1
|
Arce CCM, Machado RAR, Mamin M, Glauser G, Bruno P, Benrey B, Erb M, Robert CAM, Turlings TCJ. The polyvalent sequestration ability of an economically important beetle. Curr Biol 2024:S0960-9822(24)01359-9. [PMID: 39504964 DOI: 10.1016/j.cub.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 11/08/2024]
Abstract
Many specialized herbivorous insects sequester single classes of toxic secondary metabolites from their host plants as protection against natural enemies. If and how herbivores can use multiple classes of plant toxins across the large chemical diversity of plants for self-protection is unknown. We show that the polyphagous adults of the beetle Diabrotica virgifera are capable of selectively accumulating benzoxazinoids, cucurbitacins, and glucosinolates but not cyanogenic glycosides. Female beetles transfer the sequestered defense metabolites into their eggs, protecting them against generalist predators. Eggs containing a mixture of toxins are better protected than eggs with individual toxins. This work shows how herbivores can exploit plant chemical diversity to their own benefit as a novel adaptive mechanism that contributes to the structuring of multitrophic interaction networks.
Collapse
Affiliation(s)
- Carla C M Arce
- University of Neuchâtel, Institute of Biology, FARCE Laboratory, 2000 Neuchâtel, Switzerland.
| | - Ricardo A R Machado
- University of Neuchâtel, Institute of Biology, Experimental Biology, 2000 Neuchâtel, Switzerland
| | - Marine Mamin
- University of Neuchâtel, Institute of Biology, FARCE Laboratory, 2000 Neuchâtel, Switzerland
| | - Gaétan Glauser
- University of Neuchâtel, Neuchâtel Platform of Analytical Chemistry, 2000 Neuchâtel, Switzerland
| | - Pamela Bruno
- University of Neuchâtel, Institute of Biology, FARCE Laboratory, 2000 Neuchâtel, Switzerland
| | - Betty Benrey
- University of Neuchâtel, Institute of Biology, E-vol Laboratory, 2000 Neuchâtel, Switzerland
| | - Matthias Erb
- University of Bern, Institute of Plant Sciences, Biotic Interactions Group, 2013 Bern, Switzerland
| | - Christelle A M Robert
- University of Bern, Institute of Plant Sciences, Chemical Ecology Group, 2013 Bern, Switzerland
| | - Ted C J Turlings
- University of Neuchâtel, Institute of Biology, FARCE Laboratory, 2000 Neuchâtel, Switzerland.
| |
Collapse
|
2
|
Chen L, Guo LX, Yu XY, Huo SM, Hoffmann AA, Zhou JY, Sun JT, Hong XY. Decoding plant-induced transcriptomic variability and consistency in two related polyphagous mites differing in host ranges. Mol Ecol 2024:e17521. [PMID: 39206937 DOI: 10.1111/mec.17521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
The diet breadth of generalist herbivores when compared to specialists tends to be associated with greater transcriptional plasticity. Here, we consider whether it may also contribute to variation in host range among two generalists with different levels of polyphagy. We examined two related polyphagous spider mites with different host ranges, Tetranychus urticae (1200 plants) and Tetranychus truncatus (90 plants). Data from multiple populations of both species domesticated on common beans and transferred to new plant hosts (cotton, cucumber, eggplant) were used to investigate transcriptional plasticity relative to population-based variation in gene expression. Compared to T. truncatus, T. urticae exhibited much higher transcriptional plasticity. Populations of this species also showed much more variable expression regulation in response to a plant host, particularly for genes related to detoxification, transport, and transcriptional factors. In response to the different plant hosts, both polyphagous species showed enriched processes of drug/xenobiotics metabolism, with T. urticae orchestrating a relatively broader array of biological pathways. Through co-expression network analysis, we identified gene modules associated with host plant response, revealing shared hub genes primarily involved in detoxification metabolism when both mites fed on the same plants. After silencing a shared hub CYP gene related to eggplant exposure, the performance of both species on the original bean host improved, but the fecundity of T. truncatus decreased when feeding on eggplant. The extensive transcriptomic variation shown by T. urticae might serve as a potential compensatory mechanism for a deficiency of hub genes in this species. This research points to nuanced differences in transcriptomic variability between generalist herbivores.
Collapse
Affiliation(s)
- Lei Chen
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Li-Xue Guo
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xin-Yue Yu
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Shi-Mei Huo
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Ary A Hoffmann
- School of BioSciences, Bio21 Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jia-Yi Zhou
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jing-Tao Sun
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xiao-Yue Hong
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
3
|
Shi JY, Gu KH, Yang SM, Wei WH, Dai X. Effects of 6-methoxybenzoxazolinone (6-MBOA) on animals: state of knowledge and open questions. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2024; 111:45. [PMID: 39141101 DOI: 10.1007/s00114-024-01930-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/15/2024]
Abstract
6-methoxybenzoxazolinone (6-MBOA) is a secondary plant metabolite predominantly found in monocotyledonous plants, especially Gramineae. In damaged tissue, 2-β-D-glucopyranosyloxy-4-hydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA-Glc) is hydrolyzed to DIMBOA, which spontaneously decomposes into 6-MBOA. It is commonly detected in plants consumed by voles and livestock and can also be present in cereal-based products. Discovered in 1955, this compound is renowned for its ability to trigger animal reproduction. However, there is a lack of research on its functional and mechanistic properties, leaving much of their potential unexplored. This review aimed to comprehensively summarize the effects of 6-MBOA on animal reproduction and human health, as well as its defensive role against herbivores. Studies have shown that 6-MBOA effectively inhibits the digestion, development, growth, and reproduction of insects. 6-MBOA may act as a partial agonist of melatonin and exert a regulatory role in mammalian reproduction, resulting in either promoting or inhibiting effects. 6-MBOA has been theorized to possess anti-tumor, anti-AIDS, anti-anxiety, and weight-loss effects in humans. However, insufficient attention has been paid to its defense properties against mammalian herbivores, and the mechanisms underlying its effects on mammalian reproduction remain unclear. In addition, research on its impact on human health is still in its preliminary stages. The review emphasizes the need for further systematic and comprehensive research on 6-MBOA to fully understand its diverse functions. Elucidating the effects of 6-MBOA on animal reproduction, adaptation, and human health would advance our understanding of plant-herbivore coevolution and the influence of environmental factors on animal population dynamics. Furthermore, this knowledge could potentially promote its application in human health and animal husbandry.
Collapse
Affiliation(s)
- Jia-Yi Shi
- College of Bioscience and Biotechnology, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, China
| | - Ke-Han Gu
- College of Bioscience and Biotechnology, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, China
| | - Sheng-Mei Yang
- College of Bioscience and Biotechnology, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, China
| | - Wan-Hong Wei
- College of Bioscience and Biotechnology, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, China
| | - Xin Dai
- College of Bioscience and Biotechnology, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, China.
| |
Collapse
|
4
|
Cortez AO, Yoshinaga N, Mori N, Hwang SY. Plant growth-promoting rhizobacteria modulate induced corn defense against Spodoptera litura (Lepidoptera: Noctuidae). Biosci Biotechnol Biochem 2024; 88:872-884. [PMID: 38782714 DOI: 10.1093/bbb/zbae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
Common cutworm, Spodoptera litura is an important pest of corn causing significant crop yield loss. Synthetic insecticides have mostly been used to combat this pest, raising human and environmental health concerns. Plant growth-promoting rhizobacteria (PGPR) could compensate for or augment the harmful effects of agrochemicals. Herein, we aimed to assess whether PGPR-induced defenses in corn plants impact the host-plant selection behavior of S. litura. Headspace volatile organic compounds were analyzed using gas chromatography-mass spectrometry. Larvae fed inoculated corn exhibited lower weights and relative growth rate than noninoculated plants. Under choice experiments, PGPR-treated plants significantly reduced percentage leaf damage area and oviposition rate compared to untreated plants. Volatile organic compound ratio emission varied significantly between control and PGPR treatments, which, in part, explains feeding and oviposition deterrence in PGPR-treated plants. The results demonstrate that PGPR inoculation can enhance corn resistance to S. litura, making it a promising candidate for crop protection strategies.
Collapse
Affiliation(s)
- Amado O Cortez
- Insect-Plant Interaction Laboratory, Department of Entomology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan
- Department of Crop Science, College of Agriculture, Isabela State University, Echague, Isabela, the Philippines
| | - Naoko Yoshinaga
- Chemical Ecology Laboratory, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Naoki Mori
- Chemical Ecology Laboratory, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Shaw-Yhi Hwang
- Insect-Plant Interaction Laboratory, Department of Entomology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
5
|
Wang H, Song J, Hunt BJ, Zuo K, Zhou H, Hayward A, Li B, Xiao Y, Geng X, Bass C, Zhou S. UDP-glycosyltransferases act as key determinants of host plant range in generalist and specialist Spodoptera species. Proc Natl Acad Sci U S A 2024; 121:e2402045121. [PMID: 38683998 PMCID: PMC11087754 DOI: 10.1073/pnas.2402045121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 03/13/2024] [Indexed: 05/02/2024] Open
Abstract
Phytophagous insects have evolved sophisticated detoxification systems to overcome the antiherbivore chemical defenses produced by many plants. However, how these biotransformation systems differ in generalist and specialist insect species and their role in determining insect host plant range remains an open question. Here, we show that UDP-glucosyltransferases (UGTs) play a key role in determining the host range of insect species within the Spodoptera genus. Comparative genomic analyses of Spodoptera species that differ in host plant breadth identified a relatively conserved number of UGT genes in generalist species but high levels of UGT gene pseudogenization in the specialist Spodoptera picta. CRISPR-Cas9 knockouts of the three main UGT gene clusters of Spodoptera frugiperda revealed that UGT33 genes play an important role in allowing this species to utilize the poaceous plants maize, wheat, and rice, while UGT40 genes facilitate utilization of cotton. Further functional analyses in vivo and in vitro identified the UGT SfUGT33F32 as the key mechanism that allows generalist S. frugiperda to detoxify the benzoxazinoid DIMBOA (2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one), a potent insecticidal phytotoxin produced by poaceous plants. However, while this detoxification capacity is conserved in several generalist Spodoptera species, Spodoptera picta, which specializes on Crinum plants, is unable to detoxify DIMBOA due to a nonfunctionalizing mutation in SpUGT33F34. Collectively, these findings provide insight into the role of insect UGTs in host plant adaptation, the mechanistic basis of evolutionary transitions between generalism and specialism and offer molecular targets for controlling a group of notorious insect pests.
Collapse
Affiliation(s)
- Huidong Wang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, College of Agriculture, Henan University, Kaifeng475004, Henan, China
| | - Jing Song
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, College of Agriculture, Henan University, Kaifeng475004, Henan, China
| | - Benjamin J. Hunt
- Centre for Ecology and Conservation, University of Exeter, PenrynTR10 9FE, United Kingdom
| | - Kairan Zuo
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, College of Agriculture, Henan University, Kaifeng475004, Henan, China
| | - Huiru Zhou
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, College of Agriculture, Henan University, Kaifeng475004, Henan, China
| | - Angela Hayward
- Centre for Ecology and Conservation, University of Exeter, PenrynTR10 9FE, United Kingdom
| | - Bingbing Li
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, College of Agriculture, Henan University, Kaifeng475004, Henan, China
| | - Yajuan Xiao
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, College of Agriculture, Henan University, Kaifeng475004, Henan, China
| | - Xing Geng
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, College of Agriculture, Henan University, Kaifeng475004, Henan, China
| | - Chris Bass
- Centre for Ecology and Conservation, University of Exeter, PenrynTR10 9FE, United Kingdom
| | - Shutang Zhou
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, College of Agriculture, Henan University, Kaifeng475004, Henan, China
| |
Collapse
|
6
|
Hama JR, Fomsgaard IS, Topalović O, Vestergård M. Root uptake of cereal benzoxazinoids grants resistance to root-knot nematode invasion in white clover. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108636. [PMID: 38657547 DOI: 10.1016/j.plaphy.2024.108636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/02/2024] [Accepted: 04/16/2024] [Indexed: 04/26/2024]
Abstract
Plants synthesize a plethora of chemical defence compounds, which vary between evolutionary lineages. We hypothesize that plants evolved the ability to utilize defence compounds synthesized and released by neighbouring heterospecific plants. In two experiments, we incubated clover (Trifolium repens L.) seedlings with individual benzoxazinoid (BX) compounds (2,4-dihydroxy-1,4-benzoxazin-3-one, 2-hydroxy-1,4-benzoxazin-3-one, benzoxazolinone, and 6-methoxy- benzoxazolin-2-one), a group of bioactive compounds produced by cereals, to allow clover BX uptake. Subsequently, we transplanted the seedlings into soil and quantified BX root and shoot content and invasion of root-knot nematodes in clover roots up to 8 weeks after transplantation. We show that clover root uptake of BXs substantially enhanced clover's resistance against the root-knot nematode Meloidogyne incognita. This effect lasted up to 6 weeks after the clover roots were exposed to the BXs. BXs were absorbed by clover roots, and then translocated to the shoots. As a result of clover metabolization, we detected the parent BXs and a range of their transformation products in the roots and shoots. Based on these novel findings, we envisage that co-cultivation of crop species with complementary and transferable chemical defence systems can add to plant protection.
Collapse
Affiliation(s)
- Jawameer R Hama
- Department of Agroecology, Aarhus University, Forsøgsvej 1, 4200, Slagelse, Denmark
| | - Inge S Fomsgaard
- Department of Agroecology, Aarhus University, Forsøgsvej 1, 4200, Slagelse, Denmark
| | - Olivera Topalović
- Department of Agroecology, Aarhus University, Forsøgsvej 1, 4200, Slagelse, Denmark
| | - Mette Vestergård
- Department of Agroecology, Aarhus University, Forsøgsvej 1, 4200, Slagelse, Denmark.
| |
Collapse
|
7
|
Shi Z, Luo M, Yuan J, Gao B, Yang M, Wang G. CRISPR/Cas9-Based Functional Characterization of SfUGT50A15 Reveals Its Roles in the Resistance of Spodoptera frugiperda to Chlorantraniliprole, Emamectin Benzoate, and Benzoxazinoids. INSECTS 2024; 15:314. [PMID: 38786870 PMCID: PMC11122625 DOI: 10.3390/insects15050314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 05/25/2024]
Abstract
UDP-glycosyltransferases (UGTs) are a diverse superfamily of enzymes. Insects utilize uridine diphosphate-glucose (UDP-glucose) as a glycosyl donor for glycosylation in vivo, involved in the glycosylation of lipophilic endosymbionts and xenobiotics, including phytotoxins. UGTs act as second-stage detoxification metabolizing enzymes, which are essential for the detoxification metabolism of insecticides and benzoxazine compounds. However, the UGT genes responsible for specific glycosylation functions in S. frugiperda are unclear at present. In this study, we utilized CRISPR/Cas9 to produce a SfUGT50A15-KO strain to explore its possible function in governing sensitivity to chemical insecticides or benzoxazinoids. The bioassay results suggested that the SfUGT50A15-KO strain was significantly more sensitive to chlorantraniliprole, emamectin benzoate, and benzoxazinoids than the wild-type strains. This finding suggests that the overexpression of the SfUGT50A15 gene may be linked to S. frugiperda resistance to pesticides (chlorantraniliprole and emamectin benzoate) as well as benzoxazinoids (BXDs).
Collapse
Affiliation(s)
- Zhan Shi
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (Z.S.); (M.L.); (J.Y.); (B.G.); (M.Y.)
- School of Life Sciences, Henan University, Kaifeng 475004, China
- Shenzhen Research Institute, Henan University, Shenzhen 518000, China
| | - Mei Luo
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (Z.S.); (M.L.); (J.Y.); (B.G.); (M.Y.)
| | - Jinxi Yuan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (Z.S.); (M.L.); (J.Y.); (B.G.); (M.Y.)
| | - Bin Gao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (Z.S.); (M.L.); (J.Y.); (B.G.); (M.Y.)
- Guangxi Key Laboratory of Agri-Environmental and Agri-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Minghuan Yang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (Z.S.); (M.L.); (J.Y.); (B.G.); (M.Y.)
- Key Laboratory of Sustainable Forest Ecosystem Management—Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Guirong Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (Z.S.); (M.L.); (J.Y.); (B.G.); (M.Y.)
| |
Collapse
|
8
|
Choi MS, Lee J, Kim JM, Kim SG, Joo Y. Girdling behavior of the longhorn beetle modulates the host plant to enhance larval performance. BMC Ecol Evol 2024; 24:49. [PMID: 38637737 PMCID: PMC11025245 DOI: 10.1186/s12862-024-02228-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/19/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND Preingestive behavioral modulations of herbivorous insects on the host plant are abundant over insect taxa. Those behaviors are suspected to have functions such as deactivation of host plant defenses, nutrient accumulation, or modulating plant-mediated herbivore interactions. To understand the functional consequence of behavioral modulation of insect herbivore, we studied the girdling behavior of Phytoecia rufiventris Gautier (Lamiinae; Cerambycidae) on its host plant Erigeron annuus L. (Asteraceae) that is performed before endophytic oviposition in the stem. RESULTS The girdling behavior significantly increased the larval performance in both field monitoring and lab experiment. The upper part of the girdled stem exhibited lack of jasmonic acid induction upon larval attack, lowered protease inhibitor activity, and accumulated sugars and amino acids in compared to non-girdled stem. The girdling behavior had no effect on the larval performance of a non-girdling longhorn beetle Agapanthia amurensis, which also feeds on the stem of E. annuus during larval phase. However, the girdling behavior decreased the preference of A. amurensis females for oviposition, which enabled P. rufiventris larvae to avoid competition with A. amurensis larvae. CONCLUSIONS In conclusion, the girdling behavior modulates plant physiology and morphology to provide a modulated food source for larva and hide it from the competitor. Our study implies that the insect behavior modulations can have multiple functions, providing insights into adaptation of insect behavior in context of plant-herbivore interaction.
Collapse
Affiliation(s)
- Min-Soo Choi
- School of Biological Sciences, Seoul National University, 00826, Seoul, Republic of Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 34141, Daejeon, Republic of Korea
| | - Juhee Lee
- Department of Biological Sciences and Biotechnology, Chungbuk National University, 28644, Cheongju, Republic of Korea
| | - Jeong-Min Kim
- School of Biological Sciences, Seoul National University, 00826, Seoul, Republic of Korea
- Department of Biological Sciences and Biotechnology, Chungbuk National University, 28644, Cheongju, Republic of Korea
| | - Sang-Gyu Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 34141, Daejeon, Republic of Korea.
| | - Youngsung Joo
- School of Biological Sciences, Seoul National University, 00826, Seoul, Republic of Korea.
- Department of Biological Sciences and Biotechnology, Chungbuk National University, 28644, Cheongju, Republic of Korea.
| |
Collapse
|
9
|
Wang S, Huang W, Li M, Wang N, Liu X, Chen M, Peng X. RpUGT344J7 is involved in the reproduction switch of Rhopalosiphum padi with holocyclic life cycle. INSECT SCIENCE 2024. [PMID: 38282241 DOI: 10.1111/1744-7917.13325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 01/30/2024]
Abstract
Many aphid species exhibit both cyclical parthenogenesis (CP) and the obligate parthenogenesis (OP) life history, which are genetically determined. In CP aphid lineages, the parthenogenetic individuals can switch from asexual to sexual reproduction quickly in response to environmental factors such as changes in photoperiod and temperature. However, the OP aphid lineages do not undergo sexual reproduction under any conditions. So far, mechanisms underlying the reproduction switch in CP aphids have not been fully elucidated. Rhopalosiphum padi, a serious worldwide insect pest of wheat, has both CP and OP lineages. Uridine diphosphate-glycosyltransferases (UGTs) are enzymes that participate in the metabolic detoxification of xenobiotics. Here, we identified 43 RpUGT genes from R. padi genome and transcriptome sequences, and found that: (1) the UGT content of the CP lineage was significantly higher than that in the OP lineage at the key time points when CP lineage mainly produce virginoparae, gynoparae, and males under inducing condition, while there were no significant difference under normal conditions; (2) RpUGT344J7 gene was highly expressed during the time points when CP lineages produce gynopara and males; (3) the critical time points for CP lineages to produce virginoparaee, gynoparae, and males were affected when the CP lineages were injected with dsRpUGT344J7; (4) the knockdown of RpUGT344J7 caused a significant reduction in the total number of virginoparae, gynoparae, and males in the offspring under inducing condition. The findings contribute to our understanding of the molecular mechanisms underlying the quick shift from asexual to sexual reproduction in aphid species.
Collapse
Affiliation(s)
- Suji Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Wenjie Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Mengtian Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Ni Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Xi Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Maohua Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Xiong Peng
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, China
| |
Collapse
|
10
|
Kanagendran A, Turlings TCJ. Cowpea volatiles induced by beet armyworm or fall armyworm differentially prime maize plants. JOURNAL OF PLANT PHYSIOLOGY 2024; 292:154164. [PMID: 38141481 DOI: 10.1016/j.jplph.2023.154164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 11/29/2023] [Accepted: 12/08/2023] [Indexed: 12/25/2023]
Abstract
Exposure to herbivore-induced plant volatiles (HIPVs) is known to enhance the defense responses in plants. This so-called priming effect has only been marginally studied in intercropping systems. We tested whether HIPVs from cowpea, which often serves as an intercrop alongside maize, can prime herbivore-induced volatile emissions in maize. Conventional volatile collection assays and real-time mass spectrometry revealed that maize plants that were exposed to HIPVs from cowpea infested with Spodoptera exigua caterpillars emitted more than control plants when they themselves were subsequently damaged by the same pest. The enhanced emission was only evident on the first day after infestation. Maize plants that were exposed to HIPVs from cowpea infested by S. frugiperda larvae showed no priming effect and released considerably less upon S. frugiperda infestation than upon S. exigua infestation. The latter may be explained by the fact that S. frugiperda is particularly well adapted to feed on maize and is known to suppress maize HIPV emissions. Our results imply that HIPVs from cowpea, depending on the inducing insect herbivore, may strongly prime maize plants. This deserves further investigation, also in other intercropping systems, as it can have important consequences for tritrophic interactions and crop protection.
Collapse
Affiliation(s)
- Arooran Kanagendran
- Fundamental and Applied Research in Chemical Ecology (FARCE) Lab, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland.
| | - Ted C J Turlings
- Fundamental and Applied Research in Chemical Ecology (FARCE) Lab, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland.
| |
Collapse
|
11
|
Agrawal AA, Hastings AP, Duplais C. Testing the selective sequestration hypothesis: Monarch butterflies preferentially sequester plant defences that are less toxic to themselves while maintaining potency to others. Ecol Lett 2024; 27:e14340. [PMID: 38017619 DOI: 10.1111/ele.14340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/08/2023] [Accepted: 10/23/2023] [Indexed: 11/30/2023]
Abstract
Herbivores that sequester toxins are thought to have cracked the code of plant defences. Nonetheless, coevolutionary theory predicts that plants should evolve toxic variants that also negatively impact specialists. We propose and test the selective sequestration hypothesis, that specialists preferentially sequester compounds that are less toxic to themselves while maintaining toxicity to enemies. Using chemically distinct plants, we show that monarch butterflies sequester only a subset of cardenolides from milkweed leaves that are less potent against their target enzyme (Na+ /K+ -ATPase) compared to several dominant cardenolides from leaves. However, sequestered compounds remain highly potent against sensitive Na+ /K+ -ATPases found in most predators. We confirmed this differential toxicity with mixtures of purified cardenolides from leaves and butterflies. The genetic basis of monarch adaptation to sequestered cardenolides was also confirmed with transgenic Drosophila that were CRISPR-edited with the monarch's Na+ /K+ -ATPase. Thus, the monarch's selective sequestration appears to reduce self-harm while maintaining protection from enemies.
Collapse
Affiliation(s)
- Anurag A Agrawal
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
- Department of Entomology, Cornell University, Ithaca, New York, USA
| | - Amy P Hastings
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Christophe Duplais
- Department of Entomology, Cornell AgriTech, Cornell University, Geneva, New York, USA
| |
Collapse
|
12
|
Yang X, Hafeez M, Chen HY, Li WT, Ren RJ, Luo YS, Abdellah YAY, Wang RL. DIMBOA-induced gene expression, activity profiles of detoxification enzymes, multi-resistance mechanisms, and increased resistance to indoxacarb in tobacco cutworm, Spodoptera litura (Fabricius). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115669. [PMID: 37944464 DOI: 10.1016/j.ecoenv.2023.115669] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/22/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023]
Abstract
Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae) is one of the most destructive insect pests owned strong resistance to different insecticides. Indoxacarb as a novel oxadiazine insecticide becomes the main pesticide against S. litura. DIMBOA [2,4-dihydroxy-7-methoxy-2 H-1,4-benz-oxazin-3(4 H)-one] is involved in important chemical defense processes in corn plants. However, the insects' adaptation mechanism to insecticides when exposed to defensive allelochemicals in their host plants remains unclear. Here, we assessed multi-resistance, and resistance mechanisms based on S. litura life history traits. After 18 generations of selection, indoxacarb resistance was increased by 61.95-fold (Ind-Sel) and 86.06-fold (Dim-Sel) as compared to the Lab-Sus. Also, DIMBOA-pretreated larvae developed high resistance to beta-cypermethrin, chlorpyrifos, phoxim, chlorantraniliprole, and emamectin benzoate. Meanwhile, indoxacarb (LC50) was applied to detect its impact on thirty-eight detoxification-related genes expression. The transcripts of SlituCOE073, SlituCOE009, SlituCOE074, and SlituCOE111 as well as SlGSTs5, SlGSTu1, and SlGSTe13 were considerably raised in the Ind-Sel strain. Among the twenty-three P450s, CYP6AE68, CYP321B1, CYP6B50, CYP9A39, CYP4L10, and CYP4S9v1 transcripts denoted significantly higher levels in the Ind-Sel strain, suggesting that CarEs, GSTs and P450s genes may be engaged in indoxacarb resistance. These outcomes further highlighted the importance of detoxification enzymes for S. litura gene expression and their role in responses to insecticides and pest management approaches.
Collapse
Affiliation(s)
- Xi Yang
- Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Heyuan 517000, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Muhammad Hafeez
- Department of Horticulture, Oregon State University, Corvallis, OR 97331, USA; USDA-ARS Horticultural Crops Research Unit, 3420 NW Orchard Avenue, Corvallis, OR 97330, USA
| | - Hong-Yu Chen
- Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Heyuan 517000, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Wan-Ting Li
- Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Heyuan 517000, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Rong-Jie Ren
- Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Heyuan 517000, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Yu-Sen Luo
- Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Heyuan 517000, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Yousif Abdelrahman Yousif Abdellah
- Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Heyuan 517000, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| | - Rui-Long Wang
- Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Heyuan 517000, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
13
|
Yang XY, Yang W, Zhao H, Wang BJ, Shi Y, Wang MY, Liu SQ, Liao XL, Shi L. Functional analysis of UDP-glycosyltransferase genes conferring indoxacarb resistance in Spodoptera litura. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 196:105589. [PMID: 37945240 DOI: 10.1016/j.pestbp.2023.105589] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/10/2023] [Accepted: 08/24/2023] [Indexed: 11/12/2023]
Abstract
UDP-glycosyltransferase (UGT) is the major detoxification enzymes of phase II involved in xenobiotics metabolism, which potentially mediates the formation of insect resistance. Previous transcriptome sequencing studies have found that several UGT genes were upregulated in indoxacarb resistant strains of Spodoptera litura, but whether these UGT genes were involved in indoxacarb resistance and their functions in resistance were unclear. In this study, the UGTs inhibitor, 5-nitrouracil, enhanced the toxicity of indoxacarb against S. litura, preliminarily suggesting that UGTs were participated in indoxacarb resistance. Two UGT genes, UGT33J17 and UGT41D10 were upregulated in the resistant strains and could be induced by indoxacarb. Alignment of UGT protein sequences revealed two conserved donor-binding regions with several key residues that interact with catalytic sites and sugar donors. Further molecular modeling and docking analysis indicated that two UGT proteins were able to stably bind indoxacarb and N-decarbomethoxylated metabolite (DCJW). Furthermore, knockdown of UGT33J17 and UGT41D10 decreased viability of Spli-221 cells and enhanced susceptibility of larvae to indoxacarb. Transgenic overexpression of these genes reduced the toxicity of indoxacarb in Drosophila melanogaster. This work revealed that upregulation of UGT genes significantly contributes to indoxacarb resistance in S. litura, and is of great significance for the development of integrated and sustainable management strategies for resistant pests in the field.
Collapse
Affiliation(s)
- Xi-Yu Yang
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Wen Yang
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Hui Zhao
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Bing-Jie Wang
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Yao Shi
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Meng-Yu Wang
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Shuang-Qing Liu
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Xiao-Lan Liao
- College of Plant Protection, Hunan Agricultural University, Changsha, China.
| | - Li Shi
- College of Plant Protection, Hunan Agricultural University, Changsha, China.
| |
Collapse
|
14
|
Wang S, Liu X, Tang H, Li M, Gao P, Peng X, Chen M. UGT2B13 and UGT2C1 are involved in lambda-cyhalothrin resistance in Rhopalosiphum padi. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 194:105528. [PMID: 37532337 DOI: 10.1016/j.pestbp.2023.105528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 08/04/2023]
Abstract
Uridine diphosphate-glucuronosyltransferases (UGTs) are major multifunctional detoxification phase II enzymes involved in the metabolic detoxification of xenobiotics. However, their roles in insecticides resistance are still unclear. In this study, we identified two UGTs genes (UGT2B13 and UGT2C1) in Rhopalosiphum padi, a serious insect pest of wheat worldwide. Bioassays results showed that the resistance ratio of R. padi resistance strain (LC-R) to lambda-cyhalothrin (LC) was 2963.8 fold. The roles of UGT2B13 and UGT2C1 in lambda-cyhalothrin resistance were evaluated. Results indicated that the UGTs contents were significantly increased in the LC resistant strain of R. padi. UGT2B13 and UGT2C1 were significantly overexpressed in the LC-R strain. Transcription levels of UGT2B13 and UGT2C1 were relatively higher in the gut of LC-R strain. RNA interference (RNAi) of UGT2B13 or UGT2C1 significantly decreased the UGTs contents of the LC-R aphids and increased mortality of R. padi exposure to the LC50 concentration of LC. This study provides a new view that UGTs are involved in LC resistance of R. padi. The findings will promote further work to detailed the functions of UGTs in the metabolism resistance of insects to insecticides.
Collapse
Affiliation(s)
- Suji Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xi Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hongcheng Tang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Mengtian Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ping Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiong Peng
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Maohua Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China..
| |
Collapse
|
15
|
Liu J, Hua J, Wang Y, Guo X, Luo S. Caterpillars Detoxify Diterpenoid from Nepeta stewartiana by the Molting Hormone Gene CYP306A1. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37331015 DOI: 10.1021/acs.jafc.3c02779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Herbivorous insects are well known for detoxifying a broad range of the defense compounds produced by the plants that they feed on, but knowledge of the mechanisms of detoxification is still very limited. Here, we describe a system in which two species of lepidopteran caterpillars metabolize an abietane diterpene from the plants of Nepeta stewartiana Diels to an oxygenated derivative that is less active biologically. We found that this transformation could be catalyzed by a cytochrome P450 enzyme in caterpillars, which are associated with molting. Most interestingly, abietane diterpene targets the molting-associated gene CYP306A1 to alter the content of molting hormones in the insect at specific developmental stages and competitively inhibit molting hormone metabolism. These findings identify the mechanism by which caterpillars are able to detoxify abietane diterpenoid through hydroxylation at the C-19 position, which may be opening up exciting research questions into the mechanisms of interaction between plants and insects.
Collapse
Affiliation(s)
- Jiayi Liu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, Liaoning Province, China
| | - Juan Hua
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, Liaoning Province, China
| | - Yangyang Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, Liaoning Province, China
| | - Xuanyue Guo
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, Liaoning Province, China
| | - Shihong Luo
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, Liaoning Province, China
| |
Collapse
|
16
|
Schnurrer F, Paetz C. Reductive Conversion Leads to Detoxification of Salicortin-like Chemical Defenses (Salicortinoids) in Lepidopteran Specialist Herbivores (Notodontidae). J Chem Ecol 2023; 49:251-261. [PMID: 37191771 PMCID: PMC10495269 DOI: 10.1007/s10886-023-01423-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/24/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023]
Abstract
Lepidopteran specialist herbivores of the Notodontidae family have adapted to thrive on poplar and willow species (Salicaceae). Previous research showed that Cerura vinula, a member of the Notodontidae family occurring throughout Europe and Asia, uses a unique mechanism to transform salicortinoids, the host plant's defense compounds, into quinic acid-salicylate conjugates. However, how the production of this conjugates relates to the detoxification of salicortinoids and how this transformation proceeds mechanistically have remained unknown. To find the mechanisms, we conducted gut homogenate incubation experiments with C. vinula and re-examined its metabolism by analyzing the constituents of its frass. To estimate the contribution of spontaneous degradation, we examined the chemical stability of salicortinoids and found that salicortinoids were degraded very quickly by midgut homogenates and that spontaneous degradation plays only a marginal role in the metabolism. We learned how salicortinoids are transformed into salicylate after we discovered reductively transformed derivatives, which were revealed to play key roles in the metabolism. Unless they have undergone the process of reduction, salicortinoids produce toxic catechol. We also studied constituents in the frass of the Notodontidae species Cerura erminea, Clostera anachoreta, Furcula furcula, Notodonta ziczac, and Pheosia tremula, and found the same metabolites as those described for C. vinula. We conclude that the process whereby salicortinoids are reductively transformed represents an important adaption of the Notodontidae to their Salicaceae host species.
Collapse
Affiliation(s)
- Florian Schnurrer
- Department NMR/Biosynthesis, Max-Planck-Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany
| | - Christian Paetz
- Department NMR/Biosynthesis, Max-Planck-Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany.
| |
Collapse
|
17
|
Luo M, Li B, Jander G, Zhou S. Non-volatile metabolites mediate plant interactions with insect herbivores. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:1164-1177. [PMID: 36891808 DOI: 10.1111/tpj.16180] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/21/2023] [Accepted: 03/06/2023] [Indexed: 05/31/2023]
Abstract
Non-volatile metabolites constitute the bulk of plant biomass. From the perspective of plant-insect interactions, these structurally diverse compounds include nutritious core metabolites and defensive specialized metabolites. In this review, we synthesize the current literature on multiple scales of plant-insect interactions mediated by non-volatile metabolites. At the molecular level, functional genetics studies have revealed a large collection of receptors targeting plant non-volatile metabolites in model insect species and agricultural pests. By contrast, examples of plant receptors of insect-derived molecules remain sparse. For insect herbivores, plant non-volatile metabolites function beyond the dichotomy of core metabolites, classed as nutrients, and specialized metabolites, classed as defensive compounds. Insect feeding tends to elicit evolutionarily conserved changes in plant specialized metabolism, whereas its effect on plant core metabolism varies widely based the interacting species. Finally, several recent studies have demonstrated that non-volatile metabolites can mediate tripartite communication on the community scale, facilitated by physical connections established through direct root-to-root communication, parasitic plants, arbuscular mycorrhizae and the rhizosphere microbiome. Recent advances in both plant and insect molecular biology will facilitate further research on the role of non-volatile metabolites in mediating plant-insect interactions.
Collapse
Affiliation(s)
- Mei Luo
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Bin Li
- Key Laboratory of Pest Monitoring and Green Management, Ministry of Agriculture and Rural Affairs, Department of Entomology, China Agricultural University, Beijing, 100091, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Georg Jander
- Boyce Thompson Institute, Ithaca, NY, 14853, USA
| | - Shaoqun Zhou
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| |
Collapse
|
18
|
Micocci KC, Moreira AC, Sanchez AD, Pettinatti JL, Rocha MC, Dionizio BS, Correa KCS, Malavazi I, Wouters FC, Bueno OC, Souza DHF. Identification, cloning, and characterization of a novel chitinase from leaf-cutting ant Atta sexdens: An enzyme with antifungal and insecticidal activity. Biochim Biophys Acta Gen Subj 2023; 1867:130249. [PMID: 36183893 DOI: 10.1016/j.bbagen.2022.130249] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/16/2022] [Accepted: 09/27/2022] [Indexed: 10/14/2022]
Abstract
Chitinases are enzymes that degrade chitin, a polysaccharide found in the exoskeleton of insects, fungi, yeast, and internal structures of other vertebrates. Although chitinases isolated from bacteria, fungi and plants have been reported to have antifungal or insecticide activities, chitinases from insects with these activities have been seldomly reported. In this study, a leaf-cutting ant Atta sexdens DNA fragment containing 1623 base pairs was amplified and cloned into a vector to express the protein (AsChtII-C4B1) in Pichia pastoris. AsChtII-C4B1, which contains one catalytic domain and one carbohydrate-binding module (CBM), was secreted to the extracellular medium and purified by ammonium sulfate precipitation followed by nickel column chromatography. AsChtII-C4B1 showed maximum activity at pH 5.0 and 55 °C when tested against colloidal chitin substrate and maintained >60% of its maximal activity in different temperatures during 48 h. AsChtII-C4B1 decreased the survival of Spodoptera frugiperda larvae fed with an artificial diet that contained AsChtII-C4B1. Our results have indicated that AsChtII-C4B1 has a higher effect on larva-pupa than larva-larva molts. AsChtII-C4B1 activity targets more specifically the growth of filamentous fungus than yeast. This work describes, for the first time, the obtaining a recombinant chitinase from ants and the characterization of its insecticidal and antifungal activities.
Collapse
Affiliation(s)
- Kelli C Micocci
- Center for the Study of Social Insects, São Paulo State University "Julio de Mesquita Filho", Rio Claro, SP, Brazil
| | - Ariele C Moreira
- Department of Physics, Chemistry and Mathematics, Federal University of São Carlos, Sorocaba, SP, Brazil
| | - Amanda D Sanchez
- Department of Chemistry, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Jessica L Pettinatti
- Department of Chemistry, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Marina C Rocha
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Bruna S Dionizio
- Department of Chemistry, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Katia C S Correa
- Department of Chemistry, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Iran Malavazi
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Felipe C Wouters
- Department of Chemistry, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Odair C Bueno
- Center for the Study of Social Insects, São Paulo State University "Julio de Mesquita Filho", Rio Claro, SP, Brazil
| | - Dulce Helena F Souza
- Department of Chemistry, Federal University of São Carlos, São Carlos, SP, Brazil.
| |
Collapse
|
19
|
Li J, Baldwin IT, Li D. Harmonizing biosynthesis with post-ingestive modifications to understand the ecological functions of plant natural products. Nat Prod Rep 2022; 39:1383-1392. [PMID: 35575224 PMCID: PMC9298679 DOI: 10.1039/d2np00019a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Indexed: 11/21/2022]
Abstract
Covering: up to 2022The recent dramatic advances in our understanding of the biosynthetic pathways that produce diverse bouquets of plant-derived natural products have far surpassed our understanding of the function of these compounds for plants: how they influence a plant's Darwinian fitness in nature. Our understanding of their mechanisms, the life-processes targeted by these compounds, is similarly poorly resolved. Many plant specialized metabolites (PSMs) are further modified after ingestion by herbivores, and these post-ingestive modifications are frequently essential for PSM function. Here we summarize the biosynthesis and functional mechanisms of 17-hydroxygeranyllinalool diterpene glycosides in the ecological model plant Nicotiana attenuata, and summarize the post-ingestive modifications known from other two-component PSMs. We propose that parallel comparisons of plant natural product biosynthetic pathways and insect post-ingestive metabolism of the same plant tissues ("frassomics") will facilitate the often-elusive identification of the molecular targets of these effective chemical defenses, contribute to elucidations of post-ingestive metabolite interactions in insect guts, and predicate the rapid evolutions of resistance against insecticides inspired by PSMs. We highlight the value of conducting these parallel investigations at the level of the entire metabolome so as to include the multiple interacting pathways in both natural product biosynthesis as well as their post-ingestive processing. We introduce the concept of frass metabolite QTL (fmQTL) analysis that integrates powerful forward genetic approaches with frassomics, and suggest that insect-guided high-throughput forward- and reverse-genetics approaches in natural habitats will advance our understanding of PSM biosynthesis and function.
Collapse
Affiliation(s)
- Jiancai Li
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
| | - Ian T Baldwin
- Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, 07745 Jena, Germany.
| | - Dapeng Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, CAS-JIC Center of Excellence for Plant and Microbial Sciences (CEPAMS), Shanghai, China.
| |
Collapse
|
20
|
Israni B, Luck K, Römhild SCW, Raguschke B, Wielsch N, Hupfer Y, Reichelt M, Svatoš A, Gershenzon J, Vassão DG. Alternative transcript splicing regulates UDP-glucosyltransferase-catalyzed detoxification of DIMBOA in the fall armyworm (Spodoptera frugiperda). Sci Rep 2022; 12:10343. [PMID: 35725775 PMCID: PMC9209448 DOI: 10.1038/s41598-022-14551-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/08/2022] [Indexed: 11/09/2022] Open
Abstract
Herbivorous insects often possess the ability to detoxify chemical defenses from their host plants. The fall armyworm (Spodoptera frugiperda), which feeds principally on maize, detoxifies the maize benzoxazinoid 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) by stereoselective re-glucosylation using a UDP-glucosyltransferase, SfUGT33F28. SfUGT33F28 activity is induced by feeding on a DIMBOA-containing diet, but how this induction is regulated is unknown. In the present work, we describe the alternative splicing of the SfUGT33F28 transcript. Variant transcripts are differentially expressed in response to DIMBOA, and this transcriptional response is mediated by an insect aryl hydrocarbon receptor. These variants have large deletions leading to the production of truncated proteins that have no intrinsic UGT activity with DIMBOA but interact with the full-length enzyme to raise or lower its activity. Therefore, the formation of SfUGT33F28 splice variants induces DIMBOA-conjugating UGT activity when DIMBOA is present in the insect diet and represses activity in the absence of this plant defense compound.
Collapse
Affiliation(s)
- Bhawana Israni
- Max Planck Institute for Chemical Ecology, Jena, Germany.
| | - Katrin Luck
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | | | | | | | - Yvonne Hupfer
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | | | - Aleš Svatoš
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | | | | |
Collapse
|
21
|
Amezian D, Nauen R, Le Goff G. Comparative analysis of the detoxification gene inventory of four major Spodoptera pest species in response to xenobiotics. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 138:103646. [PMID: 34469782 DOI: 10.1016/j.ibmb.2021.103646] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/09/2021] [Accepted: 08/25/2021] [Indexed: 05/21/2023]
Abstract
The genus Spodoptera (Lepidoptera: Noctuidae) comprises some of the most polyphagous and destructive agricultural pests worldwide. The success of many species of this genus is due to their striking abilities to adapt to a broad range of host plants. Superfamilies of detoxification genes play a crucial role in the adaption to overcome plant defense mechanisms mediated by numerous secondary metabolites and toxins. Over the past decade, a substantial amount of expression data in Spodoptera larvae was produced for those genes in response to xenobiotics such as plant secondary metabolites, but also insecticide exposure. However, this information is scattered throughout the literature and in most cases does not allow to clearly identify candidate genes involved in host-plant adaptation and insecticide resistance. In the present review, we analyzed and compiled information on close to 600 pairs of inducers (xenobiotics) and induced genes from four main Spodoptera species: S. exigua, S. frugiperda, S. littoralis and S. litura. The cytochrome P450 monooxygenases (P450s; encoded by CYP genes) were the most upregulated detoxification genes across the literature for all four species. Most of the data was provided from studies on S. litura, followed by S. exigua, S. frugiperda and S. littoralis. We examined whether these detoxification genes were reported for larval survival under xenobiotic challenge in forward and reverse genetic studies. We further analyzed whether biochemical assays were carried out showing the ability of corresponding enzymes and transporters to breakdown and excrete xenobiotics, respectively. This revealed a clear disparity between species and the lack of genetic and biochemical information in S. frugiperda. Finally, we discussed the biological importance of detoxification genes for this genus and propose a workflow to study the involvement of these enzymes in an ecological and agricultural context.
Collapse
Affiliation(s)
- Dries Amezian
- Université Côte d'Azur, INRAE, CNRS, ISA, F-06903, Sophia Antipolis, France
| | - Ralf Nauen
- Bayer AG, Crop Science Division, R&D, Alfred Nobel-Strasse 50, 40789, Monheim, Germany.
| | - Gaëlle Le Goff
- Université Côte d'Azur, INRAE, CNRS, ISA, F-06903, Sophia Antipolis, France.
| |
Collapse
|
22
|
Hu L, Wu Z, Robert CAM, Ouyang X, Züst T, Mestrot A, Xu J, Erb M. Soil chemistry determines whether defensive plant secondary metabolites promote or suppress herbivore growth. Proc Natl Acad Sci U S A 2021; 118:e2109602118. [PMID: 34675080 PMCID: PMC8639379 DOI: 10.1073/pnas.2109602118] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2021] [Indexed: 01/26/2023] Open
Abstract
Plant secondary (or specialized) metabolites mediate important interactions in both the rhizosphere and the phyllosphere. If and how such compartmentalized functions interact to determine plant-environment interactions is not well understood. Here, we investigated how the dual role of maize benzoxazinoids as leaf defenses and root siderophores shapes the interaction between maize and a major global insect pest, the fall armyworm. We find that benzoxazinoids suppress fall armyworm growth when plants are grown in soils with very low available iron but enhance growth in soils with higher available iron. Manipulation experiments confirm that benzoxazinoids suppress herbivore growth under iron-deficient conditions and in the presence of chelated iron but enhance herbivore growth in the presence of free iron in the growth medium. This reversal of the protective effect of benzoxazinoids is not associated with major changes in plant primary metabolism. Plant defense activation is modulated by the interplay between soil iron and benzoxazinoids but does not explain fall armyworm performance. Instead, increased iron supply to the fall armyworm by benzoxazinoids in the presence of free iron enhances larval performance. This work identifies soil chemistry as a decisive factor for the impact of plant secondary metabolites on herbivore growth. It also demonstrates how the multifunctionality of plant secondary metabolites drives interactions between abiotic and biotic factors, with potential consequences for plant resistance in variable environments.
Collapse
Affiliation(s)
- Lingfei Hu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
- Institute of Plant Sciences, University of Bern, 3013 Bern, Switzerland
| | - Zhenwei Wu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | | | - Xiao Ouyang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Tobias Züst
- Institute of Plant Sciences, University of Bern, 3013 Bern, Switzerland
| | - Adrien Mestrot
- Institute of Geography, University of Bern, 3012 Bern, Switzerland
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China;
| | - Matthias Erb
- Institute of Plant Sciences, University of Bern, 3013 Bern, Switzerland;
| |
Collapse
|
23
|
Huber M, Roder T, Irmisch S, Riedel A, Gablenz S, Fricke J, Rahfeld P, Reichelt M, Paetz C, Liechti N, Hu L, Bont Z, Meng Y, Huang W, Robert CA, Gershenzon J, Erb M. A beta-glucosidase of an insect herbivore determines both toxicity and deterrence of a dandelion defense metabolite. eLife 2021; 10:68642. [PMID: 34632981 PMCID: PMC8504966 DOI: 10.7554/elife.68642] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 09/05/2021] [Indexed: 12/13/2022] Open
Abstract
Gut enzymes can metabolize plant defense compounds and thereby affect the growth and fitness of insect herbivores. Whether these enzymes also influence feeding preference is largely unknown. We studied the metabolization of taraxinic acid β-D-glucopyranosyl ester (TA-G), a sesquiterpene lactone of the common dandelion (Taraxacum officinale) that deters its major root herbivore, the common cockchafer larva (Melolontha melolontha). We have demonstrated that TA-G is rapidly deglucosylated and conjugated to glutathione in the insect gut. A broad-spectrum M. melolontha β-glucosidase, Mm_bGlc17, is sufficient and necessary for TA-G deglucosylation. Using cross-species RNA interference, we have shown that Mm_bGlc17 reduces TA-G toxicity. Furthermore, Mm_bGlc17 is required for the preference of M. melolontha larvae for TA-G-deficient plants. Thus, herbivore metabolism modulates both the toxicity and deterrence of a plant defense compound. Our work illustrates the multifaceted roles of insect digestive enzymes as mediators of plant-herbivore interactions. Plants produce certain substances to fend off attackers like plant-feeding insects. To stop these compounds from damaging their own cells, plants often attach sugar molecules to them. When an insect tries to eat the plant, the plant removes the stabilizing sugar, ‘activating’ the compounds and making them toxic or foul-tasting. Curiously, some insects remove the sugar themselves, but it is unclear what consequences this has, especially for insect behavior. Dandelions, Taraxacum officinale, make high concentrations of a sugar-containing defense compound in their roots called taraxinic acid β-D-glucopyranosyl ester, or TA-G for short. TA-G deters the larvae of the Maybug – a pest also known as the common cockchafer or the doodlebug – from eating dandelion roots. When Maybug larvae do eat TA-G, it is found in their systems without its sugar. However, it is unclear whether it is the plant or the larva that removes the sugar. A second open question is how the sugar removal process affects the behavior of the Maybug larvae. Using chemical analysis and genetic manipulation, Huber et al. investigated what happens when Maybug larvae eat TA-G. This revealed that the acidity levels in the larvae’s digestive system deactivate the proteins from the dandelion that would normally remove the sugar from TA-G. However, rather than leaving the compound intact, larvae remove the sugar from TA-G themselves. They do this using a digestive enzyme, known as a beta-glucosidase, that cuts through sugar. Removing the sugar from TA-G made the compound less toxic, allowing the larvae to grow bigger, but it also increased TA-G’s deterrent effects, making the larvae less likely to eat the roots. Any organism that eats plants, including humans, must deal with chemicals like TA-G in their food. Once inside the body, enzymes can change these chemicals, altering their effects. This happens with many medicines, too. In the future, it might be possible to design compounds that activate only in certain species, or under certain conditions. Further studies in different systems may aid the development of new methods of pest control, or new drug treatments.
Collapse
Affiliation(s)
- Meret Huber
- Institute of Plant Biology and Biotechnology, University of Muenster, Muenster, Germany.,Department of Biochemistry, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Thomas Roder
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Sandra Irmisch
- Department of Biochemistry, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Alexander Riedel
- Department of Biochemistry, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Saskia Gablenz
- Department of Biochemistry, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Julia Fricke
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Peter Rahfeld
- Department of Bioorganic Chemistry, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Michael Reichelt
- Department of Biochemistry, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Christian Paetz
- Research group Biosynthesis/NMR, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Nicole Liechti
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Lingfei Hu
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Zoe Bont
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Ye Meng
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Wei Huang
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | | | - Jonathan Gershenzon
- Department of Biochemistry, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Matthias Erb
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| |
Collapse
|
24
|
Feng K, Luo J, Ding X, Tang F. Transcriptome analysis and response of three important detoxifying enzymes to Serratia marcescens Bizio (SM1) in Hyphantria cunea (Drury) (Lepidoptera: Noctuidae). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 178:104922. [PMID: 34446198 DOI: 10.1016/j.pestbp.2021.104922] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/06/2021] [Accepted: 07/11/2021] [Indexed: 06/13/2023]
Abstract
Hyphantria cunea (Drury) (Lepidoptera: Noctuidae) is a main pest of forest trees. In this study, the effects of Serratia marcescens Bizio (SM1) infection on the transcriptome of H. cunea were studied. The expression of 1068 unigenes in the transcriptome of H. cunea infected by S. marcescens was markedly different from that in the control of H. cunea; 474 genes were upregulated, and 594 genes were downregulated in the former. Among them, 8 cytochrome P450s (CYPs), 5 uridine diphosphate-glycosyltransferases (UGTs) and 3 glutathione S-transferases (GSTs) were significantly differentially expressed. Pathway enrichment analysis indicated that these differentially expressed detoxification enzyme genes were mainly involved in the drug metabolism pathway, glutathione metabolism pathway and ABC transporter pathway. Interestingly, we found that five UGTs were related to oestradiol metabolism in the steroid hormone biosynthesis pathway. Furthermore, the real-time fluorescent quantitative PCR results showed that SM1 could induce the expression of CYPs and UGTs, but inhibit the expression of GSTs. This research will identify the response of important detoxification enzymes to S. marcescens, which will provide a theoretical foundation for the development of new immunosuppressants for H. cunea control. Furthermore, H. cunea was performed transcriptome sequencing to explore the key metabolic pathways, signalling pathways and genes affected by S. marcescens, which will clarify the mechanisms of S. marcescens infection of H. cunea. In addition, this study also explored the relationship between H. cunea and S. marcescens, which will provide a theoretical basis for the biological control of H. cunea by using S. marcescens.
Collapse
Affiliation(s)
- Kai Feng
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, People's Republic of China; College of Forestry, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Jian Luo
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, People's Republic of China; College of Forestry, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Xian Ding
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, People's Republic of China; College of Forestry, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Fang Tang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, People's Republic of China; College of Forestry, Nanjing Forestry University, Nanjing 210037, People's Republic of China.
| |
Collapse
|
25
|
Gimenez S, Seninet I, Orsucci M, Audiot P, Nègre N, Nam K, Streiff R, d'Alençon E. Integrated miRNA and transcriptome profiling to explore the molecular determinism of convergent adaptation to corn in two lepidopteran pests of agriculture. BMC Genomics 2021; 22:606. [PMID: 34372780 PMCID: PMC8351448 DOI: 10.1186/s12864-021-07905-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 07/22/2021] [Indexed: 11/11/2022] Open
Abstract
Background The degree to which adaptation to same environment is determined by similar molecular mechanisms, is a topic of broad interest in evolutionary biology, as an indicator of evolutionary predictability. We wished to address if adaptation to the same host plant in phytophagous insects involved related gene expression patterns. We compared sRNA-Seq and RNA-Seq data between two pairs of taxa of Ostrinia and Spodoptera frugiperda sharing maize as host-plant. For the latter, we had previously carried out a reciprocal transplant experiment by feeding of the larvae of the Corn strain (Sf-C) and the Rice strain (Sf-R) on corn versus rice and characterized the mRNA and miRNA responses. Results First, we predicted the genes encoding miRNA in Ostrinia nubilalis (On) and O. scapulalis (Os). Respectively 67 and 65 known miRNA genes, as well as 196 and 190 novel ones were predicted with Os genome using sncRNAs extracted from whole larvae feeding on corn or mugwort. In On, a read counts analysis showed that 37 (55.22%) known miRNAs and 19 (9.84%) novel miRNAs were differentially expressed (DE) on mugwort compared to corn (in Os, 25 known miRs (38.46%) and 8 novel ones (4.34%)). Between species on corn, 8 (12.5%) known miRNAs and 8 (6.83%) novel ones were DE while only one novel miRNA showed expression variation between species on mugwort. Gene target prediction led to the identification of 2953 unique target genes in On and 2719 in Os, among which 11.6% (344) were DE when comparing species on corn. 1.8% (54) of On miR targets showed expression variation upon a change of host-plant. We found molecular changes matching convergent phenotype, i.e., a set of nine miRNAs that are regulated either according to the host-plant both in On and Sf-C or between them on the same plant, corn. Among DE miR target genes between taxa, 13.7% shared exactly the same annotation between the two pairs of taxa and had function related to insect host-plant interaction. Conclusion There is some similarity in underlying genetic mechanisms of convergent evolution of two distant Lepidopteran species having adopted corn in their host range, highlighting possible adaptation genes. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07905-7.
Collapse
Affiliation(s)
| | | | - Marion Orsucci
- DGIMI, Univ Montpellier, INRAE, Montpellier, France.,CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France.,Department of Plant Biology, Uppsala BioCenter and Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, 75007, Uppsala, Sweden
| | - Philippe Audiot
- CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | | | - Kiwoong Nam
- DGIMI, Univ Montpellier, INRAE, Montpellier, France
| | - Réjane Streiff
- CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | | |
Collapse
|
26
|
van der Linden CFH, WallisDeVries MF, Simon S. Great chemistry between us: The link between plant chemical defenses and butterfly evolution. Ecol Evol 2021; 11:8595-8613. [PMID: 34257918 PMCID: PMC8258229 DOI: 10.1002/ece3.7673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 02/05/2023] Open
Abstract
Plants constantly cope with insect herbivory, which is thought to be the evolutionary driver for the immense diversity of plant chemical defenses. Herbivorous insects are in turn restricted in host choice by the presence of plant chemical defense barriers. In this study, we analyzed whether butterfly host-plant patterns are determined by the presence of shared plant chemical defenses rather than by shared plant evolutionary history. Using correlation and phylogenetic statistics, we assessed the impact of host-plant chemical defense traits on shaping northwestern European butterfly assemblages at a macroevolutionary scale. Shared chemical defenses between plant families showed stronger correlation with overlap in butterfly assemblages than phylogenetic relatedness, providing evidence that chemical defenses may determine the assemblage of butterflies per plant family rather than shared evolutionary history. Although global congruence between butterflies and host-plant families was detected across the studied herbivory interactions, cophylogenetic statistics showed varying levels of congruence between butterflies and host chemical defense traits. We attribute this to the existence of multiple antiherbivore traits across plant families and the diversity of insect herbivory associations per plant family. Our results highlight the importance of plant chemical defenses in community ecology through their influence on insect assemblages.
Collapse
Affiliation(s)
| | - Michiel F. WallisDeVries
- De Vlinderstichting/Dutch Butterfly ConservationWageningenThe Netherlands
- Plant Ecology and Nature Conservation GroupWageningen University & ResearchWageningenThe Netherlands
| | - Sabrina Simon
- Biosystematics GroupWageningen University & ResearchWageningenThe Netherlands
| |
Collapse
|
27
|
Zeng X, Pan Y, Tian F, Li J, Xu H, Liu X, Chen X, Gao X, Peng T, Bi R, Shang Q. Functional validation of key cytochrome P450 monooxygenase and UDP-glycosyltransferase genes conferring cyantraniliprole resistance in Aphis gossypii Glover. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 176:104879. [PMID: 34119222 DOI: 10.1016/j.pestbp.2021.104879] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/19/2021] [Accepted: 05/19/2021] [Indexed: 06/12/2023]
Abstract
Cytochrome P450 monooxygenases (P450s) and UDP-glycosyltransferases (UGTs) are major detoxifying enzymes that metabolize plant toxins and insecticides. In the present study, the synergists of piperonyl butoxide, sulfinpyrazone and 5-nitrouracil significantly increased cyantraniliprole and α-cypermethrin toxicity against the resistant strain. The transcripts of UGT341A4, UGT344B4, UGT344D6, UGT344J2 and UGT344M2 increased significantly in the CyR strain compared with the susceptible strain. Among these upregulated genes (including P450s), CYP6CY7 and UGT344B4 were highly expressed in the midgut. Transgenic expression of the P450 and UGT genes in broad body tissues in Drosophila melanogaster indicated that the expression of CYP380C6, CYP4CJ1, UGT341A4, UGT344B4 and UGT344M2 is sufficient to confer cyantraniliprole resistance, and CYP380C6, CYP6CY7, CYP6CY21, UGT341A4 and UGT344M2 are related to α-cypermethrin cross-resistance. The midgut-specific overexpression of CYP380C6, CYP6CY7, CYP6CY21, CYP4CJ1, UGT341A4, UGT344B4 and UGT344M2 significantly increased insensitivity to cyantraniliprole, and CYP380C6, CYP6CY7, CYP6CY21, UGT344B4 and UGT344M2 confer α-cypermethrin cross-resistance. The expression of CYP380C6, CYP4CJ1, UGT341A4 and UGT344M2 in broad tissues or in midgut has similar effects on insensitivity to insecticides; however, CYP6CY7, CYP6CY21 and UGT344B4 are more effective in the midgut. This result indicates that broad body tissues and midgut tissue are involved in insecticide resistance mediated by the candidate P450s and UGTs examined.
Collapse
Affiliation(s)
- Xiaochun Zeng
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Yiou Pan
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Fayi Tian
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Jianyi Li
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Hongfei Xu
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Xuemei Liu
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Xuewei Chen
- School of Agricultural Science, Zhengzhou University, Zhengzhou 450001, PR China
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing 100193, PR China
| | - Tianfei Peng
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Rui Bi
- Department of Entomology, Jilin Agricultural University, Changchun 130118, PR China
| | - Qingli Shang
- College of Plant Science, Jilin University, Changchun 130062, PR China; School of Agricultural Science, Zhengzhou University, Zhengzhou 450001, PR China.
| |
Collapse
|
28
|
Malook SU, Xu Y, Qi J, Li J, Wang L, Wu J. Mythimna separata herbivory primes maize resistance in systemic leaves. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3792-3805. [PMID: 33647931 PMCID: PMC8096606 DOI: 10.1093/jxb/erab083] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
Biotic and abiotic cues can trigger priming in plants, which enables plants to respond to subsequent challenge with stronger and/or faster responses. It is well known that herbivory activates defense-related responses in systemic leaves. However, little is known about whether insect feeding activates priming in systemic leaves. To determine whether and how herbivory induces priming in maize systemic leaves, a combination of insect bioassays, phytohormone and defense metabolite quantification, and genetic and transcriptome analyses were performed. Actual and simulated Mythimna separata herbivory in maize local leaves primed the systemic leaves for enhanced accumulation of jasmonic acid and benzoxazinoids and increased resistance to M. separata. Activation of priming in maize systemic leaves depends on both the duration of simulated herbivory and perception of M. separata oral secretions in the local leaves, and genetic analysis indicated that jasmonic acid and benzoxazinoids mediate the primed defenses in systemic leaves. Consistently, in response to simulated herbivory, the primed systemic leaves exhibited a large number of genes that were uniquely regulated or showed further up- or down-regulation compared with the non-primed systemic leaves. This study provides new insight into the regulation and ecological function of priming in maize.
Collapse
Affiliation(s)
- Saif ul Malook
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yuxing Xu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinfeng Qi
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Li
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Wang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianqiang Wu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
29
|
Ma K, Tang Q, Liang P, Li J, Gao X. UDP-Glycosyltransferases from the UGT344 Family Are Involved in Sulfoxaflor Resistance in Aphis gossypii Glover. INSECTS 2021; 12:insects12040356. [PMID: 33923504 PMCID: PMC8072560 DOI: 10.3390/insects12040356] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/06/2021] [Accepted: 03/09/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary The cotton aphid, Aphis gossypii Glover, is a notorious pest in cotton and cucurbit fields. The control of A. gossypii has typically relied on the application of chemical insecticides. Sulfoxaflor is the first commercially available sulfoximine insecticide, which exhibits great efficacy against sap-feeding insect pests and has been applied as an alternative insecticide for controlling of A. gossypii in China. Consequently, A. gossypii quickly developed resistance to this insecticide. Hence, in this study, to clarify the potential detoxifying roles of UGTs (one of the phase II detoxification enzymes) in resistance of A. gossypii against sulfoxaflor, the synergistic effects of two synergists (sulfinpyrazone and 5-nitrouracil) against sulfoxaflor were investigated using the susceptible and laboratory-established sulfoxaflor resistant strain (SulR), and the expression levels of 15 UGT genes were determined by qRT-PCR. Furthermore, the involvement of highly upregulated UGTs in sulfoxaflor-resistant strain was functionally tested by RNA interference (RNAi). Our results suggest that overexpression of UGTs contributes to sulfoxaflor resistance in A. gossypii, which should be useful for understanding sulfoxaflor resistance mechanisms. Abstract UDP-glycosyltransferases (UGTs) are major phase II detoxification enzymes that catalyze the transfer of glycosyl residues from activated nucleotide sugars to acceptor hydrophobic molecules and play very important roles in the biotransformation of various endogenous and exogenous compounds. Our previous studies demonstrated that UGTs participated in the detoxification of insecticides in Aphis gossypii. However, the potential roles of UGTs in A. gossypii resistance to sulfoxaflor are still unclear. In this study, two inhibitors of UGT enzymes, sulfinpyrazone and 5-nitrouracil, significantly increased the toxicity of sulfoxaflor to a resistant strain of A. gossypii, whereas there were no synergistic effects in the susceptible strain. Based on the transcriptome sequencing results, the expression levels of 15 UGTs were analyzed by quantitative real-time PCR, and we found that seven UGT genes were highly over-expressed in a sulfoxaflor-resistant strain compared to the susceptible strain, including UGT344B4, UGT344C5, UGT344A11, UGT344A14, and UGT344L2. Further suppressing the expression of UGT344B4, UGT344C5, and UGT344A11 by RNA interference significantly increased the sensitivity of resistant aphids to sulfoxaflor, indicating that the overexpression of UGT genes is potentially associated with sulfoxaflor resistance. These results could provide valuable information for further understanding the mechanisms of insecticide resistance.
Collapse
Affiliation(s)
- Kangsheng Ma
- Department of Entomology, China Agricultural University, Beijing 100193, China; (K.M.); (Q.T.); (P.L.)
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Qiuling Tang
- Department of Entomology, China Agricultural University, Beijing 100193, China; (K.M.); (Q.T.); (P.L.)
| | - Pingzhuo Liang
- Department of Entomology, China Agricultural University, Beijing 100193, China; (K.M.); (Q.T.); (P.L.)
| | - Jianhong Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing 100193, China; (K.M.); (Q.T.); (P.L.)
- Correspondence: ; Tel.: +86-010-6273-2974
| |
Collapse
|
30
|
Nagare M, Ayachit M, Agnihotri A, Schwab W, Joshi R. Glycosyltransferases: the multifaceted enzymatic regulator in insects. INSECT MOLECULAR BIOLOGY 2021; 30:123-137. [PMID: 33263941 DOI: 10.1111/imb.12686] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/26/2019] [Accepted: 11/27/2020] [Indexed: 05/23/2023]
Abstract
Glycosyltransferases (GTs) catalyse the reaction of glyco-conjugation of various biomolecules by transferring the saccharide moieties from an activated nucleotide sugar to nucleophilic glycosyl acceptor. In insects, GTs show diverse temporal and site-specific expression patterns and thus play significant roles in forming the complex biomolecular structures that are necessary for insect survival, growth and development. Several insects exhibit GT-mediated detoxification as a key defence strategy against plant allelochemicals and xenobiotic compounds, as well as a mechanism for pesticide cross-resistance. Also, these enzymes act as crucial effectors and modulators in various developmental processes of insects such as eye development, UV shielding, cuticle formation, epithelial development and other specialized functions. Furthermore, many of the known insect GTs have been shown to play a fundamental role in other physiological processes like body pigmentation, cuticular tanning, chemosensation and stress response. This review provides a detailed overview of the multifaceted functionality of insect GTs and summarizes numerous case studies associated with it.
Collapse
Affiliation(s)
- M Nagare
- Institute of Bioinformatics and Biotechnology (IBB), Savitribai Phule Pune University, Pune, India
| | - M Ayachit
- Institute of Bioinformatics and Biotechnology (IBB), Savitribai Phule Pune University, Pune, India
| | - A Agnihotri
- Institute of Bioinformatics and Biotechnology (IBB), Savitribai Phule Pune University, Pune, India
- School of Veterinary and Life Sciences, Western Australian State Agricultural Biotechnology Centre (SABC), Murdoch University, Perth, Western Australia, Australia
| | - W Schwab
- Biotechnology of Natural Products, Center of Life and Food Science Weihenstephan, Technical University of Munich, Freising, Germany
| | - R Joshi
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
31
|
Hickman DT, Rasmussen A, Ritz K, Birkett MA, Neve P. Review: Allelochemicals as multi-kingdom plant defence compounds: towards an integrated approach. PEST MANAGEMENT SCIENCE 2021; 77:1121-1131. [PMID: 32902160 PMCID: PMC7891363 DOI: 10.1002/ps.6076] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/04/2020] [Accepted: 09/09/2020] [Indexed: 05/05/2023]
Abstract
The capability of synthetic pesticides to manage weeds, insect pests and pathogens in crops has diminished due to evolved resistance. Sustainable management is thus becoming more challenging. Novel solutions are needed and, given the ubiquity of biologically active secondary metabolites in nature, such compounds require further exploration as leads for novel crop protection chemistry. Despite improving understanding of allelochemicals, particularly in terms of their potential for use in weed control, their interactions with multiple biotic kingdoms have to date largely been examined in individual compounds and not as a recurrent phenomenon. Here, multi-kingdom effects in allelochemicals are introduced by defining effects on various organisms, before exploring current understanding of the inducibility and possible ecological roles of these compounds with regard to the evolutionary arms race and dose-response relationships. Allelochemicals with functional benefits in multiple aspects of plant defence are described. Gathering these isolated areas of science under the unified umbrella of multi-kingdom allelopathy encourages the development of naturally-derived chemistries conferring defence to multiple discrete biotic stresses simultaneously, maximizing benefits in weed, insect and pathogen control, while potentially circumventing resistance. © 2020 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Darwin T Hickman
- Rothamsted Research, HarpendenHertfordshireUK
- University of Nottingham, Sutton BoningtonLeicestershireUK
| | | | - Karl Ritz
- University of Nottingham, Sutton BoningtonLeicestershireUK
| | | | - Paul Neve
- Rothamsted Research, HarpendenHertfordshireUK
| |
Collapse
|
32
|
Murad NF, Silva-Brandão KL, Brandão MM. Mechanisms behind polyphagia in a pest insect: Responses of Spodoptera frugiperda (J.E. Smith) strains to preferential and alternative larval host plants assessed with gene regulatory networks. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2021; 1864:194687. [PMID: 33561559 DOI: 10.1016/j.bbagrm.2021.194687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 01/21/2021] [Accepted: 01/21/2021] [Indexed: 10/22/2022]
Abstract
A dataset of gene expression from Spodoptera frugiperda, a highly generalist pest moth, was used to understand how gene regulation is related to larval host plant preference. Transcriptomic data of corn and rice strains of S. frugiperda larvae, reared on different diets, were analysed with three different approaches of gene network inference, namely co-expression, weighted co-expression and Bayesian networks, since each methodology provides a different visualization of the data. Using these approaches, it was possible to identify two loosely interconnected co-expression networks, one of them responsible for fast response to herbivory and anti-herbivory mechanisms and the other related to housekeeping genes, which present slower response to environmental variations. Integrating different levels of information such as gene expression patterns, gene assembly, transcriptomics, relationship among genes and phenotypes, functional relationships, among other information, enabled a wider visualization of S. frugiperda response to diet stimuli. The biological properties in the proposed networks are here described and discussed, as well as patterns of gene expression related to larval performance attributes.
Collapse
Affiliation(s)
- Natália Faraj Murad
- Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade de Campinas (UNICAMP). Av. Cândido Rondon, 400. CEP 13083-875 Campinas, SP, Brazil
| | - Karina Lucas Silva-Brandão
- Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade de Campinas (UNICAMP). Av. Cândido Rondon, 400. CEP 13083-875 Campinas, SP, Brazil; Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Av. dos Estados, 5001. CEP 09210-580 Santo André, SP, Brazil
| | - Marcelo Mendes Brandão
- Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade de Campinas (UNICAMP). Av. Cândido Rondon, 400. CEP 13083-875 Campinas, SP, Brazil.
| |
Collapse
|
33
|
Silva-Brandão KL, Murad NF, Peruchi A, Martins CHZ, Omoto C, Figueira A, Brandão MM, Trigo JR. Transcriptome differential co-expression reveals distinct molecular response of fall-armyworm strains to DIMBOA. PEST MANAGEMENT SCIENCE 2021; 77:518-526. [PMID: 32815313 DOI: 10.1002/ps.6051] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/14/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA), the main benzoxazinoid found in corn, elicits variable larval responses from different pest moths. For the widespread and highly polyphagous Spodoptera frugiperda (Lepidoptera: Noctuidae), the fall-armyworm (FAW), DIMBOA acts as a feeding stimulant and improves larval growth at low concentrations. The FAW present two host plant-related strains, corn and rice strains, related to host preference on corn and other Graminae or rice. Based on both host preference and strain divergence of the FAW on corn, a cereal containing DIMBOA, and rice, lacking this compound, we question if corn and rice strains larvae respond equally toward DIMBOA. We evaluated differential expression in the transcriptome of both midgut and fat body larval tissues of the two strains reared on either DIMBOA-enriched artificial diet or control diet and inferred Bayesian networks. RESULTS We found differences in performance between corn and rice strain larvae reared on DIMBOA, as well as several differentially regulated contigs annotated as esterases, peptidases, transferases and reductases, all of them known for being related to responses of lepidopterans and other insects to DIMBOA. We also found a UDP-glucuronosyltransferase very similar to others found in many lepidopterans occupying a central hub within a transferase Bayesian network, suggesting that it is essential to an effective response to DIMBOA in FAW. CONCLUSION Our results suggest that there is an intrinsic cost for FAW rice strain larvae to metabolize corn-originated hydroxamic acids, which could have resulted in the partial host-associated genetic isolation found at FAW field populations.
Collapse
Affiliation(s)
- Karina Lucas Silva-Brandão
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, Brazil
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, Brazil
| | - Natália Faraj Murad
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, Brazil
- Programa de Pós-Graduação em Genética e Biologia Molecular, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Aline Peruchi
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, Brazil
| | - Carlos Henrique Zanini Martins
- Programa de Pós-Graduação em Biologia Funcional e Molecular, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Celso Omoto
- Departamento de Entomologia e Acaralogia, Escola de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, Brazil
| | - Antonio Figueira
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, Brazil
| | - Marcelo Mendes Brandão
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, Brazil
| | - José Roberto Trigo
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| |
Collapse
|
34
|
Israni B, Wouters FC, Luck K, Seibel E, Ahn SJ, Paetz C, Reinert M, Vogel H, Erb M, Heckel DG, Gershenzon J, Vassão DG. The Fall Armyworm Spodoptera frugiperda Utilizes Specific UDP-Glycosyltransferases to Inactivate Maize Defensive Benzoxazinoids. Front Physiol 2020; 11:604754. [PMID: 33408643 PMCID: PMC7781194 DOI: 10.3389/fphys.2020.604754] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/24/2020] [Indexed: 11/13/2022] Open
Abstract
The relationship between plants and insects is continuously evolving, and many insects rely on biochemical strategies to mitigate the effects of toxic chemicals in their food plants, allowing them to feed on well-defended plants. Spodoptera frugiperda, the fall armyworm (FAW), accepts a number of plants as hosts, and has particular success on plants of the Poaceae family such as maize, despite their benzoxazinoid (BXD) defenses. BXDs stored as inert glucosides are converted into toxic aglucones by plant glucosidases upon herbivory. DIMBOA, the main BXD aglucone released by maize leaves, can be stereoselectively re-glucosylated by UDP-glycosyltransferases (UGTs) in the insect gut, rendering it non-toxic. Here, we identify UGTs involved in BXD detoxification by FAW larvae and examine how RNAi-mediated manipulation of the larval glucosylation capacity toward the major maize BXD, DIMBOA, affects larval growth. Our findings highlight the involvement of members of two major UGT families, UGT33 and UGT40, in the glycosylation of BXDs. Most of the BXD excretion in the frass occurs in the form of glucosylated products. Furthermore, the DIMBOA-associated activity was enriched in the gut tissue, with a single conserved UGT33 enzyme (SfUGT33F28) being dedicated to DIMBOA re-glucosylation in the FAW gut. The knock-down of its encoding gene reduces larval performance in a strain-specific manner. This study thus reveals that a single UGT enzyme is responsible for detoxification of the major maize-defensive BXD in this pest insect.
Collapse
Affiliation(s)
- Bhawana Israni
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Felipe C Wouters
- Max Planck Institute for Chemical Ecology, Jena, Germany.,Department of Chemistry, Federal University of São Carlos, São Carlos, Brazil
| | - Katrin Luck
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Elena Seibel
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Seung-Joon Ahn
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS, United States
| | | | | | - Heiko Vogel
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Matthias Erb
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - David G Heckel
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | | | | |
Collapse
|
35
|
Pan Y, Wen S, Chen X, Gao X, Zeng X, Liu X, Tian F, Shang Q. UDP-glycosyltransferases contribute to spirotetramat resistance in Aphis gossypii Glover. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 166:104565. [PMID: 32448419 DOI: 10.1016/j.pestbp.2020.104565] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/06/2020] [Accepted: 03/19/2020] [Indexed: 06/11/2023]
Abstract
Uridine diphosphate (UDP)-glycosyltransferases (UGTs) catalyze the conjugation of small lipophilic endogenous and exogenous compounds with sugars to produce water-soluble glycosides, playing an important role in insect endobiotic regulation and xenobiotic detoxification. In this study, two UGT-inhibitors, sulfinpyrazone and 5-nitrouracil, significantly increased spirotetramat toxicity against third instar nymphs of resistant Aphis gossypii, whereas there were no synergistic effects in apterous adult aphids, suggesting UGT involvement in spirotetramat resistance in cotton aphids. Furthermore, the UHPLC-MS/MS was employed to determine the content of spirotetramat and its four metabolites (S-enol, S-glu, S-mono, S-keto) in the honeydew of resistant cotton aphids under spirotetramat treatment. No residual spirotetramat was detected in the honeydew, while its four metabolites were detected at a S-enol: S-glu: S-mono: S-keto ratio of 69.30: 6.54: 1.44: 1.00. Therefore, glycoxidation plays a major role in spirotetramat inactivation and excretion in resistant aphids. Compared with the susceptible strain, the transcriptional levels of UGT344M2 were significantly upregulated in nymphs and adults of the resistant strain. RNA interference of UGT344M2 dramatically increased spirotetramat toxicity in nymphs, but no such effect were found in the resistant adult aphids. Overall, UGT-mediated glycoxidation were found to be involved in spirotetramat resistance. The suppression of UGT344M2 significantly increased the sensitivity of resistant nymphs to spirotetramat, suggesting that UGT344M2 upregulation might be associated with spirotetramat detoxification. This study provides an overview of the involvement of metabolic factors, UGTs, in the development of spirotetramat resistance.
Collapse
Affiliation(s)
- Yiou Pan
- College of Plant Science, Jilin University, Changchun 130062, PR China; School of Agricultural Science, Zhengzhou University, Zhengzhou 450001, PR China
| | - Shuyuan Wen
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Xuewei Chen
- School of Agricultural Science, Zhengzhou University, Zhengzhou 450001, PR China
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing 100193, PR China
| | - Xiaochun Zeng
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Xuemei Liu
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Fayi Tian
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Qingli Shang
- College of Plant Science, Jilin University, Changchun 130062, PR China; School of Agricultural Science, Zhengzhou University, Zhengzhou 450001, PR China.
| |
Collapse
|
36
|
De Lange ES, Laplanche D, Guo H, Xu W, Vlimant M, Erb M, Ton J, Turlings TCJ. Spodoptera frugiperda Caterpillars Suppress Herbivore-Induced Volatile Emissions in Maize. J Chem Ecol 2020; 46:344-360. [PMID: 32002720 DOI: 10.1007/s10886-020-01153-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 01/14/2023]
Abstract
The vast spectrum of inducible plant defenses can have direct negative effects on herbivores, or indirect effects, for instance in the form of herbivore-induced plant volatiles (HIPVs) that attract natural enemies. Various arthropods have evolved ways to suppress plant defenses. To test whether this is the case for caterpillar-induced HIPVs, we compared the volatile induction by Spodoptera frugiperda (Lepidoptera: Noctuidae), which is particularly well adapted to feed on maize (Zea mays), with the induction by three more generalist noctuid larvae. We tested the hypothesis that S. frugiperda suppresses HIPV emissions in maize, and thereby reduces attractiveness to natural enemies. HIPV emissions triggered by S. frugiperda when feeding on maize were indeed found to be significantly weaker than by Spodoptera littoralis, Spodoptera exigua, and Helicoverpa armigera. The suppression seems specific for maize, as we found no evidence for this when S. frugiperda caterpillars fed on cotton (Gossypium herbaceum). Artificially damaged maize plants treated with larval regurgitant revealed that HIPV suppression may be related to factors in the caterpillars' oral secretions. We also found evidence that differential physical damage that the caterpillars inflict on maize leaves may play a role. The suppressed induction of HIPVs had no apparent consequences for the attraction of a common parasitoid of S. frugiperda, Cotesia marginiventris (Hymenoptera: Braconidae). Nevertheless, the ability to manipulate the defenses of its main host plant may have contributed to the success of S. frugiperda as a major pest of maize, especially in Africa and Asia, which it has recently invaded.
Collapse
Affiliation(s)
- Elvira S De Lange
- Laboratory of Fundamental and Applied Research in Chemical Ecology, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland.,Department of Entomology and Nematology, University of California Davis, 1 Shields Avenue, 367 Briggs Hall, Davis, CA, 95616, USA
| | - Diane Laplanche
- Laboratory of Fundamental and Applied Research in Chemical Ecology, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland
| | - Huijuan Guo
- Laboratory of Fundamental and Applied Research in Chemical Ecology, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland.,State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wei Xu
- Laboratory of Fundamental and Applied Research in Chemical Ecology, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland.,College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Michèle Vlimant
- Laboratory of Animal Physiology, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland
| | - Matthias Erb
- Laboratory of Fundamental and Applied Research in Chemical Ecology, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland.,Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013, Bern, Switzerland
| | - Jurriaan Ton
- Plant Production & Protection Institute of Plant and Soil Biology, Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Ted C J Turlings
- Laboratory of Fundamental and Applied Research in Chemical Ecology, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland.
| |
Collapse
|
37
|
Ahn SJ, Betzin F, Gikonyo MW, Yang ZL, Köllner TG, Beran F. Identification and evolution of glucosinolate sulfatases in a specialist flea beetle. Sci Rep 2019; 9:15725. [PMID: 31673017 PMCID: PMC6823443 DOI: 10.1038/s41598-019-51749-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 10/07/2019] [Indexed: 11/24/2022] Open
Abstract
Glucosinolates, a characteristic group of specialized metabolites found in Brassicales plants, are converted to toxic isothiocyanates upon herbivory. Several insect herbivores, including the cabbage stem flea beetle (Psylliodes chrysocephala), prevent glucosinolate activation by forming desulfo-glucosinolates. Here we investigated the molecular basis of glucosinolate desulfation in P. chrysocephala, an important pest of oilseed rape. Enzyme activity assays with crude beetle protein extracts revealed that glucosinolate sulfatase (GSS) activity is associated with the gut membrane and has narrow substrate specificity towards the benzenic glucosinolate sinalbin. In agreement with GSS activity localization in vivo, we identified six genes encoding arylsulfatase-like enzymes with a predicted C-terminal transmembrane domain, of which five showed GSS activity upon heterologous expression in insect cells. PcGSS1 and PcGSS2 used sinalbin and indol-3-ylmethyl glucosinolate as substrates, respectively, whereas PcGSS3, PcGSS4, and PcGSS5 showed weak activity in enzyme assays. RNAi-mediated knock-down of PcGSS1 and PcGSS2 expression in adult beetles confirmed their function in vivo. In a phylogenetic analysis of coleopteran and lepidopteran arylsulfatases, the P. chrysocephala GSSs formed a cluster within a coleopteran-specific sulfatase clade distant from the previously identified GSSs of the diamondback moth, Plutella xylostella, suggesting an independent evolution of GSS activity in ermine moths and flea beetles.
Collapse
Affiliation(s)
- Seung-Joon Ahn
- Research Group Sequestration and Detoxification in Insects, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, Mississippi, 39762, United States
| | - Franziska Betzin
- Research Group Sequestration and Detoxification in Insects, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
| | - Matilda W Gikonyo
- Research Group Sequestration and Detoxification in Insects, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
| | - Zhi-Ling Yang
- Research Group Sequestration and Detoxification in Insects, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
| | - Tobias G Köllner
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
| | - Franziska Beran
- Research Group Sequestration and Detoxification in Insects, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany.
| |
Collapse
|
38
|
Pan Y, Xu P, Zeng X, Liu X, Shang Q. Characterization of UDP-Glucuronosyltransferases and the Potential Contribution to Nicotine Tolerance in Myzus persicae. Int J Mol Sci 2019; 20:E3637. [PMID: 31349586 PMCID: PMC6695686 DOI: 10.3390/ijms20153637] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/20/2019] [Accepted: 07/22/2019] [Indexed: 11/22/2022] Open
Abstract
Uridine diphosphate (UDP)-glycosyltransferases (UGTs) are major phase II detoxification enzymes involved in glycosylation of lipophilic endobiotics and xenobiotics, including phytoalexins. Nicotine, one of the most abundant secondary plant metabolites in tobacco, is highly toxic to herbivorous insects. Plant-herbivore competition is the major impetus for the evolution of large superfamilies of UGTs and other detoxification enzymes. However, UGT functions in green peach aphid (Myzus persicae) adaptation are unknown. In this study, we show that UGT inhibitors (sulfinpyrazone and 5-nitrouracil) significantly increased nicotine toxicity in M. persicae nicotianae, suggesting that UGTs may be involved in nicotine tolerance. In total, 101 UGT transcripts identified in the M. persicae genome/transcriptome were renamed according to the UGT Nomenclature Committee guidelines and grouped into 11 families, UGT329, UGT330, UGT339, UGT341-UGT345, and UGT348-UGT350, with UGT344 containing the most (57). Ten UGTs (UGT330A3, UGT339A2, UGT341A6, UGT342B3, UGT343C3, UGT344D5, UGT344D8, UGT348A3, UGT349A3, and UGT350A3) were highly expressed in M. persicae nicotianae compared to M. persicae sensu stricto. Knockdown of four UGTs (UGT330A3, UGT344D5, UGT348A3, and UGT349A3) significantly increased M. persicae nicotianae sensitivity to nicotine, suggesting that UGT expression in this subspecies may be associated with nicotine tolerance and thus host adaptation. This study reveals possible UGTs relevant to nicotine adaptation in tobacco-consuming M. persicae nicotianae, and the findings will facilitate further validation of the roles of these UGTs in nicotine tolerance.
Collapse
Affiliation(s)
- Yiou Pan
- College of Plant Science, Jilin University, Changchun 130062, China
- School of Agricultural Science, Zhengzhou University, Zhengzhou 450001, China
| | - Pengjun Xu
- Institute of Tobacco Research, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Xiaochun Zeng
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Xuemei Liu
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Qingli Shang
- College of Plant Science, Jilin University, Changchun 130062, China.
- School of Agricultural Science, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
39
|
Snoeck S, Pavlidi N, Pipini D, Vontas J, Dermauw W, Van Leeuwen T. Substrate specificity and promiscuity of horizontally transferred UDP-glycosyltransferases in the generalist herbivore Tetranychus urticae. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 109:116-127. [PMID: 30978500 DOI: 10.1016/j.ibmb.2019.04.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/20/2019] [Accepted: 04/07/2019] [Indexed: 06/09/2023]
Abstract
Uridine diphosphate (UDP)-glycosyltransferases (UGTs) catalyze the addition of UDP-sugars to small hydrophobic molecules, turning them into more water-soluble metabolites. While their role in detoxification is well documented for vertebrates, arthropod UGTs have only recently been linked to the detoxification and sequestration of plant toxins and insecticides. The two-spotted spider mite Tetranychus urticae is a generalist herbivore notorious for rapidly developing resistance to insecticides and acaricides. We identified a set of eight UGT genes that were overexpressed in mites upon long-term acclimation or adaptation to a new host plant and/or in mite strains highly resistant to acaricides. Functional expression revealed that they were all catalytically active and that the majority preferred UDP-glucose as activated donor for glycosylation of model substrates. A high-throughput substrate screening of both plant secondary metabolites and pesticides revealed patterns of both substrate specificity and promiscuity. We further selected nine enzyme-substrate combinations for more comprehensive analysis and determined steady-state kinetic parameters. Among others, plant metabolites such as capsaicin and several flavonoids were shown to be glycosylated. The acaricide abamectin was also glycosylated by two UGTs and one of these was also overexpressed in an abamectin resistant strain. Our study corroborates the potential role of T. urticae UGTs in detoxification of both synthetic and natural xenobiotic compounds and paves the way for rapid substrate screening of arthropod UGTs.
Collapse
Affiliation(s)
- Simon Snoeck
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| | - Nena Pavlidi
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam (UvA), Science Park 904, 1908 XH, Amsterdam, the Netherlands.
| | - Dimitra Pipini
- Instiute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology (FORTH), University of Crete, Vassilika Vouton, 70013, Heraklion, Crete, Greece; Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece.
| | - John Vontas
- Instiute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology (FORTH), University of Crete, Vassilika Vouton, 70013, Heraklion, Crete, Greece.
| | - Wannes Dermauw
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| | - Thomas Van Leeuwen
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium; Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam (UvA), Science Park 904, 1908 XH, Amsterdam, the Netherlands.
| |
Collapse
|
40
|
Juma G, Le Ru B, Calatayud PA. Assortments of Digestive Enzymes Induced in First Instar Larvae of Busseola fusca Feeding on Different Plants. INTERNATIONAL JOURNAL OF INSECT SCIENCE 2019; 11:1179543319843521. [PMID: 31037037 PMCID: PMC6475838 DOI: 10.1177/1179543319843521] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 03/20/2019] [Indexed: 05/31/2023]
Abstract
The stem borer Busseola fusca (Fuller) (Lepidoptera: Noctuidae) is an important pest of maize and sorghum in sub-Saharan Africa. This insect has oligophagous feeding habits, feeding mostly on maize and sorghum with a narrow range of wild Poaceous plant species. We hypothesised that first instar B. fusca larvae, the critical stage for successful establishment on a host plant, can establish and then grow on a particular plant as a result of induction of a complement of digestive enzymes that mediates host acceptance at first instars. A fast semi-quantitative analysis of potentially digestive enzymatic activities present in the first larvae previously fed for 4 days on leaves of host and non-host plants was performed using the API-ZYM kit system able to detect a multiplex of enzyme activities. Regardless of the plant species, the larvae exhibited higher activities of the carbohydrate metabolising enzymes than of aminopeptidases and proteases. In addition, highest activities of carbohydrates degrading enzymes were exhibited by larvae that consumed leaves of the most preferred plant species of B. fusca. Conversely, esterases were only detected in neonate larvae that consumed leaves of the less preferred and non-host plants. No alkaline phosphatase and lipase activities were detected. The significance of these results was discussed in terms of food requirements of first instar larvae when settling on a plant.
Collapse
Affiliation(s)
- Gérald Juma
- Department of Biochemistry, University of Nairobi, Nairobi, Kenya
| | - Bruno Le Ru
- UMR EGCE (Evolution, Génome, Comportement, Ecologie), CNRS-IRD-Univ. Paris-Sud, IDEEV, Université Paris-Saclay, Gif-sur-Yvette Cedex, France
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Paul-André Calatayud
- UMR EGCE (Evolution, Génome, Comportement, Ecologie), CNRS-IRD-Univ. Paris-Sud, IDEEV, Université Paris-Saclay, Gif-sur-Yvette Cedex, France
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| |
Collapse
|
41
|
Carabajal Paladino LZ, Provazníková I, Berger M, Bass C, Aratchige NS, López SN, Marec F, Nguyen P. Sex Chromosome Turnover in Moths of the Diverse Superfamily Gelechioidea. Genome Biol Evol 2019; 11:1307-1319. [PMID: 31028711 PMCID: PMC6486803 DOI: 10.1093/gbe/evz075] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2019] [Indexed: 01/22/2023] Open
Abstract
Sex chromosomes play a central role in genetics of speciation and their turnover was suggested to promote divergence. In vertebrates, sex chromosome-autosome fusions resulting in neo-sex chromosomes occur frequently in male heterogametic taxa (XX/XY), but are rare in groups with female heterogamety (WZ/ZZ). We examined sex chromosomes of seven pests of the diverse lepidopteran superfamily Gelechioidea and confirmed the presence of neo-sex chromosomes in their karyotypes. Two synteny blocks, which correspond to autosomes 7 (LG7) and 27 (LG27) in the ancestral lepidopteran karyotype exemplified by the linkage map of Biston betularia (Geometridae), were identified as sex-linked in the tomato leafminer, Tuta absoluta (Gelechiidae). Testing for sex-linkage performed in other species revealed that while LG7 fused to sex chromosomes in a common ancestor of all Gelechioidea, the second fusion between the resulting neo-sex chromosome and the other autosome is confined to the tribe Gnoreschemini (Gelechiinae). Our data accentuate an emerging pattern of high incidence of neo-sex chromosomes in Lepidoptera, the largest clade with WZ/ZZ sex chromosome system, which suggest that the paucity of neo-sex chromosomes is not an intrinsic feature of female heterogamety. Furthermore, LG7 contains one of the major clusters of UDP-glucosyltransferases, which are involved in the detoxification of plant secondary metabolites. Sex chromosome evolution in Gelechioidea thus supports an earlier hypothesis postulating that lepidopteran sex chromosome-autosome fusions can be driven by selection for association of Z-linked preference or host-independent isolation genes with larval performance and thus can contribute to ecological specialization and speciation of moths.
Collapse
Affiliation(s)
- Leonela Z Carabajal Paladino
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, České Budějovice, Czech Republic
- The Pirbright Institute, Surrey, United Kingdom
| | - Irena Provazníková
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, České Budějovice, Czech Republic
- University of South Bohemia, Faculty of Science, České Budějovice, Czech Republic
| | - Madeleine Berger
- Rothamsted Research, Department of Biointeractions and Crop Protection, Herts, United Kingdom
| | - Chris Bass
- University of Exeter, College of Life and Environmental Sciences, Biosciences, Penryn, Cornwall, United Kingdom
| | - Nayanie S Aratchige
- Coconut Research Institute of Sri Lanka, Crop Protection Division, Bandirippuwa Estate, Lunuwila, Sri Lanka
| | - Silvia N López
- Instituto Nacional de Tecnología Agropecuaria, Instituto de Microbiología y Zoología Agrícola, Hurlingham, Buenos Aires, Argentina
| | - František Marec
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, České Budějovice, Czech Republic
| | - Petr Nguyen
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, České Budějovice, Czech Republic
- University of South Bohemia, Faculty of Science, České Budějovice, Czech Republic
| |
Collapse
|
42
|
de Bruijn WJC, Gruppen H, Vincken JP. Structure and biosynthesis of benzoxazinoids: Plant defence metabolites with potential as antimicrobial scaffolds. PHYTOCHEMISTRY 2018; 155:233-243. [PMID: 30218957 DOI: 10.1016/j.phytochem.2018.07.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 07/10/2018] [Accepted: 07/16/2018] [Indexed: 06/08/2023]
Abstract
Benzoxazinoids, comprising the classes of benzoxazinones and benzoxazolinones, are a set of specialised metabolites produced by the plant family Poaceae (formerly Gramineae), and some dicots. The family Poaceae in particular contains several important crops like maize and wheat. Benzoxazinoids play a role in allelopathy and as defence compounds against (micro)biological threats. The effectivity of benzoxazinones in these functionalities is largely imposed by the subclasses (determined by N substituent). In this review, we provide an overview of all currently known natural benzoxazinoids and a summary of the current state of knowledge of their biosynthesis. We also evaluated their antimicrobial activity based on minimum inhibitory concentration (MIC) values reported in literature. Monomeric natural benzoxazinoids seem to lack potency as antimicrobial agents. The 1,4-benzoxazin-3-one backbone, however, has been shown to be a potential scaffold for designing new antimicrobial compounds. This has been demonstrated by a number of studies that report potent activity of synthetic derivatives of 1,4-benzoxazin-3-one, which possess MIC values down to 6.25 μg mL-1 against pathogenic fungi (e.g. C. albicans) and 16 μg mL-1 against bacteria (e.g. S. aureus and E. coli). Observations on the structural requirements for allelopathy, insecticidal, and antimicrobial activity suggest that they are not necessarily conferred by similar mechanisms.
Collapse
Affiliation(s)
- Wouter J C de Bruijn
- Laboratory of Food Chemistry, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Harry Gruppen
- Laboratory of Food Chemistry, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Jean-Paul Vincken
- Laboratory of Food Chemistry, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands.
| |
Collapse
|
43
|
Vassão DG, Wielsch N, Gomes AMDMM, Gebauer-Jung S, Hupfer Y, Svatoš A, Gershenzon J. Plant Defensive β-Glucosidases Resist Digestion and Sustain Activity in the Gut of a Lepidopteran Herbivore. FRONTIERS IN PLANT SCIENCE 2018; 9:1389. [PMID: 30349548 PMCID: PMC6186830 DOI: 10.3389/fpls.2018.01389] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/31/2018] [Indexed: 05/07/2023]
Abstract
Two-component activated chemical defenses are a major part of many plants' strategies to disrupt herbivory. The activation step is often the β-glucosidase-catalyzed removal of a glucose moiety from a pro-toxin, leading to an unstable and toxic aglycone. While some β-glucosidases have been well studied, several aspects of their roles in vivo, such as their precise sites of enzymatic activity during and after ingestion, and the importance of particular isoforms in plant defense are still not fully understood. Here, plant defensive β-glucosidases from maize, white mustard and almonds were shown to resist digestion by larvae of the generalist lepidopteran Spodoptera littoralis, and the majority of the ingested activities toward both general and plant pro-toxic substrates was recovered in the frass. Among other proteins potentially involved in defense, we identified specific plant β-glucosidases and a maize β-glucosidase aggregating factor in frass from plant-fed insects using proteomic methods. We therefore found that, while S. littoralis larvae efficiently degraded bulk food protein during digestion, β-glucosidases were among a small number of plant defensive proteins that resist insect digestive proteolysis. These enzymes remain intact in the gut lumen and frass and can therefore further catalyze the activation of plant defenses after ingestion, especially in pH-neutral regions of the digestive system. As most of the ingested enzymatic activity persists in the frass, and only particular β-glucosidases were detected via proteomic analyses, our data support the involvement of specific isoforms (maize ZmGlu1 and S. alba MA1 myrosinase) in defense in vivo.
Collapse
Affiliation(s)
| | - Natalie Wielsch
- Research Group Mass Spectrometry/Proteomics, Max Planck Institute for Chemical Ecology, Jena, Germany
| | | | - Steffi Gebauer-Jung
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Yvonne Hupfer
- Research Group Mass Spectrometry/Proteomics, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Aleš Svatoš
- Research Group Mass Spectrometry/Proteomics, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
44
|
Chen E, Kolosov D, O'Donnell MJ, Erlandson MA, McNeil JN, Donly C. The Effect of Diet on Midgut and Resulting Changes in Infectiousness of AcMNPV Baculovirus in the Cabbage Looper, Trichoplusia ni. Front Physiol 2018; 9:1348. [PMID: 30337878 PMCID: PMC6180168 DOI: 10.3389/fphys.2018.01348] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/06/2018] [Indexed: 01/08/2023] Open
Abstract
Insecticide resistance has been reported in many important agricultural pests, and alternative management methods are required. Baculoviruses qualify as an effective, yet environmentally benign, biocontrol agent but their efficacy against generalist herbivores may be influenced by diet. However, few studies have investigated the tritrophic interactions of plant, pest, and pathogen from both a gene expression and physiological perspective. Here we use microscopy and transcriptomics to examine how diet affects the structure of peritrophic matrix (PM) in Trichoplusia ni larvae and consequently their susceptibility to the baculovirus, AcMNPV. Larvae raised on potato leaves had lower transcript levels for chitinase and chitin deacetylase genes, and possessed a thicker and more multi-layered PM than those raised on cabbage or artificial diet, which could contribute to their significantly lower susceptibility to the baculovirus. The consequences of these changes underline the importance of considering dietary influences on pathogen susceptibility in pest management strategies.
Collapse
Affiliation(s)
- Elizabeth Chen
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada.,Department of Biology, University of Western Ontario, London, ON, Canada
| | - Dennis Kolosov
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | | | - Martin A Erlandson
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK, Canada
| | - Jeremy N McNeil
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Cam Donly
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada.,Department of Biology, University of Western Ontario, London, ON, Canada
| |
Collapse
|
45
|
Bui H, Greenhalgh R, Ruckert A, Gill GS, Lee S, Ramirez RA, Clark RM. Generalist and Specialist Mite Herbivores Induce Similar Defense Responses in Maize and Barley but Differ in Susceptibility to Benzoxazinoids. FRONTIERS IN PLANT SCIENCE 2018; 9:1222. [PMID: 30186298 PMCID: PMC6110934 DOI: 10.3389/fpls.2018.01222] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 07/31/2018] [Indexed: 05/20/2023]
Abstract
While substantial progress has been made in understanding defense responses of cereals to insect herbivores, comparatively little is known about responses to feeding by spider mites. Nevertheless, several spider mite species, including the generalist Tetranychus urticae and the grass specialist Oligonychus pratensis, cause damage on cereals such as maize and wheat, especially during drought stress. To understand defense responses of cereals to spider mites, we characterized the transcriptomic responses of maize and barley to herbivory by both mite species, and included a wounding control against which modulation of defenses could be tested. T. urticae and O. pratensis induced highly correlated changes in gene expression on both maize and barley. Within 2 h, hundreds of genes were upregulated, and thousands of genes were up- or downregulated after 24 h. In general, expression changes were similar to those induced by wounding, including for genes associated with jasmonic acid biosynthesis and signaling. Many genes encoding proteins involved in direct defenses, or those required for herbivore-induced plant volatiles, were strongly upregulated in response to mite herbivory. Further, biosynthesis genes for benzoxazinoids, which are specialized compounds of Poaceae with known roles in deterring insect herbivores, were induced in maize. Compared to chewing insects, spider mites are cell content feeders and cause grossly different patterns of tissue damage. Nonetheless, the gene expression responses of maize to both mite herbivores, including for phytohormone signaling pathways and for the synthesis of the benzoxazinoid 2-hydroxy-4,7-dimethoxy-1,4-benzoxazin-3-one glucoside, a known defensive metabolite against caterpillars, resembled those reported for a generalist chewing insect, Spodoptera exigua. On maize plants harboring mutations in several benzoxazinoid biosynthesis genes, T. urticae performance dramatically increased compared to wild-type plants. In contrast, no difference in performance was observed between mutant and wild-type plants for the specialist O. pratensis. Collectively, our data provide little evidence that maize and barley defense responses differentiate herbivory between T. urticae and O. pratensis. Further, our work suggests that the likely route to specialization for O. pratensis involved the evolution of a robust mechanism to cope with the benzoxazinoid defenses of its cereal hosts.
Collapse
Affiliation(s)
- Huyen Bui
- School of Biological Sciences, University of Utah, Salt Lake City, UT, United States
| | - Robert Greenhalgh
- School of Biological Sciences, University of Utah, Salt Lake City, UT, United States
| | - Alice Ruckert
- Department of Biology, Utah State University, Logan, UT, United States
| | | | - Sarah Lee
- School of Biological Sciences, University of Utah, Salt Lake City, UT, United States
| | | | - Richard M. Clark
- School of Biological Sciences, University of Utah, Salt Lake City, UT, United States
- Center for Cell and Genome Science, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
46
|
Pan Y, Tian F, Wei X, Wu Y, Gao X, Xi J, Shang Q. Thiamethoxam Resistance in Aphis gossypii Glover Relies on Multiple UDP-Glucuronosyltransferases. Front Physiol 2018; 9:322. [PMID: 29670540 PMCID: PMC5893893 DOI: 10.3389/fphys.2018.00322] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 03/15/2018] [Indexed: 11/13/2022] Open
Abstract
Uridine diphosphate (UDP)-glycosyltransferases (UGTs) are major phase II enzymes that conjugate a variety of small lipophilic molecules with UDP sugars and alter them into more water-soluble metabolites. Therefore, glucosidation plays a major role in the inactivation and excretion of a great variety of both endogenous and exogenous compounds. In this study, two inhibitors of UGT enzymes, sulfinpyrazone and 5-nitrouracil, significantly increased the toxicity of thiamethoxam against the resistant strain of Aphis gossypii, which indicates that UGTs are involved in thiamethoxam resistance in the cotton aphid. Based on transcriptome data, 31 A. gossypii UGTs belonging to 11 families (UGT329, UGT330, UGT341, UGT342, UGT343, UGT344, UGT345, UGT348, UGT349, UGT350, and UGT351) were identified. Compared with the thiamethoxam-susceptible strain, the transcripts of 23 UGTs were elevated, and the transcripts of 13 UGTs (UGT344J2, UGT348A2, UGT344D4, UGT341A4, UGT343B2, UGT342B2, UGT350C3, UGT344N2, UGT344A14, UGT344B4, UGT351A4, UGT344A11, and UGT349A2) were increased by approximately 2.0-fold in the resistant cotton aphid. The suppression of selected UGTs significantly increased the insensitivity of resistant aphids to thiamethoxam, suggesting that the up-regulated UGTs might be associated with thiamethoxam tolerance. This study provides an overall view of the possible metabolic factor UGTs that are relevant to the development of insecticide resistance. The results might facilitate further work to validate the roles of these UGTs in thiamethoxam resistance.
Collapse
Affiliation(s)
- Yiou Pan
- College of Plant Science, Jilin University, Changchun, China
| | - Fayi Tian
- College of Plant Science, Jilin University, Changchun, China
| | - Xiang Wei
- College of Plant Science, Jilin University, Changchun, China
| | - Yongqiang Wu
- College of Plant Science, Jilin University, Changchun, China
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing, China
| | - Jinghui Xi
- College of Plant Science, Jilin University, Changchun, China
| | - Qingli Shang
- College of Plant Science, Jilin University, Changchun, China
| |
Collapse
|
47
|
Robert CA, Zhang X, Machado RA, Schirmer S, Lori M, Mateo P, Erb M, Gershenzon J. Sequestration and activation of plant toxins protect the western corn rootworm from enemies at multiple trophic levels. eLife 2017; 6. [PMID: 29171835 PMCID: PMC5701792 DOI: 10.7554/elife.29307] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 10/29/2017] [Indexed: 01/17/2023] Open
Abstract
Highly adapted herbivores can phenocopy two-component systems by stabilizing, sequestering and reactivating plant toxins. However, whether these traits protect herbivores against their enemies is poorly understood. We demonstrate that the western corn rootworm Diabrotica virgifera virgifera, the most damaging maize pest on the planet, specifically accumulates the root-derived benzoxazinoid glucosides HDMBOA-Glc and MBOA-Glc. MBOA-Glc is produced by D. virgifera through stabilization of the benzoxazinoid breakdown product MBOA by N-glycosylation. The larvae can hydrolyze HDMBOA-Glc, but not MBOA-Glc, to produce toxic MBOA upon predator attack. Accumulation of benzoxazinoids renders D. virgifera highly resistant to nematodes which inject and feed on entomopathogenic symbiotic bacteria. While HDMBOA-Glc and MBOA reduce the growth and infectivity of both the nematodes and the bacteria, MBOA-Glc repels infective juvenile nematodes. Our results illustrate how herbivores combine stabilized and reactivated plant toxins to defend themselves against a deadly symbiosis between the third and the fourth trophic level enemies. The western corn rootworm is the most damaging pest of maize plants. Out of sight, the larvae of this beetle feed on maize roots, and cause billions of dollars worth of losses each year. One of the reasons why this pest remains such a problem is it can adapt and resist many crop protection strategies. Biological control refers to combating a pest using its own natural enemies – for example, its predators. Biological control of the western corn rootworm has been attempted using nematode worms. Normally, the nematodes locate and enter an insect larvae, release bacteria that kill it, and then feed and multiply within the dead larvae. Yet, the western corn rootworm seems at least partly able to resist these nematodes, and the success of biological control in the field has been variable. Several insect herbivores are known to accumulate, or sequester, plant toxins in their own body for self-defense. Previously, in 2012, researchers reported that the western corn rootworm is resistant and attracted to the major toxins in maize roots, the benzoxazinoids. The blood-like fluid of the western corn rootworm also repels many predators. Could the western corn rootworm be sequestering maize benzoxazinoids to resist the biological control of nematodes and their bacterial partners? Plants store benzoxazinoids in a non-toxic form. If herbivores damage the plant, these molecules quickly break down into compounds that are toxic to most insects. Now Robert et al. – who include two of the researchers involved in the 2012 study – show that the western corn rootworm uses a similar defense system to protect itself against biological control nematodes and their bacterial partners. First, the larvae convert a benzoxazinoid breakdown product by adding a glucose molecule. They then release large amounts of this modified molecule to repel young nematodes. Second, via an unknown mechanism, the larvae stabilize a second plant-derived benzoxazinoid, sequester its non-toxic form in their bodies, and activate it upon nematode attack. The resulting toxins can kill both nematodes and their bacterial partners. By combining different chemical strategies to stabilize and activate plant toxins, the western corn rootworm is able to resist the nematodes used for biological control. These findings can help to explain why biological control has had limited success against the western corn rootworm. In the long run, they may lead to more effective biological control programs, for instance by stopping the western corn rootworm from sequestering benzoxazinoids or by using natural enemies that are resistant to the insect’s toxins.
Collapse
Affiliation(s)
- Christelle Am Robert
- Institute of Plant Sciences, University of Bern, Bern, Switzerland.,Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Xi Zhang
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | | | - Stefanie Schirmer
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Martina Lori
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Pierre Mateo
- Laboratory of Fundamental and Applied Research in Chemical Ecology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Matthias Erb
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
48
|
Li X, Zhu B, Gao X, Liang P. Over-expression of UDP-glycosyltransferase gene UGT2B17 is involved in chlorantraniliprole resistance in Plutella xylostella (L.). PEST MANAGEMENT SCIENCE 2017; 73:1402-1409. [PMID: 27786405 DOI: 10.1002/ps.4469] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 10/04/2016] [Accepted: 10/24/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND UDP-glycosyltransferases (UGTs) are phase II detoxification enzymes widely distributed within living organisms. Their involvement in the biotransformation of various lipophilic endogenous compounds and phytoalexins in insects has been documented. However, the roles of this enzyme family in insecticide resistance have rarely been reported. Here, the functions of UGTs in chlorantraniliprole resistance in Plutella xylostella were investigated. RESULTS Treatment with sulfinpyrazone and 5-nitrouracil (both inhibitors of UGT enzymes) significantly increased the toxicity of chlorantraniliprole against the third instar larvae of P. xylostella. Among the 23 UGT transcripts examined, only UGT2B17 was found to be over-expressed (with a range from 30.7- to 77.3-fold) in all four chlorantraniliprole-resistant populations compared to the susceptible one (CHS). The knock-down of UGT2B17 by RNA interference (RNAi) dramatically increased the toxicity of chlorantraniliprole by 27.4% and 29.8% in the CHS and CHR (resistant) populations, respectively. In contrast, exposure to phenobarbital significantly increased the relative expression of UGT2B17 while decreasing the toxicity of chlorantraniliprole to the larvae by 14.0%. CONCLUSION UGT2B17 is involved in the detoxification of chlorantraniliprole, and its over-expression may play an important role in chlorantraniliprole resistance in P. xylostella. These results shed some light upon and further our understanding of the mechanisms of diamide insecticide resistance in insects. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiuxia Li
- Department of Entomology, China Agricultural University, Beijing, P.R. China
| | - Bin Zhu
- Department of Entomology, China Agricultural University, Beijing, P.R. China
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing, P.R. China
| | - Pei Liang
- Department of Entomology, China Agricultural University, Beijing, P.R. China
| |
Collapse
|
49
|
Crava CM, Brütting C, Baldwin IT. Transcriptome profiling reveals differential gene expression of detoxification enzymes in a hemimetabolous tobacco pest after feeding on jasmonate-silenced Nicotiana attenuata plants. BMC Genomics 2016; 17:1005. [PMID: 27931186 PMCID: PMC5146904 DOI: 10.1186/s12864-016-3348-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/25/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The evolutionary arms race between plants and insects has driven the co-evolution of sophisticated defense mechanisms used by plants to deter herbivores and equally sophisticated strategies that enable phytophagous insects to rapidly detoxify the plant's defense metabolites. In this study, we identify the genetic determinants that enable the mirid, Tupiocoris notatus, to feed on its well-defended host plant, Nicotiana attenuata, an outstanding model for plant-insect interaction studies. RESULTS We used an RNAseq approach to evaluate the global gene expression of T. notatus after feeding on a transgenic N. attenuata line which does not accumulate jasmonic acid (JA) after herbivory, and consequently accumulates very low levels of defense metabolites. Using Illumina sequencing, we generated a de novo assembled transcriptome which resulted in 63,062 contigs (putative transcript isoforms) contained in 42,610 isotigs (putative identified genes). Differential expression analysis based on RSEM-estimated transcript abundances identified 82 differentially expressed (DE) transcripts between T. notatus fed on wild-type and the defenseless plants. The same analysis conducted with Corset-estimated transcript abundances identified 59 DE clusters containing 85 transcripts. In both analyses, a larger number of DE transcripts were found down-regulated in mirids feeding on JA-silenced plants (around 70%). Among these down-regulated transcripts we identified seven transcripts possibly involved in the detoxification of N. attenuata defense metabolite, specifically, one glutathione-S-transferase (GST), one UDP-glucosyltransferase (UGT), five cytochrome P450 (P450s), and six serine proteases. Real-time quantitative PCR confirmed the down-regulation for six transcripts (encoding GST, UGT and four P450s) and revealed that their expression was only slightly decreased in mirids feeding on another N. attenuata transgenic line specifically silenced in the accumulation of diterpene glycosides, one of the many classes of JA-mediated defenses in N. attenuata. CONCLUSIONS The results provide a transcriptional overview of the changes in a specialist hemimetabolous insect associated with feeding on host plants depleted in chemical defenses. Overall, the analysis reveals that T. notatus responses to host plant defenses are narrow and engages P450 detoxification pathways. It further identifies candidate genes which can be tested in future experiments to understand their role in shaping the T. notatus-N. attenuata interaction.
Collapse
Affiliation(s)
- Cristina M. Crava
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoell strasse 8, D-07745 Jena, Germany
- Present Address: Department of Sustainable Ecosystems and Bio-resources, Research and Innovation Centre, Fondazione Edmund Mach, via Mach 1, 38010 San Michele all’Adige, Italy
| | - Christoph Brütting
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoell strasse 8, D-07745 Jena, Germany
| | - Ian T. Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoell strasse 8, D-07745 Jena, Germany
| |
Collapse
|
50
|
Maag D, Köhler A, Robert CAM, Frey M, Wolfender JL, Turlings TCJ, Glauser G, Erb M. Highly localized and persistent induction of Bx1-dependent herbivore resistance factors in maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 88:976-991. [PMID: 27538820 DOI: 10.1111/tpj.13308] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 08/11/2016] [Accepted: 08/15/2016] [Indexed: 05/23/2023]
Abstract
The induced production of secondary metabolites in herbivore-attacked plants varies in space and time. However, the consequences of these spatiotemporal patterns for herbivore performance are not well understood. This is particularly true for 1,4-benzoxazin-3-ones (BXs), the major induced defensive metabolites of maize. Here we report on the spatiotemporal dynamics of BX induction and its consequences for the leaf feeder Spodoptera littoralis. Defence-related phytohormones and transcript levels of BX biosynthetic genes were upregulated locally at the wound site within 12 h of herbivory. Within another 12 h, the insecticidal BX HDMBOA-Glc started to accumulate in a highly localized manner at the feeding site. Changes in BX metabolism away from the feeding site within the same leaf were much weaker and were undetected in systemic leaves. Following the removal of the caterpillars, local HDMBOA-Glc levels remained elevated for 7 days. Caterpillars that were forced to feed directly on locally induced leaf parts, but not on adjacent leaf parts, suffered from reduced growth. This effect was abolished in the BX-deficient bx1 mutant. We did not find any evidence that BXs regulate defensive phytohormones or their own accumulation. In summary, this study shows that induced herbivore resistance in maize is highly localized and dependent on BXs.
Collapse
Affiliation(s)
- Daniel Maag
- Laboratory of Fundamental and Applied Research in Chemical Ecology, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland
- Laboratory of Phytochemistry and Bioactive Natural Products, School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Quai Ernest-Ansermet 30, 1211, Geneva, Switzerland
| | - Angela Köhler
- Laboratory of Fundamental and Applied Research in Chemical Ecology, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland
| | - Christelle A M Robert
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013, Bern, Switzerland
| | - Monika Frey
- Lehrstuhl für Genetik, Technische Universität München, Am Hochanger 8, 85350, München, Germany
| | - Jean-Luc Wolfender
- Laboratory of Phytochemistry and Bioactive Natural Products, School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Quai Ernest-Ansermet 30, 1211, Geneva, Switzerland
| | - Ted C J Turlings
- Laboratory of Fundamental and Applied Research in Chemical Ecology, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland
| | - Gaétan Glauser
- Laboratory of Fundamental and Applied Research in Chemical Ecology, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, Avenue de Bellevaux 51, 2000, Neuchâtel, Switzerland
| | - Matthias Erb
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013, Bern, Switzerland
| |
Collapse
|