1
|
Jurkowski MP, Bettio L, K. Woo E, Patten A, Yau SY, Gil-Mohapel J. Beyond the Hippocampus and the SVZ: Adult Neurogenesis Throughout the Brain. Front Cell Neurosci 2020; 14:576444. [PMID: 33132848 PMCID: PMC7550688 DOI: 10.3389/fncel.2020.576444] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/19/2020] [Indexed: 12/31/2022] Open
Abstract
Convincing evidence has repeatedly shown that new neurons are produced in the mammalian brain into adulthood. Adult neurogenesis has been best described in the hippocampus and the subventricular zone (SVZ), in which a series of distinct stages of neuronal development has been well characterized. However, more recently, new neurons have also been found in other brain regions of the adult mammalian brain, including the hypothalamus, striatum, substantia nigra, cortex, and amygdala. While some studies have suggested that these new neurons originate from endogenous stem cell pools located within these brain regions, others have shown the migration of neurons from the SVZ to these regions. Notably, it has been shown that the generation of new neurons in these brain regions is impacted by neurologic processes such as stroke/ischemia and neurodegenerative disorders. Furthermore, numerous factors such as neurotrophic support, pharmacologic interventions, environmental exposures, and stem cell therapy can modulate this endogenous process. While the presence and significance of adult neurogenesis in the human brain (and particularly outside of the classical neurogenic regions) is still an area of debate, this intrinsic neurogenic potential and its possible regulation through therapeutic measures present an exciting alternative for the treatment of several neurologic conditions. This review summarizes evidence in support of the classic and novel neurogenic zones present within the mammalian brain and discusses the functional significance of these new neurons as well as the factors that regulate their production. Finally, it also discusses the potential clinical applications of promoting neurogenesis outside of the classical neurogenic niches, particularly in the hypothalamus, cortex, striatum, substantia nigra, and amygdala.
Collapse
Affiliation(s)
- Michal P. Jurkowski
- Island Medical Program, University of British Columbia, Vancouver, BC, Canada
| | - Luis Bettio
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Emma K. Woo
- Island Medical Program, University of British Columbia, Vancouver, BC, Canada
| | - Anna Patten
- Centre for Interprofessional Clinical Simulation Learning (CICSL), Royal Jubilee Hospital, Victoria, BC, Canada
| | - Suk-Yu Yau
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Joana Gil-Mohapel
- Island Medical Program, University of British Columbia, Vancouver, BC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
2
|
Lim DA, Alvarez-Buylla A. The Adult Ventricular-Subventricular Zone (V-SVZ) and Olfactory Bulb (OB) Neurogenesis. Cold Spring Harb Perspect Biol 2016; 8:cshperspect.a018820. [PMID: 27048191 DOI: 10.1101/cshperspect.a018820] [Citation(s) in RCA: 427] [Impact Index Per Article: 53.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A large population of neural stem/precursor cells (NSCs) persists in the ventricular-subventricular zone (V-SVZ) located in the walls of the lateral brain ventricles. V-SVZ NSCs produce large numbers of neuroblasts that migrate a long distance into the olfactory bulb (OB) where they differentiate into local circuit interneurons. Here, we review a broad range of discoveries that have emerged from studies of postnatal V-SVZ neurogenesis: the identification of NSCs as a subpopulation of astroglial cells, the neurogenic lineage, new mechanisms of neuronal migration, and molecular regulators of precursor cell proliferation and migration. It has also become evident that V-SVZ NSCs are regionally heterogeneous, with NSCs located in different regions of the ventricle wall generating distinct OB interneuron subtypes. Insights into the developmental origins and molecular mechanisms that underlie the regional specification of V-SVZ NSCs have also begun to emerge. Other recent studies have revealed new cell-intrinsic molecular mechanisms that enable lifelong neurogenesis in the V-SVZ. Finally, we discuss intriguing differences between the rodent V-SVZ and the corresponding human brain region. The rapidly expanding cellular and molecular knowledge of V-SVZ NSC biology provides key insights into postnatal neural development, the origin of brain tumors, and may inform the development regenerative therapies from cultured and endogenous human neural precursors.
Collapse
Affiliation(s)
- Daniel A Lim
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research at UCSF, Department of Neurological Surgery, University of California, San Francisco, California 94143
| | - Arturo Alvarez-Buylla
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research at UCSF, Department of Neurological Surgery, University of California, San Francisco, California 94143
| |
Collapse
|
3
|
Kuhn HG, Eisch AJ, Spalding K, Peterson DA. Detection and Phenotypic Characterization of Adult Neurogenesis. Cold Spring Harb Perspect Biol 2016; 8:a025981. [PMID: 26931327 PMCID: PMC4772100 DOI: 10.1101/cshperspect.a025981] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Studies of adult neurogenesis have greatly expanded in the last decade, largely as a result of improved tools for detecting and quantifying neurogenesis. In this review, we summarize and critically evaluate detection methods for neurogenesis in mammalian and human brain tissue. Besides thymidine analog labeling, cell-cycle markers are discussed, as well as cell stage and lineage commitment markers. Use of these histological tools is critically evaluated in terms of their strengths and limitations, as well as possible artifacts. Finally, we discuss the method of radiocarbon dating for determining cell and tissue turnover in humans.
Collapse
Affiliation(s)
- H Georg Kuhn
- Institute for Neuroscience and Physiology, University of Gothenburg, Gothenburg, SE-405 30, Sweden
| | - Amelia J Eisch
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9070
| | - Kirsty Spalding
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm SE-171 77, Sweden
| | - Daniel A Peterson
- Center for Stem Cell and Regenerative Medicine, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064
| |
Collapse
|
4
|
Doh MS, Han DMR, Oh DH, Kim SH, Choi MR, Chai YG. Profiling of Proteins Regulated by Venlafaxine during Neural Differentiation of Human Cells. Psychiatry Investig 2015; 12:81-91. [PMID: 25670950 PMCID: PMC4310925 DOI: 10.4306/pi.2015.12.1.81] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 03/07/2014] [Accepted: 03/25/2014] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE Antidepressants are known to positively influence several factors in patients with depressive disorders, resulting in increased neurogenesis and subsequent relief of depressive disorders. To study the effects of venlafaxine during neural differentiation at the cellular level, we looked at its effect on protein expression and regulation mechanisms during neural differentiation. METHODS After exposing NCCIT cell-derived EBs to venlafaxine during differentiation (1 day and 7 days), changes in protein expression were analyzed by 2-DE and MALDI-TOF MS analysis. Gene levels of proteins regulated by venlafaxine were analyzed by real-time RT-PCR. RESULTS Treatment with venlafaxine decreased expression of prolyl 4-hydroxylase (P4HB), ubiquitin-conjugating enzyme E2K (HIP2) and plastin 3 (T-plastin), and up-regulated expression of growth factor beta-3 (TGF-β3), dihydropyrimidinase-like 3 (DPYSL3), and pyruvate kinase (PKM) after differentiation for 1 and 7 days. In cells exposed to venlafaxine, the mRNA expression patterns of HIP2 and PKM, which function as negative and positive regulators of differentiation and neuronal survival, respectively, were consistent with the observed changes in protein expression. CONCLUSION Our findings may contribute to improve understanding of molecular mechanism of venlafaxine.
Collapse
Affiliation(s)
- Mi Sook Doh
- Department of Molecular and Life Sciences, Hanyang University, Ansan, Republic of Korea
| | - Dal Mu Ri Han
- Department of Molecular and Life Sciences, Hanyang University, Ansan, Republic of Korea
| | - Dong Hoon Oh
- Department of Neuropsychiatry, College of Medicine and Institute of Mental Health, Hanyang University, Seoul, Republic of Korea
| | - Seok Hyeon Kim
- Department of Neuropsychiatry, College of Medicine and Institute of Mental Health, Hanyang University, Seoul, Republic of Korea
| | - Mi Ran Choi
- Department of Molecular and Life Sciences, Hanyang University, Ansan, Republic of Korea
| | - Young Gyu Chai
- Department of Molecular and Life Sciences, Hanyang University, Ansan, Republic of Korea
| |
Collapse
|
5
|
Intraventricular injection of 6-hydroxydopamine results in an increased number of tyrosine hydroxylase immune-positive cells in the rat cortex. Neuroscience 2014; 280:99-110. [PMID: 25230286 DOI: 10.1016/j.neuroscience.2014.09.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 09/04/2014] [Accepted: 09/05/2014] [Indexed: 01/28/2023]
Abstract
Previously we have demonstrated that intraventricular injection of 6-hydroxydopamine (6-OHDA) results in increased proliferation and de-differentiation of rat cortical astrocytes into progenitor-like cells 4 days after lesion (Wachter et al., 2010). To find out if these cells express tyrosine hydroxylase (TH), the rate-limiting enzyme in the catecholamine synthesis pathway, we performed immunohistochemistry in the rat cortex following intraventricular injection of 6-OHDA. Four days after injection we demonstrated a strong emergence of TH-positive (TH(+)) somata in the cortices of 6-OHDA-lesioned animals. The number of TH(+) cells in the cortex of 6-OHDA-lesioned animals was 15 times higher than in sham-operated animals, where virtually no TH(+) somata occurred. Combining TH immunohistochemistry with classical Nissl stain yielded complete congruency, and ∼45% of the TH(+) cells co-expressed calretinin, which indicates an interneuron affiliation. There was no co-staining of TH with other interneuron markers or with glial markers such as glial fibrillary acidic protein (GFAP) or the neural stem/progenitor marker Nestin, nor could we find co-localization with the proliferation marker Ki67. However, we found a co-localization of TH with glial progenitor cell markers (Sox2 and S100β) and with polysialylated-neural cell adhesion molecule (PSA-NCAM), which has been shown to be expressed in immature, but not recently generated cortical neurons. Taken together, this study seems to confirm our previous findings with respect to a 6-OHDA-induced expression of neuronal precursor markers in cells of the rat cortex, although the TH(+) cells found in this study are not identical with the potentially de-differentiated astrocytes described recently (Wachter et al., 2010). The detection of cortical cells expressing the catecholaminergic key enzyme TH might indicate a possible compensatory role of these cells in a dopamine-(DA)-depleted system. Future studies are needed to determine whether the TH(+) cells are capable of DA synthesis to confirm this hypothesis.
Collapse
|
6
|
Iwakura T, Sakoh M, Tsutiya A, Yamashita N, Ohtani A, Tsuda MC, Ogawa S, Tsukahara S, Nishihara M, Shiga T, Goshima Y, Kato T, Ohtani-Kaneko R. Collapsin response mediator protein 4 affects the number of tyrosine hydroxylase-immunoreactive neurons in the sexually dimorphic nucleus in female mice. Dev Neurobiol 2013; 73:502-17. [PMID: 23420586 DOI: 10.1002/dneu.22076] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 12/25/2012] [Accepted: 02/12/2013] [Indexed: 01/04/2023]
Abstract
In the sexually dimorphic anteroventral periventricular nucleus (AVPV) of the hypothalamus, females have a greater number of tyrosine hydroxylase-immunoreactive (TH-ir) and kisspeptin-immunoreactive (kisspeptin-ir) neurons than males. In this study, we used proteomics analysis and gene-deficient mice to identify proteins that regulate the number of TH-ir and kisspeptin-ir neurons in the AVPV. Analysis of protein expressions in the rat AVPV on postnatal day 1 (PD1; the early phase of sex differentiation) using two-dimensional fluorescence difference gel electrophoresis followed by MALDI-TOF-MS identified collapsin response mediator protein 4 (CRMP4) as a protein exhibiting sexually dimorphic expression. Interestingly, this sexually differential expressions of CRMP4 protein and mRNA in the AVPV was not detected on PD6. Prenatal testosterone exposure canceled the sexual difference in the expression of Crmp4 mRNA in the rat AVPV. Next, we used CRMP4-knockout (CRMP4-KO) mice to determine the in vivo function of CRMP4 in the AVPV. Crmp4 knockout did not change the number of kisspeptin-ir neurons in the adult AVPV in either sex. However, the number of TH-ir neurons was increased in the AVPV of adult female CRMP4-KO mice as compared with the adult female wild-type mice. During development, no significant difference in the number of TH-ir neurons was detected between sexes or genotypes on embryonic day 15, but a female-specific increase in TH-ir neurons was observed in CRMP4-KO mice on PD1, when the sex difference was not yet apparent in wild-type mice. These results indicate that CRMP4 regulates the number of TH-ir cell number in the female AVPV.
Collapse
Affiliation(s)
- Takashi Iwakura
- Doctoral Program in Kansei, Behavioral and Brain Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8577, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Blasco H, Bernard-Marissal N, Vourc'h P, Guettard YO, Sunyach C, Augereau O, Khederchah J, Mouzat K, Antar C, Gordon PH, Veyrat-Durebex C, Besson G, Andersen PM, Salachas F, Meininger V, Camu W, Pettmann B, Andres CR, Corcia P. A rare motor neuron deleterious missense mutation in the DPYSL3 (CRMP4) gene is associated with ALS. Hum Mutat 2013; 34:953-60. [PMID: 23568759 DOI: 10.1002/humu.22329] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 04/01/2013] [Indexed: 12/17/2022]
Abstract
The dihydropyrimidinase-like 3 (DPYSL3) or Collapsin Response Mediator Protein 4a (CRMP4a) expression is modified in neurodegeneration and is involved in several ALS-associated pathways including axonal transport, glutamate excitotoxicity, and oxidative stress. The objective of the study was to analyze CRMP4 as a risk factor for ALS. We analyzed the DPYSL3/CRMP4 gene in French ALS patients (n = 468) and matched-controls (n = 394). We subsequently examined a variant in a Swedish population (184 SALS, 186 controls), and evaluated its functional effects on axonal growth and survival in motor neuron cell culture. The rs147541241:A>G missense mutation occurred in higher frequency among French ALS patients (odds ratio = 2.99) but the association was not confirmed in the Swedish population. In vitro expression of mutated DPYSL3 in motor neurons reduced axonal growth and accelerated cell death compared with wild type protein. Thus, the association between the rs147541241 variant and ALS was limited to the French population, highlighting the geographic particularities of genetic influences (risks, contributors). The identified variant appears to shorten motor neuron survival through a detrimental effect on axonal growth and CRMP4 could act as a key unifier in transduction pathways leading to neurodegeneration through effects on early axon development.
Collapse
Affiliation(s)
- Hélène Blasco
- UMR INSERM U930, Université François-Rabelais de Tours, Tours, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Tsutiya A, Ohtani-Kaneko R. Postnatal alteration of collapsin response mediator protein 4 mRNA expression in the mouse brain. J Anat 2012; 221:341-51. [PMID: 22816653 PMCID: PMC3458253 DOI: 10.1111/j.1469-7580.2012.01544.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2012] [Indexed: 11/30/2022] Open
Abstract
Collapsin response mediator protein 4 (CRMP4) is a molecular marker for immature neurons but only limited information is available on the spatiotemporal gene expression changes of Crmp4 in the developing rodent. In the present study, the variation of CRMP4 mRNA expression in the mouse brain was investigated from postnatal day (PD) 0 (the day of birth) to adulthood by in situ hybridization. The hybridization signals were broadly detected on PD0 and regional changes in expression during development were noted. Expression patterns of CRMP4 mRNA were classified into the following three types: (i) signals that were strongest on PD0 or PD7, weak or undetectable on PD14, and absent in adulthood: this pattern was observed in most brain areas; (ii) signals that were first detected on PD0 or PD7 and persisted into adulthood: this pattern was seen in the dentate gyrus and subventricular zone of the olfactory bulb (OB); and (iii) signals that were strongest on PD0 and decreased gradually with age but were still detectable in adulthood: this pattern was identified for the first time in the mitral cell layer of the OB. Analysis using quantitative real-time RT-PCR confirmed higher expression of CRMP4 mRNA in the OB than in other adult brain regions. The persistence of CRMP4 mRNA in the adult OB, including the mitral cell layer, suggests the possibility of both neurogenetic and non-neurogenetic functional roles of CRMP4 in this region.
Collapse
Affiliation(s)
- Atsuhiro Tsutiya
- Graduate School of Life Sciences, Toyo UniversityOura, Gunnma, Japan
| | - Ritsuko Ohtani-Kaneko
- Graduate School of Life Sciences, Toyo UniversityOura, Gunnma, Japan
- Bio-Nano Electronic Research Center, Toyo UniversityKawagoe, Saitama, Japan
| |
Collapse
|
9
|
Werner L, Müller-Fielitz H, Ritzal M, Werner T, Rossner M, Schwaninger M. Involvement of doublecortin-expressing cells in the arcuate nucleus in body weight regulation. Endocrinology 2012; 153:2655-64. [PMID: 22492306 DOI: 10.1210/en.2011-1760] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hypothalamic functions, including feeding behavior, show a high degree of plasticity throughout life. Doublecortin (DCX) is a marker of plasticity and neuronal migration expressed in the hypothalamus. Therefore, we wanted to map the fate of DCX(+) cells in the arcuate nucleus (ARC) of the hypothalamus. For this purpose, we generated a BAC transgenic mouse line that expresses the inducible recombinase CreER(T2) under control of the DCX locus. Crossing this line with the Rosa26 or Ai14 reporter mouse lines, we found reporter(+) cells in the ARC upon tamoxifen treatment. They were born prenatally and expressed both DCX and the plasticity marker TUC-4. Immediately after labeling, reporter(+) cells had an enlarged soma that normalized over time, suggesting morphological remodeling. Reporter(+) cells expressed β-endorphin and BSX, neuronal markers of the feeding circuit. Furthermore, leptin treatment led to phosphorylation of STAT3 in reporter(+) cells in accordance with the concept that they are part of the feeding circuits. Indeed, we found a negative correlation between the number of reporter(+) cells and body weight and epididymal fat pads. Our data suggest that DCX(+) cells in the ARC represent a cellular correlate of plasticity that is involved in controlling energy balance in adult mice.
Collapse
Affiliation(s)
- Lars Werner
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, 23538 Lübeck, Germany
| | | | | | | | | | | |
Collapse
|
10
|
Bonfanti L, Nacher J. New scenarios for neuronal structural plasticity in non-neurogenic brain parenchyma: the case of cortical layer II immature neurons. Prog Neurobiol 2012; 98:1-15. [PMID: 22609484 DOI: 10.1016/j.pneurobio.2012.05.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Revised: 04/25/2012] [Accepted: 05/08/2012] [Indexed: 11/20/2022]
Abstract
The mammalian central nervous system, due to its interaction with the environment, must be endowed with plasticity. Conversely, the nervous tissue must be substantially static to ensure connectional invariability. Structural plasticity can be viewed as a compromise between these requirements. In adult mammals, brain structural plasticity is strongly reduced with respect to other animal groups in the phylogenetic tree. It persists under different forms, which mainly consist of remodeling of neuronal shape and connectivity, and, to a lesser extent, the production of new neurons. Adult neurogenesis is mainly restricted within two neurogenic niches, yet some gliogenic and neurogenic processes also occur in the so-called non-neurogenic tissue, starting from parenchymal progenitors. In this review we focus on a population of immature, non-newly generated neurons in layer II of the cerebral cortex, which were previously thought to be newly generated since they heavily express the polysialylated form of the neural cell adhesion molecule and doublecortin. These unusual neurons exhibit characteristics defining an additional type of structural plasticity, different from either synaptic plasticity or adult neurogenesis. Evidences concerning their morphology, antigenic features, ultrastructure, phenotype, origin, fate, and reaction to different kind of stimulations are gathered and analyzed. Their possible role is discussed in the context of an enriched complexity and heterogeneity of mammalian brain structural plasticity.
Collapse
Affiliation(s)
- Luca Bonfanti
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, Orbassano (TO), and Department of Veterinary Morphophysiology, University of Turin, Turin, Italy.
| | | |
Collapse
|
11
|
McGinn MJ, Colello RJ, Sun D. Age-related proteomic changes in the subventricular zone and their association with neural stem/progenitor cell proliferation. J Neurosci Res 2012; 90:1159-68. [PMID: 22344963 DOI: 10.1002/jnr.23012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 11/23/2011] [Accepted: 11/26/2011] [Indexed: 01/26/2023]
Abstract
In the mammalian central nervous system, generation of new neurons persists in the subventricular zone (SVZ) throughout life. However, the capacity for neurogenesis in this region declines with aging. Recent studies have examined the degree of these age-related neurogenic declines and the changes of cytoarchitecture of the SVZ with aging. However, little is known about the molecular changes in the SVZ with aging. In this study, we dissected the SVZs from rats aged postnatal day 28, 3 months, and 24 months. The SVZ tissues were processed for 2-D gel electrophoresis to identify protein changes following aging. Protein spots were subsequently subjected to mass spectrometry analysis to compare age-related alterations in the SVZ proteome. We also examined the level of cell proliferation in the SVZ in animals of these three age groups by using bromodeoxyuridine labeling. We found significant age-related changes in the expression of several proteins that play critical roles in the proliferation and survival of neural stem/progenitor cells in the SVZ. Among these proteins, glial fibrillary acidic protein, ubiquitin carboxy terminal hydrolase 1, glutathione S-transferase omega, and preproalbumin were increased with aging, whereas collapsin response-mediated protein 4 (CRMP-4), CRMP-5, and microsomal protease ER60 exhibited declines with aging. We have also observed a significant decline of neural stem/progenitor cell proliferation in the SVZ with aging. These alterations in protein expression in the SVZ with aging likely underlie the diminishing proliferative capacity of stem/progenitor cells in the aging brain.
Collapse
Affiliation(s)
- Melissa J McGinn
- Department of Anatomy and Neurobiology, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | | | | |
Collapse
|
12
|
CRMP5 regulates generation and survival of newborn neurons in olfactory and hippocampal neurogenic areas of the adult mouse brain. PLoS One 2011; 6:e23721. [PMID: 21991301 PMCID: PMC3186791 DOI: 10.1371/journal.pone.0023721] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 07/23/2011] [Indexed: 01/04/2023] Open
Abstract
The Collapsin Response Mediator Proteins (CRMPS) are highly expressed in the developing brain, and in adult brain areas that retain neurogenesis, ie: the olfactory bulb (OB) and the dentate gyrus (DG). During brain development, CRMPs are essentially involved in signaling of axon guidance and neurite outgrowth, but their functions in the adult brain remain largely unknown. CRMP5 has been initially identified as the target of auto-antibodies involved in paraneoplasic neurological diseases and further implicated in a neurite outgrowth inhibition mediated by tubulin binding. Interestingly, CRMP5 is also highly expressed in adult brain neurogenic areas where its functions have not yet been elucidated. Here we observed in both neurogenic areas of the adult mouse brain that CRMP5 was present in proliferating and post-mitotic neuroblasts, while they migrate and differentiate into mature neurons. In CRMP5(-/-) mice, the lack of CRMP5 resulted in a significant increase of proliferation and neurogenesis, but also in an excess of apoptotic death of granule cells in the OB and DG. These findings provide the first evidence that CRMP5 is involved in the generation and survival of newly generated neurons in areas of the adult brain with a high level of activity-dependent neuronal plasticity.
Collapse
|
13
|
Blom ES, Wang Y, Skoglund L, Hansson AC, Ubaldi M, Lourdusamy A, Sommer WH, Mielke M, Hyman BT, Heilig M, Lannfelt L, Nilsson LNG, Ingelsson M. Increased mRNA Levels of TCF7L2 and MYC of the Wnt Pathway in Tg-ArcSwe Mice and Alzheimer's Disease Brain. Int J Alzheimers Dis 2010; 2011:936580. [PMID: 21234373 PMCID: PMC3014771 DOI: 10.4061/2011/936580] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 11/24/2010] [Indexed: 11/20/2022] Open
Abstract
Several components in the Wnt pathway, including β-catenin and glycogen synthase kinase 3 beta, have been implied in AD pathogenesis. Here, mRNA brain levels from five-month-old tg-ArcSwe and nontransgenic mice were compared using Affymetrix microarray analysis. With surprisingly small overall changes, Wnt signaling was the most affected pathway with altered expression of nine genes in tg-ArcSwe mice. When analyzing mRNA levels of these genes in human brain, transcription factor 7-like 2 (TCF7L2) and v-myc myelocytomatosis viral oncogene homolog (MYC), were increased in Alzheimer's disease (AD) (P < .05). Furthermore, no clear differences in TCF7L2 and MYC mRNA were found in brains with frontotemporal lobar degeneration, suggesting that altered regulation of these Wnt-related genes could be specific to AD. Finally, mRNA levels of three neurogenesis markers were analyzed. Increased mRNA levels of dihydropyrimidinase-like 3 were observed in AD brain, suggesting that altered Wnt pathway regulation may signify synaptic rearrangement or neurogenesis.
Collapse
Affiliation(s)
- Elin S Blom
- Section of Molecular Geriatrics, Department of Public Health and Caring Sciences, Uppsala University, 751 85 Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Varea E, Castillo-Gómez E, Gómez-Climent MA, Guirado R, Blasco-Ibáñez JM, Crespo C, Martínez-Guijarro FJ, Nácher J. Differential evolution of PSA-NCAM expression during aging of the rat telencephalon. Neurobiol Aging 2009; 30:808-18. [PMID: 17904697 DOI: 10.1016/j.neurobiolaging.2007.08.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Revised: 06/25/2007] [Accepted: 08/14/2007] [Indexed: 01/30/2023]
Abstract
Changes in the ability of neuronal networks to undergo structural remodeling may be involved in the age-associated cognitive decline. The polysialylated form of the neural cell adhesion molecule (PSA-NCAM) declines dramatically during postnatal development, but persists in several regions of the young-adult rat telencephalon, where it participates, through its anti-adhesive properties, in neuronal structural plasticity. However, PSA-NCAM expression during aging has only been studied in the dentate gyrus and the piriform cortex layer II, where it is strongly downregulated in adult (middle-aged) individuals. Using immunohistochemistry, we have observed that in most of the telencephalic areas studied the number of PSA-NCAM expressing cells and the intensity of PSA-NCAM expression in the neuropil remains stable during aging. Old rats only show decreases in the number of PSA-NCAM expressing cells in the lateral amygdala and retrosplenial cortex, and in neuropil expression of stratum lucidum. Given the role of PSA-NCAM in neuronal plasticity, the present results indicate that, even during aging, many regions of the CNS may display neurite, spine or synaptic remodeling.
Collapse
Affiliation(s)
- Emilio Varea
- Neurobiology Unit and Program in Basic and Applied Neurosciences, Cell Biology Dpt., Universitat de València, Dr. Moliner 50, Burjassot 46100, Spain
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Zhu N, Sun Y, Zeng S, Zhang X, Zuo M. Collapsin response mediator protein-4 (CRMP-4) expression in posthaching development of song control nuclei in Bengalese finches. Brain Res Bull 2008; 76:551-8. [DOI: 10.1016/j.brainresbull.2008.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2007] [Revised: 04/01/2008] [Accepted: 04/25/2008] [Indexed: 10/22/2022]
|
16
|
Gómez-Climent MA, Castillo-Gómez E, Varea E, Guirado R, Blasco-Ibáñez JM, Crespo C, Martínez-Guijarro FJ, Nácher J. A population of prenatally generated cells in the rat paleocortex maintains an immature neuronal phenotype into adulthood. ACTA ACUST UNITED AC 2008; 18:2229-40. [PMID: 18245040 DOI: 10.1093/cercor/bhm255] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
New neurons in the adult brain transiently express molecules related to neuronal development, such as the polysialylated form of neural cell adhesion molecule, or doublecortin (DCX). These molecules are also expressed by a cell population in the rat paleocortex layer II, whose origin, phenotype, and function are not clearly understood. We have classified most of these cells as a new cell type termed tangled cell. Some cells with the morphology of semilunar-pyramidal transitional neurons were also found among this population, as well as some scarce cells resembling semilunar, pyramidal. and fusiform neurons. We have found that none of these cells in layer II express markers of glial cells, mature, inhibitory, or principal neurons. They appear to be in a prolonged immature state, confirmed by the coexpression of DCX, TOAD/Ulip/CRMP-4, A3 subunit of the cyclic nucleotide-gated channel, or phosphorylated cyclic adenosine monophosphate response element-binding protein. Moreover, most of them lack synaptic contacts, are covered by astroglial lamellae, and fail to express cellular activity markers, such as c-Fos or Arc, and N-methyl-d-aspartate or glucocorticoid receptors. We have found that none of these cells appear to be generated during adulthood or early youth and that most of them have been generated during embryonic development, mainly in E15.5.
Collapse
Affiliation(s)
- María Angeles Gómez-Climent
- Neurobiology Unit and Program in Basic and Applied Neurosciences, Cell Biology Dpt., Universitat de València, Spain
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Vugler A, Lawrence J, Walsh J, Carr A, Gias C, Semo M, Ahmado A, da Cruz L, Andrews P, Coffey P. Embryonic stem cells and retinal repair. Mech Dev 2007; 124:807-29. [PMID: 17881192 DOI: 10.1016/j.mod.2007.08.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Revised: 08/07/2007] [Accepted: 08/07/2007] [Indexed: 12/11/2022]
Abstract
In this review we examine the potential of embryonic stem cells (ESCs) for use in the treatment of retinal diseases involving photoreceptors and retinal pigment epithelium (RPE). We outline the ontogenesis of target retinal cell types (RPE, rods and cones) and discuss how an understanding of developmental processes can inform our manipulation of ESCs in vitro. Due to their potential for cellular therapy, special emphasis is placed upon the derivation and culture of human embryonic stem cells (HESCs) and their differentiation towards a retinal phenotype. In terms of achieving this goal, we suggest that much of the success to date reflects permissive in vitro environments provided by established protocols for HESC derivation, propagation and neural differentiation. In addition, we summarise key factors that may be important for enhancing efficiency of retinal cell-type derivation from HESCs. The retina is an amenable component of the central nervous system (CNS) and as such, diseases of this structure provide a realistic target for the application of HESC-derived cellular therapy to the CNS. In order to further this goal, the second component of our review focuses on the cellular and molecular cues within retinal environments that may influence the survival and behaviour of transplanted cells. Our analysis considers both the potential barriers to transplant integration in the retina itself together with the remodelling in host visual centres that is known to accompany retinal dystrophy.
Collapse
Affiliation(s)
- Anthony Vugler
- Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V9EL, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
It is now widely accepted that neurogenesis occurs in two regions of the adult mammalian brain--the hippocampus and the olfactory bulb. There is evidence for adult neurogenesis in several additional areas, including the neocortex, striatum, amygdala and substantia nigra, but this has been difficult to replicate consistently other than in the damaged brain. The discrepancies may be due to variations in the sensitivity of the methods used to detect new neurons.
Collapse
Affiliation(s)
- Elizabeth Gould
- Department of Psychology, Princeton University, Princeton, New Jersey 08544, USA.
| |
Collapse
|
19
|
Cnops L, Hu TT, Eysel UT, Arckens L. Effect of binocular retinal lesions on CRMP2 and CRMP4 but not Dyn I and Syt I expression in adult cat area 17. Eur J Neurosci 2007; 25:1395-401. [PMID: 17425566 DOI: 10.1111/j.1460-9568.2007.05395.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Removal of retinal input from a restricted region of adult cat visual cortex leads to a substantial reorganization of the retinotopy within the sensory-deprived cortical lesion projection zone (LPZ). Still little is known about the molecular mechanisms underlying this cortical map reorganization. We chose two members of the collapsin response mediator protein (CRMP) family, CRMP2 and CRMP4, because of their involvement in neurite growth, and compared gene and protein expression levels between normal control and reorganizing visual cortex upon induction of central retinal lesions. Parallel analysis of Dynamin I (Dyn I) and Synaptotagmin I (Syt I), two molecules implicated in the exocytosis-endocytosis cycle, was performed because changes in neurotransmitter release have been implicated in cortical plasticity. Western blotting and real-time polymerase chain reaction revealed a clear time-dependent effect of retinal lesioning on CRMP2 and CRMP4 expression, with maximal impact 2 weeks post-lesion. Altered CRMP levels were not a direct consequence of decreased visual activity in the LPZ as complete surgical removal of retinal input to one hemisphere had no effect on CRMP2 or CRMP4 expression. Thus, CRMP expression is correlated to cortical reorganization following partial deafferentation of adult visual cortex. In contrast, Dyn I and Syt I were not influenced and thereby do not promote exocytosis-endocytosis cycle modifications in adult cat cortical plasticity.
Collapse
Affiliation(s)
- Lieselotte Cnops
- Laboratory of Neuroplasticity and Neuroproteomics, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| | | | | | | |
Collapse
|
20
|
van der Borght K, Brundin P. Reduced expression of PSA-NCAM in the hippocampus and piriform cortex of the R6/1 and R6/2 mouse models of Huntington's disease. Exp Neurol 2006; 204:473-8. [PMID: 17187781 DOI: 10.1016/j.expneurol.2006.10.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Revised: 10/03/2006] [Accepted: 10/26/2006] [Indexed: 11/26/2022]
Abstract
Cognitive deficits and impaired olfactory function are observed in early stages of Huntington's disease (HD). The polysialylated form of the neural cell adhesion molecule (PSA-NCAM) is strongly associated with plastic events in the brain. During adulthood, it is most abundantly expressed in the hippocampus and the piriform cortex, which are involved in cognition and olfaction, respectively. We show that the numbers of PSA-NCAM-positive cells in the hippocampus and piriform cortex are dramatically reduced in the R6/1 and the R6/2 mouse models of HD. We hypothesize that the decrease in NCAM polysialylation reflects an impaired plasticity and might underlie some of the early symptoms in HD.
Collapse
Affiliation(s)
- Karin van der Borght
- Neuronal Survival Unit, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, BMC A10, 22184 Lund, Sweden.
| | | |
Collapse
|
21
|
Kowara R, Moraleja KL, Chakravarthy B. Involvement of nitric oxide synthase and ROS-mediated activation of L-type voltage-gated Ca2+ channels in NMDA-induced DPYSL3 degradation. Brain Res 2006; 1119:40-9. [PMID: 16987501 DOI: 10.1016/j.brainres.2006.08.047] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2006] [Revised: 08/11/2006] [Accepted: 08/12/2006] [Indexed: 01/27/2023]
Abstract
Dihydropyrimidinase-like 3 (DPYSL3), a member of TUC (TOAD-64/Ulip/CRMP), is believed to play a role in neuronal differentiation, axonal outgrowth and possibly in neuronal regeneration. Recently, we have shown that in primary cortical neurons (PCN) NMDA and oxidative stress (H(2)O(2)) caused a calpain-dependent cleavage of DPYSL3 (62 kDa) resulting in the appearance of a lower molecular weight form (60 kDa) of DPYSL3. Our preliminary results had shown that antioxidants significantly reduced NMDA-induced DPYSL3 degradation, indicating involvement of ROS in calpain activation. The aim of this study was to investigate the possible involvement of NOS in NMDA-induced DPYSL3 degradation. We found that NOS inhibitor (L-NAME) significantly prevented NMDA-induced ROS formation, as well as intracellular Ca(2+) increase [Ca(2+)](i), DPYSL3 degradation and cell death. Further, exposure of PCN to NO donor (SNP) resulted in significant [Ca(2+)](i) increase, ROS generation and probable calpain-mediated DPYSL3 truncation. The NMDA- and oxidative stress (ROS)-induced DPYSL3 truncation was totally dependent on extracellular [Ca(2+)](i). While NMDA-induced DPYSL3 truncation was blocked by both NMDA receptor antagonist (MK801) [Kowara, R., Chen, Q., Milliken, M., Chakravarthy, B., 2005. Calpain-mediated degradation of dihydropyrimidinase-like 3 protein (DPYSL3) in response to NMDA and H(2)O(2) toxicity. J. Neurochem. 95 (2), 466-474] and L-VGCC (nimodipine) inhibitors, H(2)O(2)-induced increase in [Ca(2+)](i), ROS generation and DPYSL3 truncation was blocked only by nimodipine. These results indicate that changes in Ca(2+) homeostasis resulting from ROS-dependent activation of L-VGCC are sufficient to induce probable calpain-mediated DPYSL3 truncation and demonstrate for the first time the role of ROS in the mechanism leading to glutamate-induced calpain activation and DPYSL3 protein degradation. The probable calpain-mediated DPYSL3 truncation may have significant impact on its interaction with actin and its assembly, and in turn on growth cone integrity.
Collapse
Affiliation(s)
- Renata Kowara
- National Research Council, Institute for Biological Sciences, M-54, Ottawa, Ontario, Canada K1A 0R6.
| | | | | |
Collapse
|
22
|
Parent JM, von dem Bussche N, Lowenstein DH. Prolonged seizures recruit caudal subventricular zone glial progenitors into the injured hippocampus. Hippocampus 2006; 16:321-8. [PMID: 16435310 DOI: 10.1002/hipo.20166] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neurogenesis persists in the adult rat rostral forebrain subventricular zone (SVZ) and is stimulated by status epilepticus (SE). More caudal SVZ (cSVZ) neural progenitors migrate to the hippocampus after ischemic injury and contribute to CA1 pyramidal cell regeneration. Because SE also damages the hippocampus, we examined the effects of SE on cSVZ precursors. SE was induced in adult rats with pilocarpine, and cell proliferation in cSVZ and hippocampus was examined by bromodeoxyuridine (BrdU) and retroviral reporter labeling. Neural precursors were assayed by immunostaining for specfic markers between 1 and 35 days after SE. BrdU-positive cells labeled prior to SE markedly increased in numbers within 1-2 weeks in the cSVZ and infracallosal region, but not in the corpus callosum. Doublecortin-, polysialic acid neural cell adhesion molecule-, and TUC-4 (TOAD/Ulip/CRMP family-4)-immunostained cells with migrating morphology increased with a similar time course after SE and extended from the cSVZ to CA1 and CA3 regions. Retroviral reporters injected into the cSVZ of controls showed labeled cells with oligodendroglial morphology located in the cSVZ and corpus callosum; when injected 2 days prior to SE, many more reporter-labeled cells appeared several weeks later and were located in the cSVZ, corpus callosum, and hippocampus. Labeled cells showed glial morphologies and expressed astrocyte or oligodendrocyte markers. Neither BrdU- nor retroviral reporter-labeled cells coexpressed neuronal markers in controls or pilocarpine-treated rats. These results indicate that SE increases cSVZ gliogenesis and attracts newly generated glia to regions of hippocampal damage. Further study of seizure-induced gliogenesis may provide insight into mechanisms of adult neural progenitor regulation and epileptogenesis.
Collapse
Affiliation(s)
- Jack M Parent
- Department of Neurology, University of Michigan Medical Center, Ann Arbor, Michigan 48109-0585, USA.
| | | | | |
Collapse
|
23
|
Cnops L, Hu TT, Burnat K, Van der Gucht E, Arckens L. Age-dependent alterations in CRMP2 and CRMP4 protein expression profiles in cat visual cortex. Brain Res 2006; 1088:109-19. [PMID: 16630590 DOI: 10.1016/j.brainres.2006.03.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2005] [Revised: 03/03/2006] [Accepted: 03/07/2006] [Indexed: 10/24/2022]
Abstract
We monitored the protein expression profiles of collapsin response mediator protein 2 and 4 (CRMP2 and CRMP4) throughout cat primary visual area 17 at different postnatal ages. Single immunocytochemical stainings revealed a clear effect of cortical maturation on the spatial and laminar distribution profile of CRMP2 and CRMP4. In kittens of postnatal day 10 (P10) and 30 (P30), CRMP2 and CRMP4 immunoreactivity was exclusively present in fibers running perpendicular to the cortical surface and crossing all cortical layers, but was never found in neuronal cell bodies. The immunoreactive fibers were embedded in an intensely and homogeneously stained neuropil. In contrast, mature visual cortex immunocytochemistry located CRMP2 and CRMP4 in the somatodendritic compartment of neurons with a clear CRMP-specific lamination pattern. Similar to kitten, neuropil staining was clearly observed but showed a decreasing gradient from layer I to VI in adult area 17. Detailed analysis of cellular morphology and size classified the CRMP2- and CRMP4-immunopositive cells in distinct neuronal populations. Double labeling of CRMP2 or CRMP4 with the typical interneuron marker parvalbumin (PV) showed many double-labeled cells immunoreactive for CRMP4 and PV, but not for CRMP2 and PV, corroborating the cell type-specific character of each CRMP. Our present results clearly illustrate that CRMP2 and CRMP4 may play an important role in visual cortex, possibly providing different classes of neurons with the potential to form a functionally meaningful network, not only during development, but also in adulthood, coincident with the belief that CRMPs are involved in neurite growth and guidance.
Collapse
Affiliation(s)
- Lieselotte Cnops
- Laboratory of Neuroplasticity and Neuroproteomics, Katholieke Universiteit Leuven, Naamsestraat 59, B-3000 Leuven, Belgium
| | | | | | | | | |
Collapse
|
24
|
Parent JM, Elliott RC, Pleasure SJ, Barbaro NM, Lowenstein DH. Aberrant seizure-induced neurogenesis in experimental temporal lobe epilepsy. Ann Neurol 2006; 59:81-91. [PMID: 16261566 DOI: 10.1002/ana.20699] [Citation(s) in RCA: 259] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Neurogenesis in the hippocampal dentate gyrus persists throughout life and is increased by seizures. The dentate granule cell (DGC) layer is often abnormal in human and experimental temporal lobe epilepsy, with dispersion of the layer and the appearance of ectopic granule neurons in the hilus. We tested the hypothesis that these abnormalities result from aberrant DGC neurogenesis after seizure-induced injury. Bromodeoxyuridine labeling, in situ hybridization, and immunohistochemistry were used to identify proliferating progenitors and mature DGCs in the adult rat pilocarpine temporal lobe epilepsy model. We also examined dentate gyri from epileptic human hippocampal surgical specimens. Prox-1 immunohistochemistry and pulse-chase bromodeoxyuridine labeling showed that progenitors migrate aberrantly to the hilus and molecular layer after prolonged seizures and differentiate into ectopic DGCs in rat. Neuroblast marker expression indicated the delayed appearance of chainlike progenitor cell formations extending into the hilus and molecular layer, suggesting that seizures alter migratory behavior of DGC precursors. Ectopic putative DGCs also were found in the hilus and molecular layer of epileptic human dentate gyrus. These findings indicate that seizure-induced abnormalities of neuroblast migration lead to abnormal integration of newborn DGCs in the epileptic adult hippocampus, and implicate aberrant neurogenesis in the development or progression of recurrent seizures.
Collapse
Affiliation(s)
- Jack M Parent
- Department of Neurology, University of Michigan Medical Center, 4412 Kresge III, 200 Zina Pitcher Place, Ann Arbor, MI 48109-0585, USA.
| | | | | | | | | |
Collapse
|
25
|
Eisch AJ, Harburg GC. Opiates, psychostimulants, and adult hippocampal neurogenesis: Insights for addiction and stem cell biology. Hippocampus 2006; 16:271-86. [PMID: 16411230 DOI: 10.1002/hipo.20161] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Once thought to produce global, nonspecific brain injury, drugs of abuse are now known to produce selective neuro-adaptations in particular brain regions. These neuro-adaptations are being closely examined for clues to the development, maintenance, and treatment of addiction. The hippocampus is an area of particular interest, as it is central to many aspects of the addictive process, including relapse to drug taking. A recently appreciated hippocampal neuro-adaptation produced by drugs as diverse as opiates and psychostimulants is decreased neurogenesis in the sub-granular zone (SGZ). While the role of adult-generated neurons is not clear, their functional integration into hippocampal circuitry raises the possibility that decreased adult SGZ neurogenesis may alter hippocampal function in such a way as to maintain addictive behavior or contribute to relapse. Here, we review the impact of opiates and psychostimulants on the different stages of cell development in the adult brain, as well as the different stages of the addictive process. We discuss how examination of drug-induced alterations of adult neurogenesis advances our understanding of the complex mechanisms by which opiates and psychostimulants affect brain function while also opening avenues for novel ways of assessing the functional role of adult-generated neurons. In addition, we highlight key discrepancies in the field and underscore the necessity to move "beyond BrdU"--beyond merely counting new hippocampal cells labeled with the S phase marker bromodeoxyuridine--so as to probe mechanistic questions about how drug-induced alterations in adult hippocampal neurogenesis occur and what the functional ramifications of alterations in neurogenesis are for addiction.
Collapse
Affiliation(s)
- Amelia J Eisch
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9070, USA.
| | | |
Collapse
|
26
|
Pirttilä TJ, Lukasiuk K, Håkansson K, Grubb A, Abrahamson M, Pitkänen A. Cystatin C modulates neurodegeneration and neurogenesis following status epilepticus in mouse. Neurobiol Dis 2005; 20:241-53. [PMID: 16242633 DOI: 10.1016/j.nbd.2005.03.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2004] [Revised: 03/08/2005] [Accepted: 03/09/2005] [Indexed: 10/25/2022] Open
Abstract
Brain damaging insults cause alterations in neuronal networks that trigger epileptogenesis, and eventually lead to the appearance of spontaneous seizures. The present experiments were designed to study the cellular expression and functions of a cysteine proteinase inhibitor, cystatin C, whose gene expression is previously shown to be upregulated in the rat hippocampus during status epilepticus (SE)-induced epileptogenesis. The present data showed that the expression of cystatin C protein increased in the mouse hippocampus 7 days following SE and localized mainly to astrocytes and microglia. Acute neuronal death in the hippocampus at 24 h after SE was reduced in cystatin C-/- mice. Also, the basal level of neurogenesis in the subgranular layer of dentate gyrus was decreased in cystatin C-/- mice compared to wildtype littermates. Interestingly, migration of newly born neurons within the granule cell layer was attenuated in cystatin C-/- mice. These data demonstrate that cystatin C has a role in neuronal death and neurogenesis during SE-induced network reorganization.
Collapse
Affiliation(s)
- Terhi J Pirttilä
- A.I. Virtanen Institute for Molecular Sciences, University of Kuopio, PO Box 1627, FIN-70211 Kuopio, Finland
| | | | | | | | | | | |
Collapse
|
27
|
Kowara R, Chen Q, Milliken M, Chakravarthy B. Calpain-mediated truncation of dihydropyrimidinase-like 3 protein (DPYSL3) in response to NMDA and H2O2 toxicity. J Neurochem 2005; 95:466-74. [PMID: 16135096 DOI: 10.1111/j.1471-4159.2005.03383.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Dihydropyrimidinase-like protein 3 (DPYSL3), a member of TUC (TOAD-64/Ulip/CRMP), is believed to play a role in neuronal differentiation, axonal outgrowth and, possibly, neuronal regeneration. In primary cortical cultures, glutamate (NMDA) excitotoxicity and oxidative stress (H2O2) caused the cleavage of DPYSL3, resulting in the appearance of a doublet of 62 kDa and 60 kDa. Pre-treatment of cell cultures with calpain inhibitors, but not caspase 3 inhibitor, before exposure to NMDA or H2O2 completely blocked the appearance of the doublet, suggesting calpain-mediated truncation. Furthermore, in vitro digestion of DPYSL3 in cell lysate with purified calpain revealed a cleavage product identical to that observed in NMDA- and H2O2-treated cells, and its appearance was blocked by calpain inhibitors. Analysis of the DPYSL3 protein sequence revealed a possible cleavage site for calpain (Val-Arg-Ser) on the C-terminus of DPYSL3. Collectively, these studies demonstrate for the first time that DPYSL3 is a calpain substrate. The physiological relevance of the truncated DPYSL3 protein remains to be determined.
Collapse
Affiliation(s)
- Renata Kowara
- National Research Council, Institute for Biological Sciences, Ottawa, Ontario, Canada.
| | | | | | | |
Collapse
|
28
|
Veyrac A, Giannetti N, Charrier E, Reymond-Marron I, Aguera M, Rogemond V, Honnorat J, Jourdan F. Expression of collapsin response mediator proteins 1, 2 and 5 is differentially regulated in newly generated and mature neurons of the adult olfactory system. Eur J Neurosci 2005; 21:2635-48. [PMID: 15926912 DOI: 10.1111/j.1460-9568.2005.04112.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Collapsin-response mediator proteins (CRMPs) are highly expressed in the developing brain where they take part in several aspects of neuronal differentiation. CRMPs are still present postnatally, but their function remains speculative in the adult brain. We studied the expression and localization of CRMP1, CRMP2 and CRMP5 in two areas of the nervous system with persistent neurogenesis in adult mice, the olfactory mucosa and the olfactory bulb. In the olfactory mucosa, we have established that CRMP expression is restricted to postmitotic cells of the olfactory neurons lineage. CRMP5 is coexpressed with growth associated protein of 43 kDa (GAP43) in immature olfactory neurons and is down-regulated in olfactory marker protein-positive mature neurons. In contrast, CRMP1 and CRMP2 persist at all stages of differentiation from immature GAP43-positive to fully mature olfactory neurons. In the olfactory bulb, CRMP1, CRMP2 and CRMP5 are abundant in neuronal progenitors of the subependymal layer and in differentiating interneurons. In both areas, the subcellular distribution of CRMP1 or CRMP2 is different in mature vs. immature neurons, suggesting that these proteins are sequentially involved in various cellular events during neuronal lifetime. The variations of CRMP expression following axotomy are consistent with their differential localization and functional involvement in immature vs. mature neurons of the olfactory system. Our data bring new insight to the putative functions of CRMPs within areas of the adult nervous system with permanent neurogenesis, some related to differentiation of newly generated neurons but others occurring in mature neurons with a limited lifespan.
Collapse
Affiliation(s)
- Alexandra Veyrac
- UMR 5020, Neurosciences et systèmes sensoriels, CNRS-Université Claude Bernard Lyon 1, 50 Avenue Tony Garnier, F-69366 Lyon cedex 07, France
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Poulsen FR, Blaabjerg M, Montero M, Zimmer J. Glutamate receptor antagonists and growth factors modulate dentate granule cell neurogenesis in organotypic, rat hippocampal slice cultures. Brain Res 2005; 1051:35-49. [PMID: 15993864 DOI: 10.1016/j.brainres.2005.05.050] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2004] [Revised: 05/19/2005] [Accepted: 05/22/2005] [Indexed: 12/01/2022]
Abstract
Generation of dentate granule cells and its modulation by glutamate receptor antagonists, growth factors and pilocarpine-induced seizure-like activity was investigated in rat hippocampal slice cultures derived from 1-week-old rats and grown for 2 weeks. Focussing on the dentate granule cell layer facing CA1 and the immediate subgranular zone, exposure for 3 days to the NMDA receptor blocking agents MK-801 (10 microM) or APV (25 microM) in the culture medium, increased the number of TOAD-64/Ulip/CRMP-4 (TUC-4)-positive cells as counted in the slice cultures at the end of the 3-day treatment period. Exposure to IGF-I (200 ng/ml) and EGF (20 ng/ml) also increased the number of TUC-4-positive cells. Combining APV with IGF-I/EGF had an additive effect. Similar results were obtained by 3 days treatment with the AMPA receptor antagonist CNQX (25 microM). Surprisingly, addition of 5 mM pilocarpine reduced the number of TUC-4-positive cells, just as combining pilocarpine with the neurogenesis-stimulating compounds, prevented or reduced the increase of TUC-4-positive cells. None of the treatments were found to induce dentate granule cell death within the observed period. Labeling of dividing cells by adding 5-bromo-2-deoxyuridine (BrdU) to the culture medium did not result in cells double-labeled with BrdU and TUC-4. The induced increase in TUC-4-positive cells therefore represent neuronal differentiation of existing neural precursor cells when investigated at the 3-day time point. We conclude that 3 days treatment of 2-week-old hippocampal slice cultures with IGF-I and EGF and NMDA and AMPA glutamate receptor antagonists increase granule cell neurogenesis from preexisting neural precursors.
Collapse
Affiliation(s)
- Frantz Rom Poulsen
- Anatomy and Neurobiology, Institute of Medical Biology, University of Southern Denmark, Winslowparken 21, DK-5000 Odense C, Denmark.
| | | | | | | |
Collapse
|
30
|
Horiuchi M, Loebrich S, Brandstaetter JH, Kneussel M, Betz H. Cellular localization and subcellular distribution of Unc-33-like protein 6, a brain-specific protein of the collapsin response mediator protein family that interacts with the neuronal glycine transporter 2. J Neurochem 2005; 94:307-15. [PMID: 15998282 DOI: 10.1111/j.1471-4159.2005.03198.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Unc-33-like protein (Ulip)6, a brain-specific phosphoprotein of the Ulip/collapsin response mediator protein family, was originally identified in our laboratory by yeast two-hybrid screening using the cytoplasmic N-terminal domain of the neuronal glycine transporter, glycine transporter (GlyT) 2, as a bait. Here, the interaction of Ulip6 with the N-terminal domain of GlyT2 was found to be specific for this member of the Ulip/collapsin response mediator protein family and to involve amino acids 135-184 of GlyT2. In pull-down assays and coimmunoprecipitation experiments with rat spinal cord extract, the presence of phosphatase inhibitors significantly enhanced binding of Ulip6 to GlyT2. Subcellular fractionation of spinal cord and retina homogenates at different developmental stages showed Ulip6 immunoreactivity to be associated with light vesicles that were distinct from GlyT2-containing and synaptic vesicles. Immunocytochemistry revealed punctate Ulip6 immunoreactivity in both somatic regions and processes of cultured spinal neurones; no colocalization with GlyT2 or other synaptic marker proteins was found. In retina, which expresses only GlyT1 but not GlyT2, Ulip6 was detected in the inner plexiform layer and along the somata and processes of selected bipolar, amacrine and ganglion cells. Our data support a model in which Ulip6 transiently interacts with GlyT2 in a phosphorylation-dependent manner.
Collapse
Affiliation(s)
- Masahisa Horiuchi
- Abteilung Neurochemie, Max-Planck-Institut für Hirnforschung, Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|
31
|
Bretin S, Reibel S, Charrier E, Maus-Moatti M, Auvergnon N, Thevenoux A, Glowinski J, Rogemond V, Prémont J, Honnorat J, Gauchy C. Differential expression of CRMP1, CRMP2A, CRMP2B, and CRMP5 in axons or dendrites of distinct neurons in the mouse brain. J Comp Neurol 2005; 486:1-17. [DOI: 10.1002/cne.20465] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
32
|
Abstract
The discovery that the adult mammalian brain creates new neurons from pools of stemlike cells was a breakthrough in neuroscience. Interestingly, this particular new form of structural brain plasticity seems specific to discrete brain regions, and most investigations concern the subventricular zone (SVZ) and the dentate gyrus (DG) of the hippocampal formation (HF). Overall, two main lines of research have emerged over the last two decades: the first aims to understand the fundamental biological properties of neural stemlike cells (and their progeny) and the integration of the newly born neurons into preexisting networks, while the second focuses on understanding its relevance in brain functioning, which has been more extensively approached in the DG. Here, we propose an overview of the current knowledge on adult neurogenesis and its functional relevance for the adult brain. We first present an analysis of the methodological issues that have hampered progress in this field and describe the main neurogenic sites with their specificities. We will see that despite considerable progress, the levels of anatomic and functional integration of the newly born neurons within the host circuitry have yet to be elucidated. Then the intracellular mechanisms controlling neuronal fate are presented briefly, along with the extrinsic factors that regulate adult neurogenesis. We will see that a growing list of epigenetic factors that display a specificity of action depending on the neurogenic site under consideration has been identified. Finally, we review the progress accomplished in implicating neurogenesis in hippocampal functioning under physiological conditions and in the development of hippocampal-related pathologies such as epilepsy, mood disorders, and addiction. This constitutes a necessary step in promoting the development of therapeutic strategies.
Collapse
Affiliation(s)
- Djoher Nora Abrous
- Laboratoire de Physiopathologie des Comportements, Institut National de la Sané et de la Recherche Médicale, U588, Université de Bordeaux, France.
| | | | | |
Collapse
|
33
|
Siman R, McIntosh TK, Soltesz KM, Chen Z, Neumar RW, Roberts VL. Proteins released from degenerating neurons are surrogate markers for acute brain damage. Neurobiol Dis 2004; 16:311-20. [PMID: 15193288 DOI: 10.1016/j.nbd.2004.03.016] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2003] [Revised: 03/06/2004] [Accepted: 03/18/2004] [Indexed: 11/23/2022] Open
Abstract
The experimental and clinical study of degenerative brain disorders would benefit from new surrogate markers for brain damage. To identify novel candidate markers for acute brain injury, we report that rat cortical neurons release over 60 cytoskeletal and other proteins, as well as their proteolytic fragments into the medium during neuronal death. The profiles of released proteins differ for necrosis and apoptosis, although a subset of proteins is released generally during neurodegeneration. The value of this approach was established by immunodetection of the released proteins 14-3-3 zeta and 14-3-3 beta, as well as calpain and caspase derivatives of tau and alpha-spectrin in cerebrospinal fluid (CSF) following traumatic brain injury (TBI) or transient forebrain ischemia in the rat. These results indicate that proteins and their proteolytic fragments released from degenerating neurons are cerebrospinal fluid markers for acute brain damage and suggest that efflux of proteins from the injured brain may reflect underlying mechanisms for neurodegeneration.
Collapse
Affiliation(s)
- Robert Siman
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6084, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Rao MS, Shetty AK. Efficacy of doublecortin as a marker to analyse the absolute number anddendritic growth of newly generated neurons in the adult dentate gyrus. Eur J Neurosci 2004; 19:234-46. [PMID: 14725617 DOI: 10.1111/j.0953-816x.2003.03123.x] [Citation(s) in RCA: 517] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Doublecortin (DCX), a microtubule-associated phosphoprotein, has been recently utilized as a marker of newly born neurons in the adult dentate gyrus (DG). Nonetheless, it is unknown whether DCX exclusively labels newly formed neurons, as certain granule cells with the phenotype of differentiated neurons express DCX. We addressed the authenticity of DCX as a marker of new neurons in the adult DG by quantifying cells that are positive for 5'-bromodeoxyuridine (BrdU), DCX and both BrdU and DCX in hippocampal tissues of adult rats treated with daily injections of BrdU for 12 consecutive days. We provide new evidence that neurons visualized with DCX immunostaining in the adult rat DG are new neurons that are predominantly born during the 12 days before euthanasia. This is confirmed by the robust expression of BrdU in 90% of DCX-positive neurons in the DG of animals injected with BrdU for 12 days. Furthermore, DCX expression is specific to newly generated healthy neurons, as virtually all DCX-positive cells express early neuronal antigens but lack antigens specific to glia, undifferentiated cells or apoptotic cells. As DCX expression is also robust in the dendrites, DCX immunocytochemistry of thicker sections facilitates quantification of the dendritic growth in newly born neurons. Thus, both absolute number and dendritic growth of new neurons that are generated in the adult DG over a 12-day period can be quantified reliably with DCX immunostaining. This could be particularly useful for analysing changes in dentate neurogenesis in human hippocampal tissues as a function of ageing or neurodegenerative diseases.
Collapse
Affiliation(s)
- Muddanna S Rao
- Department of Surgery (Division of Neurosurgery), DUMC Box 3807, Duke University Medical Centre, Durham NC 27710, USA
| | | |
Collapse
|
35
|
Wojciechowski AB, Englund U, Lundberg C, Warfvinge K. Migratory capacity of the cell line RN33B and the host glial cell response after subretinal transplantation to normal adult rats. Glia 2004; 47:58-67. [PMID: 15139013 DOI: 10.1002/glia.20033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
As previously reported, the brain-derived precursor cell line RN33B has a great capacity to migrate when transplanted to adult brain or retina. This cell line is immortalized with the SV40 large T-antigen and carries the reporter gene LacZ and the green fluorescent protein GFP. In the present study, the precursor cells were transplanted to the subretinal space of adult rats and investigated early after grafting. The purpose was to demonstrate the migration of the grafted cells from the subretinal space into the retina and the glial cell response of the host retina. Detachment caused by the transplantation method was persistent up to 4 days after transplantation, and then reattachment occurred. The grafted cells were shown to migrate in between the photoreceptor cells before entering into the plexiform layers. Molecules involved in migration of immature neuronal cells as the polysialylated neural cell adhesion molecule (PSA-NCAM) and the collapsing response-mediated protein 4 (TUC-4) was found in the plexiform layers of the host retina, but not in the grafted cells. The expression of the intermediate filaments GFAP, vimentin, and nestin was intensely upregulated immediately after transplantation. A less pronounced upregulation was observed on sham-operated animals. In summary, the RN33B cell line migrated promptly posttransplantation and settled preferably into the plexiform layers of the retina, the same layers where the migration cues PSA-NCAM and TUC-4 were established. In addition, both the transplantation method per se and the implanted cells caused an intense glial cell response by the host retina.
Collapse
|
36
|
Tsim TY, Wong EYK, Leung MS, Wong CC. Expression of axon guidance molecules and their related genes during development and sexual differentiation of the olfactory bulb in rats. Neuroscience 2004; 123:951-65. [PMID: 14751288 DOI: 10.1016/j.neuroscience.2003.10.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Axon guidance molecules and related proteins such as semaphorin 3A, neuropilin-1, plexin-1, netrin-1, growth-associated protein, olfactory marker protein, cypin and collapsin response mediator proteins guide the development of neural circuits in the olfactory bulb. In this study, transcriptions of these genes were examined in the olfactory bulb of female, male and neonatal testosterone propionate-treated female rats at the ages of 2, 5, 10, 15, 20, 25, 30 and 45 days. The semaphorin 3A, neuropilin-1, growth-associated protein and collapsin response mediator protein 1-5 genes were expressed significantly higher during the early development stages than in adulthood while the opposite is true for the olfactory marker protein. The expression profile of cypin and netrin-1 was relatively constant through development. A late effect of the neonatal testosterone propionate treatment on netrin-1, growth-associated protein, olfactory marker protein, collapsin response mediator proteins 1, 3, 4 and cypin gene expression was observed. The expression profiles of collapsin response mediator proteins and their related genes in the developing olfactory bulb confirmed most studies on the relationship between collapsin response mediator proteins and development in the brain. Sex differences of semaphorin 3A, neuropilin-1 as well as collapsin response mediator protein 3 at the early development stage and the late effect of neonatal testosterone propionate treatment on the expressions of netrin-1, growth-associated marker protein, cypin and collapsin response mediator proteins 1, 3 and 5 genes may indicate a possible role of these molecules on sexual differentiation of the olfactory bulb.
Collapse
Affiliation(s)
- T Y Tsim
- Department of Physiology, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | | | | | | |
Collapse
|
37
|
Wojciechowski AB, Englund U, Lundberg C, Warfvinge K. Survival and Long Distance Migration of Brain‐Derived Precursor Cells Transplanted to Adult Rat Retina. Stem Cells 2004; 22:27-38. [PMID: 14688389 DOI: 10.1634/stemcells.22-1-27] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Neural precursor cells transplanted to adult retina can integrate into the host. This is especially true when the neural precursor rat cell line RN33B is used. This cell line carries the reporter genes LacZ and green fluorescent protein (GFP). In grafted rat eyes, RN33B cells are localized from one eccentricity to the other of the host retina. In the present study, whole-mounted retinas were analyzed to obtain a more appropriate evaluation of the amount of transgene-expressing cells and the migratory capacity of these cells 3 and 8 weeks post-transplantation. Quantification was made of the number of beta-galactosidase- and GFP-expressing cells with a semiautomatized stereological cell counting system. With the same system, delineation of the distribution area of the grafted cells was also performed. At 3 weeks, 68% of the grafted eyes contained marker-expressing cells, whereas at 8 weeks only 35% of the eyes contained such cells. Counting of marker-expressing cells demonstrated a lower number of transgene-expressing cells at 3 weeks compared with 8 weeks post-transplantation. The distribution pattern of marker gene-expressing cells revealed cells occupying up to 21% at 3 weeks and up to 68% at 8 weeks of the entire host retina post-grafting. The precursor cells survived well in the adult retina although the most striking feature of the RN33B cell line was its extraordinary migratory capacity. This capability could be useful if precursor cells are used to deliver necessary genes or gene products that need to be distributed over a large diseased area.
Collapse
Affiliation(s)
- Anita Blixt Wojciechowski
- Wallenberg Retina Center, Department of Ophthalmology, Lund University Hospital, Lund University, Lund, Sweden.
| | | | | | | |
Collapse
|
38
|
Nacher J, Pham K, Gil-Fernandez V, McEwen BS. Chronic restraint stress and chronic corticosterone treatment modulate differentially the expression of molecules related to structural plasticity in the adult rat piriform cortex. Neuroscience 2004; 126:503-9. [PMID: 15207367 DOI: 10.1016/j.neuroscience.2004.03.038] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2004] [Indexed: 11/18/2022]
Abstract
Stress and stress-related hormones induce structural changes in neurons of the adult CNS. Neurons in the hippocampus, the amygdala and the prefrontal cortex undergo neurite remodeling after chronic stress. In the hippocampus some of these effects can be mimicked with chronic administration of adrenal steroids. These changes in neuronal structure may be mediated by certain molecules related to plastic events such as the polysialylated form of the neural cell adhesion molecule (PSA-NCAM). The expression of PSA-NCAM persists in the adult hippocampus and it is up-regulated after chronic stress. The piriform cortex also displays considerable levels of PSA-NCAM during adulthood and indirect evidence suggests that it may also be the target of stress and stress related-hormones. Using immunohistochemistry we have studied the expression of PSA-NCAM and doublecortin (DCX; another protein implicated in neuronal structural plasticity) in the piriform cortex of adult rats subjected either to 21 days of chronic restraint stress or to oral corticosterone administration during the same period. Our results indicate that chronic stress and chronic corticosterone administration have differential effects on the expression of PSA-NCAM and DCX. While chronic stress increases the number of PSA-NCAM- and DCX-immunoreactive cells in the piriform cortex layer II, chronic corticosterone administration decreases these numbers. These findings indicate that stress and adrenal steroids affect the piriform cortex and suggest that in this region, as in the hippocampus, they may induce structural changes. This is a potential mechanism by which stress and corticosterone modulate functions of this limbic region, such as its participation in olfactory memory.
Collapse
Affiliation(s)
- J Nacher
- Laboratory of Neuroendocrinology, Rockefeller University, New York, NY 10021, USA.
| | | | | | | |
Collapse
|
39
|
Charrier E, Reibel S, Rogemond V, Aguera M, Thomasset N, Honnorat J. Collapsin response mediator proteins (CRMPs): involvement in nervous system development and adult neurodegenerative disorders. Mol Neurobiol 2003; 28:51-64. [PMID: 14514985 DOI: 10.1385/mn:28:1:51] [Citation(s) in RCA: 225] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2003] [Accepted: 03/26/2003] [Indexed: 11/11/2022]
Abstract
The members of the collapsin response mediator protein (CRMP) family-five cytosolic phosphoproteins -are highly expressed throughout brain development. The first member to be cloned, CRMP2, was identified as an intracellular messenger required for the growth cone-collapse induced by semaphorin 3A (Sema3A). A rapidly expanding body of study indicates that the functions of CRMPs are not solely limited to the signaling transduction of the Sema3A guidance cue. They are probably involved in multiple cellular and molecular events involved in apoptosis/proliferation, cell migration, and differentiation. In the adult brain, the expression of CRMPs is dramatically downregulated. However, they remain expressed in structures that retain their capacity for differentiation and plasticity and also in a subpopulation of oligodendrocytes (CRMP2 and CRMP5). Moreover, the expression of CRMPs is altered in neurodegenerative diseases, and these proteins may be of key importance in the physiopathology of the adult nervous system.
Collapse
Affiliation(s)
- Emmanuelle Charrier
- Institut National de la Santé et de la Recherche Médicale U 433, Hôpital Neurologique, 59 Bd Pinel, 69003 Lyon, France
| | | | | | | | | | | |
Collapse
|
40
|
Tonchev AB, Yamashima T, Zhao L, Okano HJ, Okano H. Proliferation of neural and neuronal progenitors after global brain ischemia in young adult macaque monkeys. Mol Cell Neurosci 2003; 23:292-301. [PMID: 12812760 DOI: 10.1016/s1044-7431(03)00058-7] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
To investigate the effect of global cerebral ischemia on brain cell proliferation in young adult macaques, we infused 5-bromo-2'-deoxyuridine (BrdU), a DNA replication indicator, into monkeys subjected to ischemia or sham-operated. Subsequent quantification by BrdU immunohistochemistry revealed a significant postischemic increase in the number of BrdU-labeled cells in the hippocampal dentate gyrus, subventricular zone of the temporal horn of the lateral ventricle, and temporal neocortex. In all animals, 20-40% of the newly generated cells in the dentate gyrus and subventricular zone expressed the neural progenitor cell markers Musashi1 or Nestin. A few BrdU-positive cells in postischemic monkeys were double-stained for markers of neuronal progenitors (class III beta-tubulin, TUC4, doublecortin, or Hu), neurons (NeuN), or glia (S100beta or GFAP). Our results suggest that ischemia activates endogenous neuronal and glial precursors residing in diverse locations of the adult primate central nervous system.
Collapse
Affiliation(s)
- Anton B Tonchev
- Department of Neurosurgery, Division of Neuroscience, Kanazawa University Graduate School of Medical Science, Kanazawa, 920-8641, Japan
| | | | | | | | | |
Collapse
|
41
|
Nacher J, Alonso-Llosa G, Rosell DR, McEwen BS. NMDA receptor antagonist treatment increases the production of new neurons in the aged rat hippocampus. Neurobiol Aging 2003; 24:273-84. [PMID: 12498961 DOI: 10.1016/s0197-4580(02)00096-9] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The production of new neurons declines during adulthood and persists, although at very low levels, in the aged hippocampus. Since neurogenesis in young adults has been related to learning and memory, its reduction may contribute to the age-related impairments in these abilities. Adrenalectomy (ADX) enhances neurogenesis in the aged hippocampus, although it also induces neuronal cell death. Since the administration of an NMDA receptor antagonist enhances neurogenesis in young adult rats without deleterious morphological effects, we have tested whether neurogenesis could be reactivated in aged rats. Our study shows that cell proliferation, cell death, neurogenesis and the number of radial glia-like nestin immunoreactive cells decrease in middle-age (10 months) and remain very low in the aged hippocampus. Injection of the NMDA receptor antagonist to aged rats increases significantly the number of proliferating cells, new neurons and radial glia-like cells in the hippocampus.
Collapse
Affiliation(s)
- Juan Nacher
- Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA.
| | | | | | | |
Collapse
|
42
|
Nacher J, Soriano S, Varea E, Molowny A, Ponsoda X, Lopez-Garcia C. CRMP-4 expression in the adult cerebral cortex and other telencephalic areas of the lizard Podarcis hispanica. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2002; 139:285-94. [PMID: 12480143 DOI: 10.1016/s0165-3806(02)00589-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The control of neuritogenesis is crucial for the development, maturation and regeneration of the nervous system. The collapsin response-mediated protein 4 (CRMP-4) is a member of a family of proteins that are involved in neuronal differentiation and axonal outgrowth. In rodents, this protein is expressed in recently generated neurons such as some granule neurons of the dentate gyrus, as well as in certain differentiated neurons undergoing neurite outgrowth or synaptogenesis during adulthood. Since CRMP-4 protein appears to be highly conserved throughout the evolutionary scale, we have used immunocytochemistry to study its distribution in the lizard cerebral cortex. We have found pronounced CRMP-4 immunolabeling in certain neurons of the medial cortex, the homologous region to the dentate gyrus, but also in the dorsal and lateral cortices. Double labeling with 5'-BrdU indicated that these medial cortex neurons were recently generated. However, it is also possible that many of these cells were not new but undergoing some kind of plasticity implicating neurite outgrowth. Similar CRMP-4-labeled neurons and processes were observed in subcortical regions as the PDVR and the nucleus sphericus. Our results show for the first time the expression of CRMP-4 in a reptile brain, where it appears to be expressed in regions where adult neurogenesis and/or neurite outgrowth occur.
Collapse
Affiliation(s)
- Juan Nacher
- Neurobiologia, Biologia Celular, Facultad de Ciencias Biologicas, Universidad de Valencia, 46100 Burjassot, Valencia, Spain.
| | | | | | | | | | | |
Collapse
|
43
|
Bédard A, Lévesque M, Bernier PJ, Parent A. The rostral migratory stream in adult squirrel monkeys: contribution of new neurons to the olfactory tubercle and involvement of the antiapoptotic protein Bcl-2. Eur J Neurosci 2002; 16:1917-24. [PMID: 12453055 DOI: 10.1046/j.1460-9568.2002.02263.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The subventricular zone (SVZ) lying along the ependymal layer of lateral ventricle is known to generate neural progenitor cells throughout adulthood in specific areas of the mammalian brain. In rodents, the anterior region of the SVZ produces neuroblasts that migrate in chain toward the olfactory bulb along the so-called rostral migratory stream (RMS). In the present study, the organization of the RMS in a representative of New World primates - the squirrel monkey (Saimiri sciureus) - was studied by using bromodeoxyuridine (BrdU), a thymidine analogue that incorporates itself into the DNA of cells undergoing mitotic division. Double and triple immunofluorescence labelling with a confocal microscope served to visualize cells that expressed BrdU as well as molecular markers of neurogenesis. Numerous newborn (BrdU+) cells, many ensheated in glial (GFAP+) tubes, were scattered along the entire RMS in squirrel monkeys. Some of these BrdU+ cells expressed molecular markers for early committed neurons (TuJ1), postmitotic granular neuroblasts (TUC-4) or mature neurons (MAP-2, NeuN), and virtually all of them expressed the antiapoptotic protein Bcl-2. A significant number of BrdU+ cells were found to deviate from the main stream of the RMS. Instead of reaching the olfactory bulb, these cells migrated ventrally into the olfactory tubercle, where they expressed a mature neuronal phenotype (MAP-2). These findings reveal that the RMS in New World monkeys is mitotically robust and markedly extended and suggest that Bcl-2 might play a role in the survival and/or differentiation of newborn neurons destined to olfactory bulb and olfactory tubercle in primates.
Collapse
Affiliation(s)
- Andréanne Bédard
- Centre de recherche Université Laval Robert-Giffard, 2601, de la Canardière, Local F-6500, Beauport, Québec, Canada, G1J 2G3
| | | | | | | |
Collapse
|
44
|
Seki T. Expression patterns of immature neuronal markers PSA-NCAM, CRMP-4 and NeuroD in the hippocampus of young adult and aged rodents. J Neurosci Res 2002; 70:327-34. [PMID: 12391592 DOI: 10.1002/jnr.10387] [Citation(s) in RCA: 159] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Neurogenesis is known to continue in the adult hippocampus of mammals, including humans. The present experiments were undertaken to examine the nature of developing neurons generated in the dentate gyrus of young and older rodents using immature neuronal markers such as highly polysialylated neural cell adhesion molecules (PSA-NCAM), collapsin response-mediated protein-4 (CRMP-4) and NeuroD. Most PSA-expressing cells are simultaneously positive for CRMP-4 and NeuroD in young rats. More than half of the PSA-positive cells were also positive for mature neuronal markers such as NeuN and MAP2, although the intensity of the immunoreactivities was relatively weak. BrdU analysis revealed that CRMP-4 is expressed for a longer period than PSA in BrdU-labeled neurons. The number of immature neurons expressing PSA, NeuroD or CRMP-4 decreased in older rodents, but no qualitative difference was found in the expression patterns of these molecular markers between young and older rodents. These results suggest not only that immunohistochemistry, using a combination of these immature and mature neuronal markers, is helpful for clarifying the developmental state of newly generated neurons, but also that newly generated neurons in young adult and older rodents have similar properties.
Collapse
Affiliation(s)
- Tatsunori Seki
- Department of Anatomy, Juntendo University School of Medicine, Tokyo, Japan.
| |
Collapse
|
45
|
Parent JM, Lowenstein DH. Seizure-induced neurogenesis: are more new neurons good for an adult brain? PROGRESS IN BRAIN RESEARCH 2002; 135:121-31. [PMID: 12143334 DOI: 10.1016/s0079-6123(02)35012-x] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The idea that neural stem cells may play a role in the pathophysiology or potential treatment of specific epilepsy syndromes is relatively new. This notion relates directly to advances in the field of stem cell biology over the past decade, which have confirmed prior theories that both neural stem cells and neurogenesis, the birth of new neurons, persist in specific regions of the adult mammalian brain. The physiological role of persistent neurogenesis is not known, although recent work implicates this process in specific learning and memory tasks. Knowledge of the normal neurogenic pathways in the mature brain has led to recent studies of neurogenesis in rodent models of acute seizures or epileptogenesis. Most of these studies have examined neurogenesis in the adult rodent dentate gyrus, and current evidence indicates that single brief or prolonged seizures, as well as repeated kindled seizures, increase dentate granule cell (DGC) neurogenesis. The models studied to date include pilocarpine and kainic acid models of temporal lobe epilepsy, limbic kindling, and intermittent perforant path stimulation. Recent work also suggests that pilocarpine-induced status epilepticus increases rostral forebrain subventricular zone (SVZ) neurogenesis and caudal SVZ gliogenesis. Several lines of evidence implicate newly generated neurons in structural and functional network abnormalities in the epileptic hippocampal formation of adult rodents. These abnormalities include aberrant mossy fiber reorganization, persistence of immature DGC structure (e.g. basal dendrites), and the abnormal migration of newborn neurons to ectopic sites in the dentate gyrus. Taken together, these findings suggest a pro-epileptogenic role of seizure- or injury-induced neurogenesis in the epileptic hippocampal formation. However, the induction of forebrain SVZ neurogenesis and directed migration to injury after seizures and other brain insults underscores the potential therapeutic use of neural stem cells as a source for neuronal replacement after injury.
Collapse
Affiliation(s)
- Jack M Parent
- Department of Neurology, University of Michigan Medical Center, Ann Arbor, MI 48104-1687, USA.
| | | |
Collapse
|
46
|
Abstract
Data accumulated over the past four decades have led to the widespread recognition that neurogenesis, the birth of new neurons, persists in the hippocampal dentate gyrus and rostral forebrain subventricular zone (SVZ) of the adult mammalian brain. Neural precursor cells located more caudally in the forebrain SVZ are thought to also give rise to glia throughout life. The continued production of neurons and glia suggests that the mature brain maintains an even greater potential for plasticity after injury than was previously recognized. Underscoring this idea are recent findings that seizures induced by various experimental manipulations increase neurogenesis in the adult rodent dentate gyrus. Although neurogenesis and gliogenesis in persistent germinative zones are altered in adult rodent models of temporal lobe epilepsy (TLE), the effects of seizure-induced neurogenesis in the epileptic brain, in terms of either a pathological or reparative role, are only beginning to be explored. Emerging data suggest that altered neurogenesis in the epileptic dentate gyrus may be pathological and promote abnormal hyperexcitability. However, the presence of endogenous neural progenitors in other proliferative regions may offer potential strategies for the development of anti-epileptogenic or neuronal replacement therapies.
Collapse
Affiliation(s)
- Jack M Parent
- Department of Neurology, Neuroscience Laboratory Building, University of Michigan Medical Center, 1103 E. Huron Street, Ann Arbor, MI 48104-1687, USA.
| |
Collapse
|
47
|
Prolonged seizures increase proliferating neuroblasts in the adult rat subventricular zone-olfactory bulb pathway. J Neurosci 2002. [PMID: 11943819 DOI: 10.1523/jneurosci.22-08-03174.2002] [Citation(s) in RCA: 239] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neuronal precursors in the adult rodent forebrain subventricular zone (SVZ) proliferate, migrate to the olfactory bulb in a restricted pathway known as the rostral migratory stream (RMS), and differentiate into neurons. The effects of injury on this neurogenic region of the mature brain are poorly understood. To determine whether seizure-induced injury modulates SVZ neurogenesis, we induced status epilepticus (SE) in adult rats by systemic chemoconvulsant administration and examined patterns of neuronal precursor proliferation and migration in the SVZ-olfactory bulb pathway. Within 1-2 weeks after pilocarpine-induced SE, bromodeoxyuridine (BrdU) labeling and Nissl staining increased in the rostral forebrain SVZ. These changes were associated with an increase in cells expressing antigenic markers of SVZ neuroblasts 2-3 weeks after prolonged seizures. At these same time points the RMS expanded and contained more proliferating cells and immature neurons. BrdU labeling and stereotactic injections of retroviral reporters into the SVZ showed that prolonged seizures also increased neuroblast migration to the olfactory bulb and induced a portion of the neuronal precursors to exit the RMS prematurely. These findings indicate that SE expands the SVZ neuroblast population and alters neuronal precursor migration in the adult rat forebrain. Identification of the mechanisms underlying the response of neural progenitors to seizure-induced injury may help to advance brain regenerative therapies by using either transplanted or endogenous neural precursor cells.
Collapse
|
48
|
|
49
|
|
50
|
Nacher J, Alonso-Llosa G, Rosell D, McEwen B. PSA-NCAM expression in the piriform cortex of the adult rat. Modulation by NMDA receptor antagonist administration. Brain Res 2002; 927:111-21. [PMID: 11821005 DOI: 10.1016/s0006-8993(01)03241-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Administration of NMDA receptor antagonists upregulates the expression of the polysialylated form of the neural cell adhesion molecule (PSA-NCAM) in the adult hippocampus. Since the piriform cortex is also populated by PSA-NCAM immunoreactive neurons during adulthood, we sought to characterize them in detail and to test whether NMDA receptor antagonists also modulate PSA-NCAM in this cortical region. PSA-NCAM immunoreactivity is located mainly in layer II, where many neurogliaform and some pyramidal-semilunar transitional neurons are labeled. Many large neurons in layer III and endopiriform nucleus also express PSA-NCAM. Interestingly, some small labeled cells resembling migratory neuroblasts appear in these layers and in the ventral end of the corpus callosum subjacent to the piriform cortex. These putative migratory cells and some neurogliaform neurons in layer II do not express NeuN, a marker of differentiated neurons. Many of these PSA-NCAM immunoreactive cells also express doublecortin, a molecule involved in neuronal migration. The number of PSA-NCAM immunoreactive neurogliaform neurons increases significantly 7 days after the administration of an NMDA receptor antagonist. Moreover, 21 days after the treatment we observe a significant increase in the number of doublecortin expressing cells in the deep layers of the piriform cortex. These results expand the current knowledge of the neuronal populations expressing PSA-NCAM in the piriform cortex, suggesting that some of these cells could be involved in structural plastic events such as axonal outgrowth, synaptogenesis or even neuronal migration. Similar to the hippocampus, NMDA receptors appear to play a critical role in these processes in the adult piriform cortex.
Collapse
Affiliation(s)
- Juan Nacher
- Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA.
| | | | | | | |
Collapse
|