1
|
Dimitropoulos A, Doernberg EA, Gordon RA, Vargo K, Nichols E, Russ SW. Efficacy of a Remote Play-Based Intervention for Children With Prader-Willi Syndrome. AMERICAN JOURNAL ON INTELLECTUAL AND DEVELOPMENTAL DISABILITIES 2024; 129:279-293. [PMID: 38917995 DOI: 10.1352/1944-7558-129.4.279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 01/28/2023] [Indexed: 06/27/2024]
Abstract
The current study examines the efficacy of an 8-week pretend play intervention targeting social-cognitive abilities in children with Prader-Willi syndrome (PWS), ages 6-9. PWS is a rare disorder associated with various social, emotional, and cognitive challenges linked to pretend play impairments, and for which interventions are sparse. Nineteen children were quasi-randomized to receive the intervention or be part of a waitlist control group. Participants who received the intervention (n = 10) demonstrated significant improvements in various components of pretend play, most notably in organization of play, which may generalize to broader social-cognitive gains. These findings provide evidence of the intervention's efficacy in enhancing pretend play skills and related social-cognitive abilities during this critical period of development for children with PWS.
Collapse
Affiliation(s)
- Anastasia Dimitropoulos
- Anastasia Dimitropoulos, Ellen A. Doernberg, Rachel A. Gordon, Kerrigan Vargo, Evelyn Nichols, and Sandra W. Russ, Case Western Reserve University
| | - Ellen A Doernberg
- Anastasia Dimitropoulos, Ellen A. Doernberg, Rachel A. Gordon, Kerrigan Vargo, Evelyn Nichols, and Sandra W. Russ, Case Western Reserve University
| | - Rachel A Gordon
- Anastasia Dimitropoulos, Ellen A. Doernberg, Rachel A. Gordon, Kerrigan Vargo, Evelyn Nichols, and Sandra W. Russ, Case Western Reserve University
| | - Kerrigan Vargo
- Anastasia Dimitropoulos, Ellen A. Doernberg, Rachel A. Gordon, Kerrigan Vargo, Evelyn Nichols, and Sandra W. Russ, Case Western Reserve University
| | - Evelyn Nichols
- Anastasia Dimitropoulos, Ellen A. Doernberg, Rachel A. Gordon, Kerrigan Vargo, Evelyn Nichols, and Sandra W. Russ, Case Western Reserve University
| | - Sandra W Russ
- Anastasia Dimitropoulos, Ellen A. Doernberg, Rachel A. Gordon, Kerrigan Vargo, Evelyn Nichols, and Sandra W. Russ, Case Western Reserve University
| |
Collapse
|
2
|
Pascual-Morena C, Martínez-Vizcaíno V, Cavero-Redondo I, Álvarez-Bueno C, Martínez-García I, Rodríguez-Gutiérrez E, Otero-Luis I, Del Saz-Lara A, Saz-Lara A. Prevalence and genotypic associations of epilepsy in Prader-Willi Syndrome: A systematic review and meta-analysis. Epilepsy Behav 2024; 155:109803. [PMID: 38663143 DOI: 10.1016/j.yebeh.2024.109803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/14/2024] [Accepted: 04/17/2024] [Indexed: 05/28/2024]
Abstract
OBJECTIVE To estimate the prevalence of epilepsy and febrile seizures and their association with genotype, i.e., 15q11-q13 deletions, uniparental chromosome 15 disomy (UPD) and other mutations, in the population with Prader-Willi syndrome (PWS). METHODS A systematic search of Medline, Scopus, Web of Science and the Cochrane Library was conducted. Studies estimating the prevalence of seizures, epilepsy and febrile seizures in the PWS population were included. Meta-analyses of the prevalence of epilepsy and febrile seizures and their association with genotype using the prevalence ratio (PR) were performed. RESULTS Fifteen studies were included. The prevalence of epilepsy was 0.11 (0.07, 0.15), similar to the prevalence of febrile seizures, with a prevalence of 0.09 (0.05, 0.13). The comparison "deletion vs. UPD" had a PR of 2.03 (0.90, 4.57) and 3.76 (1.54, 9.18) for epilepsy and febrile seizures. CONCLUSIONS The prevalence of seizure disorders in PWS is higher than in the general population. In addition, deletions in 15q11-q13 may be associated with a higher risk of seizure disorders. Therefore, active screening for seizure disorders in PWS should improve the lives of these people. In addition, genotype could be used to stratify risk, even for epilepsy, although more studies or larger sample sizes are needed.
Collapse
Affiliation(s)
- Carlos Pascual-Morena
- Health and Social Research Center, Universidad de Castilla - La Mancha, 16071 Cuenca, Spain; Faculty of Nursing, Universidad de Castilla-La Mancha, 02006 Albacete, Spain
| | - Vicente Martínez-Vizcaíno
- Health and Social Research Center, Universidad de Castilla - La Mancha, 16071 Cuenca, Spain; Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca 3460000, Chile
| | - Iván Cavero-Redondo
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca 3460000, Chile.
| | - Celia Álvarez-Bueno
- Health and Social Research Center, Universidad de Castilla - La Mancha, 16071 Cuenca, Spain; Universidad Politécnica y Artística del Paraguay, Asunción, Paraguay
| | - Irene Martínez-García
- Health and Social Research Center, Universidad de Castilla - La Mancha, 16071 Cuenca, Spain
| | | | - Iris Otero-Luis
- Health and Social Research Center, Universidad de Castilla - La Mancha, 16071 Cuenca, Spain
| | - Andrea Del Saz-Lara
- Health and Social Research Center, Universidad de Castilla - La Mancha, 16071 Cuenca, Spain; Laboratory of Epigenetics of Lipid Metabolism, Madrid Institute for Advanced Studies (IMDEA)-Food, CEI UAM + CSIC, 28049 Madrid, Spain
| | - Alicia Saz-Lara
- Health and Social Research Center, Universidad de Castilla - La Mancha, 16071 Cuenca, Spain
| |
Collapse
|
3
|
Wimmer MC, Brennenstuhl H, Hirsch S, Dötsch L, Unser S, Caro P, Schaaf CP. Hao-Fountain syndrome: 32 novel patients reveal new insights into the clinical spectrum. Clin Genet 2024; 105:499-509. [PMID: 38221796 DOI: 10.1111/cge.14480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/23/2023] [Accepted: 12/28/2023] [Indexed: 01/16/2024]
Abstract
Hao-Fountain syndrome (HAFOUS, OMIM: #616863) is a neurodevelopmental disorder caused by pathogenic variants in the gene USP7 coding for USP7, a protein involved in several crucial cellular homeostatic mechanisms and the recently described MUST complex. The phenotype of HAFOUS is insufficiently understood, yet there is a great need to better understand the spectrum of disease, genotype-phenotype correlations, and disease trajectories. We now present a larger cohort of 32 additional individuals and provide further clinical information about six previously reported individuals. A questionnaire-based study was performed to characterize the phenotype of Hao-Fountain syndrome more clearly, to highlight new traits, and to better distinguish the disease from related neurodevelopmental disorders. In addition to confirming previously described features, we report hyperphagia and increased body weight in a subset of individuals. HAFOUS patients present an increased rate of birth complications, congenital anomalies, and abnormal pain thresholds. Speech impairment emerges as a potential hallmark of Hao-Fountain syndrome. Cognitive testing reports reveal borderline intellectual functioning on average, although some individuals score in the range of intellectual disability. Finally, we created a syndrome-specific severity score. This score neither indicates a sex- nor age-specific difference of clinical severity, yet highlights a more severe outcome when amino acid changes colocalize to the catalytic domain of the USP7 protein.
Collapse
Affiliation(s)
| | | | - Steffen Hirsch
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Laura Dötsch
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Samy Unser
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Pilar Caro
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Christian Patrick Schaaf
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
4
|
Genovese AC, Butler MG. Behavioral and Psychiatric Disorders in Syndromic Autism. Brain Sci 2024; 14:343. [PMID: 38671997 PMCID: PMC11048128 DOI: 10.3390/brainsci14040343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Syndromic autism refers to autism spectrum disorder diagnosed in the context of a known genetic syndrome. The specific manifestations of any one of these syndromic autisms are related to a clinically defined genetic syndrome that can be traced to certain genes and variants, genetic deletions, or duplications at the chromosome level. The genetic mutations or defects in single genes associated with these genetic disorders result in a significant elevation of risk for developing autism relative to the general population and are related to recurrence with inheritance patterns. Additionally, these syndromes are associated with typical behavioral characteristics or phenotypes as well as an increased risk for specific behavioral or psychiatric disorders and clinical findings. Knowledge of these associations helps guide clinicians in identifying potentially treatable conditions that can help to improve the lives of affected patients and their families.
Collapse
Affiliation(s)
- Ann C. Genovese
- Department of Psychiatry and Behavioral Sciences, University of Kansas Medical Center, Kansas City, KS 66160, USA;
| | | |
Collapse
|
5
|
Kereszturi É. Diversity and Classification of Genetic Variations in Autism Spectrum Disorder. Int J Mol Sci 2023; 24:16768. [PMID: 38069091 PMCID: PMC10706722 DOI: 10.3390/ijms242316768] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/19/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition with symptoms that affect the whole personality and all aspects of life. Although there is a high degree of heterogeneity in both its etiology and its characteristic behavioral patterns, the disorder is well-captured along the autistic triad. Currently, ASD status can be confirmed following an assessment of behavioral features, but there is a growing emphasis on conceptualizing autism as a spectrum, which allows for establishing a diagnosis based on the level of support need, free of discrete categories. Since ASD has a high genetic predominance, the number of genetic variations identified in the background of the condition is increasing exponentially as genetic testing methods are rapidly evolving. However, due to the huge amount of data to be analyzed, grouping the different DNA variations is still challenging. Therefore, in the present review, a multidimensional classification scheme was developed to accommodate most of the currently known genetic variants associated with autism. Genetic variations have been grouped according to six criteria (extent, time of onset, information content, frequency, number of genes involved, inheritance pattern), which are themselves not discrete categories, but form a coherent continuum in line with the autism spectrum approach.
Collapse
Affiliation(s)
- Éva Kereszturi
- Department of Molecular Biology, Semmelweis University, H-1085 Budapest, Hungary
| |
Collapse
|
6
|
Balestrino R, Losa M, Albano L, Barzaghi LR, Mortini P. Intranasal oxytocin as a treatment for obesity: safety and efficacy. Expert Rev Endocrinol Metab 2023; 18:295-306. [PMID: 37232186 DOI: 10.1080/17446651.2023.2216794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/12/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023]
Abstract
INTRODUCTION Known for its effect on labor and lactation and on emotional and social functions, oxytocin has recently emerged as a key modulator of feeding behavior and indeed suggested as a potential treatment for obesity. The potential positive effect of oxytocin on both metabolic and psychological-behavioral complications of hypothalamic lesions makes it a promising tool in the management of these conditions. AREAS COVERED The aim of the present review article is to provide an overview of the mechanism of action and clinical experience of the use of oxytocin in different forms of obesity. EXPERT OPINION Current evidence suggests a potential role of oxytocin in the treatment of obesity with different causes. Several challenges remain: an improved understanding of the physiological regulation, mechanisms of action of oxytocin, and interplay with other endocrine axes is fundamental to clarify its role. Further clinical trials are needed to determine the safety and efficacy of oxytocin for the treatment of different forms of obesity. Understanding the mechanism(s) of action of oxytocin on body weight regulation might also improve our understanding of obesity and reveal possible new therapeutic targets - as well as promoting advances in other fields in which oxytocin might be used.
Collapse
Affiliation(s)
- Roberta Balestrino
- Department of Neurosurgery and Gamma Knife Radiosurgery, IRCCS San Raffaele, Milano, Italy
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Marco Losa
- Department of Neurosurgery and Gamma Knife Radiosurgery, IRCCS San Raffaele, Milano, Italy
| | - Luigi Albano
- Department of Neurosurgery and Gamma Knife Radiosurgery, IRCCS San Raffaele, Milano, Italy
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele, Milan, Italy
| | - Lina R Barzaghi
- Department of Neurosurgery and Gamma Knife Radiosurgery, IRCCS San Raffaele, Milano, Italy
| | - Pietro Mortini
- Department of Neurosurgery and Gamma Knife Radiosurgery, IRCCS San Raffaele, Milano, Italy
| |
Collapse
|
7
|
Sorenson K, Kendall E, Grell H, Kang M, Shaffer C, Hwang S. Intranasal Oxytocin in Pediatric Populations: Exploring the Potential for Reducing Irritability and Modulating Neural Responses: A Mini Review. JOURNAL OF PSYCHIATRY AND BRAIN SCIENCE 2023; 8:e230008. [PMID: 37990750 PMCID: PMC10662790 DOI: 10.20900/jpbs.20230008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Endogenous neuropeptide Oxytocin (OXT) plays a crucial role in modulating pro-social behavior and the neural response to social/emotional stimuli. Intranasal administration is the most common method of delivering OXT. Intranasal OXT has been implemented in clinical studies of various psychiatric disorders with mixed results, mainly related to lack of solid pharmacodynamics and pharmacokinetics model. Due to intranasal OXT's mechanism of reducing the activation of neural areas implicated in emotional responding and emotion regulation, a psychopathology with this target mechanism could be potentially excellent candidate for future clinical trial. In this regard, irritability in youth may be a very promising target for clinical studies of intranasal OXT. Here we provide a mini-review of fifteen randomized controlled trials in pediatric patients with diagnoses of autism spectrum disorder (ASD), Prader-Willi syndrome (PWS), or Phelan-McDermid syndrome (PMS). Most studies had small sample sizes and varying dosages, with changes in irritability, mainly as adverse events (AEs). Neuroimaging results showed modulation of the reward processing system and the neural areas implicated in social-emotional information processing by intranasal OXT administration. Further research is needed to determine the most effective dose and duration of OXT treatment, carefully select target psychopathologies, verify target engagement, and measure adverse event profiles.
Collapse
Affiliation(s)
- Kennet Sorenson
- Department of Psychiatry, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Emilee Kendall
- Department of Psychiatry, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Hannah Grell
- Department of Psychiatry, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Minjoo Kang
- Department of Psychiatry, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Christopher Shaffer
- Department of Pharmacy Practice, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Soonjo Hwang
- Department of Psychiatry, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
8
|
Hoyos Sanchez MC, Bayat T, Gee RRF, Fon Tacer K. Hormonal Imbalances in Prader-Willi and Schaaf-Yang Syndromes Imply the Evolution of Specific Regulation of Hypothalamic Neuroendocrine Function in Mammals. Int J Mol Sci 2023; 24:13109. [PMID: 37685915 PMCID: PMC10487939 DOI: 10.3390/ijms241713109] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
The hypothalamus regulates fundamental aspects of physiological homeostasis and behavior, including stress response, reproduction, growth, sleep, and feeding, several of which are affected in patients with Prader-Willi (PWS) and Schaaf-Yang syndrome (SYS). PWS is caused by paternal deletion, maternal uniparental disomy, or imprinting defects that lead to loss of expression of a maternally imprinted region of chromosome 15 encompassing non-coding RNAs and five protein-coding genes; SYS patients have a mutation in one of them, MAGEL2. Throughout life, PWS and SYS patients suffer from musculoskeletal deficiencies, intellectual disabilities, and hormonal abnormalities, which lead to compulsive behaviors like hyperphagia and temper outbursts. Management of PWS and SYS is mostly symptomatic and cures for these debilitating disorders do not exist, highlighting a clear, unmet medical need. Research over several decades into the molecular and cellular roles of PWS genes has uncovered that several impinge on the neuroendocrine system. In this review, we will discuss the expression and molecular functions of PWS genes, connecting them with hormonal imbalances in patients and animal models. Besides the observed hormonal imbalances, we will describe the recent findings about how the loss of individual genes, particularly MAGEL2, affects the molecular mechanisms of hormone secretion. These results suggest that MAGEL2 evolved as a mammalian-specific regulator of hypothalamic neuroendocrine function.
Collapse
Affiliation(s)
- Maria Camila Hoyos Sanchez
- School of Veterinary Medicine, Texas Tech University, 7671 Evans Dr., Amarillo, TX 79106, USA
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX 79106, USA
| | - Tara Bayat
- School of Veterinary Medicine, Texas Tech University, 7671 Evans Dr., Amarillo, TX 79106, USA
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX 79106, USA
| | - Rebecca R. Florke Gee
- School of Veterinary Medicine, Texas Tech University, 7671 Evans Dr., Amarillo, TX 79106, USA
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX 79106, USA
| | - Klementina Fon Tacer
- School of Veterinary Medicine, Texas Tech University, 7671 Evans Dr., Amarillo, TX 79106, USA
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX 79106, USA
| |
Collapse
|
9
|
Stott J, Wright T, Holmes J, Wilson J, Griffiths-Jones S, Foster D, Wright B. A systematic review of non-coding RNA genes with differential expression profiles associated with autism spectrum disorders. PLoS One 2023; 18:e0287131. [PMID: 37319303 PMCID: PMC10270643 DOI: 10.1371/journal.pone.0287131] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/30/2023] [Indexed: 06/17/2023] Open
Abstract
AIMS To identify differential expression of shorter non-coding RNA (ncRNA) genes associated with autism spectrum disorders (ASD). BACKGROUND ncRNA are functional molecules that derive from non-translated DNA sequence. The HUGO Gene Nomenclature Committee (HGNC) have approved ncRNA gene classes with alignment to the reference human genome. One subset is microRNA (miRNA), which are highly conserved, short RNA molecules that regulate gene expression by direct post-transcriptional repression of messenger RNA. Several miRNA genes are implicated in the development and regulation of the nervous system. Expression of miRNA genes in ASD cohorts have been examined by multiple research groups. Other shorter classes of ncRNA have been examined less. A comprehensive systematic review examining expression of shorter ncRNA gene classes in ASD is timely to inform the direction of research. METHODS We extracted data from studies examining ncRNA gene expression in ASD compared with non-ASD controls. We included studies on miRNA, piwi-interacting RNA (piRNA), small NF90 (ILF3) associated RNA (snaR), small nuclear RNA (snRNA), small nucleolar RNA (snoRNA), transfer RNA (tRNA), vault RNA (vtRNA) and Y RNA. The following electronic databases were searched: Cochrane Library, EMBASE, PubMed, Web of Science, PsycINFO, ERIC, AMED and CINAHL for papers published from January 2000 to May 2022. Studies were screened by two independent investigators with a third resolving discrepancies. Data was extracted from eligible papers. RESULTS Forty-eight eligible studies were included in our systematic review with the majority examining miRNA gene expression alone. Sixty-four miRNA genes had differential expression in ASD compared to controls as reported in two or more studies, but often in opposing directions. Four miRNA genes had differential expression in the same direction in the same tissue type in at least 3 separate studies. Increased expression was reported in miR-106b-5p, miR-155-5p and miR-146a-5p in blood, post-mortem brain, and across several tissue types, respectively. Decreased expression was reported in miR-328-3p in bloods samples. Seven studies examined differential expression from other classes of ncRNA, including piRNA, snRNA, snoRNA and Y RNA. No individual ncRNA genes were reported in more than one study. Six studies reported differentially expressed snoRNA genes in ASD. A meta-analysis was not possible because of inconsistent methodologies, disparate tissue types examined, and varying forms of data presented. CONCLUSION There is limited but promising evidence associating the expression of certain miRNA genes and ASD, although the studies are of variable methodological quality and the results are largely inconsistent. There is emerging evidence associating differential expression of snoRNA genes in ASD. It is not currently possible to say whether the reports of differential expression in ncRNA may relate to ASD aetiology, a response to shared environmental factors linked to ASD such as sleep and nutrition, other molecular functions, human diversity, or chance findings. To improve our understanding of any potential association, we recommend improved and standardised methodologies and reporting of raw data. Further high-quality research is required to shine a light on possible associations, which may yet yield important information.
Collapse
Affiliation(s)
- Jon Stott
- Child Oriented Mental Health Intervention Collaborative (COMIC), University of York in Collaboration with Leeds and York Partnership NHS Foundation Trust, York, United Kingdom
- Tees, Esk & Wear Valleys NHS Foundation Trust, Foss Park Hospital, York, United Kingdom
| | - Thomas Wright
- Manchester Centre for Genomic Medicine, Clinical Genetics Service, Saint Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester, United Kingdom
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Jannah Holmes
- Child Oriented Mental Health Intervention Collaborative (COMIC), University of York in Collaboration with Leeds and York Partnership NHS Foundation Trust, York, United Kingdom
- Hull York Medical School, University of York, Heslington, York, United Kingdom
| | - Julie Wilson
- Department of Mathematics, University of York, Heslington, York, United Kingdom
| | - Sam Griffiths-Jones
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Deborah Foster
- Tees, Esk & Wear Valleys NHS Foundation Trust, Foss Park Hospital, York, United Kingdom
| | - Barry Wright
- Child Oriented Mental Health Intervention Collaborative (COMIC), University of York in Collaboration with Leeds and York Partnership NHS Foundation Trust, York, United Kingdom
- Hull York Medical School, University of York, Heslington, York, United Kingdom
| |
Collapse
|
10
|
Zhang J, Cai F, Lu R, Xing X, Xu L, Wu K, Gong Z, Zhang Q, Zhang Y, Xing M, Song W, Li JD. CNTNAP2 intracellular domain (CICD) generated by γ-secretase cleavage improves autism-related behaviors. Signal Transduct Target Ther 2023; 8:219. [PMID: 37271769 DOI: 10.1038/s41392-023-01431-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/03/2023] [Accepted: 03/24/2023] [Indexed: 06/06/2023] Open
Abstract
As the most prevalent neurodevelopmental disorders in children, autism spectrum disorders (ASD) are characterized by deficits in language development, social interaction, and repetitive behaviors or inflexible interests. Contactin associated protein like 2 (CNTNAP2), encoding a single transmembrane protein (CNTNAP2) with 1331 amino acid residues, is a widely validated ASD-susceptible gene. Cntnap2-deficient mice also show core autism-relevant behaviors, including the social deficits and repetitive behavior. However, the cellular mechanisms underlying dysfunction CNTNAP2 and ASD remain elusive. In this study, we found a motif within the transmembrane domain of CNTNAP2 was highly homologous to the γ-secretase cleavage site of amyloid-β precursor protein (APP), suggesting that CNTNAP2 may undergo proteolytic cleavage. Further biochemical analysis indicated that CNTNAP2 is cleaved by γ-secretase to produce the CNTNAP2 intracellular domain (CICD). Virally delivery of CICD to the medial prefrontal cortex (mPFC) in Cntnap2-deficient (Cntnap2-/-) mice normalized the deficit in the ASD-related behaviors, including social deficit and repetitive behaviors. Furthermore, CICD promoted the nuclear translocation of calcium/calmodulin-dependent serine protein kinase (CASK) to regulate the transcription of genes, such as Prader Willi syndrome gene Necdin. Whereas Necdin deficiency led to reduced social interaction in mice, virally expression of Necdin in the mPFC normalized the deficit in social preference of Cntnap2-/- mice. Our results thus reveal a critical function of CICD and highlight a role of the CNTNAP2-CASK-Necdin signaling pathway in ASD.
Collapse
Affiliation(s)
- Jing Zhang
- Furong Laboratory, Center for Medical Genetics, Hunan Key Laboratory of Animal Models for Human Diseases, Hunan Key Laboratory of Medical Genetics, Hunan International Scientific and Technological Cooperation Base of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Fang Cai
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Renbin Lu
- Furong Laboratory, Center for Medical Genetics, Hunan Key Laboratory of Animal Models for Human Diseases, Hunan Key Laboratory of Medical Genetics, Hunan International Scientific and Technological Cooperation Base of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Xiaoliang Xing
- Furong Laboratory, Center for Medical Genetics, Hunan Key Laboratory of Animal Models for Human Diseases, Hunan Key Laboratory of Medical Genetics, Hunan International Scientific and Technological Cooperation Base of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Lu Xu
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health and Kangning Hospital, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Kunyang Wu
- Furong Laboratory, Center for Medical Genetics, Hunan Key Laboratory of Animal Models for Human Diseases, Hunan Key Laboratory of Medical Genetics, Hunan International Scientific and Technological Cooperation Base of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Zishan Gong
- Furong Laboratory, Center for Medical Genetics, Hunan Key Laboratory of Animal Models for Human Diseases, Hunan Key Laboratory of Medical Genetics, Hunan International Scientific and Technological Cooperation Base of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Qing Zhang
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Yun Zhang
- Advanced Innovation Center for Human Brain Protection, The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Mengen Xing
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health and Kangning Hospital, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Weihong Song
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China.
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada.
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health and Kangning Hospital, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Jia-Da Li
- Furong Laboratory, Center for Medical Genetics, Hunan Key Laboratory of Animal Models for Human Diseases, Hunan Key Laboratory of Medical Genetics, Hunan International Scientific and Technological Cooperation Base of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China.
| |
Collapse
|
11
|
Butler MG, Victor AK, Reiter LT. Autonomic nervous system dysfunction in Prader-Willi syndrome. Clin Auton Res 2023; 33:281-286. [PMID: 36515769 DOI: 10.1007/s10286-022-00909-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/14/2022] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Prader-Willi syndrome is a complex neurodevelopmental genetic disorder due to lack of paternal expression of critical imprinted genes in the 15q11.2-q13.1 chromosomal region, generally from a paternal deletion. Predominant features include infantile hypotonia, a poor suck with failure to thrive, craniofacial features, and developmental and behavioral problems including self-injury and childhood onset of obesity. In addition to severe obesity, patients with PWS present with other symptoms of autonomic nervous system dysfunction. METHODS We examined the features seen in Prader-Willi syndrome and searched the literature for evidence of autonomic nervous system involvement in this rare obesity-related disorder and illustrative findings possibly due to autonomic nervous system dysfunction. Additionally, we reviewed the literature in relation to childhood obesity syndromes and compared those syndromes to the syndromic obesity found in Prader-Willi syndrome. RESULTS We report autonomic nervous system-related symptoms associated with childhood obesity impacting features seen in Prader-Willi syndrome and possibly other obesity-related genetic syndromes. We compiled evidence of both an autonomic route for the obesity seen in PWS and other autonomic nervous system-related dysfunctions. These include decreased salvation, sleep disordered breathing, increased pain and thermal threshold instability, delayed gastric emptying, altered blood pressure readings, and pupillary constriction responses as evidence of autonomic nervous system involvement. CONCLUSIONS We summarized and illustrated findings of autonomic nervous system dysfunction in Prader-Willi syndrome and other obesity-related syndromes and genetic factors that may play a causative role in development.
Collapse
Affiliation(s)
- Merlin G Butler
- Departments of Psychiatry & Behavioral Sciences and Pediatrics, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| | - A Kaitlyn Victor
- Department of Neurology, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
- IPBS Program, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Lawrence T Reiter
- Department of Neurology, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
- Department of Pediatrics and Anatomy & Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| |
Collapse
|
12
|
Jenner L, Richards C, Howard R, Moss J. Heterogeneity of Autism Characteristics in Genetic Syndromes: Key Considerations for Assessment and Support. CURRENT DEVELOPMENTAL DISORDERS REPORTS 2023; 10:132-146. [PMID: 37193200 PMCID: PMC10169182 DOI: 10.1007/s40474-023-00276-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2023] [Indexed: 05/18/2023]
Abstract
Purpose of Review Elevated prevalence of autism characteristics is reported in genetic syndromes associated with intellectual disability. This review summarises recent evidence on the behavioural heterogeneity of autism in the following syndromes: Fragile X, Cornelia de Lange, Williams, Prader-Willi, Angelman, Down, Smith-Magenis, and tuberous sclerosis complex. Key considerations for assessment and support are discussed. Recent Findings The profile and developmental trajectory of autism-related behaviour in these syndromes indicate some degree of syndrome specificity which may interact with broader behavioural phenotypes (e.g. hypersociability), intellectual disability, and mental health (e.g. anxiety). Genetic subtype and co-occurring epilepsy within syndromes contribute to increased significance of autism characteristics. Autism-related strengths and challenges are likely to be overlooked or misunderstood using existing screening/diagnostic tools and criteria, which lack sensitivity and specificity within these populations. Summary Autism characteristics are highly heterogeneous across genetic syndromes and often distinguishable from non-syndromic autism. Autism diagnostic assessment practices in this population should be tailored to specific syndromes. Service provisions must begin to prioritise needs-led support.
Collapse
Affiliation(s)
- Lauren Jenner
- School of Psychology, University of Surrey, Guildford, England
| | | | - Rachel Howard
- School of Psychology, University of Surrey, Guildford, England
| | - Joanna Moss
- School of Psychology, University of Surrey, Guildford, England
| |
Collapse
|
13
|
Alavanda C, Arslan Ateş E, Yavaş Abalı Z, Geçkinli BB, Turan S, Arman A. Two new cases with novel pathogenic variants reflecting the clinical diversity of Schaaf-Yang syndrome. Clin Genet 2023. [PMID: 36843439 DOI: 10.1111/cge.14320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 02/28/2023]
Abstract
Schaaf-Yang syndrome (SHFYNG) is a rare pleiotropic disorder, characterized by hypotonia, joint contractures, autism spectrum disorders (ASD), and developmental delay/intellectual disability. Although it shares some common features with Prader-Willi Syndrome, joint contractures, and ASD were more commonly detected in in this syndrome. Recently, it was shown that truncating variants in the paternal allele of the MAGEL2 gene cause SHFYNG. Here, we present two patients diagnosed with SHFYNG syndrome having two different novel truncating variants in the MAGEL2 gene, one paternally inherited and one de novo. One patient had obesity, brachydactyly and dysmorphic features, and the other patient presented with contractures, severe hypotonia and early death. This is the first report of Turkish SHFYNG syndrome cases presented to emphasize the phenotypic diversity of the syndrome.
Collapse
Affiliation(s)
- Ceren Alavanda
- Department of Medical Genetics, School of Medicine, Marmara University, Istanbul, Turkey
| | - Esra Arslan Ateş
- Department of Medical Genetics, Istanbul University-Cerrahpaşa, Cerrahpaşa Faculty of Medicine, Istanbul, Turkey
| | - Zehra Yavaş Abalı
- Department of Pediatric Endocrinology and Diabetes, School of Medicine, Marmara University, Istanbul, Turkey
| | - Bilgen Bilge Geçkinli
- Department of Medical Genetics, School of Medicine, Marmara University, Istanbul, Turkey
| | - Serap Turan
- Department of Pediatric Endocrinology and Diabetes, School of Medicine, Marmara University, Istanbul, Turkey
| | - Ahmet Arman
- Department of Medical Genetics, School of Medicine, Marmara University, Istanbul, Turkey
| |
Collapse
|
14
|
Gámez S, Cobo J, Fernández-Lafitte M, Coronas R, Parra I, Oliva JC, Àlvarez A, Esteba-Castillo S, Giménez-Palop O, Corripio R, Palao DJ, Caixàs A. An Exploratory Analysis on the 2D:4D Digit Ratio and Its Relationship with Social Responsiveness in Adults with Prader-Willi Syndrome. J Clin Med 2023; 12:jcm12031155. [PMID: 36769803 PMCID: PMC9917981 DOI: 10.3390/jcm12031155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/22/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Prader-Willi syndrome (PWS) is a genetic disorder produced by a lack of expression of paternally derived genes in the 15q11-13 region. Research has generally focused on its genetic and behavioral expression, but only a few studies have examined epigenetic influences. Prenatal testosterone or the maternal testosterone-to-estradiol ratio (MaTtEr) has been suggested to play an important role in the development of the 'social brain' during pregnancy. Some studies propose the 2D:4D digit ratio of the hand as an indirect MaTtEr measure. The relationship between social performance and MaTtEr has been studied in other neurodevelopmental conditions such as Autism Spectrum Disorder (ASD), but to our best knowledge, it has never been studied in PWS. Therefore, our study aims to clarify the possible existence of a relationship between social performance-as measured using the Social Responsiveness Scale (SRS)-and MaTtEr levels using the 2D:4D ratio. We found that, as a group, PWS individuals have shorter index and ring fingers than the control group, but no significant difference in the 2D:4D ratios. The 2D:4D ratio showed a correlation only with Restricted Interests and Repetitive Behavior Subscale, where a positive correlation only for male individuals with PWS was found. Considering only PWS with previous GH treatment during childhood/adolescence (PWS-GH), index and ring fingers did not show differences in length with the control group, but the 2D:4D ratio was significantly higher in the right or dominant hand compared to controls.
Collapse
Affiliation(s)
- Sara Gámez
- Mental Health Department, Corporació Sanitària Parc Taulí—Universitat Autònoma de Barcelona—CIBERSAM, 08202 Sabadell, Spain
| | - Jesus Cobo
- Mental Health Department, Corporació Sanitària Parc Taulí—Universitat Autònoma de Barcelona—CIBERSAM, 08202 Sabadell, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Institut d’Investigació i Innovació Parc Taulí (I3PT)—CERCA, 08208 Sabadell, Spain
- Correspondence: (J.C.); (A.C.)
| | - Meritxell Fernández-Lafitte
- Mental Health Department, Corporació Sanitària Parc Taulí—Universitat Autònoma de Barcelona—CIBERSAM, 08202 Sabadell, Spain
| | - Ramón Coronas
- Mental Health Department, Corporació Sanitària Parc Taulí—Universitat Autònoma de Barcelona—CIBERSAM, 08202 Sabadell, Spain
| | - Isabel Parra
- Mental Health Department, Corporació Sanitària Parc Taulí—Universitat Autònoma de Barcelona—CIBERSAM, 08202 Sabadell, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Institut d’Investigació i Innovació Parc Taulí (I3PT)—CERCA, 08208 Sabadell, Spain
| | - Joan Carles Oliva
- Statistics Unit, Fundació Parc Taulí—(I3PT)—CERCA, 08208 Sabadell, Spain
| | - Aida Àlvarez
- Department of Mental Health, Mutua Terrassa University Hospital, 08221 Terrassa, Spain
| | - Susanna Esteba-Castillo
- Specialized Mental Health and Intellectual Disability Department, Institut d’Assistència Sanitària, Parc Hospitalari Martí i Julià, 17190 Girona, Spain
- Neurodevelopment Group, Girona Biomedical Research Institute IDIBGI, Institut d’Assistència Sanitària, Parc Hospitalari Martí i Julià, 17190 Girona, Spain
| | - Olga Giménez-Palop
- Endocrinology and Nutrition Department, Hospital Universitari Parc Taulí, Corporació Sanitària Parc Taulí—Universitat Autònoma de Barcelona, 08202 Sabadell, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Raquel Corripio
- Pediatric Endocrine Department, Parc Taulí Hospital Universitari, Institutd’Investigació i Innovació Parc Taulí (I3PT), Universitat Autònoma de Barcelona, 08202 Sabadell, Spain
| | - Diego J. Palao
- Mental Health Department, Corporació Sanitària Parc Taulí—Universitat Autònoma de Barcelona—CIBERSAM, 08202 Sabadell, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Institut d’Investigació i Innovació Parc Taulí (I3PT)—CERCA, 08208 Sabadell, Spain
| | - Assumpta Caixàs
- Endocrinology and Nutrition Department, Hospital Universitari Parc Taulí, Corporació Sanitària Parc Taulí—Universitat Autònoma de Barcelona, 08202 Sabadell, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Correspondence: (J.C.); (A.C.)
| |
Collapse
|
15
|
Damianidou E, Mouratidou L, Kyrousi C. Research models of neurodevelopmental disorders: The right model in the right place. Front Neurosci 2022; 16:1031075. [PMID: 36340790 PMCID: PMC9630472 DOI: 10.3389/fnins.2022.1031075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/07/2022] [Indexed: 11/25/2022] Open
Abstract
Neurodevelopmental disorders (NDDs) are a heterogeneous group of impairments that affect the development of the central nervous system leading to abnormal brain function. NDDs affect a great percentage of the population worldwide, imposing a high societal and economic burden and thus, interest in this field has widely grown in recent years. Nevertheless, the complexity of human brain development and function as well as the limitations regarding human tissue usage make their modeling challenging. Animal models play a central role in the investigation of the implicated molecular and cellular mechanisms, however many of them display key differences regarding human phenotype and in many cases, they partially or completely fail to recapitulate them. Although in vitro two-dimensional (2D) human-specific models have been highly used to address some of these limitations, they lack crucial features such as complexity and heterogeneity. In this review, we will discuss the advantages, limitations and future applications of in vivo and in vitro models that are used today to model NDDs. Additionally, we will describe the recent development of 3-dimensional brain (3D) organoids which offer a promising approach as human-specific in vitro models to decipher these complex disorders.
Collapse
Affiliation(s)
- Eleni Damianidou
- University Mental Health, Neurosciences and Precision Medicine Research Institute “Costas Stefanis”, Athens, Greece
| | - Lidia Mouratidou
- University Mental Health, Neurosciences and Precision Medicine Research Institute “Costas Stefanis”, Athens, Greece
- First Department of Psychiatry, Medical School, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Christina Kyrousi
- University Mental Health, Neurosciences and Precision Medicine Research Institute “Costas Stefanis”, Athens, Greece
- First Department of Psychiatry, Medical School, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
- *Correspondence: Christina Kyrousi,
| |
Collapse
|
16
|
Whittington J, Holland A. Next Steps in Prader-Willi Syndrome Research: On the Relationship between Genotype and Phenotype. Int J Mol Sci 2022; 23:ijms232012089. [PMID: 36292940 PMCID: PMC9603642 DOI: 10.3390/ijms232012089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 12/02/2022] Open
Abstract
This article reviews what we know of the phenotype and genotype of Prader-Willi syndrome and hypothesizes two possible paths from phenotype to genotype. It then suggests research that may strengthen the case for one or other of these hypotheses.
Collapse
Affiliation(s)
- Joyce Whittington
- Correspondence: ; Tel.: +41 (0)1223 465255; Fax: +41 (0) 1223 465270
| | | |
Collapse
|
17
|
Oxytocin-based therapies for treatment of Prader-Willi and Schaaf-Yang syndromes: evidence, disappointments, and future research strategies. Transl Psychiatry 2022; 12:318. [PMID: 35941105 PMCID: PMC9360032 DOI: 10.1038/s41398-022-02054-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/23/2022] [Accepted: 07/01/2022] [Indexed: 11/09/2022] Open
Abstract
The prosocial neuropeptide oxytocin is being developed as a potential treatment for various neuropsychiatric disorders including autism spectrum disorder (ASD). Early studies using intranasal oxytocin in patients with ASD yielded encouraging results and for some time, scientists and affected families placed high hopes on the use of intranasal oxytocin for behavioral therapy in ASD. However, a recent Phase III trial obtained negative results using intranasal oxytocin for the treatment of behavioral symptoms in children with ASD. Given the frequently observed autism-like behavioral phenotypes in Prader-Willi and Schaaf-Yang syndromes, it is unclear whether oxytocin treatment represents a viable option to treat behavioral symptoms in these diseases. Here we review the latest findings on intranasal OT treatment, Prader-Willi and Schaaf-Yang syndromes, and propose novel research strategies for tailored oxytocin-based therapies for affected individuals. Finally, we propose the critical period theory, which could explain why oxytocin-based treatment seems to be most efficient in infants, but not adolescents.
Collapse
|
18
|
Dimitropoulos A, Doernberg EA, Russ SW, Zyga O. Intervention Response by Genetic Subtype: PRETEND-Preschool Program for Children with Prader-Willi Syndrome via Remote Parent Training. J Autism Dev Disord 2022; 52:5191-5206. [PMID: 35932366 PMCID: PMC9361891 DOI: 10.1007/s10803-022-05695-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2022] [Indexed: 11/30/2022]
Abstract
Prader-Willi Syndrome (PWS) is a rare neurodevelopmental disorder associated with social cognitive challenges, and pretend play has been demonstrated as a tool to achieve developmental goals. Following previous report on feasibility and acceptability of a remote, play-based parent-training program (Zyga, Russ, & Dimitropoulos, 2018), we now report on preliminary efficacy of this program to enhance pretend play skills and social cognitive skills in preschoolers with PWS. Results across two studies demonstrated efficacy when live-coaching play sessions incorporated children into the intervention. Increases in play skills were observed for children with the mUPD subtype of PWS who underwent intervention, compared with children with mUPD who were waitlisted. Children with DEL subtype were less likely to respond to intervention. Implications for results are discussed.
Collapse
Affiliation(s)
| | | | | | - Olena Zyga
- Cleveland Clinic Center for Autism, Rocky River, OH, USA
| |
Collapse
|
19
|
Rosenberg AGW, Wellink CM, Tellez Garcia JM, Pellikaan K, Van Abswoude DH, Davidse K, Van Zutven LJCM, Brüggenwirth HT, Resnick JL, Van der Lely AJ, De Graaff LCG. Health Problems in Adults with Prader-Willi Syndrome of Different Genetic Subtypes: Cohort Study, Meta-Analysis and Review of the Literature. J Clin Med 2022; 11:jcm11144033. [PMID: 35887798 PMCID: PMC9323859 DOI: 10.3390/jcm11144033] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/27/2022] [Accepted: 07/05/2022] [Indexed: 12/04/2022] Open
Abstract
Prader−Willi syndrome (PWS) is a complex, rare genetic disorder caused by a loss of expression of paternally expressed genes on chromosome 15q11.2-q13. The most common underlying genotypes are paternal deletion (DEL) and maternal uniparental disomy (mUPD). DELs can be subdivided into type 1 (DEL-1) and (smaller) type 2 deletions (DEL-2). Most research has focused on behavioral, cognitive and psychological differences between the different genotypes. However, little is known about physical health problems in relation to genetic subtypes. In this cross-sectional study, we compare physical health problems and other clinical features among adults with PWS caused by DEL (N = 65, 12 DEL-1, 27 DEL-2) and mUPD (N = 65). A meta-analysis, including our own data, showed that BMI was 2.79 kg/m2 higher in adults with a DEL (p = 0.001). There were no significant differences between DEL-1 and DEL-2. Scoliosis was more prevalent among adults with a DEL (80% vs. 58%; p = 0.04). Psychotic episodes were more prevalent among adults with an mUPD (44% vs. 9%; p < 0.001). In conclusion, there were no significant differences in physical health outcomes between the genetic subtypes, apart from scoliosis and BMI. The differences in health problems, therefore, mainly apply to the psychological domain.
Collapse
Affiliation(s)
- Anna G. W. Rosenberg
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (A.G.W.R.); (C.M.W.); (J.M.T.G.); (K.P.); (D.H.V.A.); (K.D.); (A.J.V.d.L.)
- Dutch Center of Reference for Prader–Willi Syndrome, 3015 GD Rotterdam, The Netherlands
- Center for Adults with Rare Genetic Syndromes, Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
- Academic Center for Growth Disorders, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - Charlotte M. Wellink
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (A.G.W.R.); (C.M.W.); (J.M.T.G.); (K.P.); (D.H.V.A.); (K.D.); (A.J.V.d.L.)
| | - Juan M. Tellez Garcia
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (A.G.W.R.); (C.M.W.); (J.M.T.G.); (K.P.); (D.H.V.A.); (K.D.); (A.J.V.d.L.)
| | - Karlijn Pellikaan
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (A.G.W.R.); (C.M.W.); (J.M.T.G.); (K.P.); (D.H.V.A.); (K.D.); (A.J.V.d.L.)
- Dutch Center of Reference for Prader–Willi Syndrome, 3015 GD Rotterdam, The Netherlands
- Center for Adults with Rare Genetic Syndromes, Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
- Academic Center for Growth Disorders, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - Denise H. Van Abswoude
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (A.G.W.R.); (C.M.W.); (J.M.T.G.); (K.P.); (D.H.V.A.); (K.D.); (A.J.V.d.L.)
- Dutch Center of Reference for Prader–Willi Syndrome, 3015 GD Rotterdam, The Netherlands
- Center for Adults with Rare Genetic Syndromes, Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
- Academic Center for Growth Disorders, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - Kirsten Davidse
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (A.G.W.R.); (C.M.W.); (J.M.T.G.); (K.P.); (D.H.V.A.); (K.D.); (A.J.V.d.L.)
- Dutch Center of Reference for Prader–Willi Syndrome, 3015 GD Rotterdam, The Netherlands
- Center for Adults with Rare Genetic Syndromes, Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
- Academic Center for Growth Disorders, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - Laura J. C. M. Van Zutven
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (L.J.C.M.V.Z.); (H.T.B.)
| | - Hennie T. Brüggenwirth
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (L.J.C.M.V.Z.); (H.T.B.)
| | - James L. Resnick
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32611, USA;
| | - Aart J. Van der Lely
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (A.G.W.R.); (C.M.W.); (J.M.T.G.); (K.P.); (D.H.V.A.); (K.D.); (A.J.V.d.L.)
- ENDO-ERN, European Reference Network on Rare Endocrine Conditions
| | - Laura C. G. De Graaff
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (A.G.W.R.); (C.M.W.); (J.M.T.G.); (K.P.); (D.H.V.A.); (K.D.); (A.J.V.d.L.)
- Dutch Center of Reference for Prader–Willi Syndrome, 3015 GD Rotterdam, The Netherlands
- Center for Adults with Rare Genetic Syndromes, Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
- Academic Center for Growth Disorders, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
- ENDO-ERN, European Reference Network on Rare Endocrine Conditions
- Correspondence: ; Tel.: +31-618-843-010
| |
Collapse
|
20
|
Yang-Li D, Fei-Hong L, Hui-Wen Z, Ming-Sheng M, Xiao-Ping L, Li L, Yi W, Qing Z, Yong-Hui J, Chao-Chun Z. Recommendations for the diagnosis and management of childhood Prader-Willi syndrome in China. Orphanet J Rare Dis 2022; 17:221. [PMID: 35698200 PMCID: PMC9195308 DOI: 10.1186/s13023-022-02302-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 03/23/2022] [Indexed: 11/28/2022] Open
Abstract
Prader-Willi syndrome (PWS) is a complex and multisystem neurobehavioral disease, which is caused by the lack of expression of paternally inherited imprinted genes on chromosome15q11.2-q13.1. The clinical manifestations of PWS vary with age. It is characterized by severe hypotonia with poor suck and feeding difficulties in the early infancy, followed by overeating in late infancy or early childhood and progressive development of morbid obesity unless the diet is externally controlled. Compared to Western PWS patients, Chinese patients have a higher ratio of deletion type. Although some rare disease networks, including PWS Cooperation Group of Rare Diseases Branch of Chinese Pediatric Society, Zhejiang Expert Group for PWS, were established recently, misdiagnosis, missed diagnosis and inappropriate intervention were usually noted in China. Therefore, there is an urgent need for an integrated multidisciplinary approach to facilitate early diagnosis and optimize management to improve quality of life, prevent complications, and prolong life expectancy. Our purpose is to evaluate the current literature and evidences on diagnosis and management of PWS in order to provide evidence-based guidelines for this disease, specially from China.
Collapse
Affiliation(s)
- Dai Yang-Li
- Children's Hospital of Zhejiang University School of Medicine, No. 3333 Binsheng Road, Hangzhou, 310003, China
| | - Luo Fei-Hong
- Children's Hospital of Fudan University, Shanghai, China
| | - Zhang Hui-Wen
- Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ma Ming-Sheng
- Peking Union Medical College Hospital, Beijing, China
| | - Luo Xiao-Ping
- Tongji Hospital, Tongji Medical College of HUST, Wuhan, China
| | - Liu Li
- Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Wang Yi
- Children's Hospital of Fudan University, Shanghai, China
| | - Zhou Qing
- Fujian Children's Hospital, Fuzhou, China
| | - Jiang Yong-Hui
- Yale University, 69 Lexington Gardens, Northern Haven, CT, 06473, USA.
| | - Zou Chao-Chun
- Children's Hospital of Zhejiang University School of Medicine, No. 3333 Binsheng Road, Hangzhou, 310003, China.
| | | | | |
Collapse
|
21
|
Social Responsiveness and Psychosocial Functioning in Adults with Prader-Willi Syndrome. J Clin Med 2022; 11:jcm11051433. [PMID: 35268524 PMCID: PMC8911114 DOI: 10.3390/jcm11051433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/20/2022] [Accepted: 03/02/2022] [Indexed: 12/04/2022] Open
Abstract
Although various studies have investigated symptoms of autism spectrum disorder (ASD) in Prader−Willi syndrome (PWS), little is known about the consequences of these symptoms, especially in psychosocial function. We aimed to explore ASD symptoms in adults with PWS with special attention to psychosocial functionality. This cross-sectional study included 26 adults (15 women) with PWS who attended a reference unit for rare diseases. Participants’ primary caregivers completed the Social Responsiveness Scale (SRS), and clinicians assessed multidimensional functioning with the Personal and Social Performance Scale (PSP). Impaired social responsiveness was identified in 20 (76.9%) participants, and manifest to marked difficulties in social functioning were identified in 13 (50%). Participants with impaired social responsiveness (SRS ≥ 60) had significantly worse scores in functionality measured with the PSP (U = 12.5; p = 0.009) and with three of the four PSP main areas. Moreover, scores for the Social Cognition domain of the SRS correlated positively with the Socially useful activities (p < 0.05) and Personal and social relationships (p < 0.01) main areas of the PSP. These results suggest that difficulties in social skills should be assessed in all psychosocial evaluations of patients with PWS.
Collapse
|
22
|
Baldini L, Robert A, Charpentier B, Labialle S. Phylogenetic and molecular analyses identify SNORD116 targets involved in the Prader Willi syndrome. Mol Biol Evol 2021; 39:6454102. [PMID: 34893870 PMCID: PMC8789076 DOI: 10.1093/molbev/msab348] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The eutherian-specific SNORD116 family of repeated box C/D snoRNA genes is suspected to play a major role in the Prader–Willi syndrome (PWS), yet its molecular function remains poorly understood. Here, we combined phylogenetic and molecular analyses to identify candidate RNA targets. Based on the analysis of several eutherian orthologs, we found evidence of extensive birth-and-death and conversion events during SNORD116 gene history. However, the consequences for phylogenetic conservation were heterogeneous along the gene sequence. The standard snoRNA elements necessary for RNA stability and association with dedicated core proteins were the most conserved, in agreement with the hypothesis that SNORD116 generate genuine snoRNAs. In addition, one of the two antisense elements typically involved in RNA target recognition was largely dominated by a unique sequence present in at least one subset of gene paralogs in most species, likely the result of a selective effect. In agreement with a functional role, this ASE exhibited a hybridization capacity with putative mRNA targets that was strongly conserved in eutherians. Moreover, transient downregulation experiments in human cells showed that Snord116 controls the expression and splicing levels of these mRNAs. The functions of two of them, diacylglycerol kinase kappa and Neuroligin 3, extend the description of the molecular bases of PWS and reveal unexpected molecular links with the Fragile X syndrome and autism spectrum disorders.
Collapse
Affiliation(s)
- Laeya Baldini
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France
| | - Anne Robert
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France
| | | | | |
Collapse
|
23
|
Bosque Ortiz GM, Santana GM, Dietrich MO. Deficiency of the paternally inherited gene Magel2 alters the development of separation-induced vocalization and maternal behavior in mice. GENES, BRAIN, AND BEHAVIOR 2021; 21:e12776. [PMID: 34812568 PMCID: PMC9744533 DOI: 10.1111/gbb.12776] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/09/2021] [Accepted: 10/25/2021] [Indexed: 01/15/2023]
Abstract
The behavior of offspring results from the combined expression of maternal and paternal genes. Genomic imprinting silences some genes in a parent-of-origin specific manner, a process that, among all animals, occurs only in mammals. How genomic imprinting affects the behavior of mammalian offspring, however, remains poorly understood. Here, we studied how the loss of the paternally inherited gene Magel2 in mouse pups affects the emission of separation-induced ultrasonic vocalizations (USV). Using quantitative analysis of more than 1000 USVs, we characterized the rate of vocalizations as well as their spectral features from postnatal days 6-12 (P6-P12), a critical phase of mouse development that covers the peak of vocal behavior in pups. Our analyses show that Magel2 deficient offspring emit separation-induced vocalizations at lower rates and with altered spectral features mainly at P8. We also show that dams display altered behavior towards their own Magel2 deficient offspring at this age. In a test to compare the retrieval of two pups, dams retrieve wildtype control pups first and faster than Magel2 deficient offspring. These results suggest that the loss of Magel2 impairs the expression of separation-induced vocalization in pups as well as maternal behavior at a specific age of postnatal development, both of which support the pups' growth and development.
Collapse
Affiliation(s)
- Gabriela M. Bosque Ortiz
- Laboratory of Physiology of Behavior, Department of Comparative MedicineYale School of MedicineNew HavenConnecticutUSA,Interdepartmental Neuroscience Program, Biological and Biomedical Sciences Program, Graduate School in Arts and SciencesYale UniversityNew HavenConnecticutUSA
| | - Gustavo M. Santana
- Laboratory of Physiology of Behavior, Department of Comparative MedicineYale School of MedicineNew HavenConnecticutUSA,Interdepartmental Neuroscience Program, Biological and Biomedical Sciences Program, Graduate School in Arts and SciencesYale UniversityNew HavenConnecticutUSA,Graduate Program in Biological Sciences‐BiochemistryFederal University of Rio Grande do SulPorto AlegreBrazil
| | - Marcelo O. Dietrich
- Laboratory of Physiology of Behavior, Department of Comparative MedicineYale School of MedicineNew HavenConnecticutUSA,Interdepartmental Neuroscience Program, Biological and Biomedical Sciences Program, Graduate School in Arts and SciencesYale UniversityNew HavenConnecticutUSA,Yale Center for Molecular and Systems MetabolismYale School of MedicineNew HavenConnecticutUSA,Department of NeuroscienceYale School of MedicineNew HavenConnecticutUSA
| |
Collapse
|
24
|
Victor AK, Donaldson M, Johnson D, Miller W, Reiter LT. Molecular Changes in Prader-Willi Syndrome Neurons Reveals Clues About Increased Autism Susceptibility. Front Mol Neurosci 2021; 14:747855. [PMID: 34776864 PMCID: PMC8586424 DOI: 10.3389/fnmol.2021.747855] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Prader-Willi syndrome (PWS) is a neurodevelopmental disorder characterized by hormonal dysregulation, obesity, intellectual disability, and behavioral problems. Most PWS cases are caused by paternal interstitial deletions of 15q11.2-q13.1, while a smaller number of cases are caused by chromosome 15 maternal uniparental disomy (PW-UPD). Children with PW-UPD are at higher risk for developing autism spectrum disorder (ASD) than the neurotypical population. In this study, we used expression analysis of PW-UPD neurons to try to identify the molecular cause for increased autism risk. Methods: Dental pulp stem cells (DPSC) from neurotypical control and PWS subjects were differentiated to neurons for mRNA sequencing. Significantly differentially expressed transcripts among all groups were identified. Downstream protein analysis including immunocytochemistry and immunoblots were performed to confirm the transcript level data and pathway enrichment findings. Results: We identified 9 transcripts outside of the PWS critical region (15q11.2-q13.1) that may contribute to core PWS phenotypes. Moreover, we discovered a global reduction in mitochondrial transcripts in the PW-UPD + ASD group. We also found decreased mitochondrial abundance along with mitochondrial aggregates in the cell body and neural projections of +ASD neurons. Conclusion: The 9 transcripts we identified common to all PWS subtypes may reveal PWS specific defects during neurodevelopment. Importantly, we found a global reduction in mitochondrial transcripts in PW-UPD + ASD neurons versus control and other PWS subtypes. We then confirmed mitochondrial defects in neurons from individuals with PWS at the cellular level. Quantification of this phenotype supports our hypothesis that the increased incidence of ASD in PW-UPD subjects may arise from mitochondrial defects in developing neurons.
Collapse
Affiliation(s)
- A Kaitlyn Victor
- IPBS Program, Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, United States.,Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Martin Donaldson
- Department of Pediatric Dentistry and Community Oral Health, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Daniel Johnson
- Molecular Bioinformatics Core, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Winston Miller
- Molecular Bioinformatics Core, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Lawrence T Reiter
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, United States.,Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States.,Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
25
|
Hnoonual A, Kor-Anantakul P, Charalsawadi C, Worachotekamjorn J, Limprasert P. Case Report: An Atypical Angelman Syndrome Case With Obesity and Fulfilled Autism Spectrum Disorder Identified by Microarray. Front Genet 2021; 12:755605. [PMID: 34630535 PMCID: PMC8494305 DOI: 10.3389/fgene.2021.755605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/07/2021] [Indexed: 11/26/2022] Open
Abstract
Autism spectrum disorder (ASD) is a group of neurodevelopmental disorders which are etiologically heterogeneous. Chromosomal microarray is now recommended as the first-tier clinical diagnostic test for ASD. We performed chromosomal microarray in 16 Thai patients with ASD using an Illumina HumanCytoSNP-12 v2.1 array and found one case with uniparental disomy (UPD) of chromosome 15. Methylation-specific PCR showed abnormal methylation of the maternal SNRPN allele. Haplotype analysis revealed that the patient had received both chromosomes 15 from his father. These results were consistent with Angelman syndrome. However, his clinical features had no clinical significance for classic Angelman syndrome. He had first presented at the pediatric clinic with no speech, poor social interaction skills and repetitive behaviors consistent with ASD based on the DSM-IV criteria at 2 years of age and later confirmed by ADOS at 5 years of age. He was strikingly overweight but had no dysmorphic facies, seizures nor ataxia and was diagnosed as non-syndromic ASD, a diagnosis which was believed until at 10 years of age, his DNA was included for analysis in this current cohort study. Our findings suggest that ASD patients with unknown etiology should be considered for methylation-specific PCR testing for Angelman syndrome where chromosomal microarray is not available. In the study, we also review the clinical features of Angelman syndrome caused by UPD and the frequency of ASD in individuals with Angelman syndrome.
Collapse
Affiliation(s)
- Areerat Hnoonual
- Department of Pathology, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Phawin Kor-Anantakul
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Chariyawan Charalsawadi
- Department of Pathology, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | | | | |
Collapse
|
26
|
Carollo A, Bonassi A, Lim M, Gabrieli G, Setoh P, Dimitriou D, Aryadoust V, Esposito G. Developmental disabilities across the world: A scientometric review from 1936 to 2020. RESEARCH IN DEVELOPMENTAL DISABILITIES 2021; 117:104031. [PMID: 34333315 DOI: 10.1016/j.ridd.2021.104031] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 06/07/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Developmental disabilities have been largely studied in the past years. Their etiological mechanisms have been underpinned to the interactions between genetic and environmental factors. These factors show variability across the world. Thus, it is important to understand where the set of knowledge obtained on developmental disabilities originates from and whether it is generalizable to low- and middle-income countries. AIMS This study aims to understand the origins of the available literature on developmental disabilities, keeping a focus on parenting, and identify the main trend of research. METHODS AND PROCEDURE A sample of 11,315 publications from 1936 to 2020 were collected from Scopus and a graphical country analysis was conducted. Furthermore, a qualitative approach enabled the clustering of references by keywords into four main areas: "Expression of the disorder", "Physiological Factors", "How it is studied" and "Environmental factors". For each area, a document co-citation analysis (DCA) on CiteSpace software was performed. OUTCOMES AND RESULTS Results highlight the leading role of North America in the study of developmental disabilities. Trends in the literature and the documents' scientific relevance are discussed in details. CONCLUSIONS AND IMPLICATIONS Results demand for investigation in different socio-economical settings to generalize our knowledge. What this paper adds? The current paper tries to provide insight into the origins of the literature on developmental disabilities with a focus on parenting, together with an analysis of the trends of research in the field. The paper consisted of a multi-disciplinary and multi-method review. In fact, the review tried to integrate the analysis of the relation between developmental disabilities with a closer look at the scientific contributions to the field across the world. Specifically, the paper integrates a total of 11,315 papers published on almost a century of research (from 1936 to 2020). An initial qualitative analysis on keywords was combined to a subsequent quantitative approach in order to maximize the comprehension of the impact of almost a century of scientific contributions. Specifically, documents were studied with temporal and structural metrics on a scientometric approach. This allowed the exploration of patterns within the literature available on Scopus in a quantitative way. This method not only assessed the importance of single documents within the network. As a matter of fact, the document co-citation analysis used on CiteSpace software provided insight into the relations existing between multiple documents in the field of research. As a result, the leading role of North America in the literature of developmental disabilities and parenting emerged. This was accompanied by the review of the main trends of research within the existing literature.
Collapse
Affiliation(s)
- Alessandro Carollo
- Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy
| | - Andrea Bonassi
- Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy; Mobile and Social Computing Lab, Bruno Kessler Foundation, Trento, Italy
| | - Mengyu Lim
- Psychology Program, School of Social Sciences, Nanyang Technological University, Singapore, Singapore
| | - Giulio Gabrieli
- Psychology Program, School of Social Sciences, Nanyang Technological University, Singapore, Singapore
| | - Peipei Setoh
- Psychology Program, School of Social Sciences, Nanyang Technological University, Singapore, Singapore
| | - Dagmara Dimitriou
- Sleep Research and Education Laboratory, UCL Institute of Education, London, United Kingdom
| | - Vahid Aryadoust
- National Institute of Education, Nanyang Technological University, Singapore, Singapore
| | - Gianluca Esposito
- Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy; Psychology Program, School of Social Sciences, Nanyang Technological University, Singapore, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
27
|
Peleggi A, Bohonowych J, Strong TV, Schwartz L, Kim SJ. Suicidality in individuals with Prader-Willi syndrome: a review of registry survey data. BMC Psychiatry 2021; 21:438. [PMID: 34488710 PMCID: PMC8422732 DOI: 10.1186/s12888-021-03436-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/23/2021] [Indexed: 01/20/2023] Open
Abstract
INTRODUCTION Prader-Willi syndrome (PWS) is a rare, genetic, neurodevelopmental syndrome associated with hyperphagia and early onset obesity, growth and sex hormone insufficiencies, mild-to-moderate intellectual disability, and behavioral challenges such as compulsivity, anxiety, skin picking, social skills deficits and temper outbursts. Given high rates of psychiatric comorbidity and potential risk factors for suicide in PWS, this study sought a first estimate of the prevalence of suicidal ideation (SI) and attempts (SA) in the PWS population and any characteristics associated with suicidality in this population. METHODS Using the Global Prader-Willi Syndrome Registry, we included all participants who had answered a question about SI. We examined the most recent data from the surveys about social, economic, and demographic factors, genetic subtype, and psychiatric symptoms and treatments. A chi-square analysis was used to compare registry participants who reported SI to those without reported SI. RESULTS From 750 included survey respondents, 94 (12.5%) endorsed some history of SI. Of these, 25 (26.6%) also reported a history of SA, with an average age of 16.25 years at their first attempt. Those with a history of SI were predominantly male and adult age, and had higher rates of aggression and psychiatric comorbidities, therapies, and medications. CONCLUSIONS This study indicates that the rate of SI and SA in PWS is comparable to the general population, and that suicide attempts in PWS typically begin in middle-teenage years. Despite unique challenges, individuals with PWS and their caregivers should be included in screens and psychoeducation for suicide and mental health concerns.
Collapse
Affiliation(s)
- Analise Peleggi
- grid.34477.330000000122986657Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington USA
| | - Jessica Bohonowych
- grid.453561.0Foundation for Prader-Willi Research, Walnut, California USA
| | - Theresa V. Strong
- grid.453561.0Foundation for Prader-Willi Research, Walnut, California USA
| | - Lauren Schwartz
- grid.453561.0Foundation for Prader-Willi Research, Walnut, California USA ,grid.34477.330000000122986657Department of Rehabilitation Medicine, University of Washington School of Medicine, Seattle, Washington USA
| | - Soo-Jeong Kim
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington, USA. .,Seattle Children's Autism Center, Seattle, Washington, USA.
| |
Collapse
|
28
|
Yamada K, Watanabe M, Suzuki K, Suzuki Y. Cerebellar Volumes Associate with Behavioral Phenotypes in Prader-Willi Syndrome. THE CEREBELLUM 2021; 19:778-787. [PMID: 32661798 PMCID: PMC7588377 DOI: 10.1007/s12311-020-01163-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The objective of this study was to investigate lobule-specific cerebellar structural alterations relevant to clinical behavioral characteristics of Prader-Willi syndrome (PWS). We performed a case-control study of 21 Japanese individuals with PWS (age; median 21.0, range 13–50 years, 14 males, 7 females) and 40 age- and sex-matched healthy controls with typical development. Participants underwent 3-Tesla magnetic resonance imaging. Three-dimensional T1-weighted images were assessed for cerebellar lobular volume and adjusted for total intracerebellar volume (TIV) using a spatially unbiased atlas template to give a relative volume ratio. A region of interest analysis included the deep cerebellar nuclei. A correlation analysis was performed between the volumetric data and the clinical behavioral scores derived from the standard questionnaires (hyperphagia, autism, obsession, and maladaptive index) for global intelligence assessment in paired subgroups. In individuals with PWS, TIV was significantly reduced compared with that of controls (p < 0.05, family-wise error corrected; mean [standard deviation], 1014.1 [93.0] mm3). Decreased relative lobular volume ratios were observed in posterior inferior lobules with age, sex, and TIV as covariates (Crus I, Crus II, lobules VIIb, VIIIa, VIIIb, and IX). However, increased ratios were found in the dentate nuclei bilaterally in individuals with PWS (p < 0.01); the mean (standard deviation) × 10−3 was as follows: left, 1.58 (0.26); right, 1.67 (0.30). The altered lobular volume ratios showed negative correlations with hyperphagic and autistic characteristics and positive correlations with obsessive and intellectual characteristics. This study provides the first objective evidence of topographic patterns of volume differences in cerebellar structures consistent with clinical behavioral characteristics in individuals with PWS and strongly suggests a cerebellar contribution to altered functional brain connectivity in PWS.
Collapse
Affiliation(s)
- Kenichi Yamada
- Center for Integrated Human Brain Science, Brain Research Institute, University of Niigata, 1-757, Asahimachi, Chuo-ku, Niigata, 9518585, Japan.
| | - Masaki Watanabe
- Center for Integrated Human Brain Science, Brain Research Institute, University of Niigata, 1-757, Asahimachi, Chuo-ku, Niigata, 9518585, Japan
| | - Kiyotaka Suzuki
- Center for Integrated Human Brain Science, Brain Research Institute, University of Niigata, 1-757, Asahimachi, Chuo-ku, Niigata, 9518585, Japan
| | - Yuji Suzuki
- Center for Integrated Human Brain Science, Brain Research Institute, University of Niigata, 1-757, Asahimachi, Chuo-ku, Niigata, 9518585, Japan
| |
Collapse
|
29
|
Baker EK, Arora S, Amor DJ, Date P, Cross M, O'Brien J, Simons C, Rogers C, Goodall S, Slee J, Cahir C, Godler DE. The Cost of Raising Individuals with Fragile X or Chromosome 15 Imprinting Disorders in Australia. J Autism Dev Disord 2021; 53:1682-1692. [PMID: 34292487 DOI: 10.1007/s10803-021-05193-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2021] [Indexed: 11/29/2022]
Abstract
The study characterised differences in costs associated with raising a child between four rare disorders and examined the associations between these costs with clinical severity. Caregivers of 108 individuals with Prader-Willi, Angelman (AS), Chromosome 15q Duplication and fragile X (FXS) syndromes completed a modified Client Services Receipt Inventory and participants completed intellectual/developmental functioning and autism assessments. AS incurred the highest yearly costs per individual ($AUD96,994), while FXS had the lowest costs ($AUD33,221). Intellectual functioning negatively predicted total costs, after controlling for diagnosis. The effect of intellectual functioning on total costs for those with AS was significantly different to the other syndromes. The study highlights the significant costs associated with these syndromes, particularly AS, linked with severity of intellectual functioning.
Collapse
Affiliation(s)
- Emma K Baker
- Diagnosis and Development, Murdoch Children's Research Institute, Royal Children's Hospital, 50 Flemington Road, Parkville, VIC, 3052, Australia.,Faculty of Medicine, Dentistry and Health Sciences, Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia.,School of Psychology and Public Health, La Trobe University, Bundoora, VIC, Australia
| | - Sheena Arora
- Centre for Health Economics Research and Evaluation, University of Technology Sydney, Broadway, NSW, Australia
| | - David J Amor
- Faculty of Medicine, Dentistry and Health Sciences, Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia.,Neurodisability and Rehabilitation, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, Australia
| | - Perrin Date
- Diagnosis and Development, Murdoch Children's Research Institute, Royal Children's Hospital, 50 Flemington Road, Parkville, VIC, 3052, Australia.,Olga Tennison Autism Research Centre, La Trobe University, Melbourne, VIC, Australia
| | - Meagan Cross
- Foundation for Angelman Syndrome Therapeutics (FAST), Salisbury, QLD, Australia
| | - James O'Brien
- Prader-Willi Syndrome Australia Ltd, Melbourne, VIC, Australia
| | - Chloe Simons
- Foundation for Angelman Syndrome Therapeutics (FAST), Salisbury, QLD, Australia
| | - Carolyn Rogers
- Genetics of Learning Disability Service, Hunter Genetics, Waratah, NSW, Australia
| | - Stephen Goodall
- Centre for Health Economics Research and Evaluation, University of Technology Sydney, Broadway, NSW, Australia
| | - Jennie Slee
- Department of Health, Government of Western Australia, Genetic Services of Western Australia, Perth, WA, Australia
| | - Chris Cahir
- Dup15q Australia Ltd, Melbourne, VIC, Australia
| | - David E Godler
- Diagnosis and Development, Murdoch Children's Research Institute, Royal Children's Hospital, 50 Flemington Road, Parkville, VIC, 3052, Australia. .,Faculty of Medicine, Dentistry and Health Sciences, Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
30
|
Kennedy D, Marten H, O’Sullivan C, Catrone R. Biological, Behavioral, and Ethical Considerations of Prader-Willi Syndrome: A Primer for Behavior Analysts. Behav Anal Pract 2021; 15:562-570. [DOI: 10.1007/s40617-021-00618-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2021] [Indexed: 10/20/2022] Open
|
31
|
Kong XJ, Liu K, Zhuang P, Tian R, Liu S, Clairmont C, Lin X, Sherman H, Zhu J, Wang Y, Fong M, Li A, Wang BK, Wang J, Yu Z, Shen C, Cui X, Cao H, Du T, Wan G, Cao X. The Effects of Limosilactobacillus reuteri LR-99 Supplementation on Body Mass Index, Social Communication, Fine Motor Function, and Gut Microbiome Composition in Individuals with Prader-Willi Syndrome: a Randomized Double-Blinded Placebo-Controlled Trial. Probiotics Antimicrob Proteins 2021; 13:1508-1520. [PMID: 34115318 PMCID: PMC8578098 DOI: 10.1007/s12602-021-09800-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2021] [Indexed: 12/16/2022]
Abstract
Prader-Willi syndrome (PWS) is a rare genetic disorder associated with developmental delay, obesity, and neuropsychiatric comorbidities. Limosilactobacillus reuteri (Lactobacillus reuteri, Lact. reuteri) has demonstrated anti-obesity and anti-inflammatory effects in previous studies. In the present study, we aim to evaluate the effects of Lact. reuteri supplementation on body mass index (BMI), social behaviors, and gut microbiota in individuals with PWS. We conducted a 12-week, randomized, double-blind, placebo-controlled trial in 71 individuals with PWS aged 6 to 264 months (64.4 ± 51.0 months). Participants were randomly assigned to either receive daily Lact. reuteri LR-99 probiotic (6 × 1010 colony forming units) or a placebo sachet. Groupwise differences were assessed for BMI, ASQ-3, and GARS-3 at baseline, 6 weeks, and 12 weeks into treatment. Gut microbiome data was analyzed with the QIIME2 software package, and predictive functional profiling was conducted with PICRUSt-2. We found a significant reduction in BMI for the probiotic group at both 6 weeks and 12 weeks relative to the baseline (P < 0.05). Furthermore, we observed a significant improvement in social communication and interaction, fine motor function, and total ASQ-3 score in the probiotics group compared to the placebo group (P < 0.05). Altered gut microbiota was observed in the probiotic group to favor weight loss and improve gut health. The findings suggest a novel therapeutic potential for Lact. reuteri LR-99 probiotic to modulate BMI, social behaviors, and gut microbiota in Prader-Willi syndrome patients, although further investigation is warranted.Trial registration Chinese Clinical Trial Registry: ChiCTR1900022646.
Collapse
Affiliation(s)
- Xue-Jun Kong
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA.
- Department of Medicine and Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA.
| | - Kevin Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Patrick Zhuang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Ruiyi Tian
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Siyu Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Cullen Clairmont
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | | | - Hannah Sherman
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | | | - Yelan Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Michelle Fong
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Alice Li
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | | | | | - Zhehao Yu
- The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Chen Shen
- The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Xianghua Cui
- The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Hanyu Cao
- The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Ting Du
- The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Guobin Wan
- Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, Guangdong, China
| | - Xia Cao
- The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
32
|
Pellikaan K, van Woerden GM, Kleinendorst L, Rosenberg AGW, Horsthemke B, Grosser C, van Zutven LJCM, van Rossum EFC, van der Lely AJ, Resnick JL, Brüggenwirth HT, van Haelst MM, de Graaff LCG. The Diagnostic Journey of a Patient with Prader-Willi-Like Syndrome and a Unique Homozygous SNURF-SNRPN Variant; Bio-Molecular Analysis and Review of the Literature. Genes (Basel) 2021; 12:genes12060875. [PMID: 34200226 PMCID: PMC8227738 DOI: 10.3390/genes12060875] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022] Open
Abstract
Prader–Willi syndrome (PWS) is a rare genetic condition characterized by hypotonia, intellectual disability, and hypothalamic dysfunction, causing pituitary hormone deficiencies and hyperphagia, ultimately leading to obesity. PWS is most often caused by the loss of expression of a cluster of genes on chromosome 15q11.2-13. Patients with Prader–Willi-like syndrome (PWLS) display features of the PWS phenotype without a classical PWS genetic defect. We describe a 46-year-old patient with PWLS, including hypotonia, intellectual disability, hyperphagia, and pituitary hormone deficiencies. Routine genetic tests for PWS were normal, but a homozygous missense variant NM_003097.3(SNRPN):c.193C>T, p.(Arg65Trp) was identified. Single nucleotide polymorphism array showed several large regions of homozygosity, caused by high-grade consanguinity between the parents. Our functional analysis, the ‘Pipeline for Rapid in silico, in vivo, in vitro Screening of Mutations’ (PRiSM) screen, showed that overexpression of SNRPN-p.Arg65Trp had a dominant negative effect, strongly suggesting pathogenicity. However, it could not be confirmed that the variant was responsible for the phenotype of the patient. In conclusion, we present a unique homozygous missense variant in SNURF-SNRPN in a patient with PWLS. We describe the diagnostic trajectory of this patient and the possible contributors to her phenotype in light of the current literature on the genotype–phenotype relationship in PWS.
Collapse
Affiliation(s)
- Karlijn Pellikaan
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Centre Rotterdam, 3015 GD Rotterdam, The Netherlands; (K.P.); (A.G.W.R.); (E.F.C.v.R.); (A.J.v.d.L.)
- Dutch Centre of Reference for Prader-Willi Syndrome, 3015 GD Rotterdam, The Netherlands
| | - Geeske M. van Woerden
- Department of Neuroscience, Erasmus University Medical Centre, 3015 GD Rotterdam, The Netherlands;
- The ENCORE Expertise Centre for Neurodevelopmental Disorders, Erasmus University Medical Centre, 3015 GD Rotterdam, The Netherlands
- Department of Clinical Genetics, Erasmus University Medical Centre, 3015 GD Rotterdam, The Netherlands; (L.J.C.M.v.Z.); (H.T.B.)
| | - Lotte Kleinendorst
- Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, 1081 HV Amsterdam, The Netherlands; (L.K.); (M.M.v.H.)
| | - Anna G. W. Rosenberg
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Centre Rotterdam, 3015 GD Rotterdam, The Netherlands; (K.P.); (A.G.W.R.); (E.F.C.v.R.); (A.J.v.d.L.)
- Dutch Centre of Reference for Prader-Willi Syndrome, 3015 GD Rotterdam, The Netherlands
| | - Bernhard Horsthemke
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (B.H.); (C.G.)
| | - Christian Grosser
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (B.H.); (C.G.)
- Praxis für Humangenetik Tübingen, 72076 Tuebingen, Germany
| | - Laura J. C. M. van Zutven
- Department of Clinical Genetics, Erasmus University Medical Centre, 3015 GD Rotterdam, The Netherlands; (L.J.C.M.v.Z.); (H.T.B.)
| | - Elisabeth F. C. van Rossum
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Centre Rotterdam, 3015 GD Rotterdam, The Netherlands; (K.P.); (A.G.W.R.); (E.F.C.v.R.); (A.J.v.d.L.)
- Obesity Center CGG, Erasmus MC, University Medical Centre Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - Aart J. van der Lely
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Centre Rotterdam, 3015 GD Rotterdam, The Netherlands; (K.P.); (A.G.W.R.); (E.F.C.v.R.); (A.J.v.d.L.)
| | - James L. Resnick
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA;
| | - Hennie T. Brüggenwirth
- Department of Clinical Genetics, Erasmus University Medical Centre, 3015 GD Rotterdam, The Netherlands; (L.J.C.M.v.Z.); (H.T.B.)
| | - Mieke M. van Haelst
- Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, 1081 HV Amsterdam, The Netherlands; (L.K.); (M.M.v.H.)
| | - Laura C. G. de Graaff
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Centre Rotterdam, 3015 GD Rotterdam, The Netherlands; (K.P.); (A.G.W.R.); (E.F.C.v.R.); (A.J.v.d.L.)
- Dutch Centre of Reference for Prader-Willi Syndrome, 3015 GD Rotterdam, The Netherlands
- The ENCORE Expertise Centre for Neurodevelopmental Disorders, Erasmus University Medical Centre, 3015 GD Rotterdam, The Netherlands
- Academic Centre for Growth Disorders, Erasmus MC Rotterdam, 3015 GD Rotterdam, The Netherlands
- Correspondence: ; Tel.: +31-618843010
| |
Collapse
|
33
|
Kong XJ, Wan G, Tian R, Liu S, Liu K, Clairmont C, Lin X, Zhang X, Sherman H, Zhu J, Wang Y, Fong M, Li A, Wang BK, Wang J, Liu J, Yu Z, Shen C, Cui X, Cao H, Du T, Cao X. The Effects of Probiotic Supplementation on Anthropometric Growth and Gut Microbiota Composition in Patients With Prader-Willi Syndrome: A Randomized Double-Blinded Placebo-Controlled Trial. Front Nutr 2021; 8:587974. [PMID: 33681271 PMCID: PMC7933553 DOI: 10.3389/fnut.2021.587974] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 02/02/2021] [Indexed: 12/31/2022] Open
Abstract
Background: Prader-Willi Syndrome (PWS) is a rare genetic disorder associated with developmental delay, obesity, and neuropsychiatric comorbidities. Bifidobacterium animalis subsp. lactis has demonstrated anti-obesity and anti-inflammatory effects in previous studies. Aim: To evaluate the effects of Bifidobacterium animalis subsp. lactis probiotics supplementation on anthropometric growth, behavioral symptoms, and gut microbiome composition in patients with PWS. Methods: Ethical Approval was issued by the Internal Review Board (IRB) of the Second Affiliated Hospital of Kunming Medical University (Review-YJ-2016-06). We conducted a 12-week, randomized, double-blind, placebo-controlled trial in 68 patients with Prader-Willi syndrome aged 11 months-16 years (mean = 4.2 years old) who were randomly assigned to receive daily B. lactis-11 probiotics (6 × 1010 CFUs) or a placebo sachet. Weight, height, ASQ-3, ABC, SRS-2, and CGI-I were compared between the two groups at baseline and at 6 and 12 weeks into treatment. Gut microbiome data were analyzed with the QIIME 2 software package, and functional gene analysis was conducted with PICRUSt-2. Results: We found a significant increase in height (mean difference = 2.68 cm, P < 0.05) and improvement in CGI-I (P < 0.05) in the probiotics group compared to the placebo group. No significant change in weight or psychological measures were observed. Probiotic treatment altered the microbiome composition to favor weight loss and gut health and increased the abundance of antioxidant production-related genes. Conclusions: The findings suggest a novel therapeutic potential for Bifidobacterium animalis subsp. lactis probiotics in Prader-Willi syndrome patients, although further investigation is warranted.
Collapse
Affiliation(s)
- Xue-Jun Kong
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
- Department of Medicine and Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Guobin Wan
- Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, China
| | - Ruiyi Tian
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
| | - Siyu Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
| | - Kevin Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
| | - Cullen Clairmont
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
| | | | | | - Hannah Sherman
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
| | - Junli Zhu
- Yale University, New Haven, CT, United States
| | - Yelan Wang
- Bentley University, Waltham, MA, United States
| | - Michelle Fong
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
| | - Alice Li
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
| | | | - Jinghan Wang
- New York University, New York, NY, United States
| | - Jun Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Zhehao Yu
- Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Chen Shen
- Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xianghua Cui
- Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Hanyu Cao
- Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ting Du
- Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xia Cao
- Second Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
34
|
Forster J, Duis J, Butler MG. Pharmacogenetic Testing of Cytochrome P450 Drug Metabolizing Enzymes in a Case Series of Patients with Prader-Willi Syndrome. Genes (Basel) 2021; 12:genes12020152. [PMID: 33498922 PMCID: PMC7912498 DOI: 10.3390/genes12020152] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/15/2021] [Accepted: 01/21/2021] [Indexed: 02/08/2023] Open
Abstract
Prader-Willi syndrome (PWS) is associated with co-morbid psychiatric symptoms (disruptive behavior, anxiety, mood disorders, and psychosis) often requiring psychotropic medications. In this clinical case series of 35 patients with PWS, pharmacogenetic testing was obtained to determine allele frequencies predicting variations in activity of cytochrome (CYP) P450 drug metabolizing enzymes 2D6, 2B6, 2C19, 2C9, 3A4, and 1A2. Results were deidentified, collated, and analyzed by PWS genetic subtype: 14 deletion (DEL), 16 maternal uniparental disomy (UPD) and 5 DNA-methylation positive unspecified molecular subtype (PWS Unspec). Literature review informed comparative population frequencies of CYP polymorphisms, phenotypes, and substrate specificity. Among the total PWS cohort, extensive metabolizer (EM) activity prevailed across all cytochromes except CYP1A2, which showed greater ultra-rapid metabolizer (UM) status (p < 0.05), especially among UPD. Among PWS genetic subtypes, there were statistically significant differences in metabolizing status for cytochromes 2D6, 2C19, 2C9, 3A4 and 1A2 acting on substrates such as fluoxetine, risperidone, sertraline, modafinil, aripiprazole, citalopram, and escitalopram. Gonadal steroid therapy may further impact metabolism of 2C19, 2C9, 3A4 and 1A2 substrates. The status of growth hormone treatment may affect CYP3A4 activity with gender specificity. Pharmacogenetic testing together with PWS genetic subtyping may inform psychotropic medication dosing parameters and risk for adverse events.
Collapse
Affiliation(s)
- Janice Forster
- Pittsburgh Partnership, PWS, Pittsburgh, PA 15218, USA
- Correspondence:
| | - Jessica Duis
- Section of Genetic and Inherited Metabolic Disease, Department of Pediatrics, Children’s Hospital Colorado, Aurora, CO 80045, USA;
| | - Merlin G. Butler
- Division of Research and Genetics, Departments of Psychiatry & Behavioral Sciences and Pediatrics, University of Kansas Medical Center, Kansas City, KS 66160, USA;
| |
Collapse
|
35
|
Dimitropoulos A, Zyga O, Doernberg E, Russ SW. Show me what happens next: Preliminary efficacy of a remote play-based intervention for children with Prader-Willi syndrome. RESEARCH IN DEVELOPMENTAL DISABILITIES 2021; 108:103820. [PMID: 33307337 DOI: 10.1016/j.ridd.2020.103820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/05/2020] [Accepted: 11/21/2020] [Indexed: 06/12/2023]
Abstract
Prader-Willi Syndrome (PWS) is characterized by decreased social and emotional functioning. Due to the low base-rate of children with PWS, developing behavioral interventions for individuals with PWS is faced with the challenge of enrolling enough local participants for adequate study of behavioral intervention efficacy. However, these types of studies are greatly needed in PWS and telehealth methodology may be useful in addressing this challenge. This article is a follow-up to a previous feasibility study (Dimitropoulos et al., 2017) and reports on the preliminary efficacy of a telehealth intervention delivered to 15 children, ages 6-12, with PWS. Overall, children demonstrated significantly improved cognitive and affective processes in pretend play and general cognitive flexibility following the 6-week remote intervention. These findings are limited by the lack of control group and small sample size which should be considered when interpreting results. Overall, these preliminary findings point to the potential role pretend play can serve as a means of enacting cognitive and behavioral change via telehealth.
Collapse
Affiliation(s)
| | - Olena Zyga
- Case Westerm Reserve University, Department of Psychological Sciences, United States
| | - Ellen Doernberg
- Case Westerm Reserve University, Department of Psychological Sciences, United States.
| | - Sandra W Russ
- Case Westerm Reserve University, Department of Psychological Sciences, United States
| |
Collapse
|
36
|
Florke Gee RR, Chen H, Lee AK, Daly CA, Wilander BA, Fon Tacer K, Potts PR. Emerging roles of the MAGE protein family in stress response pathways. J Biol Chem 2020; 295:16121-16155. [PMID: 32921631 PMCID: PMC7681028 DOI: 10.1074/jbc.rev120.008029] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 09/08/2020] [Indexed: 12/21/2022] Open
Abstract
The melanoma antigen (MAGE) proteins all contain a MAGE homology domain. MAGE genes are conserved in all eukaryotes and have expanded from a single gene in lower eukaryotes to ∼40 genes in humans and mice. Whereas some MAGEs are ubiquitously expressed in tissues, others are expressed in only germ cells with aberrant reactivation in multiple cancers. Much of the initial research on MAGEs focused on exploiting their antigenicity and restricted expression pattern to target them with cancer immunotherapy. Beyond their potential clinical application and role in tumorigenesis, recent studies have shown that MAGE proteins regulate diverse cellular and developmental pathways, implicating them in many diseases besides cancer, including lung, renal, and neurodevelopmental disorders. At the molecular level, many MAGEs bind to E3 RING ubiquitin ligases and, thus, regulate their substrate specificity, ligase activity, and subcellular localization. On a broader scale, the MAGE genes likely expanded in eutherian mammals to protect the germline from environmental stress and aid in stress adaptation, and this stress tolerance may explain why many cancers aberrantly express MAGEs Here, we present an updated, comprehensive review on the MAGE family that highlights general characteristics, emphasizes recent comparative studies in mice, and describes the diverse functions exerted by individual MAGEs.
Collapse
Affiliation(s)
- Rebecca R Florke Gee
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Helen Chen
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Anna K Lee
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Christina A Daly
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Benjamin A Wilander
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Klementina Fon Tacer
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; School of Veterinary Medicine, Texas Tech University, Amarillo, Texas, USA.
| | - Patrick Ryan Potts
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.
| |
Collapse
|
37
|
Marbach F, Elgizouli M, Rech M, Beygo J, Erger F, Velmans C, Stumpel CTRM, Stegmann APA, Beck-Wödl S, Gillessen-Kaesbach G, Horsthemke B, Schaaf CP, Kuechler A. The adult phenotype of Schaaf-Yang syndrome. Orphanet J Rare Dis 2020; 15:294. [PMID: 33076953 PMCID: PMC7574436 DOI: 10.1186/s13023-020-01557-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 09/23/2020] [Indexed: 12/14/2022] Open
Abstract
Background MAGEL2-associated Schaaf-Yang syndrome (SHFYNG, OMIM #615547, ORPHA: 398069), which was identified in 2013, is a rare disorder caused by truncating variants of the paternal copy of MAGEL2, which is localized in the imprinted region on 15q11.2q13. The phenotype of SHFYNG in childhood partially overlaps with that of the well-established Prader–Willi syndrome (PWS, OMIM #176270). While larger numbers of younger individuals with SHFYNG have been recently published, the phenotype in adulthood is not well established. We recruited 7 adult individuals (aged 18 to 36) with molecularly confirmed SHFYNG and collected data regarding the clinical profile including eating habits, sleep, behavior, personal autonomy, psychiatric abnormalities and other medical conditions, as well as information about the respective phenotypes in childhood. Results Within our small cohort, we identified a range of common features, such as disturbed sleep, hypoactivity, social withdrawal and anxiety, but also noted considerable differences at the level of personal autonomy and skills. Behavioral problems were frequent, and a majority of individuals displayed weight gain and food-seeking behavior, along with mild intellectual disability or borderline intellectual function. Classical symptoms of SHFYNG in childhood were reported for most individuals. Conclusion Our findings indicate a high variability of the functional abilities and social participation of adults with SHFYNG. A high prevalence of obesity within our cohort was notable, and uncontrollable food intake was a major concern for some caregivers. The phenotypes of PWS and SHFYNG in adulthood might be more difficult to discern than the phenotypes in childhood. Molecular genetic testing for SHFYNG should therefore be considered in adults with the suspected diagnosis of PWS, if testing for PWS has been negative.
Collapse
Affiliation(s)
- Felix Marbach
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Magdeldin Elgizouli
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany.,Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | - Megan Rech
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Jasmin Beygo
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Florian Erger
- Faculty of Medicine, University of Cologne, 50931, Cologne, Germany.,Institute of Human Genetics, University Hospital Cologne, Cologne, Germany
| | - Clara Velmans
- Faculty of Medicine, University of Cologne, 50931, Cologne, Germany.,Institute of Human Genetics, University Hospital Cologne, Cologne, Germany
| | - Constance T R M Stumpel
- Department of Clinical Genetics and GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, 6202AZ, Maastricht, The Netherlands
| | - Alexander P A Stegmann
- Department of Clinical Genetics and GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, 6202AZ, Maastricht, The Netherlands
| | - Stefanie Beck-Wödl
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | | | - Bernhard Horsthemke
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Christian P Schaaf
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Alma Kuechler
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany.
| |
Collapse
|
38
|
Thomason MM, McCarthy J, Goin-Kochel RP, Dowell LR, Schaaf CP, Berry LN. Neurocognitive and Neurobehavioral Phenotype of Youth with Schaaf-Yang Syndrome. J Autism Dev Disord 2020; 50:2491-2500. [PMID: 30343463 DOI: 10.1007/s10803-018-3775-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Truncating variants of the MAGEL2 gene, one of the protein-coding genes within the Prader-Willi syndrome (PWS) critical region on chromosome 15q11, cause Schaaf-Yang syndrome (SYS)-a neurodevelopmental disorder that shares several clinical features with PWS. The current study sought to characterize the neurobehavioral phenotype of SYS in a sample of 9 patients with molecularly-confirmed SYS. Participants received an assessment of developmental/intellectual functioning, adaptive functioning, autism symptomatology, and behavioral/emotional functioning. Compared to individuals with PWS, patients with SYS manifested more severe cognitive deficits, no obsessions or compulsions, and increased rates of autism spectrum disorder.
Collapse
Affiliation(s)
- Molly Mishler Thomason
- Baylor College of Medicine, Houston, TX, USA.
- Clinical Care Center - Psychology Service, Texas Children's Hospital, 6701 Fannin Street, Suite 1630, Houston, TX, 77030-2608, USA.
| | - John McCarthy
- Baylor College of Medicine, Houston, TX, USA
- Clinical Care Center - Psychology Service, Texas Children's Hospital, 6701 Fannin Street, Suite 1630, Houston, TX, 77030-2608, USA
- John P. and Kathrine G. McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Robin P Goin-Kochel
- Baylor College of Medicine, Houston, TX, USA
- Clinical Care Center - Psychology Service, Texas Children's Hospital, 6701 Fannin Street, Suite 1630, Houston, TX, 77030-2608, USA
- Institute of Human Genetics, University Hospital Cologne, Cologne, Nordrhein-Westfalen, Germany
| | - Lauren R Dowell
- Baylor College of Medicine, Houston, TX, USA
- Clinical Care Center - Psychology Service, Texas Children's Hospital, 6701 Fannin Street, Suite 1630, Houston, TX, 77030-2608, USA
| | - Christian P Schaaf
- Baylor College of Medicine, Houston, TX, USA
- Clinical Care Center - Psychology Service, Texas Children's Hospital, 6701 Fannin Street, Suite 1630, Houston, TX, 77030-2608, USA
- Institute of Human Genetics, University Hospital Cologne, Cologne, Nordrhein-Westfalen, Germany
- University of Cologne, Cologne, Germany
| | - Leandra N Berry
- Baylor College of Medicine, Houston, TX, USA
- Clinical Care Center - Psychology Service, Texas Children's Hospital, 6701 Fannin Street, Suite 1630, Houston, TX, 77030-2608, USA
| |
Collapse
|
39
|
Chen H, Victor AK, Klein J, Tacer KF, Tai DJ, de Esch C, Nuttle A, Temirov J, Burnett LC, Rosenbaum M, Zhang Y, Ding L, Moresco JJ, Diedrich JK, Yates JR, Tillman HS, Leibel RL, Talkowski ME, Billadeau DD, Reiter LT, Potts PR. Loss of MAGEL2 in Prader-Willi syndrome leads to decreased secretory granule and neuropeptide production. JCI Insight 2020; 5:138576. [PMID: 32879135 PMCID: PMC7526459 DOI: 10.1172/jci.insight.138576] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/22/2020] [Indexed: 12/17/2022] Open
Abstract
Prader-Willi syndrome (PWS) is a developmental disorder caused by loss of maternally imprinted genes on 15q11-q13, including melanoma antigen gene family member L2 (MAGEL2). The clinical phenotypes of PWS suggest impaired hypothalamic neuroendocrine function; however, the exact cellular defects are unknown. Here, we report deficits in secretory granule (SG) abundance and bioactive neuropeptide production upon loss of MAGEL2 in humans and mice. Unbiased proteomic analysis of Magel2pΔ/m+ mice revealed a reduction in components of SG in the hypothalamus that was confirmed in 2 PWS patient-derived neuronal cell models. Mechanistically, we show that proper endosomal trafficking by the MAGEL2-regulated WASH complex is required to prevent aberrant lysosomal degradation of SG proteins and reduction of mature SG abundance. Importantly, loss of MAGEL2 in mice, NGN2-induced neurons, and human patients led to reduced neuropeptide production. Thus, MAGEL2 plays an important role in hypothalamic neuroendocrine function, and cellular defects in this pathway may contribute to PWS disease etiology. Moreover, these findings suggest unanticipated approaches for therapeutic intervention.
Collapse
Affiliation(s)
- Helen Chen
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - A Kaitlyn Victor
- Department of Neurology, Department of Pediatrics, and Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Jonathon Klein
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Klementina Fon Tacer
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Derek Jc Tai
- Center for Genomic Medicine, Department of Neurology, Department of Pathology, and Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA.,Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute, Cambridge, Massachusetts, USA
| | - Celine de Esch
- Center for Genomic Medicine, Department of Neurology, Department of Pathology, and Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA.,Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute, Cambridge, Massachusetts, USA
| | - Alexander Nuttle
- Center for Genomic Medicine, Department of Neurology, Department of Pathology, and Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA.,Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute, Cambridge, Massachusetts, USA
| | - Jamshid Temirov
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Lisa C Burnett
- Levo Therapeutics, Inc., Skokie, Illinois, USA.,Division of Molecular Genetics, Department of Pediatrics, and Naomi Berrie Diabetes Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| | - Michael Rosenbaum
- Division of Molecular Genetics, Department of Pediatrics, and Naomi Berrie Diabetes Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| | - Yiying Zhang
- Division of Molecular Genetics, Department of Pediatrics, and Naomi Berrie Diabetes Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| | - Li Ding
- Division of Oncology Research and Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
| | - James J Moresco
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Jolene K Diedrich
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - John R Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Heather S Tillman
- Veterinary Pathology Core, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Rudolph L Leibel
- Division of Molecular Genetics, Department of Pediatrics, and Naomi Berrie Diabetes Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| | - Michael E Talkowski
- Center for Genomic Medicine, Department of Neurology, Department of Pathology, and Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA.,Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute, Cambridge, Massachusetts, USA
| | - Daniel D Billadeau
- Division of Oncology Research and Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
| | - Lawrence T Reiter
- Department of Neurology, Department of Pediatrics, and Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Patrick Ryan Potts
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
40
|
Chen X, Ma X, Zou C. Phenotypic spectrum and genetic analysis in the fatal cases of Schaaf-Yang syndrome: Two case reports and literature review. Medicine (Baltimore) 2020; 99:e20574. [PMID: 32702813 PMCID: PMC7373511 DOI: 10.1097/md.0000000000020574] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
RATIONALE Schaaf-Yang syndrome, a rare imprinted hereditary disease caused by MAGEL2 variants, manifests as developmental delay/intellectual disability, neonatal hypotonia, feeding difficulties, contractures, and autism spectrum disorder. PATIENT CONCERNS Patient 1 and 2 were infant girls presenting facial dysmorphisms, contractures of interphalangeal joints, neonatal hypotonia, feeding difficulties, congenital heart diseases, and respiratory complications. Besides, Patient 2 presented with delayed psychomotor development. DIAGNOSIS Whole-exome sequencing was performed and heterozygous mutations of the MAGEL2 gene were detected in the patients. They were diagnosed as Schaaf-Yang syndrome. INTERVENTIONS The patients received supportive treatment including mechanical ventilation, parenteral nutrition and gastric tube feeding. OUTCOMES Whole-exome sequencing revealed de novo heterozygous c.1996dupC pathogenic mutations in the MAGEL2 gene in the 2 patients. They died due to respiratory failure at the age of 20 days and 98 days, respectively. LESSONS Our results indicate that MAGEL2 variants can cause congenital heart disease and fatal respiratory complications, broadening the phenotypic spectrum and adding to the fatal cases of Schaaf-Yang syndrome. We highly suggest that the MAGEL2 gene should be added to gene-panels or gene-filters in next-generation sequencing-based diagnostics, which is of great significance for early diagnosis and early intervention of Schaaf-Yang syndrome patients.
Collapse
Affiliation(s)
| | - Xiaolu Ma
- Department of Neonatal Intensive Care Unit, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang Province, China
| | | |
Collapse
|
41
|
López-Tobón A, Trattaro S, Testa G. The sociability spectrum: evidence from reciprocal genetic copy number variations. Mol Autism 2020; 11:50. [PMID: 32546261 PMCID: PMC7298749 DOI: 10.1186/s13229-020-00347-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 05/11/2020] [Indexed: 02/14/2023] Open
Abstract
Sociability entails some of the most complex behaviors processed by the central nervous system. It includes the detection, integration, and interpretation of social cues and elaboration of context-specific responses that are quintessentially species-specific. There is an ever-growing accumulation of molecular associations to autism spectrum disorders (ASD), from causative genes to endophenotypes across multiple functional layers; these however, have rarely been put in context with the opposite manifestation featured in hypersociability syndromes. Genetic copy number variations (CNVs) allow to investigate the relationships between gene dosage and its corresponding phenotypes. In particular, CNVs of the 7q11.23 locus, which manifest diametrically opposite social behaviors, offer a privileged window to look into the molecular substrates underlying the developmental trajectories of the social brain. As by definition sociability is studied in humans postnatally, the developmental fluctuations causing social impairments have thus far remained a black box. Here, we review key evidence of molecular players involved at both ends of the sociability spectrum, focusing on genetic and functional associations of neuroendocrine regulators and synaptic transmission pathways. We then proceed to propose the existence of a molecular axis centered around the paradigmatic dosage imbalances at the 7q11.23 locus, regulating networks responsible for the development of social behavior in humans and highlight the key role that neurodevelopmental models from reprogrammed pluripotent cells will play for its understanding.
Collapse
Affiliation(s)
- Alejandro López-Tobón
- Laboratory of Stem Cell Epigenetics, IEO, European Institute of Oncology, IRCCS, Milan, Italy.
- Department of Oncology and Hemato-oncology, Università degli studi di Milano, Milan, Italy.
| | - Sebastiano Trattaro
- Laboratory of Stem Cell Epigenetics, IEO, European Institute of Oncology, IRCCS, Milan, Italy.
- Department of Oncology and Hemato-oncology, Università degli studi di Milano, Milan, Italy.
| | - Giuseppe Testa
- Laboratory of Stem Cell Epigenetics, IEO, European Institute of Oncology, IRCCS, Milan, Italy.
- Department of Oncology and Hemato-oncology, Università degli studi di Milano, Milan, Italy.
- Human Technopole, Via Cristina Belgioioso 171, Milan, Italy.
| |
Collapse
|
42
|
Panaro MA, Benameur T, Porro C. Hypothalamic Neuropeptide Brain Protection: Focus on Oxytocin. J Clin Med 2020; 9:jcm9051534. [PMID: 32438751 PMCID: PMC7290962 DOI: 10.3390/jcm9051534] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/06/2020] [Accepted: 05/14/2020] [Indexed: 02/06/2023] Open
Abstract
Oxytocin (OXT) is hypothalamic neuropeptide synthetized in the brain by magnocellular and parvo cellular neurons of the paraventricular (PVN), supraoptic (SON) and accessory nuclei (AN) of the hypothalamus. OXT acts in the central and peripheral nervous systems via G-protein-coupled receptors. The classical physiological functions of OXT are uterine contractions, the milk ejection reflex during lactation, penile erection and sexual arousal, but recent studies have demonstrated that OXT may have anti-inflammatory and anti-oxidant properties and regulate immune and anti-inflammatory responses. In the pathogenesis of various neurodegenerative diseases, microglia are present in an active form and release high levels of pro-inflammatory cytokines and chemokines that are implicated in the process of neural injury. A promising treatment for neurodegenerative diseases involves new therapeutic approaches targeting activated microglia. Recent studies have reported that OXT exerts neuroprotective effects through the inhibition of production of pro-inflammatory mediators, and in the development of correct neural circuitry. The focus of this review is to attribute a new important role of OXT in neuroprotection through the microglia–OXT interaction of immature and adult brains. In addition, we analyzed the strategies that could enhance the delivery of OXT in the brain and amplify its positive effects.
Collapse
Affiliation(s)
- Maria Antonietta Panaro
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy;
| | - Tarek Benameur
- Department of Biomedical Sciences, College of Medicine, King Faisal University, 31982 Al-Ahsa, Saudi Arabia;
| | - Chiara Porro
- Department of Clinical and Experimental Medicine, University of Foggia, 71121 Foggia, Italy
- Correspondence:
| |
Collapse
|
43
|
Bratkovič T, Božič J, Rogelj B. Functional diversity of small nucleolar RNAs. Nucleic Acids Res 2020; 48:1627-1651. [PMID: 31828325 PMCID: PMC7038934 DOI: 10.1093/nar/gkz1140] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/17/2019] [Accepted: 12/05/2019] [Indexed: 12/22/2022] Open
Abstract
Small nucleolar RNAs (snoRNAs) are short non-protein-coding RNAs with a long-recognized role in tuning ribosomal and spliceosomal function by guiding ribose methylation and pseudouridylation at targeted nucleotide residues of ribosomal and small nuclear RNAs, respectively. SnoRNAs are increasingly being implicated in regulation of new types of post-transcriptional processes, for example rRNA acetylation, modulation of splicing patterns, control of mRNA abundance and translational efficiency, or they themselves are processed to shorter stable RNA species that seem to be the principal or alternative bioactive isoform. Intriguingly, some display unusual cellular localization under exogenous stimuli, or tissue-specific distribution. Here, we discuss the new and unforeseen roles attributed to snoRNAs, focusing on the presumed mechanisms of action. Furthermore, we review the experimental approaches to study snoRNA function, including high resolution RNA:protein and RNA:RNA interaction mapping, techniques for analyzing modifications on targeted RNAs, and cellular and animal models used in snoRNA biology research.
Collapse
Affiliation(s)
- Tomaž Bratkovič
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, SI1000 Ljubljana, Slovenia
| | - Janja Božič
- Jozef Stefan Institute, Department of Biotechnology, Jamova cesta 39, SI1000 Ljubljana, Slovenia.,Biomedical Research Institute BRIS, Puhova ulica 10, SI1000 Ljubljana, Slovenia
| | - Boris Rogelj
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, SI1000 Ljubljana, Slovenia.,Jozef Stefan Institute, Department of Biotechnology, Jamova cesta 39, SI1000 Ljubljana, Slovenia.,Biomedical Research Institute BRIS, Puhova ulica 10, SI1000 Ljubljana, Slovenia.,University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, SI1000 Ljubljana, Slovenia
| |
Collapse
|
44
|
Famelart N, Diene G, Çabal-Berthoumieu S, Glattard M, Molinas C, Guidetti M, Tauber M. Equivocal expression of emotions in children with Prader-Willi syndrome: what are the consequences for emotional abilities and social adjustment? Orphanet J Rare Dis 2020; 15:55. [PMID: 32085791 PMCID: PMC7035757 DOI: 10.1186/s13023-020-1333-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 02/07/2020] [Indexed: 11/25/2022] Open
Abstract
Background People with Prader-Willi Syndrome (PWS) experience great difficulties in social adaptation that could be explained by disturbances in emotional competencies. However, current knowledge about the emotional functioning of people with PWS is incomplete. In particular, despite being the foundation of social adaptation, their emotional expression abilities have never been investigated. In addition, motor and cognitive difficulties - characteristic of PWS - could further impair these abilities. Method To explore the expression abilities of children with PWS, twenty-five children with PWS aged 5 to 10 years were assessed for 1) their emotional facial reactions to a funny video-clip and 2) their ability to produce on demand the facial and bodily expressions of joy, anger, fear and sadness. Their productions were compared to those of two groups of children with typical development, matched to PWS children by chronological age and by developmental age. The analyses focused on the proportion of expressive patterns relating to the target emotion and to untargeted emotions in the children’s productions. Results The results showed that the facial and bodily emotional expressions of children with PWS were particularly difficult to interpret, involving a pronounced mixture of different emotional patterns. In addition, it was observed that the emotions produced on demand by PWS children were particularly poor and equivocal. Conclusions As far as we know, this study is the first to highlight the existence of particularities in the expression of emotions in PWS children. These results shed new light on emotional dysfunction in PWS and consequently on the adaptive abilities of those affected in daily life.
Collapse
Affiliation(s)
- Nawelle Famelart
- CLLE, University of Toulouse, CNRS, Toulouse, France. .,Université Toulouse Jean Jaurès, Maison de la Recherche, Laboratoire CLLE, 5, allée Antonio Machado, 31058, Toulouse Cedex 9, France.
| | - Gwenaelle Diene
- Centre de Référence du Syndrome de Prader-Willi, CHU Toulouse, Toulouse, France
| | | | - Mélanie Glattard
- Centre de Référence du Syndrome de Prader-Willi, CHU Toulouse, Toulouse, France
| | - Catherine Molinas
- Centre de Référence du Syndrome de Prader-Willi, CHU Toulouse, Toulouse, France
| | | | - Maithe Tauber
- Centre de Référence du Syndrome de Prader-Willi, CHU Toulouse, Toulouse, France.,CPTP, University of Toulouse, CNRS, INSERM, Toulouse, France
| |
Collapse
|
45
|
Salminen I, Read S, Hurd P, Crespi B. Does SNORD116 mediate aspects of psychosis in Prader-Willi syndrome? Evidence from a non-clinical population. Psychiatry Res 2020; 286:112858. [PMID: 32065983 DOI: 10.1016/j.psychres.2020.112858] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 12/27/2022]
Abstract
The paternally expressed gene SNORD116 encodes a set of short nucleolar RNAs that affect the expression of hundreds of other genes via epigenetic interactions. Lack of expression for SNORD116 has been implicated in major phenotypes of Prader-Willi Syndrome (PWS). Rates of psychosis and autism spectrum disorders are greatly increased in PWS, but the genetic and epigenetic causes of these increases remain unknown. We genotyped a large population of typical individuals for five SNPs within SNORD116 and phenotyped them for variation in schizotypal and autism spectrum traits. SNORD116 SNP and haplotype variation mediated variation exclusively in the Schizotypal Personality Questionnaire - Ideas of Reference subscale, which reflects variation in aspects of paranoia. The effect was restricted to females. SNORD116 represents, in addition to UBE3A and NDN-MAGEL2, a third, independent locus in the 15q11-q13 imprinted region that preferentially or exclusively affects levels of paranoia. This convergent pattern may reflect a common neural pathway affected by multiple genes, or an effect of interactions between the imprinted loci.
Collapse
Affiliation(s)
- Iiro Salminen
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada.
| | - Silven Read
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Pete Hurd
- Department of Psychology and Centre for Neuroscience, University of Alberta, Edmonton, Canada
| | - Bernard Crespi
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
46
|
Feighan SM, Hughes M, Maunder K, Roche E, Gallagher L. A profile of mental health and behaviour in Prader-Willi syndrome. JOURNAL OF INTELLECTUAL DISABILITY RESEARCH : JIDR 2020; 64:158-169. [PMID: 31849130 DOI: 10.1111/jir.12707] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/01/2019] [Accepted: 11/13/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Prader-Willi syndrome (PWS) is a neurogenetic syndrome with an associated behavioural phenotype and a high incidence of behaviours of concern and psychiatric co-morbidity. These associated behaviours and co-morbidities are not well addressed by existing interventions, and they impact significantly on affected individuals and their caregivers. METHODS We undertook a national survey of the needs of individuals with PWS and their families in Ireland. In this paper, we report on the parent/caregiver-reported mental health, behavioural and access to services. RESULTS Over 50% of individuals with PWS in this survey had at least one reported psychiatric diagnosis, the most common diagnosis was anxiety. The most commonly reported behaviours in children were skin picking, repetitive questioning, difficulty transitioning and non-compliance. The same four behaviours were reported by caregivers as being the most commonly occurring in adolescents and adults in addition to food-seeking behaviours. Increased needs for mental health services were also reported by caregivers. Individuals with PWS had an average wait of 22 months for an appointment with a psychologist and 4 months for an appointment with a psychiatrist. CONCLUSION This study highlighted high levels of psychiatric co-morbidities and behavioural concerns in individuals with PWS in Ireland. The findings of this study suggest that there is an urgent need to provide specialist psychiatric and behavioural interventions to manage complex mental health and behavioural needs to better support individuals with PWS and reduce caregiver burden.
Collapse
Affiliation(s)
- S-M Feighan
- Department of Psychiatry, Trinity College Dublin, Dublin, Ireland
| | - M Hughes
- Prader-Willi Syndrome Association of Ireland, Dublin, Ireland
| | - K Maunder
- Department of Psychiatry, Trinity College Dublin, Dublin, Ireland
| | - E Roche
- Department of Paediatrics, Trinity College Dublin, Dublin, Ireland
| | - L Gallagher
- Department of Psychiatry, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
47
|
Kong X, Zhu J, Tian R, Liu S, Sherman HT, Zhang X, Lin X, Han Y, Xiang Z, Koh M, Hobbie C, Wang B, Liu K, Liu J, Yin Y, Wan G. Early Screening and Risk Factors of Autism Spectrum Disorder in a Large Cohort of Chinese Patients With Prader-Willi Syndrome. Front Psychiatry 2020; 11:594934. [PMID: 33329146 PMCID: PMC7735061 DOI: 10.3389/fpsyt.2020.594934] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/02/2020] [Indexed: 11/13/2022] Open
Abstract
Previous studies regarding the prevalence of Autism Spectrum Disorder (ASD) in patients with Prader-Willi Syndrome (PWS) have implicated heterogenous findings. Additionally, the early screening of ASD high-risk population for ASD and identifying ASD risk factors in PWS patients have not been explored. This study included 218 Chinese PWS patients aged 3 months to 18 years old. 78% of subjects were identified as high risk for ASD by ASQ-3 Communication domain score for those younger than 3 years of age and 84% of subjects were classified as high risk for ASD by the GARS-3 for those aged 3 years and older. Among PWS clinical measurements, under-height (P = 0.0186), overweight (P = 0.0248), and obstructive sleep apnea (P = 0.0259) were each significantly correlated with ASD risk. These risk factors and their internal relationship with ASD or ASD traits warrant further studies.
Collapse
Affiliation(s)
- Xuejun Kong
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
| | - Junli Zhu
- Fisher College, Boston, MA, United States
| | - Ruiyi Tian
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
| | - Siyu Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
| | - Hannah T Sherman
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
| | | | - Xiaojing Lin
- Prader-Willi Syndrome Care and Support Center, Hangzhou, China
| | - Yan Han
- Institute of Dermatology and Hospital for Skin Disease, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, China
| | - Zhi Xiang
- Institute of Dermatology and Hospital for Skin Disease, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, China
| | - Madelyn Koh
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
| | | | - Bryan Wang
- Brandeis University, Waltham, MA, United States
| | - Kevin Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
| | - Jun Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
| | - Yueping Yin
- Institute of Dermatology and Hospital for Skin Disease, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, China
| | - Guobin Wan
- Shenzhen Maternity & Child Healthcare Hospital, Shenzhen, China
| |
Collapse
|
48
|
Missig G, McDougle CJ, Carlezon WA. Sleep as a translationally-relevant endpoint in studies of autism spectrum disorder (ASD). Neuropsychopharmacology 2020; 45:90-103. [PMID: 31060044 PMCID: PMC6879602 DOI: 10.1038/s41386-019-0409-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/16/2019] [Accepted: 04/19/2019] [Indexed: 02/07/2023]
Abstract
Sleep has numerous advantages for aligning clinical and preclinical (basic neuroscience) studies of neuropsychiatric illness. Sleep has high translational relevance, because the same endpoints can be studied in humans and laboratory animals. In addition, sleep experiments are conducive to continuous data collection over long periods (hours/days/weeks) and can be based on highly objective neurophysiological measures. Here, we provide a translationally-oriented review on what is currently known about sleep in the context of autism spectrum disorder (ASD), including ASD-related conditions, thought to have genetic, environmental, or mixed etiologies. In humans, ASD is frequently associated with comorbid medical conditions including sleep disorders. Animal models used in the study of ASD frequently recapitulate dysregulation of sleep and biological (diurnal, circadian) rhythms, suggesting common pathophysiologies across species. As our understanding of the neurobiology of ASD and sleep each become more refined, it is conceivable that sleep-derived metrics may offer more powerful biomarkers of altered neurophysiology in ASD than the behavioral tests currently used in humans or lab animals. As such, the study of sleep in animal models for ASD may enable fundamentally new insights on the condition and represent a basis for strategies that enable the development of more effective therapeutics.
Collapse
Affiliation(s)
- Galen Missig
- 0000 0000 8795 072Xgrid.240206.2Basic Neuroscience Division, Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA USA
| | - Christopher J. McDougle
- 0000 0004 0386 9924grid.32224.35Lurie Center for Autism, Massachusetts General Hospital, Lexington, MA USA ,000000041936754Xgrid.38142.3cDepartment of Psychiatry, Harvard Medical School, Boston, MA USA
| | - William A. Carlezon
- 0000 0000 8795 072Xgrid.240206.2Basic Neuroscience Division, Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA USA
| |
Collapse
|
49
|
Bohonowych J, Miller J, McCandless SE, Strong TV. The Global Prader-Willi Syndrome Registry: Development, Launch, and Early Demographics. Genes (Basel) 2019; 10:genes10090713. [PMID: 31540108 PMCID: PMC6770999 DOI: 10.3390/genes10090713] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/05/2019] [Accepted: 09/09/2019] [Indexed: 12/13/2022] Open
Abstract
Advances in technologies offer new opportunities to collect and integrate data from a broad range of sources to advance the understanding of rare diseases and support the development of new treatments. Prader–Willi syndrome (PWS) is a rare, complex neurodevelopmental disorder, which has a variable and incompletely understood natural history. PWS is characterized by early failure to thrive, followed by the onset of excessive appetite (hyperphagia). Additional characteristics include multiple endocrine abnormalities, hypotonia, hypogonadism, sleep disturbances, a challenging neurobehavioral phenotype, and cognitive disability. The Foundation for Prader–Willi Research’s Global PWS Registry is one of more than twenty-five registries developed to date through the National Organization of Rare Disorders (NORD) IAMRARE Registry Program. The Registry consists of surveys covering general medical history, system-specific clinical complications, diet, medication and supplement use, as well as behavior, mental health, and social information. Information is primarily parent/caregiver entered. The platform is flexible and allows addition of new surveys, including updatable and longitudinal surveys. Launched in 2015, the PWS Registry has enrolled 1696 participants from 37 countries, with 23,550 surveys completed. This resource can improve the understanding of PWS natural history and support medical product development for PWS.
Collapse
Affiliation(s)
| | - Jennifer Miller
- Department of Pediatrics, University of Florida School of Medicine, Gainesville, FL 32611, USA.
| | - Shawn E McCandless
- Section of Genetics and Metabolism, Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO, USA.
| | | |
Collapse
|
50
|
Mackay J, McCallum Z, Ambler GR, Vora K, Nixon G, Bergman P, Shields N, Milner K, Kapur N, Crock P, Caudri D, Curran J, Verge C, Seton C, Tai A, Tham E, Musthaffa Y, Lafferty AR, Blecher G, Harper J, Schofield C, Nielsen A, Wilson A, Leonard H, Choong CS, Downs J. Requirements for improving health and well-being of children with Prader-Willi syndrome and their families. J Paediatr Child Health 2019; 55:1029-1037. [PMID: 31257692 PMCID: PMC6852695 DOI: 10.1111/jpc.14546] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/15/2019] [Accepted: 06/02/2019] [Indexed: 12/16/2022]
Abstract
Prader-Willi syndrome (PWS) is a rare genetic condition with multi-system involvement. The literature was reviewed to describe neurodevelopment and the behavioural phenotype, endocrine and metabolic disorders and respiratory and sleep functioning. Implications for child and family quality of life were explored. Challenging behaviours contribute to poorer well-being and quality of life for both the child and caregiver. Recent evidence indicates healthy outcomes of weight and height can be achieved with growth hormone therapy and dietary restriction and should be the current target for all individuals with PWS. Gaps in the literature included therapies to manage challenging behaviours, as well as understanding the effects of growth hormone on respiratory and sleep function. New knowledge regarding the transition of children and families from schooling and paediatric health services to employment, accommodation and adult health services is also needed. Developing a national population-based registry could address these knowledge gaps and inform advocacy for support services that improve the well-being of individuals with PWS and their families.
Collapse
Affiliation(s)
- Jessica Mackay
- Telethon Kids Institute, Centre for Child Health ResearchUniversity of Western AustraliaPerthWestern AustraliaAustralia,School of MedicineUniversity of Western AustraliaPerthWestern AustraliaAustralia
| | - Zoe McCallum
- Department of Neurodevelopment and DisabilityRoyal Children's HospitalMelbourneVictoriaAustralia,Department of Gastroenterology and Clinical NutritionRoyal Children's HospitalMelbourneVictoriaAustralia
| | - Geoffrey R Ambler
- Institute of Endocrinology and DiabetesChildren's Hospital at WestmeadSydneyNew South WalesAustralia
| | - Komal Vora
- Department of Paediatric Endocrinology and DiabetesJohn Hunter Children's HospitalNewcastleNew South WalesAustralia
| | - Gillian Nixon
- Melbourne Children's Sleep CentreMonash Children's HospitalMelbourneVictoriaAustralia,The Ritchie CentreMelbourneVictoriaAustralia,Department of PaediatricsMonash UniversityMelbourneVictoriaAustralia
| | - Philip Bergman
- Department of PaediatricsMonash UniversityMelbourneVictoriaAustralia,Department of Paediatric Endocrinology and DiabetesMonash Children's HospitalMelbourneVictoriaAustralia
| | - Nora Shields
- School of Allied HealthLa Trobe UniversityMelbourneVictoriaAustralia
| | - Kate Milner
- Department of Neurodevelopment and DisabilityRoyal Children's HospitalMelbourneVictoriaAustralia,Centre for International Child HealthMurdoch Children's Research InstituteMelbourneVictoriaAustralia
| | - Nitin Kapur
- Respiratory and Sleep MedicineQueensland Children's HospitalBrisbaneQueenslandAustralia,School of Clinical MedicineUniversity of QueenslandBrisbaneQueenslandAustralia
| | - Patricia Crock
- Department of Paediatric Endocrinology and DiabetesJohn Hunter Children's HospitalNewcastleNew South WalesAustralia,Hunter Medical Research InstituteUniversity of NewcastleNewcastleNew South WalesAustralia
| | - Daan Caudri
- Telethon Kids Institute, Centre for Child Health ResearchUniversity of Western AustraliaPerthWestern AustraliaAustralia,Erasmus University Medical CenterRotterdamthe Netherlands
| | - Jaqueline Curran
- Department of EndocrinologyPerth Children's HospitalPerthWestern AustraliaAustralia
| | - Charles Verge
- Department of EndocrinologySydney Children's HospitalSydneyNew South WalesAustralia,School of Women's and Children's HealthUniversity of New South WalesSydneyNew South WalesAustralia
| | - Chris Seton
- Department of Sleep MedicineChildren's Hospital WestmeadSydneyNew South WalesAustralia,Woolcock Institute of Medical ResearchSydney UniversitySydneyNew South WalesAustralia
| | - Andrew Tai
- Respiratory and Sleep DepartmentWomen's and Children's HospitalAdelaideSouth AustraliaAustralia
| | - Elaine Tham
- Endrocrinology and Diabetes DepartmentWomen's and Children's HospitalAdelaideSouth AustraliaAustralia
| | - Yassmin Musthaffa
- Diamantina Institute, Faculty of MedicineUniversity of QueenslandBrisbaneQueenslandAustralia,Translational Research InstituteUniversity of QueenslandBrisbaneQueenslandAustralia
| | - Antony R Lafferty
- Department of Endocrinology and DiabetesCanberra HospitalCanberraAustralian Capital TerritoryAustralia,Medical SchoolAustralian National UniversityCanberraAustralian Capital TerritoryAustralia
| | - Greg Blecher
- Department of Sleep MedicineSydney Children's HospitalSydneyNew South WalesAustralia
| | - Jessica Harper
- Department of EndocrinologySydney Children's HospitalSydneyNew South WalesAustralia
| | - Cara Schofield
- Telethon Kids Institute, Centre for Child Health ResearchUniversity of Western AustraliaPerthWestern AustraliaAustralia
| | - Aleisha Nielsen
- Respiratory and Sleep MedicinePerth Children's HospitalPerthWestern AustraliaAustralia
| | - Andrew Wilson
- Telethon Kids Institute, Centre for Child Health ResearchUniversity of Western AustraliaPerthWestern AustraliaAustralia,Respiratory and Sleep MedicinePerth Children's HospitalPerthWestern AustraliaAustralia
| | - Helen Leonard
- Telethon Kids Institute, Centre for Child Health ResearchUniversity of Western AustraliaPerthWestern AustraliaAustralia
| | - Catherine S Choong
- Telethon Kids Institute, Centre for Child Health ResearchUniversity of Western AustraliaPerthWestern AustraliaAustralia,Department of EndocrinologyPerth Children's HospitalPerthWestern AustraliaAustralia
| | - Jenny Downs
- Telethon Kids Institute, Centre for Child Health ResearchUniversity of Western AustraliaPerthWestern AustraliaAustralia,School of Physiotherapy and Exercise ScienceCurtin UniversityPerthWestern AustraliaAustralia
| |
Collapse
|