1
|
Kim JH, Koh IG, Lee H, Lee GH, Song DY, Kim SW, Kim Y, Han JH, Bong G, Lee J, Byun H, Son JH, Kim YR, Lee Y, Kim JJ, Park JW, Kim IB, Choi JK, Jang JH, Trost B, Lee J, Kim E, Yoo HJ, An JY. Short tandem repeat expansions in cortical layer-specific genes implicate in phenotypic severity and adaptability of autism spectrum disorder. Psychiatry Clin Neurosci 2024; 78:405-415. [PMID: 38751214 PMCID: PMC11488627 DOI: 10.1111/pcn.13676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/14/2024] [Accepted: 04/15/2024] [Indexed: 07/06/2024]
Abstract
AIM Short tandem repeats (STRs) are repetitive DNA sequences and highly mutable in various human disorders. While the involvement of STRs in various genetic disorders has been extensively studied, their role in autism spectrum disorder (ASD) remains largely unexplored. In this study, we aimed to investigate genetic association of STR expansions with ASD using whole genome sequencing (WGS) and identify risk loci associated with ASD phenotypes. METHODS We analyzed WGS data of 634 ASD families and performed genome-wide evaluation for 12,929 STR loci. We found rare STR expansions that exceeded normal repeat lengths in autism cases compared to unaffected controls. By integrating single cell RNA and ATAC sequencing datasets of human postmortem brains, we prioritized STR loci in genes specifically expressed in cortical development stages. A deep learning method was used to predict functionality of ASD-associated STR loci. RESULTS In ASD cases, rare STR expansions predominantly occurred in early cortical layer-specific genes involved in neurodevelopment, highlighting the cellular specificity of STR-associated genes in ASD risk. Leveraging deep learning prediction models, we demonstrated that these STR expansions disrupted the regulatory activity of enhancers and promoters, suggesting a potential mechanism through which they contribute to ASD pathogenesis. We found that individuals with ASD-associated STR expansions exhibited more severe ASD phenotypes and diminished adaptability compared to non-carriers. CONCLUSION Short tandem repeat expansions in cortical layer-specific genes are associated with ASD and could potentially be a risk genetic factor for ASD. Our study is the first to show evidence of STR expansion associated with ASD in an under-investigated population.
Collapse
Affiliation(s)
- Jae Hyun Kim
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, Republic of Korea
- L-HOPE Program for Community-Based Total Learning Health Systems, Korea University, Seoul, Republic of Korea
| | - In Gyeong Koh
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, Republic of Korea
- L-HOPE Program for Community-Based Total Learning Health Systems, Korea University, Seoul, Republic of Korea
| | - Hyeji Lee
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, Republic of Korea
- L-HOPE Program for Community-Based Total Learning Health Systems, Korea University, Seoul, Republic of Korea
| | - Gang-Hee Lee
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, Republic of Korea
- L-HOPE Program for Community-Based Total Learning Health Systems, Korea University, Seoul, Republic of Korea
| | - Da-Yea Song
- Department of Psychiatry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Soo-Whee Kim
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, Republic of Korea
- L-HOPE Program for Community-Based Total Learning Health Systems, Korea University, Seoul, Republic of Korea
| | - Yujin Kim
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, Republic of Korea
- L-HOPE Program for Community-Based Total Learning Health Systems, Korea University, Seoul, Republic of Korea
| | - Jae Hyun Han
- Department of Psychiatry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Psychiatry, College of Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Republic of Korea
| | - Guiyoung Bong
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jeewon Lee
- Department of Psychiatry, Soonchunhyang University College of Medicine, Asan, Republic of Korea
| | - Heejung Byun
- Department of Neuropsychiatry, Seoul Metropolitan Children's Hospital, Seoul, Republic of Korea
| | - Ji Hyun Son
- Department of Neuropsychiatry, Seoul Metropolitan Children's Hospital, Seoul, Republic of Korea
| | - Ye Rim Kim
- Department of Psychiatry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yoojeong Lee
- Department of Psychiatry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Justine Jaewon Kim
- Department of Psychiatry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Jung Woo Park
- Center for Biomedical Computing, Division of National Supercomputing, Korea Institute of Science and Technology Information, Daejeon, Republic of Korea
| | - Il Bin Kim
- Department of Psychiatry, Hanyang University Guri Hospital, Guri, Republic of Korea
| | - Jung Kyoon Choi
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Ja-Hyun Jang
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Brett Trost
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Junehawk Lee
- Center for Biomedical Computing, Division of National Supercomputing, Korea Institute of Science and Technology Information, Daejeon, Republic of Korea
| | - Eunjoon Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, Republic of Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Hee Jeong Yoo
- Department of Psychiatry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Joon-Yong An
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, Republic of Korea
- L-HOPE Program for Community-Based Total Learning Health Systems, Korea University, Seoul, Republic of Korea
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Ferranti AS, Luessen DJ, Niswender CM. Novel pharmacological targets for GABAergic dysfunction in ADHD. Neuropharmacology 2024; 249:109897. [PMID: 38462041 PMCID: PMC11843668 DOI: 10.1016/j.neuropharm.2024.109897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
Attention deficit/hyperactivity disorder (ADHD) is a neurodevelopment disorder that affects approximately 5% of the population. The disorder is characterized by impulsivity, hyperactivity, and deficits in attention and cognition, although symptoms vary across patients due to the heterogenous and polygenic nature of the disorder. Stimulant medications are the standard of care treatment for ADHD patients, and their effectiveness has led to the dopaminergic hypothesis of ADHD in which deficits in dopaminergic signaling, especially in cortical brain regions, mechanistically underly ADHD pathophysiology. Despite their effectiveness in many individuals, almost one-third of patients do not respond to stimulant treatments and the long-term negative side effects of these medications remain unclear. Emerging clinical evidence is beginning to highlight an important role of dysregulated excitatory/inhibitory (E/I) balance in ADHD. These deficits in E/I balance are related to functional abnormalities in glutamate and Gamma-Aminobutyric Acid (GABA) signaling in the brain, with increasing emphasis placed on GABAergic interneurons driving specific aspects of ADHD pathophysiology. Recent genome-wide association studies (GWAS) have also highlighted how genes associated with GABA function are mutated in human populations with ADHD, resulting in the generation of several new genetic mouse models of ADHD. This review will discuss how GABAergic dysfunction underlies ADHD pathophysiology, and how specific receptors/proteins related to GABAergic interneuron dysfunction may be pharmacologically targeted to treat ADHD in subpopulations with specific comorbidities and symptom domains. This article is part of the Special Issue on "PFC circuit function in psychiatric disease and relevant models".
Collapse
Affiliation(s)
- Anthony S Ferranti
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA; Warren Center for Neuroscience Drug Discovery, Nashville, TN, 37232, USA
| | - Deborah J Luessen
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA; Warren Center for Neuroscience Drug Discovery, Nashville, TN, 37232, USA
| | - Colleen M Niswender
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA; Warren Center for Neuroscience Drug Discovery, Nashville, TN, 37232, USA; Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37232, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, 37232, USA.
| |
Collapse
|
3
|
Mansoor M, Katz B. Differential Effects of ADHD Polygenic Risk on Cognitive Performance in Later Life. J Atten Disord 2023; 27:1272-1283. [PMID: 37190750 DOI: 10.1177/10870547231172768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
OBJECTIVE Understanding the association between polygenic risk for ADHD and cognition throughout aging has not been widely studied. This study aimed to determine whether ADHD risk influences cognitive performance among individuals at both young-old and middle-old age. METHOD Participants from the Health and Retirement Study, a biennial survey of 20,000 Americans, were compared on executive function and delayed recall measures using regression analyses. RESULTS There was no significant effect of ADHD risk on memory at both age waves for African-ancestry (AA; n = 403) and European-ancestry (EA; n = 2,286). There was, however, a significant association between ADHD risk and performance on executive function for EA at middle-old age (p = .028), but not young-old age; no such association was observed for AA adults. CONCLUSION This finding suggests that ADHD risk may differentially influence cognition among older adults throughout the aging process, with important implications for future research.
Collapse
|
4
|
Genetic association study between Astrotactin-2 (ASTN2) rs10817999 gene polymorphism and attention deficit hyperactivity disorder in Korean children. GENE REPORTS 2023. [DOI: 10.1016/j.genrep.2023.101751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
5
|
Carvalho GFDS, Costa TVMM, Nascimento AM, Wolff BM, Damasceno JG, Vieira LL, Almeida VT, Oliveira YGD, Mello CBD, Muszkat M, Kulikowski LD. DNA methylation epi-signature and biological age in attention deficit hyperactivity disorder patients. Clin Neurol Neurosurg 2023; 228:107714. [PMID: 37054476 DOI: 10.1016/j.clineuro.2023.107714] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 04/15/2023]
Abstract
OBJECTIVE Attention Deficit/Hyperactivity Disorder (ADHD) is a common behavioral syndrome that begins in childhood and affects 3.4% of children worldwide. Due to its etiological complexity, there are no consistent biomarkers for ADHD, however the high heritability presented by the disorder indicates a genetic/epigenetic influence. The main epigenetic mechanism is DNA methylation, a process with an important role in gene expression and in many psychiatric disorders. Thus, our study sought to identify epi-signatures biomarkers in 29 children clinically diagnosed with ADHD. METHODS After DNA extraction and bisulfite conversion, we performed methylation array experiment for differential methylation, ontological and biological age analysis. RESULTS The biological response in ADHD patients was not sufficient to determine a conclusive epi-signature in our study. However, our results highlighted the interaction of energy metabolism and oxidative stress pathways in ADHD patients detected by differential methylation patterns. Furthermore, we were able to identify a marginal association between the DNAmAge and ADHD. CONCLUSION Our study present new methylation biomarkers findings associated with energy metabolism and oxidative stress pathways, in addition to DNAmAge in ADHD patients. However, we propose that further multiethnic studies, with larger cohorts and including maternal conditions, are necessary to demonstrate a definitive association between ADHD and these methylation biomarkers.
Collapse
Affiliation(s)
| | | | - Amom Mendes Nascimento
- Laboratorio de Citogenomica, Departamento de Patologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Beatriz Martins Wolff
- Laboratorio de Citogenomica, Departamento de Patologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Julian Gabriel Damasceno
- Laboratorio de Citogenomica, Departamento de Patologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Lucas Liro Vieira
- Laboratorio de Citogenomica, Departamento de Patologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Vanessa Tavares Almeida
- Laboratorio de Citogenomica, Departamento de Patologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Yanca Gasparini de Oliveira
- Laboratorio de Citogenomica, Departamento de Patologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Claudia Berlim de Mello
- Nucleo de Atendimento Neuropsicologico Infantil Interdisciplinar (NANI), Centro Paulista de Neuropsicologia, Departamento de Psicobiologia da Universidade Federal de São Paulo - UNIFESP, São Paulo, Brazil
| | - Mauro Muszkat
- Nucleo de Atendimento Neuropsicologico Infantil Interdisciplinar (NANI), Centro Paulista de Neuropsicologia, Departamento de Psicobiologia da Universidade Federal de São Paulo - UNIFESP, São Paulo, Brazil
| | - Leslie Domenici Kulikowski
- Laboratorio de Citogenomica, Departamento de Patologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| |
Collapse
|
6
|
Zhou A, Cao X, Mahaganapathy V, Azaro M, Gwin C, Wilson S, Buyske S, Bartlett CW, Flax JF, Brzustowicz LM, Xing J. Common genetic risk factors in ASD and ADHD co-occurring families. Hum Genet 2023; 142:217-230. [PMID: 36251081 PMCID: PMC10177627 DOI: 10.1007/s00439-022-02496-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/10/2022] [Indexed: 12/01/2022]
Abstract
Autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD) are two major neurodevelopmental disorders that frequently co-occur. However, the genetic mechanism of the co-occurrence remains unclear. The New Jersey Language and Autism Genetics Study (NJLAGS) collected more than 100 families with at least one member affected by ASD. NJLAGS families show a high prevalence of ADHD and provide a good opportunity to study shared genetic risk factors for ASD and ADHD. The linkage study of the NJLAGS families revealed regions on chromosomes 12 and 17 that are significantly associated with ADHD. Using whole-genome sequencing data on 272 samples from 73 NJLAGS families, we identified potential risk genes for ASD and ADHD. Within the linkage regions, we identified 36 genes that are associated with ADHD using a pedigree-based gene prioritization approach. KDM6B (Lysine Demethylase 6B) is the highest-ranking gene, which is a known risk gene for neurodevelopmental disorders, including ASD and ADHD. At the whole-genome level, we identified 207 candidate genes from the analysis of both small variants and structure variants, including both known and novel genes. Using enrichment and protein-protein interaction network analyses, we identified gene ontology terms and pathways enriched for ASD and ADHD candidate genes, such as cilia function and cation channel activity. Candidate genes and pathways identified in our study improve the understanding of the genetic etiology of ASD and ADHD and will lead to new diagnostic or therapeutic interventions for ASD and ADHD in the future.
Collapse
Affiliation(s)
- Anbo Zhou
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Xiaolong Cao
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | | | - Marco Azaro
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Christine Gwin
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Sherri Wilson
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Steven Buyske
- Department of Statistics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Christopher W Bartlett
- The Steve Cindy Rasmussen Institute for Genomic Medicine, Battelle Center for Computational Biology, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.,Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Judy F Flax
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Linda M Brzustowicz
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,The Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, 145 Bevier Road, Piscataway, NJ, 08854, USA
| | - Jinchuan Xing
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA. .,The Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, 145 Bevier Road, Piscataway, NJ, 08854, USA.
| |
Collapse
|
7
|
Chatterjee M, Saha S, Sinha S, Mukhopadhyay K. A three-pronged analysis confirms the association of the serotoninergic system with attention deficit hyperactivity disorder. World J Pediatr 2022; 18:825-834. [PMID: 36123504 DOI: 10.1007/s12519-022-00614-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/21/2022] [Indexed: 10/14/2022]
Abstract
BACKGROUND The serotonin transporter (SERT), encoded by the solute carrier family 6 number 4 (SLC6A4) gene, controls serotonin (5-HT) availability and is essential for the regulation of behavioral traits. Two SLC6A4 genetic variants, 5-HTTLPR and STin2, were widely investigated in patients with various neurobehavioral disorders, including attention deficit hyperactivity disorder (ADHD). METHODS We analyzed the association of the 5-HTTLPR (L/S) and STin2 (10/12) variants, plasma 5-HT, and 5-hydroxyindole acetic acid (5-HIAA), as well as SERT messenger RNA (mRNA) with ADHD in the eastern Indian subjects. Nuclear families with ADHD probands (n = 274) and ethnically matched controls (n = 367) were recruited following the Diagnostic and Statistical Manual of Mental Disorders. Behavioral traits, executive function, and intelligence quotient (IQ) of the probands were assessed using the Conner's Parent Rating Scale - Revised, Parental Account of Children's Symptoms (PACS), Barkley Deficit in Executive Functioning-Child and Adolescent Scale, and Wechsler Intelligence Scale for Children-III, respectively. After obtaining informed written consent, peripheral blood was collected to analyze genetic variants, plasma 5-HT, 5-HIAA, and SERT mRNA expression. RESULTS ADHD probands showed a higher frequency of the 5-HTTLPR "L" allele and "L/L" genotype (P < 0.05), lower 5-HIAA level, and higher SERT mRNA expression. Scores for behavioral problems and hyperactivity were higher in the presence of the "S" allele and "S/S" genotype, while executive deficit was higher in the presence of the "L" allele. IQ score was lower in the presence of the STin2 "12" allele and L-12 haplotype. CONCLUSION Data obtained indicate a significant association of the serotoninergic system with ADHD, warranting further in-depth investigation.
Collapse
Affiliation(s)
- Mahasweta Chatterjee
- Manovikas Biomedical Research and Diagnostic Centre, Manovikas Kendra, 482 Madudah, Plot I-24, Sector J, EM Bypass, Kolkata, West Bengal, 700107, India
| | - Sharmistha Saha
- Manovikas Biomedical Research and Diagnostic Centre, Manovikas Kendra, 482 Madudah, Plot I-24, Sector J, EM Bypass, Kolkata, West Bengal, 700107, India
| | - Swagata Sinha
- Manovikas Biomedical Research and Diagnostic Centre, Manovikas Kendra, 482 Madudah, Plot I-24, Sector J, EM Bypass, Kolkata, West Bengal, 700107, India
| | - Kanchan Mukhopadhyay
- Manovikas Biomedical Research and Diagnostic Centre, Manovikas Kendra, 482 Madudah, Plot I-24, Sector J, EM Bypass, Kolkata, West Bengal, 700107, India.
| |
Collapse
|
8
|
Hohmann S, Häge A, Millenet S, Banaschewski T. [The Genetic Basis of ADHD - An Update]. ZEITSCHRIFT FUR KINDER-UND JUGENDPSYCHIATRIE UND PSYCHOTHERAPIE 2022; 50:203-217. [PMID: 35514173 DOI: 10.1024/1422-4917/a000868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The Genetic Basis of ADHD - An Update Abstract. Genetic risks play an important role in the etiology of attention-deficit/hyperactivity disorder (ADHD). This review presents the current state of knowledge concerning the genetic basis of the disorder. It discusses the results of twin- and family-based studies, linkage and association studies as well as recent findings resulting from Genome Wide Association Studies (GWAS). Furthermore, it elaborates on the relevance of polygenic risk scores, rare variants, and epigenetic alterations, especially in light of findings on genetic pleiotropy in the context of frequent psychiatric comorbidities in patients with ADHD.
Collapse
Affiliation(s)
- Sarah Hohmann
- Klinik für Psychiatrie und Psychotherapie des Kindes- und Jugendalters, Zentralinstitut für Seelische Gesundheit, Medizinische Fakultät Mannheim der Universität Heidelberg, Mannheim, Deutschland
| | - Alexander Häge
- Klinik für Psychiatrie und Psychotherapie des Kindes- und Jugendalters, Zentralinstitut für Seelische Gesundheit, Medizinische Fakultät Mannheim der Universität Heidelberg, Mannheim, Deutschland
| | - Sabina Millenet
- Klinik für Psychiatrie und Psychotherapie des Kindes- und Jugendalters, Zentralinstitut für Seelische Gesundheit, Medizinische Fakultät Mannheim der Universität Heidelberg, Mannheim, Deutschland
| | - Tobias Banaschewski
- Klinik für Psychiatrie und Psychotherapie des Kindes- und Jugendalters, Zentralinstitut für Seelische Gesundheit, Medizinische Fakultät Mannheim der Universität Heidelberg, Mannheim, Deutschland
| |
Collapse
|
9
|
A Common CDH13 Variant Is Associated with Low Agreeableness and Neural Responses to Working Memory Tasks in ADHD. Genes (Basel) 2021; 12:genes12091356. [PMID: 34573337 PMCID: PMC8471784 DOI: 10.3390/genes12091356] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 11/17/2022] Open
Abstract
The cell—cell signaling gene CDH13 is associated with a wide spectrum of neuropsychiatric disorders, including attention-deficit/hyperactivity disorder (ADHD), autism, and major depression. CDH13 regulates axonal outgrowth and synapse formation, substantiating its relevance for neurodevelopmental processes. Several studies support the influence of CDH13 on personality traits, behavior, and executive functions. However, evidence for functional effects of common gene variation in the CDH13 gene in humans is sparse. Therefore, we tested for association of a functional intronic CDH13 SNP rs2199430 with ADHD in a sample of 998 adult patients and 884 healthy controls. The Big Five personality traits were assessed by the NEO-PI-R questionnaire. Assuming that altered neural correlates of working memory and cognitive response inhibition show genotype-dependent alterations, task performance and electroencephalographic event-related potentials were measured by n-back and continuous performance (Go/NoGo) tasks. The rs2199430 genotype was not associated with adult ADHD on the categorical diagnosis level. However, rs2199430 was significantly associated with agreeableness, with minor G allele homozygotes scoring lower than A allele carriers. Whereas task performance was not affected by genotype, a significant heterosis effect limited to the ADHD group was identified for the n-back task. Heterozygotes (AG) exhibited significantly higher N200 amplitudes during both the 1-back and 2-back condition in the central electrode position Cz. Consequently, the common genetic variation of CDH13 is associated with personality traits and impacts neural processing during working memory tasks. Thus, CDH13 might contribute to symptomatic core dysfunctions of social and cognitive impairment in ADHD.
Collapse
|
10
|
Genetic variations influence brain changes in patients with attention-deficit hyperactivity disorder. Transl Psychiatry 2021; 11:349. [PMID: 34091591 PMCID: PMC8179928 DOI: 10.1038/s41398-021-01473-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 05/04/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022] Open
Abstract
Attention-deficit hyperactivity disorder (ADHD) is a neurological and neurodevelopmental childhood-onset disorder characterized by a persistent pattern of inattentiveness, impulsiveness, restlessness, and hyperactivity. These symptoms may continue in 55-66% of cases from childhood into adulthood. Even though the precise etiology of ADHD is not fully understood, it is considered as a multifactorial and heterogeneous disorder with several contributing factors such as heritability, auxiliary to neurodevelopmental issues, severe brain injuries, neuroinflammation, consanguineous marriages, premature birth, and exposure to environmental toxins. Neuroimaging and neurodevelopmental assessments may help to explore the possible role of genetic variations on ADHD neuropsychobiology. Multiple genetic studies have observed a strong genetic association with various aspects of neuropsychobiological functions, including neural abnormalities and delayed neurodevelopment in ADHD. The advancement in neuroimaging and molecular genomics offers the opportunity to analyze the impact of genetic variations alongside its dysregulated pathways on structural and functional derived brain imaging phenotypes in various neurological and psychiatric disorders, including ADHD. Recently, neuroimaging genomic studies observed a significant association of brain imaging phenotypes with genetic susceptibility in ADHD. Integrating the neuroimaging-derived phenotypes with genomics deciphers various neurobiological pathways that can be leveraged for the development of novel clinical biomarkers, new treatment modalities as well as therapeutic interventions for ADHD patients. In this review, we discuss the neurobiology of ADHD with particular emphasis on structural and functional changes in the ADHD brain and their interactions with complex genomic variations utilizing imaging genetics methodologies. We also highlight the genetic variants supposedly allied with the development of ADHD and how these, in turn, may affect the brain circuit function and related behaviors. In addition to reviewing imaging genetic studies, we also examine the need for complementary approaches at various levels of biological complexity and emphasize the importance of combining and integrating results to explore biological pathways involved in ADHD disorder. These approaches include animal models, computational biology, bioinformatics analyses, and multimodal imaging genetics studies.
Collapse
|
11
|
Aldaz CM, Hussain T. WWOX Loss of Function in Neurodevelopmental and Neurodegenerative Disorders. Int J Mol Sci 2020; 21:E8922. [PMID: 33255508 PMCID: PMC7727818 DOI: 10.3390/ijms21238922] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 01/13/2023] Open
Abstract
The WWOX gene was initially discovered as a putative tumor suppressor. More recently, its association with multiple central nervous system (CNS) pathologies has been recognized. WWOX biallelic germline pathogenic variants have been implicated in spinocerebellar ataxia type 12 (SCAR12; MIM:614322) and in early infantile epileptic encephalopathy (EIEE28; MIM:616211). WWOX germline copy number variants have also been associated with autism spectrum disorder (ASD). All identified germline genomic variants lead to partial or complete loss of WWOX function. Importantly, large-scale genome-wide association studies have also identified WWOX as a risk gene for common neurodegenerative conditions such as Alzheimer's disease (AD) and multiple sclerosis (MS). Thus, the spectrum of CNS disorders associated with WWOX is broad and heterogeneous, and there is little understanding of potential mechanisms at play. Exploration of gene expression databases indicates that WWOX expression is comparatively higher in the human cerebellar cortex than in other CNS structures. However, RNA in-situ hybridization data from the Allen Mouse Brain Atlas show that specific regions of the basolateral amygdala (BLA), the medial entorhinal cortex (EC), and deep layers of the isocortex can be singled out as brain regions with specific higher levels of Wwox expression. These observations are in close agreement with single-cell RNA-seq data which indicate that neurons from the medial entorhinal cortex, Layer 5 from the frontal cortex as well as GABAergic basket cells and granule cells from cerebellar cortex are the specific neuronal subtypes that display the highest Wwox expression levels. Importantly, the brain regions and cell types in which WWOX is most abundantly expressed, such as the EC and BLA, are intimately linked to pathologies and syndromic conditions in turn associated with this gene, such as epilepsy, intellectual disability, ASD, and AD. Higher Wwox expression in interneurons and granule cells from cerebellum points to a direct link to the described cerebellar ataxia in cases of WWOX loss of function. We now know that total or partial impairment of WWOX function results in a wide and heterogeneous variety of neurodegenerative conditions for which the specific molecular mechanisms remain to be deciphered. Nevertheless, these observations indicate an important functional role for WWOX in normal development and function of the CNS. Evidence also indicates that disruption of WWOX expression at the gene or protein level in CNS has significant deleterious consequences.
Collapse
Affiliation(s)
- C. Marcelo Aldaz
- Department of Epigenetics and Molecular Carcinogenesis, Science Park, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA;
| | | |
Collapse
|
12
|
Harich B, Klein M, Ockeloen CW, van der Voet M, Schimmel‐Naber M, de Leeuw N, Schenck A, Franke B. From man to fly - convergent evidence links FBXO25 to ADHD and comorbid psychiatric phenotypes. J Child Psychol Psychiatry 2020; 61:545-555. [PMID: 31849056 PMCID: PMC7217029 DOI: 10.1111/jcpp.13161] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/18/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Mental disorders, including Attention-Deficit/Hyperactivity Disorder (ADHD), have a complex etiology, and identification of underlying genetic risk factors is challenging. This study used a multistep approach to identify and validate a novel risk gene for ADHD and psychiatric comorbidity. METHODS In a single family, severely affected by ADHD and cooccurring disorders, we applied single nucleotide polymorphism (SNP)-array analysis to detect copy-number variations (CNVs) linked to disease. Genes present in the identified CNV were subsequently tested for their association with ADHD in the largest data set currently available (n = 55,374); this gene-set and gene-based association analyses were based on common genetic variants. Significant findings were taken forward for functional validation using Drosophila melanogaster as biological model system, altering gene expression using the GAL4-UAS system and a pan-neuronal driver, and subsequently characterizing locomotor activity and sleep as functional readouts. RESULTS We identified a copy number gain in 8p23.3, which segregated with psychiatric phenotypes in the family and was confirmed by quantitative RT-PCR. Common genetic variants in this locus were associated with ADHD, especially those in FBXO25 and TDRP. Overexpression of the FBXO25 orthologue in two Drosophila models consistently led to increased locomotor activity and reduced sleep compared with the genetic background control. CONCLUSIONS We combine ADHD risk gene identification in an individual family with genetic association testing in a large case-control data set and functional validation in a model system, together providing an important illustration of an integrative approach suggesting that FBXO25 contributes to key features of ADHD and comorbid neuropsychiatric disorders.
Collapse
Affiliation(s)
- Benjamin Harich
- Department of Human GeneticsDonders Institute for BrainCognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
| | - Marieke Klein
- Department of Human GeneticsDonders Institute for BrainCognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
- Department of PsychiatryUMC Utrecht Brain CenterUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Charlotte W. Ockeloen
- Department of Human GeneticsDonders Institute for BrainCognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
| | - Monique van der Voet
- Department of Human GeneticsDonders Institute for BrainCognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
| | - Marlies Schimmel‐Naber
- Department of Human GeneticsDonders Institute for BrainCognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
| | - Nicole de Leeuw
- Department of Human GeneticsDonders Institute for BrainCognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
| | - Annette Schenck
- Department of Human GeneticsDonders Institute for BrainCognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
| | - Barbara Franke
- Department of Human GeneticsDonders Institute for BrainCognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
- Department of PsychiatryDonders Institute for BrainCognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
| |
Collapse
|
13
|
Willcutt EG. Behavior and Molecular Genetic Approaches to Comorbidity. CURRENT DEVELOPMENTAL DISORDERS REPORTS 2020; 6:31-36. [PMID: 32042548 DOI: 10.1007/s40474-019-00162-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Purpose of Review This review provides an overview of studies that used behavioral genetic methods to understand the genetic and environmental influences that lead to comorbidity, the co-occurrence of two or more developmental disorders in the same individual. Recent Findings Comorbidity is primarily explained by shared genetic influences for most pairs of disorders that have been studied, including attention deficit hyperactivity disorder (ADHD) and learning disabilities, conduct disorder and ADHD, anxiety and depression, and anxiety and autism spectrum disorder (ASD). Molecular genetic studies indicate that the etiologies of developmental disorders are highly multifactorial, with dozens or even hundreds of genes acting in combination with environmental risk factors to lead to each individual disorder and the extensive comorbidity between disorders. Due to this complexity, current state-of-the-art studies are now combining molecular genetic data from multiple large samples to begin to achieve adequate statistical power to identify the specific genetic polymorphisms that lead to comorbidity. Summary An extensive literature demonstrates the pervasiveness and potential importance of comorbidity between developmental disorders, and results of family, twin, and molecular genetic studies indicate that these comorbidities may be largely explained by shared genetic influences. Additional studies are ongoing to identify the specific genetic polymorphisms that increase risk for each developmental disorder and comorbidity between disorders.
Collapse
Affiliation(s)
- Erik G Willcutt
- University of Colorado Boulder, Professor of Psychology and Neuroscience, Director, Eunice Kennedy Shriver NICHD Colorado Learning Disabilities Research Center, Director of Clinical Training, Faculty Fellow, Institute for Behavior Genetics, Faculty, Center for Neuroscience, Department of Psychology and Neuroscience, 345 UCB, University of Colorado Boulder, Boulder, CO 80309
| |
Collapse
|
14
|
Identification of ADHD risk genes in extended pedigrees by combining linkage analysis and whole-exome sequencing. Mol Psychiatry 2020; 25:2047-2057. [PMID: 30116028 PMCID: PMC7473839 DOI: 10.1038/s41380-018-0210-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 05/01/2018] [Accepted: 06/18/2018] [Indexed: 12/23/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a common neurodevelopmental disorder with a complex genetic background, hampering identification of underlying genetic risk factors. We hypothesized that combining linkage analysis and whole-exome sequencing (WES) in multi-generation pedigrees with multiple affected individuals can point toward novel ADHD genes. Three families with multiple ADHD-affected members (Ntotal = 70) and apparent dominant inheritance pattern were included in this study. Genotyping was performed in 37 family members, and WES was additionally carried out in 10 of those. Linkage analysis was performed using multi-point analysis in Superlink Online SNP 1.1. From prioritized linkage regions with a LOD score ≥ 2, a total of 24 genes harboring rare variants were selected. Those genes were taken forward and were jointly analyzed in gene-set analyses of exome-chip data using the MAGMA software in an independent sample of patients with persistent ADHD and healthy controls (N = 9365). The gene-set including all 24 genes together, and particularly the gene-set from one of the three families (12 genes), were significantly associated with persistent ADHD in this sample. Among the latter, gene-wide analysis for the AAED1 gene reached significance. A rare variant (rs151326868) within AAED1 segregated with ADHD in one of the families. The analytic strategy followed here is an effective approach for identifying novel ADHD risk genes. Additionally, this study suggests that both rare and more frequent variants in multiple genes act together in contributing to ADHD risk, even in individual multi-case families.
Collapse
|
15
|
Bahn GH, Lee YS, Yoo HK, Kim EJ, Park S, Han DH, Hong M, Kim B, Lee SI, Bhang SY, Lee SY, Hong JP, Joung YS. Development of the Korean Practice Parameter for Adult Attention-Deficit/Hyperactivity Disorder. Soa Chongsonyon Chongsin Uihak 2020; 31:5-25. [PMID: 32612409 PMCID: PMC7324844 DOI: 10.5765/jkacap.190030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVES Adult attention-deficit/hyperactivity disorder (ADHD) is an important mental health problem that needs resolution, especially considering the high rates of ADHD continuation from childhood to adolescence/adulthood and the high prevalence of ADHD in adults. Adults with ADHD have lifelong negative impacts and require close monitoring with long-term follow-up. Hence, the establishment of a Korean practice parameter for adult ADHD is necessary to minimize discontinuation of treatment and enable information sharing among Korean mental health professionals. METHODS The Korean practice parameter was developed using an evidence-based approach consisting of expert consensus survey coupled with literature review. RESULTS According to the expert consensus survey, the most commonly used diagnostic methods were clinical psychiatric interview (20.66%) and self-report scales (19.25%) followed by attention (14.71%) and psychological tests (14.24%). Key evaluation instruments currently available in Korea are the World Health Organization Adult ADHD Self-Report Rating Scale, Korean Adult ADHD Rating Scale, Diagnostic Interview for ADHD in Adults, Barkley Deficits in Executive Functioning Scale for adults, Comprehensive Attention Test, Conners' Continuous Performance Test, and the subtests of Wechsler Adult Intelligence Scale, Digit Span and Letter-Number Sequencing. Although pharmacotherapy is recommended as the first-line of treatment for adult ADHD, we recommend that it be followed by a multimodal and multidisciplinary approach including psychoeducation, pharmacotherapy, cognitive behavior therapy and coaching. CONCLUSION The Korean practice parameter introduces not only general information for the diagnosis and treatment of adult ADHD on a global scale, but also the process of diagnosis and treatment options tailored to the Korean population.
Collapse
Affiliation(s)
- Geon Ho Bahn
- Department of Psychiatry, Kyung Hee University School of Medicine, Seoul, Korea
| | - Young Sik Lee
- Department of Psychiatry, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Korea
| | | | - Eui-Jung Kim
- Department of Psychiatry, College of Medicine, Ewha Womans University, Seoul, Korea
| | - Subin Park
- Department of Research Planning, Mental Health Research Institute, National Center for Mental Health, Seoul, Korea
| | - Doug Hyun Han
- Department of Psychiatry, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Korea
| | - Minha Hong
- Department of Psychiatry, Myongji Hospital, Hanyang University College of Medicine, Seoul, Korea
| | - Bongseog Kim
- Department of Psychiatry, Inje University College of Medicine, Seoul, Korea
| | - Soyoung Irene Lee
- Department of Psychiatry, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Buchun, Korea
| | - Soo Young Bhang
- Department of Psychiatry, Eulji University School of Medicine, Seoul, Korea
| | - Seung Yup Lee
- Department of Psychiatry, Kyung Hee University School of Medicine, Seoul, Korea
| | - Jin Pyo Hong
- Department of Psychiatry, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yoo-Sook Joung
- Department of Psychiatry, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
16
|
Abstract
Many authors have contributed to the description of attention deficit/hyperactivity disorder (ADHD) for the two last centuries. In this chapter, we review the current diagnostic criteria, epidemiology, and history of ADHD. The different phenotypes (predominantly inattentive, predominantly hyperactive/impulsive, or combined) and diagnostic process are detailed. The DSM-5 includes the three phenotypes that begin before age 12, are present in at least two settings, and cannot be explained by another condition. Theoretical underpinnings and biological and environmental etiologies reported in the latest literature are discussed. There are many comorbidities associated with ADHD, which are associated with an increase in the negative impact on everyday life. Treatment decisions involve a complex interaction between child's age, symptom severity levels, comorbidities, functional impairments, and parents' preferences. Medication (psychostimulant and nonstimulant) and psychosocial (mainly behavioral parent training) treatments as well as school-based interventions are described.
Collapse
Affiliation(s)
- Kevin M Antshel
- Department of Psychology, Syracuse University, Syracuse, NY, United States.
| | - Russell Barkley
- Department of Psychiatry, Virginia Commonwealth University Medical Center, Richmond, VA, United States
| |
Collapse
|
17
|
Huang X, Wang M, Zhang Q, Chen X, Wu J. The role of glutamate receptors in attention-deficit/hyperactivity disorder: From physiology to disease. Am J Med Genet B Neuropsychiatr Genet 2019; 180:272-286. [PMID: 30953404 DOI: 10.1002/ajmg.b.32726] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/12/2019] [Accepted: 03/19/2019] [Indexed: 12/15/2022]
Abstract
Attention-deficit hyperactivity disorder (ADHD) is the most common psychiatric disorder in children and adolescents, which is characterized by behavioral problems such as attention deficit, hyperactivity, and impulsivity. As the receptors of the major excitatory neurotransmitter in the mammalian central nervous system (CNS), glutamate receptors (GluRs) are strongly linked to normal brain functioning and pathological processes. Extensive investigations have been made about the structure, function, and regulation of GluR family, describing evidences that support the disruption of these mechanisms in mental disorders, including ADHD. In this review, we briefly described the family and function of GluRs in the CNS, and discussed what is recently known about the role of GluRs in ADHD, that including GluR genes, animal models, and the treatment, which would help us further elucidate the etiology of ADHD.
Collapse
Affiliation(s)
- Xin Huang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Zhang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinzhen Chen
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Wu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
18
|
Genetic risk factors and gene–environment interactions in adult and childhood attention-deficit/hyperactivity disorder. Psychiatr Genet 2019; 29:63-78. [DOI: 10.1097/ypg.0000000000000220] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
19
|
Faraone SV, Larsson H. Genetics of attention deficit hyperactivity disorder. Mol Psychiatry 2019; 24:562-575. [PMID: 29892054 PMCID: PMC6477889 DOI: 10.1038/s41380-018-0070-0] [Citation(s) in RCA: 536] [Impact Index Per Article: 89.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 01/31/2018] [Accepted: 02/19/2018] [Indexed: 02/07/2023]
Abstract
Decades of research show that genes play an vital role in the etiology of attention deficit hyperactivity disorder (ADHD) and its comorbidity with other disorders. Family, twin, and adoption studies show that ADHD runs in families. ADHD's high heritability of 74% motivated the search for ADHD susceptibility genes. Genetic linkage studies show that the effects of DNA risk variants on ADHD must, individually, be very small. Genome-wide association studies (GWAS) have implicated several genetic loci at the genome-wide level of statistical significance. These studies also show that about a third of ADHD's heritability is due to a polygenic component comprising many common variants each having small effects. From studies of copy number variants we have also learned that the rare insertions or deletions account for part of ADHD's heritability. These findings have implicated new biological pathways that may eventually have implications for treatment development.
Collapse
Affiliation(s)
- Stephen V Faraone
- Departments of Psychiatry and of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
| | - Henrik Larsson
- School of Medical Sciences, Örebro University, Örebro, Sweden
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
20
|
Abstract
Thyroid hormone plays a pivotal role in the developing brain and may affect the development of attention deficit hyperactivity disorder (ADHD). This study aimed to examine the role of maternal thyroid function during pregnancy on offspring ADHD. A total of 2912 mother-child pairs were included from the Avon Longitudinal Study of Parents and Children. Thyroid parameters were assessed during the first trimester of pregnancy. Offspring ADHD was assessed using the Development and Well-Being Assessment at the ages of 7.5 and 15 years. The odds of presenting with ADHD were estimated using generalized estimating equations. Levels of thyroid-stimulating hormone (odds ratio [OR], 0.92; 95% confidence interval [CI], 0.48-1.75), free thyroxine (OR, 1.07; 95% CI, 0.87-1.32), and thyroid peroxidase antibodies (OR, 1.00; 95% CI, 0.80-1.25) were not associated with ADHD in children aged 7.5 and 15 years. This study showed no association between maternal thyroid function and offspring ADHD.
Collapse
|
21
|
Schäfer N, Friedrich M, Jørgensen ME, Kollert S, Koepsell H, Wischmeyer E, Lesch KP, Geiger D, Döring F. Functional analysis of a triplet deletion in the gene encoding the sodium glucose transporter 3, a potential risk factor for ADHD. PLoS One 2018; 13:e0205109. [PMID: 30286162 PMCID: PMC6171906 DOI: 10.1371/journal.pone.0205109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 09/19/2018] [Indexed: 12/19/2022] Open
Abstract
Sodium-glucose transporters (SGLT) belong to the solute carrier 5 family, which is characterized by sodium dependent transport of sugars and other solutes. In contrast, the human SGLT3 (hSGLT3) isoform, encoded by SLC5A4, acts as a glucose sensor that does not transport sugar but induces membrane depolarization by Na+ currents upon ligand binding. Whole-exome sequencing (WES) of several extended pedigrees with high density of attention-deficit/hyperactivity disorder (ADHD) identified a triplet ATG deletion in SLC5A4 leading to a single amino acid loss (ΔM500) in the hSGLT3 protein imperfectly co-segregating with the clinical phenotype of ADHD. Since mutations in homologous domains of hSGLT1 and hSGLT2 were found to affect intestinal and renal function, respectively, we analyzed the functional properties of hSGLT3[wt] and [ΔM500] by voltage clamp and current clamp recordings from cRNA-injected Xenopus laevis oocytes. The cation conductance of hSGLT3[wt] was activated by application of glucose or the specific agonist 1-desoxynojirimycin (DNJ) as revealed by inward currents in the voltage clamp configuration and cell depolarization in the current clamp mode. Almost no currents and changes in membrane potential were observed when glucose or DNJ were applied to hSGLT3[ΔM500]-injected oocytes, demonstrating a loss of function by this amino acid deletion in hSGLT3. To monitor membrane targeting of wt and mutant hSGLT3, fusion constructs with YFP were generated, heterologously expressed in Xenopus laevis oocytes and analyzed for membrane fluorescence by confocal microscopy. In comparison to hSGLT3[wt] the fluorescent signal of mutant [ΔM500] was reduced by 43% indicating that the mutant phenotype might mainly result from inaccurate membrane targeting. As revealed by homology modeling, residue M500 is located in TM11 suggesting that in addition to the core structure (TM1-TM10) of the transporter, the surrounding TMs are equally crucial for transport/sensor function. In conclusion, our findings indicate that the deletion [ΔM500] in hSGLT3 inhibits membrane targeting and thus largely disrupts glucose-induced sodium conductance, which may, in interaction with other ADHD risk-related gene variants, influence the risk for ADHD in deletion carriers.
Collapse
Affiliation(s)
- Nadine Schäfer
- Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, University of Würzburg, Würzburg, Germany
| | - Maximilian Friedrich
- Division of Molecular Psychiatry, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany
| | - Morten Egevang Jørgensen
- Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, University of Würzburg, Würzburg, Germany
| | - Sina Kollert
- Division of Molecular Psychiatry, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany
- Division of Molecular Electrophysiology, Institute of Physiology, University of Würzburg, Würzburg, Germany
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Hermann Koepsell
- Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, University of Würzburg, Würzburg, Germany
| | - Erhard Wischmeyer
- Division of Molecular Electrophysiology, Institute of Physiology, University of Würzburg, Würzburg, Germany
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health,University Hospital of Würzburg, Würzburg, Germany
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
- Department of Neuroscience, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, The Netherlands
| | - Dietmar Geiger
- Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, University of Würzburg, Würzburg, Germany
| | - Frank Döring
- Division of Molecular Electrophysiology, Institute of Physiology, University of Würzburg, Würzburg, Germany
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health,University Hospital of Würzburg, Würzburg, Germany
- * E-mail:
| |
Collapse
|
22
|
Franke B, Michelini G, Asherson P, Banaschewski T, Bilbow A, Buitelaar JK, Cormand B, Faraone SV, Ginsberg Y, Haavik J, Kuntsi J, Larsson H, Lesch KP, Ramos-Quiroga JA, Réthelyi JM, Ribases M, Reif A. Live fast, die young? A review on the developmental trajectories of ADHD across the lifespan. Eur Neuropsychopharmacol 2018; 28:1059-1088. [PMID: 30195575 PMCID: PMC6379245 DOI: 10.1016/j.euroneuro.2018.08.001] [Citation(s) in RCA: 347] [Impact Index Per Article: 49.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 06/25/2018] [Accepted: 08/07/2018] [Indexed: 02/07/2023]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is highly heritable and the most common neurodevelopmental disorder in childhood. In recent decades, it has been appreciated that in a substantial number of cases the disorder does not remit in puberty, but persists into adulthood. Both in childhood and adulthood, ADHD is characterised by substantial comorbidity including substance use, depression, anxiety, and accidents. However, course and symptoms of the disorder and the comorbidities may fluctuate and change over time, and even age of onset in childhood has recently been questioned. Available evidence to date is poor and largely inconsistent with regard to the predictors of persistence versus remittance. Likewise, the development of comorbid disorders cannot be foreseen early on, hampering preventive measures. These facts call for a lifespan perspective on ADHD from childhood to old age. In this selective review, we summarise current knowledge of the long-term course of ADHD, with an emphasis on clinical symptom and cognitive trajectories, treatment effects over the lifespan, and the development of comorbidities. Also, we summarise current knowledge and important unresolved issues on biological factors underlying different ADHD trajectories. We conclude that a severe lack of knowledge on lifespan aspects in ADHD still exists for nearly every aspect reviewed. We encourage large-scale research efforts to overcome those knowledge gaps through appropriately granular longitudinal studies.
Collapse
Affiliation(s)
- Barbara Franke
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Giorgia Michelini
- King's College London, Institute of Psychiatry, Psychology & Neuroscience, Social, Genetic & Developmental Psychiatry Centre, London, UK
| | - Philip Asherson
- King's College London, Institute of Psychiatry, Psychology & Neuroscience, Social, Genetic & Developmental Psychiatry Centre, London, UK
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Andrea Bilbow
- Attention Deficit Disorder Information and Support Service (ADDISS), Edgware, UK; ADHD-Europe, Brussels, Belgium
| | - Jan K Buitelaar
- Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Department of Cognitive Neuroscience, Nijmegen, The Netherlands
| | - Bru Cormand
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona, Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain
| | - Stephen V Faraone
- Departments of Psychiatry and of Neuroscience and Physiology, State University of New York Upstate Medical University, New York, USA; K.G. Jebsen Centre for Neuropsychiatric Disorders, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Ylva Ginsberg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden; Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
| | - Jan Haavik
- K.G. Jebsen Centre for Neuropsychiatric Disorders, Department of Biomedicine, University of Bergen, Bergen, Norway; Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Jonna Kuntsi
- King's College London, Institute of Psychiatry, Psychology & Neuroscience, Social, Genetic & Developmental Psychiatry Centre, London, UK
| | - Henrik Larsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden; Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany; Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russia; Department of Translational Neuroscience, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, The Netherlands
| | - J Antoni Ramos-Quiroga
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Catalonia, Spain; Psychiatric Genetics Unit, Vall d'Hebron Research Institute (VHIR), Barcelona, Catalonia, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Barcelona, Catalonia, Spain; Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
| | - János M Réthelyi
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary; MTA-SE NAP-B Molecular Psychiatry Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Marta Ribases
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Catalonia, Spain; Psychiatric Genetics Unit, Vall d'Hebron Research Institute (VHIR), Barcelona, Catalonia, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Barcelona, Catalonia, Spain
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
23
|
Grimm O, Kittel-Schneider S, Reif A. Recent developments in the genetics of attention-deficit hyperactivity disorder. Psychiatry Clin Neurosci 2018; 72:654-672. [PMID: 29722101 DOI: 10.1111/pcn.12673] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/01/2018] [Indexed: 12/19/2022]
Abstract
Attention-deficit hyperactivity disorder (ADHD) is a developmental psychiatric disorder that affects children and adults. ADHD is one of the psychiatric disorders with the strongest genetic basis according to familial, twin, and single nucleotide polymorphisms (SNP)-based epidemiological studies. In this review, we provide an update of recent insights into the genetic basis of ADHD. We discuss recent progress from genome-wide association studies (GWAS) looking at common variants as well as rare copy number variations. New analysis of gene groups, so-called functional ontologies, provide some insight into the gene networks afflicted, pointing to the role of neurodevelopmentally expressed gene networks. Bioinformatic methods, such as functional enrichment analysis and protein-protein network analysis, are used to highlight biological processes of likely relevance to the etiology of ADHD. Additionally, copy number variations seem to map on important pathways implicated in synaptic signaling and neurodevelopment. While some candidate gene associations of, for example, neurotransmitter receptors and signaling, have been replicated, they do not seem to explain significant variance in recent GWAS. We discuss insights from recent case-control SNP-GWAS that have presented the first whole-genome significant SNP in ADHD.
Collapse
Affiliation(s)
- Oliver Grimm
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Sarah Kittel-Schneider
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany
| |
Collapse
|
24
|
Analysis of shared homozygosity regions in Saudi siblings with attention deficit hyperactivity disorder. Psychiatr Genet 2018; 27:131-138. [PMID: 28452824 PMCID: PMC5495552 DOI: 10.1097/ypg.0000000000000173] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
AIM Genetic and clinical complexities are common features of most psychiatric illnesses that pose a major obstacle in risk-gene identification. Attention deficit hyperactivity disorder (ADHD) is the most prevalent child-onset psychiatric illness, with high heritability. Over the past decade, numerous genetic studies utilizing various approaches, such as genome-wide association, candidate-gene association, and linkage analysis, have identified a multitude of candidate loci/genes. However, such studies have yielded diverse findings that are rarely reproduced, indicating that other genetic determinants have not been discovered yet. In this study, we carried out sib-pair analysis on seven multiplex families with ADHD from Saudi Arabia. We aimed to identify the candidate chromosomal regions and genes linked to the disease. PATIENTS AND METHODS A total of 41 individuals from multiplex families were analyzed for shared regions of homozygosity. Genes within these regions were prioritized according to their potential relevance to ADHD. RESULTS We identified multiple genomic regions spanning different chromosomes to be shared among affected members of each family; these included chromosomes 3, 5, 6, 7, 8, 9, 10, 13, 17, and 18. We also found specific regions on chromosomes 8 and 17 to be shared between affected individuals from more than one family. Among the genes present in the regions reported here were involved in neurotransmission (GRM3, SIGMAR1, CHAT, and SLC18A3) and members of the HLA gene family (HLA-A, HLA-DPA1, and MICC). CONCLUSION The candidate regions identified in this study highlight the genetic diversity of ADHD. Upon further investigation, these loci may reveal candidate genes that enclose variants associated with ADHD. Although most ADHD studies were conducted in other populations, our study provides insight from an understudied, ethnically interesting population.
Collapse
|
25
|
Bonvicini C, Faraone SV, Scassellati C. Common and specific genes and peripheral biomarkers in children and adults with attention-deficit/hyperactivity disorder. World J Biol Psychiatry 2018; 19:80-100. [PMID: 28097908 PMCID: PMC5568996 DOI: 10.1080/15622975.2017.1282175] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Elucidating the biological mechanisms involved in attention-deficit/hyperactivity disorder (ADHD) has been challenging. Relatively unexplored is the fact that these mechanisms can differ with age. METHODS We present an overview on the major differences between children and adults with ADHD, describing several studies from genomics to metabolomics performed in ADHD children and in adults (cADHD and aADHD, respectively). A systematic search (up until February 2016) was conducted. RESULTS From a PRISMA flow-chart, a total of 350 and 91 genomics and metabolomics studies were found to be elligible for cADHD and aADHD, respectively. For children, associations were found for genes belonging to dopaminergic (SLC6A3, DRD4 and MAOA) and neurodevelopmental (LPHN3 and DIRAS2) systems and OPRM1 (Yates corrected P = 0.016; OR = 2.27 95%CI: 1.15-4.47). Studies of adults have implicated circadian rhythms genes, HTR2A, MAOB and a more generic neurodevelopmental/neurite outgrowth network (BCHE, SNAP25, BAIAP2, NOS1/NO, KCNIP4 and SPOCK3; Yates corrected P = 0.007; OR = 3.30 95%CI: 1.33-8.29). In common among cADHD and aADHD, the most significant findings are for oxidative stress proteins (MAD, SOD, PON1, ARES, TOS, TAS and OSI), and, in the second level, DISC1, DBH, DDC, microRNA and adiponectin. CONCLUSIONS Through a convergent functional genomics, this review contributes to clarification of which genetic/biological mechanisms differ with age. The effects of some genes do not change throughout the lifetime, whereas others are linked to age-specific stages. Additional research and further studies are needed to generate firmer conclusions that might someday be useful for predicting the remission and persistence of the disorder. Despite the limitations, some of these genes/proteins could be potential useful biomarkers to discriminate cADHD from aADHD.
Collapse
Affiliation(s)
- Cristian Bonvicini
- Genetics Unit, IRCCS “Centro S. Giovanni di Dio” Fatebenefratelli, Brescia, Italy
| | - Stephen V. Faraone
- Departments of Psychiatry and of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA; K.G. Jebsen Centre for Research on Neuropsychiatric Disorders, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Catia Scassellati
- Genetics Unit, IRCCS “Centro S. Giovanni di Dio” Fatebenefratelli, Brescia, Italy
| |
Collapse
|
26
|
Pagerols M, Richarte V, Sánchez-Mora C, Rovira P, Soler Artigas M, Garcia-Martínez I, Calvo-Sánchez E, Corrales M, da Silva BS, Mota NR, Victor MM, Rohde LA, Grevet EH, Bau CHD, Cormand B, Casas M, Ramos-Quiroga JA, Ribasés M. Integrative genomic analysis of methylphenidate response in attention-deficit/hyperactivity disorder. Sci Rep 2018; 8:1881. [PMID: 29382897 PMCID: PMC5789875 DOI: 10.1038/s41598-018-20194-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 01/15/2018] [Indexed: 12/24/2022] Open
Abstract
Methylphenidate (MPH) is the most frequently used pharmacological treatment in children with attention-deficit/hyperactivity disorder (ADHD). However, a considerable interindividual variability exists in clinical outcome. Thus, we performed a genome-wide association study of MPH efficacy in 173 ADHD paediatric patients. Although no variant reached genome-wide significance, the set of genes containing single-nucleotide polymorphisms (SNPs) nominally associated with MPH response (P < 0.05) was significantly enriched for candidates previously studied in ADHD or treatment outcome. We prioritised the nominally significant SNPs by functional annotation and expression quantitative trait loci (eQTL) analysis in human brain, and we identified 33 SNPs tagging cis-eQTL in 32 different loci (referred to as eSNPs and eGenes, respectively). Pathway enrichment analyses revealed an over-representation of genes involved in nervous system development and function among the eGenes. Categories related to neurological diseases, psychological disorders and behaviour were also significantly enriched. We subsequently meta-analysed the association with clinical outcome for the 33 eSNPs across the discovery sample and an independent cohort of 189 ADHD adult patients (target sample) and we detected 15 suggestive signals. Following this comprehensive strategy, our results provide a better understanding of the molecular mechanisms implicated in MPH treatment effects and suggest promising candidates that may encourage future studies.
Collapse
Affiliation(s)
- Mireia Pagerols
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Vanesa Richarte
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Barcelona, Spain.,Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Cristina Sánchez-Mora
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Barcelona, Spain
| | - Paula Rovira
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - María Soler Artigas
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Barcelona, Spain
| | - Iris Garcia-Martínez
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Eva Calvo-Sánchez
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Montse Corrales
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Bruna Santos da Silva
- Department of Genetics, Institute of Biosciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Nina Roth Mota
- Department of Human Genetics and Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands.,ADHD Outpatient Program, Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Marcelo Moraes Victor
- ADHD Outpatient Program, Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Luis Augusto Rohde
- ADHD Outpatient Program, Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Department of Psychiatry, Faculty of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Eugenio Horacio Grevet
- ADHD Outpatient Program, Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Department of Psychiatry, Faculty of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Claiton Henrique Dotto Bau
- Department of Genetics, Institute of Biosciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,ADHD Outpatient Program, Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Bru Cormand
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain.,Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Spain
| | - Miguel Casas
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Barcelona, Spain.,Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Josep Antoni Ramos-Quiroga
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Barcelona, Spain.,Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marta Ribasés
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain. .,Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain. .,Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Barcelona, Spain.
| |
Collapse
|
27
|
Selten M, van Bokhoven H, Nadif Kasri N. Inhibitory control of the excitatory/inhibitory balance in psychiatric disorders. F1000Res 2018; 7:23. [PMID: 29375819 PMCID: PMC5760969 DOI: 10.12688/f1000research.12155.1] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/21/2017] [Indexed: 12/21/2022] Open
Abstract
Neuronal networks consist of different types of neurons that all play their own role in order to maintain proper network function. The two main types of neurons segregate in excitatory and inhibitory neurons, which together regulate the flow of information through the network. It has been proposed that changes in the relative strength in these two opposing forces underlie the symptoms observed in psychiatric disorders, including autism and schizophrenia. Here, we review the role of alterations to the function of the inhibitory system as a cause of psychiatric disorders. First, we explore both patient and post-mortem evidence of inhibitory deficiency. We then discuss the function of different interneuron subtypes in the network and focus on the central role of a specific class of inhibitory neurons, parvalbumin-positive interneurons. Finally, we discuss genes known to be affected in different disorders and the effects that mutations in these genes have on the inhibitory system in cortex and hippocampus. We conclude that alterations to the inhibitory system are consistently identified in animal models of psychiatric disorders and, more specifically, that mutations affecting the function of parvalbumin-positive interneurons seem to play a central role in the symptoms observed in these disorders.
Collapse
Affiliation(s)
- Martijn Selten
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, New Hunt's House, Guy's Campus, King's College London, London, SE1 1UL, UK.,MRC Centre for Neurodevelopmental Disorders, New Hunt's House, Guy's Campus, King's College London, London, SE1 1UL, UK.,Department of Human Genetics & Department of Cognitive Neuroscience, Radboudumc, Geert Grooteplein 10, Box 9101, 6500 HB Nijmegen, Netherlands.,Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ Nijmegen, Netherlands
| | - Hans van Bokhoven
- Department of Human Genetics & Department of Cognitive Neuroscience, Radboudumc, Geert Grooteplein 10, Box 9101, 6500 HB Nijmegen, Netherlands.,Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ Nijmegen, Netherlands
| | - Nael Nadif Kasri
- Department of Human Genetics & Department of Cognitive Neuroscience, Radboudumc, Geert Grooteplein 10, Box 9101, 6500 HB Nijmegen, Netherlands.,Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ Nijmegen, Netherlands
| |
Collapse
|
28
|
Forero A, Rivero O, Wäldchen S, Ku HP, Kiser DP, Gärtner Y, Pennington LS, Waider J, Gaspar P, Jansch C, Edenhofer F, Resink TJ, Blum R, Sauer M, Lesch KP. Cadherin-13 Deficiency Increases Dorsal Raphe 5-HT Neuron Density and Prefrontal Cortex Innervation in the Mouse Brain. Front Cell Neurosci 2017; 11:307. [PMID: 29018333 PMCID: PMC5623013 DOI: 10.3389/fncel.2017.00307] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 09/15/2017] [Indexed: 01/29/2023] Open
Abstract
Background: During early prenatal stages of brain development, serotonin (5-HT)-specific neurons migrate through somal translocation to form the raphe nuclei and subsequently begin to project to their target regions. The rostral cluster of cells, comprising the median and dorsal raphe (DR), innervates anterior regions of the brain, including the prefrontal cortex. Differential analysis of the mouse 5-HT system transcriptome identified enrichment of cell adhesion molecules in 5-HT neurons of the DR. One of these molecules, cadherin-13 (Cdh13) has been shown to play a role in cell migration, axon pathfinding, and synaptogenesis. This study aimed to investigate the contribution of Cdh13 to the development of the murine brain 5-HT system. Methods: For detection of Cdh13 and components of the 5-HT system at different embryonic developmental stages of the mouse brain, we employed immunofluorescence protocols and imaging techniques, including epifluorescence, confocal and structured illumination microscopy. The consequence of CDH13 loss-of-function mutations on brain 5-HT system development was explored in a mouse model of Cdh13 deficiency. Results: Our data show that in murine embryonic brain Cdh13 is strongly expressed on 5-HT specific neurons of the DR and in radial glial cells (RGCs), which are critically involved in regulation of neuronal migration. We observed that 5-HT neurons are intertwined with these RGCs, suggesting that these neurons undergo RGC-guided migration. Cdh13 is present at points of intersection between these two cell types. Compared to wildtype controls, Cdh13-deficient mice display increased cell densities in the DR at embryonic stages E13.5, E17.5, and adulthood, and higher serotonergic innervation of the prefrontal cortex at E17.5. Conclusion: Our findings provide evidence for a role of CDH13 in the development of the serotonergic system in early embryonic stages. Specifically, we indicate that Cdh13 deficiency affects the cell density of the developing DR and the posterior innervation of the prefrontal cortex (PFC), and therefore might be involved in the migration, axonal outgrowth and terminal target finding of DR 5-HT neurons. Dysregulation of CDH13 expression may thus contribute to alterations in this system of neurotransmission, impacting cognitive function, which is frequently impaired in neurodevelopmental disorders including attention-deficit/hyperactivity and autism spectrum disorders.
Collapse
Affiliation(s)
- Andrea Forero
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Olga Rivero
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Sina Wäldchen
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Hsing-Ping Ku
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Dominik P Kiser
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Yvonne Gärtner
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Laura S Pennington
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Jonas Waider
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Patricia Gaspar
- Institut du Fer á Moulin, Institut National de la Santé et de la Recherche Médicale (INSERM), UMR-S839, Paris, France
| | - Charline Jansch
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Frank Edenhofer
- Department of Genomics, Stem Cell Biology and Regenerative Medicine, Institute of Molecular Biology and Center for Molecular Biosciences Innsbruck (CMBI), Leopold-Franzens-University Innsbruck, Innsbruck, Austria.,Stem Cell Biology and Regenerative Medicine Group, Institute of Anatomy and Cell Biology, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Thérèse J Resink
- Laboratory for Signal Transduction, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Robert Blum
- Department of Clinical Neurobiology, University of Würzburg, Würzburg, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany.,Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, I. M. Sechenov First Moscow State Medical University, Moscow, Russia.,Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
29
|
Klein M, Onnink M, van Donkelaar M, Wolfers T, Harich B, Shi Y, Dammers J, Arias-Vásquez A, Hoogman M, Franke B. Brain imaging genetics in ADHD and beyond - Mapping pathways from gene to disorder at different levels of complexity. Neurosci Biobehav Rev 2017; 80:115-155. [PMID: 28159610 PMCID: PMC6947924 DOI: 10.1016/j.neubiorev.2017.01.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 12/08/2016] [Accepted: 01/09/2017] [Indexed: 01/03/2023]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a common and often persistent neurodevelopmental disorder. Beyond gene-finding, neurobiological parameters, such as brain structure, connectivity, and function, have been used to link genetic variation to ADHD symptomatology. We performed a systematic review of brain imaging genetics studies involving 62 ADHD candidate genes in childhood and adult ADHD cohorts. Fifty-one eligible research articles described studies of 13 ADHD candidate genes. Almost exclusively, single genetic variants were studied, mostly focussing on dopamine-related genes. While promising results have been reported, imaging genetics studies are thus far hampered by methodological differences in study design and analysis methodology, as well as limited sample sizes. Beyond reviewing imaging genetics studies, we also discuss the need for complementary approaches at multiple levels of biological complexity and emphasize the importance of combining and integrating findings across levels for a better understanding of biological pathways from gene to disease. These may include multi-modal imaging genetics studies, bioinformatic analyses, and functional analyses of cell and animal models.
Collapse
Affiliation(s)
- Marieke Klein
- Department of Human Genetics, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Marten Onnink
- Department of Human Genetics, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Marjolein van Donkelaar
- Department of Human Genetics, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Thomas Wolfers
- Department of Human Genetics, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Benjamin Harich
- Department of Human Genetics, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Yan Shi
- Department of Human Genetics, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Janneke Dammers
- Department of Human Genetics, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands; Department of Psychiatry, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Alejandro Arias-Vásquez
- Department of Human Genetics, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands; Department of Psychiatry, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands; Department of Cognitive Neuroscience, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Martine Hoogman
- Department of Human Genetics, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Barbara Franke
- Department of Human Genetics, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands; Department of Psychiatry, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.
| |
Collapse
|
30
|
Lee S, Choi JW, Kim KM, Kim JW, Kim S, Kang T, Kim JI, Lee YS, Kim B, Han DH, Cheong JH, Lee SI, Hyun GJ, Kim BN. The Guideline of Diagnosis and Treatment of Attention-Deficit Hyperactivity Disorder: Developed by ADHD Translational Research Center. Soa Chongsonyon Chongsin Uihak 2016. [DOI: 10.5765/jkacap.2016.27.4.236] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Sumin Lee
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea
| | - Jae-Won Choi
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea
| | - Kyoung-Min Kim
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea
| | - Jun Won Kim
- Department of Psychiatry, Catholic University of Daegu School of Medicine, Daegu, Korea
| | - Sooyeon Kim
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea
| | | | - Johanna Inhyang Kim
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea
| | - Young Sik Lee
- Department of Psychiatry, Chung-Ang University Hospital, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Bongseog Kim
- Department of Psychiatry, Sanggye Paik Hospital, School of Medicine, Inje University, Seoul, Korea
| | - Doug Hyun Han
- Department of Psychiatry, Chung-Ang University Hospital, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Jae Hoon Cheong
- Uimyung Research Institute for Neuroscience, Sahmyook University, Seoul, Korea
| | - Soyoung Irene Lee
- Department of Psychiatry, Soonchunhyang University College of Medicine, Bucheon Hospital, Bucheon, Korea
| | - Gi Jung Hyun
- Department of Psychiatry, Chung-Ang University Hospital, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Bung-Nyun Kim
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
31
|
Pinto R, Asherson P, Ilott N, Cheung CHM, Kuntsi J. Testing for the mediating role of endophenotypes using molecular genetic data in a twin study of ADHD traits. Am J Med Genet B Neuropsychiatr Genet 2016; 171:982-92. [PMID: 27230021 PMCID: PMC5031223 DOI: 10.1002/ajmg.b.32463] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 05/12/2016] [Indexed: 11/11/2022]
Abstract
Family and twin studies have identified endophenotypes that capture familial and genetic risk in attention-deficit/hyperactivity disorder (ADHD), but it remains unclear if they lie on the causal pathway. Here, we illustrate a stepwise approach to identifying intermediate phenotypes. First, we use previous quantitative genetic findings to delineate the expected pattern of genetically correlated phenotypes. Second, we identify overlapping genetic associations with ADHD-related quantitative traits. Finally, we test for the mediating role of associated endophenotypes. We applied this approach to a sample of 1,312 twins aged 7-10. Based on previous twin model-fitting analyses, we selected hyperactivity-impulsivity, inattention, reading difficulties (RD), reaction time variability (RTV) and commission errors (CE), and tested for association with selected ADHD risk alleles. For nominally significant associations with both a symptom and a cognitive variable, matching the expected pattern based on previous genetic correlations, we performed mediation analysis to distinguish pleiotropic from mediating effects. The strongest association was observed for the rs7984966 SNP in the serotonin receptor gene (HTR2A), and RTV (P = 0.007; unadjusted for multiple testing). Mediation analysis suggested that CE (38%) and RTV (44%) substantially mediated the association between inattention and the T-allele of SNP rs3785157 in the norepinephrine transporter gene (SLC6A2) and the T-allele of SNP rs7984966 in HTR2A, respectively. The SNPs tag risk-haplotypes but are not thought to be functionally significant. While these exploratory findings are preliminary, requiring replication, this study demonstrates the value of this approach that can be adapted to the investigation of multiple genetic markers and polygenic risk scores. © 2016 The Authors. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rebecca Pinto
- MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience; King's College London; London UK
| | - Philip Asherson
- MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience; King's College London; London UK
| | - Nicholas Ilott
- The Kennedy Institute of Rheumatology; University of Oxford; Oxford UK
| | - Celeste H. M. Cheung
- MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience; King's College London; London UK
- Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience; King's College London; London UK
| | - Jonna Kuntsi
- MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience; King's College London; London UK
| |
Collapse
|
32
|
Demontis D, Lescai F, Børglum A, Glerup S, Østergaard SD, Mors O, Li Q, Liang J, Jiang H, Li Y, Wang J, Lesch KP, Reif A, Buitelaar JK, Franke B. Whole-Exome Sequencing Reveals Increased Burden of Rare Functional and Disruptive Variants in Candidate Risk Genes in Individuals With Persistent Attention-Deficit/Hyperactivity Disorder. J Am Acad Child Adolesc Psychiatry 2016; 55:521-3. [PMID: 27238071 DOI: 10.1016/j.jaac.2016.03.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 02/26/2016] [Accepted: 03/21/2016] [Indexed: 12/15/2022]
Affiliation(s)
| | | | | | | | | | - Ole Mors
- Aarhus University Hospital, Risskov, Denmark
| | | | | | | | | | | | | | | | - Jan K Buitelaar
- Radboud University Medical Center, Nijmegen, The Netherlands
| | - Barbara Franke
- Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
33
|
Gomez-Sanchez CI, Riveiro-Alvarez R, Soto-Insuga V, Rodrigo M, Tirado-Requero P, Mahillo-Fernandez I, Abad-Santos F, Carballo JJ, Dal-Ré R, Ayuso C. Attention deficit hyperactivity disorder: genetic association study in a cohort of Spanish children. Behav Brain Funct 2016; 12:2. [PMID: 26746237 PMCID: PMC4706690 DOI: 10.1186/s12993-015-0084-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 12/02/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Attention deficit hyperactivity disorder (ADHD) has a strong genetic component. The study is aimed to test the association of 34 polymorphisms with ADHD symptomatology considering the role of clinical subtypes and sex in a Spanish population. METHODS A cohort of ADHD 290 patients and 340 controls aged 6-18 years were included in a case-control study, stratified by sex and ADHD subtype. Multivariate logistic regression was used to detect the combined effects of multiple variants. RESULTS After correcting for multiple testing, we found several significant associations between the polymorphisms and ADHD (p value corrected ≤0.05): (1) SLC6A4 and LPHN3 were associated in the total population; (2) SLC6A2, SLC6A3, SLC6A4 and LPHN3 were associated in the combined subtype; and (3) LPHN3 was associated in the male sample. Multivariable logistic regression was used to estimate the influence of these variables for the total sample, combined and inattentive subtype, female and male sample, revealing that these factors contributed to 8.5, 14.6, 2.6, 16.5 and 8.5 % of the variance respectively. CONCLUSIONS We report evidence of the genetic contribution of common variants to the ADHD phenotype in four genes, with the LPHN3 gene playing a particularly important role. Future studies should investigate the contribution of genetic variants to the risk of ADHD considering their role in specific sex or subtype, as doing so may produce more predictable and robust models.
Collapse
Affiliation(s)
- Clara I Gomez-Sanchez
- Department of Genetics, IIS-Fundación Jiménez Díaz University Hospital (IIS-FJD, UAM), Avda. Reyes Católicos 2, 28040, Madrid, Spain. .,Centre for Biomedical Research on Rare Diseases (CIBERER), C/Monforte de Lemos 3-5, Pabellón 11, 28029, Madrid, Spain.
| | - Rosa Riveiro-Alvarez
- Department of Genetics, IIS-Fundación Jiménez Díaz University Hospital (IIS-FJD, UAM), Avda. Reyes Católicos 2, 28040, Madrid, Spain. .,Centre for Biomedical Research on Rare Diseases (CIBERER), C/Monforte de Lemos 3-5, Pabellón 11, 28029, Madrid, Spain.
| | - Victor Soto-Insuga
- Department of Pediatrics, IIS-Fundación Jiménez Díaz University Hospital (IIS-FJD, UAM), Avda. Reyes Católicos 2, 28040, Madrid, Spain.
| | - Maria Rodrigo
- Department of Pediatrics, IIS-Fundación Jiménez Díaz University Hospital (IIS-FJD, UAM), Avda. Reyes Católicos 2, 28040, Madrid, Spain.
| | - Pilar Tirado-Requero
- Department of Pediatrics, La Paz University Hospital, Paseo de la Castellana 261, 28046, Madrid, Spain.
| | - Ignacio Mahillo-Fernandez
- Department of Epidemiology, IIS-Fundación Jiménez Díaz University Hospital (IIS-FJD, UAM), Avda. Reyes Católicos 2, 28040, Madrid, Spain.
| | - Francisco Abad-Santos
- Clinical Pharmacology Department, Instituto de Investigación Sanitaria Princesa (IP), Hospital Universitario de la Princesa, C/Diego de Leon 62, 28006, Madrid, Spain.
| | - Juan J Carballo
- Department of Psychiatry, IIS-Fundación Jiménez Díaz University Hospital (IIS-FJD, UAM), Avda. Reyes Católicos 2, 28040, Madrid, Spain.
| | - Rafael Dal-Ré
- Clinical Research, BUC (Biosciences UAM + CSIC) Program, International Campus of Excellence, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain.
| | - Carmen Ayuso
- Department of Genetics, IIS-Fundación Jiménez Díaz University Hospital (IIS-FJD, UAM), Avda. Reyes Católicos 2, 28040, Madrid, Spain. .,Centre for Biomedical Research on Rare Diseases (CIBERER), C/Monforte de Lemos 3-5, Pabellón 11, 28029, Madrid, Spain.
| |
Collapse
|
34
|
Summaries of plenary, symposia, and oral sessions at the XXII World Congress of Psychiatric Genetics, Copenhagen, Denmark, 12-16 October 2014. Psychiatr Genet 2015; 26:1-47. [PMID: 26565519 DOI: 10.1097/ypg.0000000000000112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The XXII World Congress of Psychiatric Genetics, sponsored by the International Society of Psychiatric Genetics, took place in Copenhagen, Denmark, on 12-16 October 2014. A total of 883 participants gathered to discuss the latest findings in the field. The following report was written by student and postdoctoral attendees. Each was assigned one or more sessions as a rapporteur. This manuscript represents topics covered in most, but not all of the oral presentations during the conference, and contains some of the major notable new findings reported.
Collapse
|
35
|
Lu ZH, Zhu H, Knickmeyer RC, Sullivan PF, Williams SN, Zou F. Multiple SNP Set Analysis for Genome-Wide Association Studies Through Bayesian Latent Variable Selection. Genet Epidemiol 2015; 39:664-77. [PMID: 26515609 DOI: 10.1002/gepi.21932] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 07/23/2015] [Accepted: 08/18/2015] [Indexed: 11/07/2022]
Abstract
The power of genome-wide association studies (GWAS) for mapping complex traits with single-SNP analysis (where SNP is single-nucleotide polymorphism) may be undermined by modest SNP effect sizes, unobserved causal SNPs, correlation among adjacent SNPs, and SNP-SNP interactions. Alternative approaches for testing the association between a single SNP set and individual phenotypes have been shown to be promising for improving the power of GWAS. We propose a Bayesian latent variable selection (BLVS) method to simultaneously model the joint association mapping between a large number of SNP sets and complex traits. Compared with single SNP set analysis, such joint association mapping not only accounts for the correlation among SNP sets but also is capable of detecting causal SNP sets that are marginally uncorrelated with traits. The spike-and-slab prior assigned to the effects of SNP sets can greatly reduce the dimension of effective SNP sets, while speeding up computation. An efficient Markov chain Monte Carlo algorithm is developed. Simulations demonstrate that BLVS outperforms several competing variable selection methods in some important scenarios.
Collapse
Affiliation(s)
- Zhao-Hua Lu
- Department of Biostatistics, University of North Carolina at Chapel Hill, North Carolina, United States of America
| | - Hongtu Zhu
- Department of Biostatistics, University of North Carolina at Chapel Hill, North Carolina, United States of America.,Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, North Carolina, United States of America
| | - Rebecca C Knickmeyer
- Department of Psychiatry, University of North Carolina at Chapel Hill, North Carolina, United States of America
| | - Patrick F Sullivan
- Department of Genetics, University of North Carolina at Chapel Hill, North Carolina, United States of America
| | - Stephanie N Williams
- Department of Genetics, University of North Carolina at Chapel Hill, North Carolina, United States of America
| | - Fei Zou
- Department of Biostatistics, University of North Carolina at Chapel Hill, North Carolina, United States of America
| | | |
Collapse
|
36
|
Cadherin-13, a risk gene for ADHD and comorbid disorders, impacts GABAergic function in hippocampus and cognition. Transl Psychiatry 2015; 5:e655. [PMID: 26460479 PMCID: PMC4930129 DOI: 10.1038/tp.2015.152] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 07/11/2015] [Indexed: 12/14/2022] Open
Abstract
Cadherin-13 (CDH13), a unique glycosylphosphatidylinositol-anchored member of the cadherin family of cell adhesion molecules, has been identified as a risk gene for attention-deficit/hyperactivity disorder (ADHD) and various comorbid neurodevelopmental and psychiatric conditions, including depression, substance abuse, autism spectrum disorder and violent behavior, while the mechanism whereby CDH13 dysfunction influences pathogenesis of neuropsychiatric disorders remains elusive. Here we explored the potential role of CDH13 in the inhibitory modulation of brain activity by investigating synaptic function of GABAergic interneurons. Cellular and subcellular distribution of CDH13 was analyzed in the murine hippocampus and a mouse model with a targeted inactivation of Cdh13 was generated to evaluate how CDH13 modulates synaptic activity of hippocampal interneurons and behavioral domains related to psychopathologic (endo)phenotypes. We show that CDH13 expression in the cornu ammonis (CA) region of the hippocampus is confined to distinct classes of interneurons. Specifically, CDH13 is expressed by numerous parvalbumin and somatostatin-expressing interneurons located in the stratum oriens, where it localizes to both the soma and the presynaptic compartment. Cdh13(-/-) mice show an increase in basal inhibitory, but not excitatory, synaptic transmission in CA1 pyramidal neurons. Associated with these alterations in hippocampal function, Cdh13(-/-) mice display deficits in learning and memory. Taken together, our results indicate that CDH13 is a negative regulator of inhibitory synapses in the hippocampus, and provide insights into how CDH13 dysfunction may contribute to the excitatory/inhibitory imbalance observed in neurodevelopmental disorders, such as ADHD and autism.
Collapse
|
37
|
Attention-Deficit/Hyperactivity Disorder-like Phenotype in a Mouse Model with Impaired Actin Dynamics. Biol Psychiatry 2015; 78:95-106. [PMID: 24768258 DOI: 10.1016/j.biopsych.2014.03.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 03/05/2014] [Accepted: 03/05/2014] [Indexed: 11/23/2022]
Abstract
BACKGROUND Actin depolymerizing proteins of the actin depolymerizing factor (ADF)/cofilin family are essential for actin dynamics, which is critical for synaptic function. Two ADF/cofilin family members, ADF and n-cofilin, are highly abundant in the brain, where they are present in excitatory synapses. Previous studies demonstrated the relevance of n-cofilin for postsynaptic plasticity, associative learning, and anxiety. These studies also suggested overlapping functions for ADF and n-cofilin. METHODS We performed pharmacobehavioral, electrophysiologic, and electron microscopic studies on ADF and n-cofilin single mutants and double mutants (named ACC mice) to characterize the importance of ADF/cofilin activity for synapse physiology and mouse behavior. RESULTS The ACC mice, but not single mutants, exhibited hyperlocomotion, impulsivity, and impaired working memory. Hyperlocomotion and impulsive behavior were reversed by methylphenidate, a psychostimulant commonly used for the treatment of attention-deficit/hyperactivity disorder (ADHD). Also, ACC mice displayed a disturbed morphology of striatal excitatory synapses, accompanied by strongly increased glutamate release. Blockade of dopamine or glutamate transmission resulted in normal locomotion. CONCLUSIONS Our study reveals that ADHD can result from a disturbed balance between excitation and inhibition in striatal circuits, providing novel insights into the mechanisms underlying this neurobehavioral disorder. Our results link actin dynamics to ADHD, suggesting that mutations in actin regulatory proteins may contribute to the etiology of ADHD in humans.
Collapse
|
38
|
Hohmann S, Adamo N, Lahey BB, Faraone SV, Banaschewski T. Genetics in child and adolescent psychiatry: methodological advances and conceptual issues. Eur Child Adolesc Psychiatry 2015; 24:619-34. [PMID: 25850999 DOI: 10.1007/s00787-015-0702-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 03/06/2015] [Indexed: 10/23/2022]
Abstract
Discovering the genetic basis of early-onset psychiatric disorders has been the aim of intensive research during the last decade. We will first selectively summarize results of genetic research in child and adolescent psychiatry by using examples from different disorders and discuss methodological issues, emerging questions and future directions. In the second part of this review, we will focus on how to link genetic causes of disorders with physiological pathways, discuss the impact of genetic findings on diagnostic systems, prevention and therapeutic interventions. Finally we will highlight some ethical aspects connected to genetic research in child and adolescent psychiatry. Advances in molecular genetic methods have led to insights into the genetic architecture of psychiatric disorders, but not yet provided definite pathways to pathophysiology. If replicated, promising findings from genetic studies might in some cases lead to personalized treatments. On the one hand, knowledge of the genetic basis of disorders may influence diagnostic categories. On the other hand, models also suggest studying the genetic architecture of psychiatric disorders across diagnoses and clinical groups.
Collapse
Affiliation(s)
- Sarah Hohmann
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | | | | | | | | |
Collapse
|
39
|
Does serotonin deficit mediate susceptibility to ADHD? Neurochem Int 2015; 82:52-68. [DOI: 10.1016/j.neuint.2015.02.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 01/18/2015] [Accepted: 02/07/2015] [Indexed: 11/21/2022]
|
40
|
Taylor A, Steinberg J, Webber C. Duplications in ADHD patients harbour neurobehavioural genes that are co-expressed with genes associated with hyperactivity in the mouse. Am J Med Genet B Neuropsychiatr Genet 2015; 168B:97-107. [PMID: 25656289 PMCID: PMC4833176 DOI: 10.1002/ajmg.b.32285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 11/14/2014] [Indexed: 11/08/2022]
Abstract
Attention deficit/hyperactivity disorder (ADHD) is a childhood onset disorder, prevalent in 5.3% of children and 1-4% of adults. ADHD is highly heritable, with a burden of large (>500 Kb) copy number variants (CNVs) identified among individuals with ADHD. However, how such CNVs exert their effects is poorly understood. We examined the genes affected by 71 large, rare, and predominantly inherited CNVs identified among 902 individuals with ADHD. We applied both mouse-knockout functional enrichment analyses, exploiting behavioral phenotypes arising from the determined disruption of 1:1 mouse orthologues, and human brain-specific spatio-temporal expression data to uncover molecular pathways common among genes contributing to enriched phenotypes. Twenty-two percent of genes duplicated in individuals with ADHD that had mouse phenotypic information were associated with abnormal learning/memory/conditioning ("l/m/c") phenotypes. Although not observed in a second ADHD-cohort, we identified a similar enrichment among genes duplicated by eight de novo CNVs present in eight individuals with Hyperactivity and/or Short attention span ("Hyperactivity/SAS", the ontologically-derived phenotypic components of ADHD). In the brain, genes duplicated in patients with ADHD and Hyperactivity/SAS and whose orthologues' disruption yields l/m/c phenotypes in mouse ("candidate-genes"), were co-expressed with one another and with genes whose orthologues' mouse models exhibit hyperactivity. Moreover, genes associated with hyperactivity in the mouse were significantly more co-expressed with ADHD candidate-genes than with similarly identified genes from individuals with intellectual disability. Our findings support an etiology for ADHD distinct from intellectual disability, and mechanistically related to genes associated with hyperactivity phenotypes in other mammalian species.
Collapse
Affiliation(s)
- Avigail Taylor
- MRC Functional Genomics UnitDepartment of PhysiologyAnatomy and GeneticsUniversity of OxfordOxfordUnited Kingdom
| | - Julia Steinberg
- MRC Functional Genomics UnitDepartment of PhysiologyAnatomy and GeneticsUniversity of OxfordOxfordUnited Kingdom,The Wellcome Trust Centre for Human GeneticsUniversity of OxfordOxfordUnited Kingdom
| | - Caleb Webber
- MRC Functional Genomics UnitDepartment of PhysiologyAnatomy and GeneticsUniversity of OxfordOxfordUnited Kingdom
| |
Collapse
|
41
|
The NeuroIMAGE study: a prospective phenotypic, cognitive, genetic and MRI study in children with attention-deficit/hyperactivity disorder. Design and descriptives. Eur Child Adolesc Psychiatry 2015; 24:265-81. [PMID: 25012461 DOI: 10.1007/s00787-014-0573-4] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 06/04/2014] [Indexed: 01/06/2023]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a persistent neuropsychiatric disorder which is associated with impairments on a variety of cognitive measures and abnormalities in structural and functional brain measures. Genetic factors are thought to play an important role in the etiology of ADHD. The NeuroIMAGE study is a follow-up of the Dutch part of the International Multicenter ADHD Genetics (IMAGE) project. It is a multi-site prospective cohort study designed to investigate the course of ADHD, its genetic and environmental determinants, its cognitive and neurobiological underpinnings, and its consequences in adolescence and adulthood. From the original 365 ADHD families and 148 control (CON) IMAGE families, consisting of 506 participants with an ADHD diagnosis, 350 unaffected siblings, and 283 healthy controls, 79 % participated in the NeuroIMAGE follow-up study. Combined with newly recruited participants the NeuroIMAGE study comprehends an assessment of 1,069 children (751 from ADHD families; 318 from CON families) and 848 parents (582 from ADHD families; 266 from CON families). For most families, data for more than one child (82 %) and both parents (82 %) were available. Collected data include a diagnostic interview, behavioural questionnaires, cognitive measures, structural and functional neuroimaging, and genome-wide genetic information. The NeuroIMAGE dataset allows examining the course of ADHD over adolescence into young adulthood, identifying phenotypic, cognitive, and neural mechanisms associated with the persistence versus remission of ADHD, and studying their genetic and environmental underpinnings. The inclusion of siblings of ADHD probands and controls allows modelling of shared familial influences on the ADHD phenotype.
Collapse
|
42
|
Case-control genome-wide association study of persistent attention-deficit hyperactivity disorder identifies FBXO33 as a novel susceptibility gene for the disorder. Neuropsychopharmacology 2015; 40:915-26. [PMID: 25284319 PMCID: PMC4330505 DOI: 10.1038/npp.2014.267] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 08/22/2014] [Accepted: 09/05/2014] [Indexed: 12/14/2022]
Abstract
Attention-deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder with high heritability. At least 30% of patients diagnosed in childhood continue to suffer from ADHD during adulthood and genetic risk factors may play an essential role in the persistence of the disorder throughout lifespan. To date, genome-wide association studies (GWAS) of ADHD have been completed in seven independent datasets, six of which were pediatric samples and one on persistent ADHD using a DNA-pooling strategy, but none of them reported genome-wide significant associations. In an attempt to unravel novel genes for the persistence of ADHD into adulthood, we conducted the first two-stage GWAS in adults with ADHD. The discovery sample included 607 ADHD cases and 584 controls. Top signals were subsequently tested for replication in three independent follow-up samples of 2104 ADHD patients and 1901 controls. None of the findings exceeded the genome-wide threshold for significance (PGC<5e-08), but we found evidence for the involvement of the FBXO33 (F-box only protein 33) gene in combined ADHD in the discovery sample (P=9.02e-07) and in the joint analysis of both stages (P=9.7e-03). Additional evidence for a FBXO33 role in ADHD was found through gene-wise and pathway enrichment analyses in our genomic study. Risk alleles were associated with lower FBXO33 expression in lymphoblastoid cell lines and with reduced frontal gray matter volume in a sample of 1300 adult subjects. Our findings point for the first time at the ubiquitination machinery as a new disease mechanism for adult ADHD and establish a rationale for searching for additional risk variants in ubiquitination-related genes.
Collapse
|
43
|
Schuch V, Utsumi DA, Costa TVMM, Kulikowski LD, Muszkat M. Attention Deficit Hyperactivity Disorder in the Light of the Epigenetic Paradigm. Front Psychiatry 2015; 6:126. [PMID: 26441687 PMCID: PMC4585002 DOI: 10.3389/fpsyt.2015.00126] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 08/31/2015] [Indexed: 12/22/2022] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is a highly prevalent neurodevelopmental disorder characterized by a definite behavioral pattern that might lead to performance problems in the social, educational, or work environments. In the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition, the symptoms of ADHD were restricted to those associated with cognitive (attention deficit) and behavioral (hyperactivity/impulsivity) deficits, while deficient emotional self-regulation, a relevant source of morbidity, was left out. The etiology of it is complex, as its exact causes have not yet been fully elucidated. ADHD seems to arise from a combination of various genetic and environmental factors that alter the developing brain, resulting in structural and functional abnormalities. The aim of this paper was to review epigenetics and ADHD focused on how multidimensional mechanisms influence the behavioral phenotype.
Collapse
Affiliation(s)
- Viviane Schuch
- Núcleo de Atendimento Neuropsicológico Infantil Interdisciplinar (NANI), Centro Paulista de Neuropsicologia, Departamento de Psicobiologia da Universidade Federal de São Paulo - UNIFESP , São Paulo , Brazil
| | - Daniel Augusto Utsumi
- Núcleo de Atendimento Neuropsicológico Infantil Interdisciplinar (NANI), Centro Paulista de Neuropsicologia, Departamento de Psicobiologia da Universidade Federal de São Paulo - UNIFESP , São Paulo , Brazil
| | | | - Leslie Domenici Kulikowski
- Laboratório de Citogenômica, LIM 03, Departamento de Patologia, Faculdade de Medicina da Universidade de São Paulo , São Paulo , Brazil
| | - Mauro Muszkat
- Núcleo de Atendimento Neuropsicológico Infantil Interdisciplinar (NANI), Centro Paulista de Neuropsicologia, Departamento de Psicobiologia da Universidade Federal de São Paulo - UNIFESP , São Paulo , Brazil
| |
Collapse
|
44
|
Otsuka I, Watanabe Y, Hishimoto A, Boku S, Mouri K, Shiroiwa K, Okazaki S, Nunokawa A, Shirakawa O, Someya T, Sora I. Association analysis of the Cadherin13 gene with schizophrenia in the Japanese population. Neuropsychiatr Dis Treat 2015; 11:1381-93. [PMID: 26082635 PMCID: PMC4461090 DOI: 10.2147/ndt.s84736] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Cadherin13 (CDH13) is a glycosylphosphatidylinositol-anchored cell adhesion molecule that plays a crucial role in morphogenesis and the maintenance of neuronal circuitry. CDH13 has been implicated in the susceptibility to a variety of psychiatric diseases. A recent genome-wide association study using Danish samples showed, for the first time, the involvement of a single nucleotide polymorphism (SNP) of CDH13 (intronic SNP rs8057927) in schizophrenia. Here, we investigated the association between other SNPs of CDH13 and schizophrenia and tried to replicate the association for the SNP of rs8057927, in the Japanese population. METHODS Using TaqMan(®) SNP genotyping assays, five tag SNPs (rs12925602, rs7193788, rs736719, rs6565051, and rs7204454) in the promoter region of CDH13 were examined for their association with schizophrenia in two independent samples. The first sample comprised 665 patients and 760 controls, and the second sample comprised 677 patients and 667 controls. One tag SNP for rs8057927 was also examined for the association with schizophrenia in the first sample set. RESULTS A GACAG haplotype of the five SNPs in the promoter region of CDH13 was significantly associated with schizophrenia in the first sample set (P=0.016 and corrected P=0.098). A combined analysis of the GACAG haplotype with the second sample set enhanced the significance (P=0.0026 and corrected P=0.021). We found no association between rs8057927 and schizophrenia in the first sample set. CONCLUSION Our results suggest that CDH13 may contribute to the genetic risk of schizophrenia. Further replication on the association of CDH13 with schizophrenia and functional studies are required to confirm the current findings.
Collapse
Affiliation(s)
- Ikuo Otsuka
- Department of Psychiatry, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Yuichiro Watanabe
- Department of Psychiatry, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Akitoyo Hishimoto
- Department of Psychiatry, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Shuken Boku
- Department of Psychiatry, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Kentaro Mouri
- Department of Psychiatry, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Kyoichi Shiroiwa
- Department of Psychiatry, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Satoshi Okazaki
- Department of Psychiatry, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Ayako Nunokawa
- Department of Psychiatry, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Osamu Shirakawa
- Department of Neuropsychiatry, School of Medicine, Kinki University, Osaka, Japan
| | - Toshiyuki Someya
- Department of Psychiatry, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Ichiro Sora
- Department of Psychiatry, Graduate School of Medicine, Kobe University, Kobe, Japan
| |
Collapse
|
45
|
Prediction of methylphenidate treatment outcome in adults with attention-deficit/hyperactivity disorder (ADHD). Eur Arch Psychiatry Clin Neurosci 2014; 264 Suppl 1:S35-43. [PMID: 25231833 DOI: 10.1007/s00406-014-0542-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 09/07/2014] [Indexed: 12/25/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a highly prevalent mental disorder of childhood, which often persists in adulthood. Methylphenidate (MPH) is one of the most effective medications to treat ADHD, but also few adult patients show no sufficient response to this drug. In this paper, we give an overview regarding genetic, neuroimaging, clinical and other studies which have tried to reveal the reasons for non-response in adults with ADHD, based on a systematic literature search. Although MPH is a well-established treatment for adults with ADHD, research regarding the prediction of treatment outcome is still limited and has resulted in inconsistent findings. No reliable neurobiological markers of treatment response have been identified so far. Some findings from clinical studies suggest that comorbidity with substance use disorders and personality disorders has an impact on treatment course and outcome. As MPH is widely used in the treatment of adults with ADHD, much more work is needed regarding positive and negative predictors of long-term treatment outcome in order to optimize the pharmacological treatment of adult ADHD patients.
Collapse
|
46
|
Li Z, Chang SH, Zhang LY, Gao L, Wang J. Molecular genetic studies of ADHD and its candidate genes: a review. Psychiatry Res 2014; 219:10-24. [PMID: 24863865 DOI: 10.1016/j.psychres.2014.05.005] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 03/31/2014] [Accepted: 05/04/2014] [Indexed: 11/26/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a common childhood-onset psychiatric disorder with high heritability. In recent years, numerous molecular genetic studies have been published to investigate susceptibility loci for ADHD. These results brought valuable candidates for further research, but they also presented great challenge for profound understanding of genetic data and general patterns of current molecular genetic studies of ADHD since they are scattered and heterogeneous. In this review, we presented a retrospective review of more than 300 molecular genetic studies for ADHD from two aspects: (1) the main achievements of various studies were summarized, including linkage studies, candidate-gene association studies, genome-wide association studies and genome-wide copy number variation studies, with a special focus on general patterns of study design and common sample features; (2) candidate genes for ADHD have been systematically evaluated in three ways for better utilization. The thorough summary of the achievements from various studies will provide an overview of the research status of molecular genetics studies for ADHD. Meanwhile, the analysis of general patterns and sample characteristics on the basis of these studies, as well as the integrative review of candidate ADHD genes, will propose new clues and directions for future experiment design.
Collapse
Affiliation(s)
- Zhao Li
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing 100101, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Su-Hua Chang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing 100101, China
| | - Liu-Yan Zhang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing 100101, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Lei Gao
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing 100101, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Jing Wang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing 100101, China.
| |
Collapse
|
47
|
Abstract
Obsessive compulsive disorder (OCD) and attention deficit hyperactivity disorder (ADHD) are two of the most common neuropsychiatric diseases in paediatric populations. The high comorbidity of ADHD and OCD with each other, especially of ADHD in paediatric OCD, is well described. OCD and ADHD often follow a chronic course with persistent rates of at least 40–50 %. Family studies showed high heritability in ADHD and OCD, and some genetic findings showed similar variants for both disorders of the same pathogenetic mechanisms, whereas other genetic findings may differentiate between ADHD and OCD. Neuropsychological and neuroimaging studies suggest that partly similar executive functions are affected in both disorders. The deficits in the corresponding brain networks may be responsible for the perseverative, compulsive symptoms in OCD but also for the disinhibited and impulsive symptoms characterizing ADHD. This article reviews the current literature of neuroimaging, neurochemical circuitry, neuropsychological and genetic findings considering similarities as well as differences between OCD and ADHD.
Collapse
|
48
|
Børglum AD, Demontis D, Grove J, Pallesen J, Hollegaard MV, Pedersen CB, Hedemand A, Mattheisen M, Uitterlinden A, Nyegaard M, Ørntoft T, Wiuf C, Didriksen M, Nordentoft M, Nöthen MM, Rietschel M, Ophoff RA, Cichon S, Yolken RH, Hougaard DM, Mortensen PB, Mors O. Genome-wide study of association and interaction with maternal cytomegalovirus infection suggests new schizophrenia loci. Mol Psychiatry 2014; 19:325-33. [PMID: 23358160 PMCID: PMC3932405 DOI: 10.1038/mp.2013.2] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 11/22/2012] [Accepted: 12/14/2012] [Indexed: 12/13/2022]
Abstract
Genetic and environmental components as well as their interaction contribute to the risk of schizophrenia, making it highly relevant to include environmental factors in genetic studies of schizophrenia. This study comprises genome-wide association (GWA) and follow-up analyses of all individuals born in Denmark since 1981 and diagnosed with schizophrenia as well as controls from the same birth cohort. Furthermore, we present the first genome-wide interaction survey of single nucleotide polymorphisms (SNPs) and maternal cytomegalovirus (CMV) infection. The GWA analysis included 888 cases and 882 controls, and the follow-up investigation of the top GWA results was performed in independent Danish (1396 cases and 1803 controls) and German-Dutch (1169 cases, 3714 controls) samples. The SNPs most strongly associated in the single-marker analysis of the combined Danish samples were rs4757144 in ARNTL (P=3.78 × 10(-6)) and rs8057927 in CDH13 (P=1.39 × 10(-5)). Both genes have previously been linked to schizophrenia or other psychiatric disorders. The strongest associated SNP in the combined analysis, including Danish and German-Dutch samples, was rs12922317 in RUNDC2A (P=9.04 × 10(-7)). A region-based analysis summarizing independent signals in segments of 100 kb identified a new region-based genome-wide significant locus overlapping the gene ZEB1 (P=7.0 × 10(-7)). This signal was replicated in the follow-up analysis (P=2.3 × 10(-2)). Significant interaction with maternal CMV infection was found for rs7902091 (P(SNP × CMV)=7.3 × 10(-7)) in CTNNA3, a gene not previously implicated in schizophrenia, stressing the importance of including environmental factors in genetic studies.
Collapse
Affiliation(s)
- A D Børglum
- Department of Biomedicine and Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
- Centre for Psychiatric Research, Aarhus University Hospital, Risskov, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus and Copenhagen, Denmark
| | - D Demontis
- Department of Biomedicine and Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus and Copenhagen, Denmark
| | - J Grove
- Department of Biomedicine and Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus and Copenhagen, Denmark
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | - J Pallesen
- Department of Biomedicine and Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus and Copenhagen, Denmark
| | - M V Hollegaard
- Section of Neonatal Screening and Hormones, Statens Serum Institute, Copenhagen, Denmark
| | - C B Pedersen
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus and Copenhagen, Denmark
- National Centre for Register-based Research, Aarhus University, Aarhus, Denmark
| | - A Hedemand
- Department of Biomedicine and Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus and Copenhagen, Denmark
| | - M Mattheisen
- Department of Genomics, Life and Brain Center, University of Bonn, Bonn, Germany
- Department of Biostatistics, Harvard School of Public Health, Boston, MA, USA
- Institute for Genomic Mathematics, University of Bonn, Bonn, Germany
| | - GROUP investigators
- Department of Biomedicine and Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
- Centre for Psychiatric Research, Aarhus University Hospital, Risskov, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus and Copenhagen, Denmark
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
- Section of Neonatal Screening and Hormones, Statens Serum Institute, Copenhagen, Denmark
- National Centre for Register-based Research, Aarhus University, Aarhus, Denmark
- Department of Genomics, Life and Brain Center, University of Bonn, Bonn, Germany
- Department of Biostatistics, Harvard School of Public Health, Boston, MA, USA
- Institute for Genomic Mathematics, University of Bonn, Bonn, Germany
- For a full list of members, see Appendix
- Department of Internal Medicine, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Molecular Medicine, Aarhus University Hospital, Skejby, Denmark
- Department of Mathematical Science, University of Copenhagen, Copenhagen, Denmark
- Synaptic transmission, H. Lundbeck A/S, Valby, Denmark
- Psychiatric Centre Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- German Center for Neurodegenerative Disorders (DZNE), Bonn, Germany
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, University of Heidelberg, Manheim, Germany
- Department of Medical Genetics and Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
- Institute of Neuroscience and Medicine (INM-1), Research Center Juelich, Juelich, Germany
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - A Uitterlinden
- Department of Internal Medicine, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | - M Nyegaard
- Department of Biomedicine and Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus and Copenhagen, Denmark
| | - T Ørntoft
- Department of Molecular Medicine, Aarhus University Hospital, Skejby, Denmark
| | - C Wiuf
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
- Department of Mathematical Science, University of Copenhagen, Copenhagen, Denmark
| | - M Didriksen
- Synaptic transmission, H. Lundbeck A/S, Valby, Denmark
| | - M Nordentoft
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus and Copenhagen, Denmark
- Psychiatric Centre Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - M M Nöthen
- Department of Genomics, Life and Brain Center, University of Bonn, Bonn, Germany
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- German Center for Neurodegenerative Disorders (DZNE), Bonn, Germany
| | - M Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, University of Heidelberg, Manheim, Germany
| | - R A Ophoff
- Department of Medical Genetics and Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - S Cichon
- Department of Genomics, Life and Brain Center, University of Bonn, Bonn, Germany
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Center Juelich, Juelich, Germany
| | - R H Yolken
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - D M Hougaard
- Section of Neonatal Screening and Hormones, Statens Serum Institute, Copenhagen, Denmark
| | - P B Mortensen
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus and Copenhagen, Denmark
- National Centre for Register-based Research, Aarhus University, Aarhus, Denmark
| | - O Mors
- Centre for Psychiatric Research, Aarhus University Hospital, Risskov, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus and Copenhagen, Denmark
| |
Collapse
|
49
|
Nijmeijer JS, Arias-Vásquez A, Rommelse NNJ, Altink ME, Buschgens CJM, Fliers EA, Franke B, Minderaa RB, Sergeant JA, Buitelaar JK, Hoekstra PJ, Hartman CA. Quantitative Linkage for Autism Spectrum Disorders Symptoms in Attention-Deficit/Hyperactivity Disorder: Significant Locus on Chromosome 7q11. J Autism Dev Disord 2014; 44:1671-80. [DOI: 10.1007/s10803-014-2039-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
50
|
van Mil NH, Steegers-Theunissen RPM, Bouwland-Both MI, Verbiest MMPJ, Rijlaarsdam J, Hofman A, Steegers EAP, Heijmans BT, Jaddoe VWV, Verhulst FC, Stolk L, Eilers PHC, Uitterlinden AG, Tiemeier H. DNA methylation profiles at birth and child ADHD symptoms. J Psychiatr Res 2014; 49:51-9. [PMID: 24290898 DOI: 10.1016/j.jpsychires.2013.10.017] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 10/29/2013] [Accepted: 10/30/2013] [Indexed: 01/17/2023]
Abstract
Attention deficit/hyperactivity disorder (ADHD) is a common and highly heritable psychiatric disorder. In addition, early life environmental factors contribute to the occurrence of ADHD. Recently, DNA methylation has emerged as a mechanism potentially mediating genetic and environmental effects. Here, we investigated whether newborn DNA methylation patterns of selected candidate genes involved in psychiatric disorders or fetal growth are associated with ADHD symptoms in childhood. Participants were 426 children from a large population based cohort of Dutch national origin. Behavioral data were obtained at age 6 years with the Child Behavior Checklist. For the current study, 11 regions at 7 different genes were selected. DNA methylation levels of cord blood DNA were measured for the 11 regions combined and for each region separately. We examined the association between DNA methylation levels at different regions and ADHD symptoms with linear mixed models. DNA methylation levels were negatively associated with ADHD symptom score in the overall analysis of all 11 regions. This association was largely explained by associations of DRD4 and 5-HTT regions. Other candidate genes showed no association between DNA methylation levels and ADHD symptom score. Associations between DNA methylation levels and ADHD symptom score were attenuated by co-occurring Oppositional defiant disorder and total symptoms. Lower DNA methylation levels of the 7 genes assessed at birth, were associated with more ADHD symptoms of the child at 6 years of age. Further studies are needed to confirm our results and to investigate the possible underlying mechanism.
Collapse
Affiliation(s)
- Nina H van Mil
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands; Department of Child and Adolescent Psychiatry, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands; Department of Obstetrics & Gynecology, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
| | - Régine P M Steegers-Theunissen
- Department of Obstetrics & Gynecology, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands; Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
| | - Marieke I Bouwland-Both
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands; Department of Obstetrics & Gynecology, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
| | - Michael M P J Verbiest
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
| | - Jolien Rijlaarsdam
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands; Department of Child and Adolescent Psychiatry, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
| | - Albert Hofman
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
| | - Eric A P Steegers
- Department of Obstetrics & Gynecology, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
| | - Bastiaan T Heijmans
- Molecular Epidemiology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Vincent W V Jaddoe
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands; Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands; Department of Paediatrics, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
| | - Frank C Verhulst
- Department of Child and Adolescent Psychiatry, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
| | - Lisette Stolk
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
| | - Paul H C Eilers
- Department of Biostatistics, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
| | - André G Uitterlinden
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands; Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
| | - Henning Tiemeier
- Department of Child and Adolescent Psychiatry, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands; Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands; Department of Psychiatry, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands.
| |
Collapse
|