1
|
Yan K, Chen D, Guo X, Wan Y, Yang C, Wang W, Li X, Lu Z, Wang D. Electric-field assisted cascade reactions to create alginate/carboxymethyl chitosan composite hydrogels with gradient architecture and reconfigurable mechanical properties. Carbohydr Polym 2024; 346:122609. [PMID: 39245522 DOI: 10.1016/j.carbpol.2024.122609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/26/2024] [Accepted: 08/10/2024] [Indexed: 09/10/2024]
Abstract
Rational designs of polysaccharide-based hydrogels with organ-like three-dimensional architecture provide a great possibility for addressing the shortages of allograft tissues and organs. However, spatial-temporal control over structure in bulk hydrogel and acquire satisfied mechanical properties remain an intrinsic challenge to achieve. Here, we show how electric-field assisted molecular self-assembly can be coupled to a directional reaction-diffusion (RD) process to produce macroscopic hydrogel in a controllable manner. The electrical energy input was not only to generate complex molecule gradients and initiate the molecular self-assembly, but also to guide/facilitate the RD processes for the gel rapid growth via a cascade construction interaction. The hydrogel mechanical properties can be tuned and enhanced by using an interpenetrating biopolymer network and multiple ionic crosslinkers, leading to a wide-range of mechanical modulus to match with biological organs or tissues. We demonstrate diverse 3D macroscopic hydrogels can be easily prepared via field-assisted directional reaction-diffusion and specific joint interactions. The humility-triggered dissipation of functional gradients and antibacterial performance confirm that the hydrogels can serve as an optically variable soft device for wound management. Therefore, this work provides a general approach toward the rational fabrication of soft hydrogels with controlled architectures and functionality for advanced biomedical systems.
Collapse
Affiliation(s)
- Kun Yan
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials &Application, Key Laboratory of Textile Fiber & Product, Ministry of Education, Wuhan Textile University, Wuhan 430200, China.
| | - Ding Chen
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials &Application, Key Laboratory of Textile Fiber & Product, Ministry of Education, Wuhan Textile University, Wuhan 430200, China
| | - Xiaoming Guo
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials &Application, Key Laboratory of Textile Fiber & Product, Ministry of Education, Wuhan Textile University, Wuhan 430200, China; School of Materials Science & Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
| | - Yekai Wan
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials &Application, Key Laboratory of Textile Fiber & Product, Ministry of Education, Wuhan Textile University, Wuhan 430200, China
| | - Chenguang Yang
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials &Application, Key Laboratory of Textile Fiber & Product, Ministry of Education, Wuhan Textile University, Wuhan 430200, China
| | - Wenwen Wang
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials &Application, Key Laboratory of Textile Fiber & Product, Ministry of Education, Wuhan Textile University, Wuhan 430200, China
| | - Xiufang Li
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials &Application, Key Laboratory of Textile Fiber & Product, Ministry of Education, Wuhan Textile University, Wuhan 430200, China
| | - Zhentan Lu
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials &Application, Key Laboratory of Textile Fiber & Product, Ministry of Education, Wuhan Textile University, Wuhan 430200, China
| | - Dong Wang
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials &Application, Key Laboratory of Textile Fiber & Product, Ministry of Education, Wuhan Textile University, Wuhan 430200, China; School of Materials Science & Engineering, Hubei University of Automotive Technology, Shiyan 442002, China.
| |
Collapse
|
2
|
Bardea A, Cohen A, Axelevitch A, Patolsky F. A Flexible Organomagnetic Single-Layer Composite Film with Built-In Multistimuli Responsivity. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39465549 DOI: 10.1021/acsami.4c14857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Materials possessing multiple properties and functionalities, that can be controlled or modulated by external stimuli, are a central focus of current research in materials sciences due to their potential to significantly enhance various future technological applications. Herein, we report a significant advancement in this field through the development of a smart, multifunctional organomagnetic composite material. By utilizing a thin layer of polydimethylsiloxane (PDMS) and polypyrrole (PPy) precursors, doped with nickel nanoparticles (NiNPs), we have created an innovative organomagnetic, PDMS/PPy/NiNPs (PPN), single-layer composite film that displays multistimuli responsivity. The study presents the first demonstration of a multifunctional flexible, three-component film structure integrating the structural and flexible PDMS component, together with a conductive polymer component and metal-based nanoparticles into a single-layer design, which displays enhanced and unprecedented responsivity properties against multiple different stimuli. Unlike typical stacked multilayered structures, that exhibit one or two functionalities at most, this novel configuration exhibits multiple functionalities, including magnetoresistance, mechanical stress response, piezoresistivity, and temperature change sensitivity. The as-prepared film demonstrates notable magnetoresistance responsivity, with a relative electrical resistance, ΔR/R0, changing under a weak magnetic field and under ambient conditions. The significance of our study lies in the film's versatility, stability, and sensitivity, especially within the physiological temperature range, making it highly relevant for future biomedical applications. Furthemore, the film's sensitivity to mechanical deformation reveals an impressive piezoresistance behavior. Unlike existing multilayer architectures of higher complexity, our single-layer thin film offers a simpler, more flexible, and reliable solution with a broad range of stimuli-sensing capabilities. The significance of this novel multiresponsive composite material is underscored by the growing demand for advanced materials in biomedical devices, magnetic switches, sensors, electronic skin, transistors, and organic spintronic devices. These promising organomagnetic self-standing layers provide a robust platform for future technological innovations.
Collapse
Affiliation(s)
- Amos Bardea
- Faculty of Engineering, Holon Institute of Technology (HIT), 52 Golomb Street, P.O. Box 305, Holon 5810201, Israel
| | - Adam Cohen
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Alexander Axelevitch
- Faculty of Engineering, Holon Institute of Technology (HIT), 52 Golomb Street, P.O. Box 305, Holon 5810201, Israel
| | - Fernando Patolsky
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- Department of Materials Science and Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
3
|
Sun P, Fang Z, Sima W, Niu C, Yuan T, Yang M, Liu Q, Tang W. Microstructured Self-Healing Flexible Tactile Sensors Inspired by Bamboo Leaves. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39445517 DOI: 10.1021/acsami.4c15197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Wearable electronic devices with multifunctions such as flexible, integrated, and self-powered play a crucial role in the fields of health monitoring, motion monitoring, and human-computer interaction. However, their core basic components, flexible pressure sensors, face challenges including poor long-term stability and insufficient real-time sensing accuracy. In order to solve the challenges of long-term, stable, and accurate sensing of the sensor, this paper prepares polydimethylsiloxane (SHPDMS) with intrinsic self-healing property and designs a high-sensitivity self-healing capacitive flexible pressure sensor with dual microstructures (grating microstructured electrodes and microporous dielectric layer) as the substrate based on SHPDMS. Specifically speaking, the self-healing of the sensor under mild conditions was realized by introducing reversible imine bonds with low bonding energy into the polydimethylsiloxane (PDMS) flexible substrate, which solved the problem of the material's long-term service durability. A grating-like microstructure was introduced into the flexible electrode by using a spotted bamboo taro leaf as a template, and a dual microstructure sensor was constructed by combining it with a microporous dielectric layer doped with single-walled carbon nanotubes. This way reduces the elastic modulus of the dielectric layer, improves the dielectric constant of the sensor under loading, and thus significantly improves the sensor's sensitivity and extends the measurement accuracy in a low-stress range. The prepared self-healing flexible sensor achieves a sensitivity of 3.6 kPa-1, a minimum detection limit of 5 Pa, a response recovery time of less than 80 ms, and stability over 5000 cycles, which exceeds most previously reported silicone rubber-based capacitive flexible sensors.
Collapse
Affiliation(s)
- Potao Sun
- State Key Laboratory of Power Transmission Equipment Technology, Chongqing University, Chongqing 400044, People's Republic of China
| | - Zheng Fang
- State Key Laboratory of Power Transmission Equipment Technology, Chongqing University, Chongqing 400044, People's Republic of China
| | - Wenxia Sima
- State Key Laboratory of Power Transmission Equipment Technology, Chongqing University, Chongqing 400044, People's Republic of China
| | - Chaolu Niu
- State Key Laboratory of Power Transmission Equipment Technology, Chongqing University, Chongqing 400044, People's Republic of China
| | - Tao Yuan
- State Key Laboratory of Power Transmission Equipment Technology, Chongqing University, Chongqing 400044, People's Republic of China
| | - Ming Yang
- State Key Laboratory of Power Transmission Equipment Technology, Chongqing University, Chongqing 400044, People's Republic of China
| | - Qichang Liu
- State Key Laboratory of Power Transmission Equipment Technology, Chongqing University, Chongqing 400044, People's Republic of China
| | - Wenxu Tang
- State Key Laboratory of Power Transmission Equipment Technology, Chongqing University, Chongqing 400044, People's Republic of China
| |
Collapse
|
4
|
Wang H, Lin Y, Yang C, Bai C, Hu G, Sun Y, Wang M, Lu YQ, Kong D. Mechanically Driven Self-Healing MXene Strain Gauges for Overstrain-Tolerant Operation. NANO LETTERS 2024; 24:13405-13413. [PMID: 39382225 DOI: 10.1021/acs.nanolett.4c04023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Compliant strain gauges are well-suited to monitor tiny movements and processes in the body. However, they are easily damaged by unexpected impacts in practical applications, limiting their utility in controlled laboratory environments. This study introduces elastic microcracked MXene films for mechanically driven self-healing strain gauges. MXene films are deposited on soft silicone substrates and intentionally stretched to create saturated microcracks. The resulting device not only has high sensitivity but also can recover its original sensing capability even after experiencing failure-level overstrains. This electrical self-healing ability is achieved through the elastic rebound of the substrate, which autonomously restores the microcracked morphology of the MXene film. The MXene strain gauge can withstand overextension, twisting, impact forces, and even car rolling. The device is also resilient to touch-induced damage during monitoring of physiological motions. The mechanically driven self-healing strategy may effectively improve the durability of highly sensitive strain sensors.
Collapse
Affiliation(s)
- Hao Wang
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Yong Lin
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Cheng Yang
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Chong Bai
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Gaohua Hu
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Yuping Sun
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Menglu Wang
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Yan-Qing Lu
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- Key Laboratory of Intelligent Optical Sensing and Manipulation, Nanjing University, Nanjing 210093, China
| | - Desheng Kong
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| |
Collapse
|
5
|
Song Y, Sun W, Shi X, Qin Z, Wu Q, Yin S, Liang S, Liu Z, Sun H. Bio-inspired e-skin with integrated antifouling and comfortable wearing for self-powered motion monitoring and ultra-long-range human-machine interaction. J Colloid Interface Sci 2024; 679:1299-1310. [PMID: 39427584 DOI: 10.1016/j.jcis.2024.10.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/11/2024] [Accepted: 10/11/2024] [Indexed: 10/22/2024]
Abstract
Electronic skin (e-skin) inspired by the sensory function of the skin demonstrates broad application prospects in health, medicine, and human-machine interaction. Herein, we developed a self-powered all-fiber bio-inspired e-skin (AFBI E-skin) that integrated functions of antifouling, antibacterial, biocompatibility and breathability. AFBI E-skin was composed of three layers of electrospun nanofibrous films. The superhydrophobic outer layer Poly(vinylidene fluoride)-silica nanofibrous films (PVDF-SiO2 NFs) possessed antifouling properties against common liquids in daily life and resisted bacterial adhesion. The polyaniline nanofibrous films (PANI NFs) were used as the electrode layer, and it had strong "static" antibacterial capability. Meanwhile, the inner layer Polylactic acid nanofibrous films (PLA NFs) served as a biocompatible substrate. Based on the triboelectric nanogenerator principle, AFBI E-skin not only enabled self-powered sensing but also utilized the generated electrical stimulation for "dynamic" antibacterial. The "dynamic-static" synergistic antibacterial strategy greatly enhanced the antibacterial effect. AFBI E-skin could be used for self-powered motion monitoring to obtain a stable signal output even when water was splashed on its surface. Finally, based on AFBI E-skin, we constructed an ultra-long-range human-machine interaction control system, enabling synchronized hand gestures between human hand and robotic hand in any internet-covered area worldwide theoretically. AFBI E-skin exhibited vast application potential in fields like smart wearable electronics and intelligent robotics.
Collapse
Affiliation(s)
- Yudong Song
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin 130022, China
| | - Wuliang Sun
- School of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
| | - Xinjian Shi
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin 130022, China
| | - Zhen Qin
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin 130022, China
| | - Qianqian Wu
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin 130022, China
| | - Shengyan Yin
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, Jilin 130012, China
| | - Song Liang
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin 130022, China
| | - Zhenning Liu
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin 130022, China
| | - Hang Sun
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin 130022, China.
| |
Collapse
|
6
|
Ejaz MU, Irum T, Qamar M, Alomainy A. Flexible Electromagnetic Sensor with Inkjet-Printed Silver Nanoparticles on PET Substrate for Chemical and Biomedical Applications. SENSORS (BASEL, SWITZERLAND) 2024; 24:6526. [PMID: 39460006 PMCID: PMC11511350 DOI: 10.3390/s24206526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/23/2024] [Accepted: 09/28/2024] [Indexed: 10/28/2024]
Abstract
For this article, a low-cost, compact, and flexible inkjet-printed electromagnetic sensor was investigated for its chemical and biomedical applications. The investigated sensor design was used to estimate variations in the concentration of chemicals (ethanol and methanol) and biochemicals (hydrocortisone-a chemical derivative of cortisol, a biomarker of stress and cardiovascular effects). The proposed design's sensitivity was further improved by carefully choosing the frequency range (0.5-4 GHz), so that the analyzed samples showed approximately linear variations in their dielectric properties. The dielectric properties were measured using a vector network analyzer (VNA) and an Agilent 85070E Dielectric Probe Kit. The sensor design had a resonant frequency at 2.2 GHz when investigated without samples, and a consistent shift in resonant frequency was observed, with variation in the concentrations of the investigated chemicals. The sensitivity of the designed sensor is decent and is comparable to its non-flexible counterparts. Furthermore, the simulation and measured results were in agreement and were comparable to similar investigated sensor prototypes based on non-flexible Rogers substrates (Rogers RO4003C) and Rogers Droid/RT 5880), demonstrating true potential for chemical, biomedical applications, and healthcare.
Collapse
Affiliation(s)
| | - Tayyaba Irum
- School of Electronic Engineering and Computer Science, Queen Mary University of London, London E1 4NS, UK; (T.I.); (M.Q.)
| | - Muhammad Qamar
- School of Electronic Engineering and Computer Science, Queen Mary University of London, London E1 4NS, UK; (T.I.); (M.Q.)
| | - Akram Alomainy
- School of Electronic Engineering and Computer Science, Queen Mary University of London, London E1 4NS, UK; (T.I.); (M.Q.)
| |
Collapse
|
7
|
Gao X, Zheng M, Hou B, Wu J, Zhu M, Zhang Y, Wang K, Han B. Recent Progress in the Auxiliary Phase Enhanced Flexible Piezocomposites. ENERGY & ENVIRONMENTAL MATERIALS 2024. [DOI: 10.1002/eem2.12837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/07/2024] [Indexed: 10/28/2024]
Abstract
Piezocomposites with both flexibility and electromechanical conversion characteristics have been widely applied in various fields, including sensors, energy harvesting, catalysis, and biomedical treatment. In the composition of piezocomposites or their preparation process, a category of materials is commonly employed that do not possess piezoelectric properties themselves but play a crucial role in performance enhancement. In this review, the concept of auxiliary phase is first proposed to define these materials, aiming to provide a new perspective for designing high‐performance piezocomposites. Three different categories of modulation forms of auxiliary phase in piezocomposites are systematically summarized, including the modification of piezo‐matrix, the modification of piezo‐fillers, and the construction of special structures. Each category emphasizes the role of the auxiliary phase and systematically discusses the latest advancements and the physical mechanisms of the auxiliary phase enhanced flexible piezocomposites. Finally, a summary and future outlook of piezocomposites based on the auxiliary phase are provided.
Collapse
Affiliation(s)
- Xin Gao
- College of Materials Science and Engineering Beijing University of Technology Beijing 100124 China
| | - Mupeng Zheng
- College of Materials Science and Engineering Beijing University of Technology Beijing 100124 China
| | - Boyue Hou
- School of Basic Medical Sciences Capital Medical University Beijing 100069 China
| | - Junshu Wu
- College of Materials Science and Engineering Beijing University of Technology Beijing 100124 China
| | - Mankang Zhu
- College of Materials Science and Engineering Beijing University of Technology Beijing 100124 China
| | - Yunfan Zhang
- Department of Orthodontics Peking University School and Hospital of Stomatology & National Center of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & NMPA Key Laboratory for Dental Materials Beijing 100089 China
| | - Ke Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering Tsinghua University Beijing 100084 China
| | - Bing Han
- Department of Orthodontics Peking University School and Hospital of Stomatology & National Center of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & NMPA Key Laboratory for Dental Materials Beijing 100089 China
| |
Collapse
|
8
|
Berman A, Hsiao K, Root SE, Choi H, Ilyn D, Xu C, Stein E, Cutkosky M, DeSimone JM, Bao Z. Additively manufactured micro-lattice dielectrics for multiaxial capacitive sensors. SCIENCE ADVANCES 2024; 10:eadq8866. [PMID: 39365852 PMCID: PMC11451511 DOI: 10.1126/sciadv.adq8866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/30/2024] [Indexed: 10/06/2024]
Abstract
Soft sensors that can perceive multiaxial forces, such as normal and shear, are of interest for dexterous robotic manipulation and monitoring of human performance. Typical planar fabrication techniques have substantial design constraints that often prohibit the creation of functionally compelling and complex architectures. Moreover, they often require multiple-step operations for production. Here, we use an additive manufacturing process based on continuous liquid interface production to create high-resolution (30-micrometer) three-dimensional elastomeric polyurethane lattices for use as dielectric layers in capacitive sensors. We show that the capacitive responses and sensitivities are highly tunable through designs of lattice type, thickness, and material-void volume percentage. Microcomputed tomography and finite element simulation are used to elucidate the influence of lattice design on the deformation mechanism and concomitant sensing behavior. The advantage of three-dimensional printing is exhibited with examples of fully printed representative athletic equipment with integrated sensors.
Collapse
Affiliation(s)
- Arielle Berman
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Kaiwen Hsiao
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77840, USA
| | - Samuel E. Root
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Hojung Choi
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Daniel Ilyn
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Chengyi Xu
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Emily Stein
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Mark Cutkosky
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Joseph M. DeSimone
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Zhenan Bao
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
9
|
Ghaferi M, Alavi SE, Phan K, Maibach H, Mohammed Y. Transdermal Drug Delivery Systems (TDDS): Recent Advances and Failure Modes. Mol Pharm 2024. [PMID: 39365887 DOI: 10.1021/acs.molpharmaceut.4c00211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
Abstract
Transdermal drug delivery systems (TDDS), commonly refered to as "patches", present a nonintrusive technique to provide medication without the need for invasive procedures. These products adhere to the skin and gradually release a specific dosage of medicine at a defined rate into the bloodstream. Compared with other methods of drug delivery, TDDS offer benefits such as reduced invasiveness, convenience for patients, and avoidance of the metabolic processes that occur when drugs are orally consumed. Throughout time, TDDS have been used to provide medications for various medical conditions (such as nicotine, fentanyl, nitroglycerin, and clonidine), and their potential for delivering biologics is currently being explored. This review investigates the current literature on the drug delivery efficacy of medical TDDS through the transdermal route. Additionally, the review addresses potential risks and failure modes associated with TDDS design and development as well as strategies for mitigating such risks. A thorough understanding of failure modes provides a blueprint to mitigate failure and produce high-quality efficacious therapeutics.
Collapse
Affiliation(s)
- Mohsen Ghaferi
- Department of Chemical Engineering, Islamic Azad University, Shahrood Branch, Shahrood, Semnan 9WVR+757, Iran
| | - Seyed Ebrahim Alavi
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, Queensland 4102, Australia
| | - Khanh Phan
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, Queensland 4102, Australia
| | - Howard Maibach
- University of California, San Francisco, San Francisco, California 94115, United States
| | - Yousuf Mohammed
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, Queensland 4102, Australia
- School of Pharmacy, The University of Queensland, Brisbane, Queensland 4102, Australia
| |
Collapse
|
10
|
Zhu Z, Su Y, Chen J, Zhang J, Liang L, Nie Z, Tang W, Liang Y, Li H. PEDOT:PSS-Based Wearable Flexible Temperature Sensor and Integrated Sensing Matrix for Human Body Monitoring. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39359155 DOI: 10.1021/acsami.4c11251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Flexible temperature sensors have been widely used in electronic skins and health monitoring. Body temperature as one of the key physiological signals is crucial for detecting human body's abnormalities, which necessitates high sensitivity, quick responsiveness, and stable monitoring. In this paper, we reported a resistive temperature sensor designed as an ultrathin laminated structure with a serpentine pattern and a bioinspired adhesive layer, which was fabricated with a composite of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)/single-wall carbon nanotubes/reduced graphene oxide (PEDOT:PSS/SWCNTs/rGO) and polydimethylsiloxane (PDMS). The temperature sensor exhibited a high temperature sensitivity of 0.63% °C-1, coupled with outstanding linearity of 0.98 within 25-45 °C. Furthermore, it showed fast response and recovery speeds of 4.8 and 5.8 s, respectively, between 25 and 36 °C. It also demonstrated exceptional stability when subjected to stress and bending disturbances with the maximum bending interference deviation of 0.03%. Additionally, it displayed good cyclic stability over a broad temperature range from 25 to 85 °C, and the standard deviation at 25 °C is 0.14%. A series of experiments including blowing detection, respiratory monitoring with or without a mask, and during rest or sleep were conducted to show the potential of the flexible temperature sensors in human body monitoring. Furthermore, a 4 × 4 flexible temperature sensor matrix was integrated to detect and map objects such as wrenches and blood vessels through human hand skin. The results were consistent with those of infrared measurements. The flexible temperature sensor is capable of real-time temperature monitoring and has the potential in tracking human respiration, assessing sleep quality, and mapping the temperature of various objects.
Collapse
Affiliation(s)
- Zhengfang Zhu
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen 518118, Guangdong, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Yi Su
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Jing Chen
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Jinyong Zhang
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen 518118, Guangdong, China
| | - Lixin Liang
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen 518118, Guangdong, China
| | - Zedong Nie
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Wei Tang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Yongsheng Liang
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen 518118, Guangdong, China
| | - Hui Li
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen 518118, Guangdong, China
| |
Collapse
|
11
|
Nie Z, Kwak JW, Han M, Rogers JA. Mechanically Active Materials and Devices for Bio-Interfaced Pressure Sensors-A Review. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2205609. [PMID: 35951770 DOI: 10.1002/adma.202205609] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/31/2022] [Indexed: 06/15/2023]
Abstract
Pressures generated by external forces or by internal body processes represent parameters of critical importance in diagnosing physiological health and in anticipating injuries. Examples span intracranial hypertension from traumatic brain injuries, high blood pressure from poor diet, pressure-induced skin ulcers from immobility, and edema from congestive heart failure. Pressures measured on the soft surfaces of vital organs or within internal cavities of the body can provide essential insights into patient status and progression. Challenges lie in the development of high-performance pressure sensors that can softly interface with biological tissues to enable safe monitoring for extended periods of time. This review focuses on recent advances in mechanically active materials and structural designs for classes of soft pressure sensors that have proven uses in these contexts. The discussions include applications of such sensors as implantable and wearable systems, with various unique capabilities in wireless continuous monitoring, minimally invasive deployment, natural degradation in biofluids, and/or multiplexed spatiotemporal mapping. A concluding section summarizes challenges and future opportunities for this growing field of materials and biomedical research.
Collapse
Affiliation(s)
- Zhongyi Nie
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
| | - Jean Won Kwak
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Mengdi Han
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
| | - John A Rogers
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Departments of Biomedical Engineering, Materials Science and Engineering, Neurological Surgery, Chemistry, and Electrical Engineering and Computer Science, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
12
|
Wang Y, Shuang Y, Kim M, Ando D, Narita F, Sutou Y. An amorphous Cr 2Ge 2Te 6/polyimide double-layer foil with an extraordinarily outstanding strain sensing ability. MATERIALS HORIZONS 2024. [PMID: 39348034 DOI: 10.1039/d4mh00616j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
To realize a wearable health monitoring system, a piezoresistive material capable of detecting very small mechanical strains is needed. In this study, an amorphous Cr2Ge2Te6 thin film was deposited on a polyimide film by sputtering, and the piezoresistive properties were investigated. In experiments, the Cr2Ge2Te6/polyimide double-layer foil exhibited an outstanding piezoresistive performance as evidenced by the appearance of self-healing cracks during tensile tests and a remarkably large gauge factor of 60 000 in resistance change measurements. Owing to the self-healing character of cracks, the resistance change is repeatable within a specific strain range. Noteworthily, the double-layer foil is simple to prepare and does not require heat treatment. Furthermore, this double-layer foil was used to fabricate a pressure sensor comprising an extremely simple electrical circuit, and it was deployed on the wrist to monitor the artery pulse signal. As a result, the pressure sensor accurately detected artery pulse waves containing large amounts of information.
Collapse
Affiliation(s)
- Yinli Wang
- Department of Materials Science, Graduate School of Engineering, Tohoku University, 6-6-11 Aoba-yama, Sendai, 980-8579, Japan.
| | - Yi Shuang
- WPI Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, 980-8577, Japan
| | - Mihyeon Kim
- Department of Materials Science, Graduate School of Engineering, Tohoku University, 6-6-11 Aoba-yama, Sendai, 980-8579, Japan.
| | - Daisuke Ando
- Department of Materials Science, Graduate School of Engineering, Tohoku University, 6-6-11 Aoba-yama, Sendai, 980-8579, Japan.
| | - Fumio Narita
- Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, 6-6-02 Aoba-yama, Sendai, 980-8579, Japan
| | - Yuji Sutou
- Department of Materials Science, Graduate School of Engineering, Tohoku University, 6-6-11 Aoba-yama, Sendai, 980-8579, Japan.
- WPI Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, 980-8577, Japan
| |
Collapse
|
13
|
He F, Chen S, Zhou R, Diao H, Han Y, Wu X. Bioinspired Passive Tactile Sensors Enabled by Reversible Polarization of Conjugated Polymers. NANO-MICRO LETTERS 2024; 17:16. [PMID: 39327317 PMCID: PMC11427634 DOI: 10.1007/s40820-024-01532-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/06/2024] [Indexed: 09/28/2024]
Abstract
Tactile perception plays a vital role for the human body and is also highly desired for smart prosthesis and advanced robots. Compared to active sensing devices, passive piezoelectric and triboelectric tactile sensors consume less power, but lack the capability to resolve static stimuli. Here, we address this issue by utilizing the unique polarization chemistry of conjugated polymers for the first time and propose a new type of bioinspired, passive, and bio-friendly tactile sensors for resolving both static and dynamic stimuli. Specifically, to emulate the polarization process of natural sensory cells, conjugated polymers (including poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate), polyaniline, or polypyrrole) are controllably polarized into two opposite states to create artificial potential differences. The controllable and reversible polarization process of the conjugated polymers is fully in situ characterized. Then, a micro-structured ionic electrolyte is employed to imitate the natural ion channels and to encode external touch stimulations into the variation in potential difference outputs. Compared with the currently existing tactile sensing devices, the developed tactile sensors feature distinct characteristics including fully organic composition, high sensitivity (up to 773 mV N-1), ultralow power consumption (nW), as well as superior bio-friendliness. As demonstrations, both single point tactile perception (surface texture perception and material property perception) and two-dimensional tactile recognitions (shape or profile perception) with high accuracy are successfully realized using self-defined machine learning algorithms. This tactile sensing concept innovation based on the polarization chemistry of conjugated polymers opens up a new path to create robotic tactile sensors and prosthetic electronic skins.
Collapse
Affiliation(s)
- Feng He
- School of Mechanical Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Sitong Chen
- School of Mechanical Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Ruili Zhou
- School of Mechanical Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Hanyu Diao
- School of Software Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065, People's Republic of China
| | - Yangyang Han
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
| | - Xiaodong Wu
- School of Mechanical Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
| |
Collapse
|
14
|
Tang D, Qu R, Xiang H, He E, Hu H, Ma Z, Liu G, Wei Y, Ji J. Highly Stretchable Composite Conductive Fibers (SCCFs) and Their Applications. Polymers (Basel) 2024; 16:2710. [PMID: 39408423 PMCID: PMC11478555 DOI: 10.3390/polym16192710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Stretchable composite conductive fibers (SCCFs) exhibit remarkable conductivity, stretchability, breathability, and biocompatibility, making them ideal candidates for wearable electronics and bioelectronics. The exploitation of SCCFs in electronic devices requires a careful balance of many aspects, including material selection and process methodologies, to address the complex challenges associated with their electrical and mechanical properties. In this review, we elucidate the conductive mechanism of SCCFs and summarize strategies for integrating various conductors with stretchable fibers, emphasizing the primary challenges in fabricating highly conductive fibers. Furthermore, we explore the multifaceted applications of SCCFs-based frameworks in wearable electronic devices. This review aims to emphasize the significance of SCCFs and offers insights into their conductive mechanisms, material selection, manufacturing technologies, and performance improvement. Hopefully, it can guide the innovative development of SCCFs and broaden their application potential.
Collapse
Affiliation(s)
- Diane Tang
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China; (D.T.); (H.X.); (E.H.); (H.H.)
- Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QR, UK
| | - Ruixiang Qu
- Zhejiang Lab, Hangzhou 310000, China; (R.Q.); (Z.M.)
| | - Huacui Xiang
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China; (D.T.); (H.X.); (E.H.); (H.H.)
| | - Enjian He
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China; (D.T.); (H.X.); (E.H.); (H.H.)
| | - Hanshi Hu
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China; (D.T.); (H.X.); (E.H.); (H.H.)
| | - Zhijun Ma
- Zhejiang Lab, Hangzhou 310000, China; (R.Q.); (Z.M.)
| | - Guojun Liu
- Department of Chemistry, Queen’s University, 90 Bader Lane, Kingston, ON K7L 3N6, Canada
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China; (D.T.); (H.X.); (E.H.); (H.H.)
- Department of Chemistry, Center for Nanotechnology and Institute of Biomedical Technology, Chung-Yuan Christian University, Taoyuan 32023, Taiwan
| | - Jiujiang Ji
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China; (D.T.); (H.X.); (E.H.); (H.H.)
| |
Collapse
|
15
|
Chen W, Lin J, Ye Z, Wang X, Shen J, Wang B. Customized surface adhesive and wettability properties of conformal electronic devices. MATERIALS HORIZONS 2024. [PMID: 39315507 DOI: 10.1039/d4mh00753k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Conformal and body-adaptive electronics have revolutionized the way we interact with technology, ushering in a new era of wearable devices that can seamlessly integrate with our daily lives. However, the inherent mismatch between artificially synthesized materials and biological tissues (caused by irregular skin fold, skin hair, sweat, and skin grease) needs to be addressed, which can be realized using body-adaptive electronics by rational design of their surface adhesive and wettability properties. Over the past few decades, various approaches have been developed to enhance the conformability and adaptability of bioelectronics by (i) increasing flexibility and reducing device thickness, (ii) improving the adhesion and wettability between bioelectronics and biological interfaces, and (iii) refining the integration process with biological systems. Successful development of a conformal and body-adaptive electronic device requires comprehensive consideration of all three aspects. This review starts with the design strategies of conformal electronics with different surface adhesive and wettability properties. A series of conformal and body-adaptive electronics used in the human body under both dry and wet conditions are systematically discussed. Finally, the current challenges and critical perspectives are summarized, focusing on promising directions such as telemedicine, mobile health, point-of-care diagnostics, and human-machine interface applications.
Collapse
Affiliation(s)
- Wenfu Chen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, P. R. China.
| | - Junzhu Lin
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, P. R. China.
| | - Zhicheng Ye
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, P. R. China.
| | - Xiangyu Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, P. R. China.
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, P. R. China
| | - Jie Shen
- Shenzhen Key Laboratory of Spine Surgery, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, P. R. China
| | - Ben Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, P. R. China.
| |
Collapse
|
16
|
Rahmanudin A, Mohammadi M, Isacsson P, Li Y, Seufert L, Kim N, Mardi S, Engquist I, Crispin R, Tybrandt K. Stretchable and biodegradable plant-based redox-diffusion batteries. MATERIALS HORIZONS 2024; 11:4400-4412. [PMID: 38946626 DOI: 10.1039/d4mh00170b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The redox-diffusion (RD) battery concept introduces an environmentally friendly solution for stretchable batteries in autonomous wearable electronics. By utilising plant-based redox-active biomolecules and cellulose fibers for the electrode scaffold, separator membrane, and current collector, along with a biodegradable elastomer encapsulation, the battery design overcomes the reliance on unsustainable transition metal-based active materials and non-biodegradable elastomers used in existing stretchable batteries. Importantly, it addresses the drawback of limited attainable battery capacity, where increasing the active material loading often leads to thicker and stiffer electrodes with poor mechanical properties. The concept decouples the active material loading from the mechanical structure of the electrode, enabling high mass loadings, while retaining a skin-like young's modulus and stretchability. A stretchable ion-selective membrane facilitates the RD process, allowing two separate redox couples, while preventing crossovers. This results in a high-capacity battery cell that is both electrochemically and mechanically stable, engineered from sustainable plant-based materials. Notably, the battery components are biodegradable at the end of their life, addressing concerns of e-waste and resource depletion.
Collapse
Affiliation(s)
- Aiman Rahmanudin
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 602 21 Norrköping, Sweden.
- Wallenberg Wood Science Center, ITN, Linköping University, Norrköping, Sweden
| | - Mohsen Mohammadi
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 602 21 Norrköping, Sweden.
- Wallenberg Wood Science Center, ITN, Linköping University, Norrköping, Sweden
| | - Patrik Isacsson
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 602 21 Norrköping, Sweden.
- Wallenberg Wood Science Center, ITN, Linköping University, Norrköping, Sweden
- Ahlstrom Group Innovation, 38140 Apprieu, France
| | - Yuyang Li
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 602 21 Norrköping, Sweden.
| | - Laura Seufert
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 602 21 Norrköping, Sweden.
| | - Nara Kim
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 602 21 Norrköping, Sweden.
- Wallenberg Initiative Materials Science for Sustainability, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden
| | - Saeed Mardi
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 602 21 Norrköping, Sweden.
- Ångström Laboratory, Department of Chemistry, Uppsala University, 751 21 Uppsala, Sweden
| | - Isak Engquist
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 602 21 Norrköping, Sweden.
- Wallenberg Wood Science Center, ITN, Linköping University, Norrköping, Sweden
| | - Reverant Crispin
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 602 21 Norrköping, Sweden.
- Wallenberg Wood Science Center, ITN, Linköping University, Norrköping, Sweden
- Wallenberg Initiative Materials Science for Sustainability, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden
| | - Klas Tybrandt
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 602 21 Norrköping, Sweden.
- Wallenberg Wood Science Center, ITN, Linköping University, Norrköping, Sweden
- Wallenberg Initiative Materials Science for Sustainability, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden
| |
Collapse
|
17
|
Zhuo Z, Ni M, Yu N, Zheng Y, Lin Y, Yang J, Sun L, Wang L, Bai L, Chen W, Xu M, Huo F, Lin J, Feng Q, Huang W. Intrinsically stretchable fully π-conjugated polymer film via fluid conjugated molecular external-plasticizing for flexible light-emitting diodes. Nat Commun 2024; 15:7990. [PMID: 39266527 PMCID: PMC11393078 DOI: 10.1038/s41467-024-50358-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 07/08/2024] [Indexed: 09/14/2024] Open
Abstract
Fully π-conjugated polymers with rigid aromatic units are promising for flexible optoelectronic devices, but their inherent brittleness poses a challenge for achieving high-performance, intrinsically stretchable fully π-conjugated polymer. Here, we are establishing an external-plasticizing strategy using semiconductor fluid plasticizers (Z1 and Z2) to enhance the optoelectronic, morphological, and stretchable properties of fully π-conjugated polymer films for flexible light-emitting diodes. The synergistic effect of hierarchical structure and optoelectronic properties of Z1 in poly(9,9-di-n-octylfluorene-alt-benzothiadiazole) (F8BT) films enable excellent stretchable deformability (~25%) and good conductivity. PLEDs based on F8BT/Z1 films show stable electroluminescence and efficiency under 15% stretch and 100 cycles at 10% strain, revealing outstanding stress tolerance. This strategy is also improving the stretchable properties of polymers like poly(9,9-di-n-octylfluorenyl-2,7-diyl) (PFO) and poly(2-methoxy-5(2'-ethyl)hexoxy-phenylenevinylene) (Super Yellow), demonstrating its general applicability. Therefore, this strategy can provide effective guidance for designing high-performance stretchable fully π-conjugated polymers films for flexible electronic devices.
Collapse
Affiliation(s)
- Zhiqiang Zhuo
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Mingjian Ni
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, China
| | - Ningning Yu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Yingying Zheng
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Yingru Lin
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Jing Yang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Lili Sun
- School of Flexible Electronics (SoFE) & State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Shenzhen, China
| | - Lizhi Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Lubing Bai
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Wenyu Chen
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Man Xu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, China
| | - Fengwei Huo
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Jinyi Lin
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, China.
| | - Quanyou Feng
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, China.
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, China.
- School of Flexible Electronics (SoFE) & State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Shenzhen, China.
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, China.
| |
Collapse
|
18
|
Fu X, Cheng W, Wan G, Yang Z, Tee BCK. Toward an AI Era: Advances in Electronic Skins. Chem Rev 2024; 124:9899-9948. [PMID: 39198214 PMCID: PMC11397144 DOI: 10.1021/acs.chemrev.4c00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2024]
Abstract
Electronic skins (e-skins) have seen intense research and rapid development in the past two decades. To mimic the capabilities of human skin, a multitude of flexible/stretchable sensors that detect physiological and environmental signals have been designed and integrated into functional systems. Recently, researchers have increasingly deployed machine learning and other artificial intelligence (AI) technologies to mimic the human neural system for the processing and analysis of sensory data collected by e-skins. Integrating AI has the potential to enable advanced applications in robotics, healthcare, and human-machine interfaces but also presents challenges such as data diversity and AI model robustness. In this review, we first summarize the functions and features of e-skins, followed by feature extraction of sensory data and different AI models. Next, we discuss the utilization of AI in the design of e-skin sensors and address the key topic of AI implementation in data processing and analysis of e-skins to accomplish a range of different tasks. Subsequently, we explore hardware-layer in-skin intelligence before concluding with an analysis of the challenges and opportunities in the various aspects of AI-enabled e-skins.
Collapse
Affiliation(s)
- Xuemei Fu
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore 119276, Singapore
| | - Wen Cheng
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore 119276, Singapore
- The N.1 Institute for Health, National University of Singapore, Singapore 117456, Singapore
| | - Guanxiang Wan
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore 119276, Singapore
| | - Zijie Yang
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore 119276, Singapore
| | - Benjamin C K Tee
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore 119276, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- The N.1 Institute for Health, National University of Singapore, Singapore 117456, Singapore
- Institute of Materials Research and Engineering, Agency for Science Technology and Research, Singapore 138634, Singapore
| |
Collapse
|
19
|
Haridas Cp A, Pillai SK, Naskar S, Mondal T, Naskar K. Polyurethane/Carbon Nanotube-Based ThermoSense Electronic Skin: Perception to Decision Making Aided by Internet of Things Brain. ACS APPLIED MATERIALS & INTERFACES 2024; 16:48211-48222. [PMID: 39189921 DOI: 10.1021/acsami.4c07163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Human skin has several receptors collaborating with the brain to provide appropriate "decisions" when applying stimuli. Several research articles state that biomimetic electronic skin (e-skin) is reportedly used for sensor-related applications and performs similarly to natural skin. However, research reporting the capability of the e-skin to make decisions and therefore react upon exposure to adverse conditions is still in its nascent stage. Herein, we report the development of an e-skin, ThermoSense, that can thermoregulate by making appropriate decisions. Thermoplastic polyurethane and multiwalled carbon nanotubes were used as the model composite. The heating and sensing capabilities of the optimized e-skin were studied in detail. In the study window, the e-skin demonstrated excellent electrothermal conversion efficiency by generating a temperature of 192 °C, consuming a power of 2.23 W. A finite element modeling (FEM) was adopted to determine the distribution of the filler in the case of the optimized e-skin and thus was used to probe the reason for the heating across the e-skin via mapping of the internal energy across the sample. FEM results and experimental findings are in strong agreement. Additionally, the e-skin demonstrated its capability to act as a thermal sensor with a 0.947% °C-1 sensitivity. To integrate the decision-making capabilities of the e-skin, an Internet of Things (IoT) brain console was made using the e-skin and electronic chips by leveraging More than Moore's concept. The IoT brain was automated with decision-making programming that was controllable via an in-house-developed mobile application. The console worked exclusively under simulated conditions. When there was a shift from the set point temperature, it started to heat. Postusage, the e-skin matrix was recycled, and the recycled e-skin demonstrated a marginal decrement in performance attributes. This study opens new avenues for developing decision-making e-skins for next-generation human-machine interphases.
Collapse
Affiliation(s)
- Ajay Haridas Cp
- Rubber Technology Centre, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sreekesh Kesava Pillai
- Department of Electrical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Susmita Naskar
- School of Engineering, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Titash Mondal
- Rubber Technology Centre, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Kinsuk Naskar
- Rubber Technology Centre, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
20
|
Yang Y, Yang S, Xia X, Hui S, Wang B, Zou B, Zhang Y, Sun J, Xin JH. MXenes for Wearable Physical Sensors toward Smart Healthcare. ACS NANO 2024; 18:24705-24740. [PMID: 39186373 DOI: 10.1021/acsnano.4c08258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The gradual rise of personal healthcare awareness is accelerating the deployment of wearable sensors, whose ability of acquiring physiological vital signs depends on sensing materials. MXenes have distinct chemical and physical superiorities over other 2D nanomaterials for wearable sensors. This review presents a comprehensive summary of the latest advancements in MXenes-based materials for wearable physical sensors. It begins with an introduction to special structural features of MXenes for sensing performance, followed by an in-depth exploration of versatile functionalities. A detailed description of different sensing mechanisms is also included to illustrate the contribution of MXenes to the sensing performance and its improvement. In addition, the real-world applications of MXenes-based physical sensors for monitoring different physiological signs are included as well. The remaining challenges of MXenes-based materials for wearable physical sensors and their promising opportunities are finally narrated, in conjunction with a prospective for future development.
Collapse
Affiliation(s)
- Yixuan Yang
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, P. R. China
| | - Shenglin Yang
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, P. R. China
| | - Xiaohu Xia
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, P. R. China
| | - Shigang Hui
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, P. R. China
| | - Ben Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, P. R. China
| | - Bingsuo Zou
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, P. R. China
| | - Yabin Zhang
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, P. R. China
| | - Jianping Sun
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, P. R. China
| | - John H Xin
- Research Institute for Intelligent Wearable Systems School of Fashion and Textiles, The Hong Kong Polytechnic University Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|
21
|
Zahoor F, Nisar A, Bature UI, Abbas H, Bashir F, Chattopadhyay A, Kaushik BK, Alzahrani A, Hussin FA. An overview of critical applications of resistive random access memory. NANOSCALE ADVANCES 2024:d4na00158c. [PMID: 39263252 PMCID: PMC11382421 DOI: 10.1039/d4na00158c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 08/10/2024] [Indexed: 09/13/2024]
Abstract
The rapid advancement of new technologies has resulted in a surge of data, while conventional computers are nearing their computational limits. The prevalent von Neumann architecture, where processing and storage units operate independently, faces challenges such as data migration through buses, leading to decreased computing speed and increased energy loss. Ongoing research aims to enhance computing capabilities through the development of innovative chips and the adoption of new system architectures. One noteworthy advancement is Resistive Random Access Memory (RRAM), an emerging memory technology. RRAM can alter its resistance through electrical signals at both ends, retaining its state even after power-down. This technology holds promise in various areas, including logic computing, neural networks, brain-like computing, and integrated technologies combining sensing, storage, and computing. These cutting-edge technologies offer the potential to overcome the performance limitations of traditional architectures, significantly boosting computing power. This discussion explores the physical mechanisms, device structure, performance characteristics, and applications of RRAM devices. Additionally, we delve into the potential future adoption of these technologies at an industrial scale, along with prospects and upcoming research directions.
Collapse
Affiliation(s)
- Furqan Zahoor
- Department of Computer Engineering, College of Computer Sciences and Information Technology, King Faisal University Saudi Arabia
| | - Arshid Nisar
- Department of Electronics and Communication Engineering, Indian Institute of Technology Roorkee India
| | - Usman Isyaku Bature
- Department of Electrical and Electronics Engineering, Universiti Teknologi Petronas Malaysia
| | - Haider Abbas
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University Seoul 143-747 Republic of Korea
| | - Faisal Bashir
- Department of Computer Engineering, College of Computer Sciences and Information Technology, King Faisal University Saudi Arabia
| | - Anupam Chattopadhyay
- College of Computing and Data Science, Nanyang Technological University 639798 Singapore
| | - Brajesh Kumar Kaushik
- Department of Electronics and Communication Engineering, Indian Institute of Technology Roorkee India
| | - Ali Alzahrani
- Department of Computer Engineering, College of Computer Sciences and Information Technology, King Faisal University Saudi Arabia
| | - Fawnizu Azmadi Hussin
- Department of Electrical and Electronics Engineering, Universiti Teknologi Petronas Malaysia
| |
Collapse
|
22
|
Cao L, Li X, Hu X. An Antibacterial, Highly Sensitive Strain Sensor Based on an Anionic Copolymer Interpenetrating with κ-Carrageenan. ACS Biomater Sci Eng 2024; 10:5641-5652. [PMID: 39177479 DOI: 10.1021/acsbiomaterials.4c00877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Polysaccharide-based hydrogels are suitable for use in the field of flexible bioelectronics due to their benign mechanical properties and biocompatibility. However, the preparation of hydrogel sensors with high performance without affecting their physicochemical properties (e.g., flexibility, toughness, self-healing, and antibacterial activity) remains a challenge and needs to be solved. Herein, a metal ion cross-linking reinforced, double network hydrogel was formed from a 2-acrylamide-2-methylpropanesulfonic acid (AMPS) copolymer interpenetrating κ-carrageenan (CAR), followed by immersing the gel in a Cu2+ ion solution to obtain an antibacterial CAR/P(AM-co-AMPS)-Cu2+ conductive hydrogel. LiCl was added as the electrolyte. The presence of the LiCl electrolyte and sulfonated molecular chain units not only gives the hydrogel good electrical conductivity (conductivity up to 2.68 S/m) but also improves the sensitivity of the hydrogel as a stress-strain sensor, with a hydrogel sensitivity GF of up to 3.76 in the 20%-100% strain range and response time of up to 280 ms. The CAR double-helical structure and sol-gel properties and the interaction of multiple noncovalent bonds between polymers provide the hydrogel with excellent self-healing, with a self-healing efficiency of 68%. In addition, the electrostatic interaction of Cu2+ with Escherichia coli cells can inhibit their growth, exhibiting good antibacterial properties with an inhibition circle diameter of 20.5 mm. This work could provide an effective strategy for antibacterial multifunctional CAR-based bionic sensors.
Collapse
Affiliation(s)
- Liqin Cao
- School of Science, Xihua University, Chengdu 610039, P. R. China
- Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, Xinjiang University, Urumqi 830017, P.R. China
| | - Xiaotong Li
- School of Science, Xihua University, Chengdu 610039, P. R. China
- Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, Xinjiang University, Urumqi 830017, P.R. China
| | - Xin Hu
- School of Science, Xihua University, Chengdu 610039, P. R. China
| |
Collapse
|
23
|
Xu J, Li Q, Ho D. A universal framework for determining the effect of operating parameters on piezoionic voltage generation. MATERIALS HORIZONS 2024. [PMID: 39234925 DOI: 10.1039/d4mh01067a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
The piezoionic effect, the generation of a transient voltage in a polymer matrix infused with ion embedded solvent upon the application of a mechanical stimulus, has demonstrated potential applications in ionic sensing, actuation, interfaces, and energy harvesting. Considerable progress has been made to increase voltage output based on optimizing the morphology and composition of materials. However, regardless of the materials used, in order to design and operate piezoionic devices efficiently, the effect of operating parameters, for example, the strength, speed, and location of the mechanical stimulus, as well as the collection of the piezoionic signal using electrodes are of equal importance. Yet, there has not been any systematic exploration of such operating parameters, leading to the present ad hoc approaches to the design, operation, and performance evaluation of piezoionic systems. In this work, we systematically show the effect of operating parameters on piezoionic voltage generation and provide a universal framework to describe new observations. To elucidate the relationship between the piezoionic response and the underlying mechanism, we propose a novel spatial-temporal strategy for characterizing the piezoionic effect. To ensure generality, newfound insights are modeled and cross-validated over a wide range of experimental data. New observations and new theoretical attributions resulting from this work provide the first systematic method towards optimizing the structure, geometry, and test of piezoionic devices.
Collapse
Affiliation(s)
- Jiangang Xu
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong, China.
- Hong Kong Centre for Cerebro-cardiovascular Health Engineering, N.T. 999077, Hong Kong, China
| | - Qiang Li
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong, China.
- Hong Kong Centre for Cerebro-cardiovascular Health Engineering, N.T. 999077, Hong Kong, China
| | - Derek Ho
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong, China.
- Hong Kong Centre for Cerebro-cardiovascular Health Engineering, N.T. 999077, Hong Kong, China
| |
Collapse
|
24
|
Liu S, Wu Y, Jiang L, Xie W, Davis B, Wang M, Zhang L, Liu Y, Xing S, Dickey MD, Bai W. Highly Stretchable, Tissue-like Ag Nanowire-Enhanced Ionogel Nanocomposites as an Ionogel-Based Wearable Sensor for Body Motion Monitoring. ACS APPLIED MATERIALS & INTERFACES 2024; 16:46538-46547. [PMID: 39087831 DOI: 10.1021/acsami.4c10539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
The development of wearable electronic devices for human health monitoring requires materials with high mechanical performance and sensitivity. In this study, we present a novel transparent tissue-like ionogel-based wearable sensor based on silver nanowire-reinforced ionogel nanocomposites, P(AAm-co-AA) ionogel-Ag NWs composite. The composite exhibits a high stretchability of 605% strain and a moderate fracture stress of about 377 kPa. The sensor also demonstrates a sensitive response to temperature changes and electrostatic adsorption. By encapsulating the nanocomposite in a polyurethane transparent film dressing, we address issues such as skin irritation and enable multidirectional stretching. Measuring resistive changes of the ionogel nanocomposite in response to corresponding strain changes enables its utility as a highly stretchable wearable sensor with excellent performance in sensitivity, stability, and repeatability. The fabricated pressure sensor array exhibits great proficiency in stress distribution, capacitance sensing, and discernment of fluctuations in both external electric fields and stress. Our findings suggest that this material holds promise for applications in wearable and flexible strain sensors, temperature sensors, pressure sensors, and actuators.
Collapse
Affiliation(s)
- Siyuan Liu
- Department of Applied Physical Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
| | - Yizhang Wu
- Department of Applied Physical Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
| | - Lai Jiang
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27514, United States
| | - Wanrong Xie
- Department of Applied Physical Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
| | - Brayden Davis
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill & North Carolina State University, Chapel Hill, North Carolina 27514, United States
| | - Meixiang Wang
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Lin Zhang
- Department of Applied Physical Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
| | - Yihan Liu
- Department of Applied Physical Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
| | - Sicheng Xing
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill & North Carolina State University, Chapel Hill, North Carolina 27514, United States
| | - Michael D Dickey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Wubin Bai
- Department of Applied Physical Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
| |
Collapse
|
25
|
Yang Y, Tang J, Guo H, Pan F, Jiang H, Wu Y, Chen C, Li X, Yuan B, Lu W. Robust and Environmentally Friendly MXene-Based Electronic Skin Enabling the Three Essential Functions of Natural Skin: Perception, Protection, and Thermoregulation. NANO LETTERS 2024; 24:10883-10891. [PMID: 39172995 DOI: 10.1021/acs.nanolett.4c02583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
The development of electronic skin (e-skin) emulating the human skin's three essential functions (perception, protection, and thermoregulation) has great potential for human-machine interfaces and intelligent robotics. However, existing studies mainly focus on perception. This study presents a novel, eco-friendly, mechanically robust e-skin replicating human skin's three essential functions. The e-skin is composed of Ti3C2Tx MXene, polypyrrole, and bacterial cellulose nanofibers, where the MXene nanoflakes form the matrix, the bacterial cellulose nanofibers act as the filler, and the polypyrrole serves as a conductive "cross-linker". This design allows customization of the electrical conductivity, microarchitecture, and mechanical properties, integrating sensing (perception), EMI shielding (protection), and thermal management (thermoregulation). The optimal e-skin can effectively sense various motions (including minuscule artery pulses), achieve an EMI shielding efficiency of 63.32 dB at 78 μm thickness, and regulate temperature up to 129 °C in 30 s at 2.4 V, demonstrating its potential for smart robotics in complex scenarios.
Collapse
Affiliation(s)
- Yang Yang
- Shanghai Key Lab of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai 201804, People's Republic of China
| | - Jie Tang
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University, Shanghai 200123, People's Republic of China
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Hongtao Guo
- Shanghai Key Lab of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai 201804, People's Republic of China
| | - Fei Pan
- Shanghai Key Lab of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai 201804, People's Republic of China
| | - Haojie Jiang
- Shanghai Key Lab of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai 201804, People's Republic of China
| | - Yongpeng Wu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Chaolong Chen
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Xiang Li
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University, Shanghai 200123, People's Republic of China
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Bin Yuan
- Shanghai Key Lab of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai 201804, People's Republic of China
| | - Wei Lu
- Shanghai Key Lab of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai 201804, People's Republic of China
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University, Shanghai 200123, People's Republic of China
| |
Collapse
|
26
|
Oh JY, Lee Y, Lee TW. Skin-Mountable Functional Electronic Materials for Bio-Integrated Devices. Adv Healthc Mater 2024; 13:e2303797. [PMID: 38368254 DOI: 10.1002/adhm.202303797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/01/2024] [Indexed: 02/19/2024]
Abstract
Skin-mountable electronic materials are being intensively evaluated for use in bio-integrated devices that can mutually interact with the human body. Over the past decade, functional electronic materials inspired by the skin are developed with new functionalities to address the limitations of traditional electronic materials for bio-integrated devices. Herein, the recent progress in skin-mountable functional electronic materials for skin-like electronics is introduced with a focus on five perspectives that entail essential functionalities: stretchability, self-healing ability, biocompatibility, breathability, and biodegradability. All functionalities are advanced with each strategy through rational material designs. The skin-mountable functional materials enable the fabrication of bio-integrated electronic devices, which can lead to new paradigms of electronics combining with the human body.
Collapse
Affiliation(s)
- Jin Young Oh
- Department of Chemical Engineering (Integrated Engineering Program), Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Yeongjun Lee
- Department of Brain and Cognitive Science, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Tae-Woo Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Engineering Research, Research Institute of Advanced Materials, Molecular Foundry, Seoul National University, Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
27
|
Ma J, Sa Z, Zhang H, Feng J, Wen J, Wang S, Tian Y. Microconfined Assembly of High-Resolution and Mechanically Robust EGaIn Liquid Metal Stretchable Electrodes for Wearable Electronic Systems. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402818. [PMID: 38898769 PMCID: PMC11425843 DOI: 10.1002/advs.202402818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/24/2024] [Indexed: 06/21/2024]
Abstract
Stretchable electrodes based on liquid metals (LM) are widely used in human-machine interfacing, wearable bioelectronics, and other emerging technologies. However, realizing the high-precision patterning and mechanical stability remains challenging due to the poor wettability of LM. Herein, a method is reported to fabricate LM-based multilayer solid-liquid electrodes (m-SLE) utilizing electrohydrodynamic (EHD) printed confinement template. In these electrodes, LM self-assembled onto these high-resolution templates, assisted by selective wetting on the electrodeposited Cu layer. This study shows that a m-SLE composed of PDMS/Ag/Cu/EGaIn exhibits line width of ≈20 µm, stretchability of ≈100%, mechanical stability ≈10 000 times (stretch/relaxation cycles), and recyclability. The multi-layer structure of m-SLE enables the adjustability of strain sensing, in which the strain-sensitive Ag part can be used for non-distributed detection in human health monitoring and the strain-insensitive EGaIn part can be used as interconnects. In addition, this study demonstrates that near field communication (NFC) devices and multilayer displays integrated by m-SLEs exhibit stable wireless signal transmission capability and stretchability, suggesting its applicability in creating highly-integrated, large-scale commercial, and recyclable wearable electronics.
Collapse
Affiliation(s)
- Jingxuan Ma
- National Key Laboratory of Precision Welding & Joining of Materials and Structures, Harbin Institute of Technology, Harbin, 150001, China
| | - Zicheng Sa
- National Key Laboratory of Precision Welding & Joining of Materials and Structures, Harbin Institute of Technology, Harbin, 150001, China
| | - He Zhang
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, 999077, China
- Advanced Biomedical Instrumentation Centre Limited, Hong Kong, 999077, China
| | - Jiayun Feng
- National Key Laboratory of Precision Welding & Joining of Materials and Structures, Harbin Institute of Technology, Harbin, 150001, China
| | - Jiayue Wen
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, 450041, China
| | - Shang Wang
- National Key Laboratory of Precision Welding & Joining of Materials and Structures, Harbin Institute of Technology, Harbin, 150001, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, 450041, China
| | - Yanhong Tian
- National Key Laboratory of Precision Welding & Joining of Materials and Structures, Harbin Institute of Technology, Harbin, 150001, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, 450041, China
| |
Collapse
|
28
|
Guo X, Sun Z, Zhu Y, Lee C. Zero-Biased Bionic Fingertip E-Skin with Multimodal Tactile Perception and Artificial Intelligence for Augmented Touch Awareness. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406778. [PMID: 39129356 DOI: 10.1002/adma.202406778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/17/2024] [Indexed: 08/13/2024]
Abstract
Electronic skins (E-Skins) are crucial for future robotics and wearable devices to interact with and perceive the real world. Prior research faces challenges in achieving comprehensive tactile perception and versatile functionality while keeping system simplicity for lack of multimodal sensing capability in a single sensor. Two kinds of tactile sensors, transient voltage artificial neuron (TVAN) and sustained potential artificial neuron (SPAN), featuring self-generated zero-biased signals are developed to realize synergistic sensing of multimodal information (vibration, material, texture, pressure, and temperature) in a single device instead of complex sensor arrays. Simultaneously, machine learning with feature fusion is applied to fully decode their output information and compensate for the inevitable instability of applied force, speed, etc, in real applications. Integrating TVAN and SPAN, the formed E-Skin achieves holistic touch awareness in only a single unit. It can thoroughly perceive an object through a simple touch without strictly controlled testing conditions, realize the capability to discern surface roughness from 0.8 to 1600 µm, hardness from 6HA to 85HD, and correctly distinguish 16 objects with temperature variance from 0 to 80 °C. The E-skin also features a simple and scalable fabrication process, which can be integrated into various devices for broad applications.
Collapse
Affiliation(s)
- Xinge Guo
- Department of Electrical & Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117576, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, 5 Engineering Drive 1, Singapore, 117608, Singapore
- Institute of Microelectronics (IME), Agency for Science, Technology, and Research (A*STAR), Singapore, 138634, Singapore
| | - Zhongda Sun
- Department of Electrical & Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117576, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, 5 Engineering Drive 1, Singapore, 117608, Singapore
- National University of Singapore Suzhou Research Institute (NUSRI), Suzhou, 215123, China
| | - Yao Zhu
- Institute of Microelectronics (IME), Agency for Science, Technology, and Research (A*STAR), Singapore, 138634, Singapore
| | - Chengkuo Lee
- Department of Electrical & Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117576, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, 5 Engineering Drive 1, Singapore, 117608, Singapore
- National University of Singapore Suzhou Research Institute (NUSRI), Suzhou, 215123, China
- NUS Graduate School - Integrative Sciences and Engineering Program (ISEP), National University of Singapore, Singapore, 119077, Singapore
| |
Collapse
|
29
|
Xiao H, Yu Z, Liang J, Ding L, Zhu J, Wang Y, Chen S, Xin JH. Wetting Behavior-Induced Interfacial transmission of Energy and Signal: Materials, Mechanisms, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407856. [PMID: 39032113 DOI: 10.1002/adma.202407856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/10/2024] [Indexed: 07/22/2024]
Abstract
Wetting behaviors can significantly affect the transport of energy and signal (E&S) through vapor, solid, and liquid interfaces, which has prompted increased interest in interfacial science and technology. E&S transmission can be achieved using electricity, light, and heat, which often accompany and interact with each other. Over the past decade, their distinctive transport phenomena during wetting processes have made significant contributions to various domains. However, few studies have analyzed the intricate relationship between wetting behavior and E&S transport. This review summarizes and discusses the mechanisms of electrical, light, and heat transmission at wetting interfaces to elucidate their respective scientific issues, technical characteristics, challenges, commonalities, and potential for technological convergence. The materials, structures, and devices involved in E&S transportation are also analyzed. Particularly, harnessing synergistic advantages in practical applications and constructing advanced, multifunctional, and highly efficient smart systems based on wetted interfaces is the aim to provide strategies.
Collapse
Affiliation(s)
- Haoyuan Xiao
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Zilin Yu
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jiechang Liang
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Lei Ding
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jingshuai Zhu
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yuanfeng Wang
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Shiguo Chen
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - John H Xin
- Research Centre of Smart Wearable Technology, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| |
Collapse
|
30
|
Zhang Y, Liu Y, Lu Y, Gong S, Haick H, Cheng W, Wang Y. Tailor-Made Gold Nanomaterials for Applications in Soft Bioelectronics and Optoelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405046. [PMID: 39022844 DOI: 10.1002/adma.202405046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/02/2024] [Indexed: 07/20/2024]
Abstract
In modern nanoscience and nanotechnology, gold nanomaterials are indispensable building blocks that have demonstrated a plethora of applications in catalysis, biology, bioelectronics, and optoelectronics. Gold nanomaterials possess many appealing material properties, such as facile control over their size/shape and surface functionality, intrinsic chemical inertness yet with high biocompatibility, adjustable localized surface plasmon resonances, tunable conductivity, wide electrochemical window, etc. Such material attributes have been recently utilized for designing and fabricating soft bioelectronics and optoelectronics. This motivates to give a comprehensive overview of this burgeoning field. The discussion of representative tailor-made gold nanomaterials, including gold nanocrystals, ultrathin gold nanowires, vertically aligned gold nanowires, hard template-assisted gold nanowires/gold nanotubes, bimetallic/trimetallic gold nanowires, gold nanomeshes, and gold nanosheets, is begun. This is followed by the description of various fabrication methodologies for state-of-the-art applications such as strain sensors, pressure sensors, electrochemical sensors, electrophysiological devices, energy-storage devices, energy-harvesting devices, optoelectronics, and others. Finally, the remaining challenges and opportunities are discussed.
Collapse
Affiliation(s)
- Yujie Zhang
- Department of Chemical Engineering, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, China
- The Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Yi Liu
- Department of Chemical Engineering, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, China
- The Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Yuerui Lu
- School of Engineering, College of Engineering, Computing and Cybernetics, The Australian National University, Canberra, ACT, 2601, Australia
| | - Shu Gong
- School of Materials Science and Engineering, Central South University, Changsha, 410083, P. R. China
| | - Hossam Haick
- The Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Wenlong Cheng
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW, 2008, Australia
| | - Yan Wang
- Department of Chemical Engineering, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, China
- The Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
- Key Laboratory of Science and Engineering for Health and Medicine of Guangdong Higher Education Institutes, Guangdong Technion - Israel Institute of Technology, Shantou, Guangdong, 515063, China
- Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, China
| |
Collapse
|
31
|
Tan D, Guan X, Chung KY, Tang Y, Yang Y, Wang Q, Chen T, Xu B. Smart-Adhesive, Breathable and Waterproof Fibrous Electronic Skins. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405828. [PMID: 39049726 PMCID: PMC11423153 DOI: 10.1002/advs.202405828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/03/2024] [Indexed: 07/27/2024]
Abstract
For the need of direct contact with the skin, electronic skins (E-skins) should not only fulfill electric functions, but also ensure comfort during wearing, including permeability, waterproofness, and easy removal. Herein, the study has developed a self-adhesive, detach-on-demand, breathable, and waterproof E-skin (PDSC) for motion sensing and wearable comfort by electrospinning styrene-isoprene block copolymer rubber with carbon black nanosheets as the sensing layer and liner copolymers of N, N-dimethylacrylamide, n-octadecyl acrylate and lauryl methacrylate as the adhesive layer. The high elasticity and microfiber network structure endow the PDSC with good sensitivity and high linearity for strain sensing. The hydrophobic and crystallizable adhesive layer ensures robust, waterproof, and detaching-on-demand skin adhesion. Meanwhile, the fiber structure enables the PDSC good air and water permeability. The integration of electric and wearable functions endows the PDSC with great potential for motion sensing during human activities as both the sensing and wearable performances.
Collapse
Affiliation(s)
- Di Tan
- Nanotechnology Center, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, 999077, Hong Kong
| | - Xiaoyang Guan
- Nanotechnology Center, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, 999077, Hong Kong
| | - King Yan Chung
- Nanotechnology Center, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, 999077, Hong Kong
| | - Yun Tang
- Nanotechnology Center, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, 999077, Hong Kong
| | - Yujue Yang
- Nanotechnology Center, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, 999077, Hong Kong
| | - Qian Wang
- Nanotechnology Center, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, 999077, Hong Kong
| | - Tiandi Chen
- Nanotechnology Center, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, 999077, Hong Kong
| | - Bingang Xu
- Nanotechnology Center, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, 999077, Hong Kong
| |
Collapse
|
32
|
Chen Z, Peng H, Zhang J. An integrated electronic skin with biaxial sensitivity from a layered biphasic liquid metal/polymer film. MATERIALS HORIZONS 2024; 11:4150-4158. [PMID: 38895822 DOI: 10.1039/d4mh00543k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Research on electronic skin (e-skin) is dedicated to simulating natural skin for the perception of external mechanical stimuli. Currently, e-skin is ineffective in analyzing a single stimulus from different directions. This work successfully fabricates an integrated electronic skin (IES) with biaxial sensing capability through the combination of a biphasic liquid metal and porous foam. Remarkably different from traditional e-skin, the IES can analyze the type, strength, and area of an external mechanical stimulus from vertical and horizontal dimensions with a dual response (capacitive and resistive change, respectively). As a multifunctional sensor, the IES simultaneously responds to compression via capacitive change and tension via resistive change. Furthermore, 1000 cyclic compressions were conducted to confirm the electrical stability of the IES. Very subtle stimuli (e.g. thawing ice and touch) can be detected by the IES via biaxial detection. This work provides a new protocol for the development of future intelligent flexible electronics.
Collapse
Affiliation(s)
- Zixun Chen
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China
- National Graduate College for Elite Engineers, Southeast University, Wuxi Campus, Wuxi, 214061, P. R. China.
| | - Hao Peng
- School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, P. R. China.
| | - Jiuyang Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China
- National Graduate College for Elite Engineers, Southeast University, Wuxi Campus, Wuxi, 214061, P. R. China.
| |
Collapse
|
33
|
Ju D, Lee J, Kim S. On-receptor computing with classical associative learning in semiconductor oxide memristors. NANOSCALE 2024; 16:15330-15342. [PMID: 39087746 DOI: 10.1039/d4nr02132k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
The increasing demand for energy-efficient data processing leads to a growing interest in neuromorphic computing that aims to emulate cerebral functions. This approach offers cost-effective and rapid parallel data processing, surpassing the limitations of the conventional von Neumann architecture. Key to this emulation is the development of memristors that mimic biological synapses. Recently, research efforts have focused on the incorporation of nociceptors-sensory neurons capable of detecting external stimuli-into memristors for applications in robotics and artificial intelligence. This integration enables memristors to adapt to various circumstances while remaining cost-effective. A nonfilamentary gradual resistive switching memristor is utilized to implement artificial nociceptor and synaptic behaviors. The fabricated Pt/indium gallium zinc oxide (IGZO)/SnOx/TiN device exhibits essential properties of biological nociceptors, including threshold response, no-adaptation, relaxation, sensitization, and recovery. Furthermore, the device leverages short-term memory principles to emulate learning behaviors observed in the brain by showcasing "forgetting" paradigms. Additionally, control of the input spikes yields different synaptic plasticity responses, thus emulating the key functions of our synapse. Computational simulations demonstrate the device's ability to perform both computing and sensing tasks effectively, thus enabling on-receptor computing with associative learning capabilities.
Collapse
Affiliation(s)
- Dongyeol Ju
- Division of Electronics and Electrical Engineering, Dongguk University, Seoul 04620, South Korea.
| | - Jungwoo Lee
- Division of Electronics and Electrical Engineering, Dongguk University, Seoul 04620, South Korea.
| | - Sungjun Kim
- Division of Electronics and Electrical Engineering, Dongguk University, Seoul 04620, South Korea.
| |
Collapse
|
34
|
Yang Y, Song B, Zhang J, Dan N, Gu H. Multifunctional, High-Strength Electronic Skin Based on the Natural Sheepskin Fiber Network for Multifaceted Human Health Monitoring and Management. Biomacromolecules 2024; 25:5359-5373. [PMID: 39045793 DOI: 10.1021/acs.biomac.4c00803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Inspired by the animal skin fiber network, we developed an electronic skin (e-skin) utilizing natural sheepskin as the primary substrate. This innovative design addresses the limitations of conventional e-skins, including inadequate mechanical strength, overly complex artificial network construction, and limited health monitoring capabilities. This e-skin successfully retains the structure and properties of natural sheepskin while exhibiting exceptional mechanical strength (with a breaking strength of 4.01 MPa) and high elongation (with an elongation at a break of 304.8%). Moreover, it possesses various desirable attributes such as electrical conductivity, antibacterial properties, biocompatibility, and environmental stability. In addition, this e-skin has the advantage of diverse data collection (joint movement, bioelectricity, foot health detection, and speech disorder communication systems). Therefore, this e-skin breaks the traditional construction strategy and single-mode application and is expected to become an ideal material for building smart sensor devices.
Collapse
Affiliation(s)
- Yao Yang
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Bin Song
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Jinwei Zhang
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Nianhua Dan
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Haibin Gu
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| |
Collapse
|
35
|
Cansev ME, Miller AJ, Brown JD, Beckerle P. Implementing social and affective touch to enhance user experience in human-robot interaction. Front Robot AI 2024; 11:1403679. [PMID: 39188572 PMCID: PMC11345123 DOI: 10.3389/frobt.2024.1403679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/26/2024] [Indexed: 08/28/2024] Open
Abstract
In this paper, we discuss the potential contribution of affective touch to the user experience and robot performance in human-robot interaction, with an in-depth look into upper-limb prosthesis use as a well-suited example. Research on providing haptic feedback in human-robot interaction has worked to relay discriminative information during functional activities of daily living, like grasping a cup of tea. However, this approach neglects to recognize the affective information our bodies give and receive during social activities of daily living, like shaking hands. The discussion covers the emotional dimensions of affective touch and its role in conveying distinct emotions. In this work, we provide a human needs-centered approach to human-robot interaction design and argue for an equal emphasis to be placed on providing affective haptic feedback channels to meet the social tactile needs and interactions of human agents. We suggest incorporating affective touch to enhance user experience when interacting with and through semi-autonomous systems such as prosthetic limbs, particularly in fostering trust. Real-time analysis of trust as a dynamic phenomenon can pave the way towards adaptive shared autonomy strategies and consequently enhance the acceptance of prosthetic limbs. Here we highlight certain feasibility considerations, emphasizing practical designs and multi-sensory approaches for the effective implementation of affective touch interfaces.
Collapse
Affiliation(s)
- M. Ege Cansev
- Chair of Autonomous Systems and Mechatronics, Department of Electrical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Alexandra J. Miller
- Haptics and Medical Robotics Laboratory, Johns Hopkins University, Department of Mechanical Engineering, Baltimore, MD, United States
| | - Jeremy D. Brown
- Haptics and Medical Robotics Laboratory, Johns Hopkins University, Department of Mechanical Engineering, Baltimore, MD, United States
| | - Philipp Beckerle
- Chair of Autonomous Systems and Mechatronics, Department of Electrical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Department of Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
36
|
Li D, Cui T, Xu Z, Xu S, Dong Z, Tao L, Liu H, Yang Y, Ren TL. Designs and Applications for the Multimodal Flexible Hybrid Epidermal Electronic Systems. RESEARCH (WASHINGTON, D.C.) 2024; 7:0424. [PMID: 39130493 PMCID: PMC11310101 DOI: 10.34133/research.0424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/17/2024] [Indexed: 08/13/2024]
Abstract
Research on the flexible hybrid epidermal electronic system (FHEES) has attracted considerable attention due to its potential applications in human-machine interaction and healthcare. Through material and structural innovations, FHEES combines the advantages of traditional stiff electronic devices and flexible electronic technology, enabling it to be worn conformally on the skin while retaining complex system functionality. FHEESs use multimodal sensing to enhance the identification accuracy of the wearer's motion modes, intentions, or health status, thus realizing more comprehensive physiological signal acquisition. However, the heterogeneous integration of soft and stiff components makes balancing comfort and performance in designing and implementing multimodal FHEESs challenging. Herein, multimodal FHEESs are first introduced in 2 types based on their different system structure: all-in-one and assembled, reflecting totally different heterogeneous integration strategies. Characteristics and the key design issues (such as interconnect design, interface strategy, substrate selection, etc.) of the 2 multimodal FHEESs are emphasized. Besides, the applications and advantages of the 2 multimodal FHEESs in recent research have been presented, with a focus on the control and medical fields. Finally, the prospects and challenges of the multimodal FHEES are discussed.
Collapse
Affiliation(s)
- Ding Li
- School of Integrated Circuit,
Tsinghua University, Beijing, China
| | - Tianrui Cui
- School of Integrated Circuit,
Tsinghua University, Beijing, China
| | - Zigan Xu
- School of Integrated Circuit,
Tsinghua University, Beijing, China
| | - Shuoyan Xu
- School of Integrated Circuit,
Tsinghua University, Beijing, China
| | - Zirui Dong
- School of Integrated Circuit,
Tsinghua University, Beijing, China
| | - Luqi Tao
- Beijing National Research Center for Information Science and Technology (BNRist),
Tsinghua University, Beijing, China
| | - Houfang Liu
- Beijing National Research Center for Information Science and Technology (BNRist),
Tsinghua University, Beijing, China
| | - Yi Yang
- School of Integrated Circuit,
Tsinghua University, Beijing, China
- Beijing National Research Center for Information Science and Technology (BNRist),
Tsinghua University, Beijing, China
| | - Tian-Ling Ren
- School of Integrated Circuit,
Tsinghua University, Beijing, China
- Beijing National Research Center for Information Science and Technology (BNRist),
Tsinghua University, Beijing, China
| |
Collapse
|
37
|
Wang K, Margolis S, Cho JM, Wang S, Arianpour B, Jabalera A, Yin J, Hong W, Zhang Y, Zhao P, Zhu E, Reddy S, Hsiai TK. Non-Invasive Detection of Early-Stage Fatty Liver Disease via an On-Skin Impedance Sensor and Attention-Based Deep Learning. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400596. [PMID: 38887178 PMCID: PMC11336938 DOI: 10.1002/advs.202400596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/17/2024] [Indexed: 06/20/2024]
Abstract
Early-stage nonalcoholic fatty liver disease (NAFLD) is a silent condition, with most cases going undiagnosed, potentially progressing to liver cirrhosis and cancer. A non-invasive and cost-effective detection method for early-stage NAFLD detection is a public health priority but challenging. In this study, an adhesive, soft on-skin sensor with low electrode-skin contact impedance for early-stage NAFLD detection is fabricated. A method is developed to synthesize platinum nanoparticles and reduced graphene quantum dots onto the on-skin sensor to reduce electrode-skin contact impedance by increasing double-layer capacitance, thereby enhancing detection accuracy. Furthermore, an attention-based deep learning algorithm is introduced to differentiate impedance signals associated with early-stage NAFLD in high-fat-diet-fed low-density lipoprotein receptor knockout (Ldlr-/-) mice compared to healthy controls. The integration of an adhesive, soft on-skin sensor with low electrode-skin contact impedance and the attention-based deep learning algorithm significantly enhances the detection accuracy for early-stage NAFLD, achieving a rate above 97.5% with an area under the receiver operating characteristic curve (AUC) of 1.0. The findings present a non-invasive approach for early-stage NAFLD detection and display a strategy for improved early detection through on-skin electronics and deep learning.
Collapse
Affiliation(s)
- Kaidong Wang
- Department of MedicineDavid Geffen School of MedicineUniversity of California Los AngelesLos AngelesCA90095USA
- Department of Bioengineering, Henry Samueli School of Engineering and Applied SciencesUniversity of California Los AngelesLos AngelesCA90095USA
- Department of MedicineGreater Los Angeles Veterans Affairs (VA) Healthcare SystemLos AngelesCA90073USA
| | - Samuel Margolis
- Department of MedicineDavid Geffen School of MedicineUniversity of California Los AngelesLos AngelesCA90095USA
| | - Jae Min Cho
- Department of MedicineDavid Geffen School of MedicineUniversity of California Los AngelesLos AngelesCA90095USA
| | - Shaolei Wang
- Department of Bioengineering, Henry Samueli School of Engineering and Applied SciencesUniversity of California Los AngelesLos AngelesCA90095USA
| | - Brian Arianpour
- Department of Bioengineering, Henry Samueli School of Engineering and Applied SciencesUniversity of California Los AngelesLos AngelesCA90095USA
| | - Alejandro Jabalera
- Department of Bioengineering, Henry Samueli School of Engineering and Applied SciencesUniversity of California Los AngelesLos AngelesCA90095USA
| | - Junyi Yin
- Department of Bioengineering, Henry Samueli School of Engineering and Applied SciencesUniversity of California Los AngelesLos AngelesCA90095USA
| | - Wen Hong
- Department of Materials Science and EngineeringUniversity of California Los AngelesLos AngelesCA90095USA
| | - Yaran Zhang
- Department of Bioengineering, Henry Samueli School of Engineering and Applied SciencesUniversity of California Los AngelesLos AngelesCA90095USA
| | - Peng Zhao
- Department of MedicineDavid Geffen School of MedicineUniversity of California Los AngelesLos AngelesCA90095USA
| | - Enbo Zhu
- Department of MedicineDavid Geffen School of MedicineUniversity of California Los AngelesLos AngelesCA90095USA
- Department of Materials Science and EngineeringUniversity of California Los AngelesLos AngelesCA90095USA
| | - Srinivasa Reddy
- Department of Molecular and Medical PharmacologyUniversity of California Los AngelesLos AngelesCA90095USA
| | - Tzung K. Hsiai
- Department of MedicineDavid Geffen School of MedicineUniversity of California Los AngelesLos AngelesCA90095USA
- Department of Bioengineering, Henry Samueli School of Engineering and Applied SciencesUniversity of California Los AngelesLos AngelesCA90095USA
- Department of MedicineGreater Los Angeles Veterans Affairs (VA) Healthcare SystemLos AngelesCA90073USA
| |
Collapse
|
38
|
Chen Y, Gao M, Chen K, Sun H, Xing H, Liu X, Liu W, Guo H. MXene-Based Pressure Sensor with a Self-Healing Property for Joule Heating and Friction Sliding. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400593. [PMID: 38529744 DOI: 10.1002/smll.202400593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/05/2024] [Indexed: 03/27/2024]
Abstract
As a kind of flexible electronic device, flexible pressure sensor has attracted wide attention in medical monitoring and human-machine interaction. With the continuous deepening of research, high-sensitivity sensor is developing from single function to multi-function. However, Current multifunctional sensors lack the ability to integrate joule heating, detect sliding friction, and self-healing. Herein, a MXene/polyurethane (PU) flexible pressure sensor with a self-healing property for joule heating and friction sliding is fabricated. The MXene/PU sensitive layer with special spinosum structure is prepared by a simple spraying method. After face-to-face assembly of the sensitive layers, the MXene/PU flexible pressure sensor is obtained and showed excellent sensitivity (150.65 kPa-1), fast response/recovery speed (75.5/63.9 ms), and good stability (10 000 cycles). Based on the self-healing property of PU, the sensor also has the ability to heal after mechanical damage. In addition, the sensor realizes the joule heating function under low voltage, and has the real-time monitoring ability of sliding objects. Combined with low cost and simple manufacturing method, the multi-functional MXene/PU flexible sensor shows a wide range of application potential in human activity monitoring, thermal management, and slip recognition.
Collapse
Affiliation(s)
- Yu Chen
- Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Mengyao Gao
- Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Kun Chen
- Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Huili Sun
- Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Haonan Xing
- Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Xiaoqing Liu
- Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Weijie Liu
- Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Haizhong Guo
- Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics Zhengzhou University, Zhengzhou, 450052, P. R. China
- Institute of Quantum Materials and Physics, Henan Academy of Sciences, Zhengzhou, 450046, P. R. China
| |
Collapse
|
39
|
Yang X, Chen W, Fan Q, Chen J, Chen Y, Lai F, Liu H. Electronic Skin for Health Monitoring Systems: Properties, Functions, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402542. [PMID: 38754914 DOI: 10.1002/adma.202402542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/22/2024] [Indexed: 05/18/2024]
Abstract
Electronic skin (e-skin), a skin-like wearable electronic device, holds great promise in the fields of telemedicine and personalized healthcare because of its good flexibility, biocompatibility, skin conformability, and sensing performance. E-skin can monitor various health indicators of the human body in real time and over the long term, including physical indicators (exercise, respiration, blood pressure, etc.) and chemical indicators (saliva, sweat, urine, etc.). In recent years, the development of various materials, analysis, and manufacturing technologies has promoted significant development of e-skin, laying the foundation for the application of next-generation wearable medical technologies and devices. Herein, the properties required for e-skin health monitoring devices to achieve long-term and precise monitoring and summarize several detectable indicators in the health monitoring field are discussed. Subsequently, the applications of integrated e-skin health monitoring systems are reviewed. Finally, current challenges and future development directions in this field are discussed. This review is expected to generate great interest and inspiration for the development and improvement of e-skin and health monitoring systems.
Collapse
Affiliation(s)
- Xichen Yang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
| | - Wenzheng Chen
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
| | - Qunfu Fan
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
| | - Jing Chen
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
| | - Yujie Chen
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
| | - Feili Lai
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
| | - Hezhou Liu
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
- Collaborative Innovation Center for Advanced Ship and Dee-Sea Exploration, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| |
Collapse
|
40
|
Ghorai A, Das A, Choi Y, Roy B, Jeong U. Revival of Degraded CsPbI 3 Nanocrystals by Diselenide Ligand and Nanocrystal Self-Assembly on Nanofibrilar Ligand Template. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2404384. [PMID: 39031109 DOI: 10.1002/smll.202404384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/29/2024] [Indexed: 07/22/2024]
Abstract
Among the lead halide perovskite (LHP) family, CsPbI3 is known to be significantly vulnerable to moisture, which hinders its use in real device applications. It is reported that chalcogen-based ligands can better stabilize CsPbI3 and revive nanocrystals (NCs). Here, diphenyl diselenide (DPhDSe) ligand is used to revive the degraded CsPbI3 NCs through a post-synthetic treatment of adding a small amount of DPhDSe in the degraded NC dispersion. DPhDSe in the dispersion formed nanofibrillar crystals at a low temperature through the π-π stacking of the phenyl ring. The nanofibrils played as a template on which the NCs self-assembled and they are attached side-by-side to form microfibers. The microfiber powder containing the NCs is optically stable at ambient conditions and morphologically self-healable by mild thermal annealing due to the dynamic Se─Se bond. The mechanism of the structural changes, optical transitions, and chemical changes has been systematically characterized through electron microscopy, diffraction, spectroscopy, and elemental analysis.
Collapse
Affiliation(s)
- Arup Ghorai
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Republic of Korea
| | - Avijit Das
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Republic of Korea
| | - Yoonsun Choi
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Republic of Korea
| | - Baidyanath Roy
- School of Nano Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Unyong Jeong
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Republic of Korea
| |
Collapse
|
41
|
Xiong W, Zhang F, Qu S, Yin L, Li K, Huang Y. Marangoni-driven deterministic formation of softer, hollow microstructures for sensitivity-enhanced tactile system. Nat Commun 2024; 15:5596. [PMID: 38961075 PMCID: PMC11222500 DOI: 10.1038/s41467-024-49864-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 06/18/2024] [Indexed: 07/05/2024] Open
Abstract
Microengineering the dielectric layers with three-dimensional microstructures has proven effective in enhancing the sensitivity of flexible pressure sensors. However, the widely employed geometrical designs of solid microstructures exhibit limited sensitivity over a wide range of pressures due to their inherent but undesired structural compressibility. Here, a Marangoni-driven deterministic formation approach is proposed for fabricating hollow microstructures, allowing for greater deformation while retarding structural stiffening during compression. Fluid convective deposition enables solute particles to reassemble in template microstructures, controlling the interior cavity with a void ratio exceeding 90%. The hollow micro-pyramid sensor exhibits a 10-fold sensitivity improvement across wider pressure ranges over the pressure sensor utilizing solid micro-pyramids, and an ultra-low detect limit of 0.21 Pa. With the advantages of facilitation, scalability, and large-area compatibility, such an approach for hollow microstructures can be expanded to other sensor types for superior performance and has considerable potential in robotic tactile and epidermal devices.
Collapse
Affiliation(s)
- Wennan Xiong
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
| | - Fan Zhang
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China.
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China.
| | - Shiyuan Qu
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
| | - Liting Yin
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
| | - Kan Li
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
| | - YongAn Huang
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China.
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China.
| |
Collapse
|
42
|
Wang S, Fan X, Zhang Z, Su Z, Ding Y, Yang H, Zhang X, Wang J, Zhang J, Hu P. A Skin-Inspired High-Performance Tactile Sensor for Accurate Recognition of Object Softness. ACS NANO 2024; 18:17175-17184. [PMID: 38875126 DOI: 10.1021/acsnano.4c04100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
High-performance tactile sensors with skin-sensing properties are crucial for intelligent perception in next-generation smart devices. However, previous studies have mainly focused on the sensitivity and response range of tactile sensation while neglecting the ability to recognize object softness. Therefore, achieving a precise perception of the softness remains a challenge. Here, we report an integrated tactile sensor consisting of a central hole gradient structure pressure sensor and a planar structure strain sensor. The recognition of softness and tactile perception is achieved through the synergistic effect of pressure sensors that sense the applied pressure and strain sensors that recognize the strain of the target object. The results indicate that the softness evaluation parameter (SC) of the integrated structural tactile sensor increases from 0.14 to 0.47 along with Young's modulus of the object decreasing from 2.74 to 0.45 MPa, demonstrating accurate softness recognition. It also exhibits a high sensitivity of 10.55 kPa-1 and an ultrawide linear range of 0-1000 kPa, showing an excellent tactile sensing capability. Further, an intelligent robotic hand system based on integrated structural tactile sensors was developed, which can identify the softness of soft foam and glass and grasp them accurately, indicating human skin-like sensing and grasping capabilities.
Collapse
Affiliation(s)
- Shuai Wang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150080, China
- MOE Key Lab of Micro-System and Micro-Structures Manufacturing, Harbin Institute of Technology, Harbin 150080, China
| | - Xinyang Fan
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150080, China
| | - Zaoxu Zhang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, China
| | - Zhen Su
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150080, China
| | - YaNan Ding
- MOE Key Lab of Micro-System and Micro-Structures Manufacturing, Harbin Institute of Technology, Harbin 150080, China
| | - Hongying Yang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150080, China
| | - Xin Zhang
- MOE Key Lab of Micro-System and Micro-Structures Manufacturing, Harbin Institute of Technology, Harbin 150080, China
| | - Jinzhong Wang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150080, China
| | - Jia Zhang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150080, China
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150080, China
- MOE Key Lab of Micro-System and Micro-Structures Manufacturing, Harbin Institute of Technology, Harbin 150080, China
| | - PingAn Hu
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150080, China
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150080, China
- MOE Key Lab of Micro-System and Micro-Structures Manufacturing, Harbin Institute of Technology, Harbin 150080, China
| |
Collapse
|
43
|
Kong L, Li W, Zhang T, Ma H, Cao Y, Wang K, Zhou Y, Shamim A, Zheng L, Wang X, Huang W. Wireless Technologies in Flexible and Wearable Sensing: From Materials Design, System Integration to Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400333. [PMID: 38652082 DOI: 10.1002/adma.202400333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/07/2024] [Indexed: 04/25/2024]
Abstract
Wireless and wearable sensors attract considerable interest in personalized healthcare by providing a unique approach for remote, noncontact, and continuous monitoring of various health-related signals without interference with daily life. Recent advances in wireless technologies and wearable sensors have promoted practical applications due to their significantly improved characteristics, such as reduction in size and thickness, enhancement in flexibility and stretchability, and improved conformability to the human body. Currently, most researches focus on active materials and structural designs for wearable sensors, with just a few exceptions reflecting on the technologies for wireless data transmission. This review provides a comprehensive overview of the state-of-the-art wireless technologies and related studies on empowering wearable sensors. The emerging functional nanomaterials utilized for designing unique wireless modules are highlighted, which include metals, carbons, and MXenes. Additionally, the review outlines the system-level integration of wireless modules with flexible sensors, spanning from novel design strategies for enhanced conformability to efficient transmitting data wirelessly. Furthermore, the review introduces representative applications for remote and noninvasive monitoring of physiological signals through on-skin and implantable wireless flexible sensing systems. Finally, the challenges, perspectives, and unprecedented opportunities for wireless and wearable sensors are discussed.
Collapse
Affiliation(s)
- Lingyan Kong
- Frontiers Science Center for Flexible Electronics (FSCFE) and Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Weiwei Li
- Frontiers Science Center for Flexible Electronics (FSCFE) and Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Tinghao Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE) and Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Huihui Ma
- Frontiers Science Center for Flexible Electronics (FSCFE) and Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Yunqiang Cao
- Frontiers Science Center for Flexible Electronics (FSCFE) and Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Kexin Wang
- Frontiers Science Center for Flexible Electronics (FSCFE) and Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Yilin Zhou
- Frontiers Science Center for Flexible Electronics (FSCFE) and Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Atif Shamim
- IMPACT Lab, Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Lu Zheng
- Frontiers Science Center for Flexible Electronics (FSCFE) and Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Xuewen Wang
- Frontiers Science Center for Flexible Electronics (FSCFE) and Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE) and Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
- Key Laboratory of Flexible Electronics(KLoFE)and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211800, China
| |
Collapse
|
44
|
Koo JH, Lee YJ, Kim HJ, Matusik W, Kim DH, Jeong H. Electronic Skin: Opportunities and Challenges in Convergence with Machine Learning. Annu Rev Biomed Eng 2024; 26:331-355. [PMID: 38959390 DOI: 10.1146/annurev-bioeng-103122-032652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Recent advancements in soft electronic skin (e-skin) have led to the development of human-like devices that reproduce the skin's functions and physical attributes. These devices are being explored for applications in robotic prostheses as well as for collecting biopotentials for disease diagnosis and treatment, as exemplified by biomedical e-skins. More recently, machine learning (ML) has been utilized to enhance device control accuracy and data processing efficiency. The convergence of e-skin technologies with ML is promoting their translation into clinical practice, especially in healthcare. This review highlights the latest developments in ML-reinforced e-skin devices for robotic prostheses and biomedical instrumentations. We first describe technological breakthroughs in state-of-the-art e-skin devices, emphasizing technologies that achieve skin-like properties. We then introduce ML methods adopted for control optimization and pattern recognition, followed by practical applications that converge the two technologies. Lastly, we briefly discuss the challenges this interdisciplinary research encounters in its clinical and industrial transition.
Collapse
Affiliation(s)
- Ja Hoon Koo
- Department of Semiconductor Systems Engineering and Institute of Semiconductor and System IC, Sejong University, Seoul, Republic of Korea
| | - Young Joong Lee
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Hye Jin Kim
- Center for Nanoparticle Research, Institute for Basic Science, Seoul, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
| | - Wojciech Matusik
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science, Seoul, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
- Department of Materials Science and Engineering, Seoul National University, Seoul, Republic of Korea
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, Republic of Korea;
| | - Hyoyoung Jeong
- Department of Electrical and Computer Engineering, University of California, Davis, California, USA;
| |
Collapse
|
45
|
Zhan L, Xu W, Hu Z, Fan J, Sun L, Wang X, Zhang Y, Shi X, Ding B, Yu J, Ma Y. Full-Color "Off-On" Thermochromic Fluorescent Fibers for Customizable Smart Wearable Displays in Personal Health Monitoring. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310762. [PMID: 38366074 DOI: 10.1002/smll.202310762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/23/2024] [Indexed: 02/18/2024]
Abstract
Responsive thermochromic fiber materials capable of miniaturization and integrating comfortably and compliantly onto the soft and dynamically deforming human body are promising materials for visualized personal health monitoring. However, their development is hindered by monotonous colors, low-contrast color changes, and poor reversibility. Herein, full-color "off-on" thermochromic fluorescent fibers are prepared based on self-crystallinity phase change and Förster resonance energy transfer for long-term and passive body-temperature monitoring, especially for various personalized customization purposes. The off-on switching luminescence characteristic is derived from the reversible conversion of the dispersion state and fluorescent emission by fluorophores and quencher molecules, which are embedded in the matrix of a phase-change material, during the crystallizing/melting processes. The achievement of full-color fluorescence is attributed to the large modulation range of fluorescence colors according to primary color additive theory. These thermochromic fluorescent fibers exhibit good mechanical properties, fluorescent emission contrast, and reversibility, showing their great potential in flexible smart display devices. Moreover, the response temperature of the thermochromic fibers is controllable by adjusting the phase-change material, enabling body-temperature-triggered luminescence; this property highlights their potential for human body-temperature monitoring and personalized customization. This work presents a new strategy for designing and exploring flexible sensors with higher comprehensive performances.
Collapse
Affiliation(s)
- Luyao Zhan
- Key Laboratory of Textiles Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| | - Wanxuan Xu
- Key Laboratory of Textiles Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Zixi Hu
- Key Laboratory of Textiles Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| | - Jiayin Fan
- Key Laboratory of Textiles Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| | - Luping Sun
- Key Laboratory of Textiles Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| | - Xingchi Wang
- Key Laboratory of Textiles Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| | - Yingying Zhang
- Key Laboratory of Textiles Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Xiaodi Shi
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Bin Ding
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| | - Ying Ma
- Key Laboratory of Textiles Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| |
Collapse
|
46
|
Jia Y, Guan Q, Chu C, Zhang L, Neisiany RE, Gu S, Sun J, You Z. A fluorine-based strong and healable elastomer with unprecedented puncture resistance for high performance flexible electronics. Sci Bull (Beijing) 2024; 69:1875-1886. [PMID: 38616151 DOI: 10.1016/j.scib.2024.03.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/17/2024] [Accepted: 03/13/2024] [Indexed: 04/16/2024]
Abstract
There is usually a trade-off between high mechanical strength and dynamic self-healing because the mechanisms of these properties are mutually exclusive. Herein, we design and fabricate a fluorinated phenolic polyurethane (FPPU) elastomer based on octafluoro-4,4'-biphenol to overcome this challenge. This fluorine-based motif not only tunes interchain interactions through π-π stacking between aromatic rings and free-volume among polymer chains but also improves the reversibility of phenol-carbamate bonds via electron-withdrawing effect of fluorine atoms. The developed FPPU elastomer shows the highest recorded puncture energy (648.0 mJ), high tensile strength (27.0 MPa), as well as excellent self-healing efficiency (92.3%), along with low surface energy (50.9 MJ m-2), notch-insensitivity, and reprocessability compared with non-fluorinated counterpart biphenolic polyurethane (BPPU) elastomer. Taking advantage of the above-mentioned merits of FPPU elastomer, we prepare an anti-fouling triboelectric nanogenerator (TENG) with a self-healable, and reprocessable elastic substrate. Benefiting from stronger electron affinity of fluorine atoms than hydrogen atoms, this electronic device exhibits ultrahigh peak open-circuit voltage of 302.3 V compared to the TENG fabricated from BPPU elastomer. Furthermore, a healable and stretchable conductive composite is prepared. This research provides a distinct and general pathway toward constructing high-performance elastomers and will enable a series of new applications.
Collapse
Affiliation(s)
- Yujie Jia
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, China
| | - Qingbao Guan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, China
| | - Chengzhen Chu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, China
| | - Luzhi Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, China
| | - Rasoul Esmaeely Neisiany
- Biotechnology Centre, Silesian University of Technology, Gliwice 44-100, Poland; Department of Polymer Engineering, Hakim Sabzevari University, Sabzevar 9617976487, Iran
| | - Shijia Gu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, China
| | - Junfen Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, China.
| | - Zhengwei You
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, China.
| |
Collapse
|
47
|
Hong KI, Choi S, Oh S, Ahn HS, Jang WD. Electrofluorochromic Hydrogels by Oligothiophene-Based Color-Tunable Fluorescent Dye Doping. ACS APPLIED MATERIALS & INTERFACES 2024; 16:31384-31391. [PMID: 38855921 DOI: 10.1021/acsami.4c00733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Soft electronic materials hold great promise for advancing flexible functional devices. Among the various soft materials available, hydrogels are particularly attractive for soft electronic device development due to their inherent properties, including transparency, shape adaptability through swelling/deswelling, and self-healing capabilities. Transparent hydrogels contribute to the creation of advanced smart devices such as sensors, smart windows, and anticounterfeiting technologies. Poly(vinyl alcohol) hydrogels are used as a platform for creating electrofluorochromic (EFC) devices in combination with oligothiophene-conjugated benzothiazole derivatives (OCBs) as fluorescent emitters. OCBs demonstrated excited-state intramolecular proton transfer (ESIPT) behavior with a large Stokes shift and emission changes responsive to solvent polarity and pH stimuli. Even in the solid state, OCBs exhibited strong fluorescence emission across a wide range of colors from blue to red, making them exceptionally well-suited for EFC device development. Their quantum yields in the powder state were obtained between 2.3% and 19.9%. Through the incorporation of OCBs into a PVA hydrogel (OCB@PVA), we achieved the successful fabrication of flexible EFC devices, including electronic paper and smart panels. When electric potentials (-2.4 and +2.4 V) were applied in OCB@PVA, fluorescence color changes were observed by an electrochemically induced pH change owing to electrohydrolysis of water. These devices demonstrated the potential of OCB@PVA hydrogels in the realm of flexible electronics. They could be used to create innovative and versatile devices with stimuli-responsive fluorescence properties.
Collapse
Affiliation(s)
- Kyeong-Im Hong
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Suhyuk Choi
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Sangyoon Oh
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Hyun S Ahn
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Woo-Dong Jang
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
48
|
Ji D, Zhu Y, Li M, Fan X, Zhang T, Li Y. Skin Comfort Sensation with Mechanical Stimulus from Electronic Skin. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2920. [PMID: 38930289 PMCID: PMC11204911 DOI: 10.3390/ma17122920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 04/30/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024]
Abstract
The field of electronic skin has received considerable attention due to its extensive potential applications in areas including tactile sensing and health monitoring. With the development of electronic skin devices, electronic skin can be attached to the surface of human skin for long-term health monitoring, which makes comfort an essential factor that cannot be ignored in the design of electronic skin. Therefore, this paper proposes an assessment method for evaluating the comfort of electronic skin based on neurodynamic analysis. The holistic analysis framework encompasses the mechanical model of the skin, the modified Hodgkin-Huxley model for the transduction of stimuli, and the gate control theory for the modulation and perception of pain sensation. The complete process, from mechanical stimulus to the generation of pain perception, is demonstrated. Furthermore, the influence of different factors on pain perception is investigated. Sensation and comfort diagrams are provided to assess the mechanical comfort of electronic skin. The comfort assessment method proposed in this paper provides a theoretical basis when assessing the comfort of electronic skin.
Collapse
Affiliation(s)
- Dongcan Ji
- Institute of Solid Mechanics, Beihang University (BUAA), Beijing 100191, China
| | - Yunfan Zhu
- Institute of Solid Mechanics, Beihang University (BUAA), Beijing 100191, China
| | - Min Li
- Institute of Solid Mechanics, Beihang University (BUAA), Beijing 100191, China
- International Innovation Institute, Beihang University (BUAA), Yuhang District, Hangzhou 311115, China
| | - Xuanqing Fan
- Institute of Solid Mechanics, Beihang University (BUAA), Beijing 100191, China
- International Innovation Institute, Beihang University (BUAA), Yuhang District, Hangzhou 311115, China
| | - Taihua Zhang
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | - Yuhang Li
- Institute of Solid Mechanics, Beihang University (BUAA), Beijing 100191, China
- Aircraft and Propulsion Laboratory, Ningbo Institute of Technology, Beihang University (BUAA), Ningbo 315100, China
| |
Collapse
|
49
|
Cao Y, Xu B, Li B, Fu H. Advanced Design of Soft Robots with Artificial Intelligence. NANO-MICRO LETTERS 2024; 16:214. [PMID: 38869734 PMCID: PMC11176285 DOI: 10.1007/s40820-024-01423-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/22/2024] [Indexed: 06/14/2024]
Abstract
A comprehensive review focused on the whole systems of the soft robotics with artificial intelligence, which can feel, think, react and interact with humans, is presented. The design strategies concerning about various aspects of the soft robotics, like component materials, device structures, prepared technologies, integrated method, and potential applications, are summarized. A broad outlook on the future considerations for the soft robots is proposed. In recent years, breakthrough has been made in the field of artificial intelligence (AI), which has also revolutionized the industry of robotics. Soft robots featured with high-level safety, less weight, lower power consumption have always been one of the research hotspots. Recently, multifunctional sensors for perception of soft robotics have been rapidly developed, while more algorithms and models of machine learning with high accuracy have been optimized and proposed. Designs of soft robots with AI have also been advanced ranging from multimodal sensing, human–machine interaction to effective actuation in robotic systems. Nonetheless, comprehensive reviews concerning the new developments and strategies for the ingenious design of the soft robotic systems equipped with AI are rare. Here, the new development is systematically reviewed in the field of soft robots with AI. First, background and mechanisms of soft robotic systems are briefed, after which development focused on how to endow the soft robots with AI, including the aspects of feeling, thought and reaction, is illustrated. Next, applications of soft robots with AI are systematically summarized and discussed together with advanced strategies proposed for performance enhancement. Design thoughts for future intelligent soft robotics are pointed out. Finally, some perspectives are put forward.
Collapse
Affiliation(s)
- Ying Cao
- Nanotechnology Center, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong, 999077, People's Republic of China
| | - Bingang Xu
- Nanotechnology Center, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong, 999077, People's Republic of China.
| | - Bin Li
- Bioinspired Engineering and Biomechanics Center, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Hong Fu
- Department of Mathematics and Information Technology, The Education University of Hong Kong, Hong Kong, 999077, People's Republic of China.
| |
Collapse
|
50
|
Li Q, Huang JD, Liu T, van der Pol TPA, Zhang Q, Jeong SY, Stoeckel MA, Wu HY, Zhang S, Liu X, Woo HY, Fahlman M, Yang CY, Fabiano S. A Highly Conductive n-Type Conjugated Polymer Synthesized in Water. J Am Chem Soc 2024; 146:15860-15868. [PMID: 38814791 PMCID: PMC11177263 DOI: 10.1021/jacs.4c02270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 06/01/2024]
Abstract
Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is a benchmark hole-transporting (p-type) polymer that finds applications in diverse electronic devices. Most of its success is due to its facile synthesis in water, exceptional processability from aqueous solutions, and outstanding electrical performance in ambient. Applications in fields like (opto-)electronics, bioelectronics, and energy harvesting/storage devices often necessitate the complementary use of both p-type and n-type (electron-transporting) materials. However, the availability of n-type materials amenable to water-based polymerization and processing remains limited. Herein, we present a novel synthesis method enabling direct polymerization in water, yielding a highly conductive, water-processable n-type conjugated polymer, namely, poly[(2,2'-(2,5-dihydroxy-1,4-phenylene)diacetic acid)-stat-3,7-dihydrobenzo[1,2-b:4,5-b']difuran-2,6-dione] (PDADF), with remarkable electrical conductivity as high as 66 S cm-1, ranking among the highest for n-type polymers processed using green solvents. The new n-type polymer PDADF also exhibits outstanding stability, maintaining 90% of its initial conductivity after 146 days of storage in air. Our synthetic approach, along with the novel polymer it yields, promises significant advancements for the sustainable development of organic electronic materials and devices.
Collapse
Affiliation(s)
- Qifan Li
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden
| | - Jun-Da Huang
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden
- Wallenberg
Wood Science Center, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden
| | - Tiefeng Liu
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden
- Wallenberg
Initiative Materials Science for Sustainability, Department of Science
and Technology, Linköping University, SE-60174 Norrköping, Sweden
| | - Tom P. A. van der Pol
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden
| | - Qilun Zhang
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden
- Wallenberg
Wood Science Center, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden
| | - Sang Young Jeong
- Department
of Chemistry, College of Science, Korea
University, Seoul 136-713, Republic
of Korea
| | - Marc-Antoine Stoeckel
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden
- Wallenberg
Initiative Materials Science for Sustainability, Department of Science
and Technology, Linköping University, SE-60174 Norrköping, Sweden
- n-Ink AB, Bredgatan 33, SE-60221 Norrköping, Sweden
| | - Han-Yan Wu
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden
| | - Silan Zhang
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden
- Wallenberg
Wood Science Center, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden
| | - Xianjie Liu
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden
| | - Han Young Woo
- Department
of Chemistry, College of Science, Korea
University, Seoul 136-713, Republic
of Korea
| | - Mats Fahlman
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden
- Wallenberg
Wood Science Center, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden
| | - Chi-Yuan Yang
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden
- n-Ink AB, Bredgatan 33, SE-60221 Norrköping, Sweden
| | - Simone Fabiano
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden
- Wallenberg
Wood Science Center, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden
- Wallenberg
Initiative Materials Science for Sustainability, Department of Science
and Technology, Linköping University, SE-60174 Norrköping, Sweden
- n-Ink AB, Bredgatan 33, SE-60221 Norrköping, Sweden
| |
Collapse
|