach to their use. RECENT FINDINGS Obesity is a chronic disease with increasing prevalence in children and adolescents in the United States. Over the past few years, more FDA-approved medical treatments for obesity, such as GLP-1 receptor agonists, have emerged for patients less than 18 years old. Furthermore, there are medications with weight loss effects that can be used off-label for obesity in pediatric patients. However, access to many of these medications is limited due to age restrictions, insurance coverage, and cost. Medical options are improving to provide treatment for obesity in pediatric populations. FDA and off-label medications should be considered when appropriate to treat children and adolescents with obesity. However, further studies are needed to evaluate the efficacy and long-term safety of FDA-approved and off-label medications for obesity treatment in pediatric patients.
Collapse
Affiliation(s)
- Yoon Ji Ahn
- Division of Endocrinology-Metabolism Unit, Department of Internal Medicine, Massachusetts General Hospital, MGH Weight Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Jacqueline Maya
- Harvard Medical School, Boston, MA, USA
- Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA
| | - Vibha Singhal
- Harvard Medical School, Boston, MA, USA.
- Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
37
|
Qi Q, Cox A, McNeil S, Sumithran P. Obesity medications: A narrative review of current and emerging agents. OSTEOARTHRITIS AND CARTILAGE OPEN 2024; 6:100472. [PMID: 38737985 PMCID: PMC11088184 DOI: 10.1016/j.ocarto.2024.100472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/10/2024] [Indexed: 05/14/2024] Open
Abstract
The aim of this narrative review is to synthesize the available data describing the efficacy and safety of medications approved for obesity management and to provide an overview of upcoming agents in development. A literature search of PubMed, Medline, and Embase databases identified relevant articles describing medications approved in the U.S., Australia, U.K., and/or Europe. Papers were selected based on relevance and originality, with phase 3 clinical trials and meta-analyses preferentially included. Six medications are widely approved for long-term weight management in conjunction with lifestyle interventions in people with body mass index (BMI) ≥30 kg/m2 or BMI ≥27 kg/m2 and at least one medical condition related to excess weight. Compared with lifestyle interventions alone, all medications approved for obesity management are more effective for long-term weight loss and improvements in cardiometabolic risk factors. Older obesity medications are associated with mean weight losses in the range of 5-10%. The new generation of agents, including the injectable incretin analogues semaglutide and tirzepatide are associated with sustained mean weight reductions of 15-20%, along with substantial benefits on a range of health outcomes. Several novel agents are under development, with multi-hormone receptor agonists and oral formulations likely to become available in the coming years. As effective treatment options expand, cost and availability will need to be addressed to enable equitable access to treatment. Other important challenges for clinical practice and research include the need for long-term strategies to prevent and manage weight regain and loss of lean muscle and bone mineral density.
Collapse
Affiliation(s)
- Q.Y.D. Qi
- Department of Endocrinology and Diabetes, Alfred Health, Victoria, Australia
- Department of Diabetes and Endocrinology, Royal Melbourne Hospital, Victoria, Australia
| | - A. Cox
- Department of Endocrinology and Diabetes, Alfred Health, Victoria, Australia
| | - S. McNeil
- Department of Endocrinology and Diabetes, Alfred Health, Victoria, Australia
| | - P. Sumithran
- Department of Endocrinology and Diabetes, Alfred Health, Victoria, Australia
- Department of Surgery, Central Clinical School, Monash University, Victoria, Australia
| |
Collapse
|
38
|
Swan J, Szabó Z, Peters J, Kummu O, Kemppi A, Rahtu-Korpela L, Konzack A, Hakkola J, Pasternack A, Ritvos O, Kerkelä R, Magga J. Inhibition of activin receptor 2 signalling ameliorates metabolic dysfunction-associated steatotic liver disease in western diet/L-NAME induced cardiometabolic disease. Biomed Pharmacother 2024; 175:116683. [PMID: 38705130 DOI: 10.1016/j.biopha.2024.116683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/19/2024] [Accepted: 04/29/2024] [Indexed: 05/07/2024] Open
Abstract
OBJECTIVE Blockade of activin 2 receptor (ACVR2) signaling has been shown to improve insulin sensitivity and aid in weight loss. Inhibition of ACVR2 signaling restores cardiac function in multiple heart failure models. However, its potential in the treatment of obesity-related cardiometabolic disease remains unknown. Here, we investigated targeting ACVR2 signaling in cardiometabolic disease manifested with metabolic dysfunction-associated steatotic liver disease (MASLD). METHODS Mice were fed a high-fat, high-sugar diet combined with the administration of nitric oxide synthase inhibitor L-NAME in drinking water, which causes hypertensive stress. For the last eight weeks, the mice were treated with the soluble ACVR2B decoy receptor (sACVR2B-Fc). RESULTS sACVR2B-Fc protected against the development of comorbidities associated with cardiometabolic disease. This was most pronounced in the liver where ACVR2 blockade attenuated the development of MASLD including cessation of pro-fibrotic activation. It also significantly reduced total plasma cholesterol levels, impeded brown adipose tissue whitening, and improved cardiac diastolic function. In vitro, ACVR2 ligands activin A, activin B and GDF11 induced profibrotic signaling and the proliferation of human cardiac fibroblasts. CONCLUSIONS Blockade of ACVR2B exerts broad beneficial effects for therapy of cardiometabolic disease. By reducing obesity, ameliorating cardiovascular deterioration and restraining MASLD, blockade of ACVR2B signaling proves a potential target in MASLD and its comorbidities.
Collapse
Affiliation(s)
- Julia Swan
- Research Unit of Biomedicine and Internal Medicine, University of Oulu, Aapistie 5, Oulu 90220, Finland; Biocenter Oulu, University of Oulu, Aapistie 5, Oulu 90220, Finland.
| | - Zoltán Szabó
- Research Unit of Biomedicine and Internal Medicine, University of Oulu, Aapistie 5, Oulu 90220, Finland
| | - Juliana Peters
- Research Unit of Biomedicine and Internal Medicine, University of Oulu, Aapistie 5, Oulu 90220, Finland
| | - Outi Kummu
- Research Unit of Biomedicine and Internal Medicine, University of Oulu, Aapistie 5, Oulu 90220, Finland; Biocenter Oulu, University of Oulu, Aapistie 5, Oulu 90220, Finland; Medical Research Centre Oulu, Oulu University Hospital and University of Oulu, Aapistie 5, Oulu 90220, Finland
| | - Anna Kemppi
- Research Unit of Biomedicine and Internal Medicine, University of Oulu, Aapistie 5, Oulu 90220, Finland
| | - Lea Rahtu-Korpela
- Research Unit of Biomedicine and Internal Medicine, University of Oulu, Aapistie 5, Oulu 90220, Finland
| | - Anja Konzack
- Research Unit of Biomedicine and Internal Medicine, University of Oulu, Aapistie 5, Oulu 90220, Finland; Biocenter Oulu, University of Oulu, Aapistie 5, Oulu 90220, Finland; Medical Research Centre Oulu, Oulu University Hospital and University of Oulu, Aapistie 5, Oulu 90220, Finland
| | - Jukka Hakkola
- Research Unit of Biomedicine and Internal Medicine, University of Oulu, Aapistie 5, Oulu 90220, Finland; Biocenter Oulu, University of Oulu, Aapistie 5, Oulu 90220, Finland; Medical Research Centre Oulu, Oulu University Hospital and University of Oulu, Aapistie 5, Oulu 90220, Finland
| | - Arja Pasternack
- Department of Physiology, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8, Helsinki 00014, Finland
| | - Olli Ritvos
- Department of Physiology, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8, Helsinki 00014, Finland
| | - Risto Kerkelä
- Research Unit of Biomedicine and Internal Medicine, University of Oulu, Aapistie 5, Oulu 90220, Finland; Biocenter Oulu, University of Oulu, Aapistie 5, Oulu 90220, Finland; Medical Research Centre Oulu, Oulu University Hospital and University of Oulu, Aapistie 5, Oulu 90220, Finland
| | - Johanna Magga
- Research Unit of Biomedicine and Internal Medicine, University of Oulu, Aapistie 5, Oulu 90220, Finland; Biocenter Oulu, University of Oulu, Aapistie 5, Oulu 90220, Finland.
| |
Collapse
|
39
|
Giannakogeorgou A, Roden M. Role of lifestyle and glucagon-like peptide-1 receptor agonists for weight loss in obesity, type 2 diabetes and steatotic liver diseases. Aliment Pharmacol Ther 2024; 59 Suppl 1:S52-S75. [PMID: 38813830 DOI: 10.1111/apt.17848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/08/2023] [Accepted: 12/15/2023] [Indexed: 05/31/2024]
Abstract
BACKGROUND The current obesity pandemic has given rise to associated comorbidities and complications, including type 2 diabetes and metabolic dysfunction-associated steatotic liver disease (MASLD). During the last decade, certain glucagon-like peptide 1 receptor agonists (GLP-1RA), originally developed as antihyperglycemic drugs, also demonstrated efficacy for weight loss. AIMS To review shared pathophysiologic features of common metabolic diseases and compare therapeutic strategies to reduce body weight and related complications. METHODS We performed an extensive literature research to describe the effects of lifestyle modification, first-generation anti-obesity drugs, and GLP-1RA on weight loss in humans with obesity, type 2 diabetes and MASLD. RESULTS Until recently, treatment of obesity has been limited to lifestyle modification, which offer moderate degree and sustainability of weight loss. The few approved first-generation anti-obesity drugs are either limited to short term use or to certain forms of obesity. Some GLP-1RA significantly decrease caloric intake and body weight. Liraglutide and semaglutide have therefore been approved for treating people with obesity. They also lead to a reduction of hepatic fat content and inflammation in people with biopsy-confirmed MASLD. Possible limitations comprise adverse effects, treatment adherence and persistence. CONCLUSION Certain GLP-1RA are superior to lifestyle modification and first-generation anti-obesity drugs in inducing weight loss. They have therefore markedly changed the portfolio of obesity treatment with additional beneficial effects on steatotic liver disease.
Collapse
Affiliation(s)
- Anna Giannakogeorgou
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, Neuherberg, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, Neuherberg, Germany
- Division of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany
| |
Collapse
|
40
|
Argyrakopoulou G, Gitsi E, Konstantinidou SK, Kokkinos A. The effect of obesity pharmacotherapy on body composition, including muscle mass. Int J Obes (Lond) 2024:10.1038/s41366-024-01533-3. [PMID: 38745020 DOI: 10.1038/s41366-024-01533-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/18/2024] [Accepted: 04/26/2024] [Indexed: 05/16/2024]
Abstract
Obesity pharmacotherapy represents a promising approach to treating obesity and may provide benefits beyond weight loss alone. Maintaining or even increasing muscle mass during weight loss is important to overall health, metabolic function and weight loss maintenance. Drugs such as liraglutide, semaglutide, tirzepatide, and naltrexone/bupropion have shown significant weight loss effects, and emerging evidence suggests they may also have effects on body composition, particularly a positive influence on muscle mass. However, further research is needed to fully understand the mechanism of action of these drugs and their effects on muscle mass. Clinicians should consider these factors when developing an obesity treatment plan for an individual patient.
Collapse
Affiliation(s)
| | - Evdoxia Gitsi
- Diabetes and Obesity Unit, Athens Medical Center, 15125, Athens, Greece
| | - Sofia K Konstantinidou
- Diabetes and Obesity Unit, Athens Medical Center, 15125, Athens, Greece
- First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | - Alexander Kokkinos
- First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| |
Collapse
|
41
|
Kokkorakis M, Muzurović E, Volčanšek Š, Chakhtoura M, Hill MA, Mikhailidis DP, Mantzoros CS. Steatotic Liver Disease: Pathophysiology and Emerging Pharmacotherapies. Pharmacol Rev 2024; 76:454-499. [PMID: 38697855 DOI: 10.1124/pharmrev.123.001087] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/22/2023] [Accepted: 01/25/2024] [Indexed: 05/05/2024] Open
Abstract
Steatotic liver disease (SLD) displays a dynamic and complex disease phenotype. Consequently, the metabolic dysfunction-associated steatotic liver disease (MASLD)/metabolic dysfunction-associated steatohepatitis (MASH) therapeutic pipeline is expanding rapidly and in multiple directions. In parallel, noninvasive tools for diagnosing and monitoring responses to therapeutic interventions are being studied, and clinically feasible findings are being explored as primary outcomes in interventional trials. The realization that distinct subgroups exist under the umbrella of SLD should guide more precise and personalized treatment recommendations and facilitate advancements in pharmacotherapeutics. This review summarizes recent updates of pathophysiology-based nomenclature and outlines both effective pharmacotherapeutics and those in the pipeline for MASLD/MASH, detailing their mode of action and the current status of phase 2 and 3 clinical trials. Of the extensive arsenal of pharmacotherapeutics in the MASLD/MASH pipeline, several have been rejected, whereas other, mainly monotherapy options, have shown only marginal benefits and are now being tested as part of combination therapies, yet others are still in development as monotherapies. Although the Food and Drug Administration (FDA) has recently approved resmetirom, additional therapeutic approaches in development will ideally target MASH and fibrosis while improving cardiometabolic risk factors. Due to the urgent need for the development of novel therapeutic strategies and the potential availability of safety and tolerability data, repurposing existing and approved drugs is an appealing option. Finally, it is essential to highlight that SLD and, by extension, MASLD should be recognized and approached as a systemic disease affecting multiple organs, with the vigorous implementation of interdisciplinary and coordinated action plans. SIGNIFICANCE STATEMENT: Steatotic liver disease (SLD), including metabolic dysfunction-associated steatotic liver disease and metabolic dysfunction-associated steatohepatitis, is the most prevalent chronic liver condition, affecting more than one-fourth of the global population. This review aims to provide the most recent information regarding SLD pathophysiology, diagnosis, and management according to the latest advancements in the guidelines and clinical trials. Collectively, it is hoped that the information provided furthers the understanding of the current state of SLD with direct clinical implications and stimulates research initiatives.
Collapse
Affiliation(s)
- Michail Kokkorakis
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Emir Muzurović
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Špela Volčanšek
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Marlene Chakhtoura
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Michael A Hill
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Dimitri P Mikhailidis
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| |
Collapse
|
42
|
de Haan LR, van Golen RF, Heger M. Molecular Pathways Governing the Termination of Liver Regeneration. Pharmacol Rev 2024; 76:500-558. [PMID: 38697856 DOI: 10.1124/pharmrev.123.000955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/24/2024] [Accepted: 02/08/2024] [Indexed: 05/05/2024] Open
Abstract
The liver has the unique capacity to regenerate, and up to 70% of the liver can be removed without detrimental consequences to the organism. Liver regeneration is a complex process involving multiple signaling networks and organs. Liver regeneration proceeds through three phases: the initiation phase, the growth phase, and the termination phase. Termination of liver regeneration occurs when the liver reaches a liver-to-body weight that is required for homeostasis, the so-called "hepatostat." The initiation and growth phases have been the subject of many studies. The molecular pathways that govern the termination phase, however, remain to be fully elucidated. This review summarizes the pathways and molecules that signal the cessation of liver regrowth after partial hepatectomy and answers the question, "What factors drive the hepatostat?" SIGNIFICANCE STATEMENT: Unraveling the pathways underlying the cessation of liver regeneration enables the identification of druggable targets that will allow us to gain pharmacological control over liver regeneration. For these purposes, it would be useful to understand why the regenerative capacity of the liver is hampered under certain pathological circumstances so as to artificially modulate the regenerative processes (e.g., by blocking the cessation pathways) to improve clinical outcomes and safeguard the patient's life.
Collapse
Affiliation(s)
- Lianne R de Haan
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, China (L.R.d.H., M.H.); Department of Internal Medicine, Noordwest Ziekenhuisgroep, Alkmaar, The Netherlands (L.R.d.H.); Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands (R.F.v.G.); Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands (M.H.); and Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands (M.H.)
| | - Rowan F van Golen
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, China (L.R.d.H., M.H.); Department of Internal Medicine, Noordwest Ziekenhuisgroep, Alkmaar, The Netherlands (L.R.d.H.); Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands (R.F.v.G.); Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands (M.H.); and Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands (M.H.)
| | - Michal Heger
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, China (L.R.d.H., M.H.); Department of Internal Medicine, Noordwest Ziekenhuisgroep, Alkmaar, The Netherlands (L.R.d.H.); Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands (R.F.v.G.); Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands (M.H.); and Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands (M.H.)
| |
Collapse
|
43
|
Abdalla Ahmed MA, Ssemmondo E, Mark-Wagstaff C, Sathyapalan T. Advancements in the management of obesity: a review of current evidence and emerging therapies. Expert Rev Endocrinol Metab 2024; 19:257-268. [PMID: 38685693 DOI: 10.1080/17446651.2024.2347258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 04/22/2024] [Indexed: 05/02/2024]
Abstract
INTRODUCTION Obesity is the modern world's current epidemic, with substantial health and economic impact. This study aimed to provide a narrative overview of the past, currently available, and future treatment options that offer therapeutic and preventive advantages for obesity management. AREAS COVERED Historically, rimonabant, and lorcaserin, were approved and used for managing non-syndromic obesity. Currently, orlistat, naltrexone/bupropion, glucagon-like peptide-1 receptor agonist (GLP-1 RA), and a few promising therapeutic agents are under investigation, including retatrutide, cagrilintide and orforglipron, which show promising weight reduction effects. We have developed a search string of the Medical Subject Headings (MeSH), including the terms GLP-1 RAs, obesity, and weight loss. This string was then used to perform a systematic literature search in the database including PubMed, EMBASE, MEDLINE, and Scopus up to January 31st, 2024. EXPERT OPINION Managing obesity often requires medical interventions, particularly in cases of severe obesity or obesity-related comorbidities. Thus, it is important to approach obesity management holistically, considering individual needs and circumstances. In our opinion, consulting with healthcare professionals is crucial to developing a personalized plan that addresses both weight loss and overall health improvement.
Collapse
Affiliation(s)
- Mohammed Altigani Abdalla Ahmed
- Department of Translational Research, Dasman Diabetes Institute, Kuwait City, Kuwait
- Hull York Medical School, University of Hull, Hull, UK
| | - Emmanuel Ssemmondo
- Hull York Medical School, University of Hull, Hull, UK
- Allam Diabetes Centre, Hull University Teaching Hospital, NHS Trust, Hull, UK
| | - Charlotte Mark-Wagstaff
- Hull York Medical School, University of Hull, Hull, UK
- Allam Diabetes Centre, Hull University Teaching Hospital, NHS Trust, Hull, UK
| | - Thozhukat Sathyapalan
- Hull York Medical School, University of Hull, Hull, UK
- Allam Diabetes Centre, Hull University Teaching Hospital, NHS Trust, Hull, UK
| |
Collapse
|
44
|
Purnell JQ, le Roux CW. Hypothalamic control of body fat mass by food intake: The key to understanding why obesity should be treated as a disease. Diabetes Obes Metab 2024; 26 Suppl 2:3-12. [PMID: 38351898 DOI: 10.1111/dom.15478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/06/2024] [Accepted: 01/18/2024] [Indexed: 03/27/2024]
Abstract
BACKGROUND Hypothalamic centres have been recognized to play a central role in body weight regulation for nearly 70 years. AIMS In this review, we will explore the current undersanding of the role the hypothalamus plays in controlling food intake behaviours. MATERIALS AND METHODS Review of relevant literature from PubMed searches and review article citations. RESULTS Beginning with autopsy studies showing destructive hypothalamic lesions in patients manifesting hyperphagia and rapid weight gain, followed by animal lesioning studies pinpointing adjacent hypothalamic sites as the 'satiety' centre and the 'feeding' centre of the brain, the neurocircuitry that governs our body weight is now understood to consist of a complex, interconnected network, including the hypothalamus and extending to cortical sites, reward centres and brainstem. Neurons in these sites receive afferent signals from the gastrointestinal tract and adipose tissue indicating food availability, calorie content, as well as body fat mass. DISCUSSION Integration of these complex signals leads to modulation of the two prime effector systems that defend a body fat mass set point: food intake and energy expenditure. CONCLUSION Understanding the hypothalamic control of food intake forms the foundation for understanding and managing obesity as a chronic disease.
Collapse
Affiliation(s)
- Jonathan Q Purnell
- Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Carel W le Roux
- School of Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
45
|
Wackerhage H, Hinrichs A, Wolf E, Hrabě de Angelis M. Turning fat into muscle: can this be an alternative to anti-obesity drugs such as semaglutide? J Physiol 2024; 602:1655-1658. [PMID: 38426245 DOI: 10.1113/jp286430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 02/15/2024] [Indexed: 03/02/2024] Open
Affiliation(s)
- Henning Wackerhage
- School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Arne Hinrichs
- Center for Innovative Medical Models (CiMM), LMU Munich, Munich, Germany
| | - Eckhard Wolf
- Center for Innovative Medical Models (CiMM), LMU Munich, Munich, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Martin Hrabě de Angelis
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Experimental Genetics, School of Life Science Weihenstephan, Technische Universität München, Freising, Germany
| |
Collapse
|
46
|
Bhasin S, Lincoff AM, Nissen SE, Wannemuehler K, McDonnell ME, Peters AL, Khan N, Snabes MC, Li X, Li G, Buhr K, Pencina KM, Travison TG. Effect of Testosterone on Progression From Prediabetes to Diabetes in Men With Hypogonadism: A Substudy of the TRAVERSE Randomized Clinical Trial. JAMA Intern Med 2024; 184:353-362. [PMID: 38315466 PMCID: PMC10845044 DOI: 10.1001/jamainternmed.2023.7862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/29/2023] [Indexed: 02/07/2024]
Abstract
Importance The effect of testosterone replacement therapy (TRT) in men with hypogonadism on the risk of progression from prediabetes to diabetes or of inducing glycemic remission in those with diabetes is unknown. Objective To evaluate the efficacy of TRT in preventing progression from prediabetes to diabetes in men with hypogonadism who had prediabetes and in inducing glycemic remission in those with diabetes. Design, Setting, and Participants This nested substudy, an intention-to-treat analysis, within a placebo-controlled randomized clinical trial (Testosterone Replacement Therapy for Assessment of Long-Term Vascular Events and Efficacy Response in Hypogonadal Men [TRAVERSE]) was conducted at 316 trial sites in the US. Participants included men aged 45 to 80 years with hypogonadism and prediabetes or diabetes who were enrolled in TRAVERSE between May 23, 2018, and February 1, 2022. Intervention Participants were randomized 1:1 to receive 1.62% testosterone gel or placebo gel until study completion. Main Outcomes and Measures The primary end point was the risk of progression from prediabetes to diabetes, analyzed using repeated-measures log-binomial regression. The secondary end point was the risk of glycemic remission (hemoglobin A1c level <6.5% [to convert to proportion of total hemoglobin, multiply by 0.01] or 2 fasting glucose measurements <126 mg/dL [to convert to mmol/L, multiply by 0.0555] without diabetes medication) in men who had diabetes. Results Of 5204 randomized participants, 1175 with prediabetes (mean [SD] age, 63.8 [8.1] years) and 3880 with diabetes (mean [SD] age, 63.2 [7.8] years) were included in this study. Mean (SD) hemoglobin A1c level in men with prediabetes was 5.8% (0.4%). Risk of progression to diabetes did not differ significantly between testosterone and placebo groups: 4 of 598 (0.7%) vs 8 of 562 (1.4%) at 6 months, 45 of 575 (7.8%) vs 57 of 533 (10.7%) at 12 months, 50 of 494 (10.1%) vs 67 of 460 (14.6%) at 24 months, 46 of 359 (12.8%) vs 52 of 330 (15.8%) at 36 months, and 22 of 164 (13.4%) vs 19 of 121 (15.7%) at 48 months (omnibus test P = .49). The proportions of participants with diabetes who experienced glycemic remission and the changes in glucose and hemoglobin A1c levels were similar in testosterone- and placebo-treated men with prediabetes or diabetes. Conclusions and Relevance In men with hypogonadism and prediabetes, the incidence of progression from prediabetes to diabetes did not differ significantly between testosterone- and placebo-treated men. Testosterone replacement therapy did not improve glycemic control in men with hypogonadism and prediabetes or diabetes. These findings suggest that TRT alone should not be used as a therapeutic intervention to prevent or treat diabetes in men with hypogonadism. Trial Registration ClinicalTrials.gov Identifier: NCT03518034.
Collapse
Affiliation(s)
- Shalender Bhasin
- Research Program in Men’s Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - A. Michael Lincoff
- Cleveland Clinic Coordinating Center for Clinical Research, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio
| | - Steven E. Nissen
- Cleveland Clinic Coordinating Center for Clinical Research, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio
| | - Kathleen Wannemuehler
- Department of Biostatistics and Medical Informatics, Statistical Data Analysis Center, University of Wisconsin−Madison
| | - Marie E. McDonnell
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Anne L. Peters
- University of Southern California Clinical Diabetes Program, The Keck School of Medicine of the University of Southern California, Los Angeles
| | | | | | - Xue Li
- AbbVie Inc, North Chicago, Illinois
| | - Geng Li
- Department of Biostatistics and Medical Informatics, Statistical Data Analysis Center, University of Wisconsin−Madison
| | - Kevin Buhr
- Department of Biostatistics and Medical Informatics, Statistical Data Analysis Center, University of Wisconsin−Madison
| | - Karol M. Pencina
- Research Program in Men’s Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Thomas G. Travison
- Marcus Institute for Aging Research, Hebrew Senior Life, Boston, Massachusetts
- Division of Gerontology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
47
|
Henderson K, Lewis, Sloan CE, Bessesen DH, Arterburn D. Effectiveness and safety of drugs for obesity. BMJ 2024; 384:e072686. [PMID: 38527759 DOI: 10.1136/bmj-2022-072686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Recent publicity around the use of new antiobesity medications (AOMs) has focused the attention of patients and healthcare providers on the role of pharmacotherapy in the treatment of obesity. Newer drug treatments have shown greater efficacy and safety compared with older drug treatments, yet access to these drug treatments is limited by providers' discomfort in prescribing, bias, and stigma around obesity, as well as by the lack of insurance coverage. Now more than ever, healthcare providers must be able to discuss the risks and benefits of the full range of antiobesity medications available to patients, and to incorporate both guideline based advice and emerging real world clinical evidence into daily clinical practice. The tremendous variability in response to antiobesity medications means that clinicians need to use a flexible approach that takes advantage of specific features of the antiobesity medication selected to provide the best option for individual patients. Future research is needed on how best to use available drug treatments in real world practice settings, the potential role of combination therapies, and the cost effectiveness of antiobesity medications. Several new drug treatments are being evaluated in ongoing clinical trials, suggesting that the future for pharmacotherapy of obesity is bright.
Collapse
Affiliation(s)
| | - Lewis
- Department of Epidemiology and Prevention, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Division of General Internal Medicine, Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Caroline E Sloan
- Division of General Internal Medicine, Department of Medicine, Duke University School of Medicine, Durham, NC, USA
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, USA
- Margolis Center for Health Policy, Duke University, Durham, NC, USA
| | - Daniel H Bessesen
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
| | - David Arterburn
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
- Division of General Internal Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
48
|
Gołacki J, Matyjaszek-Matuszek B. Obesity - Standards, trends and advances. Adv Med Sci 2024; 69:208-215. [PMID: 38604289 DOI: 10.1016/j.advms.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/10/2024] [Accepted: 04/04/2024] [Indexed: 04/13/2024]
Abstract
Obesity continues to be a significant global health concern, giving rise to various complications. This review article explores the current standards and emerging innovations in diagnosing and treating obesity, including recent disease name change, staging system or therapeutic goals. This narrative review has been based on recent scientific articles from PubMed database, limiting the scope of topics to current standards and upcoming developments and breakthroughs in the diagnosis and treatment of obesity. The educational and informative nature of the review has been maintained in order to make the information presented accessible to both researchers and clinical practitioners. The recognition of diverse obesity phenotypes has prompted a paradigm shift towards a complex and patient-centered approach to diagnosis and therapy. Pharmacotherapy for obesity is evolving rapidly, with ongoing research focusing on novel molecular targets and metabolic pathways. Promising developments include dual or triple incretin analogs, oral incretin drugs, neurotransmitter-based therapies, muscle mass-increasing treatments, and therapies targeting visceral adipose tissue browning. Despite current evidence-based international standards, the field of obesity diagnosis and treatment continues to expand, with new diagnostic tools and pharmacotherapies potentially replacing current practices. Therapeutic management should be tailored to individual patients, considering obesity phenotype, health status, lifestyle, and preferences. Looking ahead, the future holds promising opportunities for obesity management, but further research is required to assess the efficacy and safety of emerging therapies. A multifactorial and personalized approach will be pivotal in addressing the diverse challenges posed by obesity.
Collapse
Affiliation(s)
- Jakub Gołacki
- Chair and Department of Endocrinology, Diabetology and Metabolic Diseases, Medical University of Lublin, Lublin, Poland.
| | - Beata Matyjaszek-Matuszek
- Chair and Department of Endocrinology, Diabetology and Metabolic Diseases, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
49
|
Darapaneni H, Lakhanpal S, Chhayani H, Parikh K, Patel M, Gupta V, Anamika F, Munjal R, Jain R. Shedding light on weight loss: A narrative review of medications for treating obesity. ROMANIAN JOURNAL OF INTERNAL MEDICINE = REVUE ROUMAINE DE MEDECINE INTERNE 2024; 62:3-11. [PMID: 37752761 DOI: 10.2478/rjim-2023-0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Indexed: 09/28/2023]
Abstract
Obesity and overweight are the major risk factors for numerous chronic diseases, including cardiovascular diseases such as heart disease and stroke, which are the leading causes of death worldwide. The prevalence of obesity has dramatically risen in both developed and developing countries, making it a significant public health concern and a global crisis. Despite lifestyle modifications being the first-line treatment, the high risk of relapse has led to a growing interest in non-invasive pharmacotherapeutic interventions to achieve and maintain weight loss and reverse the growth of the obesity epidemic. Cardiovascular diseases and cancer account for the highest mortality rates among other comorbidities associated with obesity and overweight. Excess and abnormally deposited adipose tissue secretes various inflammatory mediators, leading to cardiovascular diseases and cancers. Weight loss of 5-10% significantly reduces cardiometabolic risk. Medications currently approved in the USA for long-term management of obesity are orlistat, naltrexone, bupropion, phentermine/topiramate, and Glucagon Like Peptide-1 (GLP-1) agonists such as liraglutide and semaglutide. The benefit-to-risk of medications, comorbidities, and individual responses should guide the treatment decisions. The article provides a comprehensive overview and discussion of several weight loss medications used previously and currently, including their efficacy, mechanisms of action, and side effects.
Collapse
Affiliation(s)
| | | | | | - Kinna Parikh
- G.M.E.R.S. Medical College, Gandhinagar, Gujarat, India
| | - Meet Patel
- Tianjin Medical University, Tianjin, China
| | - Vasu Gupta
- Dayanand Medical College and Hospital, Ludhiana, India
| | - Fnu Anamika
- University College of Medical Sciences, New Delhi, India
| | | | - Rohit Jain
- Penn state Milton S. Hershey Medical Center, Hershey, USA
| |
Collapse
|
50
|
Cha RH. Pharmacologic therapeutics in sarcopenia with chronic kidney disease. Kidney Res Clin Pract 2024; 43:143-155. [PMID: 38389147 PMCID: PMC11016676 DOI: 10.23876/j.krcp.23.094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/25/2023] [Accepted: 10/24/2023] [Indexed: 02/24/2024] Open
Abstract
Inflammation, metabolic acidosis, renin-angiotensin system activation, insulin resistance, and impaired perfusion to skeletal muscles, among others, are possible causes of uremic sarcopenia. These conditions induce the activation of the nuclear factor-kappa B and mitogen-activated protein kinase pathways, adenosine triphosphate ubiquitin-proteasome system, and reactive oxygen species system, resulting in protein catabolism. Strategies for the prevention and treatment of sarcopenia in chronic kidney disease (CKD) are aerobic and resistance exercises along with nutritional interventions. Anabolic hormones have shown beneficial effects. Megestrol acetate increased weight, protein catabolic rate, and albumin concentration, and it increased intracellular water component and muscle mass. Vitamin D supplementation showed improvement in physical function, muscle strength, and muscle mass. Correction of metabolic acidosis showed an increase in protein intake, serum albumin levels, body weight, and mid-arm circumference. The kidney- gut-muscle axis indicates that dysbiosis and changes in gut-derived uremic toxins and short-chain fatty acids affect muscle mass, composition, strength, and functional capacity. Biotic supplements, AST-120 administration, hemodiafiltration, and preservation of residual renal function are alleged to reduce uremic toxins, including indoxyl sulfate (IS) and p-cresyl sulfate (PCS). Synbiotics reversed the microbiota change in CKD patients and decreased uremic toxins. AST-120 administration changed the overall gut microbiota composition in CKD. AST-120 prevented IS and PCS tissue accumulation, ameliorated muscle atrophy, improved exercise capacity and mitochondrial biogenesis, restored epithelial tight junction proteins, and reduced plasma endotoxin levels and markers of oxidative stress and inflammation. In a human study, the addition of AST-120 to standard treatment had modest beneficial effects on gait speed change and quality of life.
Collapse
Affiliation(s)
- Ran-hui Cha
- Department of Internal Medicine, National Medical Center, Seoul, Republic of Korea
| |
Collapse
|