1
|
Hulett RE, Rivera-López C, Gehrke AR, Gompers A, Srivastava M. A wound-induced differentiation trajectory for neurons. Proc Natl Acad Sci U S A 2024; 121:e2322864121. [PMID: 38976727 PMCID: PMC11260127 DOI: 10.1073/pnas.2322864121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/03/2024] [Indexed: 07/10/2024] Open
Abstract
Animals capable of whole-body regeneration can replace any missing cell type and regenerate fully functional new organs, including new brains, de novo. The regeneration of a new brain requires the formation of diverse neural cell types and their assembly into an organized structure with correctly wired circuits. Recent work in various regenerative animals has revealed transcriptional programs required for the differentiation of distinct neural subpopulations, however, how these transcriptional programs are initiated in response to injury remains unknown. Here, we focused on the highly regenerative acoel worm, Hofstenia miamia, to study wound-induced transcriptional regulatory events that lead to the production of neurons and subsequently a functional brain. Footprinting analysis using chromatin accessibility data on a chromosome-scale genome assembly revealed that binding sites for the Nuclear Factor Y (NFY) transcription factor complex were significantly bound during regeneration, showing a dynamic increase in binding within one hour upon amputation specifically in tail fragments, which will regenerate a new brain. Strikingly, NFY targets were highly enriched for genes with neuronal function. Single-cell transcriptome analysis combined with functional studies identified soxC+ stem cells as a putative progenitor population for multiple neural subtypes. Further, we found that wound-induced soxC expression is likely under direct transcriptional control by NFY, uncovering a mechanism for the initiation of a neural differentiation pathway by early wound-induced binding of a transcriptional regulator.
Collapse
Affiliation(s)
- Ryan E. Hulett
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA02138
| | - Carlos Rivera-López
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA02138
- Department of Molecular and Cell Biology, Harvard University, Cambridge, MA02138
| | - Andrew R. Gehrke
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA02138
| | - Annika Gompers
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA02138
| | - Mansi Srivastava
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA02138
| |
Collapse
|
2
|
Hulett RE, Gehrke AR, Gompers A, Rivera-López C, Srivastava M. A wound-induced differentiation trajectory for neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.10.540286. [PMID: 37214981 PMCID: PMC10197691 DOI: 10.1101/2023.05.10.540286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Animals capable of whole-body regeneration can replace any missing cell type and regenerate fully-functional new organs, de novo . The regeneration of a new brain requires the formation of diverse neuronal cell types and their assembly into an organized structure and correctly-wired circuits. Recent work in various regenerative animals has revealed transcriptional programs required for the differentiation of distinct neuronal subpopulations, however how these transcriptional programs are initiated upon amputation remains unknown. Here, we focused on the highly regenerative acoel worm, Hofstenia miamia , to study wound-induced transcriptional regulatory events that lead to the production of neurons. Footprinting analysis using chromatin accessibility data on an improved genome assembly revealed that binding sites for the NFY transcription factor complex were significantly bound during regeneration, showing a dynamic increase in binding within one hour upon amputation specifically in tail fragments, which will regenerate a new brain. Strikingly, NFY targets were highly enriched for genes with neuronal functional. Single-cell transcriptome analysis combined with functional studies identified sox4 + stem cells as the likely progenitor population for multiple neuronal subtypes. Further, we found that wound-induced sox4 expression is likely under direct transcriptional control by NFY, uncovering a mechanism for how early wound-induced binding of a transcriptional regulator results in the initiation of a neuronal differentiation pathway. Highlights A new chromosome-scale assembly for Hofstenia enables comprehensive analysis of transcription factor binding during regeneration NFY motifs become dynamically bound by 1hpa in regenerating tail fragments, particularly in the loci of neural genes A sox4 + neural-specialized stem cell is identified using scRNA-seq sox4 is wound-induced and required for differentiation of multiple neural cell types NFY regulates wound-induced expression of sox4 during regeneration.
Collapse
|
3
|
Shindler RE, Yue J, Chaqour B, Shindler KS, Ross AG. Repeat Brn3a immunolabeling rescues faded staining and improves detection of retinal ganglion cells. Exp Eye Res 2023; 226:109310. [PMID: 36400286 PMCID: PMC9839618 DOI: 10.1016/j.exer.2022.109310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/11/2022] [Accepted: 11/08/2022] [Indexed: 11/17/2022]
Abstract
Immunofluorescence is used in numerous research areas including eye research to detect specific antigens in cells and tissues. One limitation is that fluorescent signal can fade, causing detection problems if data recording was not completed in a timely manner or if additional data acquisition is required. The ability to repeat immunostaining for the same antigen after initial fluorescence has faded may require time-consuming and potentially damaging steps to remove primary antibodies. Our studies assessed whether immunofluorescence could be reapplied to previously labeled retinal ganglion cells (RGCs). To examine whether immunostaining of Brn3a, a commonly used RGC marker, could be repeated in retinas with previously faded immunostaining, retinal whole mounts were labeled with anti-Brn3a primary antibodies and green fluorescent secondary antibodies, then allowed to fade over time. Faded retinas were restained with anti-Brn3a antibody followed by secondary antibody, or with secondary antibody alone. Results show restaining with anti-Brn3a primary antibody followed by Alexa-fluor green secondary antibody is effective for RGC detection. Repeat RGC labeling improved the clarity of staining compared with original staining prior to fading, with significant reduction in the percentage of blurry/out of focus fluorescent cells (6 vs 26%); whereas, repeat application of secondary antibody alone was not effective. Preflattening retinas under a coverslip prior to initial Brn3a staining also increased the clarity of staining, and facilitated significantly more accurate automated counting of RGCs. Findings suggest Brn3a antigen remains accessible for repeat immunofluorescence labeling after original staining fades. Staining retinas after flattening tissue may enhance the clarity of staining and accuracy of automated RGC counting. Repeat immunofluorescence staining, without the need to strip off prior bound antibodies, may be useful in other tissues as well and warrants future examination.
Collapse
Affiliation(s)
- Ryan E Shindler
- Department of Ophthalmology, Scheie Eye Institute, Center for Advanced Retinal and Ocular Therapeutics, F. M. Kirby Center for Molecular Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Jipeng Yue
- Department of Ophthalmology, Scheie Eye Institute, Center for Advanced Retinal and Ocular Therapeutics, F. M. Kirby Center for Molecular Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Brahim Chaqour
- Department of Ophthalmology, Scheie Eye Institute, Center for Advanced Retinal and Ocular Therapeutics, F. M. Kirby Center for Molecular Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Kenneth S Shindler
- Department of Ophthalmology, Scheie Eye Institute, Center for Advanced Retinal and Ocular Therapeutics, F. M. Kirby Center for Molecular Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; University of Pennsylvania, Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States.
| | - Ahmara G Ross
- Department of Ophthalmology, Scheie Eye Institute, Center for Advanced Retinal and Ocular Therapeutics, F. M. Kirby Center for Molecular Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; University of Pennsylvania, Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
4
|
Sharov AA, Nakatake Y, Wang W. Atlas of regulated target genes of transcription factors (ART-TF) in human ES cells. BMC Bioinformatics 2022; 23:377. [PMID: 36114445 PMCID: PMC9479252 DOI: 10.1186/s12859-022-04924-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 09/12/2022] [Indexed: 12/26/2022] Open
Abstract
Background Transcription factors (TFs) play central roles in maintaining “stemness” of embryonic stem (ES) cells and their differentiation into several hundreds of adult cell types. The regulatory competence of TFs is routinely assessed by detecting target genes to which they bind. However, these data do not indicate which target genes are activated, repressed, or not affected by the change of TF abundance. There is a lack of large-scale studies that compare the genome binding of TFs with the expression change of target genes after manipulation of each TF. Results In this paper we associated human TFs with their target genes by two criteria: binding to genes, evaluated from published ChIP-seq data (n = 1868); and change of target gene expression shortly after induction of each TF in human ES cells. Lists of direction- and strength-specific regulated target genes are generated for 311 TFs (out of 351 TFs tested) with expected proportion of false positives less than or equal to 0.30, including 63 new TFs not present in four existing databases of target genes. Our lists of direction-specific targets for 152 TFs (80.0%) are larger that in the TRRUST database. In average, 30.9% of genes that respond greater than or equal to twofold to the induction of TFs are regulated targets. Regulated target genes indicate that the majority of TFs are either strong activators or strong repressors, whereas sets of genes that responded greater than or equal to twofold to the induction of TFs did not show strong asymmetry in the direction of expression change. The majority of human TFs (82.1%) regulated their target genes primarily via binding to enhancers. Repression of target genes is more often mediated by promoter-binding than activation of target genes. Enhancer-promoter loops are more abundant among strong activator and repressor TFs. Conclusions We developed an atlas of regulated targets of TFs (ART-TF) in human ES cells by combining data on TF binding with data on gene expression change after manipulation of individual TFs. Sets of regulated gene targets were identified with a controlled rate of false positives. This approach contributes to the understanding of biological functions of TFs and organization of gene regulatory networks. This atlas should be a valuable resource for ES cell-based regenerative medicine studies. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-022-04924-3.
Collapse
|
5
|
Leon A, Subirana L, Magre K, Cases I, Tena JJ, Irimia M, Gomez-Skarmeta JL, Escriva H, Bertrand S. Gene regulatory networks of epidermal and neural fate choice in a chordate. Mol Biol Evol 2022; 39:6547258. [PMID: 35276009 PMCID: PMC9004418 DOI: 10.1093/molbev/msac055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Neurons are a highly specialized cell type only found in metazoans. They can be scattered throughout the body or grouped together, forming ganglia or nerve cords. During embryogenesis, centralized nervous systems develop from the ectoderm, which also forms the epidermis. How pluripotent ectodermal cells are directed toward neural or epidermal fates, and to which extent this process is shared among different animal lineages, are still open questions. Here, by using micromere explants, we were able to define in silico the putative gene regulatory networks (GRNs) underlying the first steps of the epidermis and the central nervous system formation in the cephalochordate amphioxus. We propose that although the signal triggering neural induction in amphioxus (i.e., Nodal) is different from vertebrates, the main transcription factors implicated in this process are conserved. Moreover, our data reveal that transcription factors of the neural program seem to not only activate neural genes but also to potentially have direct inputs into the epidermal GRN, suggesting that the Nodal signal might also contribute to neural fate commitment by repressing the epidermal program. Our functional data on whole embryos support this result and highlight the complex interactions among the transcription factors activated by the signaling pathways that drive ectodermal cell fate choice in chordates.
Collapse
Affiliation(s)
- Anthony Leon
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, F-66650, Banyuls-sur-Mer, France
| | - Lucie Subirana
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, F-66650, Banyuls-sur-Mer, France
| | - Kevin Magre
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, F-66650, Banyuls-sur-Mer, France
| | - Ildefonso Cases
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Sevilla, Spain
| | - Juan J Tena
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Sevilla, Spain
| | - Manuel Irimia
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Jose Luis Gomez-Skarmeta
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Sevilla, Spain
| | - Hector Escriva
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, F-66650, Banyuls-sur-Mer, France
| | - Stéphanie Bertrand
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, F-66650, Banyuls-sur-Mer, France
| |
Collapse
|
6
|
Seale AP, Malintha GHT, Celino-Brady FT, Head T, Belcaid M, Yamaguchi Y, Lerner DT, Baltzegar DA, Borski RJ, Stoytcheva ZR, Breves JP. Transcriptional regulation of prolactin in a euryhaline teleost: Characterisation of gene promoters through in silico and transcriptome analyses. J Neuroendocrinol 2020; 32:e12905. [PMID: 32996203 PMCID: PMC8612711 DOI: 10.1111/jne.12905] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 07/31/2020] [Accepted: 08/26/2020] [Indexed: 12/20/2022]
Abstract
The sensitivity of prolactin (Prl) cells of the Mozambique tilapia (Oreochromis mossambicus) pituitary to variations in extracellular osmolality enables investigations into how osmoreception underlies patterns of hormone secretion. Through the actions of their main secretory products, Prl cells play a key role in supporting hydromineral balance of fishes by controlling the major osmoregulatory organs (ie, gill, intestine and kidney). The release of Prl from isolated cells of the rostral pars distalis (RPD) occurs in direct response to physiologically relevant reductions in extracellular osmolality. Although the particular signal transduction pathways that link osmotic conditions to Prl secretion have been identified, the processes that underlie hyposmotic induction of prl gene expression remain unknown. In this short review, we describe two distinct tilapia gene loci that encode Prl177 and Prl188 . From our in silico analyses of prl177 and prl188 promoter regions (approximately 1000 bp) and a transcriptome analysis of RPDs from fresh water (FW)- and seawater (SW)-acclimated tilapia, we propose a working model for how multiple transcription factors link osmoreceptive processes with adaptive patterns of prl177 and prl188 gene expression. We confirmed via RNA-sequencing and a quantitative polymerase chain reaction that multiple transcription factors emerging as predicted regulators of prl gene expression are expressed in the RPD of tilapia. In particular, gene transcripts encoding pou1f1, stat3, creb3l1, pbxip1a and stat1a were highly expressed; creb3l1, pbxip1a and stat1a were elevated in fish acclimated to SW vs FW. Combined, our in silico and transcriptome analyses set a path for resolving how adaptive patterns of Prl secretion are achieved via the integration of osmoreceptive processes with the control of prl gene transcription.
Collapse
Affiliation(s)
- Andre P. Seale
- Department of Human Nutrition, Food and Animal Sciences, University of Hawai’i at Mānoa, Honolulu, HI, USA
| | | | - Fritzie T. Celino-Brady
- Department of Human Nutrition, Food and Animal Sciences, University of Hawai’i at Mānoa, Honolulu, HI, USA
| | - Tony Head
- Department of Human Nutrition, Food and Animal Sciences, University of Hawai’i at Mānoa, Honolulu, HI, USA
| | - Mahdi Belcaid
- Hawai’i Institute of Marine Biology, University of Hawai’i at Mānoa, Kaneohe, HI, USA
| | - Yoko Yamaguchi
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue, Japan
| | - Darren T. Lerner
- University of Hawai’i Sea Grant College Program, University of Hawai’i at Mānoa, Honolulu, HI, USA
| | - David A. Baltzegar
- Genomic Sciences Laboratory, Office of Research and Innovation, North Carolina State University, Raleigh, NC, USA
| | - Russell J. Borski
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Zoia R. Stoytcheva
- Department of Human Nutrition, Food and Animal Sciences, University of Hawai’i at Mānoa, Honolulu, HI, USA
| | - Jason P. Breves
- Department of Biology, Skidmore College, Saratoga Springs, NY, USA
| |
Collapse
|
7
|
Yadav R, Srivastava P. Establishment of resveratrol and its derivatives as neuroprotectant against monocrotophos-induced alteration in NIPBL and POU4F1 protein through molecular docking studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:291-304. [PMID: 31786755 DOI: 10.1007/s11356-019-06806-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Abstract
Monocrotophos (MCP) is a broad spectrum organophosphorus insecticide, which is widely used as foliar spray to the different important crops. MCP may reach the soil and the aquatic environment directly or indirectly during and after the application, which leads to the different environmental issues. MCP is found to be associated with neurotoxicity and its toxic effects have been monitored during different stages of neuronal development. Identification of gene expression in MCP-induced neurotoxicity during neuronal developmental stage is a major area of genomic research interest. In accordance with this identification, screening of potential neuroprotective, natural resources are also required as a preventive aspects by targeting the impaired genes. In this current course of work, microarray experiment has been used to identify genes that were expressed in monocrotophos (MCP)-induced mesenchymal stem cells (MSC) and also the neuroprotectant activity of RV on MCP-exposed MSCs. Microarray experiment data have been deposited in NCBI's Gene Expression Omnibus database and are accessible through GEO Series accession number GSE121261. In this paper, we have discussed two important genes NIPBL (nipped-B-like protein) and POU4F1 (POU domain, class 4, transcription factor 1). These genes were found to be significantly expressed in MCP-exposed MSC and show minimum expression in presence of RV. Homology modelling and docking study was done to identify the interaction and binding affinity of resveratrol and its derivatives with NIPBL and POU4F1 protein. Docking analysis shows that RV and its derivatives have strong interaction with NIPBL and POU4F1 protein hence proves the significance of resveratrol as potential neuroprotectant. This paper highlights the hazardous impact of MCP on neuronal development disorders and repairing potentiality of RV and its derivatives on altered genes involved in neuronal diseases. Graphical Abstract.
Collapse
Affiliation(s)
- Ruchi Yadav
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, U.P., India
| | - Prachi Srivastava
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, U.P., India.
| |
Collapse
|
8
|
Caporale AL, Gonda CM, Franchini LF. Transcriptional Enhancers in the FOXP2 Locus Underwent Accelerated Evolution in the Human Lineage. Mol Biol Evol 2019; 36:2432-2450. [PMID: 31359064 DOI: 10.1093/molbev/msz173] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 04/26/2019] [Accepted: 07/16/2019] [Indexed: 12/11/2022] Open
Abstract
Unique human features such as complex language are the result of molecular evolutionary changes that modified developmental programs of our brain. The human-specific evolution of the forkhead box P2 (FOXP2) gene coding region has been linked to the emergence of speech and language in the human kind. However, little is known about how the expression of FOXP2 is regulated and if its regulatory machinery evolved in a lineage-specific manner in humans. In order to identify FOXP2 regulatory regions containing human-specific changes we used databases of human accelerated non-coding sequences or HARs. We found that the topologically associating domain (TAD) determined using developing human cerebral cortex containing the FOXP2 locus includes two clusters of 12 HARs, placing the locus occupied by FOXP2 among the top regions showing fast acceleration rates in non-coding regions in the human genome. Using in vivo enhancer assays in zebrafish, we found that at least five FOXP2-HARs behave as transcriptional enhancers throughout different developmental stages. In addition, we found that at least two FOXP2-HARs direct the expression of the reporter gene EGFP to foxP2 expressing regions and cells. Moreover, we uncovered two FOXP2-HARs showing reporter expression gain of function in the nervous system when compared with the chimpanzee ortholog sequences. Our results indicate that regulatory sequences in the FOXP2 locus underwent a human-specific evolutionary process suggesting that the transcriptional machinery controlling this gene could have also evolved differentially in the human lineage.
Collapse
Affiliation(s)
- Alfredo Leandro Caporale
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Catalina M Gonda
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Lucía Florencia Franchini
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
9
|
POU6f1 Mediates Neuropeptide-Dependent Plasticity in the Adult Brain. J Neurosci 2018; 38:1443-1461. [PMID: 29305536 DOI: 10.1523/jneurosci.1641-17.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 12/11/2017] [Accepted: 12/21/2017] [Indexed: 01/20/2023] Open
Abstract
The mouse olfactory bulb (OB) features continued, activity-dependent integration of adult-born neurons, providing a robust model with which to examine mechanisms of plasticity in the adult brain. We previously reported that local OB interneurons secrete the neuropeptide corticotropin-releasing hormone (CRH) in an activity-dependent manner onto adult-born granule neurons and that local CRH signaling promotes expression of synaptic machinery in the bulb. This effect is mediated via activation of the CRH receptor 1 (CRHR1), which is developmentally regulated during adult-born neuron maturation. CRHR1 is a GS-protein-coupled receptor that activates CREB-dependent transcription in the presence of CRH. Therefore, we hypothesized that locally secreted CRH activates CRHR1 to initiate circuit plasticity programs. To identify such programs, we profiled gene expression changes associated with CRHR1 activity in adult-born neurons of the OB. Here, we show that CRHR1 activity influences expression of the brain-specific Homeobox-containing transcription factor POU Class 6 Homeobox 1 (POU6f1). To elucidate the contributions of POU6f1 toward activity-dependent circuit remodeling, we targeted CRHR1+ neurons in male and female mice for cell-type-specific manipulation of POU6f1 expression. Whereas loss of POU6f1 in CRHR1+ neurons resulted in reduced dendritic complexity and decreased synaptic connectivity, overexpression of POU6f1 in CRHR1+ neurons promoted dendritic outgrowth and branching and influenced synaptic function. Together, these findings suggest that the transcriptional program directed by POU6f1 downstream of local CRH signaling in adult-born neurons influences circuit dynamics in response to activity-dependent peptide signaling in the adult brain.SIGNIFICANCE STATEMENT Elucidating mechanisms of plasticity in the adult brain is helpful for devising strategies to understand and treat neurodegeneration. Circuit plasticity in the adult mouse olfactory bulb is exemplified by both continued cell integration and synaptogenesis. We previously reported that these processes are influenced by local neuropeptide signaling in an activity-dependent manner. Here, we show that local corticotropin-releasing hormone (CRH) signaling induces dynamic gene expression changes in CRH receptor expressing adult-born neurons, including altered expression of the transcription factor POU6f1 We further show that POU6f1 is necessary for proper dendrite specification and patterning, as well as synapse development and function in adult-born neurons. Together, these findings reveal a novel mechanism by which peptide signaling modulates adult brain circuit plasticity.
Collapse
|
10
|
Pance A. Oct-1, to go or not to go? That is the PolII question. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:820-4. [PMID: 27063953 DOI: 10.1016/j.bbagrm.2016.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/04/2016] [Accepted: 04/05/2016] [Indexed: 10/22/2022]
Abstract
The Oct transcription factors recognise an octamer DNA element from which they regulate transcription of specific target genes. Oct-1 is the only member of the subfamily that is ubiquitously expressed and has a wide role in transcriptional control. Through interaction with various partner proteins, Oct-1 can modulate accessibility to the chromatin to recruit the transcription machinery and form the pre-initiation complex. The recruited PolII is induced to initiate transcription and stalled until elongation is triggered on interaction with signalling transcription factors. In this way, Oct-1 can fulfil general roles in transcription by opening the chromatin as well as transduce extracellular signals by relaying activation through various interacting partners. The emerging picture of Oct-1 is that of a complex and versatile transcription factor with fundamental functions in cell homeostasis and signal response in general as well as cell specific contexts. This article is part of a Special Issue entitled: The Oct Transcription Factor Family, edited by Dr. Dean Tantin.
Collapse
Affiliation(s)
- Alena Pance
- The Wellcome Trust Sanger Institute, Hinxton CB10 1SA, Cambridgeshire, UK.
| |
Collapse
|
11
|
Kawase S, Kuwako K, Imai T, Renault-Mihara F, Yaguchi K, Itohara S, Okano H. Regulatory factor X transcription factors control Musashi1 transcription in mouse neural stem/progenitor cells. Stem Cells Dev 2015; 23:2250-61. [PMID: 25058468 DOI: 10.1089/scd.2014.0219] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The transcriptional regulation of neural stem/progenitor cells (NS/PCs) is of great interest in neural development and stem cell biology. The RNA-binding protein Musashi1 (Msi1), which is often employed as a marker for NS/PCs, regulates Notch signaling to maintain NS/PCs in undifferentiated states by the translational repression of Numb expression. Considering these critical roles of Msi1 in the maintenance of NS/PCs, it is extremely important to elucidate the regulatory mechanisms by which Msi1 is selectively expressed in these cells. However, the mechanism regulating Msi1 transcription is unclear. We previously reported that the transcriptional regulatory region of Msi1 is located in the sixth intron of the Msi1 locus in NS/PCs, based on in vitro experiments. In the present study, we generated reporter transgenic mice for the sixth intronic Msi1 enhancer (Msi1-6IE), which show the reporter expression corresponding with endogenous Msi1-positive cells in developing and adult NS/PCs. We found that the core element responsible for this reporter gene activity includes palindromic Regulatory factor X (Rfx) binding sites and that Msi1-6IE was activated by Rfx. Rfx4, which was highly expressed in NS/PCs positive for the Msi1-6IE reporter, bound to this region, and both of the palindromic Rfx binding sites were required for the transactivation of Msi1-6IE. Furthermore, ectopic Rfx4 expression in the developing mouse cerebral cortex transactivates Msi1 expression in the intermediate zone. This study suggests that ciliogenic Rfx transcription factors regulate Msi1 expression through Msi1-6IE in NS/PCs.
Collapse
Affiliation(s)
- Satoshi Kawase
- 1 Department of Physiology, Keio University School of Medicine , Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
12
|
Vieweg M, Dvorakova-Hortova K, Dudkova B, Waliszewski P, Otte M, Oels B, Hajimohammad A, Turley H, Schorsch M, Schuppe HC, Weidner W, Steger K, Paradowska-Dogan A. Methylation analysis of histone H4K12ac-associated promoters in sperm of healthy donors and subfertile patients. Clin Epigenetics 2015; 7:31. [PMID: 25806092 PMCID: PMC4372182 DOI: 10.1186/s13148-015-0058-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 02/12/2015] [Indexed: 11/24/2022] Open
Abstract
Background Histone to protamine exchange and the hyperacetylation of the remaining histones are hallmarks of spermiogenesis. Acetylation of histone H4 at lysine 12 (H4K12ac) was observed prior to full decondensation of sperm chromatin after fertilization suggesting an important role for the regulation of gene expression in early embryogenesis. Similarly, DNA methylation may contribute to gene silencing of several developmentally important genes. Following the identification of H4K12ac-binding promoters in sperm of fertile and subfertile patients, we aimed to investigate whether the depletion of histone-binding is associated with aberrant DNA methylation in sperm of subfertile men. Furthermore, we monitored the transmission of H4K12ac, 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) from the paternal chromatin to the embryo applying mouse in vitro fertilization and immunofluorescence. Results Chromatin immunoprecipitation (ChIP) with anti-H4K12ac antibody was performed with chromatin isolated from spermatozoa of subfertile patients with impaired sperm chromatin condensation assessed by aniline blue staining. Fertile donors were used as control. DNA methylation analysis of selected H4K12ac-interacting promoters in spermatozoa was performed by pyrosequencing. Depletion of binding sites for H4K12ac was observed within the following developmentally important promoters: AFF4, EP300, LRP5, RUVBL1, USP9X, NCOA6, NSD1, and POU2F1. We found 5% to 10% hypomethylation within CpG islands of selected promoters in the sperm of fertile donors, and it was not significantly altered in the subfertile group. Our results demonstrate that the H4K12ac depletion in selected developmentally important promoters of subfertile patients was not accompanied by a change of DNA methylation. Using a murine model, immunofluorescence revealed that H4K12ac co-localize with 5mC in the sperm nucleus. During fertilization, when the pronuclei are formed, the paternal pronucleus exhibits a strong acetylation signal on H4K12, while in the maternal pronucleus, there is a permanent increase of H4K12ac until pronuclei fusion. Simultaneously, there is an increase of the 5hmC signal and a decrease of the 5mC signal. Conclusions We suggest that aberrant histone acetylation within developmentally important gene promoters in subfertile men, but not DNA methylation, may reflect insufficient sperm chromatin compaction affecting the transfer of epigenetic marks to the oocyte. Electronic supplementary material The online version of this article (doi:10.1186/s13148-015-0058-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Markus Vieweg
- Section Molecular Andrology, Biomedical Research Center Seltersberg, Justus Liebig University of Giessen, 35392 Giessen, Germany
| | - Katerina Dvorakova-Hortova
- Laboratory of Reproductive Biology, Institute of Biotechnology AS CR, v.v.i., Videnska 1083, 14220 Prague 4, Czech Republic.,Biocev Group, Department of Zoology, Faculty of Science, Charles University in Prague, 12844 Prague, Czech Republic
| | - Barbora Dudkova
- Biocev Group, Department of Zoology, Faculty of Science, Charles University in Prague, 12844 Prague, Czech Republic
| | - Przemyslaw Waliszewski
- Department of Urology, Pediatric Urology and Andrology, Justus Liebieg University of Giessen, 35392 Giessen, Germany
| | - Marie Otte
- Fertility Center, 35578 Wetzlar, Germany
| | | | | | | | | | - Hans-Christian Schuppe
- Department of Urology, Pediatric Urology and Andrology, Justus Liebieg University of Giessen, 35392 Giessen, Germany
| | - Wolfgang Weidner
- Department of Urology, Pediatric Urology and Andrology, Justus Liebieg University of Giessen, 35392 Giessen, Germany
| | - Klaus Steger
- Section Molecular Andrology, Biomedical Research Center Seltersberg, Justus Liebig University of Giessen, 35392 Giessen, Germany
| | - Agnieszka Paradowska-Dogan
- Section Molecular Andrology, Biomedical Research Center Seltersberg, Justus Liebig University of Giessen, 35392 Giessen, Germany
| |
Collapse
|
13
|
Phatak NR, Stankowska DL, Krishnamoorthy RR. Transcription Factor Brn-3b Overexpression Enhances Neurite Outgrowth in PC12 Cells Under Condition of Hypoxia. Cell Mol Neurobiol 2015; 35:769-83. [PMID: 25786379 DOI: 10.1007/s10571-015-0171-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 03/06/2015] [Indexed: 10/23/2022]
Abstract
Transcription factor Brn-3b plays a key role in retinal ganglion cell differentiation, survival, and axon outgrowth during development. However, the precise role of Brn-3b in the normal adult retina as well as during neurodegeneration is unclear. In the current study, the effect of overexpression of Brn-3b was assessed in vitro, in PC12 cells under conditions of normoxia and hypoxia. Immunoblot analysis showed that overexpression of Brn-3b in PC12 cells as well as 661W cells produced significant increase in the growth cone marker, growth-associated protein-43 (GAP-43), and acetylated-tubulin (ac-TUBA). In addition, an increased immunostaining for GAP-43 and ac-TUBA was observed in PC12 cells overexpressing Brn-3b, which was accompanied by a marked increase in neurite outgrowth, compared to PC12 cells overexpressing the empty vector. In separate experiments, one set of PC12 cells transfected either with a Brn-3b expression vector or an empty vector was subjected to conditions of hypoxia for 2 h, while another set of similarly transfected PC12 cells was maintained in normoxic conditions. It was found that the upregulation of GAP-43 and ac-TUBA in PC12 cells overexpressing Brn-3b under conditions of normoxia was sustained under conditions of hypoxia. Immunocytochemical analysis revealed not only an upregulation of GAP-43 and ac-TUBA, but also increased neurite outgrowth in PC12 cells transfected with Brn-3b as compared to PC12 cells transfected with empty vector in both normoxia and hypoxia. The findings have implications for a potential role of Brn-3b in neurodegenerative diseases in which hypoxia/ischemia contribute to pathophysiology of the disease.
Collapse
Affiliation(s)
- Nitasha R Phatak
- Department of Cell Biology and Immunology, North Texas Eye Research Institute, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76107, USA
| | | | | |
Collapse
|
14
|
Cowles MW, Omuro KC, Stanley BN, Quintanilla CG, Zayas RM. COE loss-of-function analysis reveals a genetic program underlying maintenance and regeneration of the nervous system in planarians. PLoS Genet 2014; 10:e1004746. [PMID: 25356635 PMCID: PMC4214590 DOI: 10.1371/journal.pgen.1004746] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Accepted: 09/10/2014] [Indexed: 12/17/2022] Open
Abstract
Members of the COE family of transcription factors are required for central nervous system (CNS) development. However, the function of COE in the post-embryonic CNS remains largely unknown. An excellent model for investigating gene function in the adult CNS is the freshwater planarian. This animal is capable of regenerating neurons from an adult pluripotent stem cell population and regaining normal function. We previously showed that planarian coe is expressed in differentiating and mature neurons and that its function is required for proper CNS regeneration. Here, we show that coe is essential to maintain nervous system architecture and patterning in intact (uninjured) planarians. We took advantage of the robust phenotype in intact animals to investigate the genetic programs coe regulates in the CNS. We compared the transcriptional profiles of control and coe RNAi planarians using RNA sequencing and identified approximately 900 differentially expressed genes in coe knockdown animals, including 397 downregulated genes that were enriched for nervous system functional annotations. Next, we validated a subset of the downregulated transcripts by analyzing their expression in coe-deficient planarians and testing if the mRNAs could be detected in coe+ cells. These experiments revealed novel candidate targets of coe in the CNS such as ion channel, neuropeptide, and neurotransmitter genes. Finally, to determine if loss of any of the validated transcripts underscores the coe knockdown phenotype, we knocked down their expression by RNAi and uncovered a set of coe-regulated genes implicated in CNS regeneration and patterning, including orthologs of sodium channel alpha-subunit and pou4. Our study broadens the knowledge of gene expression programs regulated by COE that are required for maintenance of neural subtypes and nervous system architecture in adult animals. COE transcription factors are conserved across widely divergent animals and are crucial for organismal development. COE genes also play roles in adult animals and have been implicated in central nervous system (CNS) diseases; however, the function of COE in the post-embryonic CNS remains poorly understood. Planarian regeneration provides an excellent model to study the function of transcription factors in cell differentiation and in terminally differentiated cells. In planarians, coe is expressed in differentiating and mature neurons, and its function is required for CNS regeneration. In this study, we show that coe is required to maintain structure and function of the CNS in uninjured planarians. We took advantage of this phenotype to identify genes regulated by coe by comparing global gene expression changes between control and coe mRNA-deficient planarians. This approach revealed downregulated genes downstream of coe with biological roles in CNS function. Expression analysis of downregulated genes uncovered previously unknown candidate targets of coe in the CNS. Furthermore, functional analysis of downstream targets identified coe-regulated genes required for CNS regeneration. These results demonstrate that the roles of COE in stem cell specification and neuronal function are active and indispensable during CNS renewal in adult animals.
Collapse
Affiliation(s)
- Martis W. Cowles
- Department of Biology, San Diego State University, San Diego, California, United States of America
| | - Kerilyn C. Omuro
- Department of Biology, San Diego State University, San Diego, California, United States of America
| | - Brianna N. Stanley
- Department of Biology, San Diego State University, San Diego, California, United States of America
| | - Carlo G. Quintanilla
- Department of Biology, San Diego State University, San Diego, California, United States of America
| | - Ricardo M. Zayas
- Department of Biology, San Diego State University, San Diego, California, United States of America
- * E-mail:
| |
Collapse
|
15
|
Nadal-Nicolás FM, Jiménez-López M, Salinas-Navarro M, Sobrado-Calvo P, Alburquerque-Béjar JJ, Vidal-Sanz M, Agudo-Barriuso M. Whole number, distribution and co-expression of brn3 transcription factors in retinal ganglion cells of adult albino and pigmented rats. PLoS One 2012; 7:e49830. [PMID: 23166779 PMCID: PMC3500320 DOI: 10.1371/journal.pone.0049830] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 10/12/2012] [Indexed: 12/15/2022] Open
Abstract
The three members of the Pou4f family of transcription factors: Pou4f1, Pou4f2, Pou4f3 (Brn3a, Brn3b and Brn3c, respectively) play, during development, essential roles in the differentiation and survival of sensory neurons. The purpose of this work is to study the expression of the three Brn3 factors in the albino and pigmented adult rat. Animals were divided into these groups: i) untouched; ii) fluorogold (FG) tracing from both superior colliculli; iii) FG-tracing from one superior colliculus; iv) intraorbital optic nerve transection or crush. All retinas were dissected as flat-mounts and subjected to single, double or triple immunohistofluorescence The total number of FG-traced, Brn3a, Brn3b, Brn3c or Brn3 expressing RGCs was automatically quantified and their spatial distribution assessed using specific routines. Brn3 factors were studied in the general RGC population, and in the intrinsically photosensitive (ip-RGCs) and ipsilateral RGC sub-populations. Our results show that: i) 70% of RGCs co- express two or three Brn3s and the remaining 30% express only Brn3a (26%) or Brn3b; ii) the most abundant Brn3 member is Brn3a followed by Brn3b and finally Brn3c; iii) Brn3 a-, b- or c- expressing RGCs are similarly distributed in the retina; iv) The vast majority of ip-RGCs do not express Brn3; v) The main difference between both rat strains was found in the population of ipsilateral-RGCs, which accounts for 4.2% and 2.5% of the total RGC population in the pigmented and albino strain, respectively. However, more ipsilateral-RGCs express Brn3 factors in the albino than in the pigmented rat; vi) RGCs that express only Brn3b and RGCs that co-express the three Brn3 members have the biggest nuclei; vii) After axonal injury the level of Brn3a expression in the surviving RGCs decreases compared to control retinas. Finally, this work strengthens the validity of Brn3a as a marker to identify and quantify rat RGCs.
Collapse
Affiliation(s)
- Francisco M Nadal-Nicolás
- Unidad de Investigación, Hospital Universitario Virgen de la Arrixaca. Fundación para la Formación e Investigación Sanitarias de la Región de Murcia, IMIB, El Palmar, Murcia, Spain
| | | | | | | | | | | | | |
Collapse
|
16
|
de Angulo VR, Cortés J, Porta JM. Rigid-CLL: avoiding constant-distance computations in cell linked-lists algorithms. J Comput Chem 2012; 33:294-300. [PMID: 22072568 DOI: 10.1002/jcc.21974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 09/28/2011] [Indexed: 11/12/2022]
Abstract
Many of the existing molecular simulation tools require the efficient identification of the set of nonbonded interacting atoms. This is necessary, for instance, to compute the energy values or the steric contacts between atoms. Cell linked-lists can be used to determine the pairs of atoms closer than a given cutoff distance in asymptotically optimal time. Despite this long-term optimality, many spurious distances are anyway computed with this method. Therefore, several improvements have been proposed, most of them aiming to refine the volume of influence for each atom. Here, we suggest a different improvement strategy based on avoiding to fill cells with those atoms that are always at a constant distance of a given atom. This technique is particularly effective when large groups of the particles in the simulation behave as rigid bodies as it is the case in simplified models considering only few of the degrees of freedom of the molecule. In these cases, the proposed technique can reduce the number of distance computations by more than one order of magnitude, as compared with the standard cell linked-list technique. The benefits of this technique are obtained without incurring in additional computation costs, because it carries out the same operations as the standard cell linked-list algorithm, although in a different order. Since the focus of the technique is the order of the operations, it might be combined with existing improvements based on bounding the volume of influence for each atom.
Collapse
Affiliation(s)
- V Ruiz de Angulo
- Institut de Robòtica i Informàtica Industrial, UPC-CSIC, Llorens Artigas 4-6, 08028 Barcelona, Spain.
| | | | | |
Collapse
|
17
|
Kawase S, Imai T, Miyauchi-Hara C, Yaguchi K, Nishimoto Y, Fukami SI, Matsuzaki Y, Miyawaki A, Itohara S, Okano H. Identification of a novel intronic enhancer responsible for the transcriptional regulation of musashi1 in neural stem/progenitor cells. Mol Brain 2011; 4:14. [PMID: 21486496 PMCID: PMC3108301 DOI: 10.1186/1756-6606-4-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 04/13/2011] [Indexed: 01/18/2023] Open
Abstract
Background The specific genetic regulation of neural primordial cell determination is of great interest in stem cell biology. The Musashi1 (Msi1) protein, which belongs to an evolutionarily conserved family of RNA-binding proteins, is a marker for neural stem/progenitor cells (NS/PCs) in the embryonic and post-natal central nervous system (CNS). Msi1 regulates the translation of its downstream targets, including m-Numb and p21 mRNAs. In vitro experiments using knockout mice have shown that Msi1 and its isoform Musashi2 (Msi2) keep NS/PCs in an undifferentiated and proliferative state. Msi1 is expressed not only in NS/PCs, but also in other somatic stem cells and in tumours. Based on previous findings, Msi1 is likely to be a key regulator for maintaining the characteristics of self-renewing stem cells. However, the mechanisms regulating Msi1 expression are not yet clear. Results To identify the DNA region affecting Msi1 transcription, we inserted the fusion gene ffLuc, comprised of the fluorescent Venus protein and firefly Luciferase, at the translation initiation site of the mouse Msi1 gene locus contained in a 184-kb bacterial artificial chromosome (BAC). Fluorescence and Luciferase activity, reflecting the Msi1 transcriptional activity, were observed in a stable BAC-carrying embryonic stem cell line when it was induced toward neural lineage differentiation by retinoic acid treatment. When neuronal differentiation was induced in embryoid body (EB)-derived neurosphere cells, reporter signals were detected in Msi1-positive NSCs and GFAP-positive astrocytes, but not in MAP2-positive neurons. By introducing deletions into the BAC reporter gene and conducting further reporter experiments using a minimized enhancer region, we identified a region, "D5E2," that is responsible for Msi1 transcription in NS/PCs. Conclusions A regulatory element for Msi1 transcription in NS/PCs is located in the sixth intron of the Msi1 gene. The 595-bp D5E2 intronic enhancer can transactivate Msi1 gene expression with cell-type specificity markedly similar to the endogenous Msi1 expression patterns.
Collapse
Affiliation(s)
- Satoshi Kawase
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Akt regulates the expression of MafK, synaptotagmin I, and syntenin-1, which play roles in neuronal function. J Biomed Sci 2010; 17:18. [PMID: 20233453 PMCID: PMC2844376 DOI: 10.1186/1423-0127-17-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 03/17/2010] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Akt regulates various cellular processes, including cell growth, survival, and metabolism. Recently, Akt's role in neurite outgrowth has also emerged. We thus aimed to identify neuronal function-related genes that are regulated by Akt. METHODS We performed suppression subtractive hybridization on two previously established PC12 sublines, one of which overexpresses the wild-type (WT) form and the other, the dominant-negative (DN) form of Akt. These sublines respond differently to NGF's neuronal differentiation effect. RESULTS A variety of genes was identified and could be classified into several functional groups, one of which was developmental processes. Two genes involved in neuronal differentiation and function were found in this group. v-Maf musculoaponeurotic fibrosarcoma oncogene homolog K (MafK) induces the neuronal differentiation of PC12 cells and immature telencephalon neurons, and synaptotagmin I (SytI) is essential for neurotransmitter release. Another gene, syntenin-1 (Syn-1) was also recognized in the same functional group into which MafK and SytI were classified. Syn-1 has been reported to promote the formation of membrane varicosities in neurons. Quantitative reverse transcription polymerase chain reaction analyses show that the transcript levels of these three genes were lower in PC12 (WT-Akt) cells than in parental PC12 and PC12 (DN-Akt) cells. Furthermore, treatment of PC12 (WT-Akt) cells with an Akt inhibitor resulted in the increase of the expression of these genes and the improvement of neurite outgrowth. These results indicate that dominant-negative or pharmacological inhibition of Akt increases the expression of MafK, SytI, and Syn-1 genes. Using lentiviral shRNA to knock down endogenous Syn-1 expression, we demonstrated that Syn-1 promotes an increase in the numbers of neurites and branches. CONCLUSIONS Taken together, these results indicate that Akt negatively regulates the expression of MafK, SytI, and Syn-1 genes that all participate in regulating neuronal integrity in some way or another.
Collapse
|
19
|
Kang J, Shakya A, Tantin D. Stem cells, stress, metabolism and cancer: a drama in two Octs. Trends Biochem Sci 2009; 34:491-9. [PMID: 19733480 DOI: 10.1016/j.tibs.2009.06.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Revised: 05/30/2009] [Accepted: 06/03/2009] [Indexed: 01/16/2023]
Abstract
It is a classic story of two related transcription factors. Oct4 is a potent regulator of pluripotency during early mammalian embryonic development, and is notable for its ability to convert adult somatic cells to pluripotency. The widely expressed Oct1 protein shares significant homology with Oct4, binds to the same sequences, regulates common target genes, and shares common modes of upstream regulation, including the ability to respond to cellular stress. Both proteins are also associated with malignancy, yet Oct1 cannot substitute for Oct4 in the generation of pluripotency. The molecular underpinnings of these phenomena are emerging, as are the consequences for adult stem cells and cancer, and thereby hangs a tale.
Collapse
Affiliation(s)
- Jinsuk Kang
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| | | | | |
Collapse
|
20
|
Farooqui-Kabir SR, Diss JKJ, Henderson D, Marber MS, Latchman DS, Budhram-Mahadeo V, Heads RJ. Cardiac expression of Brn-3a and Brn-3b POU transcription factors and regulation of Hsp27 gene expression. Cell Stress Chaperones 2008; 13:297-312. [PMID: 18368538 PMCID: PMC2673938 DOI: 10.1007/s12192-008-0028-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Revised: 01/29/2008] [Accepted: 01/31/2008] [Indexed: 11/24/2022] Open
Abstract
The Brn-3 family of transcription factors play a critical role in regulating expression of genes that control cell fate, including the small heat shock protein Hsp27. The aim of this study was to investigate the relationship between Brn-3a and Brn-3b and Hsp27 expression in the developing rodent heart. Brn-3a and Brn-3b were detected from embryonic days 9.5-10.5 (E9.5-E10.5) in the mouse heart, with significant increases seen later during development. Two isoforms (long and short) of each protein were detected during embryogenesis and postnatally. Brn-3a messenger RNA (mRNA) and protein were localized by E13.0 to the atrio-ventricular (AV) valve cushions and leaflets, outflow tract (OFT), epicardium and cardiac ganglia. By E14.5, Brn-3a was also localised to the septa and compact ventricular myocardium. An increase in expression of the long Brn-3a(l) isoform between E17 and adult coincided with a decrease in expression of Brn-3b(l) and a marked increase in expression of Hsp27. Hearts from Brn-3a-/- mice displayed a partially penetrant phenotype marked by thickening of the endocardial cushions and AV valve leaflets and hypoplastic ventricular myocardium. Loss of Brn-3a was correlated with a compensatory increase in Brn-3b and GATA3 mRNA but no change in Hsp27 mRNA. Reporter assays in isolated cardiomyocytes demonstrated that both Brn-3a and Brn-3b activate the hsp27 promoter via a consensus Brn-3-binding site. Therefore, Brn-3 POU factors may play an important role in the development and maintenance of critical cell types and structures within the heart, in part via developmental regulation of myocardial Hsp27 expression. Furthermore, Brn-3a may be necessary for correct valve and myocardial remodelling and maturation.
Collapse
Affiliation(s)
- Saleha R. Farooqui-Kabir
- Cardiovascular Division, King’s College London School of Medicine, Department of Cardiology, The Rayne Institute, St Thomas’s Hospital, Lambeth Palace Road, London, SE1 7EH UK
| | - James K. J. Diss
- Medical Molecular Biology Unit, The Institute of Child Health, University College London, London, WC1N 1EH UK
| | - Deborah Henderson
- Institute of Human Genetics, University of Newcastle-Upon-Tyne, International Centre for Life, Newcastle-Upon Tyne, NE1 3BZ UK
| | - Michael S. Marber
- Cardiovascular Division, King’s College London School of Medicine, Department of Cardiology, The Rayne Institute, St Thomas’s Hospital, Lambeth Palace Road, London, SE1 7EH UK
| | - David S. Latchman
- Medical Molecular Biology Unit, The Institute of Child Health, University College London, London, WC1N 1EH UK
| | - Vishwanie Budhram-Mahadeo
- Medical Molecular Biology Unit, The Institute of Child Health, University College London, London, WC1N 1EH UK
| | - Richard J. Heads
- Cardiovascular Division, King’s College London School of Medicine, Department of Cardiology, The Rayne Institute, St Thomas’s Hospital, Lambeth Palace Road, London, SE1 7EH UK
| |
Collapse
|
21
|
Brn-3a/POU4F1 interacts with and differentially affects p73-mediated transcription. Cell Death Differ 2008; 15:1266-78. [PMID: 18421303 DOI: 10.1038/cdd.2008.45] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The Brn-3a/POU4F1 POU transcription factor is critical for the survival and differentiation of specific sensory neurons during development or upon injury; by regulating expression of target genes, either directly or indirectly upon interaction with other proteins. In this study, we demonstrated the physical interaction of Brn-3a with different p73 isoforms and showed co-localization in sensory neurons arising from the neural crest. The biological effects of p73/ Brn-3a interaction depend on the particular p73 isoform, because co-expression of Brn-3a with TAp73 enhanced cell cycle arrest, whereas Brn-3a and DeltaNp73 cooperated to increase protection from apoptosis. Brn-3a antagonized TAp73 transactivation of pro-apoptotic Bax, but co-operated to increase transcription of the cell cycle regulator p21 CIP1/Waf1. The region 425-494 amino acids within the TAp73 C terminus were critical for Brn-3a to repress Bax transactivation, but not for cooperation on the p21 CIP1/Waf1 promoter. Our results suggest that co-factors binding to the p73 C terminus facilitate maximal activation on the Bax but not p21 CIP1/Waf1 promoter and that Brn-3a modulates this interaction. Thus, the physical interaction of Brn-3a with specific p73 isoforms will be critical for determining cell fate during neuronal development or in injured neurons expressing both factors.
Collapse
|
22
|
Schulze-Späte U, Battaglino R, Fu J, Sharma A, Vokes M, Stashenko P. Brn3 transcription factors control terminal osteoclastogenesis. J Cell Biochem 2007; 102:1-12. [PMID: 17668438 DOI: 10.1002/jcb.21257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Osteoclastic bone resorption is a central mechanism in skeletal development, remodeling and pathology. RANKL is a mandatory factor controlling osteoclastogenesis; however, the underlying signaling pathways are only partially characterized. Using a screening array for the investigation of differential transcription factor activation, we identified activation of the Brn3 transcription factor family as a downstream event of RANKL signaling during terminal osteoclastogenesis. RANKL stimulation induces expression of Brn3a and b and maximal transcriptional activity of Brn3 family members concurrent with osteoclastic giant cell formation. Immunohistochemical analysis revealed both nuclear and cytoplasmic localization of Brn3a and b in mature osteoclasts. Functional inhibition of Brn3 transcription factors resulted in inhibition of pre-osteoclast fusion and reduction in bone resorbing activity of mature osteoclasts. Furthermore, we identified synaptotagmin-1, a regulator of membrane and vesicular fusion, as downstream target of Brn3 with a role in osteoclast function. We conclude that Brn-3 represents a novel molecular differentiation factor that controls osteoclast maturation and function, suggesting an important role in bone metabolism.
Collapse
Affiliation(s)
- Ulrike Schulze-Späte
- Department of Cytokine Biology, The Forsyth Institute, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
23
|
Alazard R, Mourey L, Ebel C, Konarev PV, Petoukhov MV, Svergun DI, Erard M. Fine-tuning of intrinsic N-Oct-3 POU domain allostery by regulatory DNA targets. Nucleic Acids Res 2007; 35:4420-32. [PMID: 17576670 PMCID: PMC1935007 DOI: 10.1093/nar/gkm453] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The 'POU' (acronym of Pit-1, Oct-1, Unc-86) family of transcription factors share a common DNA-binding domain of approximately 160 residues, comprising so-called 'POUs' and 'POUh' sub-domains connected by a flexible linker. The importance of POU proteins as developmental regulators and tumor-promoting agents is due to linker flexibility, which allows them to adapt to a considerable variety of DNA targets. However, because of this flexibility, it has not been possible to determine the Oct-1/Pit-1 linker structure in crystallographic POU/DNA complexes. We have previously shown that the neuronal POU protein N-Oct-3 linker contains a structured region. Here, we have used a combination of hydrodynamic methods, DNA footprinting experiments, molecular modeling and small angle X-ray scattering to (i) structurally interpret the N-Oct-3-binding site within the HLA DRalpha gene promoter and deduce from this a novel POU domain allosteric conformation and (ii) analyze the molecular mechanisms involved in conformational transitions. We conclude that there might exist a continuum running from free to 'pre-bound' N-Oct-3 POU conformations and that regulatory DNA regions likely select pre-existing conformers, in addition to molding the appropriate DBD structure. Finally, we suggest that a specific pair of glycine residues in the linker might act as a major conformational switch.
Collapse
Affiliation(s)
- Robert Alazard
- Institut de Pharmacologie et de Biologie Structurale, 205 Route de Narbonne, 31077 Toulouse, Institut de Biologie Structurale, UMR 5075 CEA-CNRS-UJF, 41 rue Jules Horowitz, 38027 Grenoble, France and European Molecular Biology Laboratory, Hamburg Outstation, EMBL c/o DESY, D-22603 Hamburg, Germany and Institute of Crystallography, Russian Academy of Sciences, Leninsky pr. 59, 117333 Moscow, Russia
| | - Lionel Mourey
- Institut de Pharmacologie et de Biologie Structurale, 205 Route de Narbonne, 31077 Toulouse, Institut de Biologie Structurale, UMR 5075 CEA-CNRS-UJF, 41 rue Jules Horowitz, 38027 Grenoble, France and European Molecular Biology Laboratory, Hamburg Outstation, EMBL c/o DESY, D-22603 Hamburg, Germany and Institute of Crystallography, Russian Academy of Sciences, Leninsky pr. 59, 117333 Moscow, Russia
| | - Christine Ebel
- Institut de Pharmacologie et de Biologie Structurale, 205 Route de Narbonne, 31077 Toulouse, Institut de Biologie Structurale, UMR 5075 CEA-CNRS-UJF, 41 rue Jules Horowitz, 38027 Grenoble, France and European Molecular Biology Laboratory, Hamburg Outstation, EMBL c/o DESY, D-22603 Hamburg, Germany and Institute of Crystallography, Russian Academy of Sciences, Leninsky pr. 59, 117333 Moscow, Russia
| | - Peter V. Konarev
- Institut de Pharmacologie et de Biologie Structurale, 205 Route de Narbonne, 31077 Toulouse, Institut de Biologie Structurale, UMR 5075 CEA-CNRS-UJF, 41 rue Jules Horowitz, 38027 Grenoble, France and European Molecular Biology Laboratory, Hamburg Outstation, EMBL c/o DESY, D-22603 Hamburg, Germany and Institute of Crystallography, Russian Academy of Sciences, Leninsky pr. 59, 117333 Moscow, Russia
| | - Maxim V. Petoukhov
- Institut de Pharmacologie et de Biologie Structurale, 205 Route de Narbonne, 31077 Toulouse, Institut de Biologie Structurale, UMR 5075 CEA-CNRS-UJF, 41 rue Jules Horowitz, 38027 Grenoble, France and European Molecular Biology Laboratory, Hamburg Outstation, EMBL c/o DESY, D-22603 Hamburg, Germany and Institute of Crystallography, Russian Academy of Sciences, Leninsky pr. 59, 117333 Moscow, Russia
| | - Dmitri I. Svergun
- Institut de Pharmacologie et de Biologie Structurale, 205 Route de Narbonne, 31077 Toulouse, Institut de Biologie Structurale, UMR 5075 CEA-CNRS-UJF, 41 rue Jules Horowitz, 38027 Grenoble, France and European Molecular Biology Laboratory, Hamburg Outstation, EMBL c/o DESY, D-22603 Hamburg, Germany and Institute of Crystallography, Russian Academy of Sciences, Leninsky pr. 59, 117333 Moscow, Russia
| | - Monique Erard
- Institut de Pharmacologie et de Biologie Structurale, 205 Route de Narbonne, 31077 Toulouse, Institut de Biologie Structurale, UMR 5075 CEA-CNRS-UJF, 41 rue Jules Horowitz, 38027 Grenoble, France and European Molecular Biology Laboratory, Hamburg Outstation, EMBL c/o DESY, D-22603 Hamburg, Germany and Institute of Crystallography, Russian Academy of Sciences, Leninsky pr. 59, 117333 Moscow, Russia
- *To whom correspondence should be addressed. +33 (0) 562175496+33 (0) 562175994
| |
Collapse
|
24
|
Marmigère F, Ernfors P. Specification and connectivity of neuronal subtypes in the sensory lineage. Nat Rev Neurosci 2007; 8:114-27. [PMID: 17237804 DOI: 10.1038/nrn2057] [Citation(s) in RCA: 289] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During the development of the nervous system, many different types of neuron are produced. As well as forming the correct type of neuron, each must also establish precise connections. Recent findings show that, because of shared gene programmes, neuronal identity is intimately linked to and coordinated with axonal behaviour. Peripheral sensory neurons provide an excellent system in which to study these interactions. This review examines how neuronal diversity is created in the PNS and describes proteins that help to direct the diversity of neuronal subtypes, cell survival, axonal growth and the establishment of central patterns of modality-specific connections.
Collapse
Affiliation(s)
- Frédéric Marmigère
- Section of Molecular Neurobiology, Karolinska Institutet, MBB, Scheeles vg 1, S17 177 Stockholm, Sweden
| | | |
Collapse
|
25
|
Dong B, Zhao FQ. Expression of the Oct-2 transcription factor in mouse mammary gland and cloning and characterization of a novel Oct-2 isoform. Cell Tissue Res 2007; 328:595-606. [PMID: 17285328 DOI: 10.1007/s00441-006-0368-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Accepted: 12/12/2006] [Indexed: 11/25/2022]
Abstract
Oct-2 is a member of the POU family of transcription factors, which specifically bind to the octamer DNA motif ATGCAAAT and its closely related sequences. Unlike its ubiquitous counterpart Oct-1, Oct-2 is thought to be expressed only in B lymphocytes and neuronal cells and is mainly involved in immunoglobulin gene expression. We show here that Oct-2 is also expressed in the epithelial cells of mouse mammary gland, and that this expression is developmentally regulated. Rapid amplification of cDNA ends and subsequent cDNA cloning indicate that the mammary gland expresses multiple Oct-2 isoforms, including a novel isoform, named Oct-2.7. Compared with Oct-2 (isoform 2.1), the deduced Oct-2.7 sequence has an additional 22 amino acids close to the N-terminus and a novel 76-amino-acid C-terminus resulting from alternative splicing, with retention of the last intron that is spliced out in all other isoforms. Although Oct-2.7 has intact POU-specific and POU-homeo domains, it is unable to bind to the octamer motif, unlike all other known isoforms. Like Oct-1, both Oct-2.1 and Oct-2.7 can activate basal beta-casein gene promoter activity. However, activation by Oct-2.7, which is independent of DNA binding, is significantly lower than that by Oct-2.1. Moreover, deletion of the first 114 amino acids at the N-terminus of Oct-2.1 has no effect on activation; this does not support previous reports of the presence of an inhibitory domain in this region.
Collapse
Affiliation(s)
- Bing Dong
- Lactation and Mammary Gland Biology Group, Department of Animal Science, University of Vermont, Burlington, VT 05405, USA
| | | |
Collapse
|
26
|
Kamm K, Schierwater B. Ancient linkage of a POU class 6 and an anterior hox-like gene in cnidaria: implications for the evolution of homeobox genes. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2007; 308:777-84. [PMID: 17708533 DOI: 10.1002/jez.b.21196] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Linkage analyses in metazoan genomes suggest two ancestral arrays for the majority of homeobox genes. The related homeobox genes and chromosomal regions that are dispersed in extant species derived possibly from only two single common ancestor regions. One proposed ancestral array, designated as ANTP mega-array, contains most of the ANTP class homeobox genes; the second, named the contraHox super-paralogon, would consist of the classes PRD, POU, LIM, CUT, prospero, TALE and SIX. Here, we report the tight linkage of a POU class 6 gene to an anterior Hox-like gene in the hydrozoan Eleutheria dichotoma and discuss its possible significance for the evolution of homeobox genes. POU class 6 genes also seem to be ancestrally linked to the HoxC and A clusters in vertebrates, despite POU homeobox genes belonging to the contraHox paralogon. Hence, the much tighter linkage of a POU class 6 gene to an anterior Hox-like gene in a cnidarian is possibly the evolutionary echo of an ancestral genomic region from which most metazoan homeobox classes emerged.
Collapse
Affiliation(s)
- Kai Kamm
- ITZ, Ecology and Evolution, TiHo Hannover, Hannover, Germany
| | | |
Collapse
|
27
|
Von Stetina SE, Watson JD, Fox RM, Olszewski KL, Spencer WC, Roy PJ, Miller DM. Cell-specific microarray profiling experiments reveal a comprehensive picture of gene expression in the C. elegans nervous system. Genome Biol 2007; 8:R135. [PMID: 17612406 PMCID: PMC2323220 DOI: 10.1186/gb-2007-8-7-r135] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Revised: 06/13/2007] [Accepted: 07/05/2007] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND With its fully sequenced genome and simple, well-defined nervous system, the nematode Caenorhabditis elegans offers a unique opportunity to correlate gene expression with neuronal differentiation. The lineal origin, cellular morphology and synaptic connectivity of each of the 302 neurons are known. In many instances, specific behaviors can be attributed to particular neurons or circuits. Here we describe microarray-based methods that monitor gene expression in C. elegans neurons and, thereby, link comprehensive profiles of neuronal transcription to key developmental and functional properties of the nervous system. RESULTS We employed complementary microarray-based strategies to profile gene expression in the embryonic and larval nervous systems. In the MAPCeL (Microarray Profiling C. elegans cells) method, we used fluorescence activated cell sorting (FACS) to isolate GFP-tagged embryonic neurons for microarray analysis. To profile the larval nervous system, we used the mRNA-tagging technique in which an epitope-labeled mRNA binding protein (FLAG-PAB-1) was transgenically expressed in neurons for immunoprecipitation of cell-specific transcripts. These combined approaches identified approximately 2,500 mRNAs that are highly enriched in either the embryonic or larval C. elegans nervous system. These data are validated in part by the detection of gene classes (for example, transcription factors, ion channels, synaptic vesicle components) with established roles in neuronal development or function. Of particular interest are 19 conserved transcripts of unknown function that are also expressed in the mammalian brain. In addition to utilizing these profiling approaches to define stage-specific gene expression, we also applied the mRNA-tagging method to fingerprint a specific neuron type, the A-class group of cholinergic motor neurons, during early larval development. A comparison of these data to a MAPCeL profile of embryonic A-class motor neurons identified genes with common functions in both types of A-class motor neurons as well as transcripts with roles specific to each motor neuron type. CONCLUSION We describe microarray-based strategies for generating expression profiles of embryonic and larval C. elegans neurons. These methods can be applied to particular neurons at specific developmental stages and, therefore, provide an unprecedented opportunity to obtain spatially and temporally defined snapshots of gene expression in a simple model nervous system.
Collapse
Affiliation(s)
- Stephen E Von Stetina
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232-8240, USA
| | - Joseph D Watson
- Graduate Program in Neuroscience, Center for Molecular Neuroscience, Vanderbilt University, Nashville, TN 37232-8548, USA
| | - Rebecca M Fox
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232-8240, USA
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Kellen L Olszewski
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232-8240, USA
- Department of Molecular Biology, Lewis-Sigler Institute for Integrative Genomics, Princeton University 246 Carl Icahn Laboratory, Princeton NJ 08544, USA
| | - W Clay Spencer
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232-8240, USA
| | - Peter J Roy
- Department of Medical Genetics and Microbiology, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 1A, Canada
| | - David M Miller
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232-8240, USA
- Graduate Program in Neuroscience, Center for Molecular Neuroscience, Vanderbilt University, Nashville, TN 37232-8548, USA
| |
Collapse
|
28
|
Abstract
The Brn-3b POU domain transcription factor is elevated in a significant proportion of breast cancers and in neuroblastoma tumours, where it is associated with increased proliferation, anchorage-independent growth, faster and larger tumour growth in xenograft models, resistance to growth inhibitory stimuli and increased migratory potential. These effects are associated with the ability of Brn-3b to regulate specific genes associated with these processes. Reducing Brn-3b can reverse many of these effects, suggesting that it may be possible to alter the growth and behaviour of tumour cells by abrogating Brn-3b in these cancers. This review discusses the effect of altering Brn-3b in these cancer cells and possible approaches to targeting Brn-3b as a strategy for therapy in treatment of breast cancers.
Collapse
|
29
|
Doyle GA, Sheng XR, Schwebel CL, Ferraro TN, Berrettini WH, Buono RJ. Identification and functional significance of polymorphisms in the μ-opioid receptor gene (Oprm) promoter of C57BL/6 and DBA/2 mice. Neurosci Res 2006; 55:244-54. [PMID: 16644048 DOI: 10.1016/j.neures.2006.03.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2005] [Revised: 03/03/2006] [Accepted: 03/13/2006] [Indexed: 11/30/2022]
Abstract
C57BL/6J and DBA/2J mice demonstrate differences in morphine preference when tested in a two-bottle choice paradigm. Quantitative trait loci (QTL) mapping suggested the proximal region of chromosome 10 was responsible for 41% of the observed genetic variance. The mu-opioid receptor (MOR) gene (Oprm) maps to this region and is a prime candidate for explaining the QTL. We hypothesized that variations in Oprm between these strains are responsible for differences in morphine preference. We identify five single nucleotide polymorphisms (SNPs) in the Oprm promoter; three within or near putative transcription factor binding sites. Promoter fragments were amplified from genomic DNA by polymerase chain reaction (PCR) and subcloned into luciferase reporter vectors. A significant difference in basal Oprm promoter activity was seen with C57BL/6 and DBA/2 approximately 1675 constructs in MOR-positive BE(2)-C cells, but not in MOR-negative Neuro-2a cells. In BE(2)-C cells, average DBA/2 approximately 1675 construct activity was 1.3-2.0x greater than average C57BL/6 activity suggesting that the SNPs might alter MOR expression in these two mouse strains. Significant differences in promoter activities between the two cell lines suggest that cell-type-specific transcription factors are involved. No significant differences in construct activity were found between untreated and morphine-treated BE(2)-C or Neuro-2a cells, suggesting that morphine does not regulate transcription of Oprm.
Collapse
Affiliation(s)
- Glenn A Doyle
- The Center for Neurobiology and Behavior, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, United States.
| | | | | | | | | | | |
Collapse
|
30
|
Lan L, Liu M, Liu Y, Liu Y, Zhang W, Xue J, Xue Z, He R. Expression of qBrn-1, a new member of the POU gene family, in the early developing nervous system and embryonic kidney. Dev Dyn 2006; 235:1107-14. [PMID: 16498618 DOI: 10.1002/dvdy.20703] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
It has been shown that POU domain genes play critical roles in the development of the nervous system. We have obtained a new member of the class III POU domain genes, qBrn-1, from the cDNA library of embryonic day 5 quail and have made an extensive expression pattern analysis of qBrn-1 and qBrn-2 throughout the early embryonic development by in situ hybridization. With a specific antibody we prepared, further analysis by immunohistochemistry showed that the location of qBrn-1 protein was consistent with that of the transcripts in the early developing quail. Our results showed that both qBrn-1 and qBrn-2 were preferentially expressed in the developing central nervous system, and their transcripts were initially detected in the neural plate and later in the distinct regions of the neural tube with a stage-dependent pattern. Moreover, their expression was also detected in both notochord and neural crests. However, qBrn-1 signal, different from qBrn-2, was more widely found in the auditory pits, branchial arches, and in the mesodermal components of the developing kidney. And the expression of qBrn-1 in nephric region was earlier and wider than that of mouse Brn-1, suggesting the characteristic function of qBrn-1 in the kidney formation. The distinct dynamic expression patterns of qBrn-1 and qBrn-2 indicate multiple roles of the class III POU genes in quail neurogenesis and organogenesis.
Collapse
Affiliation(s)
- Lei Lan
- The State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, the Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Candiani S, Oliveri D, Parodi M, Bertini E, Pestarino M. Expression of AmphiPOU-IV in the developing neural tube and epidermal sensory neural precursors in amphioxus supports a conserved role of class IV POU genes in the sensory cells development. Dev Genes Evol 2006; 216:623-33. [PMID: 16773340 DOI: 10.1007/s00427-006-0083-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2006] [Accepted: 05/01/2006] [Indexed: 10/24/2022]
Abstract
POU genes play a prominent role in the nervous system differentiation of several organism models, and in particular, they are involved in the differentiation of sensory neurons in numerous invertebrate and vertebrate species. In the present report, cloning and expression profile of a class IV POU gene in amphioxus was assessed for understanding its role in the sensory systems development. A single class IV gene, AmphiPOU-IV was isolated from the amphioxus Branchiostoma floridae. From a phylogenetic point of view, AmphiPOU-IV appears to be strictly related to the vertebrate one, sharing a high homology ratio especially with all vertebrate POU-IV proteins Brn-3a, Brn-3b, and Brn-3c. AmphiPOU-IV was found in the most anterior neural plate and in scattered ectodermic cells on the flanks of neurula, such ectodermic cells resemble the characteristic morphology and position of AmphiCoe and AmphiTrk developing sensory cells. Later on, the expression was confined in some motoneurons at level of the PMC and in some segmental arranged motoneurons in the hindbrain. Such expression is also maintained in larvae, and a new site of AmphiPOU-IV expression was also found in rostrum and mouth edge epidermal sensory cells of the larva. In conclusion, our data suggest an evolutionary conserved role of POU-IV transcription factors in the specification and differentiation of the sensory system in both vertebrates and invertebrates and underline the importance of amphioxus as linking step between them.
Collapse
Affiliation(s)
- Simona Candiani
- Department of Biology, University of Genoa, viale Benedetto XV, 5, Genoa, 16132, Italy
| | | | | | | | | |
Collapse
|
32
|
Wang P, Wang SM, Hsieh CJ, Chien CL. Neural expression of alpha-internexin promoter in vitro and in vivo. J Cell Biochem 2006; 97:275-87. [PMID: 16173078 DOI: 10.1002/jcb.20643] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
alpha-Internexin is a 66 kDa neuronal intermediate filament protein found most abundantly in the neurons of the nervous systems during early development. To characterize the function of mouse alpha-internexin promoter, we designed two different expression constructs driven by 0.7 kb or 1.3 kb of mouse alpha-internexin 5'-flanking sequences; one was the enhanced green fluorescent protein (EGFP) reporter for monitoring specific expression in vitro, and the other was the cre for studying the functional DNA recombinase in transgenic mice. After introducing DNA constructs into non-neuronal 3T3 fibroblasts and a neuronal Neuro2A cell line by lipofectamine transfection, we observed that the expression of EGFP with 1.3 kb mouse alpha-internexin promoter was in a neuron-dominant manner. To establish a tissue-specific pattern in the nervous system, we generated a transgenic mouse line expressing Cre DNA recombinase under the control of 1.3 kb alpha-Internexin promoter. The activity of the Cre recombinase at postnatal day 1 was examined by mating the cre transgenic mice to ROSA26 reporter (R26R) mice with knock-in Cre-mediated recombination. Analyses of postnatal day 1 (P1) newborns showed that beta-galactosidase activity was detected in the peripheral nervous system (PNS), such as cranial nerves innervating the tongue and the skin as well as spinal nerves to the body trunk. Furthermore, X-gal-labeled dorsal root ganglionic (DRG) neurons showed positive for alpha-Internexin in cell bodies but negative in their spinal nerves. The motor neurons in the spinal cord did not exhibit any beta-galactosidase activity. Therefore, the cre transgene driven by mouse alpha-internexin promoter, described here, provides a useful animal model to specifically manipulate genes in the developing nervous system.
Collapse
Affiliation(s)
- Pei Wang
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | |
Collapse
|
33
|
Lachman HM, Stopkova P, Papolos DF, Pedrosa E, Margolis B, Aghalar MR, Saito T. Analysis of synapsin III-196 promoter mutation in schizophrenia and bipolar disorder. Neuropsychobiology 2006; 53:57-62. [PMID: 16511335 DOI: 10.1159/000091720] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2004] [Accepted: 07/24/2005] [Indexed: 01/30/2023]
Abstract
BACKGROUND The 22q13-linked gene synapsin III is a positional candidate gene for schizophrenia (SZ). One interesting synapsin III single nucleotide polymorphism (SNP), -196G/A, has been identified in the promoter region. The -196A allele results in a 6/8 base match to the core recognition octamer sequence for Oct-1, a member of the POU family of transcription factors. OBJECTIVE To determine whether or not the -196 SNP is associated with either SZ or bipolar disorder (BD). METHODS A case control comparison was used to determine whether or not differences in allele or genotype distribution occurred in patients with SZ and BD. Electromobility gel shift assay (EMSA) was used to determine whether the -196 SNP affected protein binding. RESULTS A trend towards significance was detected when the allele distribution was analyzed in Caucasian patients with SZ (n = 145; 191 controls) and a cohort of subjects from the Czech Republic with BD (n = 82; 94 controls). No association was found in bipolar patients from the United States (n = 127) or in African-American patients with SZ (n = 124; 133 controls). EMSA showed that the region encompassing the -196 SNP binds to a brain protein in an allele-specific manner. CONCLUSIONS These data, while inconclusive, suggest that -196 SNP should be further investigated as a candidate for 22q13-linked SZ.
Collapse
Affiliation(s)
- Herbert M Lachman
- Department of Psychiatry and Behavioral Sciences, Division of Psychiatry Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | | | | | | | | | | | |
Collapse
|
34
|
Schlosser G. Induction and specification of cranial placodes. Dev Biol 2006; 294:303-51. [PMID: 16677629 DOI: 10.1016/j.ydbio.2006.03.009] [Citation(s) in RCA: 282] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2005] [Revised: 12/22/2005] [Accepted: 12/23/2005] [Indexed: 12/17/2022]
Abstract
Cranial placodes are specialized regions of the ectoderm, which give rise to various sensory ganglia and contribute to the pituitary gland and sensory organs of the vertebrate head. They include the adenohypophyseal, olfactory, lens, trigeminal, and profundal placodes, a series of epibranchial placodes, an otic placode, and a series of lateral line placodes. After a long period of neglect, recent years have seen a resurgence of interest in placode induction and specification. There is increasing evidence that all placodes despite their different developmental fates originate from a common panplacodal primordium around the neural plate. This common primordium is defined by the expression of transcription factors of the Six1/2, Six4/5, and Eya families, which later continue to be expressed in all placodes and appear to promote generic placodal properties such as proliferation, the capacity for morphogenetic movements, and neuronal differentiation. A large number of other transcription factors are expressed in subdomains of the panplacodal primordium and appear to contribute to the specification of particular subsets of placodes. This review first provides a brief overview of different cranial placodes and then synthesizes evidence for the common origin of all placodes from a panplacodal primordium. The role of various transcription factors for the development of the different placodes is addressed next, and it is discussed how individual placodes may be specified and compartmentalized within the panplacodal primordium. Finally, tissues and signals involved in placode induction are summarized with a special focus on induction of the panplacodal primordium itself (generic placode induction) and its relation to neural induction and neural crest induction. Integrating current data, new models of generic placode induction and of combinatorial placode specification are presented.
Collapse
Affiliation(s)
- Gerhard Schlosser
- Brain Research Institute, AG Roth, University of Bremen, FB2, 28334 Bremen, Germany.
| |
Collapse
|
35
|
Diss JKJ, Faulkes DJ, Walker MM, Patel A, Foster CS, Budhram-Mahadeo V, Djamgoz MBA, Latchman DS. Brn-3a neuronal transcription factor functional expression in human prostate cancer. Prostate Cancer Prostatic Dis 2006; 9:83-91. [PMID: 16276351 DOI: 10.1038/sj.pcan.4500837] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Neuroendocrine differentiation has been associated with prostate cancer (CaP). Brn-3a (short isoform) and Brn-3c, transcriptional controllers of neuronal differentiation, were readily detectable in human CaP both in vitro and in vivo. Brn-3a expression, but not Brn-3c, was significantly upregulated in >50% of tumours. Furthermore, overexpression of this transcription factor in vitro (i) potentiated CaP cell growth and (ii) regulated the expression of a neuronal gene, the Nav1.7 sodium channel, concomitantly upregulated in human CaP, in an isoform-specific manner. It is concluded that targeting Brn-3a could be a useful strategy for controlling the expression of multiple genes that promote CaP.
Collapse
Affiliation(s)
- J K J Diss
- Medical Molecular Biology Unit, Institute of Child Health, University College London, London, UK.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Jones JO, Sommer M, Stamatis S, Arvin AM. Mutational analysis of the varicella-zoster virus ORF62/63 intergenic region. J Virol 2006; 80:3116-21. [PMID: 16501125 PMCID: PMC1395429 DOI: 10.1128/jvi.80.6.3116-3121.2006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The varicella-zoster virus (VZV) ORF62/63 intergenic region was cloned between the Renilla and firefly luciferase genes, which acted as reporters of ORF62 and ORF63 transcription, and recombinant viruses were generated that carried these reporter cassettes along with the intact native sequences in the repeat regions of the VZV genome. In order to investigate the potential contributions of cellular transregulatory proteins to ORF62 and ORF63 transcription, recombinant reporter viruses with mutations of consensus binding sites for six proteins within the intergenic region were also created. The reporter viruses were used to evaluate ORF62 and ORF63 transcription during VZV replication in cultured fibroblasts and in skin xenografts in SCIDhu mice in vivo. Mutations in putative binding sites for heat shock factor 1 (HSF-1), nuclear factor 1 (NF-1), and one of two cyclic AMP-responsive elements (CRE) reduced ORF62 reporter transcription in fibroblasts, while mutations in binding sites for HSF-1, NF-1, and octamer binding proteins (Oct-1) increased ORF62 reporter transcription in skin. Mutations in one CRE and the NF-1 site altered ORF63 transcription in fibroblasts, while mutation of the Oct-1 binding site increased ORF63 reporter transcription in skin. The effect of each of these mutations implies that the intact binding site sequence regulates native ORF62 and ORF63 transcription. Mutation of the only NF-kappaB/Rel binding site had no effect on ORF62 or ORF63 transcription in vitro or in vivo. The segment of the ORF62/63 intergenic region proximal to ORF63 was most important for ORF63 transcription, but mutagenesis also altered ORF62 transcription, indicating that this region functions as a bidirectional promoter. This first analysis of the ORF62/63 intergenic region in the context of VZV replication indicates that it is a dual promoter and that cellular transregulatory factors affect the transcription of these key VZV regulatory genes.
Collapse
Affiliation(s)
- Jeremy O Jones
- Department of Pediatrics, Stanford University, Stanford, California, USA.
| | | | | | | |
Collapse
|
37
|
Lachman HM, Pedrosa E, Nolan KA, Glass M, Ye K, Saito T. Analysis of polymorphisms in AT-rich domains of neuregulin 1 gene in schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2006; 141B:102-9. [PMID: 16287046 DOI: 10.1002/ajmg.b.30242] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Linkage analysis and association studies have pointed to neuregulin 1 (NRG1) as the prime candidate for 8p-linked schizophrenia (SZ). However, so far, no specific functional alleles in the gene's exons, intron-exon junctions and promoters have been identified that are unequivocally associated with SZ. In this study, we analyzed several NRG1 polymorphisms that affect ATTT motifs and AT-rich regions of the gene. We have previously identified a number of such polymorphisms in the promoters of other SZ and bipolar disorder (BD) candidate genes and found positive associations to several of them. In addition, allele specific differences in the binding of brain proteins have been found for many of the polymorphisms. A case control design was used to compare allele frequencies in Caucasian and African American patients with SZ and controls. In the African American group, a significant difference was found in the allele and genotype distribution for several of the markers and haplotype blocks located in the 5'- and 3'-ends of the gene. The most significant result was obtained for rs6150532, an insertion/deletion variant in a conserved region of an intron that separates two small, alternatively spliced exons. Allele-specific and developmental differences were detected in the binding of a brain protein using newborn rat pups when probes containing the two rs6150532 alleles were used in electromobility gel shift assays. There were no significant differences in allele or genotype distribution found for any of the markers in the Caucasian sample. Although the samples size is relatively small, the findings support a role for NRG1 in SZ in African Americans and suggest that polymorphic differences in regions of the gene that recognize AT-binding proteins may be a factor in disease pathogenesis.
Collapse
Affiliation(s)
- Herbert M Lachman
- Department of Psychiatry, Division of Basic Research, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Weishaupt JH, Klöcker N, Bähr M. Axotomy-induced early down-regulation of POU-IV class transcription factors Brn-3a and Brn-3b in retinal ganglion cells. J Mol Neurosci 2005; 26:17-25. [PMID: 15968082 DOI: 10.1385/jmn:26:1:017] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2004] [Accepted: 11/22/2004] [Indexed: 11/11/2022]
Abstract
It has been proposed that neurons being exposed to proapoptotic stimuli undergo dedifferentiation, a process that can either allow for regeneration and axon regrowth or, if remaining incomplete, can force the cell to activate apoptotic pathways. A pivotal step in the differentiation program from neuronal precursor cells to differentiated, postmitotic neurons is their exit from the cell cycle. The POU domain transcription factors Brn-3b and Brn-3a, which are expressed in retinal ganglion cells (RGCs) directly after the exit of RGC precursors from the cell cycle, can be employed as RGC-specific differentiation markers to study potential dedifferentiation of RGCs after axotomy. Here, we examined mRNAand protein expression of Brn-3a and -3b in rat RGCs following axonal lesion. We observed a rapid down-regulation of Brn-3a and -3b protein expression in axotomized RGCs, clearly preceding apoptosis of RGCs. Using real-time PCR, we show that regulation of Brn-3 expression occurred at the transcriptional level. The small subset of RGCs regenerating into a peripheral nerve graft did not (re-)express Brn-3a or -b. In conclusion, we found further evidence supporting the hypothesis of a dedifferentiation process in severed mature neurons. As Brn-3b expression has been shown to be a prerequisite for developmental survival of most RGCs and Brn-3a activates transcription of anti-apoptotic genes, down-regulation of Brn-3 transcription factors might be causally involved in the secondary death of adult RGCs following axotomy.
Collapse
|
39
|
Guerreiro JR, Winnischofer SMB, Bastos MF, Portaro FCV, Sogayar MC, de Camargo ACM, Hayashi MAF. Cloning and characterization of the human and rabbit NUDEL-oligopeptidase promoters and their negative regulation. ACTA ACUST UNITED AC 2005; 1730:77-84. [PMID: 16005531 DOI: 10.1016/j.bbaexp.2005.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2005] [Revised: 05/30/2005] [Accepted: 06/02/2005] [Indexed: 12/19/2022]
Abstract
NUDEL-oligopeptidase is a cytosolic cysteine peptidase, active towards oligopeptides and involved in the conversion and inactivation of a number of bioactive peptides. This protein interacts with neuronal proteins and is essential for brain development and cortical organization during embryogenesis. In this study, 5'-flanking sequences of the human and rabbit NUDEL-oligopeptidase gene were cloned into the pGL3 reporter gene vector and the promoter activity of the full-length fragment and deletions series was measured in transient transfection assays using two different cell lines, namely, C6 rat glioma and NH15 human neuroblastoma. Overall, a very similar pattern of promoter activity was obtained for both rabbit and human NUDEL-oligopeptidase promoter sequences, and their respective serial deletion constructs upon transient transfection into these cell lines. The only exception was for the longest rabbit upstream sequence that displayed about 1.8-fold higher luciferase expression upon transfection into NH15 neuronal cells than that observed upon transfection into C6 glioma cells. On the other hand, no significant difference was observed for the human longest sequence. These results are in good agreement with the expression pattern of NUDEL-oligopeptidase in human and rabbit tissues.
Collapse
Affiliation(s)
- Juliano R Guerreiro
- Laboratory for Applied Toxinology, Butantan Institute, São Paulo, 05503-900, Brazil
| | | | | | | | | | | | | |
Collapse
|
40
|
Schlosser G. Evolutionary origins of vertebrate placodes: insights from developmental studies and from comparisons with other deuterostomes. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2005; 304:347-99. [PMID: 16003766 DOI: 10.1002/jez.b.21055] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ectodermal placodes comprise the adenohypophyseal, olfactory, lens, profundal, trigeminal, otic, lateral line, and epibranchial placodes. The first part of this review presents a brief overview of placode development. Placodes give rise to a variety of cell types and contribute to many sensory organs and ganglia of the vertebrate head. While different placodes differ with respect to location and derivative cell types, all appear to originate from a common panplacodal primordium, induced at the anterior neural plate border by a combination of mesodermal and neural signals and defined by the expression of Six1, Six4, and Eya genes. Evidence from mouse and zebrafish mutants suggests that these genes promote generic placodal properties such as cell proliferation, cell shape changes, and specification of neurons. The common developmental origin of placodes suggests that all placodes may have evolved in several steps from a common precursor. The second part of this review summarizes our current knowledge of placode evolution. Although placodes (like neural crest cells) have been proposed to be evolutionary novelties of vertebrates, recent studies in ascidians and amphioxus have proposed that some placodes originated earlier in the chordate lineage. However, while the origin of several cellular and molecular components of placodes (e.g., regionalized expression domains of transcription factors and some neuronal or neurosecretory cell types) clearly predates the origin of vertebrates, there is presently little evidence that these components are integrated into placodes in protochordates. A scenario is presented according to which all placodes evolved from an adenohypophyseal-olfactory protoplacode, which may have originated in the vertebrate ancestor from the anlage of a rostral neurosecretory organ (surviving as Hatschek's pit in present-day amphioxus).
Collapse
|
41
|
Abstract
The survival strategy of herpes simplex virus centres on the establishment of latency in sensory neurons innervating the site of primary infection followed by periodic reactivation to facilitate transmission. This is a highly evolved and efficient survival mechanism, which despite being the subject of intense research, has proven remarkably difficult to dissect at a molecular level. This review will focus on data, emerging from both in vitro and in vivo model systems, which provide a framework for a mechanistic understanding of latency and the existence and possible significance of non-uniform latent states.
Collapse
Affiliation(s)
- S Efstathiou
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | | |
Collapse
|
42
|
Saito T, Aghalar MR, Lachman HM. Analysis of PIK3C3 promoter variant in African-Americans with schizophrenia. Schizophr Res 2005; 76:361-2. [PMID: 15949671 DOI: 10.1016/j.schres.2005.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2004] [Revised: 01/05/2005] [Accepted: 01/10/2005] [Indexed: 10/25/2022]
|
43
|
Alazard R, Blaud M, Elbaz S, Vossen C, Icre G, Joseph G, Nieto L, Erard M. Identification of the 'NORE' (N-Oct-3 responsive element), a novel structural motif and composite element. Nucleic Acids Res 2005; 33:1513-23. [PMID: 15767276 PMCID: PMC1065252 DOI: 10.1093/nar/gki284] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
N-Oct-3 is a neuronal transcription factor widely expressed in the developing mammalian central nervous system, and necessary to maintain neural cell differentiation. The key role of N-Oct-3 in the transcriptional regulation of a multiplicity of genes is primarily due to the structural plasticity of its so-called ‘POU’ (acronym of Pit, Oct, Unc) DNA-binding domain. We have recently reported about the unusual dual neuro-specific transcriptional regulation displayed by N-Oct-3 [Blaud,M., Vossen,C., Joseph,G., Alazard,R., Erard,M. and Nieto,L. (2004) J. Mol. Biol., 339, 1049–1058]. To elucidate the underlying molecular mechanisms, we have now made use of molecular modeling, DNA footprinting and electrophoretic mobility shift assay techniques. This combined approach has allowed us to uncover a novel mode of homodimerization adopted by the N-Oct-3 POU domain bound to the neuronal aromatic amino acids de-carboxylase and corticotropin-releasing hormone gene promoters and to demonstrate that this pattern is induced by a structural motif that we have termed ‘NORE’ (N-Oct-3 responsive element), comprising the 14 bp sequence element TNNRTAAATAATRN. In addition, we have been able to explain how the same structural motif can also induce the formation of a heterodimer in association with hepatocyte nuclear factor 3β(/Forkhead box a2). Finally, we discuss the possible role of the NORE motif in relation to neuroendocrine lung tumor formation, and in particular the development of small cell lung cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Monique Erard
- To whom correspondence should be addressed. Tel: +33 5 61 17 54 96; Fax: +33 5 61 17 59 94;
| |
Collapse
|
44
|
Abstract
Intermediate-filament Nestin and group B1 SOX transcription factors (SOX1/2/3) are often employed as markers for neural primordium, suggesting their regulatory link. We have identified adjacent and essential SOX and POU factor binding sites in the Nestin neural enhancer. The 30-bp sequence of the enhancer including these sites (Nes30) showed a nervous system-specific and SOX-POU-dependent enhancer activity in multimeric forms in transfection assays and was utilized in assessing the specificity of the synergism; combinations of either group B1 or group C SOX (SOX11) with class III POU proved effective. In embryonic day 13.5 mouse spinal cord, Nestin was expressed in the cells with nuclei in the ventricular and subventricular zones. SOX1/2/3 expression was confined to the nuclei of the ventricular zone; SOX11 localized to the nuclei of both subventricular (high-level expression) and intermediate (low-level expression) zones. Class III POU (Brn2) was expressed at high levels, localizing to the nucleus in the ventricular and subventricular zones; moderate expression was observed in the intermediate zone, distributed in the cytoplasm. These data support the model that synergic interactions between group B1/C SOX and class III POU within the nucleus determine Nestin expression. Evidence also suggests that such interactions are involved in the regulation of neural primordial cells.
Collapse
|
45
|
Tanaka S, Kamachi Y, Tanouchi A, Hamada H, Jing N, Kondoh H. Interplay of SOX and POU factors in regulation of the Nestin gene in neural primordial cells. Mol Cell Biol 2004; 24:8834-46. [PMID: 15456859 PMCID: PMC517870 DOI: 10.1128/mcb.24.20.8834-8846.2004] [Citation(s) in RCA: 224] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Intermediate-filament Nestin and group B1 SOX transcription factors (SOX1/2/3) are often employed as markers for neural primordium, suggesting their regulatory link. We have identified adjacent and essential SOX and POU factor binding sites in the Nestin neural enhancer. The 30-bp sequence of the enhancer including these sites (Nes30) showed a nervous system-specific and SOX-POU-dependent enhancer activity in multimeric forms in transfection assays and was utilized in assessing the specificity of the synergism; combinations of either group B1 or group C SOX (SOX11) with class III POU proved effective. In embryonic day 13.5 mouse spinal cord, Nestin was expressed in the cells with nuclei in the ventricular and subventricular zones. SOX1/2/3 expression was confined to the nuclei of the ventricular zone; SOX11 localized to the nuclei of both subventricular (high-level expression) and intermediate (low-level expression) zones. Class III POU (Brn2) was expressed at high levels, localizing to the nucleus in the ventricular and subventricular zones; moderate expression was observed in the intermediate zone, distributed in the cytoplasm. These data support the model that synergic interactions between group B1/C SOX and class III POU within the nucleus determine Nestin expression. Evidence also suggests that such interactions are involved in the regulation of neural primordial cells.
Collapse
Affiliation(s)
- Shinya Tanaka
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
46
|
Clough RL, Sud R, Davis-Silberman N, Hertzano R, Avraham KB, Holley M, Dawson SJ. Brn-3c (POU4F3) regulates BDNF and NT-3 promoter activity. Biochem Biophys Res Commun 2004; 324:372-81. [PMID: 15465029 DOI: 10.1016/j.bbrc.2004.09.074] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2004] [Indexed: 10/26/2022]
Abstract
Brn-3c is a transcription factor necessary for maturation and survival of hair cells in the inner ear. Mutations in Brn-3c are associated with deafness in mice and with hearing loss in humans. Mice lacking Brn-3c also show reduced innervation and loss of sensory neurons presumed to be an indirect effect of hair cell loss potentially through lower BDNF and NT-3 expression. Using transient transfection assays we show that Brn-3c is capable of activating both BDNF and NT-3 promoters in inner ear sensory epithelial cell lines. In vitro analysis shows that Brn-3c binds to specific elements within the promoters of both genes and these elements are sufficient to confer Brn-3c regulation on a heterologous promoter. Additionally, BDNF expression is reduced in the inner ear of a Brn-3c mutant mouse during embryogenesis. Our data suggest that Brn-3c may play a role in regulating neurotrophin gene expression in the inner ear.
Collapse
Affiliation(s)
- R Lee Clough
- Molecular Audiology, Department of Immunology and Molecular Pathology, UCL Centre for Auditory Research, Windeyer Institute of Medical Sciences, University College London Medical School, The Windeyer Building, Cleveland Street, London W1T 4JF, UK
| | | | | | | | | | | | | |
Collapse
|
47
|
Jensen LE, Barbaux S, Hoess K, Fraterman S, Whitehead AS, Mitchell LE. The human T locus and spina bifida risk. Hum Genet 2004; 115:475-82. [PMID: 15449172 DOI: 10.1007/s00439-004-1185-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2004] [Accepted: 08/10/2004] [Indexed: 01/19/2023]
Abstract
The transcription factor T is essential for mesoderm formation and axial development during embryogenesis. Embryonic genotype for a single-nucleotide polymorphism in intron 7 of T ( TIVS7 T/C) has been associated with the risk of spina bifida in some but not all studies. We developed a novel genotyping assay for the TIVS7 polymorphism using heteroduplex generator methodology. This assay was used to genotype spina bifida case-parent trios and the resulting data were analyzed using the transmission disequilibrium test and log-linear analyses. Analyses of these data demonstrated that heterozygous parents transmit the TIVS7-C allele to their offspring with spina bifida significantly more frequently than expected under the assumption of Mendelian inheritance (63 vs 50%, P=0.02). Moreover, these analyses suggest that the TIVS7-C allele acts in a dominant fashion, such that individuals carrying one or more copies of this allele have a 1.6-fold increased risk of spina bifida compared with individuals with zero copies. In silico analysis of the sequence surrounding this polymorphism revealed a potential target site for olfactory neuron-specific factor-1, a transcription factor expressed in the neural tube during development, spanning the polymorphic site. Several other putative, developmentally important and/or environmentally responsive transcription factor-binding sites were also identified close to the TIVS7 polymorphism. The TIVS7 polymorphism or a variant that is in linkage disequilibrium with the TIVS7 polymorphism may, therefore, play a role in T gene expression and influence the risk of spina bifida.
Collapse
Affiliation(s)
- Liselotte E Jensen
- Department of Pharmacology and Center for Pharmacogenetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|
48
|
Leahy KM, Ornberg RL, Wang Y, Zhu Y, Gidday JM, Connor JR, Wax MB. Quantitative ex vivo detection of rodent retinal ganglion cells by immunolabeling Brn-3b. Exp Eye Res 2004; 79:131-40. [PMID: 15183108 DOI: 10.1016/j.exer.2004.02.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2003] [Accepted: 02/04/2004] [Indexed: 11/25/2022]
Abstract
To evaluate the neuroprotective potential of drug candidates to treat human glaucoma, a short-term rodent model of retinal ganglion cell death was employed. Transient ischemia applied to the rodent retina, with subsequent reperfusion for 1-4 weeks, produces an experimental retinal ganglion cell death that is quantifiable. A widely used method to detect viable retinal ganglion cells involves surgical injection of labeling compounds into the superior colliculus of the rodent brain, the retrograde transport of the compounds along the axons to the retina, and subsequent microscopic evaluation of the retina. In order to circumvent the labor intensive and invasive surgery of this method, we sought an alternative means of assessing retinal ganglion cell survival that would be more suitable for high-throughput analysis. We therefore developed a method of immunolabeling whole retinas ex vivo with an antibody to Brn-3b, an antigen expressed in a subpopulation of retinal ganglion cells, that allows for detection of a representative retinal ganglion cell population. Fluorescently tagged Brn-3b immunolabeled retinas were flat-mounted, digitally imaged, and assessed using image analysis software. We determined that 60 min of ischemia caused a 49% and a 32% decrease in Brn-3b positive retinal ganglion cells in Lewis rats after 4 weeks reperfusion, and Sprague-Dawley rats after 2 weeks reperfusion, respectively. In Swiss Webster ND4 mouse retinas subjected to 45 min ischemia and 7 days reperfusion, we found a 70% decrease in Brn-3b positive cells. Thus, ex vivo immunolabeling of retinal ganglion cells using antibody to Brn-3b provides an alternative to other methods of quantifying retinal ganglion cells.
Collapse
|
49
|
Stopkova P, Saito T, Papolos DF, Vevera J, Paclt I, Zukov I, Bersson YB, Margolis BA, Strous RD, Lachman HM. Identification of PIK3C3 promoter variant associated with bipolar disorder and schizophrenia. Biol Psychiatry 2004; 55:981-8. [PMID: 15121481 DOI: 10.1016/j.biopsych.2004.01.014] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2003] [Revised: 01/07/2004] [Accepted: 01/13/2004] [Indexed: 11/20/2022]
Abstract
BACKGROUND Genes involved in phosphoinositide (PI) lipid metabolism are excellent candidates to consider in the pathogenesis of bipolar disorder (BD) and schizophrenia (SZ). One is PIK3C3, a member of the phosphatidylinositide 3-kinase family that maps closely to markers on 18q linked to both BD and SZ in a few studies. METHODS The promoter region of PIK3C3 was analyzed for mutations by single-strand conformation polymorphism analysis and sequencing. A case-control association study was conducted to determine the distribution of variant alleles in unrelated patients from three cohorts. Electromobility gel shift assays (EMSA) were performed to assess the functional significance of variants. RESULTS Two polymorphisms in complete linked disequilibrium with each other were identified, -432C- > T and a "C" insert at position -86. The -432T allele occurs within an octamer containing an ATTT motif resembling members of the POU family of transcription factors. In each population analyzed, an increase in -432T was found in patients. EMSAs showed that a -432T containing oligonucleotide binds to brain proteins that do not recognize -432C. CONCLUSIONS A promoter mutation in a PI regulator affecting the binding of a POU-type transcription factor may be involved in BD and SZ in a subset of patients.
Collapse
Affiliation(s)
- Pavla Stopkova
- Psychiatric Clinic, First Medical Faculty, Charles University, Prague, Czech Republic
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Nogueira ML, Wang VEH, Tantin D, Sharp PA, Kristie TM. Herpes simplex virus infections are arrested in Oct-1-deficient cells. Proc Natl Acad Sci U S A 2004; 101:1473-8. [PMID: 14745036 PMCID: PMC341744 DOI: 10.1073/pnas.0307300101] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Expression of the herpes simplex virus (HSV) immediate early (IE) genes is regulated by a multiprotein complex that is assembled on the TAATGARAT enhancer core element. The complex contains the cellular POU domain protein Oct-1, the viral transactivator VP16, and the cellular cofactor host cell factor 1. The current model suggests that the assembly depends on recognition of the core element by Oct-1. Here, HSV infection of Oct-1-deficient mouse embryonic fibroblast cells demonstrates that Oct-1 is critical for IE gene expression at low multiplicities of infection (moi). However, the protein is not essential for IE gene expression at high moi, indicating that VP16-mediated transcriptional induction through other IE regulatory elements is also important. This induction depends, at least in part, on the GA-binding protein binding elements that are present in each IE enhancer domain. Surprisingly, whereas the viral IE genes are expressed after high moi infection of Oct-1-deficient cells, the assembly of viral replication factories is severely impaired, revealing a second critical role for Oct-1 in HSV replication. The results have implications for both the HSV lytic and latency-reactivation cycles.
Collapse
Affiliation(s)
- Mauricio L Nogueira
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Building 4-131, 4 Center Drive, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|