1
|
Kollert MR, Krämer M, Brisson NM, Schemenz V, Tsitsilonis S, Qazi TH, Fratzl P, Vogel V, Reichenbach JR, Duda GN. Water and ions binding to extracellular matrix drives stress relaxation, aiding MRI detection of swelling-associated pathology. Nat Biomed Eng 2025:10.1038/s41551-025-01369-w. [PMID: 40234703 DOI: 10.1038/s41551-025-01369-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/10/2025] [Indexed: 04/17/2025]
Abstract
Swelling-associated changes in extracellular matrix (ECM) occur in many pathological conditions involving inflammation or oedema. Here we show that alterations in the proportion of loosely bound water in ECM correlate with changes in ECM elasticity and stress relaxation, owing to the strength of water binding to ECM being primarily governed by osmolality and the electrostatic properties of proteoglycans. By using mechanical testing and small-angle X-ray scattering, as well as magnetic resonance imaging (MRI) to detect changes in loosely bound water, we observed that enhanced water binding manifests as greater resistance to compression (mechanical or osmotic), resulting from increased electrostatic repulsion between negatively charged proteoglycans rather than axial contraction in collagen fibrils. This indicates that electrostatic contributions of proteoglycans regulate elasticity and stress relaxation independently of hydration. Our ex vivo experiments in osmotically modulated tendon elucidate physical causes of MRI signal alterations, in agreement with pilot in vivo MRI of inflammatory Achilles tendinopathy. We suggest that the strength of water binding to ECM regulates cellular niches and can be exploited to enhance MRI-informed diagnostics of swelling-associated tissue pathology.
Collapse
Affiliation(s)
- Matthias R Kollert
- Julius Wolff Institute and BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Martin Krämer
- Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Nicholas M Brisson
- Julius Wolff Institute and BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Victoria Schemenz
- Department of Operative, Preventive and Pediatric Dentistry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Serafeim Tsitsilonis
- Julius Wolff Institute and BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Taimoor H Qazi
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Peter Fratzl
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Viola Vogel
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Jürgen R Reichenbach
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Georg N Duda
- Julius Wolff Institute and BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.
- Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
2
|
Sun J, Song L, Zhou Y, Wu K, Li C, Han B, Chang J. Review: Advances in multifunctional hydrogels based on carbohydrate polymer and protein in the treatment of diabetic wounds. Int J Biol Macromol 2025; 309:142693. [PMID: 40169055 DOI: 10.1016/j.ijbiomac.2025.142693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 03/02/2025] [Accepted: 03/29/2025] [Indexed: 04/03/2025]
Abstract
Diabetic wounds healing is often severely slowed by hyperglycemia, elevated oxidative stress, bacterial infections, and persistent inflammation. This review focuses on the development of hydrogels derived from carbohydrate polymer and protein to facilitate diabetic wound healing. We discuss the primary sources of cellulose, chitosan, hyaluronic acid, sodium alginate, collagen, and gelatin along with their advantages in the preparation of hydrogels. Based on the microenvironment of diabetic wounds, i.e., hyperglycemia, increased oxidative stress, and persistent inflammation, the application of multifunctional hydrogels in promoting diabetic wounds, including stimulus responsiveness, injection self-healing, antibacterial, antioxidant, anti-inflammatory, and synergistic effects, is discussed. We address the main challenges and future perspectives of multifunctional hydrogels based on carbohydrate polymer and protein in the treatment of diabetic wounds.
Collapse
Affiliation(s)
- Jishang Sun
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Leyang Song
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Yi Zhou
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Keying Wu
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Cuiyao Li
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Baoqin Han
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, PR China
| | - Jing Chang
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, PR China.
| |
Collapse
|
3
|
Akter S, Ahmad SU, Bhuiyan MA, Dewan I, Reza R, Morshed N, Samdani MN, Reza MS, Kumer A, Naina Mohamed I. Network Pharmacology, Molecular Docking and Experimental Validation on Potential Application of Diabetic Wound Healing of Cinnamomum zeylanicum Through Matrix Metalloproteinases-8 And 9 (MMP-8 And MMP-9). Drug Des Devel Ther 2025; 19:1753-1782. [PMID: 40093644 PMCID: PMC11910940 DOI: 10.2147/dddt.s489113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 02/08/2025] [Indexed: 03/19/2025] Open
Abstract
Background Diabetic wounds are a significant clinical challenge due to impaired healing processes often exacerbated by elevated matrix metalloproteinases (MMPs). Cinnamomum zeylanicum, known for its anti-inflammatory and antioxidant properties, has shown potential in promoting wound healing. This study investigates the molecular docking and experimental validation of Cinnamomum zeylanicum's effects on diabetic wound healing, focusing on its interaction with matrix metalloproteinases-8 (MMP-8) and 9 (MMP-9). Methods Molecular docking studies were performed to predict the binding affinity of Cinnamomum zeylanicum compounds to MMP-8 and MMP-9. Diabetic wound healing was evaluated using in vivo models where wounds were induced and treated with Cinnamomum zeylanicum extract. Various parameters were measured, including wound contraction, hydroxyproline content, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and malondialdehyde (MDA) levels. Biochemical analyses included glucose levels, fasting blood glucose (FBG), oral glucose tolerance test (OGTT), and histomorphological examination of skin tissues. Results Molecular docking results indicated a high binding affinity of Cinnamomum zeylanicum's bioactive compounds with MMP-8 and MMP-9, suggesting potential inhibition. Experimental validation showed significant improvement in wound contraction and increased hydroxyproline content, indicating enhanced collagen synthesis. Antioxidant enzyme activities (SOD, GPx, CAT) were significantly elevated, while MDA levels were reduced, reflecting decreased oxidative stress. Biochemical analysis demonstrated improved glucose homeostasis with reduced FBG and enhanced OGTT responses. Histomorphological studies revealed improved tissue architecture and re-epithelialization in treated wounds. Conclusion Cinnamomum zeylanicum exhibits promising potential in diabetic wound healing by modulating MMP-8 and MMP-9 activities, enhancing antioxidant defenses, and improving glucose regulation. These findings support its therapeutic application for diabetic wounds, providing a foundation for further clinical investigations.
Collapse
Affiliation(s)
- Sharmin Akter
- Department of Pharmacy, School of Medicine, University of Asia Pacific, Dhaka, 1215, Bangladesh
| | - Shihab Uddin Ahmad
- Department of Pharmacy, School of Medicine, University of Asia Pacific, Dhaka, 1215, Bangladesh
| | - Mohiuddin Ahmed Bhuiyan
- Department of Pharmacy, School of Medicine, University of Asia Pacific, Dhaka, 1215, Bangladesh
| | - Irin Dewan
- Department of Pharmacy, School of Medicine, University of Asia Pacific, Dhaka, 1215, Bangladesh
| | - Rumman Reza
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Niaz Morshed
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Md Nazmus Samdani
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Md Selim Reza
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Ajoy Kumer
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, TN, 602105, India
- Department of Chemistry, College of Arts and Sciences, International University of Business Agriculture and Technology, Dhaka, 1230, Bangladesh
| | - Isa Naina Mohamed
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, 56000, Malaysia
| |
Collapse
|
4
|
Leon-Valdivieso CY, Bethry A, Pinese C, Dai M, Pompee C, Pernot JM, Garric X. Engineering Shape to Overcome Contraction: The Role of Polymer-Collagen Hybrids in Advanced Dermal Substitutes. J Biomed Mater Res A 2025; 113:e37805. [PMID: 39381904 DOI: 10.1002/jbm.a.37805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/29/2024] [Accepted: 09/23/2024] [Indexed: 10/10/2024]
Abstract
Collagen gels are the standard dermal equivalents par excellence, however the problem of rapid cell-mediated contraction remains unresolved. Therefore, the development of hybrid constructs (HCs) based on collagen and polymeric scaffolds is proposed to address the mechanical instability that usually limits the formation of new, functional tissue. Equally important, these synthetic structures should be temporary (degradable) while ensuring that cells are well-adapted to the new extracellular environment. In this study, we screened a library of scaffolds made of various polymers, including homopolymers of polycaprolactone (PCL) and poly D,L-lactide (PLA50), their blends (PCL/PLA50), and copolymers (poly(D,L-lactide-co-caprolactone), PCLLA50) to prepare HCs in a layer-by-layer fashion. The properties of polymers and copolymers along with their processability by electrospinning and 3D-printing were evaluated. Then, we assessed the HCs resistance toward cell-mediated contraction as well as the degradation of the polymeric scaffolds. Our results indicate that scaffolds with higher PLA50 content (e.g., PLA50 100%, PCL/PLA50 or PCLLA50, both at 50/50 caprolactone-to-D,L-lactide molar ratio) presented more drawbacks in terms of handleability and processing, while those with greater PCL presence showed structural steadiness and ease to use. All the scaffolds integrated well with the collagen gel to form the corresponding HCs. With few exceptions, the HCs demonstrated good resistance to cell-derived contraction over 3 weeks. Notably, HCs based on PCLLA50 90/10 (both versions, electrospun or 3D-printed) performed best, showing only a 5%-17% area reduction compared to the 93% observed in collagen-only gels. This copolymer displayed hydrolytic degradation depending on its shape, with up to 45% and 65% loss of molecular weight for the electrospun and 3D-printed forms, respectively, correlating with their progressive change in mechanical features. HCs containing PCLLA50 90/10 also exhibited a better fibroblast distribution, enhanced myofibroblastic differentiation, and a three-fold increase in cell proliferation (when the electrospun type was used) compared to collagen controls. These findings were instrumental in selecting a potential HC that might be used for future experiments in vivo.
Collapse
Affiliation(s)
- Christopher Y Leon-Valdivieso
- Polymers for Health and Biomaterials, IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
- CARTIGEN, University Hospital of Montpellier, Montpellier, France
| | - Audrey Bethry
- Polymers for Health and Biomaterials, IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Coline Pinese
- Polymers for Health and Biomaterials, IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
- Department of Pharmacy, University Hospital of Nimes, Nimes, France
| | - Michèle Dai
- URGO Recherche Innovation et Développement, Chenôve, France
| | - Christian Pompee
- Polymers for Health and Biomaterials, IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | | | - Xavier Garric
- Polymers for Health and Biomaterials, IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
- Department of Pharmacy, University Hospital of Nimes, Nimes, France
| |
Collapse
|
5
|
Cyr JA, Burdett C, Pürstl JT, Thompson RP, Troughton SC, Sinha S, Best SM, Cameron RE. Characterizing collagen scaffold compliance with native myocardial strains using an ex-vivo cardiac model: The physio-mechanical influence of scaffold architecture and attachment method. Acta Biomater 2024; 184:239-253. [PMID: 38942187 DOI: 10.1016/j.actbio.2024.06.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/30/2024] [Accepted: 06/21/2024] [Indexed: 06/30/2024]
Abstract
Applied to the epicardium in-vivo, regenerative cardiac patches support the ventricular wall, reduce wall stresses, encourage ventricular wall thickening, and improve ventricular function. Scaffold engraftment, however, remains a challenge. After implantation, scaffolds are subject to the complex, time-varying, biomechanical environment of the myocardium. The mechanical capacity of engineered tissue to biomimetically deform and simultaneously support the damaged native tissue is crucial for its efficacy. To date, however, the biomechanical response of engineered tissue applied directly to live myocardium has not been characterized. In this paper, we utilize optical imaging of a Langendorff ex-vivo cardiac model to characterize the native deformation of the epicardium as well as that of attached engineered scaffolds. We utilize digital image correlation, linear strain, and 2D principal strain analysis to assess the mechanical compliance of acellular ice templated collagen scaffolds. Scaffolds had either aligned or isotropic porous architecture and were adhered directly to the live epicardial surface with either sutures or cyanoacrylate glue. We demonstrate that the biomechanical characteristics of native myocardial deformation on the epicardial surface can be reproduced by an ex-vivo cardiac model. Furthermore, we identified that scaffolds with unidirectionally aligned pores adhered with suture fixation most accurately recapitulated the deformation of the native epicardium. Our study contributes a translational characterization methodology to assess the physio-mechanical performance of engineered cardiac tissue and adds to the growing body of evidence showing that anisotropic scaffold architecture improves the functional biomimetic capacity of engineered cardiac tissue. STATEMENT OF SIGNIFICANCE: Engineered cardiac tissue offers potential for myocardial repair, but engraftment remains a challenge. In-vivo, engineered scaffolds are subject to complex biomechanical stresses and the mechanical capacity of scaffolds to biomimetically deform is critical. To date, the biomechanical response of engineered scaffolds applied to live myocardium has not been characterized. In this paper, we utilize optical imaging of an ex-vivo cardiac model to characterize the deformation of the native epicardium and scaffolds attached directly to the heart. Comparing scaffold architecture and fixation method, we demonstrate that sutured scaffolds with anisotropic pores aligned with the native alignment of the superficial myocardium best recapitulate native deformation. Our study contributes a physio-mechanical characterization methodology for cardiac tissue engineering scaffolds.
Collapse
Affiliation(s)
- Jamie A Cyr
- Department of Materials Science & Metallurgy Cambridge University 27 Charles Babbage Road, Cambridge CB3 0FS, UK.
| | - Clare Burdett
- Department of Materials Science & Metallurgy Cambridge University 27 Charles Babbage Road, Cambridge CB3 0FS, UK
| | - Julia T Pürstl
- Department of Materials Science & Metallurgy Cambridge University 27 Charles Babbage Road, Cambridge CB3 0FS, UK
| | - Robert P Thompson
- Department of Materials Science & Metallurgy Cambridge University 27 Charles Babbage Road, Cambridge CB3 0FS, UK
| | - Samuel C Troughton
- Department of Materials Science & Metallurgy Cambridge University 27 Charles Babbage Road, Cambridge CB3 0FS, UK
| | - Sanjay Sinha
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge University, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Serena M Best
- Department of Materials Science & Metallurgy Cambridge University 27 Charles Babbage Road, Cambridge CB3 0FS, UK.
| | - Ruth E Cameron
- Department of Materials Science & Metallurgy Cambridge University 27 Charles Babbage Road, Cambridge CB3 0FS, UK.
| |
Collapse
|
6
|
Zhu M, Hu Z, Liu N, Yao K, Hong G, Li Y, Chen Y, He H, Wu W, Zhou Y, Shi J, He Y. A Cyclical Magneto-Responsive Massage Dressing for Wound Healing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400644. [PMID: 38326079 DOI: 10.1002/smll.202400644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Indexed: 02/09/2024]
Abstract
Tissue development is mediated by a combination of mechanical and biological signals. Currently, there are many reports on biological signals regulating repair. However, insufficient attention is paid to the process of mechanical regulation, especially the active mechanical regulation in vivo, which has not been realized. Herein, a novel dynamically regulated repair system for both in vitro and in vivo applications is developed, which utilizes magnetic nanoparticles as non-contact actuators to activate hydrogels. The magnetic hydrogel can be periodically activated and deformed to different amplitudes by a dynamic magnetic system. An in vitro skin model is used to explore the impact of different dynamic stimuli on cellular mechano-transduction signal activation and cell differentiation. Specifically, the effect of mechanical stimulation on the phenotypic transition of fibroblasts to myofibroblasts is investigated. Furthermore, in vivo results verify that dynamic massage can simulate and enhance the traction effect in skin defects, thereby accelerating the wound healing process by promoting re-epithelialization and mediating dermal contraction.
Collapse
Affiliation(s)
- Meng Zhu
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Zihe Hu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, P. R China
| | - Nian Liu
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Ke Yao
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Gaoying Hong
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, P. R China
| | - Yuanrong Li
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yuewei Chen
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Honghui He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Wenzhi Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, P. R China
| | - Yanyan Zhou
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, P. R China
| | - Jue Shi
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, P. R China
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
7
|
Noom A, Sawitzki B, Knaus P, Duda GN. A two-way street - cellular metabolism and myofibroblast contraction. NPJ Regen Med 2024; 9:15. [PMID: 38570493 PMCID: PMC10991391 DOI: 10.1038/s41536-024-00359-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 03/20/2024] [Indexed: 04/05/2024] Open
Abstract
Tissue fibrosis is characterised by the high-energy consumption associated with myofibroblast contraction. Although myofibroblast contraction relies on ATP production, the role of cellular metabolism in myofibroblast contraction has not yet been elucidated. Studies have so far only focused on myofibroblast contraction regulators, such as integrin receptors, TGF-β and their shared transcription factor YAP/TAZ, in a fibroblast-myofibroblast transition setting. Additionally, the influence of the regulators on metabolism and vice versa have been described in this context. However, this has so far not yet been connected to myofibroblast contraction. This review focuses on the known and unknown of how cellular metabolism influences the processes leading to myofibroblast contraction and vice versa. We elucidate the signalling cascades responsible for myofibroblast contraction by looking at FMT regulators, mechanical cues, biochemical signalling, ECM properties and how they can influence and be influenced by cellular metabolism. By reviewing the existing knowledge on the link between cellular metabolism and the regulation of myofibroblast contraction, we aim to pinpoint gaps of knowledge and eventually help identify potential research targets to identify strategies that would allow switching tissue fibrosis towards tissue regeneration.
Collapse
Affiliation(s)
- Anne Noom
- Julius Wolff Institute (JWI), Berlin Institute of Health and Center for Musculoskeletal Surgery at Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Birgit Sawitzki
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt University of Berlin, 13353, Berlin, Germany
- Center of Immunomics, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Petra Knaus
- Institute of Chemistry and Biochemistry - Biochemistry, Freie Universität Berlin, 14195, Berlin, Germany
| | - Georg N Duda
- Julius Wolff Institute (JWI), Berlin Institute of Health and Center for Musculoskeletal Surgery at Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany.
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany.
| |
Collapse
|
8
|
Begum F, Nandakumar K, Shenoy RR. Investigation of the cellular and molecular effects of dehydrozingerone formulation on various days of diabetic wound repair. 3 Biotech 2024; 14:124. [PMID: 38566928 PMCID: PMC10984913 DOI: 10.1007/s13205-024-03963-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 02/22/2024] [Indexed: 04/04/2024] Open
Abstract
Cases of diabetes are significantly increasing year by year, attracting the attention of medical professionals and researchers to focus on diabetes and its underlying complications. One among such are diabetic wounds which are difficult to heal, creating severe implications in the day-to-day chores of not only patients, but also family members. Dehydrozingerone (DHZ) is known to possess various effects like anti-inflammatory, anti-microbial, antioxidant, and wound-healing properties. The effect of DHZ on different phases of diabetic wound healing remains untested. Hence, this study was proposed to find out the effect of oral and topical formulation of DHZ on day 5, 10 and 15 of diabetic wound healing. Excisional wounds were created on the dorsal side of animals using punch biopsy to mimic human diabetic wounds. Topical DHZ gel (100 mg in 1 gm of gel) was prepared using 1% Carbopol 934 and was applied twice a day. The treated groups had increased percentage of wound closure; western blotting suggested that DHZ significantly increased ERK and JNK levels and decreased TNF and MMP 2 and 9 levels. From histopathological studies, it was observed that angiogenesis, collagen formation, granulation tissue formation, and fibroblast proliferation were improved on days 5, 10, and 15 of diabetic wound healing. These findings indicate that DHZ (both systemic and topical) are effective during the early phases of wound healing which gets impaired in diabetic wounds. Dehydrozingerone accelerated diabetic wound healing by regulating the various hallmarks of wound healing process.
Collapse
Affiliation(s)
- Farmiza Begum
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
- Department of Pharmacology, Vaagdevi Pharmacy College, Bollikunta, Warangal, Telangana 506005 India
| | - Krishnadas Nandakumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - Rekha Raghuveer Shenoy
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| |
Collapse
|
9
|
Mehl J, Farahani SK, Brauer E, Klaus‐Bergmann A, Thiele T, Ellinghaus A, Bartels‐Klein E, Koch K, Schmidt‐Bleek K, Petersen A, Gerhardt H, Vogel V, Duda GN. External Mechanical Stability Regulates Hematoma Vascularization in Bone Healing Rather than Endothelial YAP/TAZ Mechanotransduction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307050. [PMID: 38273642 PMCID: PMC10987120 DOI: 10.1002/advs.202307050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/21/2023] [Indexed: 01/27/2024]
Abstract
Bone fracture healing is regulated by mechanobiological cues. Both, extracellular matrix (ECM) deposition and microvascular assembly determine the dynamics of the regenerative processes. Mechanical instability as by inter-fragmentary shear or compression is known to influence early ECM formation and wound healing. However, it remains unclear how these external cues shape subsequent ECM and microvascular network assembly. As transcriptional coactivators, the mechanotransducers yes-associated protein 1 (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ) translate physical cues into downstream signaling events, yet their role in sprouting angiogenesis into the hematoma after injury is unknown. Using bone healing as model system for scar-free regeneration, the role of endothelial YAP/TAZ in combination with tuning the extrinsic mechanical stability via fracture fixation is investigated. Extrinsically imposed shear across the gap delayed hematoma remodeling and shaped the morphology of early collagen fiber orientations and microvascular networks, suggesting that enhanced shear increased the nutrient exchange in the hematoma. In contrast, endothelial YAP/TAZ deletion has little impact on the overall vascularization of the fracture gap, yet slightly increases the collagen fiber deposition under semi-rigid fixation. Together, these data provide novel insights into the respective roles of endothelial YAP/TAZ and extrinsic mechanical cues in orchestrating the process of bone regeneration.
Collapse
Affiliation(s)
- Julia Mehl
- Julius Wolff InstituteBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
- Berlin Institute of Health Center for Regenerative TherapiesBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
- Laboratory of Applied MechanobiologyDepartment of Health Sciences and TechnologyETH ZurichZurich8092Switzerland
| | - Saeed Khomeijani Farahani
- Julius Wolff InstituteBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
- Berlin Institute of Health Center for Regenerative TherapiesBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
| | - Erik Brauer
- Julius Wolff InstituteBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
- Berlin Institute of Health Center for Regenerative TherapiesBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
| | - Alexandra Klaus‐Bergmann
- Integrative Vascular Biology LaboratoryMax‐Delbrück‐Center for Molecular Medicine (MDC) in the Helmholtz Association13125BerlinGermany
- German Center for Cardiovascular Research (DZHK)Partnersite Berlin10785BerlinGermany
| | - Tobias Thiele
- Julius Wolff InstituteBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
- Berlin Institute of Health Center for Regenerative TherapiesBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
| | - Agnes Ellinghaus
- Julius Wolff InstituteBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
- Berlin Institute of Health Center for Regenerative TherapiesBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
| | - Eireen Bartels‐Klein
- Integrative Vascular Biology LaboratoryMax‐Delbrück‐Center for Molecular Medicine (MDC) in the Helmholtz Association13125BerlinGermany
- German Center for Cardiovascular Research (DZHK)Partnersite Berlin10785BerlinGermany
| | - Katharina Koch
- Integrative Vascular Biology LaboratoryMax‐Delbrück‐Center for Molecular Medicine (MDC) in the Helmholtz Association13125BerlinGermany
- German Center for Cardiovascular Research (DZHK)Partnersite Berlin10785BerlinGermany
| | - Katharina Schmidt‐Bleek
- Julius Wolff InstituteBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
- Berlin Institute of Health Center for Regenerative TherapiesBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
| | - Ansgar Petersen
- Julius Wolff InstituteBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
- Berlin Institute of Health Center for Regenerative TherapiesBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
| | - Holger Gerhardt
- Integrative Vascular Biology LaboratoryMax‐Delbrück‐Center for Molecular Medicine (MDC) in the Helmholtz Association13125BerlinGermany
- German Center for Cardiovascular Research (DZHK)Partnersite Berlin10785BerlinGermany
| | - Viola Vogel
- Laboratory of Applied MechanobiologyDepartment of Health Sciences and TechnologyETH ZurichZurich8092Switzerland
| | - Georg N. Duda
- Julius Wolff InstituteBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
- Berlin Institute of Health Center for Regenerative TherapiesBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
| |
Collapse
|
10
|
Brandt S, Bernhardt A, Häberer S, Wolters K, Gehringer F, Reichardt C, Krause A, Geffers R, Kahlfuß S, Jeron A, Bruder D, Lindquist JA, Isermann B, Mertens PR. Comparative Analysis of Acute Kidney Injury Models and Related Fibrogenic Responses: Convergence on Methylation Patterns Regulated by Cold Shock Protein. Cells 2024; 13:367. [PMID: 38474331 PMCID: PMC10930537 DOI: 10.3390/cells13050367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/02/2024] [Accepted: 02/15/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Fibrosis is characterized by excessive extracellular matrix formation in solid organs, disrupting tissue architecture and function. The Y-box binding protein-1 (YB-1) regulates fibrosis-related genes (e.g., Col1a1, Mmp2, and Tgfβ1) and contributes significantly to disease progression. This study aims to identify fibrogenic signatures and the underlying signaling pathways modulated by YB-1. METHODS Transcriptomic changes associated with matrix gene patterns in human chronic kidney diseases and murine acute injury models were analyzed with a focus on known YB-1 targets. Ybx1-knockout mouse strains (Ybx1ΔRosaERT+TX and Ybx1ΔLysM) were subjected to various kidney injury models. Fibrosis patterns were characterized by histopathological staining, transcriptome analysis, qRT-PCR, methylation analysis, zymography, and Western blotting. RESULTS Integrative transcriptomic analyses revealed that YB-1 is involved in several fibrogenic signatures related to the matrisome, the WNT, YAP/TAZ, and TGFß pathways, and regulates Klotho expression. Changes in the methylation status of the Klotho promoter by specific methyltransferases (DNMT) are linked to YB-1 expression, extending to other fibrogenic genes. Notably, kidney-resident cells play a significant role in YB-1-modulated fibrogenic signaling, whereas infiltrating myeloid immune cells have a minimal impact. CONCLUSIONS YB-1 emerges as a master regulator of fibrogenesis, guiding DNMT1 to fibrosis-related genes. This highlights YB-1 as a potential target for epigenetic therapies interfering in this process.
Collapse
Affiliation(s)
- Sabine Brandt
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, 39120 Magdeburg, Germany; (S.B.); (A.B.); (S.H.); (F.G.); (C.R.); (A.K.); (J.A.L.)
- Medical Faculty, Health Campus Immunology, Infectiology and Inflammation (GCI-3), Otto-von-Guericke University, 39120 Magdeburg, Germany; (S.K.); (A.J.); (D.B.)
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Anja Bernhardt
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, 39120 Magdeburg, Germany; (S.B.); (A.B.); (S.H.); (F.G.); (C.R.); (A.K.); (J.A.L.)
- Medical Faculty, Health Campus Immunology, Infectiology and Inflammation (GCI-3), Otto-von-Guericke University, 39120 Magdeburg, Germany; (S.K.); (A.J.); (D.B.)
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Saskia Häberer
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, 39120 Magdeburg, Germany; (S.B.); (A.B.); (S.H.); (F.G.); (C.R.); (A.K.); (J.A.L.)
| | - Katharina Wolters
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, 39120 Magdeburg, Germany; (S.B.); (A.B.); (S.H.); (F.G.); (C.R.); (A.K.); (J.A.L.)
| | - Fabian Gehringer
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, 39120 Magdeburg, Germany; (S.B.); (A.B.); (S.H.); (F.G.); (C.R.); (A.K.); (J.A.L.)
- Medical Faculty, Health Campus Immunology, Infectiology and Inflammation (GCI-3), Otto-von-Guericke University, 39120 Magdeburg, Germany; (S.K.); (A.J.); (D.B.)
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Charlotte Reichardt
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, 39120 Magdeburg, Germany; (S.B.); (A.B.); (S.H.); (F.G.); (C.R.); (A.K.); (J.A.L.)
- Medical Faculty, Health Campus Immunology, Infectiology and Inflammation (GCI-3), Otto-von-Guericke University, 39120 Magdeburg, Germany; (S.K.); (A.J.); (D.B.)
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Anna Krause
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, 39120 Magdeburg, Germany; (S.B.); (A.B.); (S.H.); (F.G.); (C.R.); (A.K.); (J.A.L.)
- Medical Faculty, Health Campus Immunology, Infectiology and Inflammation (GCI-3), Otto-von-Guericke University, 39120 Magdeburg, Germany; (S.K.); (A.J.); (D.B.)
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Robert Geffers
- Genome Analytics Research Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany;
| | - Sascha Kahlfuß
- Medical Faculty, Health Campus Immunology, Infectiology and Inflammation (GCI-3), Otto-von-Guericke University, 39120 Magdeburg, Germany; (S.K.); (A.J.); (D.B.)
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke University, 39120 Magdeburg, Germany
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Institute of Medical Microbiology, Infection Control and Prevention, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Andreas Jeron
- Medical Faculty, Health Campus Immunology, Infectiology and Inflammation (GCI-3), Otto-von-Guericke University, 39120 Magdeburg, Germany; (S.K.); (A.J.); (D.B.)
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke University, 39120 Magdeburg, Germany
- Institute of Medical Microbiology, Infection Control and Prevention, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Research Group Immune Regulation, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Dunja Bruder
- Medical Faculty, Health Campus Immunology, Infectiology and Inflammation (GCI-3), Otto-von-Guericke University, 39120 Magdeburg, Germany; (S.K.); (A.J.); (D.B.)
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke University, 39120 Magdeburg, Germany
- Institute of Medical Microbiology, Infection Control and Prevention, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Research Group Immune Regulation, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Jonathan A. Lindquist
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, 39120 Magdeburg, Germany; (S.B.); (A.B.); (S.H.); (F.G.); (C.R.); (A.K.); (J.A.L.)
- Medical Faculty, Health Campus Immunology, Infectiology and Inflammation (GCI-3), Otto-von-Guericke University, 39120 Magdeburg, Germany; (S.K.); (A.J.); (D.B.)
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Berend Isermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig University, 04103 Leipzig, Germany;
| | - Peter R. Mertens
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, 39120 Magdeburg, Germany; (S.B.); (A.B.); (S.H.); (F.G.); (C.R.); (A.K.); (J.A.L.)
- Medical Faculty, Health Campus Immunology, Infectiology and Inflammation (GCI-3), Otto-von-Guericke University, 39120 Magdeburg, Germany; (S.K.); (A.J.); (D.B.)
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke University, 39120 Magdeburg, Germany
| |
Collapse
|
11
|
Liu X, Liu Y, Zhou J, Yu X, Wan J, Wang J, Lei S, Zhang Z, Zhang L, Wang S. Porous Collagen Sponge Loaded with Large Efficacy-Potentiated Exosome-Mimicking Nanovesicles for Diabetic Skin Wound Healing. ACS Biomater Sci Eng 2024; 10:975-986. [PMID: 38236143 DOI: 10.1021/acsbiomaterials.3c01282] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Diabetic skin wounds are difficult to heal quickly due to insufficient angiogenesis and prolonged inflammation, which is an urgent clinical problem. To address this clinical problem, it becomes imperative to develop a dressing that can promote revascularization and reduce inflammation during diabetic skin healing. Herein, a multifunctional collagen dressing (CTM) was constructed by loading large efficacy-potentiated exosome-mimicking nanovesicles (L-Meseomes) into a porous collagen sponge with transglutaminase (TGase). L-Meseomes were constructed in previous research with the function of promoting cell proliferation, migration, and angiogenesis and inhibiting inflammation. CTM has a three-dimensional porous network structure with good biocompatibility, swelling properties, and degradability and could release L-Meseome slowly. In vitro experiments showed that CTM could promote the proliferation of fibroblasts and the polarization of macrophages to the anti-inflammatory phenotype. For in vivo experiments, on the 21st day after surgery, the wound healing rates of the control and CTM were 83.026 ± 4.17% and 93.12 ± 2.16%, respectively; the epidermal maturation and dermal differentiation scores in CTM were approximately four times that of the control group, and the skin epidermal thickness of the CTM group was approximately 20 μm, which was closest to that of normal rats. CTM could significantly improve wound healing in diabetic rats by promoting anti-inflammation, angiogenesis, epidermal recovery, and dermal collagen deposition. In summary, the multifunctional collagen dressing CTM could significantly promote the healing of diabetic skin wounds, which provides a new strategy for diabetic wound healing in the clinic.
Collapse
Affiliation(s)
- Xiangsheng Liu
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yufei Liu
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jie Zhou
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xinyi Yu
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jinpeng Wan
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jie Wang
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Shaojin Lei
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | | | - Lin Zhang
- School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan Shandong 250022, China
| | - Shufang Wang
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
- Nankai International Advanced Research Institute (SHENZHEN FUTIAN), Binglang Road 3#, Futian District, Shenzhen 518045, China
| |
Collapse
|
12
|
Mohammed RN, Aziz Sadat SA, Hassan SMA, Mohammed HF, Ramzi DO. Combinatorial Influence of Bone Marrow Aspirate Concentrate (BMAC) and Platelet-Rich Plasma (PRP) Treatment on Cutaneous Wound Healing in BALB/c Mice. J Burn Care Res 2024; 45:59-69. [PMID: 37262317 PMCID: PMC11023107 DOI: 10.1093/jbcr/irad080] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Indexed: 06/03/2023]
Abstract
Bone marrow, a soft spongy tissue, is containing mesenchymal stem cells, that are well-recognized according to their self-renewability and stemness. Therefore, we hypothesized that bone marrow aspirate concentrate (BMAC) could have a pivotal influence on the process of wound healing in particular when it is combined with platelet-rich plasma (PRP). Thirty-six albino mice (BALB/c) were used in the study and they were grouped as negative-control, PRP treated, BMAC treated and BMAC plus PRP treated. An incisional wound (1 cm2) was made at the back of mouse and their wounds were treated according to their treatment plan and group allocations. Later, the skin at the treated wound sites was collected on days 7, 14, and 21 for histopathological investigation. The results showed that there was a statistically significant difference in BMAC+PRP-treated wounds over the rest of the treated groups in the acceleration of wound healing throughout the experiment by increasing the rate of wound contraction, re-epithelization process, and granulation tissue intensity with fluctuated infiltration in the number of the neutrophils, macrophages, and lymphocytes, also restoration of the epidermal and dermal thickness with less scarring and hair follicle regeneration vs to the negative-control, PRP and BMAC only treated groups. Our findings indicated that BMAC containing mesenchymal stem cells is an efficient approach, which can be used to enhance a smooth and physiopathological healing process, especially when it is used in combination with PRP.
Collapse
Affiliation(s)
- Rebar N Mohammed
- Medical Laboratory Analysis Department, College of Health Sciences, Cihan University of Sulaimaniya, Kurdistan Region, Iraq
- Department of Microbiology, College of Veterinary Medicine, University of Sulaimnai, Suleimanyah, Iraq
| | - Sadat Abdulla Aziz Sadat
- Department of Microbiology, College of Veterinary Medicine, University of Sulaimnai, Suleimanyah, Iraq
| | - Snur M A Hassan
- Department of Anatomy and Pathology, College of Veterinary Medicine, University of Sulaimnai, Suleimanyah, Iraq
| | - Hawraz Farhad Mohammed
- Department of Microbiology, College of Veterinary Medicine, University of Sulaimnai, Suleimanyah, Iraq
| | - Derin Omer Ramzi
- Department of Basic sciences, College of Veterinary Medicine, University of Sulaimnai, Suleimanyah, Iraq
| |
Collapse
|
13
|
Burger B, Sagiorato RN, Silva JR, Candreva T, Pacheco MR, White D, Castelucci BG, Pral LP, Fisk HL, Rabelo ILA, Elias-Oliveira J, Osório WR, Consonni SR, Farias ADS, Vinolo MAR, Lameu C, Carlos D, Fielding BA, Whyte MB, Martinez FO, Calder PC, Rodrigues HG. Eicosapentaenoic acid-rich oil supplementation activates PPAR-γ and delays skin wound healing in type 1 diabetic mice. Front Immunol 2023; 14:1141731. [PMID: 37359536 PMCID: PMC10289002 DOI: 10.3389/fimmu.2023.1141731] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/15/2023] [Indexed: 06/28/2023] Open
Abstract
Delayed wound healing is a devastating complication of diabetes and supplementation with fish oil, a source of anti-inflammatory omega-3 (ω-3) fatty acids including eicosapentaenoic acid (EPA), seems an appealing treatment strategy. However, some studies have shown that ω-3 fatty acids may have a deleterious effect on skin repair and the effects of oral administration of EPA on wound healing in diabetes are unclear. We used streptozotocin-induced diabetes as a mouse model to investigate the effects of oral administration of an EPA-rich oil on wound closure and quality of new tissue formed. Gas chromatography analysis of serum and skin showed that EPA-rich oil increased the incorporation of ω-3 and decreased ω-6 fatty acids, resulting in reduction of the ω-6/ω-3 ratio. On the tenth day after wounding, EPA increased production of IL-10 by neutrophils in the wound, reduced collagen deposition, and ultimately delayed wound closure and impaired quality of the healed tissue. This effect was PPAR-γ-dependent. EPA and IL-10 reduced collagen production by fibroblasts in vitro. In vivo, topical PPAR-γ-blockade reversed the deleterious effects of EPA on wound closure and on collagen organization in diabetic mice. We also observed a reduction in IL-10 production by neutrophils in diabetic mice treated topically with the PPAR-γ blocker. These results show that oral supplementation with EPA-rich oil impairs skin wound healing in diabetes, acting on inflammatory and non-inflammatory cells.
Collapse
Affiliation(s)
- Beatriz Burger
- Laboratory of Nutrients and Tissue Repair, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Roberta Nicolli Sagiorato
- Laboratory of Nutrients and Tissue Repair, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Jéssica Rondoni Silva
- Laboratory of Nutrients and Tissue Repair, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Thamiris Candreva
- Laboratory of Nutrients and Tissue Repair, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Mariana R. Pacheco
- Laboratory of Nutrients and Tissue Repair, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Daniel White
- Department of General Surgery, The Royal Surrey National Health Service (NHS) Foundation Trust Hospital, Guildford, United Kingdom
| | - Bianca G. Castelucci
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Laís P. Pral
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Helena L. Fisk
- School of Human Development & Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Izadora L. A. Rabelo
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Jefferson Elias-Oliveira
- Departments of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Wislei Riuper Osório
- Laboratory of Manufacturing Advanced Materials, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Silvio Roberto Consonni
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Alessandro dos Santos Farias
- Autoimmune Research Lab, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Marco Aurélio Ramirez Vinolo
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Claudiana Lameu
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Daniela Carlos
- Departments of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Barbara A. Fielding
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Martin Brunel Whyte
- Department of Medicine, King’s College Hospital National Health Service (NHS) Foundation Trust, London, United Kingdom
- Department of Clinical & Experimental Medicine, School of Biosciences and Medicine, University of Surrey, Guildford, United Kingdom
| | - Fernando O. Martinez
- Department of Biochemical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, United Kingdom
| | - Philip C. Calder
- School of Human Development & Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- National Institute for Health and Care Research (NIHR) Southampton Biomedical Research Centre, University Hospital Southampton National Health Service (NHS) Foundation Trust and University of Southampton, Southampton, United Kingdom
| | - Hosana Gomes Rodrigues
- Laboratory of Nutrients and Tissue Repair, School of Applied Sciences, University of Campinas, Limeira, Brazil
| |
Collapse
|
14
|
Dabaghi M, Carpio MB, Saraei N, Moran-Mirabal JM, Kolb MR, Hirota JA. A roadmap for developing and engineering in vitro pulmonary fibrosis models. BIOPHYSICS REVIEWS 2023; 4:021302. [PMID: 38510343 PMCID: PMC10903385 DOI: 10.1063/5.0134177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/03/2023] [Indexed: 03/22/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a severe form of pulmonary fibrosis. IPF is a fatal disease with no cure and is challenging to diagnose. Unfortunately, due to the elusive etiology of IPF and a late diagnosis, there are no cures for IPF. Two FDA-approved drugs for IPF, nintedanib and pirfenidone, slow the progression of the disease, yet fail to cure or reverse it. Furthermore, most animal models have been unable to completely recapitulate the physiology of human IPF, resulting in the failure of many drug candidates in preclinical studies. In the last few decades, the development of new IPF drugs focused on changes at the cellular level, as it was believed that the cells were the main players in IPF development and progression. However, recent studies have shed light on the critical role of the extracellular matrix (ECM) in IPF development, where the ECM communicates with cells and initiates a positive feedback loop to promote fibrotic processes. Stemming from this shift in the understanding of fibrosis, there is a need to develop in vitro model systems that mimic the human lung microenvironment to better understand how biochemical and biomechanical cues drive fibrotic processes in IPF. However, current in vitro cell culture platforms, which may include substrates with different stiffness or natural hydrogels, have shortcomings in recapitulating the complexity of fibrosis. This review aims to draw a roadmap for developing advanced in vitro pulmonary fibrosis models, which can be leveraged to understand better different mechanisms involved in IPF and develop drug candidates with improved efficacy. We begin with a brief overview defining pulmonary fibrosis and highlight the importance of ECM components in the disease progression. We focus on fibroblasts and myofibroblasts in the context of ECM biology and fibrotic processes, as most conventional advanced in vitro models of pulmonary fibrosis use these cell types. We transition to discussing the parameters of the 3D microenvironment that are relevant in pulmonary fibrosis progression. Finally, the review ends by summarizing the state of the art in the field and future directions.
Collapse
Affiliation(s)
- Mohammadhossein Dabaghi
- Firestone Institute for Respiratory Health—Division of Respirology, Department of Medicine, McMaster University, St. Joseph's Healthcare Hamilton, 50 Charlton Avenue East, Hamilton, Ontario L8N 4A6, Canada
| | - Mabel Barreiro Carpio
- Department of Chemistry and Chemical Biology, McMaster University, Arthur N. Bourns Science Building, 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| | - Neda Saraei
- School of Biomedical Engineering, McMaster University, Engineering Technology Building, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | | | - Martin R. Kolb
- Firestone Institute for Respiratory Health—Division of Respirology, Department of Medicine, McMaster University, St. Joseph's Healthcare Hamilton, 50 Charlton Avenue East, Hamilton, Ontario L8N 4A6, Canada
| | | |
Collapse
|
15
|
Benn MC, Pot SA, Moeller J, Yamashita T, Fonta CM, Orend G, Kollmannsberger P, Vogel V. How the mechanobiology orchestrates the iterative and reciprocal ECM-cell cross-talk that drives microtissue growth. SCIENCE ADVANCES 2023; 9:eadd9275. [PMID: 36989370 PMCID: PMC10058249 DOI: 10.1126/sciadv.add9275] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 02/24/2023] [Indexed: 06/19/2023]
Abstract
Controlled tissue growth is essential for multicellular life and requires tight spatiotemporal control over cell proliferation and differentiation until reaching homeostasis. As cells synthesize and remodel extracellular matrix, tissue growth processes can only be understood if the reciprocal feedback between cells and their environment is revealed. Using de novo-grown microtissues, we identified crucial actors of the mechanoregulated events, which iteratively orchestrate a sharp transition from tissue growth to maturation, requiring a myofibroblast-to-fibroblast transition. Cellular decision-making occurs when fibronectin fiber tension switches from highly stretched to relaxed, and it requires the transiently up-regulated appearance of tenascin-C and tissue transglutaminase, matrix metalloprotease activity, as well as a switch from α5β1 to α2β1 integrin engagement and epidermal growth factor receptor signaling. As myofibroblasts are associated with wound healing and inflammatory or fibrotic diseases, crucial knowledge needed to advance regenerative strategies or to counter fibrosis and cancer progression has been gained.
Collapse
Affiliation(s)
- Mario C. Benn
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, Vladimir-Prelog-Weg 4, Zurich 8093, Switzerland
| | - Simon A. Pot
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, Vladimir-Prelog-Weg 4, Zurich 8093, Switzerland
| | - Jens Moeller
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, Vladimir-Prelog-Weg 4, Zurich 8093, Switzerland
| | - Tadahiro Yamashita
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, Vladimir-Prelog-Weg 4, Zurich 8093, Switzerland
| | - Charlotte M. Fonta
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, Vladimir-Prelog-Weg 4, Zurich 8093, Switzerland
| | - Gertraud Orend
- The Tumor Microenvironment Laboratory, INSERM U1109, Hôpital Civil, Institut d'Hématologie et d'Immunologie, 1 Place de l'Hôpital, Strasbourg 67091, France
- Université Strasbourg, Strasbourg 67000, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg 67000, France
| | - Philip Kollmannsberger
- Biomedical Physics, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, Düsseldorf 40225, Germany
| | - Viola Vogel
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, Vladimir-Prelog-Weg 4, Zurich 8093, Switzerland
| |
Collapse
|
16
|
Brauer E, Lange T, Keller D, Görlitz S, Cho S, Keye J, Gossen M, Petersen A, Kornak U. Dissecting the influence of cellular senescence on cell mechanics and extracellular matrix formation in vitro. Aging Cell 2023; 22:e13744. [PMID: 36514868 PMCID: PMC10014055 DOI: 10.1111/acel.13744] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 12/15/2022] Open
Abstract
Tissue formation and healing both require cell proliferation and migration, but also extracellular matrix production and tensioning. In addition to restricting proliferation of damaged cells, increasing evidence suggests that cellular senescence also has distinct modulatory effects during wound healing and fibrosis. Yet, a direct role of senescent cells during tissue formation beyond paracrine signaling remains unknown. We here report how individual modules of the senescence program differentially influence cell mechanics and ECM expression with relevance for tissue formation. We compared DNA damage-mediated and DNA damage-independent senescence which was achieved through over-expression of either p16Ink4a or p21Cip1 cyclin-dependent kinase inhibitors in primary human skin fibroblasts. Cellular senescence modulated focal adhesion size and composition. All senescent cells exhibited increased single cell forces which led to an increase in tissue stiffness and contraction in an in vitro 3D tissue formation model selectively for p16 and p21-overexpressing cells. The mechanical component was complemented by an altered expression profile of ECM-related genes including collagens, lysyl oxidases, and MMPs. We found that particularly the lack of collagen and lysyl oxidase expression in the case of DNA damage-mediated senescence foiled their intrinsic mechanical potential. These observations highlight the active mechanical role of cellular senescence during tissue formation as well as the need to synthesize a functional ECM network capable of transferring and storing cellular forces.
Collapse
Affiliation(s)
- Erik Brauer
- Julius Wolff Institute, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Tobias Lange
- Julius Wolff Institute, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Daniela Keller
- Institute for Medical Genetics and Human Genetics, Charité - Universtitätsmedizin Berlin, Berlin, Germany
| | - Sophie Görlitz
- Julius Wolff Institute, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Simone Cho
- Julius Wolff Institute, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jacqueline Keye
- Flow & Mass Cytometry Core Facility, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Manfred Gossen
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.,Institute of Active Polymers, Helmholtz-Zentrum Hereon, Teltow, Germany
| | - Ansgar Petersen
- Julius Wolff Institute, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.,BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Uwe Kornak
- Institute for Medical Genetics and Human Genetics, Charité - Universtitätsmedizin Berlin, Berlin, Germany.,BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.,Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
17
|
Gao L, Feng Q, Cui B, Mao Y, Zhao Z, Liu Z, Zhu H. Loading Nanoceria Improves Extracellular Vesicle Membrane Integrity and Therapy to Wounds in Aged Mice. ACS Biomater Sci Eng 2023; 9:732-742. [PMID: 36642927 DOI: 10.1021/acsbiomaterials.2c01104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Wound healing is a programmed process through which tissue restores its integrity after an injury. Advancing age is a risk factor for delayed cutaneous wound healing; however, ideal therapeutic approaches for aged wound have not been developed yet. By dissecting the harsh microenvironment of aged wound, we propose an integrated chemical and biological strategy to mitigate two main hostile factors including oxidative stress and ischemia. Mesenchymal stem cell-derived extracellular vesicles (EVs) are a rising star in regenerative medicine due to their powerful facilitation in tissue repair and regeneration. However, the fragile lipid membrane limits their function under the oxidative stress microenvironment. Nanoceria is an antioxidative nanozyme; here, we reveal that nanoceria-loaded EVs derived from mesenchymal stem cells facilitate cutaneous wound healing in aged mice. DG-CeO2 was prepared via coating CeO2 covalently with d-glucose to promote their cellular endocytosis. DG-CeO2 was packaged into EVs under optimized hypoxic conditions (DG-CeO2 EVsHyp). We further demonstrated that DG-CeO2 EVsHyp had favorable biocompatibility and antioxidative and proangiogenic effects during the cutaneous wound healing in both young and aged mice. Further evidence revealed that DG-CeO2 EVsHyp-transferred miR-92a-3p/125b-5p and their targets associated with aging degeneration may be the potential mechanisms. Collectively, these findings highlight that nanoceria-loaded EVs released by engineered stem cells may represent a potential therapeutic approach for tissue regeneration in aged population.
Collapse
Affiliation(s)
- Lei Gao
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P. R. China.,Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, P. R. China
| | - Qishuai Feng
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P. R. China
| | - Binbin Cui
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P. R. China
| | - Yaning Mao
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P. R. China
| | - Zhenlin Zhao
- Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, Shenzhen 518118, P. R. China
| | - Zhongmin Liu
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P. R. China
| | - Hongming Zhu
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P. R. China.,Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, Shenzhen 518118, P. R. China
| |
Collapse
|
18
|
Duda GN, Geissler S, Checa S, Tsitsilonis S, Petersen A, Schmidt-Bleek K. The decisive early phase of bone regeneration. Nat Rev Rheumatol 2023; 19:78-95. [PMID: 36624263 DOI: 10.1038/s41584-022-00887-0] [Citation(s) in RCA: 104] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2022] [Indexed: 01/11/2023]
Abstract
Bone has a remarkable endogenous regenerative capacity that enables scarless healing and restoration of its prior mechanical function, even under challenging conditions such as advanced age and metabolic or immunological degenerative diseases. However - despite much progress - a high number of bone injuries still heal with unsatisfactory outcomes. The mechanisms leading to impaired healing are heterogeneous, and involve exuberant and non-resolving immune reactions or overstrained mechanical conditions that affect the delicate regulation of the early initiation of scar-free healing. Every healing process begins phylogenetically with an inflammatory reaction, but its spatial and temporal intensity must be tightly controlled. Dysregulation of this inflammatory cascade directly affects the subsequent healing phases and hinders the healing progression. This Review discusses the complex processes underlying bone regeneration, focusing on the early healing phase and its highly dynamic environment, where vibrant changes in cellular and tissue composition alter the mechanical environment and thus affect the signalling pathways that orchestrate the healing process. Essential to scar-free healing is the interplay of various dynamic cascades that control timely resolution of local inflammation and tissue self-organization, while also providing sufficient local stability to initiate endogenous restoration. Various immunotherapy and mechanobiology-based therapy options are under investigation for promoting bone regeneration.
Collapse
Affiliation(s)
- Georg N Duda
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany. .,Berlin Institute of Health Centre for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | - Sven Geissler
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health Centre for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sara Checa
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Serafeim Tsitsilonis
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health Centre for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.,Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ansgar Petersen
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health Centre for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Katharina Schmidt-Bleek
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health Centre for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
19
|
Cheng H, Yu Q, Chen Q, Feng L, Zhao W, Zhao C. Biomass-derived ultrafast cross-linked hydrogels with double dynamic bonds for hemostasis and wound healing. Biomater Sci 2023; 11:931-948. [PMID: 36537166 DOI: 10.1039/d2bm00907b] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Developing novel hemostatic materials with accelerating wound healing functions has raised widespread attention recently. To adapt to irregular and incompressible wounds, we fabricated a series of biomass-derived ultrafast cross-linked adhesive hydrogels with adjustable gelation time and injectable properties through Schiff-base and ionic coordinate bonds among catechol-conjugated gelatin (GelDA), dialdehyde cellulose nanocrystals (DACNCs), calcium ions (Ca2+) and ferric iron (Fe3+). The fast-gelling hydrogels possess adjustable gelation time and mechanical properties by altering the contents of DACNCs and Fe3+. With double-dynamic-bond crosslinking, the hydrogels are endowed with the desired self-healing and injectable performance compared to gelatin-based hydrogels without DACNCs. Additionally, the hydrogels present enhanced adhesiveness, NIR responsiveness and antibacterial activity with the introduction of catechol groups and the formation of catechol-Fe complexes. Both in vitro and in vivo hemostatic assays and degradation experiments confirm that the hydrogels achieve rapid hemostasis and display fantastic biodegradability. As demonstrated by a rat full-thickness skin defect model, the hydrogels with multifunctionality remarkably accelerate the regeneration of wound tissues. Thus, the ultrafast cross-linked hydrogels are potentially valuable as hemostatic materials for wound healing applications in the biomedical field.
Collapse
Affiliation(s)
- Huitong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| | - Qiao Yu
- Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu 610207, China.,Med-X Center for Materials, Sichuan University, Chengdu, 610041, China
| | - Qin Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| | - Lan Feng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China. .,Med-X Center for Materials, Sichuan University, Chengdu, 610041, China
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China. .,College of Chemical Engineering, Sichuan University, Chengdu, 610065, China.,Med-X Center for Materials, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
20
|
Andriotis OG, Nalbach M, Thurner PJ. Mechanics of isolated individual collagen fibrils. Acta Biomater 2022; 163:35-49. [PMID: 36509398 DOI: 10.1016/j.actbio.2022.12.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 11/15/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Collagen fibrils are the fundamental structural elements in vertebrate animals and compose a framework that provides mechanical support to load-bearing tissues. Understanding how these fibrils initially form and mechanically function has been the focus of a myriad of detailed investigations over the last few decades. From these studies a great amount of knowledge has been acquired as well as a number of new questions to consider. In this review, we examine the current state of our knowledge of the mechanical properties of extant fibrils. We emphasize on the mechanical response and related deformation of collagen fibrils upon tension, which is the predominant load imposed in most collagen-rich tissues. We also illuminate the gaps in knowledge originating from the intriguing results that the field is still trying to interpret. STATEMENT OF SIGNIFICANCE: : Collagen is the result of millions of years of biological evolution and is a unique family of proteins, the majority of which provide mechanical support to biological tissues. Cells produce collagen molecules that self-assemble into larger structures, known as collagen fibrils. As simple as they appear under an optical microscope, collagen fibrils display a complex ultrastructural architecture tuned to the external forces that are imposed upon them. Even more complex is the way collagen fibrils deform under loading, and the nature of the mechanisms that drive their formation in the first place. Here, we present a cogent synthesis of the state-of-knowledge of collagen fibril mechanics. We focus on the information we have from in vitro experiments on individual, isolated from tissues, collagen fibrils and the knowledge available from in silico tests.
Collapse
Affiliation(s)
- Orestis G Andriotis
- Institute for Lightweight Design and Structural Biomechanics, TU Wien, Vienna, A-1060, Austria
| | - Mathis Nalbach
- Institute for Lightweight Design and Structural Biomechanics, TU Wien, Vienna, A-1060, Austria
| | - Philipp J Thurner
- Institute for Lightweight Design and Structural Biomechanics, TU Wien, Vienna, A-1060, Austria.
| |
Collapse
|
21
|
Ahmed A, Joshi IM, Goulet MR, Vidas JA, Byerley AM, Mansouri M, Day SW, Abhyankar VV. Microengineering 3D Collagen Hydrogels with Long-Range Fiber Alignment. J Vis Exp 2022:10.3791/64457. [PMID: 36156068 PMCID: PMC10203374 DOI: 10.3791/64457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Aligned collagen I (COL1) fibers guide tumor cell motility, influence endothelial cell morphology, control stem cell differentiation, and are a hallmark of cardiac and musculoskeletal tissues. To study cell response to aligned microenvironments in vitro, several protocols have been developed to generate COL1 matrices with defined fiber alignment, including magnetic, mechanical, cell-based, and microfluidic methods. Of these, microfluidic approaches offer advanced capabilities such as accurate control over fluid flows and the cellular microenvironment. However, the microfluidic approaches to generate aligned COL1 matrices for advanced in vitro culture platforms have been limited to thin "mats" (<40 µm in thickness) of COL1 fibers that extend over distances less than 500 µm and are not conducive to 3D cell culture applications. Here, we present a protocol to fabricate 3D COL1 matrices (130-250 µm in thickness) with millimeter-scale regions of defined fiber alignment in a microfluidic device. This platform provides advanced cell culture capabilities to model structured tissue microenvironments by providing direct access to the micro-engineered matrix for cell culture.
Collapse
Affiliation(s)
- Adeel Ahmed
- Department of Biomedical Engineering, Kate Gleason College of Engineering, Rochester Institute of Technology
| | - Indranil M Joshi
- Department of Biomedical Engineering, Kate Gleason College of Engineering, Rochester Institute of Technology
| | - Madeleine R Goulet
- Department of Biomedical Engineering, Kate Gleason College of Engineering, Rochester Institute of Technology
| | - Justin A Vidas
- Department of Biomedical Engineering, Kate Gleason College of Engineering, Rochester Institute of Technology
| | - Ann M Byerley
- Department of Biomedical Engineering, Kate Gleason College of Engineering, Rochester Institute of Technology
| | - Mehran Mansouri
- Department of Biomedical Engineering, Kate Gleason College of Engineering, Rochester Institute of Technology
| | - Steven W Day
- Department of Biomedical Engineering, Kate Gleason College of Engineering, Rochester Institute of Technology
| | - Vinay V Abhyankar
- Department of Biomedical Engineering, Kate Gleason College of Engineering, Rochester Institute of Technology;
| |
Collapse
|
22
|
Tortorici M, Brauer E, Thiele M, Duda GN, Petersen A. Characterizing cell recruitment into isotropic and anisotropic biomaterials by quantification of spatial density gradients in vitro. Front Bioeng Biotechnol 2022; 10:939713. [PMID: 35992332 PMCID: PMC9389461 DOI: 10.3389/fbioe.2022.939713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
The success of cell-free in situ tissue engineering approaches depends on an appropriate recruitment of autologous cells from neighboring tissues. This identifies cellular migration as a critical parameter for the pre-clinical characterization of biomaterials. Here, we present a new method to quantify both the extent and the spatial anisotropy of cell migration in vitro. For this purpose, a cell spheroid is used as a cell source to provide a high number of cells for cellular invasion and, at the same time, to guarantee a controlled and spatially localized contact to the material. Therefore, current limitations of assays based on 2D cell sources can be overcome. We tested the method on three biomaterials that are in clinical use for soft tissue augmentation in maxilla-facial surgery and a substrate used for 3D in vitro cell culture. The selected biomaterials were all collagen-derived, but differed in their internal architecture. The analysis of cellular isodensity profiles within the biomaterials allowed the identification of the extent and the preferential directions of migration, as well as their relation to the biomaterials and their specific pore morphologies. The higher cell density within the biomaterials resulting from the here-introduced cell spheroid assay compared to established 2D cell layer assays suggests a better representation of the in vivo situation. Consequently, the presented method is proposed to advance the pre-clinical evaluation of cell recruitment into biomaterials, possibly leading to an improved prediction of the regeneration outcome.
Collapse
Affiliation(s)
- Martina Tortorici
- Julius Wolff Institute, Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Erik Brauer
- Julius Wolff Institute, Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Berlin, Germany
- BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Mario Thiele
- Julius Wolff Institute, Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Georg N. Duda
- Julius Wolff Institute, Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Berlin, Germany
- BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Ansgar Petersen
- Julius Wolff Institute, Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Berlin, Germany
- BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Berlin, Germany
- *Correspondence: Ansgar Petersen,
| |
Collapse
|
23
|
Vining KH, Marneth AE, Adu-Berchie K, Grolman JM, Tringides CM, Liu Y, Wong WJ, Pozdnyakova O, Severgnini M, Stafford A, Duda GN, Hodi FS, Mullally A, Wucherpfennig KW, Mooney DJ. Mechanical checkpoint regulates monocyte differentiation in fibrotic niches. NATURE MATERIALS 2022; 21:939-950. [PMID: 35817965 PMCID: PMC10197159 DOI: 10.1038/s41563-022-01293-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/18/2022] [Indexed: 05/05/2023]
Abstract
Myelofibrosis is a progressive bone marrow malignancy associated with monocytosis, and is believed to promote the pathological remodelling of the extracellular matrix. Here we show that the mechanical properties of myelofibrosis, namely the liquid-to-solid properties (viscoelasticity) of the bone marrow, contribute to aberrant differentiation of monocytes. Human monocytes cultured in stiff, elastic hydrogels show proinflammatory polarization and differentiation towards dendritic cells, as opposed to those cultured in a viscoelastic matrix. This mechanically induced cell differentiation is blocked by inhibiting a myeloid-specific isoform of phosphoinositide 3-kinase, PI3K-γ. We further show that murine bone marrow with myelofibrosis has a significantly increased stiffness and unveil a positive correlation between myelofibrosis grading and viscoelasticity. Treatment with a PI3K-γ inhibitor in vivo reduced frequencies of monocyte and dendritic cell populations in murine bone marrow with myelofibrosis. Moreover, transcriptional changes driven by viscoelasticity are consistent with transcriptional profiles of myeloid cells in other human fibrotic diseases. These results demonstrate that a fibrotic bone marrow niche can physically promote a proinflammatory microenvironment.
Collapse
Affiliation(s)
- Kyle H Vining
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Preventative and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Materials Science and Engineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Anna E Marneth
- Division of Hematology, Brigham and Women's Hospital, Boston, MA, USA
| | - Kwasi Adu-Berchie
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Joshua M Grolman
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
- Materials Science and Engineering, The Technion-Israel Institute of Technology, Haifa, Israel
| | - Christina M Tringides
- Harvard Program in Biophysics, Harvard University, Cambridge, MA, USA
- Harvard-MIT Division in Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yutong Liu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Waihay J Wong
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Olga Pozdnyakova
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mariano Severgnini
- Center for Immuno-Oncology Immune Assessment Laboratory at the Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Alexander Stafford
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Georg N Duda
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration at Berlin Institute of Health and Charité - Universitätsmedizin, Berlin, Germany
- Berlin Institute of Health Center for Regenerative Therapies, Berlin Institute of Health and Charité - Universitätsmedizin, Berlin, Germany
| | - F Stephen Hodi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ann Mullally
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Division of Hematology, Brigham and Women's Hospital, Boston, MA, USA
| | - Kai W Wucherpfennig
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA.
| | - David J Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA.
| |
Collapse
|
24
|
Scholp AJ, Jensen J, Chinnathambi S, Atluri K, Mendenhall A, Fowler T, Salem AK, Martin JA, Sander EA. Force-Bioreactor for Assessing Pharmacological Therapies for Mechanobiological Targets. Front Bioeng Biotechnol 2022; 10:907611. [PMID: 35928948 PMCID: PMC9343955 DOI: 10.3389/fbioe.2022.907611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Tissue fibrosis is a major health issue that impacts millions of people and is costly to treat. However, few effective anti-fibrotic treatments are available. Due to their central role in fibrotic tissue deposition, fibroblasts and myofibroblasts are the target of many therapeutic strategies centered primarily on either inducing apoptosis or blocking mechanical or biochemical stimulation that leads to excessive collagen production. Part of the development of these drugs for clinical use involves in vitro prescreening. 2D screens, however, are not ideal for discovering mechanobiologically significant compounds that impact functions like force generation and other cell activities related to tissue remodeling that are highly dependent on the conditions of the microenvironment. Thus, higher fidelity models are needed to better simulate in vivo conditions and relate drug activity to quantifiable functional outcomes. To provide guidance on effective drug dosing strategies for mechanoresponsive drugs, we describe a custom force-bioreactor that uses a fibroblast-seeded fibrin gels as a relatively simple mimic of the provisional matrix of a healing wound. As cells generate traction forces, the volume of the gel reduces, and a calibrated and embedded Nitinol wire deflects in proportion to the generated forces over the course of 6 days while overhead images of the gel are acquired hourly. This system is a useful in vitro tool for quantifying myofibroblast dose-dependent responses to candidate biomolecules, such as blebbistatin. Administration of 50 μM blebbistatin reliably reduced fibroblast force generation approximately 40% and lasted at least 40 h, which in turn resulted in qualitatively less collagen production as determined via fluorescent labeling of collagen.
Collapse
Affiliation(s)
- Austin J. Scholp
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA, United States
| | - Jordan Jensen
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA, United States
| | - Sathivel Chinnathambi
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA, United States
| | - Keerthi Atluri
- Division of Pharmaceutics and Translational Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, United States
| | - Alyssa Mendenhall
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA, United States
| | - Timothy Fowler
- Department of Orthopedics and Rehabilitation, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Aliasger K. Salem
- Division of Pharmaceutics and Translational Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, United States
| | - James A. Martin
- Department of Orthopedics and Rehabilitation, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Edward A. Sander
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA, United States
- Department of Orthopedics and Rehabilitation, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
25
|
Valproic acid modulates collagen architecture in the postoperative conjunctival scar. J Mol Med (Berl) 2022; 100:947-961. [PMID: 35583819 DOI: 10.1007/s00109-021-02171-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/10/2021] [Accepted: 11/29/2021] [Indexed: 10/18/2022]
Abstract
Valproic acid (VPA), widely used for the treatment of neurological disorders, has anti-fibrotic activity by reducing collagen production in the postoperative conjunctiva. In this study, we investigated the capacity of VPA to modulate the postoperative collagen architecture. Histochemical examination revealed that VPA treatment was associated with the formation of thinner collagen fibers in the postoperative days 7 and 14 scars. At the micrometer scale, measurements by quantitative multiphoton microscopy indicated that VPA reduced mean collagen fiber thickness by 1.25-fold. At the nanometer scale, collagen fibril thickness and diameter measured by transmission electron microscopy were decreased by 1.08- and 1.20-fold, respectively. Moreover, delicate filamentous structures in random aggregates or closely associated with collagen fibrils were frequently observed in VPA-treated tissue. At the molecular level, VPA reduced Col1a1 but induced Matn2, Matn3, and Matn4 in the postoperative day 7 conjunctival tissue. Elevation of matrilin protein expression induced by VPA was sustained till at least postoperative day 14. In primary conjunctival fibroblasts, Matn2 expression was resistant to both VPA and TGF-β2, Matn3 was sensitive to both VPA and TGF-β2 individually and synergistically, while Matn4 was modulable by VPA but not TGF-β2. MATN2, MATN3, and MATN4 localized in close association with COL1A1 in the postoperative conjunctiva. These data indicate that VPA has the capacity to reduce collagen fiber thickness and potentially collagen assembly, in association with matrilin upregulation. These properties suggest potential VPA application for the prevention of fibrotic progression in the postoperative conjunctiva. KEY MESSAGES: VPA reduces collagen fiber and fibril thickness in the postoperative scar. VPA disrupts collagen fiber assembly in conjunctival wound healing. VPA induces MATN2, MATN3, and MATN4 in the postoperative scar.
Collapse
|
26
|
Laiva AL, O’Brien FJ, Keogh MB. Anti-Aging β-Klotho Gene-Activated Scaffold Promotes Rejuvenative Wound Healing Response in Human Adipose-Derived Stem Cells. Pharmaceuticals (Basel) 2021; 14:ph14111168. [PMID: 34832950 PMCID: PMC8619173 DOI: 10.3390/ph14111168] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 12/13/2022] Open
Abstract
Wound healing requires a tight orchestration of complex cellular events. Disruption in the cell-signaling events can severely impair healing. The application of biomaterial scaffolds has shown healing potential; however, the potential is insufficient for optimal wound maturation. This study explored the functional impact of a collagen-chondroitin sulfate scaffold functionalized with nanoparticles carrying an anti-aging gene β-Klotho on human adipose-derived stem cells (ADSCs) for rejuvenative healing applications. We studied the response in the ADSCs in three phases: (1) transcriptional activities of pluripotency factors (Oct-4, Nanog and Sox-2), proliferation marker (Ki-67), wound healing regulators (TGF-β3 and TGF-β1); (2) paracrine bioactivity of the secretome generated by the ADSCs; and (3) regeneration of basement membrane (fibronectin, laminin, and collagen IV proteins) and expression of scar-associated proteins (α-SMA and elastin proteins) towards maturation. Overall, we found that the β-Klotho gene-activated scaffold offers controlled activation of ADSCs' regenerative abilities. On day 3, the ADSCs on the gene-activated scaffold showed enhanced (2.5-fold) activation of transcription factor Oct-4 that was regulated transiently. This response was accompanied by a 3.6-fold increase in the expression of the anti-fibrotic gene TGF-β3. Through paracrine signaling, the ADSCs-laden gene-activated scaffold also controlled human endothelial angiogenesis and pro-fibrotic response in dermal fibroblasts. Towards maturation, the ADSCs-laden gene-activated scaffold further showed an enhanced regeneration of the basement membrane through increases in laminin (2.1-fold) and collagen IV (8.8-fold) deposition. The ADSCs also expressed 2-fold lower amounts of the scar-associated α-SMA protein with improved qualitative elastin matrix deposition. Collectively, we determined that the β-Klotho gene-activated scaffold possesses tremendous potential for wound healing and could advance stem cell-based therapy for rejuvenative healing applications.
Collapse
Affiliation(s)
- Ashang L. Laiva
- Tissue Engineering Research Group-Bahrain, Royal College of Surgeons in Ireland, Adliya, Manama P.O. Box 15503, Bahrain;
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123 St. Stephen’s Green, D02 YN77 Dublin, Ireland;
| | - Fergal J. O’Brien
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123 St. Stephen’s Green, D02 YN77 Dublin, Ireland;
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre, Royal College of Surgeons in Ireland and Trinity College Dublin, D02 YN77 Dublin, Ireland
| | - Michael B. Keogh
- Tissue Engineering Research Group-Bahrain, Royal College of Surgeons in Ireland, Adliya, Manama P.O. Box 15503, Bahrain;
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123 St. Stephen’s Green, D02 YN77 Dublin, Ireland;
- Correspondence:
| |
Collapse
|
27
|
Sensitive detection of cell-derived force and collagen matrix tension in microtissues undergoing large-scale densification. Proc Natl Acad Sci U S A 2021; 118:2106061118. [PMID: 34470821 DOI: 10.1073/pnas.2106061118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mechanical forces generated by cells and the tension of the extracellular matrix (ECM) play a decisive role in establishment, homeostasis maintenance, and repair of tissue morphology. However, the dynamic change of cell-derived force during large-scale remodeling of soft tissue is still unknown, mainly because the current techniques of force detection usually produce a nonnegligible and interfering feedback force on the cells during measurement. Here, we developed a method to fabricate highly stretchable polymer-based microstrings on which a microtissue of fibroblasts in collagen was cultured and allowed to contract to mimic the densification of soft tissue. Taking advantage of the low-spring constant and large deflection range of the microstrings, we detected a strain-induced contraction force as low as 5.2 µN without disturbing the irreversible densification. Meanwhile, the microtissues displayed extreme sensitivity to the mechanical boundary within a narrow range of tensile stress. More importantly, results indicated that the cell-derived force did not solely increase with increased ECM stiffness as previous studies suggested. Indeed, the cell-derived force and collagen tension exchanged dramatically in dominating the microtissue strain during the densification, and the proportion of cell-derived force decreased linearly as the microtissue densified, with stiffness increasing to ∼500 Pa. Thus, this study provides insights into the biomechanical cross-talk between the cells and ECM of extremely soft tissue during large-extent densification, which may be important to guide the construction of life-like tissue by applying appropriate mechanical boundary conditions.
Collapse
|
28
|
The Symmetric 3D Organization of Connective Tissue around Implant Abutment: A Key-Issue to Prevent Bone Resorption. Symmetry (Basel) 2021. [DOI: 10.3390/sym13071126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Symmetric and well-organized connective tissues around the longitudinal implant axis were hypothesized to decrease early bone resorption by reducing inflammatory cell infiltration. Previous studies that referred to the connective tissue around implant and abutments were based on two-dimensional investigations; however, only advanced three-dimensional characterizations could evidence the organization of connective tissue microarchitecture in the attempt of finding new strategies to reduce inflammatory cell infiltration. We retrieved three implants with a cone morse implant–abutment connection from patients; they were investigated by high-resolution X-ray phase-contrast microtomography, cross-linking the obtained information with histologic results. We observed transverse and longitudinal orientated collagen bundles intertwining with each other. In the longitudinal planes, it was observed that the closer the fiber bundles were to the implant, the more symmetric and regular their course was. The transverse bundles of collagen fibers were observed as semicircular, intersecting in the lamina propria of the mucosa and ending in the oral epithelium. No collagen fibers were found radial to the implant surface. This intertwining three-dimensional pattern seems to favor the stabilization of the soft tissues around the implants, preventing inflammatory cell apical migration and, consequently, preventing bone resorption and implant failure. This fact, according to the authors’ best knowledge, has never been reported in the literature and might be due to the physical forces acting on fibroblasts and on the collagen produced by the fibroblasts themselves, in areas close to the implant and to the symmetric geometry of the implant itself.
Collapse
|
29
|
Wang Y, Lu F, Hu E, Yu K, Li J, Bao R, Dai F, Lan G, Xie R. Biogenetic Acellular Dermal Matrix Maintaining Rich Interconnected Microchannels for Accelerated Tissue Amendment. ACS APPLIED MATERIALS & INTERFACES 2021; 13:16048-16061. [PMID: 33813831 DOI: 10.1021/acsami.1c00420] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Given that many people suffer from extensive skin damage, wound repair has drawn tremendous attention in research. Among the various assistant dressing materials that promote healing, a porcine acellular dermal matrix (PADM), as a skin substitute, can efficiently accelerate healing by promoting cell migration and proliferation. However, a simple, low-cost preparation process remains a challenge facing PADM development, particularly because of the inferior elasticity. To overcome these drawbacks, a CaCl2-ethanol-H2O solution (ternary solution) combined with an additional enzyme treatment was used to obtain a transparent, porous, and elastic PADM that retained the major extracellular matrix composition of the dermis. Our results indicated that alterations in the fiber organization and secondary structural changes in the collagen occurred after treatment. Furthermore, the in vivo wound healing and histological analyses clearly revealed an extremely expedited wound repair process following the application of the biocompatible PADM. In conclusion, this study provides new insights into the development of a transparent PADM with a porous structure and good elasticity that can be used as a skin substitute to accelerate the wound healing process. Moreover, this effective technique could potentially be used to extrapolate other decellularized materials in the future.
Collapse
Affiliation(s)
- Yixin Wang
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| | - Fei Lu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| | - Enling Hu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| | - Kun Yu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| | - Jiwei Li
- Industrial Research Institute of Nonwovens and Technical Textiles, College of Textiles and Clothing, Qingdao University, Qingdao 266071, P. R. China
| | - Rong Bao
- The Ninth People's Hospital of Chongqing, No. 69 Jialing Village, BeiBei District, Chongqing 400715, China
| | - Fangyin Dai
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| | - Guangqian Lan
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| | - Ruiqi Xie
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| |
Collapse
|
30
|
Ahmed A, Joshi IM, Larson S, Mansouri M, Gholizadeh S, Allahyari Z, Forouzandeh F, Borkholder DA, Gaborski TR, Abhyankar VV. Microengineered 3D Collagen Gels with Independently Tunable Fiber Anisotropy and Directionality. ADVANCED MATERIALS TECHNOLOGIES 2021; 6:2001186. [PMID: 34150990 PMCID: PMC8211114 DOI: 10.1002/admt.202001186] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Indexed: 05/17/2023]
Abstract
Cellular processes, including differentiation, proliferation, and migration, have been linked to the alignment (anisotropy) and orientation (directionality) of collagen fibers in the native extracellular matrix (ECM). Given the critical role that biophysical cell-matrix interactions play in regulating biological functions, several microfluidic-based methods have been used to establish 3D collagen gels with defined fiber properties; these gels have helped to establish quantitative relationships between structural ECM cues and observed cell responses. Although existing microfluidic fabrication methods provide excellent definition over collagen fiber anisotropy, they have not demonstrated the independent control over fiber anisotropy and directionality necessary to replicate in vivo collagen architecture. Therefore, to advance collagen microengineering capabilities, we present a user-friendly technology platform that uses controlled fluid flows within a non-uniform microfluidic channel network to create collagen landscapes that can be tuned as a function of extensional strain rate. Herein, we demonstrate capabilities to i) control the degree of fiber anisotropy, ii) create spatial gradients in fiber anisotropy, iii) independently define fiber directionality, and iv) generate multi-material interfaces within a 3D environment. We then address the practical issue of integrating cells into microfluidic systems by using a peel-off template technique to provide direct access to microengineered collagen gels, and demonstrate that cells respond to the defined properties of the landscape. Finally, the platform's modular capability is highlighted by integrating a sub-micrometer thick porous parylene membrane onto the microengineered collagen as a method to define cell-substrate interactions.
Collapse
Affiliation(s)
- Adeel Ahmed
- Microsystems Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Indranil M Joshi
- Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Stephen Larson
- Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Mehran Mansouri
- Microsystems Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Shayan Gholizadeh
- Microsystems Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Zahra Allahyari
- Microsystems Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Farzad Forouzandeh
- Microsystems Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - David A Borkholder
- Microsystems Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Thomas R Gaborski
- Microsystems Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
- Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Vinay V Abhyankar
- Microsystems Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
- Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
| |
Collapse
|
31
|
Wang X, Ronsin O, Gravez B, Farman N, Baumberger T, Jaisser F, Coradin T, Hélary C. Nanostructured Dense Collagen-Polyester Composite Hydrogels as Amphiphilic Platforms for Drug Delivery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004213. [PMID: 33854901 PMCID: PMC8025010 DOI: 10.1002/advs.202004213] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Indexed: 05/15/2023]
Abstract
Associating collagen with biodegradable hydrophobic polyesters constitutes a promising method for the design of medicated biomaterials. Current collagen-polyester composite hydrogels consisting of pre-formed polymeric particles encapsulated within a low concentrated collagen hydrogel suffer from poor physical properties and low drug loading. Herein, an amphiphilic composite platform associating dense collagen hydrogels and up to 50 wt% polyesters with different hydrophobicity and chain length is developed. An original method of fabrication is disclosed based on in situ nanoprecipitation of polyesters impregnated in a pre-formed 3D dense collagen network. Composites made of poly(lactic-co-glycolic acid) (PLGA) and poly(lactic acid) (PLA) but not polycaprolactone (PCL) exhibit improved mechanical properties compared to those of pure collagen dense hydrogels while keeping a high degree of hydration. Release kinetics of spironolactone, a lipophilic steroid used as a drug model, can be tuned over one month. No cytotoxicity of the composites is observed on fibroblasts and keratinocytes. Unlike the incorporation of pre-formed particles, the new process allows for both improved physical properties of collagen hydrogels and controlled drug delivery. The ease of fabrication, wide range of accessible compositions, and positive preliminary safety evaluations of these collagen-polyesters will favor their translation into clinics in wide areas such as drug delivery and tissue engineering.
Collapse
Affiliation(s)
- Xiaolin Wang
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyTaipaMacao999078China
- Sorbonne UniversitéCNRS, UMR 7574, Laboratoire de Chimie de la Matière Condensée de ParisParisF‐75005France
| | - Olivier Ronsin
- Sorbonne UniversitéCNRSInstitut des NanoSciences de ParisINSPParisF‐75005France
- Université de ParisParisF‐75006France
| | - Basile Gravez
- INSERMCentre de Recherche des CordeliersSorbonne UniversitéUniversité de ParisParisF‐75005France
| | - Nicolette Farman
- INSERMCentre de Recherche des CordeliersSorbonne UniversitéUniversité de ParisParisF‐75005France
| | - Tristan Baumberger
- Sorbonne UniversitéCNRSInstitut des NanoSciences de ParisINSPParisF‐75005France
- Université de ParisParisF‐75006France
| | - Frédéric Jaisser
- INSERMCentre de Recherche des CordeliersSorbonne UniversitéUniversité de ParisParisF‐75005France
| | - Thibaud Coradin
- Sorbonne UniversitéCNRS, UMR 7574, Laboratoire de Chimie de la Matière Condensée de ParisParisF‐75005France
| | - Christophe Hélary
- Sorbonne UniversitéCNRS, UMR 7574, Laboratoire de Chimie de la Matière Condensée de ParisParisF‐75005France
| |
Collapse
|
32
|
Bao M, Xie J, Piruska A, Hu X, Huck WTS. Microfabricated Gaps Reveal the Effect of Geometrical Control in Wound Healing. Adv Healthc Mater 2021; 10:e2000630. [PMID: 32761769 PMCID: PMC11468563 DOI: 10.1002/adhm.202000630] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/26/2020] [Indexed: 11/06/2022]
Abstract
The geometry (size and shape) of gaps is a key determinant in controlling gap closure during wound healing. However, conventional methods for creating gaps result in un-defined geometries and poorly characterized conditions (cell death factors and cell debris), which can influence the gap closure process. To overcome these limitations, a novel method to create well-defined geometrical gaps is developed. First, smooth muscle cells (SMCs) are seeded in variously shaped micro-containers made out of hyaluronic acid hydrogels. Cell proliferation and cell tension induce fibrous collagen production by SMCs predominantly around the edges of the micro-containers. Upon removal of SMCs, the selectively deposited collagen results in micro-containers with cell-adhesive regions along the edges and walls. Fibroblasts are seeded in these micro-containers, and upon attaching and spreading, they naturally form gaps with different geometries. The rapid proliferation of fibroblasts from the edge results in filling and closure of the gaps. It is demonstrated that gap closure rate as well as closure mechanism is strongly influenced by geometrical features, which points to an important role for cellular tension and cell proliferation in gap closure.
Collapse
Affiliation(s)
- Min Bao
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 135Nijmegen6525 AJThe Netherlands
- Division of Biology and Biological EngineeringCalifornia Institute of Technology1200 E. California BoulevardPasadenaCA91125USA
| | - Jing Xie
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 135Nijmegen6525 AJThe Netherlands
| | - Aigars Piruska
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 135Nijmegen6525 AJThe Netherlands
| | - Xinyu Hu
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 135Nijmegen6525 AJThe Netherlands
| | - Wilhelm T. S. Huck
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 135Nijmegen6525 AJThe Netherlands
| |
Collapse
|
33
|
Ahmadian Z, Correia A, Hasany M, Figueiredo P, Dobakhti F, Eskandari MR, Hosseini SH, Abiri R, Khorshid S, Hirvonen J, Santos HA, Shahbazi M. A Hydrogen-Bonded Extracellular Matrix-Mimicking Bactericidal Hydrogel with Radical Scavenging and Hemostatic Function for pH-Responsive Wound Healing Acceleration. Adv Healthc Mater 2021; 10:e2001122. [PMID: 33103384 DOI: 10.1002/adhm.202001122] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/04/2020] [Indexed: 01/02/2023]
Abstract
Generation of reactive oxygen species, delayed blood clotting, prolonged inflammation, bacterial infection, and slow cell proliferation are the main challenges of effective wound repair. Herein, a multifunctional extracellular matrix-mimicking hydrogel is fabricated through abundant hydrogen bonding among the functional groups of gelatin and tannic acid (TA) as a green chemistry approach. The hydrogel shows adjustable physicochemical properties by altering the concentration of TA and it represents high safety features both in vitro and in vivo on fibroblasts, red blood cells, and mice organs. In addition to the merit of facile encapsulation of cell proliferation-inducing hydrophilic drugs, accelerated healing of skin injury is obtained through pH-dependent release of TA and its multifaceted mechanisms as an antibacterial, antioxidant, hemostatic, and anti-inflammatory moiety. The developed gelatin-TA (GelTA) hydrogel also shows an outstanding effect on the formation of extracellular matrix and wound closure in vivo via offered cell adhesion sites in the backbone of gelatin that provide increased re-epithelialization and better collagen deposition. These results suggest that the multifunctional GelTA hydrogel is a promising candidate for the clinical treatment of full-thickness wounds and further development of wound dressing materials that releases active agents in the neutral or slightly basic environment of infected nonhealing wounds.
Collapse
Affiliation(s)
- Zainab Ahmadian
- Drug Research Program Division of Pharmaceutical Chemistry and Technology Faculty of Pharmacy University of Helsinki Helsinki FI‐00014 Finland
- Department of Pharmaceutics School of Pharmacy Zanjan University of Medical Science Zanjan 45139‐56184 Iran
| | - Alexandra Correia
- Drug Research Program Division of Pharmaceutical Chemistry and Technology Faculty of Pharmacy University of Helsinki Helsinki FI‐00014 Finland
| | - Masoud Hasany
- Department of Chemical and Petroleum Engineering Sharif University of Technology Azadi Avenue Tehran Iran
| | - Patrícia Figueiredo
- Drug Research Program Division of Pharmaceutical Chemistry and Technology Faculty of Pharmacy University of Helsinki Helsinki FI‐00014 Finland
| | - Faramarz Dobakhti
- Department of Pharmaceutics School of Pharmacy Zanjan University of Medical Science Zanjan 45139‐56184 Iran
| | - Mohammad Reza Eskandari
- Department of Pharmacology and Toxicology School of Pharmacy Zanjan University of Medical Science Zanjan 45139‐56184 Iran
| | - Seyed Hojjat Hosseini
- Department of Pharmacology School of Medicine Zanjan University of Medical Sciences Zanjan 45139‐56111 Iran
| | - Ramin Abiri
- Department of Microbiology School of Medicine Kermanshah University of Medical Sciences Kermanshah 67148‐69914 Iran
| | - Shiva Khorshid
- Department of Pharmaceutical Nanotechnology School of Pharmacy Zanjan University of Medical Sciences Zanjan 45139‐56184 Iran
| | - Jouni Hirvonen
- Drug Research Program Division of Pharmaceutical Chemistry and Technology Faculty of Pharmacy University of Helsinki Helsinki FI‐00014 Finland
| | - Hélder A. Santos
- Drug Research Program Division of Pharmaceutical Chemistry and Technology Faculty of Pharmacy University of Helsinki Helsinki FI‐00014 Finland
- Helsinki Institute of Life Science (HiLIFE) University of Helsinki Helsinki FI‐00014 Finland
| | - Mohammad‐Ali Shahbazi
- Drug Research Program Division of Pharmaceutical Chemistry and Technology Faculty of Pharmacy University of Helsinki Helsinki FI‐00014 Finland
- Department of Pharmaceutical Nanotechnology School of Pharmacy Zanjan University of Medical Sciences Zanjan 45139‐56184 Iran
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC) Zanjan University of Medical Sciences Zanjan 45139‐56184 Iran
| |
Collapse
|
34
|
Sparks HD, Sigaeva T, Tarraf S, Mandla S, Pope H, Hee O, Di Martino ES, Biernaskie J, Radisic M, Scott WM. Biomechanics of Wound Healing in an Equine Limb Model: Effect of Location and Treatment with a Peptide-Modified Collagen-Chitosan Hydrogel. ACS Biomater Sci Eng 2020; 7:265-278. [PMID: 33342210 DOI: 10.1021/acsbiomaterials.0c01431] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The equine distal limb wound healing model, characterized by delayed re-epithelialization and a fibroproliferative response to wounding similar to that observed in humans, is a valuable tool for the study of biomaterials poised for translation into both the veterinary and human medical markets. In the current study, we developed a novel method of biaxial biomechanical testing to assess the functional outcomes of healed wounds in a modified equine model and discovered significant functional and structural differences in both unwounded and injured skin at different locations on the distal limb that must be considered when using this model in future work. Namely, the medial skin was thicker and displayed earlier collagen engagement, medial wounds experienced a greater proportion of wound contraction during closure, and proximal wounds produced significantly more exuberant granulation tissue. Using this new knowledge of the equine model of aberrant wound healing, we then investigated the effect of a peptide-modified collagen-chitosan hydrogel on wound healing. Here, we found that a single treatment with the QHREDGS (glutamine-histidine-arginine-glutamic acid-aspartic acid-glycine-serine) peptide-modified hydrogel (Q-peptide hydrogel) resulted in a higher rate of wound closure and was able to modulate the biomechanical function toward a more compliant healed tissue without observable negative effects. Thus, we conclude that the use of a Q-peptide hydrogel provides a safe and effective means of improving the rate and quality of wound healing in a large animal model.
Collapse
Affiliation(s)
- Holly D Sparks
- Department of Veterinary Clinical & Diagnostic Sciences, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Taisiya Sigaeva
- Department of Systems Design Engineering, Faculty of Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.,Department of Civil Engineering and Centre for Bioengineering Research and Education, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| | - Samar Tarraf
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| | - Serena Mandla
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto M5S3G9, Canada.,Toronto General Research Institute, University of Toronto, Toronto M5S3G9, Canada
| | - Hannah Pope
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Olivia Hee
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Elena S Di Martino
- Department of Civil Engineering and Centre for Bioengineering Research and Education, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| | - Jeff Biernaskie
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada.,Alberta Children's Hospital Research Institute, Calgary, Alberta T2N 4N1, Canada.,Hotchkiss Brain Institute, Calgary, Alberta T2N 4N1, Canada
| | - Milica Radisic
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto M5S3G9, Canada.,Toronto General Research Institute, University of Toronto, Toronto M5S3G9, Canada.,Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto M5S3G9, Canada
| | - W Michael Scott
- Department of Veterinary Clinical and Diagnostic Sciences, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| |
Collapse
|
35
|
Seetaraman Amritha TM, Mahajan S, Subramaniam K, Chandramohan Y, Dhanasekaran A. Cloning, expression and purification of recombinant dermatopontin in Escherichia coli. PLoS One 2020; 15:e0242798. [PMID: 33253286 PMCID: PMC7703894 DOI: 10.1371/journal.pone.0242798] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 11/09/2020] [Indexed: 12/03/2022] Open
Abstract
Dermatopontin (DPT) is an extracellular matrix (ECM) protein with diversified pharmaceutical applications. It plays important role in cell adhesion/migration, angiogenesis and ECM maintenance. The recombinant production of this protein will enable further exploration of its multifaceted functions. In this study, DPT protein has been expressed in Escherichia coli (E.coli) aiming at cost effective recombinant production. The E.coli GJ1158 expression system was transformed with constructed recombinant vector (pRSETA-DPT) and protein was expressed as inclusion bodies on induction with NaCl. The inclusion bodies were solubilised in urea and renaturation of protein was done by on-column refolding procedure in Nickel activated Sepharose column. The refolded Histidine-tagged DPT protein was purified and eluted from column using imidazole and its purity was confirmed by analytical techniques. The biological activity of the protein was confirmed by collagen fibril assay, wound healing assay and Chorioallantoic Membrane (CAM) angiogenesis assay on comparison with standard DPT. The purified DPT was found to enhance the collagen fibrillogenesis process and improved the migration of human endothelial cells. About 73% enhanced wound closure was observed in purified DPT treated endothelial cells as compared to control. The purified DPT also could induce neovascularisation in the CAM model. At this stage, scaling up the production process for DPT with appropriate purity and reproducibility will have a promising commercial edge.
Collapse
Affiliation(s)
| | - Shubham Mahajan
- SRM Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Kumar Subramaniam
- Centre for Biotechnology, Anna University, Chennai, Tamil Nadu, India
| | | | | |
Collapse
|
36
|
Sharma A, Puri V, Kumar P, Singh I. Biopolymeric, Nanopatterned, Fibrous Carriers for Wound Healing Applications. Curr Pharm Des 2020; 26:4894-4908. [DOI: 10.2174/1381612826666200701152217] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 04/11/2020] [Indexed: 12/15/2022]
Abstract
Background:
Any sort of wound injury leads to skin integrity and further leads to wound formation.
Millions of deaths are reported every year, which contributes to an economical hamper world widely, this accounts
for 10% of death rate that insight into various diseases.
Current Methodology:
Rapid wound healing plays an important role in effective health care. Wound healing is a
multi-factorial physiological process, which helps in the growth of new tissue to render the body with the imperative
barrier from the external environment. The complexity of this phenomenon makes it prone to several abnormalities.
Wound healing, as a normal biological inherent process occurs in the body, which is reaped through four
highly defined programmed phases, such as hemostasis, inflammation, proliferation, and remodeling and these
phases occur in the proper progression. An overview, types, and classification of wounds along with the stages of
wound healing and various factors affecting wound healing have been discussed systematically. Various biopolymers
are reported for developing nanofibers and microfibers in wound healing, which can be used as a therapeutic
drug delivery for wound healing applications. Biopolymers are relevant for biomedical purposes owing to
biodegradability, biocompatibility, and non- toxicity. Biopolymers such as polysaccharides, proteins and various
gums are used for wound healing applications. Patents and future perspectives have been given in the concluding
part of the manuscript. Overall, applications of biopolymers in the development of fibers and their applications in
wound healing are gaining interest in researchers to develop modified biopolymers and tunable delivery systems
for effective management and care of different types of wounds.
Collapse
Affiliation(s)
- Ameya Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Vivek Puri
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Pradeep Kumar
- Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa
| | - Inderbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
37
|
Zhang W, Huang G, Xu F. Engineering Biomaterials and Approaches for Mechanical Stretching of Cells in Three Dimensions. Front Bioeng Biotechnol 2020; 8:589590. [PMID: 33154967 PMCID: PMC7591716 DOI: 10.3389/fbioe.2020.589590] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/09/2020] [Indexed: 12/21/2022] Open
Abstract
Mechanical stretch is widely experienced by cells of different tissues in the human body and plays critical roles in regulating their behaviors. Numerous studies have been devoted to investigating the responses of cells to mechanical stretch, providing us with fruitful findings. However, these findings have been mostly observed from two-dimensional studies and increasing evidence suggests that cells in three dimensions may behave more closely to their in vivo behaviors. While significant efforts and progresses have been made in the engineering of biomaterials and approaches for mechanical stretching of cells in three dimensions, much work remains to be done. Here, we briefly review the state-of-the-art researches in this area, with focus on discussing biomaterial considerations and stretching approaches. We envision that with the development of advanced biomaterials, actuators and microengineering technologies, more versatile and predictive three-dimensional cell stretching models would be available soon for extensive applications in such fields as mechanobiology, tissue engineering, and drug screening.
Collapse
Affiliation(s)
- Weiwei Zhang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, China
| | - Guoyou Huang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Chongqing University, Chongqing, China
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan, China
| | - Feng Xu
- Bioinspired Engineering and Biomechanics Center, Xi’an Jiaotong University, Xi’an, China
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Sciences and Technology, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
38
|
Abstract
Mammalian cell morphology has been linked to the viscoelastic properties of the adhesion substrate, which is particularly relevant in biological processes such as wound repair and embryonic development where cell spreading and migration are critical. Plastic deformation, degradation, and relaxation of stress are typically coupled in biomaterial systems used to explore these effects, making it unclear which variable drives cell behavior. Here we present a nondegradable polymer architecture that specifically decouples irreversible creep from stress relaxation and modulus. We demonstrate that network plasticity independently controls mesenchymal stem cell spreading through a biphasic relationship dependent on cell-intrinsic forces, and this relationship can be shifted by inhibiting actomyosin contractility. Kinetic Monte Carlo simulations also show strong correlation with experimental cell spreading data as a function of the extracellular matrix (ECM) plasticity. Furthermore, plasticity regulates many ECM adhesion and remodeling genes. Altogether, these findings confirm a key role for matrix plasticity in stem cell biophysics, and we anticipate this will have ramifications in the design of biomaterials to enhance therapeutic applications of stem cells.
Collapse
|
39
|
Keni R, Gourishetti K, Kinra M, Nayak PG, Shenoy R, Nandakumar K, Jagdale RN, Raghavendra KV, Ahmed SM. Botrops derived hemocoagulase formulation a probable agent for diabetic wound healing. 3 Biotech 2020; 10:443. [PMID: 33014686 PMCID: PMC7501396 DOI: 10.1007/s13205-020-02429-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 09/05/2020] [Indexed: 12/02/2022] Open
Abstract
Botroclot is a marketed preparation containing hemocoagulase, which is an enzyme having coagulant activity, isolated from the snake Botrops atrox. This formulation is used in dental surgeries and other minor surgical wounds. However, the formulation remains untested in diabetic wounds. Hence, we proposed a study for the topical application of Botroclot in high-fat diet (HFD) + Streptozotocin (STZ) induced diabetic rats. HFD was fed initially to rats which facilitates the development of insulin resistance. Thereafter, an injection of STZ (40 mg/kg, i.p.) was given. This resulted in the development of diabetes with elevated fasting glucose and impaired glucose tolerance. After stabilization of blood glucose values, wounds were created by punch biopsy on the dorsal side of the palm of the rat to mimic the diabetic wounds frequently seen in the case of humans. Later, the application of Botroclot on these wounds was carried out for 15 days. Topical application of hemocoagulase improved the wound closure and there was a gradual decrease in inflammatory markers and a substantial increase in collagen deposition occurred. Histopathological findings indicated the same, with an increase in granulation tissue suggesting that the topical application moderately improves the wound healing in diabetic rats. We conclude that Botroclot can have a mild to moderate effect in improving collagen deposition and thus wound contraction, improving wound closure in diabetic wounds in rats. This study also establishes the basis for exploration of agents from venom-based sources in diabetic wound healing.
Collapse
Affiliation(s)
- Raghuvir Keni
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104 Karnataka India
| | - Karthik Gourishetti
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104 Karnataka India
| | - Manas Kinra
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104 Karnataka India
| | - Pawan G. Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104 Karnataka India
| | - Rekha Shenoy
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104 Karnataka India
| | - Krishnadas Nandakumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104 Karnataka India
| | - Rajesh N. Jagdale
- Juggat Pharma, Jagdale Industries Pvt. Ltd., Bengaluru, 560078 Karnataka India
| | - K. V. Raghavendra
- Juggat Pharma, Jagdale Industries Pvt. Ltd., Bengaluru, 560078 Karnataka India
| | - Syed Mushtaq Ahmed
- Juggat Pharma, Jagdale Industries Pvt. Ltd., Bengaluru, 560078 Karnataka India
| |
Collapse
|
40
|
Naomi R, Ardhani R, Hafiyyah OA, Fauzi MB. Current Insight of Collagen Biomatrix for Gingival Recession: An Evidence-Based Systematic Review. Polymers (Basel) 2020; 12:E2081. [PMID: 32933133 PMCID: PMC7570157 DOI: 10.3390/polym12092081] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/09/2020] [Accepted: 08/13/2020] [Indexed: 12/17/2022] Open
Abstract
Collagen (Col) is a naturally available material and is widely used in the tissue engineering and medical field owing to its high biocompatibility and malleability. Promising results on the use of Col were observed in the periodontal application and many attempts have been carried out to inculcate Col for gingival recession (GR). Col is found to be an excellent provisional bioscaffold for the current treatment in GR. Therefore, the aim of this paper is to scrutinize an overview of the reported Col effect focusing on in vitro, in vivo, and clinical trials in GR application. A comprehensive literature search was performed using EBSCOhost, Science Direct, Springer Link, and Medline & Ovid databases to identify the potential articles on particular topics. The search query was accomplished based on the Boolean operators involving keywords such as (1) collagen OR scaffold OR hybrid scaffold OR biomaterial AND (2) gingiva recession OR tissue regeneration OR dental tissue OR healing mechanism OR gingiva. Only articles published from 2015 onwards were selected for further analysis. This review includes the physicochemical properties of Col scaffold and the outcome for GR. The comprehensive literature search retrieved a total of 3077 articles using the appropriate keywords. However, on the basis of the inclusion and exclusion criteria, only 15 articles were chosen for further review. The results from these articles indicated that Col promoted gingival tissue regeneration for GR healing. Therefore, this systematic review recapitulated that Col enhances regeneration of gingival tissue either through a slow or rapid process with no sign of cytotoxicity or adverse effect.
Collapse
Affiliation(s)
- Ruth Naomi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Retno Ardhani
- Department of Dental Biomedical Sciences, Faculty of Dentistry, Universitas Gadjah Mada, Jl Denta Sekip Utara, Yogyakarta 55281, Indonesia;
| | - Osa Amila Hafiyyah
- Department of Periodontics, Faculty of Dentistry, Universitas Gadjah Mada, Jl Denta Sekip Utara, Yogyakarta 55281, Indonesia;
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia;
| |
Collapse
|
41
|
Tang VW. Collagen, stiffness, and adhesion: the evolutionary basis of vertebrate mechanobiology. Mol Biol Cell 2020; 31:1823-1834. [PMID: 32730166 PMCID: PMC7525820 DOI: 10.1091/mbc.e19-12-0709] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/11/2020] [Accepted: 05/28/2020] [Indexed: 01/09/2023] Open
Abstract
The emergence of collagen I in vertebrates resulted in a dramatic increase in the stiffness of the extracellular environment, supporting long-range force propagation and the development of low-compliant tissues necessary for the development of vertebrate traits including pressurized circulation and renal filtration. Vertebrates have also evolved integrins that can bind to collagens, resulting in the generation of higher tension and more efficient force transmission in the extracellular matrix. The stiffer environment provides an opportunity for the vertebrates to create new structures such as the stress fibers, new cell types such as endothelial cells, new developmental processes such as neural crest delamination, and new tissue organizations such as the blood-brain barrier. Molecular players found only in vertebrates allow the modification of conserved mechanisms as well as the design of novel strategies that can better serve the physiological needs of the vertebrates. These innovations collectively contribute to novel morphogenetic behaviors and unprecedented increases in the complexities of tissue mechanics and functions.
Collapse
Affiliation(s)
- Vivian W. Tang
- Department of Cell and Developmental Biology, University of Illinois, Urbana–Champaign, Urbana, IL 61801
| |
Collapse
|
42
|
Gao F, Li W, Kan J, Ding Y, Wang Y, Deng J, Qing R, Wang B, Hao S. Insight into the Regulatory Function of Human Hair Keratins in Wound Healing Using Proteomics. ACTA ACUST UNITED AC 2020; 4:e1900235. [PMID: 32297487 DOI: 10.1002/adbi.201900235] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 03/18/2020] [Accepted: 03/27/2020] [Indexed: 01/14/2023]
Abstract
Keratins derived from human hair possess excellent wound healing qualities. However, their functional contribution to this process is poorly understood. In this study, the regulatory function of human hair keratins in wound healing is investigated using proteomic analysis by dividing keratins into different groups based on their molecular weight distributions: low molecular weight keratins (LMWK, 10-30 kDa), medium molecular weight keratins (MMWK, 30-50 kDa), and high molecular weight keratins (HMWK, >50 kDa). Keratin hydrogels with different molecular weights exhibit various morphologies, rheological properties, degradation rates, and wound healing activities. Using proteomic analysis, LMWK and HMWK hydrogels exhibit a stronger regulatory ability for wound healing at days 1 and 7, respectively. The major functions of LMWK during wound healing are regulation of cells communication and function. In contrast, proteins associated with energy metabolism are significantly expressed after HMWK hydrogel treatment at day 1, and these play an important role in cellular growth and reactive oxygen species scavenging at day 7. These results demonstrate that the wound healing qualities of human hair keratins are influenced by their molecular weight distribution, and the proteomic analysis sheds new light on the regulatory function of human hair keratins during wound healing.
Collapse
Affiliation(s)
- Feiyan Gao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Wenfeng Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Jinlan Kan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Yi Ding
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Yumei Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Jia Deng
- College of Environment and Resources, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Rui Qing
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Shilei Hao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China.,Media Lab, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| |
Collapse
|
43
|
From macroscopic mechanics to cell-effective stiffness within highly aligned macroporous collagen scaffolds. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109760. [DOI: 10.1016/j.msec.2019.109760] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 05/15/2019] [Accepted: 05/15/2019] [Indexed: 12/24/2022]
|
44
|
Abraham EDC, Angelo JAD, Mammana SB, Lascalea GE, Altamirano JC. Recycling Control of Histological Xylol: A Chemometric Approach. ChemistrySelect 2019. [DOI: 10.1002/slct.201901659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Emilia del C. Abraham
- Instituto Argentino de NivologíaGlaciología y Ciencias Ambientales (CCT-CONICET-Mendoza) Av. Ruiz Leal s/n, P.O. Box 131 Mendoza 5500 Argentina
| | - José A. D' Angelo
- Instituto Argentino de NivologíaGlaciología y Ciencias Ambientales (CCT-CONICET-Mendoza) Av. Ruiz Leal s/n, P.O. Box 131 Mendoza 5500 Argentina
- Facultad de Ciencias Exactas y NaturalesUniversidad Nacional de Cuyo Padre Jorge Contreras 1300 Mendoza 5500 Argentina
- Paleobotanical LaboratoryCape Breton University 1250 Grand Lake Rd., Sydney Nova Scotia B1P 6 L2 Canada
| | - Sabrina B. Mammana
- Instituto Argentino de NivologíaGlaciología y Ciencias Ambientales (CCT-CONICET-Mendoza) Av. Ruiz Leal s/n, P.O. Box 131 Mendoza 5500 Argentina
- Facultad de Ciencias Exactas y NaturalesUniversidad Nacional de Cuyo Padre Jorge Contreras 1300 Mendoza 5500 Argentina
| | - Gustavo E. Lascalea
- Instituto Argentino de NivologíaGlaciología y Ciencias Ambientales (CCT-CONICET-Mendoza) Av. Ruiz Leal s/n, P.O. Box 131 Mendoza 5500 Argentina
| | - Jorgelina C. Altamirano
- Instituto Argentino de NivologíaGlaciología y Ciencias Ambientales (CCT-CONICET-Mendoza) Av. Ruiz Leal s/n, P.O. Box 131 Mendoza 5500 Argentina
- Facultad de Ciencias Exactas y NaturalesUniversidad Nacional de Cuyo Padre Jorge Contreras 1300 Mendoza 5500 Argentina
| |
Collapse
|
45
|
Schreivogel S, Kuchibhotla V, Knaus P, Duda GN, Petersen A. Load-induced osteogenic differentiation of mesenchymal stromal cells is caused by mechano-regulated autocrine signaling. J Tissue Eng Regen Med 2019; 13:1992-2008. [PMID: 31359634 DOI: 10.1002/term.2948] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 06/28/2019] [Accepted: 07/19/2019] [Indexed: 12/12/2022]
Abstract
Mechanical boundary conditions critically influence the bone healing process. In this context, previous in vitro studies have demonstrated that cyclic mechanical compression alters migration and triggers osteogenesis of mesenchymal stromal cells (MSC), both processes being relevant to healing. However, it remains unclear whether this mechanosensitivity is a direct consequence of cyclic compression, an indirect effect of altered supply or a specific modulation of autocrine bone morphogenetic protein (BMP) signaling. Here, we investigate the influence of cyclic mechanical compression (ε = 5% and 10%, f = 1 Hz) on human bone marrow MSC (hBMSC) migration and osteogenic differentiation in a 3D biomaterial scaffold, an in vitro system mimicking the mechanical environment of the early bone healing phase. The open-porous architecture of the scaffold ensured sufficient supply even without cyclic compression, minimizing load-associated supply alterations. Furthermore, a large culture medium volume in relation to the cell number diminished autocrine signaling. Migration of hBMSCs was significantly downregulated under cyclic compression. Surprisingly, a decrease in migration was not associated with increased osteogenic differentiation of hBMSCs, as the expression of RUNX2 and osteocalcin decreased. In contrast, BMP2 expression was significantly upregulated. Enabling autocrine stimulation by increasing the cell-to-medium ratio in the bioreactor finally resulted in a significant upregulation of RUNX2 in response to cyclic compression, which could be reversed by rhNoggin treatment. The results indicate that osteogenesis is promoted by cyclic compression when cells condition their environment with BMP. Our findings highlight the importance of mutual interactions between mechanical forces and BMP signaling in controlling osteogenic differentiation.
Collapse
Affiliation(s)
- Sophie Schreivogel
- Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin-Brandenburg Center and School for Regenerative Therapies, Berlin, Germany
| | | | - Petra Knaus
- Berlin-Brandenburg Center and School for Regenerative Therapies, Berlin, Germany
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Georg N Duda
- Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin-Brandenburg Center and School for Regenerative Therapies, Berlin, Germany
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ansgar Petersen
- Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin-Brandenburg Center and School for Regenerative Therapies, Berlin, Germany
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
46
|
Abstract
Biofabrication techniques have enabled the formation of complex models of many biological tissues. We present a framework to contextualize biofabrication techniques within a disease modeling application. Fibrosis is a progressive disease interfering with tissue structure and function, which stems from an aberrant wound healing response. Epithelial injury and clot formation lead to fibroblast invasion and activation, followed by contraction and remodeling of the extracellular matrix. These stages have healthy wound healing variants in addition to the pathogenic analogs that are seen in fibrosis. This review evaluates biofabrication of a variety of phenotypic cell-based fibrosis assays. By recapitulating different contributors to fibrosis, these assays are able to evaluate biochemical pathways and therapeutic candidates for specific stages of fibrosis pathogenesis. Biofabrication of these culture models may enable phenotypic screening for improved understanding of fibrosis biology as well as improved screening of anti-fibrotic therapeutics.
Collapse
Affiliation(s)
- Cameron Yamanishi
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, United States of America
- The Parker H Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, United States of America
| | - Stephen Robinson
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, United States of America
- The Parker H Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, United States of America
| | - Shuichi Takayama
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, United States of America
- The Parker H Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, United States of America
| |
Collapse
|