1
|
de Castro AS, Costa CHN, Costa DL, Ibiapina AB, da Silva CO, Costa JO, Tajra FS, Abdala CVM. [Evidence map of chikungunya treatmentsMapa de la evidencia sobre el tratamiento del chikunguña]. Rev Panam Salud Publica 2024; 48:e99. [PMID: 39450270 PMCID: PMC11500240 DOI: 10.26633/rpsp.2024.99] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/30/2024] [Indexed: 10/26/2024] Open
Abstract
Objective Based on a review of the literature, to create a map of the available evidence on the treatment methods for chikungunya. Method In May 2022, a literature search on chikungunya was conducted using the PubMed and Virtual Health Library platforms. To create the evidence map, studies that mentioned chikungunya fever were selected and characterized based on the type of intervention, outcome, and direction of the effect (positive, negative, potentially positive or potentially negative, inconclusive, or no effect), following the methodology recommended by the Latin American and Caribbean Center on Health Sciences Information (BIREME). Results Fifteen studies (systematic reviews, controlled clinical trials, and narrative reviews) with both pharmacological and non-pharmacological interventions were included. All interventions focused on symptom mitigation; no study specifically investigated ways to combat the virus itself. Only one study on pharmacological interventions reported a positive effect, involving monotherapy with hydroxychloroquine and combined therapy with methotrexate plus sulfasalazine and hydroxychloroquine for reducing and relieving pain caused by post-chikungunya arthritis. The only study to report a negative effect described the use of chloroquine for post-chikungunya arthralgia. Among non-pharmacological interventions, positive effects were noted for transcranial direct current stimulation, elastic band exercises, and the Pilates method, particularly for pain relief and improvement of joint function. Conclusion Although the review did not identify any treatments that act directly on the virus after the onset of the disease, the evidence map suggests that it is possible to treat the symptoms and sequelae of chikungunya with both pharmacological and non-pharmacological therapies.
Collapse
Affiliation(s)
- Andressa Silva de Castro
- Universidade Federal do PiauíPrograma de Mestrado em Ciências e SaúdeTeresina (PI)BrasilUniversidade Federal do Piauí, Programa de Mestrado em Ciências e Saúde, Teresina (PI), Brasil.
| | - Carlos Henrique Nery Costa
- Centro de Inteligência em Agravos Tropicais Emergentes e NegligenciadosTeresina (PI)BrasilCentro de Inteligência em Agravos Tropicais Emergentes e Negligenciados, Teresina (PI), Brasil.
| | - Dorcas Lamounier Costa
- Centro de Inteligência em Agravos Tropicais Emergentes e NegligenciadosTeresina (PI)BrasilCentro de Inteligência em Agravos Tropicais Emergentes e Negligenciados, Teresina (PI), Brasil.
| | - Andressa Barros Ibiapina
- Centro de Inteligência em Agravos Tropicais Emergentes e NegligenciadosTeresina (PI)BrasilCentro de Inteligência em Agravos Tropicais Emergentes e Negligenciados, Teresina (PI), Brasil.
| | - Chrisllayne Oliveira da Silva
- Universidade Federal do PiauíPrograma de Mestrado em Ciências e SaúdeTeresina (PI)BrasilUniversidade Federal do Piauí, Programa de Mestrado em Ciências e Saúde, Teresina (PI), Brasil.
| | - Jaiane Oliveira Costa
- Universidade Federal do PiauíPrograma de Mestrado em Ciências e SaúdeTeresina (PI)BrasilUniversidade Federal do Piauí, Programa de Mestrado em Ciências e Saúde, Teresina (PI), Brasil.
| | - Fábio Solon Tajra
- Centro de Inteligência em Agravos Tropicais Emergentes e NegligenciadosTeresina (PI)BrasilCentro de Inteligência em Agravos Tropicais Emergentes e Negligenciados, Teresina (PI), Brasil.
| | - Carmen Verônica Mendes Abdala
- Centro Latino-Americano e do Caribe de Informação em Ciências da Saúde (BIREME)São Paulo (SP)BrasilCentro Latino-Americano e do Caribe de Informação em Ciências da Saúde (BIREME), São Paulo (SP), Brasil.
| |
Collapse
|
2
|
Serfaty A, Mendonça S, Canella C, Marchiori E. Detection of musculoskeletal inflammatory lesions in patients with chronic chikungunya infection using 3T whole-body magnetic resonance imaging. Rev Soc Bras Med Trop 2024; 57:e004062024. [PMID: 38808799 PMCID: PMC11136507 DOI: 10.1590/0037-8682-0090-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/09/2024] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND Musculoskeletal inflammatory lesions in chronic Chikungunya virus (CHIKV) infection have not been thoroughly assessed using whole-body magnetic resonance imaging (WBMRI). This study aimed to determine the prevalence of these lesions in such patients. METHODS From September 2018 to February 2019, patients with positive Chikungunya-specific serology (Immunoglobulin M/Immunoglobulin G anti-CHIKV), with a history of polyarthralgia for > 6 months prior to MRI with no pre-existing rheumatic disorders, underwent 3T WBMRI and localized MRI. The evaluation focused on musculoskeletal inflammatory lesions correlated with chronic CHIKV infection. Pain levels were assessed using a visual analogue scale on the same day as WBMRI. RESULTS The study included 86 patients of whom 26 met the inclusion criteria. All patients reported pain and most (92.3%) categorized it as moderate or severe. The most common finding across joints was effusion, particularly in the tibiotalar joint (57.7%) and bursitis, with the retrocalcaneal bursa most affected (48.0%). Tenosynovitis was prevalent in the flexor compartment of the hands (44.2%), while Kager fat pad and soleus edema were also observed. Bone marrow edema-like signals were frequently seen in the sacroiliac joints (19.2%). Most WBMRI findings were classified as mild. CONCLUSIONS This study represents the first utilization of 3T WBMRI to assess musculoskeletal inflammatory disorders in chronic CHIKV infection. The aim was to identify the most affected joints and prevalent lesions, providing valuable insights for future research and clinical management of this condition regarding understanding disease pathophysiology, developing targeted treatment strategies, and using advanced imaging techniques in the assessment of musculoskeletal manifestations.
Collapse
Affiliation(s)
- Aline Serfaty
- Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
- Medscanlagos Diagnóstico por imagem, Cabo Frio, RJ, Brasil
| | - Silvana Mendonça
- Clínica de Diagnóstico por Imagem CDPI, Rio de Janeiro, RJ, Brasil
| | | | - Edson Marchiori
- Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
3
|
Rossi NRDLP, Fialho SN, Gouveia ADJ, Ferreira AS, da Silva MA, Martinez LDN, Paula do Nascimento WDS, Gonzaga A, de Medeiros DSS, de Barros NB, de Cássia Alves R, Gonçalves GM, Teles CGB. Quinine and chloroquine: Potential preclinical candidates for the treatment of tegumentary Leishmaniasis. Acta Trop 2024; 252:107143. [PMID: 38331084 DOI: 10.1016/j.actatropica.2024.107143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
Leishmaniasis is an endemic disease in more than 90 countries, constituting a relevant public health problem. Limited treatment options, increase in resistance, and therapeutic failure are important aspects for the discovery of new treatment options. Drug repurposing may accelerate the discovery of antiLeishmanial drugs. Recent tests indicating the in vitro potential of antimalarials Leishmania resulted in the design of this study. This study aimed at evaluating the susceptibility of Leishmania (L.) amazonensis to chloroquine (CQ) and quinine (QN), alone or in combination with amphotericin B (AFT) and pentamidine (PTN). In the in vitro tests, first, we evaluated the growth inhibition of 50 % of promastigotes (IC50) and cytotoxicity for HepG2 and THP-1 cells (CC50). The IC50 values of AFT and PNT were below 1 µM, while the IC50 values of CQ and QN ranged between 4 and 13 µM. Concerning cytotoxicity, CC50 values ranged between 7 and 30 µM for AFT and PNT, and between 22 and 157 µM for the antimalarials. We also calculated the Selectivity Index (SI), where AFT and PTN obtained the highest values, while the antimalarias obtained values between 5 and 12. Both antimalarials were additive (ƩFIC 1.05-1.8) in combination with AFT and PTN. For anti-amastigote activity, the drugs obtained the following ICA50 values: AFT (0.26 µM), PNT (2.09 µM), CQ (3.77 µM) and QN (24.5 µM). In the in vivo tests, we observed that the effective dose for the death of 50 % of parasites (ED50) of AFT and CQ were 0.63 mg/kg and 27.29 mg/kg, respectively. When combining CQ with AFT, a decrease in parasitemia was observed, being statistically equal to the naive group. For cytokine quantification, it was observed that CQ, despite presenting anti-inflammatory activity was effective at increasing the production of IFN-γ. Overall, our data indicate that chloroquine will probably be a candidate for repurposing and use in drug combination therapy.
Collapse
Affiliation(s)
- Norton Rubens Diunior Lucas Pejara Rossi
- Programa de Pós-Graduação em Biologia Experimental (PGBIOEXP), Fundação Universidade Federal de Rondônia (UNIR), Porto Velho, RO, Brazil; Plataforma de Bioensaios de Malária e Leishmaniose (PBML), Fundação Oswaldo Cruz, FIOCRUZ, Unidade Rondônia, Porto Velho, RO, Brazil; Instituto Nacional de Epidemiologia da Amazônia Ocidental - EpiAmO, Brazil.
| | - Saara Neri Fialho
- Plataforma de Bioensaios de Malária e Leishmaniose (PBML), Fundação Oswaldo Cruz, FIOCRUZ, Unidade Rondônia, Porto Velho, RO, Brazil; São Lucas Educacional-Afya, Porto Velho, RO, Brazil; Instituto Nacional de Epidemiologia da Amazônia Ocidental - EpiAmO, Brazil; Programa de Pós-Graduação em Biodiversidade e Biotecnologia da Amazônia Legal - BIONORTE, Porto Velho, RO, Brazil
| | - Aurileya de Jesus Gouveia
- Plataforma de Bioensaios de Malária e Leishmaniose (PBML), Fundação Oswaldo Cruz, FIOCRUZ, Unidade Rondônia, Porto Velho, RO, Brazil; Instituto Nacional de Epidemiologia da Amazônia Ocidental - EpiAmO, Brazil
| | - Amália Santos Ferreira
- Plataforma de Bioensaios de Malária e Leishmaniose (PBML), Fundação Oswaldo Cruz, FIOCRUZ, Unidade Rondônia, Porto Velho, RO, Brazil; Instituto Nacional de Epidemiologia da Amazônia Ocidental - EpiAmO, Brazil
| | | | - Leandro Do Nascimento Martinez
- Programa de Pós-Graduação em Biologia Experimental (PGBIOEXP), Fundação Universidade Federal de Rondônia (UNIR), Porto Velho, RO, Brazil; Plataforma de Bioensaios de Malária e Leishmaniose (PBML), Fundação Oswaldo Cruz, FIOCRUZ, Unidade Rondônia, Porto Velho, RO, Brazil; São Lucas Educacional-Afya, Porto Velho, RO, Brazil; Instituto Nacional de Epidemiologia da Amazônia Ocidental - EpiAmO, Brazil
| | - Welington da Silva Paula do Nascimento
- Programa de Pós-Graduação em Biologia Experimental (PGBIOEXP), Fundação Universidade Federal de Rondônia (UNIR), Porto Velho, RO, Brazil; Plataforma de Bioensaios de Malária e Leishmaniose (PBML), Fundação Oswaldo Cruz, FIOCRUZ, Unidade Rondônia, Porto Velho, RO, Brazil; Instituto Nacional de Epidemiologia da Amazônia Ocidental - EpiAmO, Brazil
| | - Arlindo Gonzaga
- Plataforma de Bioensaios de Malária e Leishmaniose (PBML), Fundação Oswaldo Cruz, FIOCRUZ, Unidade Rondônia, Porto Velho, RO, Brazil; Programa de Pós-Graduação em Biodiversidade e Biotecnologia da Amazônia Legal - BIONORTE, Porto Velho, RO, Brazil
| | | | | | | | - Giselle Martins Gonçalves
- Programa de Pós-Graduação em Biologia Experimental (PGBIOEXP), Fundação Universidade Federal de Rondônia (UNIR), Porto Velho, RO, Brazil
| | - Carolina Garcia Bioni Teles
- Programa de Pós-Graduação em Biologia Experimental (PGBIOEXP), Fundação Universidade Federal de Rondônia (UNIR), Porto Velho, RO, Brazil; Plataforma de Bioensaios de Malária e Leishmaniose (PBML), Fundação Oswaldo Cruz, FIOCRUZ, Unidade Rondônia, Porto Velho, RO, Brazil; São Lucas Educacional-Afya, Porto Velho, RO, Brazil; Instituto Nacional de Epidemiologia da Amazônia Ocidental - EpiAmO, Brazil; Programa de Pós-Graduação em Biodiversidade e Biotecnologia da Amazônia Legal - BIONORTE, Porto Velho, RO, Brazil
| |
Collapse
|
4
|
de Lima RC, Valente LMM, Familiar Macedo D, de-Oliveira-Pinto LM, dos Santos FB, Mazzei JL, Siani AC, Nunes PCG, de Azeredo EL. Antiviral and Virucidal Activities of Uncaria tomentosa (Cat's Claw) against the Chikungunya Virus. Viruses 2024; 16:369. [PMID: 38543735 PMCID: PMC10974475 DOI: 10.3390/v16030369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 05/23/2024] Open
Abstract
Uncaria tomentosa (UT) is a medicinal plant popularly known as cat's claw belonging to the Rubiaceae family that has been reported to display antiviral and anti-inflammatory activities. The chikungunya virus (CHIKV) outbreaks constitute a Brazilian public health concern. CHIKV infection develops an abrupt onset of fever, usually accompanied by a skin rash, besides incapacitating polyarthralgia. There is no vaccine available or treatment for CHIKV infection. The present study evaluates the hydroalcoholic extract of UT bark as a potential antiviral against CHIKV. The in vitro antiviral activity of the UT extract against the Brazilian CHIKV strain was assessed using quantitative reverse transcription polymerase chain reaction, flow cytometry, and plaque assay. Results obtained demonstrated that UT inhibits CHIKV infection in a dose-dependent manner. At the non-cytotoxic concentration of 100 µg/mL, UT exhibited antiviral activity above 90% as determined by plaque reduction assay, and it reduced the viral cytopathic effect. Similarly, a significant virucidal effect of 100 µg/mL UT was observed after 24 and 48 h post-infection. This is the first report on the antiviral activity of UT against CHIKV infection, and the data presented here suggests UT as a potential antiviral to treat CHIKV infection.
Collapse
Affiliation(s)
- Raquel Curtinhas de Lima
- Laboratório das Interações Vírus Hospedeiros, Instituto Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (R.C.d.L.); (D.F.M.); (L.M.d.-O.-P.); (F.B.d.S.); (P.C.G.N.)
| | - Ligia Maria Marino Valente
- Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos, 149, Rio de Janeiro 21941-909, Brazil;
| | - Débora Familiar Macedo
- Laboratório das Interações Vírus Hospedeiros, Instituto Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (R.C.d.L.); (D.F.M.); (L.M.d.-O.-P.); (F.B.d.S.); (P.C.G.N.)
| | - Luzia Maria de-Oliveira-Pinto
- Laboratório das Interações Vírus Hospedeiros, Instituto Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (R.C.d.L.); (D.F.M.); (L.M.d.-O.-P.); (F.B.d.S.); (P.C.G.N.)
| | - Flavia Barreto dos Santos
- Laboratório das Interações Vírus Hospedeiros, Instituto Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (R.C.d.L.); (D.F.M.); (L.M.d.-O.-P.); (F.B.d.S.); (P.C.G.N.)
| | - José Luiz Mazzei
- Laboratório de Tecnologia para Biodiversidade em Saúde, Instituto de Tecnologia de Fármacos, Fundação Oswaldo Cruz, Rio de Janeiro 21041-250, Brazil; (J.L.M.); (A.C.S.)
| | - Antonio Carlos Siani
- Laboratório de Tecnologia para Biodiversidade em Saúde, Instituto de Tecnologia de Fármacos, Fundação Oswaldo Cruz, Rio de Janeiro 21041-250, Brazil; (J.L.M.); (A.C.S.)
| | - Priscila Conrado Guerra Nunes
- Laboratório das Interações Vírus Hospedeiros, Instituto Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (R.C.d.L.); (D.F.M.); (L.M.d.-O.-P.); (F.B.d.S.); (P.C.G.N.)
| | - Elzinandes Leal de Azeredo
- Laboratório das Interações Vírus Hospedeiros, Instituto Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (R.C.d.L.); (D.F.M.); (L.M.d.-O.-P.); (F.B.d.S.); (P.C.G.N.)
| |
Collapse
|
5
|
Peinado RDS, Martins LG, Pacca CC, Saivish MV, Borsatto KC, Nogueira ML, Tasic L, Arni RK, Eberle RJ, Coronado MA. HR-MAS NMR Metabolomics Profile of Vero Cells under the Influence of Virus Infection and nsP2 Inhibitor: A Chikungunya Case Study. Int J Mol Sci 2024; 25:1414. [PMID: 38338694 PMCID: PMC10855909 DOI: 10.3390/ijms25031414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 02/12/2024] Open
Abstract
The arbovirus Chikungunya (CHIKV) is transmitted by Aedes mosquitoes in urban environments, and in humans, it triggers debilitating symptoms involving long-term complications, including arthritis and Guillain-Barré syndrome. The development of antiviral therapies is relevant, as no efficacious vaccine or drug has yet been approved for clinical application. As a detailed map of molecules underlying the viral infection can be obtained from the metabolome, we validated the metabolic signatures of Vero E6 cells prior to infection (CC), following CHIKV infection (CV) and also upon the inclusion of the nsP2 protease inhibitor wedelolactone (CWV), a coumestan which inhibits viral replication processes. The metabolome groups evidenced significant changes in the levels of lactate, myo-inositol, phosphocholine, glucose, betaine and a few specific amino acids. This study forms a preliminary basis for identifying metabolites through HR-MAS NMR (High Resolution Magic Angle Spinning Nuclear Magnetic Ressonance Spectroscopy) and proposing the affected metabolic pathways of cells following viral infection and upon incorporation of putative antiviral molecules.
Collapse
Affiliation(s)
- Rafaela dos S. Peinado
- Multiuser Center for Biomolecular Innovation, Department of Physics, Institute of Biosciences, Languages and Exact Sciences (Ibilce—UNESP), Sao Jose do Rio Preto, Sao Paulo 15054000, Brazil; (R.d.S.P.); (K.C.B.); (R.K.A.)
| | - Lucas G. Martins
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas 13083862, Brazil; (L.G.M.); (L.T.)
| | - Carolina C. Pacca
- Virology Research Laboratory, Medical School of Sao Jose do Rio Preto (FAMERP), Sao Paulo 15090000, Brazil; (C.C.P.); (M.V.S.); (M.L.N.)
| | - Marielena V. Saivish
- Virology Research Laboratory, Medical School of Sao Jose do Rio Preto (FAMERP), Sao Paulo 15090000, Brazil; (C.C.P.); (M.V.S.); (M.L.N.)
| | - Kelly C. Borsatto
- Multiuser Center for Biomolecular Innovation, Department of Physics, Institute of Biosciences, Languages and Exact Sciences (Ibilce—UNESP), Sao Jose do Rio Preto, Sao Paulo 15054000, Brazil; (R.d.S.P.); (K.C.B.); (R.K.A.)
| | - Maurício L. Nogueira
- Virology Research Laboratory, Medical School of Sao Jose do Rio Preto (FAMERP), Sao Paulo 15090000, Brazil; (C.C.P.); (M.V.S.); (M.L.N.)
| | - Ljubica Tasic
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas 13083862, Brazil; (L.G.M.); (L.T.)
| | - Raghuvir K. Arni
- Multiuser Center for Biomolecular Innovation, Department of Physics, Institute of Biosciences, Languages and Exact Sciences (Ibilce—UNESP), Sao Jose do Rio Preto, Sao Paulo 15054000, Brazil; (R.d.S.P.); (K.C.B.); (R.K.A.)
| | - Raphael J. Eberle
- Institute of Biological Information Processing IBI-7: Structural Biochemistry, Forschungszentrum Jülich, 52428 Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Mônika A. Coronado
- Institute of Biological Information Processing IBI-7: Structural Biochemistry, Forschungszentrum Jülich, 52428 Jülich, Germany
| |
Collapse
|
6
|
de Mattos Oliveira L, Araújo JSC, de Andrade KVF, Guerrero Moureau ATG, Dos Santos Junior MC. Compounds from Natural Products Candidates to Drug for Chikungunya Virus Infection: A Systematic Review. Curr Drug Targets 2024; 25:635-648. [PMID: 38847165 DOI: 10.2174/0113894501304256240524052446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/02/2024] [Accepted: 04/25/2024] [Indexed: 09/21/2024]
Abstract
INTRODUCTION Chikungunya fever is a disease caused by infection with the Chikungunya virus, transmitted by Aedes aegypti and Aedes albopictus mosquitoes. Despite its self-limited character, more than 60% of patients have chronic recurrent arthralgia with debilitating pain that lasts for years. AIM The objective of this review was to gather and analyze evidence from the literature on potential therapeutic strategies with molecules from natural products for the treatment of Chikungunya fever. METHODS A search was performed for clinical trials, observational studies, in vitro or in vivo, without restriction of the year of publication or language in electronic databases (Medline/PubMed, EMBASE, Google Scholar, The Cochrane Library, LILACS (BVS), clinical trial registries (Clinical Trials.gov), digital libraries from CAPES theses and dissertations (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brazil) and conference abstracts. A quality assessment of the selected studies was performed using the SYRCLE, RoB2 and SciRAP tools. RESULTS 42 studies were included, which showed molecules with potential antiviral pharmacological activity or with activity in reducing the joint complications caused by CHIKV infection. CONCLUSIONS Among the molecules found in the survey of references, regarding the class of secondary metabolites, flavonoids stood out and for this reason, the molecules may be promising candidates for future clinical trials. Overall, evidence from in vitro studies was of acceptable quality; in vivo and intervention studies showed a high risk of bias, which is a limitation of these studies.
Collapse
Affiliation(s)
- Larissa de Mattos Oliveira
- Programa de Pós-Graduação em Biotecnologia, Universidade Estadual de Feira de Santana, Av. Transnordestina, s/n - Feira de Santana, Novo Horizonte - BA, 44036-900, Brazil
| | - Janay Stefany Carneiro Araújo
- Programa de Pós-Graduação em Biotecnologia, Universidade Estadual de Feira de Santana, Av. Transnordestina, s/n - Feira de Santana, Novo Horizonte - BA, 44036-900, Brazil
| | - Kaio Vinicius Freitas de Andrade
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Estadual de Feira de Santana, Av. Transnordestina, s/n - Feira de Santana, Novo Horizonte - BA, 44036-900, Brazil
| | | | - Manoelito Coelho Dos Santos Junior
- Programa de Pós-Graduação em Biotecnologia, Universidade Estadual de Feira de Santana, Av. Transnordestina, s/n - Feira de Santana, Novo Horizonte - BA, 44036-900, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Estadual de Feira de Santana, Av. Transnordestina, s/n - Feira de Santana, Novo Horizonte - BA, 44036-900, Brazil
| |
Collapse
|
7
|
Vieux N, Perrier Q, Bedouch P, Epaulard O. Much ado about nothing? Discrepancy between the available data on the antiviral effect of hydroxychloroquine in March 2020 and its inclusion in COVID-19 clinical trials and outpatient prescriptions. Public Health 2023; 225:35-44. [PMID: 37918175 DOI: 10.1016/j.puhe.2023.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/10/2023] [Accepted: 09/24/2023] [Indexed: 11/04/2023]
Abstract
OBJECTIVES Many of the 2020 COVID-19 clinical trials included an (hydroxy)chloroquine ((H)CQ) arm. We aimed to juxtapose the state of science before April 2020 regarding the benefits of (H)CQ for viral infections with the number and size of the clinical trials studying (H)CQ and the volume of (H)CQ dispensed in France. STUDY DESIGN We identified and analysed published scientific material regarding the antiviral activity of (H)CQ and publicly available data regarding clinical trials and drug dispensation in France. METHODS We conducted a review of scientific publications available before April 2020 and a systematic analysis of COVID-19 clinical trials featuring (H)CQ registered on clinicaltrials.gov. RESULTS Before April 2020, 894 scientific publications mentioning (H)CQ for viruses other than coronaviruses were available, including 35 in vitro studies (reporting an inconstant inhibition of viral replication), 11 preclinical studies (reporting no or disputable positive effects), and 32 clinical trials (reporting no or disputable positive effects). Moreover, 67 publications on (H)CQ and coronavirus infections were available, including 12 in vitro studies (reporting an inconstant inhibition of viral replication), two preclinical studies (reporting contradictory results), and no clinical trials. Meanwhile, 253 therapeutic clinical trials featuring an HCQ arm were registered in 2020, intending to enrol 246,623 patients. CONCLUSIONS The number and size of (H)CQ clinical trials for COVID-19 launched in 2020 were not supported by the literature published before April 2020.
Collapse
Affiliation(s)
- N Vieux
- Pôle Pharmacie, Université Grenoble Alpes, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
| | - Q Perrier
- Pôle Pharmacie, Université Grenoble Alpes, Centre Hospitalier Universitaire Grenoble Alpes, Laboratory of Fundamental and Applied Bioenergetic (LBFA), INSERM U1055, Grenoble, France
| | - P Bedouch
- Pôle Pharmacie, Université Grenoble Alpes, Centre Hospitalier Universitaire Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, CHU Grenoble Alpes, TIMC, 38000 Grenoble, France
| | - O Epaulard
- Infectious Disease Department, Université Grenoble Alpes, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France; Groupe de Recherche en Infectiologie Clinique, CIC-1406, INSERM-UGA-CHUGA, France.
| |
Collapse
|
8
|
Saha A, Acharya BN, Parida M, Saxena N, Rajaiya J, Dash PK. Identification of 2,4-Diaminoquinazoline Derivative as a Potential Small-Molecule Inhibitor against Chikungunya and Ross River Viruses. Viruses 2023; 15:2194. [PMID: 38005871 PMCID: PMC10674894 DOI: 10.3390/v15112194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/20/2023] [Accepted: 10/22/2023] [Indexed: 11/26/2023] Open
Abstract
Alphaviruses are serious zoonotic threats responsible for significant morbidity, causing arthritis or encephalitis. So far, no licensed drugs or vaccines are available to combat alphaviral infections. About 300,000 chikungunya virus (CHIKV) infections have been reported in 2023, with more than 300 deaths, including reports of a few cases in the USA as well. The discovery and development of small-molecule drugs have been revolutionized over the last decade. Here, we employed a cell-based screening approach using a series of in-house small-molecule libraries to test for their ability to inhibit CHIKV replication. DCR 137, a quinazoline derivative, was found to be the most potent inhibitor of CHIKV replication in our screening assay. Both, the cytopathic effect, and immunofluorescence of infected cells were reduced in a dose-dependent manner with DCR 137 post-treatment. Most importantly, DCR 137 was more protective than the traditional ribavirin drug and reduced CHIKV plaque-forming units by several log units. CHIKV-E2 protein levels were also reduced in a dose-dependent manner. Further, DCR 137 was probed for its antiviral activity against another alphavirus, the Ross River virus, which revealed effective inhibition of viral replication. These results led to the identification of a potential quinazoline candidate for future optimization that might act as a pan-alphavirus inhibitor.
Collapse
Affiliation(s)
- Amrita Saha
- Virology Division, Defence Research & Development Establishment, Gwalior 474002, India; (A.S.); (M.P.)
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA;
| | - Badri Narayan Acharya
- Synthetic Chemistry Division, Defence Research & Development Establishment, Gwalior 474002, India;
| | - Manmohan Parida
- Virology Division, Defence Research & Development Establishment, Gwalior 474002, India; (A.S.); (M.P.)
| | - Nandita Saxena
- Pharmacology & Toxicology Division, Defence Research & Development Establishment, Gwalior 474002, India;
| | - Jaya Rajaiya
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA;
| | - Paban Kumar Dash
- Virology Division, Defence Research & Development Establishment, Gwalior 474002, India; (A.S.); (M.P.)
| |
Collapse
|
9
|
Henderson Sousa F, Ghaisani Komarudin A, Findlay-Greene F, Bowolaksono A, Sasmono RT, Stevens C, Barlow PG. Evolution and immunopathology of chikungunya virus informs therapeutic development. Dis Model Mech 2023; 16:dmm049804. [PMID: 37014125 PMCID: PMC10110403 DOI: 10.1242/dmm.049804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
Chikungunya virus (CHIKV), a mosquito-borne alphavirus, is an emerging global threat identified in more than 60 countries across continents. The risk of CHIKV transmission is rising due to increased global interactions, year-round presence of mosquito vectors, and the ability of CHIKV to produce high host viral loads and undergo mutation. Although CHIKV disease is rarely fatal, it can progress to a chronic stage, during which patients experience severe debilitating arthritis that can last from several weeks to months or years. At present, there are no licensed vaccines or antiviral drugs for CHIKV disease, and treatment is primarily symptomatic. This Review provides an overview of CHIKV pathogenesis and explores the available therapeutic options and the most recent advances in novel therapeutic strategies against CHIKV infections.
Collapse
Affiliation(s)
- Filipa Henderson Sousa
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Edinburgh EH11 4BN, UK
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Amalina Ghaisani Komarudin
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency, Cibinong Science Center, Cibinong, Kabupaten Bogor 16911, Indonesia
| | - Fern Findlay-Greene
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Edinburgh EH11 4BN, UK
| | - Anom Bowolaksono
- Cellular and Molecular Mechanisms in Biological System (CEMBIOS) Research Group, Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424, Indonesia
| | - R. Tedjo Sasmono
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency, Cibinong Science Center, Cibinong, Kabupaten Bogor 16911, Indonesia
| | - Craig Stevens
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Edinburgh EH11 4BN, UK
| | - Peter G. Barlow
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Edinburgh EH11 4BN, UK
| |
Collapse
|
10
|
Nogueira IA, Cordeiro RA, Henn GADL, Oliveira JLD. Hydroxychloroquine for the management of chronic chikungunya arthritis. Rev Inst Med Trop Sao Paulo 2023; 65:e26. [PMID: 37075333 PMCID: PMC10115449 DOI: 10.1590/s1678-9946202365026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 02/28/2023] [Indexed: 04/21/2023] Open
Affiliation(s)
- Igor Albuquerque Nogueira
- Universidade Federal do Ceará, Faculdade de Medicina, Departamento de Medicina Clínica, Fortaleza, Ceará, Brazil
| | - Rafael Alves Cordeiro
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Serviço de Reumatologia, São Paulo, São Paulo, Brazil
| | - Guilherme Alves de Lima Henn
- Universidade Federal do Ceará, Faculdade de Medicina, Departamento de Saúde Comunitária, Divisão de Doenças Infecciosas, Fortaleza, Ceará, Brazil
- Hospital São José de Doenças Infecciosas, Fortaleza, Ceará, Brazil
| | - Jobson Lopes de Oliveira
- Universidade Federal do Ceará, Faculdade de Medicina, Departamento de Medicina Clínica, Fortaleza, Ceará, Brazil
- Centro Universitário Christus, Faculdade de Medicina, Fortaleza, Ceará, Brazil
| |
Collapse
|
11
|
Bishop CR, Caten FT, Nakaya HI, Suhrbier A. Chikungunya patient transcriptional signatures faithfully recapitulated in a C57BL/6J mouse model. Front Immunol 2022; 13:1092370. [PMID: 36578476 PMCID: PMC9791225 DOI: 10.3389/fimmu.2022.1092370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 11/25/2022] [Indexed: 12/14/2022] Open
Abstract
Introduction An adult wild-type C57BL/6J mouse model of chikungunya virus (CHIKV) infection and disease has been extensively used to study the alphaviral arthritic immunopathology and to evaluate new interventions. How well mouse models recapitulate the gene expression profiles seen in humans remains controversial. Methods Herein we perform a comparative transcriptomics analysis using RNA-Seq datasets from the C57BL/6J CHIKV mouse model with datasets obtained from adults and children acutely infected with CHIKV. Results Despite sampling quite different tissues, peripheral blood from humans and feet from mice, gene expression profiles were quite similar, with an overlap of up to ≈50% for up-regulated single copy orthologue differentially expressed genes. Furthermore, high levels of significant concordance between mouse and human were seen for immune pathways and signatures, which were dominated by interferons, T cells and monocyte/macrophages. Importantly, predicted responses to a series of anti-inflammatory drug and biologic treatments also showed cogent similarities between species. Discussion Comparative transcriptomics and subsequent pathway analysis provides a detailed picture of how a given model recapitulates human gene expression. Using this method, we show that the C57BL/6J CHIKV mouse model provides a reliable and representative system in which to study CHIKV immunopathology and evaluate new treatments.
Collapse
Affiliation(s)
- Cameron R. Bishop
- Department of Infection and Inflammation, Queensland Institute of Medical Research, Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Felipe Ten Caten
- Pathology Advanced Translational Research Unit, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Helder I. Nakaya
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil,*Correspondence: Helder I. Nakaya, ; Andreas Suhrbier,
| | - Andreas Suhrbier
- Department of Infection and Inflammation, Queensland Institute of Medical Research, Berghofer Medical Research Institute, Brisbane, QLD, Australia,Global Virus Network (GVN) Center of Excellence, Australian Infectious Disease Research Centre, Brisbane, QLD, Australia,*Correspondence: Helder I. Nakaya, ; Andreas Suhrbier,
| |
Collapse
|
12
|
Gomes de Azevedo-Quintanilha I, Campos MM, Teixeira Monteiro AP, Dantas do Nascimento A, Calheiros AS, Oliveira DM, Dias SSG, Soares VC, Santos JDC, Tavares I, Lopes Souza TM, Hottz ED, Bozza FA, Bozza PT. Increased platelet activation and platelet-inflammasome engagement during chikungunya infection. Front Immunol 2022; 13:958820. [PMID: 36189282 PMCID: PMC9520464 DOI: 10.3389/fimmu.2022.958820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Chikungunya fever is a viral disease transmitted by mosquitoes of the genus Aedes. The infection is usually symptomatic and most common symptoms are fever accompanied by joint pain and swelling. In most cases symptoms subside within a week. However, severe prolonged and disabling joint pain, that may persist for several months, even years, are reported. Although the pathogenesis of Chikungunya infection is not fully understood, the evolution to severe disease seems to be associated with the activation of immune mechanisms and the action of inflammatory mediators. Platelets are recognized as inflammatory cells with fundamental activities in the immune response, maintenance of vascular stability and pathogenicity of several inflammatory and infectious diseases. Although the involvement of platelets in the pathogenesis of viral diseases has gained attention in recent years, their activation in Chikungunya has not been explored. The aim of this study was to analyze platelet activation and the possible role of platelets in the amplification of the inflammatory response during Chikungunya infection. We prospectively included 132 patients attended at the Quinta D’Or hospital and 25 healthy volunteers during the 2016 epidemic in Rio de Janeiro, Brazil. We observed increased expression of CD62P on the surface of platelets, as well as increased plasma levels of CD62P and platelet-derived inflammatory mediators indicating that the Chikungunya infection leads to platelet activation. In addition, platelets from chikungunya patients exhibit increased expression of NLRP3, caspase 4, and cleaved IL-1β, suggestive of platelet-inflammasome engagement during chikungunya infection. In vitro experiments confirmed that the Chikungunya virus directly activates platelets. Moreover, we observed that platelet activation and soluble p-selectin at the onset of symptoms were associated with development of chronic forms of the disease. Collectively, our data suggest platelet involvement in the immune processes and inflammatory amplification triggered by the infection.
Collapse
Affiliation(s)
- Isaclaudia Gomes de Azevedo-Quintanilha
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- *Correspondence: Patricia T. Bozza, ; Isaclaudia Gomes de Azevedo-Quintanilha,
| | - Mariana Macedo Campos
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Alessandra Dantas do Nascimento
- Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- Instituto D’Or de Pesquisa e Ensino, Rio de Janeiro, Brazil
| | - Andrea Surrage Calheiros
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Douglas Mathias Oliveira
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Suelen Silva Gomes Dias
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Vinicius Cardoso Soares
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Julia da Cunha Santos
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Isabel Tavares
- Instituto D’Or de Pesquisa e Ensino, Rio de Janeiro, Brazil
| | - Thiago Moreno Lopes Souza
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- Centro de Desenvolvimento Tecnológico em Saúde (CDTS) and National Institute for Science and Technology on Innovation on Diseases of Neglected Populations (INCT/IDNP), FIOCRUZ, Rio de Janeiro, Brazil
| | - Eugenio D. Hottz
- Laboratório de Imunotrombose, Departamento de Bioquimica, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Fernando A. Bozza
- Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- Instituto D’Or de Pesquisa e Ensino, Rio de Janeiro, Brazil
| | - Patricia T. Bozza
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- *Correspondence: Patricia T. Bozza, ; Isaclaudia Gomes de Azevedo-Quintanilha,
| |
Collapse
|
13
|
Mongia A, Jain S, Chouzenoux E, Majumdar A. DeepVir: Graphical Deep Matrix Factorization for In Silico Antiviral Repositioning-Application to COVID-19. J Comput Biol 2022; 29:441-452. [PMID: 35394368 DOI: 10.1089/cmb.2021.0108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
This study formulates antiviral repositioning as a matrix completion problem wherein the antiviral drugs are along the rows and the viruses are along the columns. The input matrix is partially filled, with ones in positions where the antiviral drug has been known to be effective against a virus. The curated metadata for antivirals (chemical structure and pathways) and viruses (genomic structure and symptoms) are encoded into our matrix completion framework as graph Laplacian regularization. We then frame the resulting multiple graph regularized matrix completion (GRMC) problem as deep matrix factorization. This is solved by using a novel optimization method called HyPALM (Hybrid Proximal Alternating Linearized Minimization). Results of our curated RNA drug-virus association data set show that the proposed approach excels over state-of-the-art GRMC techniques. When applied to in silico prediction of antivirals for COVID-19, our approach returns antivirals that are either used for treating patients or are under trials for the same.
Collapse
|
14
|
OUP accepted manuscript. Trans R Soc Trop Med Hyg 2022; 116:889-899. [DOI: 10.1093/trstmh/trac045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/08/2022] [Accepted: 04/27/2022] [Indexed: 11/14/2022] Open
|
15
|
Battisti V, Urban E, Langer T. Antivirals against the Chikungunya Virus. Viruses 2021; 13:1307. [PMID: 34372513 PMCID: PMC8310245 DOI: 10.3390/v13071307] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 01/20/2023] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that has re-emerged in recent decades, causing large-scale epidemics in many parts of the world. CHIKV infection leads to a febrile disease known as chikungunya fever (CHIKF), which is characterised by severe joint pain and myalgia. As many patients develop a painful chronic stage and neither antiviral drugs nor vaccines are available, the development of a potent CHIKV inhibiting drug is crucial for CHIKF treatment. A comprehensive summary of current antiviral research and development of small-molecule inhibitor against CHIKV is presented in this review. We highlight different approaches used for the identification of such compounds and further discuss the identification and application of promising viral and host targets.
Collapse
Affiliation(s)
| | | | - Thierry Langer
- Department of Pharmaceutical Sciences, Pharmaceutical Chemistry Division, University of Vienna, A-1090 Vienna, Austria; (V.B.); (E.U.)
| |
Collapse
|
16
|
Abstract
Chikungunya fever (CHIKF) is an arbovirus disease caused by chikungunya virus (CHIKV), an alphavirus of Togaviridae family. Transmission follows a human-mosquito-human cycle starting with a mosquito bite. Subsequently, symptoms develop after 2-6 days of incubation, including high fever and severe arthralgia. The disease is self-limiting and usually resolve within 2 weeks. However, chronic disease can last up to several years with persistent polyarthralgia. Overlapping symptoms and common vector with dengue and malaria present many challenges for diagnosis and treatment of this disease. CHIKF was reported in India in 1963 for the first time. After a period of quiescence lasting up to 32 years, CHIKV re-emerged in India in 2005. Currently, every part of the country has become endemic for the disease with outbreaks resulting in huge economic and productivity losses. Several mutations have been identified in circulating strains of the virus resulting in better adaptations or increased fitness in the vector(s), effective transmission, and disease severity. CHIKV evolution has been a significant driver of epidemics in India, hence, the need to focus on proper surveillance, and implementation of prevention and control measure in the country. Presently, there are no licensed vaccines or antivirals available; however, India has initiated several efforts in this direction including traditional medicines. In this review, we present the current status of CHIKF in India.
Collapse
|
17
|
Mongia A, Saha SK, Chouzenoux E, Majumdar A. A computational approach to aid clinicians in selecting anti-viral drugs for COVID-19 trials. Sci Rep 2021; 11:9047. [PMID: 33907209 PMCID: PMC8079380 DOI: 10.1038/s41598-021-88153-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 04/01/2021] [Indexed: 02/02/2023] Open
Abstract
The year 2020 witnessed a heavy death toll due to COVID-19, calling for a global emergency. The continuous ongoing research and clinical trials paved the way for vaccines. But, the vaccine efficacy in the long run is still questionable due to the mutating coronavirus, which makes drug re-positioning a reasonable alternative. COVID-19 has hence fast-paced drug re-positioning for the treatment of COVID-19 and its symptoms. This work builds computational models using matrix completion techniques to predict drug-virus association for drug re-positioning. The aim is to assist clinicians with a tool for selecting prospective antiviral treatments. Since the virus is known to mutate fast, the tool is likely to help clinicians in selecting the right set of antivirals for the mutated isolate. The main contribution of this work is a manually curated database publicly shared, comprising of existing associations between viruses and their corresponding antivirals. The database gathers similarity information using the chemical structure of drugs and the genomic structure of viruses. Along with this database, we make available a set of state-of-the-art computational drug re-positioning tools based on matrix completion. The tools are first analysed on a standard set of experimental protocols for drug target interactions. The best performing ones are applied for the task of re-positioning antivirals for COVID-19. These tools select six drugs out of which four are currently under various stages of trial, namely Remdesivir (as a cure), Ribavarin (in combination with others for cure), Umifenovir (as a prophylactic and cure) and Sofosbuvir (as a cure). Another unanimous prediction is Tenofovir alafenamide, which is a novel Tenofovir prodrug developed in order to improve renal safety when compared to its original counterpart (older version) Tenofovir disoproxil. Both are under trail, the former as a cure and the latter as a prophylactic. These results establish that the computational methods are in sync with the state-of-practice. We also demonstrate how the drugs to be used against the virus would vary as SARS-Cov-2 mutates over time by predicting the drugs for the mutated strains, suggesting the importance of such a tool in drug prediction. We believe this work would open up possibilities for applying machine learning models to clinical research for drug-virus association prediction and other similar biological problems.
Collapse
Affiliation(s)
| | - Sanjay Kr Saha
- Department of Community Medicine, IPGMER Kolkata, Kolkata, India
| | - Emilie Chouzenoux
- CVN, Inria Saclay, University of Paris Saclay, 91190, Gif-sur-Yvette, France.
| | | |
Collapse
|
18
|
Rheumatic manifestations of Chikungunya virus infection: Prevalence, patterns, and enthesitis. PLoS One 2021; 16:e0249867. [PMID: 33886579 PMCID: PMC8062098 DOI: 10.1371/journal.pone.0249867] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/15/2021] [Indexed: 11/19/2022] Open
Abstract
Chikungunya virus (CHIKV) is an arthropod-borne virus transmitted by mosquitoes of the genus Aedes. CHIKV infection causes various rheumatic symptoms, including enthesitis; however, these effects are rarely investigated. The aim of this study was to describe the rheumatic manifestations in CHIKV infection, estimate the prevalence of enthesitis in CHIKV-infected patients, and determine the factors associated with CHIKV-induced enthesitis. We conducted a prospective, observational study in patients with CHIKV infection confirmed by positive RT-PCR or IgM assay from October 2019 to March 2020. Patients with pre-existing inflammatory rheumatic diseases were excluded. A rheumatologist evaluated the demographic and clinical characteristics of the patients, including the number of inflamed joints, enthesitis sites, tendinitis, and tenosynovitis. The Leeds enthesitis index (LEI) and the Maastricht ankylosing spondylitis enthesis score (MASES) were used to evaluate enthesitis sites. Factors associated with enthesitis were determined using logistic regression analysis. One hundred and sixty-four participants diagnosed with CHIKV infection were enrolled. The mean (SD) age of the patients was 48.2 (14) years. The most common pattern of rheumatic manifestations was polyarthritis with or without enthesitis. Enthesitis was observed in 63 patients (38.4%). The most common site of enthesitis was the left lateral epicondyle as assessed by LEI and the posterior superior iliac spine as assessed by MASES. Multivariate analysis indicated that the number of actively inflamed joints and Thai-HAQ score at the initial evaluation were significantly associated with the presence of enthesitis. The main rheumatic manifestations of CHIKV infection were arthritis/arthralgia, with enthesitis as a prominent extraarticular feature. CHIKV infection can cause enthesitis at peripheral and axial sites. We found that enthesitis was associated with a high number of inflamed joints and reduced physical function. These results indicate that the assessment of enthesitis should be considered when monitoring disease activity and as a treatment response parameter in CHIKV-infected patients.
Collapse
|
19
|
Kamat S, Kumari M. Repurposing Chloroquine Against Multiple Diseases With Special Attention to SARS-CoV-2 and Associated Toxicity. Front Pharmacol 2021; 12:576093. [PMID: 33912030 PMCID: PMC8072386 DOI: 10.3389/fphar.2021.576093] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 02/08/2021] [Indexed: 12/13/2022] Open
Abstract
Chloroquine and its derivatives have been used since ages to treat malaria and have also been approved by the FDA to treat autoimmune diseases. The drug employs pH-dependent inhibition of functioning and signalling of the endosome, lysosome and trans-Golgi network, immunomodulatory actions, inhibition of autophagy and interference with receptor binding to treat cancer and many viral diseases. The ongoing pandemic of COVID-19 has brought the whole world on the knees, seeking an urgent hunt for an anti-SARS-CoV-2 drug. Chloroquine has shown to inhibit receptor binding of the viral particles, interferes with their replication and inhibits "cytokine storm". Though multiple modes of actions have been employed by chloroquine against multiple diseases, viral diseases can provide an added advantage to establish the anti-SARS-CoV-2 mechanism, the in vitro and in vivo trials against SARS-CoV-2 have yielded mixed results. The toxicological effects and dosage optimization of chloroquine have been studied for many diseases, though it needs a proper evaluation again as chloroquine is also associated with several toxicities. Moreover, the drug is inexpensive and is readily available in many countries. Though much of the hope has been created by chloroquine and its derivatives against multiple diseases, repurposing it against SARS-CoV-2 requires large scale, collaborative, randomized and unbiased clinical trials to avoid false promises. This review summarizes the use and the mechanism of chloroquine against multiple diseases, its side-effects, mechanisms and the different clinical trials ongoing against "COVID-19".
Collapse
Affiliation(s)
| | - Madhuree Kumari
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
20
|
|
21
|
Barzkar F, Ranjbar M, Sioofy-Khojine AB, Khajehazad M, Vesal Azad R, Moradi Y, Baradaran HR. Efficacy and safety of chloroquine and hydroxychloroquine for COVID-19: A comprehensive evidence synthesis of clinical, animal, and in vitro studies. Med J Islam Repub Iran 2020; 34:171. [PMID: 33816370 PMCID: PMC8004577 DOI: 10.47176/mjiri.34.171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Indexed: 12/24/2022] Open
Abstract
Background: The world is facing a pandemic of COVID-19, a respiratory disease caused by a novel coronavirus which is now called SARS-CoV-2. Current treatment recommendations for the infection are mainly repurposed drugs based on experience with other clinically similar conditions and are not backed by direct evidence. Chloroquine (CQ) and its derivative Hydroxychloroquine (HCQ) are among the candidates. We aimed to synthesize current evidence systematically for in vitro, animal, and human studies on the efficacy and safety of chloroquine in patients with COVID-19. Methods: The Cochrane Library, Google Scholar, PubMed (via Medline), Embase, Scopus, and Web of Science, MedRxiv, clinical trial registries including clinicaltrials.gov, ChiCTR (Chinese Clinical Trial Registry), IRCT (Iranian Registry of Clinical Trials), and the EU Clinical Trials Register. We used the Cochrane tool for risk of bias assessment in randomized studies, the ROBINS tool for non-randomized studies, and the GRADE methodology to summarize the evidence and certainty in effect estimates. Results: The initial database searching retrieved 24,752 studies. Of these, 15,435 abstracts were screened and 115 were selected for full-text review. Finally, 20 human studies, 3 animal studies, and 4 in vitro studies were included in this systematic review. The risk of bias within studies was unclear to high and the overall certainty in evidence-based on GRADES- was very low. HCQ may be effective in clinical improvement in a subset of patients with COVID-19. However, the frequency of adverse events was higher in patients taking HCQ compared to standard of care alone. In contrast, animal studies, did not report any adverse effects. Furthermore, clear benefit of the drug in the survival of the animals has been reported. Most in vitro studies indicated a high selectivity index for the drug and one study that used a human coronavirus reported blockage of virus replication. Conclusion: Current evidence background is limited to six poorly conducted clinical studies with inconsistent findings which fail to show significant efficacy for HCQ. Safety data is also limited but the drug may increase adverse outcomes. Routine use of the drug is not recommended based on limited efficacy and concerns about the drug safety especially in high-risk populations.
Collapse
Affiliation(s)
- Farzaneh Barzkar
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Mitra Ranjbar
- Department of Infectious Diseases, School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Amir-Babak Sioofy-Khojine
- Department of Virology, Faculty of Medicine and Life Sciences, PL 100, 33014 University of Tampere, Tampere, Finland
| | - Mohammadamin Khajehazad
- Department of Infectious Diseases, School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Roya Vesal Azad
- School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Yousef Moradi
- Social Determinants of Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Hamid Reza Baradaran
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
- Ageing Clinical & Experimental Research Team, Institute of Applied Health Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| |
Collapse
|
22
|
Hucke FIL, Bugert JJ. Current and Promising Antivirals Against Chikungunya Virus. Front Public Health 2020; 8:618624. [PMID: 33384981 PMCID: PMC7769948 DOI: 10.3389/fpubh.2020.618624] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 11/19/2020] [Indexed: 12/21/2022] Open
Abstract
Chikungunya virus (CHIKV) is the causative agent of chikungunya fever (CHIKF) and is categorized as a(n) (re)emerging arbovirus. CHIKV has repeatedly been responsible for outbreaks that caused serious economic and public health problems in the affected countries. To date, no vaccine or specific antiviral therapies are available. This review gives a summary on current antivirals that have been investigated as potential therapeutics against CHIKF. The mode of action as well as possible compound targets (viral and host targets) are being addressed. This review hopes to provide critical information on the in vitro efficacies of various compounds and might help researchers in their considerations for future experiments.
Collapse
|
23
|
Small-Molecule Inhibitors of Chikungunya Virus: Mechanisms of Action and Antiviral Drug Resistance. Antimicrob Agents Chemother 2020; 64:AAC.01788-20. [PMID: 32928738 PMCID: PMC7674028 DOI: 10.1128/aac.01788-20] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that has spread to more than 60 countries worldwide. CHIKV infection leads to a febrile illness known as chikungunya fever (CHIKF), which is characterized by long-lasting and debilitating joint and muscle pain. CHIKV can cause large-scale epidemics with high attack rates, which substantiates the need for development of effective therapeutics suitable for outbreak containment. In this review, we highlight the different strategies used for developing CHIKV small-molecule inhibitors, ranging from high-throughput cell-based screening to in silico screens and enzymatic assays with purified viral proteins. Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that has spread to more than 60 countries worldwide. CHIKV infection leads to a febrile illness known as chikungunya fever (CHIKF), which is characterized by long-lasting and debilitating joint and muscle pain. CHIKV can cause large-scale epidemics with high attack rates, which substantiates the need for development of effective therapeutics suitable for outbreak containment. In this review, we highlight the different strategies used for developing CHIKV small-molecule inhibitors, ranging from high-throughput cell-based screening to in silico screens and enzymatic assays with purified viral proteins. We further discuss the current status of the most promising molecules, including in vitro and in vivo findings. In particular, we focus on describing host and/or viral targets, mode of action, and mechanisms of antiviral drug resistance and associated mutations. Knowledge of the key molecular determinants of drug resistance will aid selection of the most promising antiviral agent(s) for clinical use. For these reasons, we also summarize the available information about drug-resistant phenotypes in Aedes mosquito vectors. From this review, it is evident that more of the active molecules need to be evaluated in preclinical and clinical models to address the current lack of antiviral treatment for CHIKF.
Collapse
|
24
|
Ren L, Xu W, Overton JL, Yu S, Chiamvimonvat N, Thai PN. Assessment of Chloroquine and Hydroxychloroquine Safety Profiles: A Systematic Review and Meta-Analysis. Front Pharmacol 2020; 11:562777. [PMID: 33154723 PMCID: PMC7591721 DOI: 10.3389/fphar.2020.562777] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 09/14/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Chloroquine (CQ) and its derivative hydroxychloroquine (HCQ) have recently emerged as potential antiviral and immunomodulatory options for the treatment of 2019 coronavirus disease (COVID-19). To examine the safety profiles of these medications, we systematically evaluated the adverse events (AEs) of these medications from published randomized controlled trials (RCTs). METHODS We systematically searched MEDLINE, the Cochrane library, the Cochrane Central Register of Controlled Trials (CENTRAL), and the ClinicalTrials.gov for all the RCTs comparing CQ or HCQ with placebo or other active agents, published before June 20, 2020. The random-effects or fixed-effects models were used to pool the risk estimates relative ratio (RR) with 95% confidence interval (CI) for the outcomes. RESULTS The literature search yielded 23 and 19 studies for CQ and HCQ, respectively, that satisfied our inclusion criteria. Of these studies, we performed meta-analysis on 6 studies for CQ and 18 studies for HCQ. We did not limit our analysis to published records involving viral treatment alone; data also included the usage of either CQ or HCQ for the treatment of other diseases. The trials for the CQ consisted of a total of 2,137 participants (n = 1,077 CQ, n = 1,060 placebo), while the trials for HCQ involved 2,675 participants (n = 1,345 HCQ and n = 1,330 control). The overall mild and total AEs were significantly higher in CQ-treated non-COVID-19 patients, HCQ-treated non-COVID-19 patients, and HCQ-treated COVID-19 patients. The AEs were further categorized into four groups and analyses revealed that neurologic, gastrointestinal (GI), dermatologic, and sensory AEs were higher in participants taking CQ compared to placebo, while GI, dermatologic, sensory, and cardiovascular AEs were higher in HCQ-treated COVID-19 patients compared to control patients. Moreover, subgroup analysis suggested higher AEs with respect to dosage and duration in HCQ group. Data were acquired from studies with perceived low risk of bias, so plausible bias is unlikely to seriously affect the main findings of the current study. CONCLUSIONS Taken together, we found that participants taking either CQ or HCQ exhibited more AEs than participants taking placebo or control. Precautionary measures should be taken when using these drugs to treat COVID-19. The meta-analysis was registered on OSF (https://osf.io/jm3d9). REGISTRATION The meta-analysis was registered on OSF (https://osf.io/jm3d9).
Collapse
Affiliation(s)
- Lu Ren
- Department of Internal Medicine, Cardiology, University of California, Davis, Davis, CA, United States
| | - Wilson Xu
- Department of Internal Medicine, Cardiology, University of California, Davis, Davis, CA, United States
| | - James L. Overton
- Department of Internal Medicine, Cardiology, University of California, Davis, Davis, CA, United States
| | - Shandong Yu
- Department of Cardiology, Cardiovascular Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Nipavan Chiamvimonvat
- Department of Internal Medicine, Cardiology, University of California, Davis, Davis, CA, United States
- Department of Veteran Affairs, Northern California Health Care System, Mather, CA, United States
| | - Phung N. Thai
- Department of Internal Medicine, Cardiology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
25
|
Abstract
The chikungunya virus (CHIKV) infection epidemic has emerged as a significant public health concern in the last 10-15 years, especially in Asian and south American countries. However, with ever-expanding tourism and migration, cases have now been reported in north America and Europe. CHIKV infection predominantly causes musculoskeletal symptoms with a chronic polyarthritis which may resemble autoimmune inflammatory arthritis. CHIKV infection should always be suspected in a returning traveller presenting with fever, skin rash and arthralgia. Though first reported in the last century, a series of epidemics since 2004 have substantially improved our knowledge. There has also been a significant increase in our understanding of the immunopathogenesis of chikungunya infection. This knowledge is being used in the development of new treatment strategies and preventive measures. In this narrative review, we discuss some of the recent advances in the epidemiology, immunopathogenesis, and management of CHIKV arthritis.
Collapse
|
26
|
Antiviral Strategies against Arthritogenic Alphaviruses. Microorganisms 2020; 8:microorganisms8091365. [PMID: 32906603 PMCID: PMC7563460 DOI: 10.3390/microorganisms8091365] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/03/2020] [Accepted: 09/05/2020] [Indexed: 01/01/2023] Open
Abstract
Alphaviruses are members of the Togaviridae family that are mainly transmitted by arthropods such as mosquitoes. In the last decades, several alphaviruses have re-emerged, causing outbreaks worldwide. One example is the re-emergence of chikungunya virus (CHIKV) in 2004, which caused massive epidemics in the Indian Ocean region after which the virus dramatically spread to the Americas in late 2013. Besides CHIKV, other alphaviruses, such as the Ross River virus (RRV), Mayaro virus (MAYV), and Venezuelan equine encephalitis virus (VEEV), have emerged and have become a serious public health concern in recent years. Infections with the Old World alphaviruses (e.g., CHIKV, RRV) are primarily associated with polyarthritis and myalgia that can persist for months to years. On the other hand, New World alphaviruses such as VEEV cause mainly neurological disease. Despite the worldwide (re-)emergence of these viruses, there are no antivirals or vaccines available for the treatment or prevention of infections with alphaviruses. It is therefore of utmost importance to develop antiviral strategies against these viruses. We here provided an overview of the reported antiviral strategies against arthritogenic alphaviruses. In addition, we highlighted the future perspectives for the development and the proper use of such antivirals.
Collapse
|
27
|
|
28
|
Naghipour S, Ghodousi M, Rahsepar S, Elyasi S. Repurposing of well-known medications as antivirals: hydroxychloroquine and chloroquine - from HIV-1 infection to COVID-19. Expert Rev Anti Infect Ther 2020; 18:1119-1133. [PMID: 32631083 DOI: 10.1080/14787210.2020.1792291] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Chloroquine (CQ) and hydroxychloroquine (HCQ) originally were prescribed for prevention or treatment of malaria, but now successfully are used in several rheumatologic diseases. In addition, in recent decades considering their immunomodulatory effects, high tolerably, and low cost, they are evaluated for various viral infections from HIV to COVID-19. AREAS COVERED In this review, we tried to summarize all available studies on HCQ and CQ efficacy for management of viral infections and the probable mechanisms of action. The data were collected by searching 'Hydroxychloroquine,' 'Chloroquine,' 'Viral infection,' and names of various viral infections in PubMed/MEDLINE, Scopus, and Google Scholar databases from commencement to June 2020. Out of 95 search results, 74 most relevant works were gathered. EXPERT OPINION HCQ/CQ showed acceptable efficacy in HIV especially as an adjuvant treatment beside routine HAART. However, for some viral infections such as ZIKA, EBOLA, SARS-CoV, and MERS-CoV, human studies are lacking. In the COVID-19 pandemic, in vitro and preliminary human studies showed encouraging findings. However, later well-designed trials and retrospective studies with large sample size not only reported non-significant efficacy but also showed more cardiac adverse reactions. Alkalinization of acid vesicles is the most important mechanism of action.
Collapse
Affiliation(s)
- Sara Naghipour
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences , Mashhad, Iran
| | - Mahsa Ghodousi
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences , Mashhad, Iran
| | - Sara Rahsepar
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences , Mashhad, Iran
| | - Sepideh Elyasi
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences , Mashhad, Iran
| |
Collapse
|
29
|
Abstract
Alphaviruses, members of the enveloped, positive-sense, single-stranded RNA Togaviridae family, represent a reemerging public health threat as mosquito vectors expand into new geographic territories. The Old World alphaviruses, which include chikungunya virus, Ross River virus, and Sindbis virus, tend to cause a clinical syndrome characterized by fever, rash, and arthritis, whereas the New World alphaviruses, which consist of Venezuelan equine encephalitis virus, eastern equine encephalitis virus, and western equine encephalitis virus, induce encephalomyelitis. Following recovery from the acute phase of infection, many patients are left with debilitating persistent joint and neurological complications that can last for years. Clues from human cases and studies using animal models strongly suggest that much of the disease and pathology induced by alphavirus infection, particularly atypical and chronic manifestations, is mediated by the immune system rather than directly by the virus. This review discusses the current understanding of the immunopathogenesis of the arthritogenic and neurotropic alphaviruses accumulated through both natural infection of humans and experimental infection of animals, particularly mice. As treatment following alphavirus infection is currently limited to supportive care, understanding the contribution of the immune system to the disease process is critical to developing safe and effective therapies.
Collapse
Affiliation(s)
- Victoria K Baxter
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Mark T Heise
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
| |
Collapse
|
30
|
Ren L, Xu W, Overton JL, Yu S, Chiamvimonvat N, Thai PN. Assessment of Hydroxychloroquine and Chloroquine Safety Profiles: A Systematic Review and Meta-Analysis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.05.02.20088872. [PMID: 32511539 PMCID: PMC7274215 DOI: 10.1101/2020.05.02.20088872] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
BACKGROUND Recently, chloroquine (CQ) and its derivative hydroxychloroquine (HCQ) have emerged as potential antiviral and immunomodulatory options for the treatment of 2019 coronavirus disease (COVID-19). To examine the safety profiles of these medications, we systematically evaluated the adverse events (AEs) of these medications from published randomized controlled trials (RCTs). METHODS We systematically searched PubMed, MEDLINE, Cochrane, the Cochrane Central Register of Controlled Trials (CENTRAL), EMBASE, and the ClinicalTrials.gov for all the RCTs comparing CQ or HCQ with placebo or other active agents, published before March 31, 2020. The random-effects or fixed-effects models were used to pool the risk estimates relative ratio (RR) with 95% confidence interval (CI) for the outcomes. RESULTS The literature search yielded 23 and 17 studies for CQ and HCQ, respectively, that satisfied our inclusion criteria. Of these studies, we performed meta-analysis on the ones that were placebo-controlled, which included 6 studies for CQ and 14 studies for HCQ. We did not limit our analysis to published reports involving viral treatment alone; data also included the usage of either CQ or HCQ for the treatment of other diseases. The trials for the CQ consisted of a total of 2,137 participants (n=1,077 CQ, n=1,060 placebo), while the trials for HCQ involved 1,096 participants (n=558 HCQ and n=538 placebo). The overall mild or total AEs were statistically higher comparing CQ or HCQ to placebo. The AEs were further categorized into four groups and analyses revealed that neurologic, gastrointestinal, dermatologic, and ophthalmic AEs were higher in participants taking CQ compared to placebo. Although this was not evident in HCQ treated groups, further analyses suggested that there were more AEs attributed to other organ system that were not included in the categorized meta-analyses. Additionally, meta-regression analyses revealed that total AEs was affected by dosage for the CQ group. CONCLUSIONS Taken together, we found that participants taking either CQ or HCQ have more AEs than participants taking placebo. Precautionary measures should be taken when using these drugs to treat COVID-19.
Collapse
Affiliation(s)
- Lu Ren
- Department of Internal Medicine, Cardiology, UC Davis
| | - Wilson Xu
- Department of Internal Medicine, Cardiology, UC Davis
| | | | - Shandong Yu
- Department of Cardiology, Cardiovascular Center, Beijing Friendship Hospital, Capital Medical University, Beijing
| | | | - Phung N. Thai
- Department of Internal Medicine, Cardiology, UC Davis
| |
Collapse
|
31
|
Meyerowitz EA, Vannier AGL, Friesen MGN, Schoenfeld S, Gelfand JA, Callahan MV, Kim AY, Reeves PM, Poznansky MC. Rethinking the role of hydroxychloroquine in the treatment of COVID-19. FASEB J 2020; 34:6027-6037. [PMID: 32350928 PMCID: PMC7267640 DOI: 10.1096/fj.202000919] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 04/20/2020] [Indexed: 02/07/2023]
Abstract
There are currently no proven or approved treatments for coronavirus disease 2019 (COVID-19). Early anecdotal reports and limited in vitro data led to the significant uptake of hydroxychloroquine (HCQ), and to lesser extent chloroquine (CQ), for many patients with this disease. As an increasing number of patients with COVID-19 are treated with these agents and more evidence accumulates, there continues to be no high-quality clinical data showing a clear benefit of these agents for this disease. Moreover, these agents have the potential to cause harm, including a broad range of adverse events including serious cardiac side effects when combined with other agents. In addition, the known and potent immunomodulatory effects of these agents which support their use in the treatment of auto-immune conditions, and provided a component in the original rationale for their use in patients with COVID-19, may, in fact, undermine their utility in the context of the treatment of this respiratory viral infection. Specifically, the impact of HCQ on cytokine production and suppression of antigen presentation may have immunologic consequences that hamper innate and adaptive antiviral immune responses for patients with COVID-19. Similarly, the reported in vitro inhibition of viral proliferation is largely derived from the blockade of viral fusion that initiates infection rather than the direct inhibition of viral replication as seen with nucleoside/tide analogs in other viral infections. Given these facts and the growing uncertainty about these agents for the treatment of COVID-19, it is clear that at the very least thoughtful planning and data collection from randomized clinical trials are needed to understand what if any role these agents may have in this disease. In this article, we review the datasets that support or detract from the use of these agents for the treatment of COVID-19 and render a data informed opinion that they should only be used with caution and in the context of carefully thought out clinical trials, or on a case-by-case basis after rigorous consideration of the risks and benefits of this therapeutic approach.
Collapse
Affiliation(s)
- Eric A. Meyerowitz
- Division of Infectious DiseasesMassachusetts General Hospital (MGH) and Harvard Medical School (HMS)BostonMAUSA
| | - Augustin G. L. Vannier
- Division of Infectious DiseasesMassachusetts General Hospital (MGH) and Harvard Medical School (HMS)BostonMAUSA
- Vaccine and Immunotherapy Center (VIC)MGH and HMSBostonMAUSA
| | - Morgan G. N. Friesen
- Division of Infectious DiseasesMassachusetts General Hospital (MGH) and Harvard Medical School (HMS)BostonMAUSA
- Vaccine and Immunotherapy Center (VIC)MGH and HMSBostonMAUSA
| | - Sara Schoenfeld
- Division of Allergy, Immunology and RheumatologyMGH and HMSBostonMAUSA
| | - Jeffrey A. Gelfand
- Division of Infectious DiseasesMassachusetts General Hospital (MGH) and Harvard Medical School (HMS)BostonMAUSA
- Vaccine and Immunotherapy Center (VIC)MGH and HMSBostonMAUSA
| | - Michael V. Callahan
- Division of Infectious DiseasesMassachusetts General Hospital (MGH) and Harvard Medical School (HMS)BostonMAUSA
- Vaccine and Immunotherapy Center (VIC)MGH and HMSBostonMAUSA
- Special Advisor to the Assistant Secretary of Public Health Preparedness and Response U.S Dept of Health and Human ServicesWashingtonDCUSA
| | - Arthur Y. Kim
- Division of Infectious DiseasesMassachusetts General Hospital (MGH) and Harvard Medical School (HMS)BostonMAUSA
| | - Patrick M. Reeves
- Division of Infectious DiseasesMassachusetts General Hospital (MGH) and Harvard Medical School (HMS)BostonMAUSA
- Vaccine and Immunotherapy Center (VIC)MGH and HMSBostonMAUSA
| | - Mark C. Poznansky
- Division of Infectious DiseasesMassachusetts General Hospital (MGH) and Harvard Medical School (HMS)BostonMAUSA
- Vaccine and Immunotherapy Center (VIC)MGH and HMSBostonMAUSA
| |
Collapse
|
32
|
Davenport BJ, Bullock C, McCarthy MK, Hawman DW, Murphy KM, Kedl RM, Diamond MS, Morrison TE. Chikungunya Virus Evades Antiviral CD8 + T Cell Responses To Establish Persistent Infection in Joint-Associated Tissues. J Virol 2020; 94:e02036-19. [PMID: 32102875 PMCID: PMC7163133 DOI: 10.1128/jvi.02036-19] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/14/2020] [Indexed: 02/06/2023] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that causes explosive epidemics of a febrile illness characterized by debilitating arthralgia and arthritis that can endure for months to years following infection. In mouse models, CHIKV persists in joint tissues for weeks to months and is associated with chronic synovitis. Using a recombinant CHIKV strain encoding a CD8+ T cell receptor epitope from ovalbumin, as well as a viral peptide-specific major histocompatibility complex class I tetramer, we interrogated CD8+ T cell responses during CHIKV infection. Epitope-specific CD8+ T cells, which were reduced in Batf3-/- and Wdfy4-/- mice with known defects in antigen cross-presentation, accumulated in joint tissue and the spleen. Antigen-specific ex vivo restimulation assays and in vivo killing assays demonstrated that CD8+ T cells produce cytokine and have cytolytic activity. Despite the induction of a virus-specific CD8+ T cell response, the CHIKV burden in joint-associated tissues and the spleen were equivalent in wild-type (WT) and CD8α-/- mice during both the acute and the chronic phases of infection. In comparison, CD8+ T cells were essential for the control of acute and chronic lymphocytic choriomeningitis virus infection in the joint and spleen. Moreover, adoptive transfer of virus-specific effector CD8+ T cells or immunization with a vaccine that induces virus-specific effector CD8+ T cells prior to infection enhanced the clearance of CHIKV infection in the spleen but had a minimal impact on CHIKV infection in the joint. Collectively, these data suggest that CHIKV establishes and maintains a persistent infection in joint-associated tissue in part by evading CD8+ T cell immunity.IMPORTANCE CHIKV is a reemerging mosquito-transmitted virus that in the last decade has spread into Europe, Asia, the Pacific Region, and the Americas. Joint pain, swelling, and stiffness can endure for months to years after CHIKV infection, and epidemics have a severe economic impact. Elucidating the mechanisms by which CHIKV subverts antiviral immunity to establish and maintain a persistent infection may lead to the development of new therapeutic strategies against chronic CHIKV disease. In this study, we found that CHIKV establishes and maintains a persistent infection in joint-associated tissue in part by evading antiviral CD8+ T cell immunity. Thus, immunomodulatory therapies that improve CD8+ T cell immune surveillance and clearance of CHIKV infection could be a strategy for mitigating chronic CHIKV disease.
Collapse
Affiliation(s)
- Bennett J Davenport
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Christopher Bullock
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Mary K McCarthy
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - David W Hawman
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Kenneth M Murphy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ross M Kedl
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Michael S Diamond
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Thomas E Morrison
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW To review the emergence, clinical features, pathogenesis, and treatment of acute chikungunya (CHIK) fever and chronic CHIK arthritis. RECENT FINDINGS Since 2004, CHIK, an arboviral infection, has spread throughout the world, infecting millions of people. The illness occurs in two phases: an acute viremic infection followed by chronic arthritis. In less developed countries, there are limited resources and effective treatment. For acutely ill CHIK fever patients, management is symptomatic. The treatment of chronic CHIK arthritis should be determined by an understanding of pathogenesis. Is chronic CHIK arthritis a persistent viral infection or a postinfectious inflammatory process? Multiple proinflammatory cytokines, chemokines, and growth factors have been identified in chronic CHIK arthritis. Attempts to isolate CHIK virus from synovial fluid have been unsuccessful. Given pathogenetic similarities (as well as differences) compared with rheumatoid arthritis and the painful, disabling nature of the arthritis, it is not surprising that disease-modifying antirheumatic drugs such as methotrexate have begun to be used. SUMMARY CHIK infection has emerged with major arthritic epidemics for which evidence-based therapy is limited. But there is an opportunity to improve the treatment of chronic CHIK arthritis and, from this disease, to gain understanding of the pathogenesis and treatment of inflammatory arthritis more generally.
Collapse
|
34
|
Butyrate inhibit collagen-induced arthritis via Treg/IL-10/Th17 axis. Int Immunopharmacol 2019; 68:226-233. [DOI: 10.1016/j.intimp.2019.01.018] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 02/06/2023]
|
35
|
Matusali G, Colavita F, Bordi L, Lalle E, Ippolito G, Capobianchi MR, Castilletti C. Tropism of the Chikungunya Virus. Viruses 2019; 11:v11020175. [PMID: 30791607 PMCID: PMC6410217 DOI: 10.3390/v11020175] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/16/2019] [Accepted: 02/17/2019] [Indexed: 12/12/2022] Open
Abstract
Chikungunya virus (CHIKV) is a re-emerging mosquito-borne virus that displays a large cell and organ tropism, and causes a broad range of clinical symptoms in humans. It is maintained in nature through both urban and sylvatic cycles, involving mosquito vectors and human or vertebrate animal hosts. Although CHIKV was first isolated in 1953, its pathogenesis was only more extensively studied after its re-emergence in 2004. The unexpected spread of CHIKV to novel tropical and non-tropical areas, in some instances driven by newly competent vectors, evidenced the vulnerability of new territories to this infectious agent and its associated diseases. The comprehension of the exact CHIKV target cells and organs, mechanisms of pathogenesis, and spectrum of both competitive vectors and animal hosts is pivotal for the design of effective therapeutic strategies, vector control measures, and eradication actions.
Collapse
Affiliation(s)
- Giulia Matusali
- National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, 00149 Rome, Italy.
| | - Francesca Colavita
- National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, 00149 Rome, Italy.
| | - Licia Bordi
- National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, 00149 Rome, Italy.
| | - Eleonora Lalle
- National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, 00149 Rome, Italy.
| | - Giuseppe Ippolito
- National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, 00149 Rome, Italy.
| | - Maria R Capobianchi
- National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, 00149 Rome, Italy.
| | - Concetta Castilletti
- National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, 00149 Rome, Italy.
| |
Collapse
|
36
|
Silva-Filho E, Okano AH, Morya E, Albuquerque J, Cacho E, Unal G, Bikson M, Pegado R. Neuromodulation treats Chikungunya arthralgia: a randomized controlled trial. Sci Rep 2018; 8:16010. [PMID: 30375485 PMCID: PMC6207669 DOI: 10.1038/s41598-018-34514-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 10/07/2018] [Indexed: 12/13/2022] Open
Abstract
The Chikungunya (CHIK) virus is epidemic in Brazil, with 170,000 cases in the first half of 2016. More than 60% of patients present relapsing and remitting chronic arthralgia with debilitating pain lasting years. There are no specific therapeutic agents to treat and rehabilitee infected persons with CHIK. Persistent pain can lead to incapacitation, requiring long-term pharmacological treatment. Advances in non-pharmacological treatments are necessary to promote pain relief without side effects and to restore functionality. Clinical trials indicate transcranial direct current stimulation (tDCS) can treat a broad range of chronic pain disorders, including diffuse neuromuscular pain and arthralgia. Here, we demonstrate that the tDCS across the primary motor cortex significantly reduces pain in the chronic phase of CHIK. High-resolution computational model was created to analyze the cortical electric field generated during tDCS and a diffuse and clustered brain current flow including M1 ipsilateral and contralateral, left DLPFC, nucleus accumbens, and cingulate was found. Our findings suggest tDCS could be an effective, inexpensive and deployable therapy to areas lacking resources with a significant number of patients with chronic CHIK persistent pain.
Collapse
Affiliation(s)
- Edson Silva-Filho
- Postgraduate Program in Rehabilitation Sciences, Federal University of Rio Grande do Norte, Santa Cruz, Brazil
| | - Alexandre H Okano
- Center of Mathematics, Computation and Cognition, Universidade Federal do ABC, São Bernardo, São Paulo, Brazil
| | - Edgard Morya
- Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Macaiba, Brazil
| | - Jessica Albuquerque
- Department of Social Psychology, Federal University of Paraíba, João Pessoa, Brazil
| | - Enio Cacho
- Postgraduate Program in Rehabilitation Sciences, Federal University of Rio Grande do Norte, Santa Cruz, Brazil
| | - Gozde Unal
- Department of Biomedical Engineering, The City College of The City University of New York, New York, USA
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of The City University of New York, New York, USA
| | - Rodrigo Pegado
- Postgraduate Program in Rehabilitation Sciences, Federal University of Rio Grande do Norte, Santa Cruz, Brazil.
| |
Collapse
|
37
|
Abstract
Alphaviruses, members of the positive-sense, single-stranded RNA virus family Togaviridae, represent a re-emerging public health concern worldwide as mosquito vectors expand into new geographic ranges. Members of the alphavirus genus tend to induce clinical disease characterized by rash, arthralgia, and arthritis (chikungunya virus, Ross River virus, and Semliki Forest virus) or encephalomyelitis (eastern equine encephalitis virus, western equine encephalitis virus, and Venezuelan equine encephalitis virus), though some patients who recover from the initial acute illness may develop long-term sequelae, regardless of the specific infecting virus. Studies examining the natural disease course in humans and experimental infection in cell culture and animal models reveal that host genetics play a major role in influencing susceptibility to infection and severity of clinical disease. Genome-wide genetic screens, including loss of function screens, microarrays, RNA-sequencing, and candidate gene studies, have further elucidated the role host genetics play in the response to virus infection, with the immune response being found in particular to majorly influence the outcome. This review describes the current knowledge of the mechanisms by which host genetic factors influence alphavirus pathogenesis and discusses emerging technologies that are poised to increase our understanding of the complex interplay between viral and host genetics on disease susceptibility and clinical outcome.
Collapse
|
38
|
Abstract
Chikungunya (CHIK) is an arboviral infection caused by the chikungunya virus. An unusual feature of CHIK is its long periods of quiescence followed by an epidemic of devastating severity that can involve millions of people. Manifestations of CHIK range from a mild self-limiting febrile illness with arthralgia and rash to crippling acute and lingering debilitating arthritis. In about 10–60% of patients, musculoskeletal symptoms may persist for up to 3–5 years. Management is mainly symptomatic, with analgesics, antipyretics and non-steroidal anti-inflammatory agents. Ecological changes together with alterations in the viral genome facilitate the development of newer variants with greater pathogenicity, a matter of great concern. The social and economic burdens to a society as a result of CHIK epidemics have generated a considerable interest in the scientific community to decipher the reasons underlying myriad manifestations and to develop management strategies for tackling the menace of CHIK across the globe.
Collapse
|
39
|
Sharma SK, Adarsh MB, Trivedi P, Reddy M, Singh MP, Dhir V, Sehgal S, Jain S. Characteristics and Treatment of Chronic Chikungunya Virus: Comment on the Article by Chang et al. Arthritis Rheumatol 2018; 70:1890-1891. [PMID: 30019475 DOI: 10.1002/art.40673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shefali K Sharma
- Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - M B Adarsh
- Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Preksha Trivedi
- Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Manod Reddy
- Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Mini P Singh
- Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Varun Dhir
- Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Shobha Sehgal
- Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sanjay Jain
- Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
40
|
Abstract
The practice of rheumatology in a country like India presents its own unique challenges, including the need to manage patients in a cost-constrained setting, where the lack of uniform government funding for healthcare merits the need to optimize the use of cheaper medicines, as well as devise innovative strategies to minimize the use of costlier drugs such as biologic disease-modifying agents. Use of immunosuppressive agents is also associated with increased risks of infectious complications, such as the reactivation of tuberculosis. In this narrative review, we provide a flavor of such challenges unique to Rheumatology practice in India, and review the published literature on the management of common rheumatic diseases from India. In addition, we critically review existing guidelines for the management of rheumatic diseases from this part of the world. We also discuss infectious etiologies of rheumatic complaints, such as leprosy, tuberculosis, and Chikungunya arthritis, which are often encountered here, and pose a diagnostic as well as therapeutic challenge for clinicians. There remains a need to identify and test more cost-effective strategies for Indian patients with rheumatic diseases, as well as the requirement for more government participation to enhance scant facilities for the treatment of such diseases as well as foster the development of healthcare services such as specialist nurses, occupational therapists and physiotherapists to enable better management of these conditions.
Collapse
|
41
|
Current Strategies for Inhibition of Chikungunya Infection. Viruses 2018; 10:v10050235. [PMID: 29751486 PMCID: PMC5977228 DOI: 10.3390/v10050235] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/07/2018] [Accepted: 04/08/2018] [Indexed: 12/31/2022] Open
Abstract
Increasing incidences of Chikungunya virus (CHIKV) infection and co-infections with Dengue/Zika virus have highlighted the urgency for CHIKV management. Failure in developing effective vaccines or specific antivirals has fuelled further research. This review discusses updated strategies of CHIKV inhibition and provides possible future directions. In addition, it analyzes advances in CHIKV lifecycle, drug-target development, and potential hits obtained by in silico and experimental methods. Molecules identified with anti-CHIKV properties using traditional/rational drug design and their potential to succeed in subsequent stages of drug development have also been discussed. Possibilities of repurposing existing drugs based on their in vitro findings have also been elucidated. Probable modes of interference of these compounds at various stages of infection, including entry and replication, have been highlighted. The use of host factors as targets to identify antivirals against CHIKV has been addressed. While most of the earlier antivirals were effective in the early phases of the CHIKV life cycle, this review is also focused on drug candidates that are effective at multiple stages of its life cycle. Since most of these antivirals require validation in preclinical and clinical models, the challenges regarding this have been discussed and will provide critical information for further research.
Collapse
|
42
|
Mehta R, Gerardin P, de Brito CAA, Soares CN, Ferreira MLB, Solomon T. The neurological complications of chikungunya virus: A systematic review. Rev Med Virol 2018; 28:e1978. [PMID: 29671914 PMCID: PMC5969245 DOI: 10.1002/rmv.1978] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 01/06/2023]
Abstract
We performed a systematic review on the neurological complications of chikungunya virus. Such complications are being reported increasingly, owing primarily to the scale of recent epidemics but also to a growing understanding of the virus' neurovirulence. We performed a thorough literature search using PubMed and Scopus databases, summating the data on all published reports of neurological disease associated with chikungunya virus. We appraised the data for each major condition in adults, children, and neonates, as well as evaluating the latest evidence on disease pathogenesis and management strategies. The review provides a comprehensive summary for clinicians, public health officials, and researchers tackling the challenges associated with this important emerging pathogen.
Collapse
Affiliation(s)
- Ravi Mehta
- National Institute for Health Research Health Protection Research Unit in Emerging and Zoonotic InfectionsUniversity of LiverpoolLiverpoolUK
- Institute of Infection and Global HealthUniversity of LiverpoolLiverpoolUK
| | - Patrick Gerardin
- INSERM CIC1410Centre Hospitalier Universitaire de la RéunionSaint PierreRéunionFrance
- UM 134 PIMIT CNRS 9192, INSERM U1187, IRD 249Université de la Réunion, CHU, CYROISaint PierreRéunionFrance
| | | | | | | | - Tom Solomon
- National Institute for Health Research Health Protection Research Unit in Emerging and Zoonotic InfectionsUniversity of LiverpoolLiverpoolUK
- Department of NeurologyWalton Centre NHS Foundation TrustLiverpoolUK
- Institute of Infection and Global HealthUniversity of LiverpoolLiverpoolUK
| |
Collapse
|
43
|
Sales GMPG, Barbosa ICP, Canejo Neta LMS, Melo PLD, Leitão RDA, Melo HMDA. Treatment of chikungunya chronic arthritis: A systematic review. ACTA ACUST UNITED AC 2018; 64:63-70. [PMID: 29561944 DOI: 10.1590/1806-9282.64.01.63] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 04/03/2017] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Chikungunya (CHIK) is a tropical arbovirus, transmitted by the female mosquito Aedes aegypti and Aedes albopictus. In Brazil, there have been cases reported since 2014. The initial manifestations of this virus are sudden onset high fever, headache, chills, rashes, myalgia and intense joint pain. Usually, CHIK presents the acute and chronic phases, the latter characterized by bilateral polyarthralgia, which can last for months or even years. During this period, autoimmune diseases can be triggered, making the picture even more complicated. METHOD A systematic review was performed on the PubMed and Scielo databases in January 2017. Clinical trials, cohorts, case-control and case reports were included in the study. Expert opinions, societal consensuses and literary reviews were exclusion criteria. Studies were conducted in English, Spanish and Portuguese. The studies were descriptively analyzed and the data was grouped according to methodological similarity. RESULTS Twenty-four (24) articles were selected and, in compliance with the inclusion and exclusion criteria, 18 were eliminated, with six studies remaining in the present review: five clinical trials and one case report. CONCLUSION When the manifestations of CHIK become chronic and, the longer they last, more complications arise. Polyarthralgia can be immaterial, distancing individuals from their daily-life activities. Anti-inflammatory drugs (either steroid or not), in addition to immunosuppressants, homeopathy and physiotherapy are measures of treatment that, according to the literature, have been successful in relieving or extinguishing symptoms. However, it is fundamental that studies of CHIK treatment be further developed.
Collapse
|
44
|
Guaraldo L, Wakimoto MD, Ferreira H, Bressan C, Calvet GA, Pinheiro GC, Siqueira AM, Brasil P. Treatment of chikungunya musculoskeletal disorders: a systematic review. Expert Rev Anti Infect Ther 2018; 16:333-344. [PMID: 29533103 DOI: 10.1080/14787210.2018.1450629] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 03/07/2018] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Chikungunya virus is amongst the fastest expanding vector transmissible diseases in recent years and has been causing massive epidemics in Africa, Asia, Latin America and the Caribbean. Despite human infection by this virus being first described in the 1950s, there is a lack of adequate therapeutic evaluations to guide evidence-based recommendations. The current guidelines rely heavily in specialists' opinion and experience instead of using higher rated evidence. Areas covered: A systematic review of the literature was performed- not restricted to clinical trials - reporting the therapeutic response against this infection with the intent to gather the best evidence of the treatment options against musculoskeletal disorders following chikungunya fever. The 15 studies included in the analysis were categorized considering the initiation of treatment during the acute, subacute and chronic phase. Expert commentary: This review demonstrates the complexity of chikungunya fever and difficulty of therapeutic management. This review found no current evidence-based treatment recommendations for the musculoskeletal disorders following chikungunya fever. To provide an optimal treatment that prevents perpetuation or progression of chikungunya infection to a potentially destructive and permanent condition without causing more harm is an aim that must be pursued by researchers and health professionals working with this disease.
Collapse
Affiliation(s)
- Lusiele Guaraldo
- a Instituto Nacional de Infectologia Evandro Chagas , Fundação Oswaldo Cruz , Rio de Janeiro , RJ , Brazil
| | - Mayumi Duarte Wakimoto
- a Instituto Nacional de Infectologia Evandro Chagas , Fundação Oswaldo Cruz , Rio de Janeiro , RJ , Brazil
| | - Heloisa Ferreira
- a Instituto Nacional de Infectologia Evandro Chagas , Fundação Oswaldo Cruz , Rio de Janeiro , RJ , Brazil
| | - Clarisse Bressan
- a Instituto Nacional de Infectologia Evandro Chagas , Fundação Oswaldo Cruz , Rio de Janeiro , RJ , Brazil
| | - Guilherme Amaral Calvet
- a Instituto Nacional de Infectologia Evandro Chagas , Fundação Oswaldo Cruz , Rio de Janeiro , RJ , Brazil
| | - Geraldo Castelar Pinheiro
- b Departamento de Reumatologia , Universidade Estadual do Rio de Janeiro , Rio de Janeiro , RJ , Brazil
| | - Andre Machado Siqueira
- a Instituto Nacional de Infectologia Evandro Chagas , Fundação Oswaldo Cruz , Rio de Janeiro , RJ , Brazil
| | - Patrícia Brasil
- a Instituto Nacional de Infectologia Evandro Chagas , Fundação Oswaldo Cruz , Rio de Janeiro , RJ , Brazil
| |
Collapse
|
45
|
Zaid A, Gérardin P, Taylor A, Mostafavi H, Malvy D, Mahalingam S. Chikungunya Arthritis: Implications of Acute and Chronic Inflammation Mechanisms on Disease Management. Arthritis Rheumatol 2018; 70:484-495. [PMID: 29287308 DOI: 10.1002/art.40403] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 12/18/2017] [Indexed: 12/14/2022]
Abstract
In the past decade, arboviruses-arthropod-borne viruses-have been the focus of public health institutions worldwide following a spate of devastating outbreaks. Chikungunya virus, an arbovirus that belongs to the alphavirus genus, is a reemerging arthritogenic virus that has caused explosive outbreaks since 2006, notably on Réunion Island, and more recently in the Caribbean, South America, India, and Southeast Asia. The severity of arthritic disease caused by chikungunya virus has prompted public health authorities in affected countries to develop specific guidelines to tackle this pathogen. Chikungunya virus disease manifests first as an acute stage of severe joint inflammation and febrile illness, which later progresses to a chronic stage, during which patients may experience debilitating and persisting articular pain for extended periods. This review aims to provide a broad perspective on current knowledge of chikungunya virus pathogenesis by identifying key clinical and experimental studies that have contributed to our understanding of chikungunya virus to date. In addition, the review explores the practical aspects of treatment and management of both acute and chronic chikungunya virus based on clinical experience during chikungunya virus outbreaks. Finally, recent findings on potential therapeutic solutions-from antiviral agents to immunomodulators-are reviewed to provide both viral immunologists and clinical rheumatologists with a balanced perspective on the nature of a reemerging arboviral disease of significant public health concern, and insight into future therapeutic approaches to better address the treatment and management of chikungunya virus.
Collapse
Affiliation(s)
- Ali Zaid
- Griffith University, Gold Coast, Queensland, Australia
| | - Patrick Gérardin
- INSERM CIC1410, Centre Hospitalier Universitaire de la Réunion, Saint Pierre, Réunion, France, and CNRS 9192, INSERM U1187, Université de la Réunion, Sainte Clotilde, Réunion, France
| | - Adam Taylor
- Griffith University, Gold Coast, Queensland, Australia
| | | | - Denis Malvy
- Department of Tropical Medicine and Clinical International Health, University Hospital Center and INSERM 1219, University of Bordeaux, Bordeaux, France
| | | |
Collapse
|
46
|
Affiliation(s)
- Shefali Khanna Sharma
- Unit of Clinical Immunology and Rheumatology; Department of Internal Medicine; Postgraduate Institute of Medical Education and Research; Chandigarh India
| | - Sanjay Jain
- Unit of Clinical Immunology and Rheumatology; Department of Internal Medicine; Postgraduate Institute of Medical Education and Research; Chandigarh India
| |
Collapse
|
47
|
McCarthy MK, Davenport BJJ, Morrison TE. Chronic Chikungunya Virus Disease. Curr Top Microbiol Immunol 2018; 435:55-80. [DOI: 10.1007/82_2018_147] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
48
|
Santosh Kumar PS, M.C. A, Gupta SK, Nongkynrih B. Malaria, dengue and chikungunya in India – An update. INDIAN JOURNAL OF MEDICAL SPECIALITIES 2018. [DOI: 10.1016/j.injms.2017.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
49
|
Abstract
Beginning in 2004, chikungunya virus (CHIKV) went from an endemic pathogen limited to Africa and Asia that caused periodic outbreaks to a global pathogen. Given that outbreaks caused by CHIKV have continued and expanded, serious consideration must be given to identifying potential options for vaccines and therapeutics. Currently, there are no licensed products in this realm, and control relies completely on the use of personal protective measures and integrated vector control, which are only minimally effective. Therefore, it is prudent to urgently examine further possibilities for control. Vaccines have been shown to be highly effective against vector-borne diseases. However, as CHIKV is known to rapidly spread and generate high attack rates, therapeutics would also be highly valuable. Several candidates are currently being developed; this review describes the multiple options under consideration for future development and assesses their relative advantages and disadvantages.
Collapse
|
50
|
Abstract
Chikungunya virus (CHIKV) is a mosquito-borne alphavirus responsible for several significant outbreaks of debilitating acute and chronic arthritis and arthralgia over the past decade. These include a recent outbreak in the Caribbean islands and the Americas that caused more than 1 million cases of viral arthralgia. Despite the major impact of CHIKV on global health, viral determinants that promote CHIKV-induced disease are incompletely understood. Most CHIKV strains contain a conserved opal stop codon at the end of the viral nsP3 gene. However, CHIKV strains that encode an arginine codon in place of the opal stop codon have been described, and deep-sequencing analysis of a CHIKV isolate from the Caribbean identified both arginine and opal variants within this strain. Therefore, we hypothesized that the introduction of the arginine mutation in place of the opal termination codon may influence CHIKV virulence. We tested this by introducing the arginine mutation into a well-characterized infectious clone of a CHIKV strain from Sri Lanka and designated this virus Opal524R. This mutation did not impair viral replication kinetics in vitro or in vivo. Despite this, the Opal524R virus induced significantly less swelling, inflammation, and damage within the feet and ankles of infected mice. Further, we observed delayed induction of proinflammatory cytokines and chemokines, as well as reduced CD4+ T cell and NK cell recruitment compared to those in the parental strain. Therefore, the opal termination codon plays an important role in CHIKV pathogenesis, independently of effects on viral replication. Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that causes significant outbreaks of viral arthralgia. Studies with CHIKV and other alphaviruses demonstrated that the opal termination codon within nsP3 is highly conserved. However, some strains of CHIKV and other alphaviruses contain mutations in the opal termination codon. These mutations alter the virulence of related alphaviruses in mammalian and mosquito hosts. Here, we report that a clinical isolate of a CHIKV strain from the recent outbreak in the Caribbean islands contains a mixture of viruses encoding either the opal termination codon or an arginine mutation. Mutating the opal stop codon to an arginine residue attenuates CHIKV-induced disease in a mouse model. Compared to infection with the opal-containing parental virus, infection with the arginine mutant causes limited swelling and inflammation, as well as dampened recruitment of immune mediators of pathology, including CD4+ T cells and NK cells. We propose that the opal termination codon plays an essential role in the induction of severe CHIKV disease.
Collapse
|