1
|
Sousa FB, Matos MJS, Carvalho BR, Liu M, Ames A, Zhou D, Resende GC, Yu Z, Lafeta L, Pimenta MA, Terrones M, Teodoro MD, Chacham H, Malard LM. Giant Valley Zeeman Splitting in Vanadium-Doped WSe 2 Monolayers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405434. [PMID: 39377370 DOI: 10.1002/smll.202405434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/24/2024] [Indexed: 10/09/2024]
Abstract
2D dilute magnetic semiconductors (DMS) based on transition metal dichalcogenides (TMD) offer an innovative pathway for advancing spintronic technologies, including the potential to exploit phenomena such as the valley Zeeman effect. However, the impact of magnetic ordering on the valley degeneracy breaking and on the enhancement of the optical transitions g-factors of these materials remains an open question. Here, a giant effective g-factors ranging between ≈-27 and -69 for the bound exciton at 4 K in vanadium-doped WSe2 monolayers, obtained through magneto-photoluminescence (PL) experiments is reported. This giant g-factor disappears at room temperature, suggesting that this response is associated with a magnetic ordering of the vanadium impurity states at low temperatures. Ab initio calculations for the vanadium-doped WSe2 monolayer confirm the existence of magnetic ordering of the vanadium states, which leads to degeneracy breaking of the valence bands at K and K'. A phenomenological analysis is employed to correlate this splitting with the measured enhanced effective g-factor. The findings shed light on the potential of defect engineering of 2D materials for spintronic applications.
Collapse
Affiliation(s)
- Frederico B Sousa
- Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 30123-970, Brazil
- Departamento de Física, Universidade Federal de São Carlos, São Carlos, São Paulo, 13565-905, Brazil
| | - Matheus J S Matos
- Departamento de Física, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Bruno R Carvalho
- Departamento de Física, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, 59078-970, Brazil
| | - Mingzu Liu
- Department of Physics, The Pennsylvania State University, University Park, PA, 16802, USA
- Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Alessandra Ames
- Departamento de Física, Universidade Federal de São Carlos, São Carlos, São Paulo, 13565-905, Brazil
| | - Da Zhou
- Department of Physics, The Pennsylvania State University, University Park, PA, 16802, USA
- Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Geovani C Resende
- Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 30123-970, Brazil
| | - Zhuohang Yu
- Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Lucas Lafeta
- Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), Butenandtstraße 5-13, 81377, Munich, Germany
| | - Marcos A Pimenta
- Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 30123-970, Brazil
- Departamento de Física, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Mauricio Terrones
- Department of Physics, The Pennsylvania State University, University Park, PA, 16802, USA
- Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Marcio D Teodoro
- Departamento de Física, Universidade Federal de São Carlos, São Carlos, São Paulo, 13565-905, Brazil
| | - Helio Chacham
- Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 30123-970, Brazil
| | - Leandro M Malard
- Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 30123-970, Brazil
| |
Collapse
|
2
|
Gao B, Wang W, Meng Y, Du C, Long Y, Zhang Y, Shao H, Lai Z, Wang W, Xie P, Yip S, Zhong X, Ho JC. Electrical Polarity Modulation in V-Doped Monolayer WS 2 for Homogeneous CMOS Inverters. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402217. [PMID: 38924273 DOI: 10.1002/smll.202402217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/14/2024] [Indexed: 06/28/2024]
Abstract
As demand for higher integration density and smaller devices grows, silicon-based complementary metal-oxide-semiconductor (CMOS) devices will soon reach their ultimate limits. 2D transition metal dichalcogenides (TMDs) semiconductors, known for excellent electrical performance and stable atomic structure, are seen as promising materials for future integrated circuits. However, controlled and reliable doping of 2D TMDs, a key step for creating homogeneous CMOS logic components, remains a challenge. In this study, a continuous electrical polarity modulation of monolayer WS2 from intrinsic n-type to ambipolar, then to p-type, and ultimately to a quasi-metallic state is achieved simply by introducing controllable amounts of vanadium (V) atoms into the WS2 lattice as p-type dopants during chemical vapor deposition (CVD). The achievement of purely p-type field-effect transistors (FETs) is particularly noteworthy based on the 4.7 at% V-doped monolayer WS2, demonstrating a remarkable on/off current ratio of 105. Expanding on this triumph, the first initial prototype of ultrathin homogeneous CMOS inverters based on monolayer WS2 is being constructed. These outcomes validate the feasibility of constructing homogeneous CMOS devices through the atomic doping process of 2D materials, marking a significant milestone for the future development of integrated circuits.
Collapse
Affiliation(s)
- Boxiang Gao
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Weijun Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - You Meng
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Congcong Du
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
- Qingyuan Innovation Laboratory, Quanzhou, 362801, China
| | - Yunchen Long
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Yuxuan Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - He Shao
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Zhengxun Lai
- College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, 410082, China
| | - Wei Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Pengshan Xie
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - SenPo Yip
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka, 816-8580, Japan
| | - Xiaoyan Zhong
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
- City University of Hong Kong Matter Science Research Institute (Futian, Shenzhen), Shenzhen, 518048, China
- Nanomanufacturing Laboratory (NML), City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Johnny C Ho
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka, 816-8580, Japan
- State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Hong Kong SAR, 999077, China
| |
Collapse
|
3
|
Chen YX, Hsiao KW, Chin HT, Chen DR, Yen ZL, Lan YW, Ting CC, Hofmann M, Chiang CT, Chan YH, Vejpravová JK, Hsieh YP. Pt@WS 2 -an Extrinsic 2D Dilute Ferromagnetic Semiconductor Beyond Room Temperature. SMALL METHODS 2024:e2400955. [PMID: 39300866 DOI: 10.1002/smtd.202400955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/05/2024] [Indexed: 09/22/2024]
Abstract
Extrinsic dilute magnetic semiconductors achieve magnetic functionality through tailored interaction between a semiconducting matrix and a non-magnetic dopant. The absence of intrinsic magnetic impurities makes this approach promising to investigate the newly emerging field of 2D dilute magnetic semiconductors. Here the first realization of an extrinsic 2D DMS in Pt-doped WS2 is demonstrated. A bottom-up synthesis approach yields a uniform and highly crystalline monolayer where platinum selectively occupies the tungsten sub-lattice. The orbital overlap between W 4d and Pt 5d results in spin-selective hybrid states that produce a strong valley-Zeeman splitting. Combined experimental and theoretical results show that this interaction yields a sizable ferromagnetic response with a Curie temperature ≈375 K. These results open up a new route toward 2D magnetic properties through tailoring of atomic interactions for future applications in spintronics and magnetic nanoactuation.
Collapse
Affiliation(s)
- Yu-Xiang Chen
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
- International Graduate Program of Molecular Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
- Molecular Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 10617, Taiwan
| | - Kai-Wen Hsiao
- Department of Physics, National Taiwan Normal University, Taipei, 10617, Taiwan
| | - Hao-Ting Chin
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
- International Graduate Program of Molecular Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
- Molecular Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 10617, Taiwan
| | - Ding-Rui Chen
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
- International Graduate Program of Molecular Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
- Molecular Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 10617, Taiwan
| | - Zhi-Long Yen
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
- International Graduate Program of Molecular Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
- Molecular Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 10617, Taiwan
| | - Yann-Wen Lan
- Department of Physics, National Taiwan Normal University, Taipei, 10617, Taiwan
| | - Chu-Chi Ting
- Graduate Institute of Opto-Mechatronics, Department of Mechanical Engineering, National Chung Cheng University, Chia-Yi, 62102, Taiwan
| | - Mario Hofmann
- Department of Physics, National Taiwan University, Taipei, 10617, Taiwan
| | - Cheng-Tien Chiang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
- Molecular Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 10617, Taiwan
- Department of Physics, National Taiwan University, Taipei, 10617, Taiwan
| | - Yang-Hao Chan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
- Physics Division, National Center of Theoretical Sciences, Taipei, 10617, Taiwan
| | - Jana Kalbáčová Vejpravová
- Department of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, Prague 2, 121 16, Czech Republic
| | - Ya-Ping Hsieh
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
| |
Collapse
|
4
|
Zhang Z, Hoang L, Hocking M, Peng Z, Hu J, Zaborski G, Reddy PD, Dollard J, Goldhaber-Gordon D, Heinz TF, Pop E, Mannix AJ. Chemically Tailored Growth of 2D Semiconductors via Hybrid Metal-Organic Chemical Vapor Deposition. ACS NANO 2024; 18:25414-25424. [PMID: 39230253 PMCID: PMC11412230 DOI: 10.1021/acsnano.4c02164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Two-dimensional (2D) semiconducting transition-metal dichalcogenides (TMDCs) are an exciting platform for excitonic physics and next-generation electronics, creating a strong demand to understand their growth, doping, and heterostructures. Despite significant progress in solid-source (SS-) and metal-organic chemical vapor deposition (MOCVD), further optimization is necessary to grow highly crystalline 2D TMDCs with controlled doping. Here, we report a hybrid MOCVD growth method that combines liquid-phase metal precursor deposition and vapor-phase organo-chalcogen delivery to leverage the advantages of both MOCVD and SS-CVD. Using our hybrid approach, we demonstrate WS2 growth with tunable morphologies─from separated single-crystal domains to continuous monolayer films─on a variety of substrates, including sapphire, SiO2, and Au. These WS2 films exhibit narrow neutral exciton photoluminescence line widths down to 27-28 meV and room-temperature mobility up to 34-36 cm2 V-1 s-1. Through simple modifications to the liquid precursor composition, we demonstrate the growth of V-doped WS2, MoxW1-xS2 alloys, and in-plane WS2-MoS2 heterostructures. This work presents an efficient approach for addressing a variety of TMDC synthesis needs on a laboratory scale.
Collapse
Affiliation(s)
- Zhepeng Zhang
- Department of Materials Science & Engineering, Stanford University, Stanford, California 94305, United States
| | - Lauren Hoang
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - Marisa Hocking
- Department of Materials Science & Engineering, Stanford University, Stanford, California 94305, United States
| | - Zhenghan Peng
- Department of Materials Science & Engineering, Stanford University, Stanford, California 94305, United States
| | - Jenny Hu
- Department of Applied Physics, Stanford University, Stanford, California 94305, United States
| | - Gregory Zaborski
- Department of Materials Science & Engineering, Stanford University, Stanford, California 94305, United States
| | - Pooja D Reddy
- Department of Materials Science & Engineering, Stanford University, Stanford, California 94305, United States
| | - Johnny Dollard
- Department of Materials Science & Engineering, Stanford University, Stanford, California 94305, United States
| | - David Goldhaber-Gordon
- Department of Physics, Stanford University, Stanford, California 94305, United States
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Tony F Heinz
- Department of Applied Physics, Stanford University, Stanford, California 94305, United States
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
- Department of Photon Sciences, Stanford University, Stanford, California 94305, United States
| | - Eric Pop
- Department of Materials Science & Engineering, Stanford University, Stanford, California 94305, United States
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
- Precourt Institute for Energy, Stanford University, Stanford, California 94305, United States
| | - Andrew J Mannix
- Department of Materials Science & Engineering, Stanford University, Stanford, California 94305, United States
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| |
Collapse
|
5
|
Xue G, Qin B, Ma C, Yin P, Liu C, Liu K. Large-Area Epitaxial Growth of Transition Metal Dichalcogenides. Chem Rev 2024; 124:9785-9865. [PMID: 39132950 DOI: 10.1021/acs.chemrev.3c00851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Over the past decade, research on atomically thin two-dimensional (2D) transition metal dichalcogenides (TMDs) has expanded rapidly due to their unique properties such as high carrier mobility, significant excitonic effects, and strong spin-orbit couplings. Considerable attention from both scientific and industrial communities has fully fueled the exploration of TMDs toward practical applications. Proposed scenarios, such as ultrascaled transistors, on-chip photonics, flexible optoelectronics, and efficient electrocatalysis, critically depend on the scalable production of large-area TMD films. Correspondingly, substantial efforts have been devoted to refining the synthesizing methodology of 2D TMDs, which brought the field to a stage that necessitates a comprehensive summary. In this Review, we give a systematic overview of the basic designs and significant advancements in large-area epitaxial growth of TMDs. We first sketch out their fundamental structures and diverse properties. Subsequent discussion encompasses the state-of-the-art wafer-scale production designs, single-crystal epitaxial strategies, and techniques for structure modification and postprocessing. Additionally, we highlight the future directions for application-driven material fabrication and persistent challenges, aiming to inspire ongoing exploration along a revolution in the modern semiconductor industry.
Collapse
Affiliation(s)
- Guodong Xue
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Biao Qin
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Chaojie Ma
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Peng Yin
- Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Department of Physics, Renmin University of China, Beijing 100872, China
| | - Can Liu
- Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Department of Physics, Renmin University of China, Beijing 100872, China
| | - Kaihui Liu
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
- International Centre for Quantum Materials, Collaborative Innovation Centre of Quantum Matter, Peking University, Beijing 100871, China
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| |
Collapse
|
6
|
Jia Z, Zhao M, Chen Q, Sun R, Cao L, Ye K, Zhu T, Liu L, Tian Y, Wang Y, Du J, Zhang F, Lv W, Ling F, Zhai Y, Jiang Y, Wang Z. Spin Transport Modulation of 2D Fe 3O 4 Nanosheets Driven by Verwey Phase Transition. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2405945. [PMID: 39229956 DOI: 10.1002/advs.202405945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/06/2024] [Indexed: 09/05/2024]
Abstract
Realizing spin transport between heavy metal and two-dimensional (2D) magnetic materials at high Curie temperature (TC) is crucial to advanced spintronic information storage technology. Here, environmentally stable 2D nonlayered Fe3O4 nanosheets are successfully synthesized using a reproducible process and found that they exhibit vortex magnetic domains at room temperature. A Verwey phase transition temperature (TV) of ≈110 K is identified for ≈3 nm thick nanosheet through Raman characterization and spin Hall device measurement of the Pt/Fe3O4 bilayer. The anisotropic magnetoresistance ratio decreases near TV, while both the spin Hall magnetoresistance ratio and spin mixing conductance (Gr) increase at TV. As the temperature approaches 112 K, the anomalous Hall effect ratio tends to become zero. The maximum Gr reaches ≈5 × 1015 Ω-1m-2 due to the clean and flat interface between Pt and 2D nanosheet. The observed spin transport behavior in Pt/Fe3O4 spin Hall devices indicates that 2D Fe3O4 nanosheets possess potential for high-power micro spintronic storage devices applications.
Collapse
Affiliation(s)
- Zhiyan Jia
- Institute of Quantum Materials and Devices, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, China
- International Iberian Nanotechnology Laboratory (INL), Braga, 4715-330, Portugal
| | - Mengfan Zhao
- Institute of Quantum Materials and Devices, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Qian Chen
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, China
- Key Laboratory of Nanodevices and Applications Suzhou Institute of Nano-Tech and Nano-Bionics CAS, Suzhou, 215123, China
| | - Rong Sun
- International Iberian Nanotechnology Laboratory (INL), Braga, 4715-330, Portugal
| | - Lulu Cao
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, China
| | - Kun Ye
- Institute of Quantum Materials and Devices, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Tao Zhu
- Institute of Quantum Materials and Devices, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Lixuan Liu
- Institute of Quantum Materials and Devices, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Yuxin Tian
- Institute of Quantum Materials and Devices, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Yi Wang
- Institute of Quantum Materials and Devices, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Jie Du
- Institute of Quantum Materials and Devices, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Fang Zhang
- Institute of Quantum Materials and Devices, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Weiming Lv
- Key Laboratory of Nanodevices and Applications Suzhou Institute of Nano-Tech and Nano-Bionics CAS, Suzhou, 215123, China
| | - FeiFei Ling
- School of Electrical and Information Engineering, Tianjin University, Tianjin, 300072, China
- Hebei Technology Innovation Center of Phase Change Thermal Management of Data Center, Hebei University of Water Resources and Electric Engineering, Cangzhou, 061001, China
| | - Ya Zhai
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, China
| | - Yong Jiang
- Institute of Quantum Materials and Devices, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Zhongchang Wang
- International Iberian Nanotechnology Laboratory (INL), Braga, 4715-330, Portugal
- School of Chemistry, Beihang University, Beijing, 100191, China
| |
Collapse
|
7
|
Tian C, Sui Y, Xiao R, Feng Y, Liu J, Wang H, Zhao S, Wang S, Li P, Yu G. Doping Ability Modulated by Interlayer Coupling in AA' and AB Stacked Bilayer V-WS 2 Grown with Chemical Vapor Deposition. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309777. [PMID: 38319032 DOI: 10.1002/smll.202309777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/16/2024] [Indexed: 02/07/2024]
Abstract
Doping in transition metal dichalcogenide (TMD) has received extensive attention for its prospect in the application of photoelectric devices. Currently researchers focus on the doping ability and doping distribution in monolayer TMD and have obtained a series of achievements. Bilayer TMD has more excellent properties compared with monolayer TMD. Moreover, bilayer TMD with different stacking structures presents varying performance due to the difference in interlayer coupling. Herein, this work focuses on doping ability of dopants in different bilayer stacking structures that has not been studied yet. Results of this work show that the doping ability of V atoms in bilayer AA' and AB stacked WS2 is different, and the doping concentration of V atoms in AB stacked WS2 is higher than in AA' stacked WS2. Moreover, dopants from top and bottom layer can be distinguished by scanning transmission electron microscopy (STEM) image. Density functional theory (DFT) calculation further confirms the doping rule. This study reveals the mechanism of the different doping ability caused by stacking structures in bilayer TMD and lays a foundation for further preparation of controllable-doping bilayer TMD materials.
Collapse
Affiliation(s)
- Chuang Tian
- State Key Laboratory of Integrated Circuit Materials, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanping Sui
- State Key Laboratory of Integrated Circuit Materials, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Runhan Xiao
- State Key Laboratory of Integrated Circuit Materials, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuhan Feng
- State Key Laboratory of Integrated Circuit Materials, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiawen Liu
- State Key Laboratory of Integrated Circuit Materials, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haomin Wang
- State Key Laboratory of Integrated Circuit Materials, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sunwen Zhao
- State Key Laboratory of Integrated Circuit Materials, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuang Wang
- State Key Laboratory of Integrated Circuit Materials, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pai Li
- State Key Laboratory of Integrated Circuit Materials, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guanghui Yu
- State Key Laboratory of Integrated Circuit Materials, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
8
|
Thomas JC, Chen W, Xiong Y, Barker BA, Zhou J, Chen W, Rossi A, Kelly N, Yu Z, Zhou D, Kumari S, Barnard ES, Robinson JA, Terrones M, Schwartzberg A, Ogletree DF, Rotenberg E, Noack MM, Griffin S, Raja A, Strubbe DA, Rignanese GM, Weber-Bargioni A, Hautier G. A substitutional quantum defect in WS 2 discovered by high-throughput computational screening and fabricated by site-selective STM manipulation. Nat Commun 2024; 15:3556. [PMID: 38670956 DOI: 10.1038/s41467-024-47876-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Point defects in two-dimensional materials are of key interest for quantum information science. However, the parameter space of possible defects is immense, making the identification of high-performance quantum defects very challenging. Here, we perform high-throughput (HT) first-principles computational screening to search for promising quantum defects within WS2, which present localized levels in the band gap that can lead to bright optical transitions in the visible or telecom regime. Our computed database spans more than 700 charged defects formed through substitution on the tungsten or sulfur site. We found that sulfur substitutions enable the most promising quantum defects. We computationally identify the neutral cobalt substitution to sulfur (CoS 0 ) and fabricate it with scanning tunneling microscopy (STM). The CoS 0 electronic structure measured by STM agrees with first principles and showcases an attractive quantum defect. Our work shows how HT computational screening and nanoscale synthesis routes can be combined to design promising quantum defects.
Collapse
Affiliation(s)
- John C Thomas
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA.
| | - Wei Chen
- Institute of Condensed Matter and Nanoscicence, Université Catholique de Louvain, Louvain-la-Neuve, 1348, Belgium
| | - Yihuang Xiong
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Bradford A Barker
- Department of Physics, University of California, Merced, Merced, CA, 95343, USA
| | - Junze Zhou
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Weiru Chen
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Antonio Rossi
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Nolan Kelly
- Department of Physics, University of California, Merced, Merced, CA, 95343, USA
| | - Zhuohang Yu
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16082, USA
- Center for Two-Dimensional and Layered Materials, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Da Zhou
- Department of Physics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Shalini Kumari
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16082, USA
- Center for Two-Dimensional and Layered Materials, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Edward S Barnard
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Joshua A Robinson
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16082, USA
- Center for Two-Dimensional and Layered Materials, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Physics, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Mauricio Terrones
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16082, USA
- Center for Two-Dimensional and Layered Materials, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Physics, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Adam Schwartzberg
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - D Frank Ogletree
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Eli Rotenberg
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Marcus M Noack
- Applied Mathematics and Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Sinéad Griffin
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Archana Raja
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - David A Strubbe
- Department of Physics, University of California, Merced, Merced, CA, 95343, USA
| | - Gian-Marco Rignanese
- Institute of Condensed Matter and Nanoscicence, Université Catholique de Louvain, Louvain-la-Neuve, 1348, Belgium
| | - Alexander Weber-Bargioni
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Geoffroy Hautier
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA.
| |
Collapse
|
9
|
Wang J, Yao C, Lu S, Wang S, Zheng D, Song F, Wan J. Enhanced magnetic anisotropy of iridium dimers on antisite defects of two-dimensional transition-metal dichalcogenides. Phys Chem Chem Phys 2024; 26:11798-11806. [PMID: 38566592 DOI: 10.1039/d4cp00301b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The combination of transition-metal (TM) elements with two-dimensional (2D) transition-metal dichalcogenides (TMDs) provides an effective route to realizing a 2D controllable magnetic order, leading to significant applications in multifunctional nanospintronics. However, in most TM atoms@TMDs nanostructures, it is challenging for the magnetic anisotropy energy (MAE) to exceed 30 meV when affected by the crystal field. Hence, the stronger magnetic anisotropy of TMDs has yet to be developed. Here, utilizing first-principle calculations based on density functional theory (DFT), a feasible method to enhance the MAEs of TMDs via configurating iridium dimers (Ir2) on 2D traditional and Janus TMDs with antisite defects is reported. Calculations revealed that 28 of the 54 configurations considered possessed structure-dependent MAEs of >60 meV per Ir2 in the out-of-plane direction, suggesting the potential for applications at room temperature. We also showed the ability to tune the MAE further massively by applying a biaxial strain as well as the surface asymmetric polarization reversal of Janus-type substrates. This approach led to changes to >80 meV per Ir2. This work provides a novel strategy to achieve tunable large magnetic anisotropy in 2D TMDs. It also extends the functionality of antisite-defective TMDs, thereby providing theoretical support for the development of magnetic nanodevices.
Collapse
Affiliation(s)
- Jun Wang
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, and School of Physics, Nanjing University, Nanjing 210093, China.
| | - Chen Yao
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, and School of Physics, Nanjing University, Nanjing 210093, China.
| | - Siqi Lu
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, and School of Physics, Nanjing University, Nanjing 210093, China.
- Atomic Manufacture Institute (AMI), 211805 Nanjing, China
| | - Suyun Wang
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, and School of Physics, Nanjing University, Nanjing 210093, China.
| | - Dong Zheng
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, and School of Physics, Nanjing University, Nanjing 210093, China.
- Atomic Manufacture Institute (AMI), 211805 Nanjing, China
| | - Fengqi Song
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, and School of Physics, Nanjing University, Nanjing 210093, China.
- Atomic Manufacture Institute (AMI), 211805 Nanjing, China
| | - Jianguo Wan
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, and School of Physics, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
10
|
Zhao L, Wu W, Gao B, Zhao Z, An B, Xu Q. CO 2 Stress-Driven Room Temperature Ferromagnetism of Ultrathin 2D Gallium Oxide. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308187. [PMID: 38016073 DOI: 10.1002/smll.202308187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/25/2023] [Indexed: 11/30/2023]
Abstract
Spintronic devices work by manipulating the spin of electrons other than charge transfer, which is of revolutionary significance and can largely reduce energy consumption in the future. Herein, ultrathin two-dimensional (2D) non-van der Waals (non-vdW) γ-Ga2O3 with room temperature ferromagnetism is successfully obtained by using supercritical CO2 (SC CO2). The stress effect of SC CO2 under different pressures selectively modulates the orientation and strength of covalent bonds, leading to the change of atomic structure including lattice expansion, introduction of O vacancy, and transition of Ga-O coordination (GaO4 and GaO6). Magnetic measurements show that pristine γ-Ga2O3 is nonferromagnetic, whereas the SC CO2 treated γ-Ga2O3 exhibits obvious ferromagnetic behavior with an optimal magnetization of 0.025 emu g-1 and a Curie temperature of 300 K.
Collapse
Affiliation(s)
- Lanyu Zhao
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, China
| | - Wenzhuo Wu
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, China
| | - Bo Gao
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450052, China
| | - Zhiliang Zhao
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, China
| | - Bin An
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, China
| | - Qun Xu
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, China
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
11
|
Liu J, Wan S, Li B, Li B, Liang J, Lu P, Zhang Z, Li W, Li X, Huangfu Y, Wu R, Song R, Yang X, Liu C, Hong R, Duan X, Li J, Duan X. Highly Robust Room-Temperature Interfacial Ferromagnetism in Ultrathin Co 2Si Nanoplates. NANO LETTERS 2024; 24:3768-3776. [PMID: 38477579 DOI: 10.1021/acs.nanolett.4c00321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
The reduced dimensionality and interfacial effects in magnetic nanostructures open the feasibility to tailor magnetic ordering. Here, we report the synthesis of ultrathin metallic Co2Si nanoplates with a total thickness that is tunable to 2.2 nm. The interfacial magnetism coupled with the highly anisotropic nanoplate geometry leads to strong perpendicular magnetic anisotropy and robust hard ferromagnetism at room temperature, with a Curie temperature (TC) exceeding 950 K and a coercive field (HC) > 4.0 T at 3 K and 8750 Oe at 300 K. Theoretical calculations suggest that ferromagnetism originates from symmetry breaking and undercoordinated Co atoms at the Co2Si and SiO2 interface. With protection by the self-limiting intrinsic oxide, the interfacial ferromagnetism of the Co2Si nanoplates exhibits excellent environmental stability. The controllable growth of ambient stable Co2Si nanoplates as 2D hard ferromagnets could open exciting opportunities for fundamental studies and applications in Si-based spintronic devices.
Collapse
Affiliation(s)
- Jialing Liu
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Si Wan
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Bo Li
- College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha 410082, China
| | - Bailing Li
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jingyi Liang
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Ping Lu
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Zucheng Zhang
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Wei Li
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xin Li
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Ying Huangfu
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Ruixia Wu
- School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Rong Song
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xiangdong Yang
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Zhejiang Institute of Tianjin University, Ningbo 315211, China
| | - Chang Liu
- School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Ruohao Hong
- School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Xiangfeng Duan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Jia Li
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xidong Duan
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
12
|
Coelho PM. Magnetic doping in transition metal dichalcogenides. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:203001. [PMID: 38324890 DOI: 10.1088/1361-648x/ad271b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 02/07/2024] [Indexed: 02/09/2024]
Abstract
Transition metal dichalcogenides (TMDCs) are materials with unique electronic properties due to their two-dimensional nature. Recently, there is a large and growing interest in synthesizing ferromagnetic TMDCs for applications in electronic devices and spintronics. Apart from intrinsically magnetic examples, modification via either intrinsic defects or external dopants may induce ferromagnetism in non-magnetic TMDCs and, hence expand the application of these materials. Here, we review recent experimental work on intrinsically non-magnetic TMDCs that present ferromagnetism as a consequence of either intrinsic defects or doping via self-flux approach, ion implantation or e-beam evaporation. The experimental work discussed here is organized by modification/doping mechanism. We also review current work on density functional theory calculations that predict ferromagnetism in doped systems, which also serve as preliminary data for the choice of new doped TMDCs to be explored experimentally. Implementing a controlled process to induce magnetism in two-dimensional materials is key for technological development and this topical review discusses the fundamental procedures while presenting promising materials to be investigated in order to achieve this goal.
Collapse
Affiliation(s)
- Paula Mariel Coelho
- Department of Physics, University of North Florida, Jacksonville, FL, United States of America
| |
Collapse
|
13
|
Ortiz Jimenez V, Pham YTH, Zhou D, Liu M, Nugera FA, Kalappattil V, Eggers T, Hoang K, Duong DL, Terrones M, Rodriguez Gutiérrez H, Phan M. Transition Metal Dichalcogenides: Making Atomic-Level Magnetism Tunable with Light at Room Temperature. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304792. [PMID: 38072638 PMCID: PMC10870067 DOI: 10.1002/advs.202304792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/04/2023] [Indexed: 02/17/2024]
Abstract
The capacity to manipulate magnetization in 2D dilute magnetic semiconductors (2D-DMSs) using light, specifically in magnetically doped transition metal dichalcogenide (TMD) monolayers (M-doped TX2 , where M = V, Fe, and Cr; T = W, Mo; X = S, Se, and Te), may lead to innovative applications in spintronics, spin-caloritronics, valleytronics, and quantum computation. This Perspective paper explores the mediation of magnetization by light under ambient conditions in 2D-TMD DMSs and heterostructures. By combining magneto-LC resonance (MLCR) experiments with density functional theory (DFT) calculations, we show that the magnetization can be enhanced using light in V-doped TMD monolayers (e.g., V-WS2 , V-WSe2 ). This phenomenon is attributed to excess holes in the conduction and valence bands, and carriers trapped in magnetic doping states, mediating the magnetization of the semiconducting layer. In 2D-TMD heterostructures (VSe2 /WS2 , VSe2 /MoS2 ), the significance of proximity, charge-transfer, and confinement effects in amplifying light-mediated magnetism is demonstrated. We attributed this to photon absorption at the TMD layer that generates electron-hole pairs mediating the magnetization of the heterostructure. These findings will encourage further research in the field of 2D magnetism and establish a novel design of 2D-TMDs and heterostructures with optically tunable magnetic functionalities, paving the way for next-generation magneto-optic nanodevices.
Collapse
Affiliation(s)
- Valery Ortiz Jimenez
- Department of PhysicsUniversity of South FloridaTampaFL33620USA
- Nanoscale Device Characterization DivisionNational Institute of Standards and TechnologyGaithersburgMD20899USA
| | | | - Da Zhou
- Department of PhysicsThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Mingzu Liu
- Department of PhysicsThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | | | | | - Tatiana Eggers
- Department of PhysicsUniversity of South FloridaTampaFL33620USA
| | - Khang Hoang
- Center for Computationally Assisted Science and Technology and Department of PhysicsNorth Dakota State UniversityFargoND58108USA
| | - Dinh Loc Duong
- Department of PhysicsMontana State UniversityBozemanMT59717USA
| | - Mauricio Terrones
- Department of PhysicsThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | | | - Manh‐Huong Phan
- Department of PhysicsUniversity of South FloridaTampaFL33620USA
| |
Collapse
|
14
|
Tiwari S, Van de Put M, Sorée B, Hinkle C, Vandenberghe WG. Reduction of Magnetic Interaction Due to Clustering in Doped Transition-Metal Dichalcogenides: A Case Study of Mn-, V-, and Fe-Doped WSe 2. ACS APPLIED MATERIALS & INTERFACES 2024; 16:4991-4998. [PMID: 38235733 DOI: 10.1021/acsami.3c14114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Using Hubbard-U-corrected density functional theory calculations, lattice Monte Carlo simulations, and spin Monte Carlo simulations, we investigate the impact of dopant clustering on the magnetic properties of WSe2 doped with period four transition metals. We use manganese (Mn) and iron (Fe) as candidate n-type dopants and vanadium (V) as the candidate p-type dopant, substituting the tungsten (W) atom in WSe2. Specifically, we determine the strength of the exchange interaction in Fe-, Mn-, and V-doped WSe2 in the presence of clustering. We show that the clusters of dopants are energetically more stable than discretely doped systems. Further, we show that in the presence of dopant clustering, the magnetic exchange interaction significantly reduces because the magnetic order in clustered WSe2 becomes more itinerant. Finally, we show that the clustering of the dopant atoms has a detrimental effect on the magnetic interaction, and to obtain an optimal Curie temperature, it is important to control the distribution of the dopant atoms.
Collapse
Affiliation(s)
- Sabyasachi Tiwari
- Department of Materials Science and Engineering, The University of Texas at Dallas, 800 W Campbell Rd., Richardson, Texas 75080, United States
- Imec, Kapeldreef 75, 3001 Heverlee, Belgium
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, 3001 Leuven, Belgium
| | - Maarten Van de Put
- Department of Materials Science and Engineering, The University of Texas at Dallas, 800 W Campbell Rd., Richardson, Texas 75080, United States
- Imec, Kapeldreef 75, 3001 Heverlee, Belgium
| | - Bart Sorée
- Imec, Kapeldreef 75, 3001 Heverlee, Belgium
- Department of Electrical Engineering, KU Leuven, Kasteelpark Arenberg 10, 3001 Leuven, Belgium
- Department of Physics, Universiteit Antwerpen, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Christopher Hinkle
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - William G Vandenberghe
- Department of Materials Science and Engineering, The University of Texas at Dallas, 800 W Campbell Rd., Richardson, Texas 75080, United States
| |
Collapse
|
15
|
Bianchi MG, Risplendi F, Re Fiorentin M, Cicero G. Engineering the Electrical and Optical Properties of WS 2 Monolayers via Defect Control. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305162. [PMID: 38009517 PMCID: PMC10811516 DOI: 10.1002/advs.202305162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/25/2023] [Indexed: 11/29/2023]
Abstract
Two-dimensional (2D) materials as tungsten disulphide (WS2 ) are rising as the ideal platform for the next generation of nanoscale devices due to the excellent electric-transport and optical properties. However, the presence of defects in the as grown samples represents one of the main limiting factors for commercial applications. At the same time, WS2 properties are frequently tailored by introducing impurities at specific sites. Aim of this review paper is to present a complete description and discussion of the effects of both intentional and unintentional defects in WS2 , by an in depth analysis of the recent experimental and theoretical investigations reported in the literature. First, the most frequent intrinsic defects in WS2 are presented and their effects in the readily synthetized material are discussed. Possible solutions to remove and heal unintentional defects are also analyzed. Following, different doping schemes are reported, including the traditional substitution approach and innovative techniques based on the surface charge transfer with adsorbed atoms or molecules. The plethora of WS2 monolayer modifications presented in this review and the systematic analysis of the corresponding optical and electronic properties, represent strategic degrees of freedom the researchers may exploit to tailor WS2 optical and electronic properties for specific device applications.
Collapse
Affiliation(s)
- Michele Giovanni Bianchi
- Department of Applied Science and TechnologyPolitecnico di Torinocorso Duca degli Abruzzi 24Torino10129Italy
| | - Francesca Risplendi
- Department of Applied Science and TechnologyPolitecnico di Torinocorso Duca degli Abruzzi 24Torino10129Italy
| | - Michele Re Fiorentin
- Department of Applied Science and TechnologyPolitecnico di Torinocorso Duca degli Abruzzi 24Torino10129Italy
| | - Giancarlo Cicero
- Department of Applied Science and TechnologyPolitecnico di Torinocorso Duca degli Abruzzi 24Torino10129Italy
| |
Collapse
|
16
|
Ozden B, Zhang T, Liu M, Fest A, Pearson DA, Khan E, Uprety S, Razon JE, Cherry J, Fujisawa K, Liu H, Perea-López N, Wang K, Isaacs-Smith T, Park M, Terrones M. Engineering Vacancies for the Creation of Antisite Defects in Chemical Vapor Deposition Grown Monolayer MoS 2 and WS 2 via Proton Irradiation. ACS NANO 2023; 17:25101-25117. [PMID: 38052014 DOI: 10.1021/acsnano.3c07752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
It is critical to understand the laws of quantum mechanics in transformative technologies for computation and quantum information science applications to enable the ongoing second quantum revolution calls. Recently, spin qubits based on point defects have gained great attention, since these qubits can be initiated, selectively controlled, and read out with high precision at ambient temperature. The major challenge in these systems is controllably generating multiqubit systems while properly coupling the defects. To address this issue, we began by tackling the engineering challenges these systems present and understanding the fundamentals of defects. In this regard, we controllably generate defects in MoS2 and WS2 monolayers and tune their physicochemical properties via proton irradiation. We quantitatively discovered that the proton energy could modulate the defects' density and nature; higher defect densities were seen with lower proton irradiation energies. Three distinct defect types were observed: vacancies, antisites, and adatoms. In particular, the creation and manipulation of antisite defects provides an alternative way to create and pattern spin qubits based on point defects. Our results demonstrate that altering the particle irradiation energy can regulate the formation of defects, which can be utilized to modify the properties of 2D materials and create reliable electronic devices.
Collapse
Affiliation(s)
- Burcu Ozden
- Engineering and Science Division, Penn State Abington, Abington, Pennsylvania 19001, United States
| | - Tianyi Zhang
- Department of Materials Science, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Mingzu Liu
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Andres Fest
- Department of Materials Science, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Daniel A Pearson
- Engineering and Science Division, Penn State Abington, Abington, Pennsylvania 19001, United States
| | - Ethan Khan
- Department of Materials Science, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Sunil Uprety
- Department of Physics, Auburn University, Auburn, Alabama 36849, United States
| | - Jiffer E Razon
- Engineering and Science Division, Penn State Abington, Abington, Pennsylvania 19001, United States
| | - Javari Cherry
- Engineering and Science Division, Penn State Abington, Abington, Pennsylvania 19001, United States
| | - Kazunori Fujisawa
- Water Environment and Civil Engineering, Shinshu University, Matsumoto, Nagano 390-8621, Japan
| | - He Liu
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Nestor Perea-López
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Ke Wang
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16082, United States
| | - Tamara Isaacs-Smith
- Department of Physics, Auburn University, Auburn, Alabama 36849, United States
| | - Minseo Park
- Department of Physics, Auburn University, Auburn, Alabama 36849, United States
| | - Mauricio Terrones
- Department of Materials Science, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- NSF-IUCRC Center for Atomically Thin 1093 Multifunctional Coatings (ATOMIC), The Pennsylvania State University, University Park, Pennsylvania 16082, United States
| |
Collapse
|
17
|
Wang Y, Xu W, Fu L, Zhang Y, Wu Y, Wu L, Yang D, Peng S, Ning J, Zhang C, Cui X, Zhong W, Liu Y, Xiong Q, Han G, Hao Y. Realization of Robust and Ambient-Stable Room-Temperature Ferromagnetism in Wide Bandgap Semiconductor 2D Carbon Nitride Sheets. ACS APPLIED MATERIALS & INTERFACES 2023; 15:54797-54807. [PMID: 37962367 DOI: 10.1021/acsami.3c11467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Due to their weak intrinsic spin-orbit coupling and a distinct bandgap of 3.06 eV, 2D carbon nitride (CN) flakes are promising materials for next-generation spintronic devices. However, achieving strong room-temperature (RT) and ambient-stable ferromagnetism (FM) remains a huge challenge. Here, we demonstrate that the strong RT FM with a high Curie temperature (TC) up to ∼400 K and saturation magnetization (Ms) of 2.91 emu/g can be achieved. Besides, the RT FM exhibits excellent air stability, with Ms remaining stable for over 6 months. Through the magneto-optic Kerr effect, Hall device, X-ray magnetic circular dichroism, and magnetic force microscopy measurements, we acquired clear evidence of magnetic behavior and magnetic domain evolutions at room temperature. Electrical and optical measurements confirm that the Co-doped CN retains its semiconductor properties. Detailed structural characterizations confirm that the single-atom Co coordination and nitrogen defects as well as C-C covalent bonds are simultaneously introduced into CN. Density functional theory calculations reveal that introducing C-C bonds causes carrier spin polarization, and spin-polarized carrier-mediated magnetic exchange between adjacent Co atoms leads to long-range magnetic ordering in CN. We believe that our findings provide a strong experimental foundation for the enormous potential of 2D wide bandgap semiconductor spintronic devices.
Collapse
Affiliation(s)
- Yong Wang
- Wide Bandgap Semiconductor Technology Disciplines State Key Laboratory, School of Microelectronics, Academy of Advanced Interdisciplinary Research, Xidian University, Xi'an 710071, China
- Emerging Device and Chip Laboratory, Hangzhou Institute of Technology, Xidian University, Hangzhou 311200, China
| | - Wei Xu
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures and Jiangsu Provincial Key Laboratory for Nanotechnology, Nanjing University, Nanjing 210093, China
| | - Lin Fu
- Department of Physics, State Key Laboratory of Surface Physics and Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, Shanghai 200433, China
| | - Yu Zhang
- Department of Physics, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yizhang Wu
- Department of Applied Physical Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
| | - Liting Wu
- Wide Bandgap Semiconductor Technology Disciplines State Key Laboratory, School of Microelectronics, Academy of Advanced Interdisciplinary Research, Xidian University, Xi'an 710071, China
- Emerging Device and Chip Laboratory, Hangzhou Institute of Technology, Xidian University, Hangzhou 311200, China
| | - Dingyi Yang
- Wide Bandgap Semiconductor Technology Disciplines State Key Laboratory, School of Microelectronics, Academy of Advanced Interdisciplinary Research, Xidian University, Xi'an 710071, China
- Emerging Device and Chip Laboratory, Hangzhou Institute of Technology, Xidian University, Hangzhou 311200, China
| | - Shouzhong Peng
- Fert Beijing Institute, Beijing Advanced Innovation Center for Big Data and Brain Computing, School of Integrated Circuit Science and Engineering, Beihang University, Beijing 100091, China
| | - Jing Ning
- Wide Bandgap Semiconductor Technology Disciplines State Key Laboratory, School of Microelectronics, Academy of Advanced Interdisciplinary Research, Xidian University, Xi'an 710071, China
| | - Chi Zhang
- Wide Bandgap Semiconductor Technology Disciplines State Key Laboratory, School of Microelectronics, Academy of Advanced Interdisciplinary Research, Xidian University, Xi'an 710071, China
| | - Xuan Cui
- Wide Bandgap Semiconductor Technology Disciplines State Key Laboratory, School of Microelectronics, Academy of Advanced Interdisciplinary Research, Xidian University, Xi'an 710071, China
| | - Wei Zhong
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures and Jiangsu Provincial Key Laboratory for Nanotechnology, Nanjing University, Nanjing 210093, China
| | - Yan Liu
- Wide Bandgap Semiconductor Technology Disciplines State Key Laboratory, School of Microelectronics, Academy of Advanced Interdisciplinary Research, Xidian University, Xi'an 710071, China
- Emerging Device and Chip Laboratory, Hangzhou Institute of Technology, Xidian University, Hangzhou 311200, China
| | - Qihua Xiong
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China
| | - Genquan Han
- Wide Bandgap Semiconductor Technology Disciplines State Key Laboratory, School of Microelectronics, Academy of Advanced Interdisciplinary Research, Xidian University, Xi'an 710071, China
- Emerging Device and Chip Laboratory, Hangzhou Institute of Technology, Xidian University, Hangzhou 311200, China
| | - Yue Hao
- Wide Bandgap Semiconductor Technology Disciplines State Key Laboratory, School of Microelectronics, Academy of Advanced Interdisciplinary Research, Xidian University, Xi'an 710071, China
- Emerging Device and Chip Laboratory, Hangzhou Institute of Technology, Xidian University, Hangzhou 311200, China
| |
Collapse
|
18
|
Ho PH, Yang YY, Chou SA, Cheng RH, Pao PH, Cheng CC, Radu I, Chien CH. High-Performance WSe 2 Top-Gate Devices with Strong Spacer Doping. NANO LETTERS 2023; 23:10236-10242. [PMID: 37906707 DOI: 10.1021/acs.nanolett.3c02757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Because of the lack of contact and spacer doping techniques for two-dimensional (2D) transistors, most high-performance 2D devices have been produced with nontypical structures that contain electrical gating in the contact regions. In the present study, we used chloroauric acid (HAuCl4) as a strong p-dopant for WSe2 monolayers used in transistors. The HAuCl4-doped devices exhibited a record-low contact resistance of 0.7 kΩ·μm under a doping concentration of 1.76 × 1013 cm-2. In addition, an extrinsic carrier diffusion phenomenon was discovered in the HAuCl4-WSe2 system. With a suitably designed spacer length for doping, a normally off, high-performance underlap top-gate device can be produced without the application of additional gating in the contact and spacer regions.
Collapse
Affiliation(s)
- Po-Hsun Ho
- Corporate Research, Taiwan Semiconductor Manufacturing Company, Hsinchu 300091, Taiwan
| | - Yu-Ying Yang
- Department of Electrical Engineering, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Sui-An Chou
- Corporate Research, Taiwan Semiconductor Manufacturing Company, Hsinchu 300091, Taiwan
| | - Ren-Hao Cheng
- Department of Electrical Engineering, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Po-Heng Pao
- Department of Electrical Engineering, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Chao-Ching Cheng
- Corporate Research, Taiwan Semiconductor Manufacturing Company, Hsinchu 300091, Taiwan
| | - Iuliana Radu
- Corporate Research, Taiwan Semiconductor Manufacturing Company, Hsinchu 300091, Taiwan
| | - Chao-Hsin Chien
- Department of Electrical Engineering, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| |
Collapse
|
19
|
Stolz S, Hou B, Wang D, Kozhakhmetov A, Dong C, Gröning O, Robinson JA, Qiu DY, Schuler B. Spin-Stabilization by Coulomb Blockade in a Vanadium Dimer in WSe 2. ACS NANO 2023. [PMID: 37976219 DOI: 10.1021/acsnano.3c04841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Charged dopants in 2D transition metal dichalcogenides (TMDs) have been associated with the formation of hydrogenic bound states, defect-bound trions, and gate-controlled magnetism. Charge-transfer at the TMD-substrate interface and the proximity to other charged defects can be used to regulate the occupation of the dopant's energy levels. In this study, we examine vanadium-doped WSe2 monolayers on quasi-freestanding epitaxial graphene, by high-resolution scanning probe microscopy and ab initio calculations. Vanadium atoms substitute W atoms and adopt a negative charge state through charge donation from the graphene substrate. VW-1 dopants exhibit a series of occupied p-type defect states, accompanied by an intriguing electronic fine-structure that we attribute to hydrogenic states bound to the charged impurity. We systematically studied the hybridization in V dimers with different separations. For large dimer separations, the 2e- charge state prevails, and the magnetic moment is quenched. However, the Coulomb blockade in the nearest-neighbor dimer configuration stabilizes a 1e- charge state. The nearest-neighbor V-dimer exhibits an open-shell character for the frontier defect orbital, giving rise to a paramagnetic ground state. Our findings provide microscopic insights into the charge stabilization and many-body effects of single dopants and dopant pairs in a TMD host material.
Collapse
Affiliation(s)
- Samuel Stolz
- nanotech@surfaces Laboratory, Empa - Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
- Department of Physics, University of California, Berkeley, California 94720, United States
| | - Bowen Hou
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06511, United States
| | - Dan Wang
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06511, United States
| | - Azimkhan Kozhakhmetov
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16082, United States
- Two-Dimensional Crystal Consortium, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Chengye Dong
- Two-Dimensional Crystal Consortium, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Oliver Gröning
- nanotech@surfaces Laboratory, Empa - Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Joshua A Robinson
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16082, United States
- Two-Dimensional Crystal Consortium, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Chemistry and Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Diana Y Qiu
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06511, United States
| | - Bruno Schuler
- nanotech@surfaces Laboratory, Empa - Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| |
Collapse
|
20
|
Chitara B, Dimitrov E, Liu M, Seling TR, Kolli BSC, Zhou D, Yu Z, Shringi AK, Terrones M, Yan F. Charge Transfer Modulation in Vanadium-Doped WS 2 /Bi 2 O 2 Se Heterostructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302289. [PMID: 37310414 DOI: 10.1002/smll.202302289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/23/2023] [Indexed: 06/14/2023]
Abstract
The field of photovoltaics is revolutionized in recent years by the development of two-dimensional (2D) type-II heterostructures. These heterostructures are made up of two different materials with different electronic properties, which allows for the capture of a broader spectrum of solar energy than traditional photovoltaic devices. In this study, the potential of vanadium (V)-doped WS2 is investigated, hereafter labeled V-WS2 , in combination with air-stable Bi2 O2 Se for use in high-performance photovoltaic devices. Various techniques are used to confirm the charge transfer of these heterostructures, including photoluminescence (PL) and Raman spectroscopy, along with Kelvin probe force microscopy (KPFM). The results show that the PL is quenched by 40%, 95%, and 97% for WS2 /Bi2 O2 Se, 0.4 at.% V-WS2 /Bi2 O2 Se, and 2 at.% V-WS2 /Bi2 O2 Se, respectively, indicating a superior charge transfer in V-WS2 /Bi2 O2 Se compared to pristine WS2 /Bi2 O2 Se. The exciton binding energies for WS2 /Bi2 O2 Se, 0.4 at.% V-WS2 /Bi2 O2 Se and 2 at.% V-WS2 /Bi2 O2 Se heterostructures are estimated to be ≈130, 100, and 80 meV, respectively, which is much lower than that for monolayer WS2 . These findings confirm that by incorporating V-doped WS2 , charge transfer in WS2 /Bi2 O2 Se heterostructures can be tuned, providing a novel light-harvesting technique for the development of the next generation of photovoltaic devices based on V-doped transition metal dichalcogenides (TMDCs)/Bi2 O2 Se.
Collapse
Affiliation(s)
- Basant Chitara
- Department of Chemistry and Biochemistry, North Carolina Central University, Durham, NC, 27707, USA
| | - Edgar Dimitrov
- Department of Physics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Mingzu Liu
- Department of Physics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Tank R Seling
- Department of Chemistry and Biochemistry, North Carolina Central University, Durham, NC, 27707, USA
| | - Bhargava S C Kolli
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
| | - Da Zhou
- Department of Physics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Zhuohang Yu
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Amit K Shringi
- Department of Chemistry and Biochemistry, North Carolina Central University, Durham, NC, 27707, USA
| | - Mauricio Terrones
- Department of Physics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Fei Yan
- Department of Chemistry and Biochemistry, North Carolina Central University, Durham, NC, 27707, USA
| |
Collapse
|
21
|
Wang S, Ding D, Li P, Sui Y, Liu G, Zhao S, Xiao R, Tian C, Chen Z, Wang H, Chen C, Mu G, Liu Y, Zhang Y, Jin C, Ding F, Yu G. Concentration Phase Separation of Substitution-Doped Atoms in TMDCs Monolayer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301027. [PMID: 37060218 DOI: 10.1002/smll.202301027] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/28/2023] [Indexed: 06/19/2023]
Abstract
The density and spatial distribution of substituted dopants affect the transition metal dichalcogenides (TMDCs) materials properties. Previous studies have demonstrated that the density of dopants in TMDCs increases with the amount of doping, and the phenomenon of doping concentration difference between the nucleation center and the edge is observed, but the spatial distribution law of doping atoms has not been carefully studied. Here, it is demonstrated that the spatial distribution of dopants changes at high doping concentrations. The spontaneous formation of an interface with a steep doping concentration change is named concentration phase separation (CPS). The difference in the spatial distribution of dopants on both sides of the interface can be identified by an optical microscope. This is consistent with the results of spectral analysis and microstructure characterization of scanning transmission electron microscope. According to the calculation results of density functional theory, the chemical potential has two relatively stable energies as the doping concentration increases, which leads to the spontaneous formation of CPS. Understanding the abnormal phenomena is important for the design of TMDCs devices. This work has great significance in the establishment and improvement of the doping theory and the design of the doping process for 2D materials.
Collapse
Affiliation(s)
- Shuang Wang
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Degong Ding
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Pai Li
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Yanping Sui
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guanyu Liu
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sunwen Zhao
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Runhan Xiao
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chuang Tian
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiying Chen
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haomin Wang
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chen Chen
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Gang Mu
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yixin Liu
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanhui Zhang
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
| | - Chuanhong Jin
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Feng Ding
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Faculty of Materials Science and Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Blvd, Shenzhen, 518055, China
| | - Guanghui Yu
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
22
|
Li X, Yang J, Sun H, Huang L, Li H, Shi J. Controlled Synthesis and Accurate Doping of Wafer-Scale 2D Semiconducting Transition Metal Dichalcogenides. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2305115. [PMID: 37406665 DOI: 10.1002/adma.202305115] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/24/2023] [Accepted: 07/04/2023] [Indexed: 07/07/2023]
Abstract
2D semiconducting transition metal dichalcogenide (TMDCs) possess atomically thin thickness, a dangling-bond-free surface, flexible band structure, and silicon-compatible feature, making them one of the most promising channels for constructing state-of-the-art field-effect transistors in the post-Moore's era. However, the existing 2D semiconducting TMDCs fall short of meeting the industry criteria for practical applications in electronics due to their small domain size and the lack of an effective approach to modulate intrinsic physical properties. Therefore, it is crucial to prepare and dope 2D semiconducting TMDCs single crystals with wafer size. In this review, the up-to-date progress regarding the wafer-scale growth of 2D semiconducting TMDC polycrystalline and single-crystal films is systematically summarized. The domain orientation control of 2D TMDCs and the seamless stitching of unidirectionally aligned 2D islands by means of substrate design are proposed. In addition, the accurate and uniform doping of 2D semiconducting TMDCs and the effect on electronic device performances are also discussed. Finally, the dominating challenges pertaining to the enhancement of the electronic device performances of TMDCs are emphasized, and further development directions are put forward. This review provides a systematic and in-depth summary of high-performance device applications of 2D semiconducting TMDCs.
Collapse
Affiliation(s)
- Xiaohui Li
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| | - Junbo Yang
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| | - Hang Sun
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| | - Ling Huang
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| | - Hui Li
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| | - Jianping Shi
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
23
|
Sun T, Tang Z, Zang W, Li Z, Li J, Li Z, Cao L, Dominic Rodriguez JS, Mariano COM, Xu H, Lyu P, Hai X, Lin H, Sheng X, Shi J, Zheng Y, Lu YR, He Q, Chen J, Novoselov KS, Chuang CH, Xi S, Luo X, Lu J. Ferromagnetic single-atom spin catalyst for boosting water splitting. NATURE NANOTECHNOLOGY 2023:10.1038/s41565-023-01407-1. [PMID: 37231143 DOI: 10.1038/s41565-023-01407-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/20/2023] [Indexed: 05/27/2023]
Abstract
Heterogeneous single-atom spin catalysts combined with magnetic fields provide a powerful means for accelerating chemical reactions with enhanced metal utilization and reaction efficiency. However, designing these catalysts remains challenging due to the need for a high density of atomically dispersed active sites with a short-range quantum spin exchange interaction and long-range ferromagnetic ordering. Here, we devised a scalable hydrothermal approach involving an operando acidic environment for synthesizing various single-atom spin catalysts with widely tunable substitutional magnetic atoms (M1) in a MoS2 host. Among all the M1/MoS2 species, Ni1/MoS2 adopts a distorted tetragonal structure that prompts both ferromagnetic coupling to nearby S atoms as well as adjacent Ni1 sites, resulting in global room-temperature ferromagnetism. Such coupling benefits spin-selective charge transfer in oxygen evolution reactions to produce triplet O2. Furthermore, a mild magnetic field of ~0.5 T enhances the oxygen evolution reaction magnetocurrent by ~2,880% over Ni1/MoS2, leading to excellent activity and stability in both seawater and pure water splitting cells. As supported by operando characterizations and theoretical calculations, a great magnetic-field-enhanced oxygen evolution reaction performance over Ni1/MoS2 is attributed to a field-induced spin alignment and spin density optimization over S active sites arising from field-regulated S(p)-Ni(d) hybridization, which in turn optimizes the adsorption energies for radical intermediates to reduce overall reaction barriers.
Collapse
Affiliation(s)
- Tao Sun
- Department of Chemistry, National University of Singapore, Singapore, Singapore
- School of Chemical Engineering, Xi'an Key Laboratory of Special Energy Materials, Northwest University, Xi'an, China
| | - Zhiyuan Tang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, Centre for Physical Mechanics and Biophysics, School of Physics, Sun Yat-sen University, Guangzhou, China
| | - Wenjie Zang
- Department of Materials Science and Engineering, Faculty of Engineering to College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Zejun Li
- School of Physics, Frontiers Science Center for Mobile Information Communication and Security, Southeast University, Nanjing, China
| | - Jing Li
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Zhihao Li
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei, China
| | - Liang Cao
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei, China
| | - Jan Sebastian Dominic Rodriguez
- Department of Physics, Tamkang University, New Taipei City, Taiwan
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | | | - Haomin Xu
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Pin Lyu
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Xiao Hai
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Huihui Lin
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Xiaoyu Sheng
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Jiwei Shi
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Yi Zheng
- Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou, China
| | - Ying-Rui Lu
- National Synchrotron Radiation Research Center, Hsinchu, Taiwan
| | - Qian He
- Department of Materials Science and Engineering, Faculty of Engineering to College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Jingsheng Chen
- Department of Materials Science and Engineering, Faculty of Engineering to College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Kostya S Novoselov
- Department of Materials Science and Engineering, Faculty of Engineering to College of Design and Engineering, National University of Singapore, Singapore, Singapore
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore, Singapore
| | - Cheng-Hao Chuang
- Department of Physics, Tamkang University, New Taipei City, Taiwan.
| | - Shibo Xi
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road Jurong Island, Singapore, Singapore.
| | - Xin Luo
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, Centre for Physical Mechanics and Biophysics, School of Physics, Sun Yat-sen University, Guangzhou, China.
| | - Jiong Lu
- Department of Chemistry, National University of Singapore, Singapore, Singapore.
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
24
|
Son E, Lee S, Seo J, Kim U, Kim SH, Baik JM, Han YK, Park H. Engineering the Local Atomic Configuration in 2H TMDs for Efficient Electrocatalytic Hydrogen Evolution. ACS NANO 2023. [PMID: 37183803 DOI: 10.1021/acsnano.3c02344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The introduction of heteroatoms is a widely employed strategy for electrocatalysis of transition metal dichalcogenides (TMDs). This approach activates the inactive basal plane, effectively boosting the intrinsic catalytic activity. However, the effect of atomic configurations incorporated within the TMDs' lattice on catalytic activity is not thoroughly understood owing to the lack of controllable synthetic approaches for highly doped TMDs. In this study, we demonstrate a facile approach to realizing heavily doped MoS2 with a high doping concentration above 16% via intermediate-reaction-mediated chemical vapor deposition. As the V doping concentration increased, the incorporated V atoms coalesced in a manner that enabled both the basal plane activation and electrical conductivity enhancement of MoS2. This accelerated the kinetics of the hydrogen evolution reaction (HER) through the reduced Gibbs free energy of hydrogen adsorption, as evidenced by experimental and theoretical analyses. Consequently, the coalesced V-doped MoS2 exhibited superior HER performance, with an overpotential of 100 mV at 10 mA cm-2, surpassing the pristine and single-atom-doped counterparts. This study provides an intriguing pathway for engineering the atomic doping configuration of TMDs to develop efficient 2D nanomaterial-based electrocatalysts.
Collapse
Affiliation(s)
- Eunbin Son
- Department of Materials Science and Engineering, Graduate School of Semiconductor Materials and Devices Engineering, Graduate School of Carbon Neutrality, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Sangjin Lee
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea
| | - Jihyung Seo
- Department of Materials Science and Engineering, Graduate School of Semiconductor Materials and Devices Engineering, Graduate School of Carbon Neutrality, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Ungsoo Kim
- Department of Materials Science and Engineering, Graduate School of Semiconductor Materials and Devices Engineering, Graduate School of Carbon Neutrality, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Sang Heon Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- SKKU Institute of Energy Science and Technology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jeong Min Baik
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- SKKU Institute of Energy Science and Technology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Young-Kyu Han
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea
| | - Hyesung Park
- Department of Materials Science and Engineering, Graduate School of Semiconductor Materials and Devices Engineering, Graduate School of Carbon Neutrality, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| |
Collapse
|
25
|
Fang M, Yang EH. Advances in Two-Dimensional Magnetic Semiconductors via Substitutional Doping of Transition Metal Dichalcogenides. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16103701. [PMID: 37241328 DOI: 10.3390/ma16103701] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/14/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023]
Abstract
Transition metal dichalcogenides (TMDs) are two-dimensional (2D) materials with remarkable electrical, optical, and chemical properties. One promising strategy to tailor the properties of TMDs is to create alloys through a dopant-induced modification. Dopants can introduce additional states within the bandgap of TMDs, leading to changes in their optical, electronic, and magnetic properties. This paper overviews chemical vapor deposition (CVD) methods to introduce dopants into TMD monolayers, and discusses the advantages, limitations, and their impacts on the structural, electrical, optical, and magnetic properties of substitutionally doped TMDs. The dopants in TMDs modify the density and type of carriers in the material, thereby influencing the optical properties of the materials. The magnetic moment and circular dichroism in magnetic TMDs are also strongly affected by doping, which enhances the magnetic signal in the material. Finally, we highlight the different doping-induced magnetic properties of TMDs, including superexchange-induced ferromagnetism and valley Zeeman shift. Overall, this review paper provides a comprehensive summary of magnetic TMDs synthesized via CVD, which can guide future research on doped TMDs for various applications, such as spintronics, optoelectronics, and magnetic memory devices.
Collapse
Affiliation(s)
- Mengqi Fang
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Eui-Hyeok Yang
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
- Center for Quantum Science and Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| |
Collapse
|
26
|
Guan H, Zhao B, Zhao W, Ni Z. Liquid-precursor-intermediated synthesis of atomically thin transition metal dichalcogenides. MATERIALS HORIZONS 2023; 10:1105-1120. [PMID: 36628937 DOI: 10.1039/d2mh01207c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
With the rapid development of integrated electronics and optoelectronics, methods for the scalable industrial-scale growth of two-dimensional (2D) transition metal dichalcogenide (TMD) materials have become a hot research topic. However, the control of gas distribution of solid precursors in common chemical vapor deposition (CVD) is still a challenge, resulting in the growth of 2D TMDs strongly influenced by the location of the substrate from the precursor powder. In contrast, liquid-precursor-intermediated growth not only avoids the use of solid powders but also enables the uniform distribution of precursors on the substrate through spin-coating, which is much more favorable for the synthesis of wafer-scale TMDs. Moreover, the spin-coating process based on liquid precursors can control the thickness of the spin-coated films by regulating the solution concentration and spin-coating speed. Herein, this review focuses on the recent progress in the synthesis of 2D TMDs based on liquid-precursor-intermediated CVD (LPI-CVD) growth. Firstly, the different assisted treatments based on LPI-CVD strategies for monolayer 2D TMDs are introduced. Then, the progress in the regulation of the different physical properties of monolayer 2D TMDs by substitution of the transition metal and their corresponding heterostructures based on LPI-CVD growth are summarized. Finally, the challenges and perspectives of 2D TMDs based on the LPI-CVD method are discussed.
Collapse
Affiliation(s)
- Huiyan Guan
- School of Physics, Southeast University, Nanjing 211189, China.
| | - Bei Zhao
- School of Physics, Southeast University, Nanjing 211189, China.
| | - Weiwei Zhao
- School of Physics, Southeast University, Nanjing 211189, China.
| | - Zhenhua Ni
- School of Physics, Southeast University, Nanjing 211189, China.
- Purple Mountain Laboratories, Nanjing 211111, China
| |
Collapse
|
27
|
Dang N, Kozlenko DP, Lis ON, Kichanov SE, Lukin YV, Golosova NO, Savenko BN, Duong D, Phan T, Tran T, Phan M. High Pressure-Driven Magnetic Disorder and Structural Transformation in Fe 3 GeTe 2 : Emergence of a Magnetic Quantum Critical Point. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206842. [PMID: 36698300 PMCID: PMC10037988 DOI: 10.1002/advs.202206842] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Among the recently discovered 2D intrinsic van der Waals (vdW) magnets, Fe3 GeTe2 (FGT) has emerged as a strong candidate for spintronics applications, due to its high Curie temperature (130 - 220 K) and magnetic tunability in response to external stimuli (electrical field, light, strain). Theory predicts that the magnetism of FGT can be significantly modulated by an external strain. However, experimental evidence is needed to validate this prediction and understand the underlying mechanism of strain-mediated vdW magnetism in this system. Here, the effects of pressure (0 - 20 GPa) are elucidated on the magnetic and structural properties of Fe3 GeTe2 by means of synchrotron Mössbauer source spectroscopy, X-ray powder diffraction and Raman spectroscopy over a wide temperature range of 10 - 290 K. A strong suppression of ferromagnetic ordering is observed with increasing pressure, and a paramagnetic ground state emerges when pressure exceeds a critical value, PPM ≈ 15 GPa. The anomalous pressure dependence of structural parameters and vibrational modes is observed at PC ≈ 7 GPa and attributed to an isostructural phase transformation. Density functional theory calculations complement these experimental findings. This study highlights pressure as a driving force for magnetic quantum criticality in layered vdW magnetic systems.
Collapse
Affiliation(s)
- Ngoc‐Toan Dang
- Institute of Research and DevelopmentDuy Tan UniversityDa Nang550000Vietnam
- Faculty of Environmental and Natural SciencesDuy Tan UniversityDa Nang550000Vietnam
| | | | - Olga N. Lis
- Frank Laboratory of Neutron PhysicsJINRMoscow Reg.Dubna141980Russia
- Kazan Federal UniversityKazan420008Russia
| | | | | | | | - Boris N. Savenko
- Frank Laboratory of Neutron PhysicsJINRMoscow Reg.Dubna141980Russia
| | - Dinh‐Loc Duong
- Center for Integrated Nanostructure PhysicsInstitute for Basic ScienceSuwon16419Republic of Korea
| | - The‐Long Phan
- Faculty of Engineering Physics and NanotechnologyVNU‐University of Engineering and Technology144 Xuan Thuy, Cau GiayHa Noi100000Vietnam
| | - Tuan‐Anh Tran
- Ho Chi Minh City University of Technology and EducationHo Chi Minh700000Vietnam
| | - Manh‐Huong Phan
- Department of PhysicsUniversity of South FloridaTampaFL33620USA
| |
Collapse
|
28
|
Xiao Y, Xiong C, Chen MM, Wang S, Fu L, Zhang X. Structure modulation of two-dimensional transition metal chalcogenides: recent advances in methodology, mechanism and applications. Chem Soc Rev 2023; 52:1215-1272. [PMID: 36601686 DOI: 10.1039/d1cs01016f] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Together with the development of two-dimensional (2D) materials, transition metal dichalcogenides (TMDs) have become one of the most popular series of model materials for fundamental sciences and practical applications. Due to the ever-growing requirements of customization and multi-function, dozens of modulated structures have been introduced in TMDs. In this review, we present a systematic and comprehensive overview of the structure modulation of TMDs, including point, linear and out-of-plane structures, following and updating the conventional classification for silicon and related bulk semiconductors. In particular, we focus on the structural characteristics of modulated TMD structures and analyse the corresponding root causes. We also summarize the recent progress in modulating methods, mechanisms, properties and applications based on modulated TMD structures. Finally, we demonstrate challenges and prospects in the structure modulation of TMDs and forecast potential directions about what and how breakthroughs can be achieved.
Collapse
Affiliation(s)
- Yao Xiao
- Collaborative Innovation Centre for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China.
| | - Chengyi Xiong
- Collaborative Innovation Centre for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China.
| | - Miao-Miao Chen
- Collaborative Innovation Centre for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China.
| | - Shengfu Wang
- Collaborative Innovation Centre for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China.
| | - Lei Fu
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, P. R. China. .,College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China.
| | - Xiuhua Zhang
- Collaborative Innovation Centre for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China.
| |
Collapse
|
29
|
Hung CM, Dang DTX, Chanda A, Detellem D, Alzahrani N, Kapuruge N, Pham YTH, Liu M, Zhou D, Gutierrez HR, Arena DA, Terrones M, Witanachchi S, Woods LM, Srikanth H, Phan MH. Enhanced Magnetism and Anomalous Hall Transport through Two-Dimensional Tungsten Disulfide Interfaces. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:771. [PMID: 36839139 PMCID: PMC9967397 DOI: 10.3390/nano13040771] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 05/14/2023]
Abstract
The magnetic proximity effect (MPE) has recently been explored to manipulate interfacial properties of two-dimensional (2D) transition metal dichalcogenide (TMD)/ferromagnet heterostructures for use in spintronics and valleytronics. However, a full understanding of the MPE and its temperature and magnetic field evolution in these systems is lacking. In this study, the MPE has been probed in Pt/WS2/BPIO (biphase iron oxide, Fe3O4 and α-Fe2O3) heterostructures through a comprehensive investigation of their magnetic and transport properties using magnetometry, four-probe resistivity, and anomalous Hall effect (AHE) measurements. Density functional theory (DFT) calculations are performed to complement the experimental findings. We found that the presence of monolayer WS2 flakes reduces the magnetization of BPIO and hence the total magnetization of Pt/WS2/BPIO at T > ~120 K-the Verwey transition temperature of Fe3O4 (TV). However, an enhanced magnetization is achieved at T < TV. In the latter case, a comparative analysis of the transport properties of Pt/WS2/BPIO and Pt/BPIO from AHE measurements reveals ferromagnetic coupling at the WS2/BPIO interface. Our study forms the foundation for understanding MPE-mediated interfacial properties and paves a new pathway for designing 2D TMD/magnet heterostructures for applications in spintronics, opto-spincaloritronics, and valleytronics.
Collapse
Affiliation(s)
- Chang-Ming Hung
- Department of Physics, University of South Florida, Tampa, FL 33620, USA
| | - Diem Thi-Xuan Dang
- Department of Physics, University of South Florida, Tampa, FL 33620, USA
| | - Amit Chanda
- Department of Physics, University of South Florida, Tampa, FL 33620, USA
| | - Derick Detellem
- Department of Physics, University of South Florida, Tampa, FL 33620, USA
| | - Noha Alzahrani
- Department of Physics, University of South Florida, Tampa, FL 33620, USA
| | - Nalaka Kapuruge
- Department of Physics, University of South Florida, Tampa, FL 33620, USA
| | - Yen T. H. Pham
- Department of Physics, University of South Florida, Tampa, FL 33620, USA
| | - Mingzu Liu
- Department of Physics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Da Zhou
- Department of Physics, The Pennsylvania State University, University Park, PA 16802, USA
| | | | - Darío A. Arena
- Department of Physics, University of South Florida, Tampa, FL 33620, USA
| | - Mauricio Terrones
- Department of Physics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Sarath Witanachchi
- Department of Physics, University of South Florida, Tampa, FL 33620, USA
| | - Lilia M. Woods
- Department of Physics, University of South Florida, Tampa, FL 33620, USA
| | - Hariharan Srikanth
- Department of Physics, University of South Florida, Tampa, FL 33620, USA
| | - Manh-Huong Phan
- Department of Physics, University of South Florida, Tampa, FL 33620, USA
| |
Collapse
|
30
|
Zhang T, Liu M, Fujisawa K, Lucking M, Beach K, Zhang F, Shanmugasundaram M, Krayev A, Murray W, Lei Y, Yu Z, Sanchez D, Liu Z, Terrones H, Elías AL, Terrones M. Spatial Control of Substitutional Dopants in Hexagonal Monolayer WS 2 : The Effect of Edge Termination. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205800. [PMID: 36587989 DOI: 10.1002/smll.202205800] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/20/2022] [Indexed: 06/17/2023]
Abstract
The ability to control the density and spatial distribution of substitutional dopants in semiconductors is crucial for achieving desired physicochemical properties. Substitutional doping with adjustable doping levels has been previously demonstrated in 2D transition metal dichalcogenides (TMDs); however, the spatial control of dopant distribution remains an open field. In this work, edge termination is demonstrated as an important characteristic of 2D TMD monocrystals that affects the distribution of substitutional dopants. Particularly, in chemical vapor deposition (CVD)-grown monolayer WS2 , it is found that a higher density of transition metal dopants is always incorporated in sulfur-terminated domains when compared to tungsten-terminated domains. Two representative examples demonstrate this spatial distribution control, including hexagonal iron- and vanadium-doped WS2 monolayers. Density functional theory (DFT) calculations are further performed, indicating that the edge-dependent dopant distribution is due to a strong binding of tungsten atoms at tungsten-zigzag edges, resulting in the formation of open sites at sulfur-zigzag edges that enable preferential dopant incorporation. Based on these results, it is envisioned that edge termination in crystalline TMD monolayers can be utilized as a novel and effective knob for engineering the spatial distribution of substitutional dopants, leading to in-plane hetero-/multi-junctions that display fascinating electronic, optoelectronic, and magnetic properties.
Collapse
Affiliation(s)
- Tianyi Zhang
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
- Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Mingzu Liu
- Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Physics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Kazunori Fujisawa
- Research Initiative for Supra-Materials, Shinshu University, Nagano, 380-8553, Japan
| | - Michael Lucking
- Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Kory Beach
- Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
- Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, CA, 94550, USA
| | - Fu Zhang
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
- Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, PA, 16802, USA
| | | | | | - William Murray
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Yu Lei
- Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Physics, The Pennsylvania State University, University Park, PA, 16802, USA
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China
| | - Zhuohang Yu
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
- Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, PA, 16802, USA
| | - David Sanchez
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
- Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Zhiwen Liu
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Humberto Terrones
- Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Ana Laura Elías
- Department of Physics, Binghamton University, Binghamton, NY, 13902, USA
| | - Mauricio Terrones
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
- Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Physics, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
31
|
Lei Y, Zhang T, Lin YC, Granzier-Nakajima T, Bepete G, Kowalczyk DA, Lin Z, Zhou D, Schranghamer TF, Dodda A, Sebastian A, Chen Y, Liu Y, Pourtois G, Kempa TJ, Schuler B, Edmonds MT, Quek SY, Wurstbauer U, Wu SM, Glavin NR, Das S, Dash SP, Redwing JM, Robinson JA, Terrones M. Graphene and Beyond: Recent Advances in Two-Dimensional Materials Synthesis, Properties, and Devices. ACS NANOSCIENCE AU 2022; 2:450-485. [PMID: 36573124 PMCID: PMC9782807 DOI: 10.1021/acsnanoscienceau.2c00017] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 12/30/2022]
Abstract
Since the isolation of graphene in 2004, two-dimensional (2D) materials research has rapidly evolved into an entire subdiscipline in the physical sciences with a wide range of emergent applications. The unique 2D structure offers an open canvas to tailor and functionalize 2D materials through layer number, defects, morphology, moiré pattern, strain, and other control knobs. Through this review, we aim to highlight the most recent discoveries in the following topics: theory-guided synthesis for enhanced control of 2D morphologies, quality, yield, as well as insights toward novel 2D materials; defect engineering to control and understand the role of various defects, including in situ and ex situ methods; and properties and applications that are related to moiré engineering, strain engineering, and artificial intelligence. Finally, we also provide our perspective on the challenges and opportunities in this fascinating field.
Collapse
Affiliation(s)
- Yu Lei
- Department
of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center
for Atomically Thin Multifunctional Coatings, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Institute
of Materials Research, Tsinghua Shenzhen
International Graduate School, Shenzhen, Guangdong 518055, China
- Center
for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Tianyi Zhang
- Center
for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department
of Material Science and Engineering, The
Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Yu-Chuan Lin
- Center
for Atomically Thin Multifunctional Coatings, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center
for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department
of Material Science and Engineering, The
Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Tomotaroh Granzier-Nakajima
- Department
of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center
for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - George Bepete
- Department
of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center
for Atomically Thin Multifunctional Coatings, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center
for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department
of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Dorota A. Kowalczyk
- Department
of Solid State Physics, Faculty of Physics and Applied Informatics, University of Lodz, Pomorska 149/153, Lodz 90-236, Poland
| | - Zhong Lin
- Department
of Physics, University of Washington, Seattle, Washington 98195, United States
| | - Da Zhou
- Department
of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center
for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Thomas F. Schranghamer
- Department
of Engineering Science and Mechanics, Pennsylvania
State University, University Park, Pennsylvania 16802, United States
| | - Akhil Dodda
- Department
of Engineering Science and Mechanics, Pennsylvania
State University, University Park, Pennsylvania 16802, United States
| | - Amritanand Sebastian
- Department
of Engineering Science and Mechanics, Pennsylvania
State University, University Park, Pennsylvania 16802, United States
| | - Yifeng Chen
- Department
of Materials Science and Engineering, National
University of Singapore, 9 Engineering Drive, Singapore 117456, Singapore
| | - Yuanyue Liu
- Texas
Materials Institute and Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | | | - Thomas J. Kempa
- Department
of Chemistry, Johns Hopkins University, Baltimore, Maryland 21287, United States
| | - Bruno Schuler
- nanotech@surfaces
Laboratory, Empa − Swiss Federal
Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
| | - Mark T. Edmonds
- School
of Physics and Astronomy, Monash University, Clayton, Victoria 3800, Australia
| | - Su Ying Quek
- Department
of Materials Science and Engineering, National
University of Singapore, 9 Engineering Drive, Singapore 117456, Singapore
| | - Ursula Wurstbauer
- Institute
of Physics, University of Münster, Wilhelm-Klemm-Str. 10, Münster 48149, Germany
| | - Stephen M. Wu
- Department
of Electrical and Computer Engineering & Department of Physics
and Astronomy, University of Rochester, Rochester, New York 14627, United States
| | - Nicholas R. Glavin
- Air
Force
Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson AFB, Dayton, Ohio 45433, United States
| | - Saptarshi Das
- Center
for Atomically Thin Multifunctional Coatings, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center
for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department
of Material Science and Engineering, The
Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department
of Engineering Science and Mechanics, Pennsylvania
State University, University Park, Pennsylvania 16802, United States
| | - Saroj Prasad Dash
- Department
of Microtechnology and Nanoscience, Chalmers
University of Technology, Göteborg SE-412 96, Sweden
| | - Joan M. Redwing
- Center
for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department
of Material Science and Engineering, The
Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Joshua A. Robinson
- Center
for Atomically Thin Multifunctional Coatings, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center
for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department
of Material Science and Engineering, The
Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Mauricio Terrones
- Department
of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center
for Atomically Thin Multifunctional Coatings, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center
for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department
of Material Science and Engineering, The
Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department
of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Research
Initiative for Supra-Materials and Global Aqua Innovation Center, Shinshu University, 4-17-1Wakasato, Nagano 380-8553, Japan
| |
Collapse
|
32
|
Jiang H, Zang Z, Wang X, Que H, Wang L, Si K, Zhang P, Ye Y, Gong Y. Thickness-Tunable Growth of Composition-Controllable Two-Dimensional Fe xGeTe 2. NANO LETTERS 2022; 22:9477-9484. [PMID: 36383484 DOI: 10.1021/acs.nanolett.2c03562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Two-dimensional (2D) magnetic materials provide an ideal platform for investigating novel magnetism and spin behavior in low-dimensional systems while being restricted by the deficiency of accurate bottom-up synthesis. To overcome this difficulty, a facile and universal flux-assisted growth (FAG) method is proposed to synthesize the multicomponent FexGeTe2 (x = 3-5) with different Fe contents and even alloyed with hetero metal atoms. This one-to-one method ensures the stoichiometry consistency from the FexGeTe2 and MyFe5-yGeTe2 (M = Co, Ni) bulk crystal precursors to the 2D nanosheets, with controllable composition. Tuning the growth temperatures can provide thickness-tunable products. Changeable magnetic properties of FexGeTe2 and alloyed CoyFe5-yGeTe2 are substantiated by the superconducting quantum interference device and reflective magnetic circular dichroism. This method generates thickness-tunable high-crystallinity FexGeTe2 samples without phase separation and exhibits a high tolerance to different substrates and a large temperature window, providing a new avenue to synthesize and explore such multicomponent 2D magnets and even the alloyed ones.
Collapse
Affiliation(s)
- Huaning Jiang
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Zhihao Zang
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Xingguo Wang
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Haifeng Que
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Lei Wang
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Kunpeng Si
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Peng Zhang
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Yu Ye
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Yongji Gong
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
- Key Laboratory of Intelligent Sensing Materials and Chip Integration Technology of Zhejiang Province, Hangzhou 310051, China
| |
Collapse
|
33
|
Gas K, Sawicki M. A Simplified Method of the Assessment of Magnetic Anisotropy of Commonly Used Sapphire Substrates in SQUID Magnetometers. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8532. [PMID: 36500027 PMCID: PMC9739591 DOI: 10.3390/ma15238532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/24/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Solid-state wafers are indispensable components in material science as substrates for epitaxial homo- or heterostructures or carriers for two-dimensional materials. However, reliable determination of magnetic properties of nanomaterials in volume magnetometry is frequently affected by unexpectedly rich magnetism of these substrates, including significant magnetic anisotropy. Here, we describe a simplified experimental routine of magnetic anisotropy assessment, which we exemplify and validate for epi-ready sapphire wafers from various sources. Both the strength and the sign of magnetic anisotropy are obtained from carefully designed temperature-dependent measurements, which mitigate all known pitfalls of volume SQUID magnetometry and are substantially faster than traditional approaches. Our measurements indicate that in all the samples, two types of net paramagnetic contributions coexist with diamagnetism. The first one can be as strong as 10% of the base diamagnetism of sapphire [-3.7(1) × 10-7 emu/gOe], and when exceeds 2%, it exhibits pronounced magnetic anisotropy, with the easy axis oriented perpendicularly to the face of c-plane wafers. The other is much weaker, but exhibits a ferromagnetic-like appearance. These findings form an important message that nonstandard magnetism of common substrates can significantly influence the results of precise magnetometry of nanoscale materials and that its existence must be taken for granted by both industry and academia.
Collapse
|
34
|
Hoque K, Zubair A. First-Principles Study of Induced Magnetism in Tungsten Vanadium Selenide Alloys for Spintronic Applications. ACS OMEGA 2022; 7:36184-36194. [PMID: 36278085 PMCID: PMC9583321 DOI: 10.1021/acsomega.2c03312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
The possibility of inducing magnetization in tungsten selenide monolayer by alloying with vanadium selenide was investigated through first-principles calculations. Electronic, optical, and magnetic properties of different W1-x V x Se2 alloy compositions were studied extensively. As the proportion of vanadium atoms in the alloys increased, a phase transition from semiconducting to metallic to semiconducting was discovered. All alloy compositions demonstrated induced magnetism with a long-range ferromagnetic order. Interestingly, in the case of the W0.25V0.75Se2 alloy, spin-up states in the band diagram showed a finite band gap, while a nonzero band gap was found for spin-down states. The W0.25V0.75Se2 alloy can be used as a spin filter tunneling barrier exploiting this fascinating property. High spin polarization of the tunnel current was found for the alloy. Furthermore, under the Curie temperature, electrical conductivity for the spin-up channel was found to be zero, while conductivity for the spin-down channel was around 1019 (Ω cm s)-1 when the chemical potential was 0.2 eV greater than the Fermi energy. Changes in optical properties were also investigated through time-dependent density functional theory calculations. The findings of this study will be beneficial for proposing new magnetic monolayer alloys for application in nanoscale spintronic devices.
Collapse
|
35
|
Xiong Y, Xu D, Feng Y, Zhang G, Lin P, Chen X. P-Type 2D Semiconductors for Future Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022:e2206939. [PMID: 36245325 DOI: 10.1002/adma.202206939] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/30/2022] [Indexed: 06/16/2023]
Abstract
2D semiconductors represent one of the best candidates to extend Moore's law for their superiorities, such as keeping high carrier mobility and remarkable gate-control capability at atomic thickness. Complementary transistors and van der Waals junctions are critical in realizing 2D semiconductors-based integrated circuits suitable for future electronics. N-type 2D semiconductors have been reported predominantly for the strong electron doping caused by interfacial charge impurities and internal structural defects. By contrast, superior and reliable p-type 2D semiconductors with holes as majority carriers are still scarce. Not only that, but some critical issues have not been adequately addressed, including their controlled synthesis in wafer size and high quality, defect and carrier modulation, optimization of interface and contact, and application in high-speed and low-power integrated devices. Here the material toolkit, synthesis strategies, device basics, and digital electronics closely related to p-type 2D semiconductors are reviewed. Their opportunities, challenges, and prospects for future electronic applications are also discussed, which would be promising or even shining in the post-Moore era.
Collapse
Affiliation(s)
- Yunhai Xiong
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Duo Xu
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Yiping Feng
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Guangjie Zhang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Pei Lin
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiang Chen
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| |
Collapse
|
36
|
Thi-Xuan Dang D, Barik RK, Phan MH, Woods LM. Enhanced Magnetism in Heterostructures with Transition-Metal Dichalcogenide Monolayers. J Phys Chem Lett 2022; 13:8879-8887. [PMID: 36125200 DOI: 10.1021/acs.jpclett.2c01925] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Two-dimensional materials and their heterostructures have opened up new possibilities for magnetism at the nanoscale. In this study, we utilize first-principles simulations to investigate the structural, electronic, and magnetic properties of Fe/WSe2/Pt systems containing pristine, defective, or doped WSe2 monolayers. The proximity effects of the ferromagnetic Fe layer are studied by considering defective and vanadium-doped WSe2 monolayers. All heterostructures are found to be ferromagnetic, and the insertion of the transition-metal dichalcogenide results in a redistribution of spin orientation and an increased density of magnetic atoms due to the magnetized WSe2. There is an increase in the overall total density of states at the Fermi level due to WSe2; however, the transition-metal dichalcogenide may lose its distinct semiconducting properties due to the stronger than van der Waals coupling. Spin-resolved electronic structure properties are linked to larger spin Seebeck coefficients found in heterostructures with WSe2 monolayers.
Collapse
Affiliation(s)
- Diem Thi-Xuan Dang
- Department of Physics, University of South Florida, Tampa, Florida 33620, United States
| | - Ranjan Kumar Barik
- Department of Physics, University of South Florida, Tampa, Florida 33620, United States
| | - Manh-Huong Phan
- Department of Physics, University of South Florida, Tampa, Florida 33620, United States
| | - Lilia M Woods
- Department of Physics, University of South Florida, Tampa, Florida 33620, United States
| |
Collapse
|
37
|
Zhou N, Zhang Z, Wang F, Li J, Xu X, Li H, Ding S, Liu J, Li X, Xie Y, Yang R, Ma Y, Zhai T. Spin Ordering Induced Broadband Photodetection Based on Two-Dimensional Magnetic Semiconductor α-MnSe. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202177. [PMID: 35666075 PMCID: PMC9353471 DOI: 10.1002/advs.202202177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Two-dimensional (2D) magnetic semiconductors are considered to have great application prospects in spintronic logic devices, memory devices, and photodetectors, due to their unique structures and outstanding physical properties in 2D confinement. Understanding the influence of magnetism on optical/optoelectronic properties of 2D magnetic semiconductors is a significant issue for constructing multifunctional electronic devices and implementing sophisticated functions. Herein, the influence of spin ordering and magnons on the optical/optoelectronic properties of 2D magnetic semiconductor α-MnSe synthesized by space-confined chemical vapor deposition (CVD) is explored systematically. The spin-ordering-induced magnetic phase transition triggers temperature-dependent photoluminescence spectra to produce a huge transition at Néel temperature (TN ≈ 160 K). The magnons- and defects-induced emissions are the primary luminescence path below TN and direct internal 4 a T1g →6 A1g transition-induced emissions are the main luminescence path above TN . Additionally, the magnons and defect structures endow 2D α-MnSe with a broadband luminescence from 550 to 880 nm, and an ultraviolet-near-infrared photoresponse from 365 to 808 nm. Moreover, the device also demonstrates improved photodetection performance at 80 K, possibly influenced by spin ordering and trap states associated with defects. These above findings indicate that 2D magnetic semiconductor α-MnSe provides an excellent platform for magneto-optical and magneto-optoelectronic research.
Collapse
Affiliation(s)
- Nan Zhou
- School of Advanced Materials and NanotechnologyXidian UniversityXi'an710126P. R. China
- Guangzhou Institute of TechnologyXidian UniversityGuangzhou710068P. R. China
| | - Zhimiao Zhang
- School of Advanced Materials and NanotechnologyXidian UniversityXi'an710126P. R. China
| | - Fakun Wang
- State Key Laboratory of Materials Processing and Die and Mould TechnologySchool of Materials Science and EngineeringHuazhong University of Science and TechnologyWuhan430074P. R. China
- School of Electrical and Electronic EngineeringNanyang Technological UniversitySingapore639798Singapore
| | - Junhao Li
- Institute of Information SensingXidian UniversityXi'an710126P. R. China
| | - Xiang Xu
- State Key Laboratory of Materials Processing and Die and Mould TechnologySchool of Materials Science and EngineeringHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Haoran Li
- School of Advanced Materials and NanotechnologyXidian UniversityXi'an710126P. R. China
| | - Su Ding
- School of Advanced Materials and NanotechnologyXidian UniversityXi'an710126P. R. China
| | - Jinmei Liu
- School of Advanced Materials and NanotechnologyXidian UniversityXi'an710126P. R. China
| | - Xiaobo Li
- School of Advanced Materials and NanotechnologyXidian UniversityXi'an710126P. R. China
- Guangzhou Institute of TechnologyXidian UniversityGuangzhou710068P. R. China
| | - Yong Xie
- School of Advanced Materials and NanotechnologyXidian UniversityXi'an710126P. R. China
| | - Rusen Yang
- School of Advanced Materials and NanotechnologyXidian UniversityXi'an710126P. R. China
| | - Ying Ma
- State Key Laboratory of Materials Processing and Die and Mould TechnologySchool of Materials Science and EngineeringHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die and Mould TechnologySchool of Materials Science and EngineeringHuazhong University of Science and TechnologyWuhan430074P. R. China
| |
Collapse
|
38
|
Microalgae as an Effective Recovery Agent for Vanadium in Aquatic Environment. ENERGIES 2022. [DOI: 10.3390/en15124467] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Given that vanadium is a valuable material, the implementation of vanadium recycling processes is thus necessary to enhance the element’s value chain as well as minimize its undesirable environmental consequences. Among various remediation methods available, a biological method based on microalgal adsorption is known to be eco-friendly and calls for further investigations. Herein, we evaluated V2O5 adsorption efficiencies of four different microalgal strains: Nannochloropsis oculata, Heterocapsa circularisquama, Chattonella marina, and Chattonella antiqua. Inductively coupled plasma mass spectrometry (ICP-MS) data indicated that vanadium concentration in the culture medium of Nannochloropsis oculata was reduced from 4.61 ± 0.11 mg L−1 to 1.85 ± 0.21 mg L−1 after being exposed to V2O5 solution for 24 h, whereas the supernatants of the other three strains displayed no change in vanadium ion concentration. Therefore, our results indicated a strong potential of Nannochloropsis oculata for recycling vanadium with approximately 59.9% of vanadium ion removal efficiency. Furthermore, morphological observation of Nannochloropsis oculata using scanning electron microscopy (SEM) indicated that the cells were able to maintain their intact morphology even under the presence of high concentrations of heavy metals. Due to the high adsorption efficiency and robustness of Nannochloropsis oculata, the results collectively support it as a potential strain for V2O5 recovery.
Collapse
|
39
|
Basyooni MA, Zaki SE, Tihtih M, Eker YR, Ateş Ş. Photonic bandgap engineering in (VO 2) n/(WSe 2) nphotonic superlattice for versatile near- and mid-infrared phase transition applications. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:325901. [PMID: 35588726 DOI: 10.1088/1361-648x/ac7189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
The application of the photonic superlattice in advanced photonics has become a demanding field, especially for two-dimensional and strongly correlated oxides. Because it experiences an abrupt metal-insulator transition near ambient temperature, where the electrical resistivity varies by orders of magnitude, vanadium oxide (VO2) shows potential as a building block for infrared switching and sensing devices. We reported a first principle study of superlattice structures of VO2as a strongly correlated phase transition material and tungsten diselenide (WSe2) as a two-dimensional transition metal dichalcogenide layer. Based on first-principles calculations, we exploit the effect of semiconductor monoclinic and metallic tetragonal state of VO2with WSe2in a photonic superlattices structure through the near and mid-infrared (NIR-MIR) thermochromic phase transition regions. By increasing the thickness of the VO2layer, the photonic bandgap (PhB) gets red-shifted. We observed linear dependence of the PhB width on the VO2thickness. For the monoclinic case of VO2, the number of the forbidden bands increase with the number of layers of WSe2. New forbidden gaps are preferred to appear at a slight angle of incidence, and the wider one can predominate at larger angles. We presented an efficient way to control the flow of the NIR-MIR in both summer and winter environments for phase transition and photonic thermochromic applications. This study's findings may help understand vanadium oxide's role in tunable photonic superlattice for infrared switchable devices and optical filters.
Collapse
Affiliation(s)
- Mohamed A Basyooni
- Department of Nanotechnology and Advanced Materials, Graduate School of Applied and Natural Science, Selçuk University, Konya 42030, Turkey
- Science and Technology Research and Application Center (BITAM), Necmettin Erbakan University, Konya 42090, Turkey
| | - Shrouk E Zaki
- Department of Nanotechnology and Advanced Materials, Graduate School of Applied and Natural Science, Selçuk University, Konya 42030, Turkey
| | - Mohammed Tihtih
- Institute of Ceramic and Polymer Engineering, University of Miskolc, Miskolc 3515, Hungary
| | - Yasin Ramazan Eker
- Science and Technology Research and Application Center (BITAM), Necmettin Erbakan University, Konya 42090, Turkey
- Department of Metallurgy and Material Engineering, Faculty of Engineering and Architecture, Necmettin Erbakan University, Konya 42060, Turkey
| | - Şule Ateş
- Department of Physics, Faculty of Science, Selçuk University, Konya 42075, Turkey
| |
Collapse
|
40
|
Wang QH, Bedoya-Pinto A, Blei M, Dismukes AH, Hamo A, Jenkins S, Koperski M, Liu Y, Sun QC, Telford EJ, Kim HH, Augustin M, Vool U, Yin JX, Li LH, Falin A, Dean CR, Casanova F, Evans RFL, Chshiev M, Mishchenko A, Petrovic C, He R, Zhao L, Tsen AW, Gerardot BD, Brotons-Gisbert M, Guguchia Z, Roy X, Tongay S, Wang Z, Hasan MZ, Wrachtrup J, Yacoby A, Fert A, Parkin S, Novoselov KS, Dai P, Balicas L, Santos EJG. The Magnetic Genome of Two-Dimensional van der Waals Materials. ACS NANO 2022; 16:6960-7079. [PMID: 35442017 PMCID: PMC9134533 DOI: 10.1021/acsnano.1c09150] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 02/23/2022] [Indexed: 05/23/2023]
Abstract
Magnetism in two-dimensional (2D) van der Waals (vdW) materials has recently emerged as one of the most promising areas in condensed matter research, with many exciting emerging properties and significant potential for applications ranging from topological magnonics to low-power spintronics, quantum computing, and optical communications. In the brief time after their discovery, 2D magnets have blossomed into a rich area for investigation, where fundamental concepts in magnetism are challenged by the behavior of spins that can develop at the single layer limit. However, much effort is still needed in multiple fronts before 2D magnets can be routinely used for practical implementations. In this comprehensive review, prominent authors with expertise in complementary fields of 2D magnetism (i.e., synthesis, device engineering, magneto-optics, imaging, transport, mechanics, spin excitations, and theory and simulations) have joined together to provide a genome of current knowledge and a guideline for future developments in 2D magnetic materials research.
Collapse
Affiliation(s)
- Qing Hua Wang
- Materials
Science and Engineering, School for Engineering of Matter, Transport
and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Amilcar Bedoya-Pinto
- NISE
Department, Max Planck Institute of Microstructure
Physics, 06120 Halle, Germany
- Instituto
de Ciencia Molecular (ICMol), Universitat
de València, 46980 Paterna, Spain
| | - Mark Blei
- Materials
Science and Engineering, School for Engineering of Matter, Transport
and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Avalon H. Dismukes
- Department
of Chemistry, Columbia University, New York, New York 10027, United States
| | - Assaf Hamo
- Department
of Physics, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Sarah Jenkins
- Twist
Group,
Faculty of Physics, University of Duisburg-Essen, Campus Duisburg, 47057 Duisburg, Germany
| | - Maciej Koperski
- Institute
for Functional Intelligent Materials, National
University of Singapore, 117544 Singapore
| | - Yu Liu
- Condensed
Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Qi-Chao Sun
- Physikalisches
Institut, University of Stuttgart, 70569 Stuttgart, Germany
| | - Evan J. Telford
- Department
of Chemistry, Columbia University, New York, New York 10027, United States
- Department
of Physics, Columbia University, New York, New York 10027, United States
| | - Hyun Ho Kim
- School
of Materials Science and Engineering, Department of Energy Engineering
Convergence, Kumoh National Institute of
Technology, Gumi 39177, Korea
| | - Mathias Augustin
- Institute
for Condensed Matter Physics and Complex Systems, School of Physics
and Astronomy, The University of Edinburgh, Edinburgh, EH9 3FD, United Kingdom
- Donostia
International Physics Center (DIPC), 20018 Donostia-San Sebastián, Basque Country, Spain
| | - Uri Vool
- Department
of Physics, Harvard University, Cambridge, Massachusetts 02138, United States
- John Harvard
Distinguished Science Fellows Program, Harvard
University, Cambridge, Massachusetts 02138, United States
| | - Jia-Xin Yin
- Laboratory
for Topological Quantum Matter and Spectroscopy, Department of Physics, Princeton University, Princeton, New Jersey 08544, United States
| | - Lu Hua Li
- Institute
for Frontier Materials, Deakin University, Geelong Waurn Ponds Campus, Waurn Ponds, Victoria 3216, Australia
| | - Alexey Falin
- Institute
for Frontier Materials, Deakin University, Geelong Waurn Ponds Campus, Waurn Ponds, Victoria 3216, Australia
| | - Cory R. Dean
- Department
of Physics, Columbia University, New York, New York 10027, United States
| | - Fèlix Casanova
- CIC nanoGUNE
BRTA, 20018 Donostia - San Sebastián, Basque
Country, Spain
- IKERBASQUE,
Basque Foundation for Science, 48013 Bilbao, Basque Country, Spain
| | - Richard F. L. Evans
- Department
of Physics, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Mairbek Chshiev
- Université
Grenoble Alpes, CEA, CNRS, Spintec, 38000 Grenoble, France
- Institut
Universitaire de France, 75231 Paris, France
| | - Artem Mishchenko
- Department
of Physics and Astronomy, University of
Manchester, Manchester, M13 9PL, United Kingdom
- National
Graphene Institute, University of Manchester, Manchester, M13 9PL, United Kingdom
| | - Cedomir Petrovic
- Condensed
Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Rui He
- Department
of Electrical and Computer Engineering, Texas Tech University, 910 Boston Avenue, Lubbock, Texas 79409, United
States
| | - Liuyan Zhao
- Department
of Physics, University of Michigan, 450 Church Street, Ann Arbor, Michigan 48109, United States
| | - Adam W. Tsen
- Institute
for Quantum Computing and Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Brian D. Gerardot
- SUPA, Institute
of Photonics and Quantum Sciences, Heriot-Watt
University, Edinburgh EH14 4AS, United Kingdom
| | - Mauro Brotons-Gisbert
- SUPA, Institute
of Photonics and Quantum Sciences, Heriot-Watt
University, Edinburgh EH14 4AS, United Kingdom
| | - Zurab Guguchia
- Laboratory
for Muon Spin Spectroscopy, Paul Scherrer
Institute, CH-5232 Villigen PSI, Switzerland
| | - Xavier Roy
- Department
of Chemistry, Columbia University, New York, New York 10027, United States
| | - Sefaattin Tongay
- Materials
Science and Engineering, School for Engineering of Matter, Transport
and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Ziwei Wang
- Department
of Physics and Astronomy, University of
Manchester, Manchester, M13 9PL, United Kingdom
- National
Graphene Institute, University of Manchester, Manchester, M13 9PL, United Kingdom
| | - M. Zahid Hasan
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Princeton
Institute for Science and Technology of Materials, Princeton University, Princeton, New Jersey 08544, United States
- National
High Magnetic Field Laboratory, Florida
State University, Tallahassee, Florida 32310, United States
| | - Joerg Wrachtrup
- Physikalisches
Institut, University of Stuttgart, 70569 Stuttgart, Germany
- Max Planck
Institute for Solid State Research, 70569 Stuttgart, Germany
| | - Amir Yacoby
- Department
of Physics, Harvard University, Cambridge, Massachusetts 02138, United States
- John A.
Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Albert Fert
- Donostia
International Physics Center (DIPC), 20018 Donostia-San Sebastián, Basque Country, Spain
- Unité
Mixte de Physique, CNRS, Thales, Université Paris-Saclay, 91767 Palaiseau, France
- Department
of Materials Physics UPV/EHU, 20018 Donostia - San Sebastián, Basque Country, Spain
| | - Stuart Parkin
- NISE
Department, Max Planck Institute of Microstructure
Physics, 06120 Halle, Germany
| | - Kostya S. Novoselov
- Institute
for Functional Intelligent Materials, National
University of Singapore, 117544 Singapore
| | - Pengcheng Dai
- Department
of Physics and Astronomy, Rice University, Houston, Texas 77005, United States
| | - Luis Balicas
- National
High Magnetic Field Laboratory, Florida
State University, Tallahassee, Florida 32310, United States
- Department
of Physics, Florida State University, Tallahassee, Florida 32306, United States
| | - Elton J. G. Santos
- Institute
for Condensed Matter Physics and Complex Systems, School of Physics
and Astronomy, The University of Edinburgh, Edinburgh, EH9 3FD, United Kingdom
- Donostia
International Physics Center (DIPC), 20018 Donostia-San Sebastián, Basque Country, Spain
- Higgs Centre
for Theoretical Physics, The University
of Edinburgh, Edinburgh EH9 3FD, United Kingdom
| |
Collapse
|
41
|
Deng J, Zhou Z, Chen J, Cheng Z, Liu J, Wang Z. Vanadium-Doped Molybdenum Diselenide Atomic Layers with Room-Temperature Ferromagnetism. Chemphyschem 2022; 23:e202200162. [PMID: 35593048 DOI: 10.1002/cphc.202200162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/19/2022] [Indexed: 11/05/2022]
Abstract
Two-dimensional diluted magnetic semiconductors with high Curie temperature are highly sought after because of their potential applications in spintronics. Development of new techniques for preparation of high quanlity diluted magnetic semiconductors is critical for their applications. In this study, vanadium-doped molybdenum selenide, a new diluted magnetic semiconductor, was synthesized by a single-step chemical vapor deposition method. The merit of this method is that the molybdenum and vanadium precursors can be supplied to the growth substrate uniformly. Photoluminescence measurements reveal that the band gap of MoSe 2 decreases after doping, which can be attributed to the formation of impurity energy band caused by p-type doping at the valence band maximum. Thus, the V-doped MoSe 2 still maintains the semiconducting characteristics. Vibrating sample magnetometer studies clearly show the ferromagnetism of V-doped MoSe 2 at room temperature. DFT calculations illustrates the joint contribution of V dopants and nearby atoms to the magnetic moments. This study provides future prospects for the multifunctional application of two-dimensional materials.
Collapse
Affiliation(s)
- Jianjun Deng
- Renmin University of China, Department of Chemistry, CHINA
| | - Zhonghao Zhou
- Renmin University of China, Department of Chemistry, CHINA
| | - Jinglong Chen
- Renmin University of China, Department of Chemistry, CHINA
| | - Zhihai Cheng
- Renmin University of China, Department of Physics, CHINA
| | - Jia Liu
- China Electronics Technology Group Corporation 38th Research Institute, No. 24, CHINA
| | - Zhiyong Wang
- Renmin University of China, Department of Chemistry, Zhongguancun Street, 100872, Beijing, CHINA
| |
Collapse
|
42
|
Zhang D, Zhou B. Conduction band-edge valley splitting in two-dimensional ferroelectric AgBiP 2S 6 by magnetic doping: towards electron valley-polarized transport. RSC Adv 2022; 12:13765-13773. [PMID: 35530381 PMCID: PMC9074848 DOI: 10.1039/d2ra01697d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/02/2022] [Indexed: 11/24/2022] Open
Abstract
Two-dimensional valleytronic systems, using the valley index of carriers to perform logic operations, serves as the basis of the next-generation information technologies. For efficient use of the valley degree of freedom, the major challenge currently is to lift the valley degeneracy to achieve valley splitting. In this work, using first-principles calculations, we propose that valley splitting can be readily achieved in a ferroelectric AgBiP2S6 monolayer by TM doping (TM = V, Cr, Mn, Fe, Co, and Ni), which is highly feasible in experiments. In sharp contrast to most previous reports of valley-related features in the valence band-edge, the pristine AgBiP2S6 monolayer has a direct band-gap located at K/K' points of the Brillouin zone and harbors strong coupled spin and valley physics around the conduction band-edge, due to inversion symmetry breaking combined with strong spin-orbit coupling. By TM-doping, the local magnetic moment can be introduced into the system, which can destroy the valley degeneration of the conduction band-edge and induce valley splitting. Especially in a V-doped system, accompanied with a large valley splitting (26.8 meV), there is a serious n-type doping in AgBiP2S6. The efficient electron-doping moves the Fermi level just located between the conduction band minimum of the K/K' valleys, which is suitable for valley-polarized transport. Moreover, the valley-polarized index can be flipped by applying a small magnetic field to rotate the magnetocrystalline direction. The magnitude of valley splitting relies on the strength of orbital hybridization between the TM-d and Bi-p states and can be tuned continually by applying biaxial strain. Under an in-plane electric field, such valley degeneracy breaking would give rise to the long-sought anomalous valley Hall effect, which is crucial to design a valleytronic device.
Collapse
Affiliation(s)
- Dongxue Zhang
- Tianjin Key Laboratory of Film Electronic & Communicate Devices, School of Integrated Circuit Science and Engineering, Tianjin University of Technology Tianjin 300384 China
| | - Baozeng Zhou
- Tianjin Key Laboratory of Film Electronic & Communicate Devices, School of Integrated Circuit Science and Engineering, Tianjin University of Technology Tianjin 300384 China
| |
Collapse
|
43
|
Huey WLB, Ochs AM, Williams AJ, Zhang Y, Kraguljac S, Deng Z, Moore CE, Windl W, Lau CN, Goldberger JE. Cr xPt 1-xTe 2 ( x ≤ 0.45): A Family of Air-Stable and Exfoliatable van der Waals Ferromagnets. ACS NANO 2022; 16:3852-3860. [PMID: 35176210 DOI: 10.1021/acsnano.1c08681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The development of thermally robust, air-stable, exfoliatable two-dimensional van der Waals ferromagnetic materials with high transition temperatures is of great importance. Here, we establish a family of magnetic alloys, CrxPt1-xTe2 (x ≤ 0.45), that combines the stability of the late transition metal dichalcogenide PtTe2 with magnetism from Cr. These materials are easily grown in crystal form from the melt, are stable in ambient conditions, and have among the highest concentrations of magnetic element substitution in transition metal dichalcogenide alloys. The highest Cr-substituted material, Cr0.45Pt0.55Te2, exhibits ferromagnetic behavior below 220 K, and the easy axis is along the c-axis of the material, as determined using a combination of neutron diffraction and magnetic susceptibility measurements. These materials are metallic, with appreciable magnetoresistance below the Curie temperature. Single-crystal and powder diffraction measurements indicate Cr readily alloys onto the Pt site and does not sit in the van der Waals space, allowing these materials to be readily exfoliated to the few-layer regime. In summary, this air-stable, exfoliatable, high transition temperature ferromagnet shows great potential as building block for future 2D devices.
Collapse
Affiliation(s)
- Warren L B Huey
- Department of Chemistry and Biochemistry, The Ohio State University, 100 W. 18th Avenue, Columbus, Ohio 43210, United States
| | - Andrew M Ochs
- Department of Chemistry and Biochemistry, The Ohio State University, 100 W. 18th Avenue, Columbus, Ohio 43210, United States
| | - Archibald J Williams
- Department of Chemistry and Biochemistry, The Ohio State University, 100 W. 18th Avenue, Columbus, Ohio 43210, United States
| | - Yuxin Zhang
- Department of Physics, The Ohio State University, 191 W. Woodruff Avenue, Columbus, Ohio 43210, United States
| | - Simo Kraguljac
- Department of Chemistry and Biochemistry, The Ohio State University, 100 W. 18th Avenue, Columbus, Ohio 43210, United States
| | - Ziling Deng
- Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Curtis E Moore
- Department of Chemistry and Biochemistry, The Ohio State University, 100 W. 18th Avenue, Columbus, Ohio 43210, United States
| | - Wolfgang Windl
- Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Chun Ning Lau
- Department of Physics, The Ohio State University, 191 W. Woodruff Avenue, Columbus, Ohio 43210, United States
| | - Joshua E Goldberger
- Department of Chemistry and Biochemistry, The Ohio State University, 100 W. 18th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
44
|
Ledneva AY, Chebanova GE, Artemkina SB, Lavrov AN. CRYSTALLINE AND NANOSTRUCTURED MATERIALS BASED ON TRANSITION METAL DICHALCOGENIDES: SYNTHESIS AND ELECTRONIC PROPERTIES. J STRUCT CHEM+ 2022. [DOI: 10.1134/s0022476622020020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
45
|
Zhang S, Wu H, Yang L, Zhang G, Xie Y, Zhang L, Zhang W, Chang H. Two-dimensional magnetic atomic crystals. MATERIALS HORIZONS 2022; 9:559-576. [PMID: 34779810 DOI: 10.1039/d1mh01155c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Two-dimensional (2D) magnetic crystals show many fascinating physical properties and have potential device applications in many fields. In this paper, the preparation, physical properties and device applications of 2D magnetic atomic crystals are reviewed. First, three preparation methods are presented, including chemical vapor deposition (CVD) molecular beam epitaxy (MBE) and single-crystal exfoliation. Second, physical properties of 2D magnetic atomic crystals, including ferromagnetism, antiferromagnetism, magnetic regulation and anomalous Hall effect are presented. Third, the application of 2D magnetic atomic crystals in heterojunctions reluctance and other aspects are briefly introduced. Finally, the future development direction and possible challenges of 2D magnetic atomic crystals are briefly addressed.
Collapse
Affiliation(s)
- Shanfei Zhang
- Center for Joining and Electronic Packaging, State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
- Institute for Quantum Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Hao Wu
- Center for Joining and Electronic Packaging, State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
- Institute for Quantum Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Li Yang
- Center for Joining and Electronic Packaging, State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
- Institute for Quantum Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Gaojie Zhang
- Center for Joining and Electronic Packaging, State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
- Institute for Quantum Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Yuanmiao Xie
- School of Microelectronics and Materials Engineering and School of Science, Guangxi University of Science and Technology, Liuzhou, China
| | - Liang Zhang
- School of Microelectronics and Materials Engineering and School of Science, Guangxi University of Science and Technology, Liuzhou, China
| | - Wenfeng Zhang
- Center for Joining and Electronic Packaging, State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
- Institute for Quantum Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Haixin Chang
- Center for Joining and Electronic Packaging, State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
- Institute for Quantum Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| |
Collapse
|
46
|
Atomically Thin 2D van der Waals Magnetic Materials: Fabrications, Structure, Magnetic Properties and Applications. COATINGS 2022. [DOI: 10.3390/coatings12020122] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Two-dimensional (2D) van der Waals (vdW) magnetic materials are considered to be ideal candidates for the fabrication of spintronic devices because of their low dimensionality, allowing the quantization of electronic states and more degrees of freedom for device modulation. With the discovery of few-layer Cr2Ge2Te6 and monolayer CrI3 ferromagnets, the magnetism of 2D vdW materials is becoming a research focus in the fields of material science and physics. In theory, taking the Heisenberg model with finite-range exchange interactions as an example, low dimensionality and ferromagnetism are in competition. In other words, it is difficult for 2D materials to maintain their magnetism. However, the introduction of anisotropy in 2D magnetic materials enables the realization of long-range ferromagnetic order in atomically layered materials, which may offer new effective means for the design of 2D ferromagnets with high Curie temperature. Herein, current advances in the field of 2D vdW magnetic crystals, as well as intrinsic and induced ferromagnetism or antiferromagnetism, physical properties, device fabrication, and potential applications, are briefly summarized and discussed.
Collapse
|
47
|
Giri A, De C, Kumar M, Pal M, Lee HH, Kim JS, Cheong SW, Jeong U. Large-Area Epitaxial Film Growth of van der Waals Ferromagnetic Ternary Chalcogenides. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2103609. [PMID: 34536038 DOI: 10.1002/adma.202103609] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/03/2021] [Indexed: 06/13/2023]
Abstract
Following the first experimental realization of intrinsic ferromagnetism in 2D van der Waals (vdW) crystals, several ternary metal chalcogenides with unprecedented long-range ferromagnetic order have been explored. However, the synthesis of large-area 2D ternary metal chalcogenide thin films is a great challenge, and a generalized synthesis has not been demonstrated yet. Here, a quick and scalable synthesis of epitaxially aligned ferromagnetic ternary metal chalcogenide thin films (Cr2 Ge2 Te6 , Cr2 Si2 Te6 , Mn3 Si2 Te6 ) is reported. The synthesis is based on the flux-controlled surface diffusion of Te on metal (Cr, Mn)-deposited wafer (Ge, Si) substrates. Magnetic anisotropy study of the epitaxial ternary thin films reveals the intrinsic magnetic easy axis; out-of-plane direction for Cr2 Ge2 Te6 and Cr2 Si2 Te6 , and in-plane direction for Mn3 Si2 Te6 . In addition to the synthesis, this work creates an opportunity for transfer-free device fabrication for realizing magnetoelectronics based on the electrical control of both charge and spin degrees of freedom in 2D ferromagnetic semiconductors.
Collapse
Affiliation(s)
- Anupam Giri
- Department of Materials Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 790-784, Korea
| | - Chandan De
- Center for Artificial Low Dimensional Electronic System (CALDES), Institute for Basic Science (IBS), Pohang, Republic of Korea
- Laboratory of Pohang Emergent Materials (l-PEM), Pohang Accelerator Laboratory (PAL), Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 790-784, Korea
| | - Manish Kumar
- Pohang Accelerator Laboratory (PAL), Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 790-784, Korea
| | - Monalisa Pal
- Department of Materials Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 790-784, Korea
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Hyun Hwi Lee
- Pohang Accelerator Laboratory (PAL), Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 790-784, Korea
| | - Jun Sung Kim
- Center for Artificial Low Dimensional Electronic System (CALDES), Institute for Basic Science (IBS), Pohang, Republic of Korea
- Department of Physics, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Sang-Wook Cheong
- Laboratory of Pohang Emergent Materials (l-PEM), Pohang Accelerator Laboratory (PAL), Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 790-784, Korea
- Rutgers Center for Emergent Materials and Department of Physics and Astronomy, Rutgers University, 136 Frelinghuysen Road, Piscataway, New Jersey, 08854, USA
| | - Unyong Jeong
- Department of Materials Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 790-784, Korea
| |
Collapse
|
48
|
Chua R, Zhou J, Yu X, Yu W, Gou J, Zhu R, Zhang L, Liu M, Breese MBH, Chen W, Loh KP, Feng YP, Yang M, Huang YL, Wee ATS. Room Temperature Ferromagnetism of Monolayer Chromium Telluride with Perpendicular Magnetic Anisotropy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2103360. [PMID: 34477241 DOI: 10.1002/adma.202103360] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/18/2021] [Indexed: 06/13/2023]
Abstract
The realization of long-range magnetic ordering in 2D systems can potentially revolutionize next-generation information technology. Here, the successful fabrication of crystalline Cr3 Te4 monolayers with room temperature (RT) ferromagnetism is reported. Using molecular beam epitaxy, the growth of 2D Cr3 Te4 films with monolayer thickness is demonstrated at low substrate temperatures (≈100 °C), compatible with Si complementary metal oxide semiconductor technology. X-ray magnetic circular dichroism measurements reveal a Curie temperature (Tc ) of v344 K for the Cr3 Te4 monolayer with an out-of-plane magnetic easy axis, which decreases to v240 K for the thicker film (≈7 nm) with an in-plane easy axis. The enhancement of ferromagnetic coupling and the magnetic anisotropy transition is ascribed to interfacial effects, in particular the orbital overlap at the monolayer Cr3 Te4 /graphite interface, supported by density-functional theory calculations. This work sheds light on the low-temperature scalable growth of 2D nonlayered materials with RT ferromagnetism for new magnetic and spintronic devices.
Collapse
Affiliation(s)
- Rebekah Chua
- NUS Graduate School for Integrative Sciences & Engineering (NGS), University Hall, Tan Chin Tuan Wing, 21 Lower Kent Ridge, Singapore, 119077, Singapore
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, 117551, Singapore
| | - Jun Zhou
- Institute of Materials Research & Engineering, A*STAR (Agency for Science Technology and Research), 2 Fusionopolis Way, Innovis, Singapore, 138634, Singapore
| | - Xiaojiang Yu
- Singapore Synchrotron Light Source (SSLS), National University of Singapore, 5 Research Link, Singapore, 117603, Singapore
| | - Wei Yu
- Department of Chemistry, National University of Singapore, 2 Science Drive 3, Singapore, 117542, Singapore
| | - Jian Gou
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, 117551, Singapore
| | - Rui Zhu
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, 117551, Singapore
| | - Lei Zhang
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, 117551, Singapore
| | - Meizhuang Liu
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, 117551, Singapore
| | - Mark B H Breese
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, 117551, Singapore
- Singapore Synchrotron Light Source (SSLS), National University of Singapore, 5 Research Link, Singapore, 117603, Singapore
| | - Wei Chen
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, 117551, Singapore
- Department of Chemistry, National University of Singapore, 2 Science Drive 3, Singapore, 117542, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou, 350207, China
| | - Kian Ping Loh
- NUS Graduate School for Integrative Sciences & Engineering (NGS), University Hall, Tan Chin Tuan Wing, 21 Lower Kent Ridge, Singapore, 119077, Singapore
- Department of Chemistry, National University of Singapore, 2 Science Drive 3, Singapore, 117542, Singapore
| | - Yuan Ping Feng
- NUS Graduate School for Integrative Sciences & Engineering (NGS), University Hall, Tan Chin Tuan Wing, 21 Lower Kent Ridge, Singapore, 119077, Singapore
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, 117551, Singapore
| | - Ming Yang
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Yu Li Huang
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, 117551, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou, 350207, China
| | - Andrew T S Wee
- NUS Graduate School for Integrative Sciences & Engineering (NGS), University Hall, Tan Chin Tuan Wing, 21 Lower Kent Ridge, Singapore, 119077, Singapore
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, 117551, Singapore
| |
Collapse
|
49
|
Zheng C, Hoffmann R, Perkins TS, Calvagna F, Fotovat R, Ferels C, Mohr A, Kremer RK, Köhler J, Simon A, Bu K, Huang F. Synthesis, structure, and magnetic properties of the quaternary oxysulfides Ln
5V3O7S6 (Ln = La, Ce). ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES 2021. [DOI: 10.1515/znb-2021-0107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Two rare earth oxysulfides Ln
5V3O7S6 (Ln = La, Ce) have been synthesized and their structures determined. The two isostructural compounds crystallize in the orthorhombic space group Pmmn (no. 59). The structure features one-dimensional edge-sharing VS4O2 octahedron chains parallel to the b axis. The bonding between V and S/O is covalent, and between Ln
3+ and the rest of the matrix ionic. Magnetic susceptibility measurement revealed that V is in a mixed valence state of V3+ and V4+. Its magnetic behavior follows the Curie-Weiss law.
Collapse
Affiliation(s)
- Chong Zheng
- Department of Chemistry and Biochemistry , Northern Illinois University , DeKalb , IL , 60115 , USA
| | - Roald Hoffmann
- Department of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853 , USA ,
| | - Timothy S. Perkins
- Department of Chemistry , Coker University , Hartsville , SC , 29550 , USA
| | - Frank Calvagna
- Department of Chemistry , Rock Valley College , Rockford , IL , 61114 , USA
| | - Roxanna Fotovat
- Department of Chemistry and Biochemistry , Northern Illinois University , DeKalb , IL , 60115 , USA
| | - Crystal Ferels
- Department of Chemistry and Biochemistry , Northern Illinois University , DeKalb , IL , 60115 , USA
| | - Alyssa Mohr
- Department of Chemistry and Biochemistry , Northern Illinois University , DeKalb , IL , 60115 , USA
| | - Reinhard K. Kremer
- Max-Planck-Institut für Festkörperforschung , Heisenbergstrasse 1 , D-70569 Stuttgart , Germany
| | - Jürgen Köhler
- Max-Planck-Institut für Festkörperforschung , Heisenbergstrasse 1 , D-70569 Stuttgart , Germany
| | - Arndt Simon
- Max-Planck-Institut für Festkörperforschung , Heisenbergstrasse 1 , D-70569 Stuttgart , Germany
| | - Kejun Bu
- Shanghai Institute of Ceramics , Chinese Academy of Sciences , Shanghai , 200050 , P. R. China
| | - Fuqiang Huang
- Shanghai Institute of Ceramics , Chinese Academy of Sciences , Shanghai , 200050 , P. R. China
| |
Collapse
|
50
|
Li S, Hong J, Gao B, Lin Y, Lim HE, Lu X, Wu J, Liu S, Tateyama Y, Sakuma Y, Tsukagoshi K, Suenaga K, Taniguchi T. Tunable Doping of Rhenium and Vanadium into Transition Metal Dichalcogenides for Two-Dimensional Electronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2004438. [PMID: 34105285 PMCID: PMC8188190 DOI: 10.1002/advs.202004438] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/24/2021] [Indexed: 05/27/2023]
Abstract
Two-dimensional (2D) transition metal dichalcogenides (TMDCs) with unique electrical properties are fascinating materials used for future electronics. However, the strong Fermi level pinning effect at the interface of TMDCs and metal electrodes always leads to high contact resistance, which seriously hinders their application in 2D electronics. One effective way to overcome this is to use metallic TMDCs or transferred metal electrodes as van der Waals (vdW) contacts. Alternatively, using highly conductive doped TMDCs will have a profound impact on the contact engineering of 2D electronics. Here, a novel chemical vapor deposition (CVD) using mixed molten salts is established for vapor-liquid-solid growth of high-quality rhenium (Re) and vanadium (V) doped TMDC monolayers with high controllability and reproducibility. A tunable semiconductor to metal transition is observed in the Re- and V-doped TMDCs. Electrical conductivity increases up to a factor of 108 in the degenerate V-doped WS2 and WSe2 . Using V-doped WSe2 as vdW contact, the on-state current and on/off ratio of WSe2 -based field-effect transistors have been substantially improved (from ≈10-8 to 10-5 A; ≈104 to 108 ), compared to metal contacts. Future studies on lateral contacts and interconnects using doped TMDCs will pave the way for 2D integrated circuits and flexible electronics.
Collapse
Affiliation(s)
- Shisheng Li
- International Center for Young Scientists (ICYS)National Institute for Materials Science (NIMS)Tsukuba305‐0044Japan
| | - Jinhua Hong
- Nanomaterials Research InstituteNational Institute of Advanced Industrial Science and TechnologyAIST Central 5Tsukuba305‐8564Japan
| | - Bo Gao
- Center for Green Research on Energy and Environmental Materials (GREEN)National Institute for Materials Science (NIMS)Tsukuba305‐0044Japan
- International Center for Materials Nanoarchitectonics (WPI‐MANA)National Institute for Materials Science (NIMS)Tsukuba305‐0044Japan
| | - Yung‐Chang Lin
- Nanomaterials Research InstituteNational Institute of Advanced Industrial Science and TechnologyAIST Central 5Tsukuba305‐8564Japan
| | - Hong En Lim
- Department of PhysicsTokyo Metropolitan UniversityHachioji192‐0397Japan
| | - Xueyi Lu
- International Center for Materials Nanoarchitectonics (WPI‐MANA)National Institute for Materials Science (NIMS)Tsukuba305‐0044Japan
| | - Jing Wu
- Institute of Materials Research and EngineeringAgency for ScienceTechnology and ResearchSingapore138634Singapore
| | - Song Liu
- Institute of Chemical Biology and Nanomedicine (ICBN)College of Chemistry and Chemical EngineeringHunan UniversityChangsha410082P. R. China
| | - Yoshitaka Tateyama
- Center for Green Research on Energy and Environmental Materials (GREEN)National Institute for Materials Science (NIMS)Tsukuba305‐0044Japan
- International Center for Materials Nanoarchitectonics (WPI‐MANA)National Institute for Materials Science (NIMS)Tsukuba305‐0044Japan
| | - Yoshiki Sakuma
- Research Center for Functional MaterialsNational Institute for Materials Science (NIMS)Tsukuba305‐0044Japan
| | - Kazuhito Tsukagoshi
- International Center for Materials Nanoarchitectonics (WPI‐MANA)National Institute for Materials Science (NIMS)Tsukuba305‐0044Japan
| | - Kazu Suenaga
- Nanomaterials Research InstituteNational Institute of Advanced Industrial Science and TechnologyAIST Central 5Tsukuba305‐8564Japan
| | - Takaaki Taniguchi
- International Center for Materials Nanoarchitectonics (WPI‐MANA)National Institute for Materials Science (NIMS)Tsukuba305‐0044Japan
| |
Collapse
|