1
|
Zeffa AC, Sestario CS, Ramos SDP, Andrello AC, Simão ANC, Salles MJS. Effects of periodontal disease on the reproductive performance and offspring of Wistar rats. J Periodontol 2024. [PMID: 39692465 DOI: 10.1002/jper.24-0281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/18/2024] [Accepted: 11/05/2024] [Indexed: 12/19/2024]
Abstract
BACKGROUND Periodontitis can induce systemic inflammation, and it may affect the testicles and male reproductive performance. This study investigated the effects of periodontitis on the testicles, reproductive performance, and offspring development in male rats. METHODS Male Wistar rats were induced with periodontitis by ligating their first molars. After 14 days of inducing periodontal lesions, the animals were observed for an additional 54 days, corresponding to a complete cycle of spermatogenesis. Rats from the periodontitis group (GP, n = 12) and the control group (GC, n = 12) were paired with healthy females (n = 48) for 10 days, equivalent to 2 estrous cycles. Post-mating, the males underwent microtomographic, histological, and reproductive parameter assessments. RESULTS Microtomographic analysis revealed higher porosity around the first molar in GP (26 ± 6%) and greater distance between the amelocemental junction and the alveolar bone (1.37 [1.12-1.90] mm), indicative of bone resorption. GP also exhibited significant decreases in final body weight, reduced Sertoli and Leydig cell counts, and lowered testosterone levels compared to GC. Significant morphological alterations in sperm tails were observed in GP compared to GC. CONCLUSIONS Periodontitis adversely affected reproductive performance, evoking, and offspring development in male rats. These findings highlight the systemic impacts of periodontal disease on male reproductive health in an animal model. PLAIN LANGUAGE SUMMARY Our study investigated how periodontitis can affect male reproductive health in rats and offspring development. We induced periodontitis in male rats and, after a full cycle of sperm production, these rats were mated with healthy females. We observed that the rats with periodontitis had worse reproductive performance compared to the control group without periodontitis. Additionally, the offspring of the rats with periodontitis showed signs of compromised intrauterine development and a higher incidence of congenital malformations. These results highlight that the inflammation caused by periodontitis can have adverse effects beyond the mouth, significantly impacting male reproductive health and offspring development. These findings suggest the need for further research into the clinical implications of periodontitis on reproductive health.
Collapse
Affiliation(s)
- Aline Campos Zeffa
- Graduate Program in Health Sciences, Center for Health Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - Camila Salvador Sestario
- Graduate Program in Health Sciences, Center for Health Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - Solange de Paula Ramos
- Department of Histology, Center for Biological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - Avacir Casanova Andrello
- Department of Physics, Center for Exact Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - Andréa Name Colado Simão
- Department of Pathological Sciences, Center for Biological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - Maria José Sparça Salles
- Department of General Biology, Center for Biological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| |
Collapse
|
2
|
Easey KE, Gkatzionis A, Millard LAC, Tilling K, Lawlor DA, Sharp GC. Challenges in using data on fathers/partners to study prenatal exposures and offspring health. J Dev Orig Health Dis 2024; 15:e25. [PMID: 39465608 DOI: 10.1017/s2040174424000199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Paternal exposures (and other non-maternal factors) around pregnancy could have important effects on offspring health. One challenge is that data on partners are usually from a subgroup of mothers with data, potentially introducing selection bias, limiting generalisability of findings. We aimed to investigate the potential for selection bias in studies using partner data.We characterise availability of data on father/partner and mother health behaviours (smoking, alcohol, caffeine and physical activity) around pregnancy from three UK cohort studies: the Avon Longitudinal Study of Parents and Children (ALSPAC), Born in Bradford and the Millennium Cohort Study. We assess the extent of sample selection by comparing characteristics of families where fathers/partners do and do not participate. Using the association of parental smoking during pregnancy and child birthweight as an example, we perform simulations to investigate the extent to which missing father/partner data may induce bias in analyses conducted only in families with participating fathers/partners.In all cohorts, father/partner data were less detailed and collected at fewer timepoints than mothers. Partners with a lower socio-economic position were less likely to participate. In simulations based on ALSPAC data, there was little evidence of selection bias in associations of maternal smoking with birthweight, and bias for father/partner smoking was relatively small. Missing partner data can induce selection bias. In our example analyses of the effect of parental smoking on offspring birthweight, the bias had a relatively small impact. In practice, the impact of selection bias will depend on both the analysis model and the selection mechanism.
Collapse
Affiliation(s)
- Kayleigh E Easey
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- School of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- School of Psychological Science, University of Bristol, Bristol, UK
| | - Apostolos Gkatzionis
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- School of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Louise A C Millard
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- School of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Kate Tilling
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- School of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Deborah A Lawlor
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- School of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Bristol National Institute for Health Research (NIHR) Biomedical Research Centre, Bristol, UK
| | - Gemma C Sharp
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- School of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- School of Psychology, University of Exeter, Exeter, UK
| |
Collapse
|
3
|
Kilama J, Dahlen CR, Reynolds LP, Amat S. Contribution of the seminal microbiome to paternal programming. Biol Reprod 2024; 111:242-268. [PMID: 38696371 PMCID: PMC11327320 DOI: 10.1093/biolre/ioae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/04/2024] Open
Abstract
The field of Developmental Origins of Health and Disease has primarily focused on maternal programming of offspring health. However, emerging evidence suggests that paternal factors, including the seminal microbiome, could potentially play important roles in shaping the developmental trajectory and long-term offspring health outcomes. Historically, the microbes present in the semen were regarded as inherently pathogenic agents. However, this dogma has recently been challenged by the discovery of a diverse commensal microbial community within the semen of healthy males. In addition, recent studies suggest that the transmission of semen-associated microbes into the female reproductive tract during mating has potentials to not only influence female fertility and embryo development but could also contribute to paternal programming in the offspring. In this review, we summarize the current knowledge on the seminal microbiota in both humans and animals followed by discussing their potential involvement in paternal programming of offspring health. We also propose and discuss potential mechanisms through which paternal influences are transmitted to offspring via the seminal microbiome. Overall, this review provides insights into the seminal microbiome-based paternal programing, which will expand our understanding of the potential paternal programming mechanisms which are currently focused primarily on the epigenetic modifications, oxidative stresses, and cytokines.
Collapse
Affiliation(s)
- Justine Kilama
- Department of Microbiological Sciences, North Dakota State University, NDSU Department 7520, Fargo, ND 58108-6050, USA
| | - Carl R Dahlen
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, NDSU Department 7630, Fargo, ND 58108-6050, USA
| | - Lawrence P Reynolds
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, NDSU Department 7630, Fargo, ND 58108-6050, USA
| | - Samat Amat
- Department of Microbiological Sciences, North Dakota State University, NDSU Department 7520, Fargo, ND 58108-6050, USA
| |
Collapse
|
4
|
Roach AN, Bhadsavle SS, Higgins SL, Derrico DD, Basel A, Thomas KN, Golding MC. Alterations in sperm RNAs persist after alcohol cessation and correlate with epididymal mitochondrial dysfunction. Andrology 2024; 12:1012-1023. [PMID: 38044754 PMCID: PMC11144833 DOI: 10.1111/andr.13566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/10/2023] [Accepted: 11/20/2023] [Indexed: 12/05/2023]
Abstract
BACKGROUND Chronic preconception paternal alcohol use adversely modifies the sperm epigenome, inducing fetoplacental and craniofacial growth defects in the offspring of exposed males. A crucial outstanding question in the field of paternal epigenetic inheritance concerns the resilience of the male germline and its capacity to recover and correct sperm-inherited epigenetic errors after stressor withdrawal. OBJECTIVES We set out to determine if measures of the sperm-inherited epigenetic program revert to match the control treatment 1 month after withdrawing the daily alcohol treatments. MATERIALS AND METHODS Using a voluntary access model, we exposed C57BL/6J males to 6% or 10% alcohol for 10 weeks, withdrew the alcohol treatments for 4 weeks, and used RNA sequencing to examine gene expression patterns in the caput section of the epididymis. We then compared the abundance of sperm small RNA species between treatments. RESULTS In the caput section of the epididymis, chronic alcohol exposure induced changes in the transcriptional control of genetic pathways related to the mitochondrial function, oxidative phosphorylation, and the generalized stress response (EIF2 signaling). Subsequent analysis identified region-specific, alcohol-induced changes in mitochondrial DNA copy number across the epididymis, which correlated with increases in the mitochondrial DNA content of alcohol-exposed sperm. Notably, in the corpus section of the epididymis, increases in mitochondrial DNA copy number persisted 1 month after alcohol cessation. Analysis of sperm noncoding RNAs between control and alcohol-exposed males 1 month after alcohol withdrawal revealed a ∼100-fold increase in mir-196a, a microRNA induced as part of the nuclear factor erythroid 2-related factor 2 (Nrf2)-driven cellular antioxidant response. DISCUSSION AND CONCLUSION Our data reveal that alcohol-induced epididymal mitochondrial dysfunction and differences in sperm noncoding RNA content persist after alcohol withdrawal. Further, differences in mir-196a and sperm mitochondrial DNA copy number may serve as viable biomarkers of adverse alterations in the sperm-inherited epigenetic program.
Collapse
Affiliation(s)
- Alexis N. Roach
- Department of Veterinary Physiology & Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA, 77843
| | - Sanat S. Bhadsavle
- Department of Veterinary Physiology & Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA, 77843
| | - Samantha L. Higgins
- Department of Veterinary Physiology & Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA, 77843
| | - Destani D. Derrico
- Department of Veterinary Physiology & Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA, 77843
| | - Alison Basel
- Department of Veterinary Physiology & Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA, 77843
| | - Kara N. Thomas
- Department of Veterinary Physiology & Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA, 77843
| | - Michael C. Golding
- Department of Veterinary Physiology & Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA, 77843
| |
Collapse
|
5
|
Chavatte-Palmer P, Couturier-Tarrade A, Rousseau-Ralliard D. Intra-uterine programming of future fertility. Reprod Domest Anim 2024; 59:e14475. [PMID: 37942852 DOI: 10.1111/rda.14475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/05/2023] [Indexed: 11/10/2023]
Abstract
The developmental origins of health and disease (DOHaD) shows that a relationship exists between parental environment at large, foeto-placental development and the risk for the offspring to develop non-transmittable disease(s) in adulthood. This concept has been validated in both humans and livestock. In mammals, after fertilization and time spent free in the maternal reproductive tract, the embryo develops a placenta that, in close relationship with maternal endometrium, is the organ responsible for exchanges between dam and foetus. Any modification of the maternal environment can lead to adaptive mechanisms affecting placental morphology, blood flow, foetal-maternal exchanges (transporters) and/or endocrine function, ultimately modifying placental efficiency. Among deleterious environments, undernutrition, protein restriction, overnutrition, micronutrient deficiencies and food contaminants can be outlined. When placental adaptive capacities become insufficient, foetal growth and organ formation is no longer optimal, including foetal gonadal formation and maturation, which can affect subsequent offspring fertility. Since epigenetic mechanisms have been shown to be key to foetal programming, epigenetic modifications of the gametes may also occur, leading to inter-generational effects. After briefly describing normal gonadal development in domestic species and inter-species differences, this review highlights the current knowledge on intra-uterine programming of offspring fertility with a focus on domestic animals and underlines the importance to assess transgenerational effects on offspring fertility at a time when new breeding systems are developed to face the current climate changes.
Collapse
Affiliation(s)
- Pascale Chavatte-Palmer
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, France
| | - Anne Couturier-Tarrade
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, France
| | - Delphine Rousseau-Ralliard
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, France
| |
Collapse
|
6
|
Tain YL, Hsu CN. Nutritional Approaches Targeting Gut Microbiota in Oxidative-Stress-Associated Metabolic Syndrome: Focus on Early Life Programming. Nutrients 2024; 16:683. [PMID: 38474810 DOI: 10.3390/nu16050683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/24/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Metabolic syndrome (MetS) denotes a constellation of risk factors associated with the development of cardiovascular disease, with its roots potentially traced back to early life. Given the pivotal role of oxidative stress and dysbiotic gut microbiota in MetS pathogenesis, comprehending their influence on MetS programming is crucial. Targeting these mechanisms during the early stages of life presents a promising avenue for preventing MetS later in life. This article begins by examining detrimental insults during early life that impact fetal programming, ultimately contributing to MetS in adulthood. Following that, we explore the role of oxidative stress and the dysregulation of gut microbiota in the initiation of MetS programming. The review also consolidates existing evidence on how gut-microbiota-targeted interventions can thwart oxidative-stress-associated MetS programming, encompassing approaches such as probiotics, prebiotics, postbiotics, and the modulation of bacterial metabolites. While animal studies demonstrate the favorable effects of gut-microbiota-targeted therapy in mitigating MetS programming, further clinical investigations are imperative to enhance our understanding of manipulating gut microbiota and oxidative stress for the prevention of MetS.
Collapse
Affiliation(s)
- You-Lin Tain
- Division of Pediatric Nephrology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
7
|
Xiong YW, Zhu HL, Zhang J, Geng H, Tan LL, Zheng XM, Li H, Fan LL, Wang XR, Zhang XD, Wang KW, Chang W, Zhang YF, Yuan Z, Duan ZL, Cao YX, He XJ, Xu DX, Wang H. Multigenerational paternal obesity enhances the susceptibility to male subfertility in offspring via Wt1 N6-methyladenosine modification. Nat Commun 2024; 15:1353. [PMID: 38355624 PMCID: PMC10866985 DOI: 10.1038/s41467-024-45675-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 01/30/2024] [Indexed: 02/16/2024] Open
Abstract
There is strong evidence that obesity is a risk factor for poor semen quality. However, the effects of multigenerational paternal obesity on the susceptibility to cadmium (a reproductive toxicant)-induced spermatogenesis disorders in offspring remain unknown. Here, we show that, in mice, spermatogenesis and retinoic acid levels become progressively lower as the number of generations exposed to a high-fat diet increase. Furthermore, exposing several generations of mice to a high fat diet results in a decrease in the expression of Wt1, a transcription factor upstream of the enzymes that synthesize retinoic acid. These effects can be rescued by injecting adeno-associated virus 9-Wt1 into the mouse testes of the offspring. Additionally, multigenerational paternal high-fat diet progressively increases METTL3 and Wt1 N6-methyladenosine levels in the testes of offspring mice. Mechanistically, treating the fathers with STM2457, a METTL3 inhibitor, restores obesity-reduced sperm count, and decreases Wt1 N6-methyladenosine level in the mouse testes of the offspring. A case-controlled study shows that human donors who are overweight or obese exhibit elevated N6-methyladenosine levels in sperm and decreased sperm concentration. Collectively, these results indicate that multigenerational paternal obesity enhances the susceptibility of the offspring to spermatogenesis disorders by increasing METTL3-mediated Wt1 N6-methyladenosine modification.
Collapse
Affiliation(s)
- Yong-Wei Xiong
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Hua-Long Zhu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Jin Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Hao Geng
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China
| | - Lu-Lu Tan
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Xin-Mei Zheng
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Hao Li
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Long-Long Fan
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Xin-Run Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Xu-Dong Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Kai-Wen Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Wei Chang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Yu-Feng Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Zhi Yuan
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Zong-Liu Duan
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China
| | - Yun-Xia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China
| | - Xiao-Jin He
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China.
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - De-Xiang Xu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China.
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China.
| | - Hua Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China.
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China.
| |
Collapse
|
8
|
Jansen E, Marceau K, Sellers R, Chen T, Garfield CF, Leve LD, Neiderhiser JM, Spotts EL, Roary M. The role of fathers in child development from preconception to postnatal influences: Opportunities for the National Institutes of Health Environmental influences on Child Health Outcomes (ECHO) program. Dev Psychobiol 2024; 66:e22451. [PMID: 38388196 PMCID: PMC10902630 DOI: 10.1002/dev.22451] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/21/2023] [Accepted: 12/04/2023] [Indexed: 02/24/2024]
Abstract
A growing body of literature highlights the important role of paternal health and socioemotional characteristics in child development, from preconception through adolescence. Much of this research addresses the indirect effects of fathers, for instance, their influence on maternal behaviors during the prenatal period or via the relationship with their partner. However, emerging evidence also recognizes the direct role of paternal health and behavior for child health and adjustment across development. This critical review presents evidence of biological and sociocultural influences of fathers on preconception, prenatal, and postnatal contributions to child development. The National Institutes of Health Environmental influences on Child Health Outcomes (ECHO) program incorporates in its central conceptualization the impact of fathers on family and child outcomes. This critical synthesis of the literature focuses on three specific child outcomes in the ECHO program: health outcomes (e.g., obesity), neurodevelopmental outcomes (e.g., emotional, behavioral, psychopathological development), and positive health. We highlight the unique insights gained from the literature to date and provide next steps for future studies on paternal influences.
Collapse
Affiliation(s)
- Elena Jansen
- Division of Child & Adolescent Psychiatry, Department of Psychiatry & Behavioral Sciences , Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kristine Marceau
- Department of Human Development and Family Science, Purdue University, West Lafayette, Indiana, USA
| | - Ruth Sellers
- Faculty of Education, University of Cambridge, Cambridge, UK
| | - Tong Chen
- Department of Psychology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Craig F Garfield
- Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Leslie D Leve
- Prevention Science Institute, University of Oregon, Eugene, Oregon, USA
| | - Jenae M Neiderhiser
- Department of Psychology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Erica L Spotts
- Office of Behavioral and Social Sciences Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Mary Roary
- Substance Abuse and Mental Health Service Administration, United States Department of Health and Human Services, Rockville, Maryland, USA
| |
Collapse
|
9
|
Braz CU, Passamonti MM, Khatib H. Characterization of genomic regions escaping epigenetic reprogramming in sheep. ENVIRONMENTAL EPIGENETICS 2023; 10:dvad010. [PMID: 38496251 PMCID: PMC10944287 DOI: 10.1093/eep/dvad010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 12/04/2023] [Accepted: 12/15/2023] [Indexed: 03/19/2024]
Abstract
The mammalian genome undergoes two global epigenetic reprogramming events during the establishment of primordial germ cells and in the pre-implantation embryo after fertilization. These events involve the erasure and re-establishment of DNA methylation marks. However, imprinted genes and transposable elements (TEs) maintain their DNA methylation signatures to ensure normal embryonic development and genome stability. Despite extensive research in mice and humans, there is limited knowledge regarding environmentally induced epigenetic marks that escape epigenetic reprogramming in other species. Therefore, the objective of this study was to examine the characteristics and locations of genomic regions that evade epigenetic reprogramming in sheep, as well as to explore the biological functions of the genes within these regions. In a previous study, we identified 107 transgenerationally inherited differentially methylated cytosines (DMCs) in the F1 and F2 generations in response to a paternal methionine-supplemented diet. These DMCs were found in TEs, non-repetitive regions, and imprinted and non-imprinted genes. Our findings suggest that genomic regions, rather than TEs and imprinted genes, have the propensity to escape reprogramming and serve as potential candidates for transgenerational epigenetic inheritance. Notably, 34 transgenerational methylated genes influenced by paternal nutrition escaped reprogramming, impacting growth, development, male fertility, cardiac disorders, and neurodevelopment. Intriguingly, among these genes, 21 have been associated with neural development and brain disorders, such as autism, schizophrenia, bipolar disease, and intellectual disability. This suggests a potential genetic overlap between brain and infertility disorders. Overall, our study supports the concept of transgenerational epigenetic inheritance of environmentally induced marks in mammals.
Collapse
Affiliation(s)
- Camila U Braz
- Department of Animal Sciences, University of Illinois Urbana–Champaign, Urbana, IL 61801, USA
| | - Matilde Maria Passamonti
- Department of Animal Science, Food and Nutrition, Universit’a Cattolica del Sacro Cuore, Piacenza, 29122, Italy
| | - Hasan Khatib
- Department of Animal and Dairy Sciences, University of Wisconsin–Madison, Madison, WI 53706, USA
| |
Collapse
|
10
|
Miyahara K, Tatehana M, Kikkawa T, Osumi N. Investigating the impact of paternal aging on murine sperm miRNA profiles and their potential link to autism spectrum disorder. Sci Rep 2023; 13:20608. [PMID: 38062235 PMCID: PMC10703820 DOI: 10.1038/s41598-023-47878-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
Paternal aging has consistently been linked to an increased risk of neurodevelopmental disorders, including autism spectrum disorder (ASD), in offspring. Recent evidence has highlighted the involvement of epigenetic factors. In this study, we aimed to investigate age-related alterations in microRNA (miRNA) profiles of mouse sperm and analyze target genes regulated by differentially expressed miRNAs (DEmiRNAs). Microarray analyses were conducted on sperm samples from mice at different ages: 3 months (3 M), over 12 M, and beyond 20 M. We identified 26 miRNAs with differential expression between the 3 and 20 M mice, 34 miRNAs between the 12 and 20 M mice, and 2 miRNAs between the 3 and 12 M mice. The target genes regulated by these miRNAs were significantly associated with apoptosis/ferroptosis pathways and the nervous system. We revealed alterations in sperm miRNA profiles due to aging and suggest that the target genes regulated by these DEmiRNAs are associated with apoptosis and the nervous system, implying a potential link between paternal aging and an increased risk of neurodevelopmental disorders such as ASD. The observed age-related changes in sperm miRNA profiles have the potential to impact sperm quality and subsequently affect offspring development.
Collapse
Affiliation(s)
- Kazusa Miyahara
- Department of Developmental Neuroscience, Center for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Misako Tatehana
- Department of Developmental Neuroscience, Center for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takako Kikkawa
- Department of Developmental Neuroscience, Center for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Noriko Osumi
- Department of Developmental Neuroscience, Center for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine, Sendai, Japan.
| |
Collapse
|
11
|
Golding MC. Teratogenesis and the epigenetic programming of congenital defects: Why paternal exposures matter. Birth Defects Res 2023; 115:1825-1834. [PMID: 37424262 PMCID: PMC10774456 DOI: 10.1002/bdr2.2215] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/16/2023] [Accepted: 06/23/2023] [Indexed: 07/11/2023]
Abstract
Until recently, clinicians and researchers did not realize paternal exposures could impact child developmental outcomes. Indeed, although there is growing recognition that sperm carry a large amount of non-genomic information and that paternal stressors influence the health of the next generation, toxicologists are only now beginning to explore the role paternal exposures have in dysgenesis and the incidence of congenital malformations. In this commentary, I will briefly summarize the few studies describing congenital malformations resulting from preconception paternal stressors, argue for the theoretical expansion of teratogenic perspectives into the male preconception period, and discuss some of the challenges in this newly emerging branch of toxicology. I argue that we must consider gametes the same as any other malleable precursor cell type and recognize that environmentally-induced epigenetic changes acquired during the formation of the sperm and oocyte hold equal teratogenic potential as exposures during early development. Here, I propose the term epiteratogen to reference agents acting outside of pregnancy that, through epigenetic mechanisms, induce congenital malformations. Understanding the interactions between the environment, the essential epigenetic processes intrinsic to spermatogenesis, and their cumulative influences on embryo patterning is essential to addressing a significant blind spot in the field of developmental toxicology.
Collapse
Affiliation(s)
- Michael C. Golding
- Department of Veterinary Physiology & Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA, 77843
| |
Collapse
|
12
|
Tan LL, Xiong YW, Zhang J, Li DX, Huang Y, Wang H. Like father, like daughter:Paternal cadmium exposure causes hepatic glucose metabolic disorder and phospholipids accumulation in adult female offspring. CHEMOSPHERE 2023; 338:139437. [PMID: 37451636 DOI: 10.1016/j.chemosphere.2023.139437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/21/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
Cadmium (Cd), is a well-known reproductive toxicant. The impacts of paternal Cd exposure on offspring glucose and lipid metabolism remain unclear, despite the abundance of adverse reports following early exposure from the mother. Here, we assessed paternally acquired metabolic derailment using a mouse model. LC-MS/MS, transcriptomics and molecular experimental techniques were subsequently applied in this study to explore the potential mechanism. We found that paternal Cd exposure caused glucose intolerance, lower insulin sensitivity and abnormal hepatic glycogen storage in adult female offspring, but not in males. LC-MS/MS data showed that hepatic phospholipids accumulation was also only observed in adult female offspring after paternal Cd exposure. Gene expression data showed that the level of insulin signaling and lipid transport-related genes was decreased in Cd-treated adult female offspring livers. Meanwhile, AHR, a transcription factor that combines with phospholipids to promote insulin resistance, was increased in Cd-treated adult female offspring livers. In addition, the escalation of the afore-mentioned lipid metabolites in the liver occurred as early as fetal stages in the female pups following paternal Cd exposure, suggesting the potential for these lipid species to be selected as early markers of disease for metabolic derailment later in life. Altogether, paternal Cd exposure causes offspring glucose metabolism disorder and phospholipids accumulation in a sex-dependent manner. This study provides a theoretical framework for future understanding of paternal-originated metabolic diseases.
Collapse
Affiliation(s)
- Lu-Lu Tan
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Yong-Wei Xiong
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Jin Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Dai-Xin Li
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Yichao Huang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, China.
| | - Hua Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, China.
| |
Collapse
|
13
|
Matsudaira I, Yamaguchi R, Taki Y. Transmit Radiant Individuality to Offspring (TRIO) study: investigating intergenerational transmission effects on brain development. Front Psychiatry 2023; 14:1150973. [PMID: 37840799 PMCID: PMC10568142 DOI: 10.3389/fpsyt.2023.1150973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 09/07/2023] [Indexed: 10/17/2023] Open
Abstract
Intergenerational transmission is a crucial aspect of human development. Although prior studies have demonstrated the continuity of psychopathology and maladaptive upbringing environments between parents and offspring, the underlying neurobiological mechanisms remain unclear. We have begun a novel neuroimaging research project, the Transmit Radiant Individuality to Offspring (TRIO) study, which focuses on biological parent-offspring trios. The participants of the TRIO study were Japanese parent-offspring trios consisting of offspring aged 10-40 and their biological mother and father. Structural and functional brain images of all participants were acquired using magnetic resonance imaging (MRI). Saliva samples were collected for DNA analysis. We obtained psychosocial information, such as intelligence, mental health problems, personality traits, and experiences during the developmental period from each parent and offspring in the same manner as much as possible. By April 2023, we completed data acquisition from 174 trios consisting of fathers, mothers, and offspring. The target sample size was 310 trios. However, we plan to conduct genetic and epigenetic analyses, and the sample size is expected to be expanded further while developing this project into a multi-site collaborative study in the future. The TRIO study can challenge the elucidation of the mechanism of intergenerational transmission effects on human development by collecting diverse information from parents and offspring at the molecular, neural, and behavioral levels. Our study provides interdisciplinary insights into how individuals' lives are involved in the construction of the lives of their descendants in the subsequent generation.
Collapse
Affiliation(s)
- Izumi Matsudaira
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan
- Smart-Aging Research Center, Tohoku University, Sendai, Japan
| | - Ryo Yamaguchi
- Japan Society for the Promotion of Science, Tokyo, Japan
- Department of Medical Sciences, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Yasuyuki Taki
- Smart-Aging Research Center, Tohoku University, Sendai, Japan
| |
Collapse
|
14
|
Grech AM, Kizirian N, Lal R, Zankl A, Birkner K, Nasir R, Muirhead R, Sau-Harvey R, Haghighi MM, Collins C, Holmes A, Skilton M, Simpson S, Gordon A. Cohort profile: the BABY1000 pilot prospective longitudinal birth cohort study based in Sydney, Australia. BMJ Open 2023; 13:e068275. [PMID: 37290940 PMCID: PMC10255277 DOI: 10.1136/bmjopen-2022-068275] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 05/23/2023] [Indexed: 06/10/2023] Open
Abstract
PURPOSE The health of parents prior to conception, a woman's health during pregnancy and the infant's environment across their first months and years collectively have profound effects on the child's health across the lifespan. Since there are very few cohort studies in early pregnancy, gaps remain in our understanding of the mechanisms underpinning these relationships, and how health may be optimised. 'BABY1000', a pilot prospective longitudinal birth cohort study, aims to (1) identify factors before and during pregnancy and early life that impact longer-term health and (2) assess the feasibility and acceptability of study design to inform future research. PARTICIPANTS Participants were based in Sydney, Australia. Women were recruited at preconception or 12 weeks' gestation, and data were collected from them throughout pregnancy and postpartum, their children until the age of 2 years, and dietary information from a partner (if able) at the last study visit. The pilot aimed to recruit 250 women. However, recruitment ceased earlier than planned secondary to limitations from the COVID-19 pandemic and the final number of subjects was 225. FINDINGS TO DATE Biosamples, clinical measurements and sociodemographic/psychosocial measures were collected using validated tools and questionnaires. Data analysis and 24-month follow-up assessments for children are ongoing. Key early findings presented include participant demographics and dietary adequacy during pregnancy. The COVID-19 pandemic and associated public health and research restrictions affected recruitment of participants, follow-up assessments and data completeness. FUTURE PLANS The BABY1000 study will provide further insight into the developmental origins of health and disease and inform design and implementation of future cohort and intervention studies in the field. Since the BABY1000 pilot was conducted across the COVID-19 pandemic, it also provides unique insight into the early impacts of the pandemic on families, which may have effects on health across the lifespan.
Collapse
Affiliation(s)
- Allison Marie Grech
- Faculty of Medicine and Health, Central Clinical School, The University of Sydney, Sydney, New South Wales, Australia
- The University of Sydney Charles Perkins Centre, Sydney, New South Wales, Australia
| | - Nathalie Kizirian
- The University of Sydney Charles Perkins Centre, Sydney, New South Wales, Australia
| | - Ravin Lal
- The University of Sydney Charles Perkins Centre, Sydney, New South Wales, Australia
| | - Angelika Zankl
- Faculty of Medicine and Health, Central Clinical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Karin Birkner
- Faculty of Medicine and Health, Central Clinical School, The University of Sydney, Sydney, New South Wales, Australia
- The University of Sydney Charles Perkins Centre, Sydney, New South Wales, Australia
| | - Reeja Nasir
- Faculty of Medicine and Health, Central Clinical School, The University of Sydney, Sydney, New South Wales, Australia
- The University of Sydney Charles Perkins Centre, Sydney, New South Wales, Australia
| | - Roslyn Muirhead
- Faculty of Medicine and Health, Central Clinical School, The University of Sydney, Sydney, New South Wales, Australia
- The University of Sydney Charles Perkins Centre, Sydney, New South Wales, Australia
| | - Rachelle Sau-Harvey
- Faculty of Medicine and Health, Central Clinical School, The University of Sydney, Sydney, New South Wales, Australia
- The University of Sydney Charles Perkins Centre, Sydney, New South Wales, Australia
| | - Marjan Mosalman Haghighi
- Faculty of Medicine and Health, Central Clinical School, The University of Sydney, Sydney, New South Wales, Australia
- The University of Sydney Charles Perkins Centre, Sydney, New South Wales, Australia
| | - Clare Collins
- The University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, The University of Newcastle, New Lambton, New South Wales, Australia
| | - Andrew Holmes
- The University of Sydney Charles Perkins Centre, Sydney, New South Wales, Australia
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Michael Skilton
- The University of Sydney Charles Perkins Centre, Sydney, New South Wales, Australia
| | - Stephen Simpson
- The University of Sydney Charles Perkins Centre, Sydney, New South Wales, Australia
| | - Adrienne Gordon
- Faculty of Medicine and Health, Central Clinical School, The University of Sydney, Sydney, New South Wales, Australia
- The University of Sydney Charles Perkins Centre, Sydney, New South Wales, Australia
| |
Collapse
|
15
|
Lin Y, Chen Z, Qian Q, Wang Y, Xiu X, Ou P, Fang J, Li G. Effects of paternal obesity on maternal-neonatal outcomes and long-term prognosis in adolescents. Front Endocrinol (Lausanne) 2023; 14:1114250. [PMID: 37082119 PMCID: PMC10111374 DOI: 10.3389/fendo.2023.1114250] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/16/2023] [Indexed: 04/07/2023] Open
Abstract
ObjectiveThis study evaluated whether paternal body mass index (BMI) before pregnancy was a risk factor for maternal-neonatal outcomes and long-term prognosis in offspring.MethodsThis study included 29,518 participants from eight cities in Fujian, China using a stratified cluster random sampling method from May to September 2019. They were divided into four groups based on paternal BMI. Univariate and multivariate logistic regression were used to explore the relationship between paternal BMI groups, maternal-neonatal outcomes, and long-term prognosis in offspring. Further subgroup analysis was conducted to examine the stability of the risk. ResultsThe incidences of hypertensive disorder complicating pregnancy (HDCP), cesarean delivery, gestational weight gain (GWG) over guideline, and macrosomia were significantly higher in the paternal overweight and obesity group. Importantly, this study demonstrated that the incidence of asthma, hand-foot-and-mouth disease (HFMD), anemia, dental caries, and obesity of adolescents in paternal obesity increased. Furthermore, logistic regression and subgroup analysis confirm paternal obesity is a risk factor for HDCP, cesarean delivery, and macrosomia. It caused poor long-term prognosis in adolescents, including asthma, dental caries, and HFMD.ConclusionsPaternal obesity is a risk factor for adverse maternal-neonatal outcomes and poor long-term prognosis in adolescents. In addition to focusing on maternal weight, expectant fathers should pay more attention to weight management since BMI is a modifiable risk factor. Preventing paternal obesity can lead to better maternal and child outcomes. It would provide new opportunities for chronic diseases.
Collapse
Affiliation(s)
- Yingying Lin
- Department of Healthcare, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| | - Zhiwei Chen
- Department of Obstetrics and Gynecology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| | - Qinfang Qian
- Department of Child Healthcare Centre, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| | - Yanxia Wang
- Department of Child Healthcare Centre, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| | - Xiaoyan Xiu
- Department of Obstetrics and Gynecology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| | - Ping Ou
- Department of Healthcare, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
- *Correspondence: Guobo Li, ; Jiaoning Fang, ; Ping Ou,
| | - Jiaoning Fang
- Department of Obstetrics and Gynecology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
- *Correspondence: Guobo Li, ; Jiaoning Fang, ; Ping Ou,
| | - Guobo Li
- Department of Child Healthcare Centre, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
- *Correspondence: Guobo Li, ; Jiaoning Fang, ; Ping Ou,
| |
Collapse
|
16
|
Ribas-Aulinas F, Ribo S, Casas E, Mourin-Fernandez M, Ramon-Krauel M, Diaz R, Lerin C, Kalko SG, Vavouri T, Jimenez-Chillaron JC. Intergenerational Inheritance of Hepatic Steatosis in a Mouse Model of Childhood Obesity: Potential Involvement of Germ-Line microRNAs. Nutrients 2023; 15:nu15051241. [PMID: 36904241 PMCID: PMC10005268 DOI: 10.3390/nu15051241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
Childhood obesity increases the risk of developing metabolic syndrome later in life. Moreover, metabolic dysfunction may be inherited into the following generation through non-genomic mechanisms, with epigenetics as a plausible candidate. The pathways involved in the development of metabolic dysfunction across generations in the context of childhood obesity remain largely unexplored. We have developed a mouse model of early adiposity by reducing litter size at birth (small litter group, SL: 4 pups/dam; control group, C: 8 pups/dam). Mice raised in small litters (SL) developed obesity, insulin resistance and hepatic steatosis with aging. Strikingly, the offspring of SL males (SL-F1) also developed hepatic steatosis. Paternal transmission of an environmentally induced phenotype strongly suggests epigenetic inheritance. We analyzed the hepatic transcriptome in C-F1 and SL-F1 mice to identify pathways involved in the development of hepatic steatosis. We found that the circadian rhythm and lipid metabolic process were the ontologies with highest significance in the liver of SL-F1 mice. We explored whether DNA methylation and small non-coding RNAs might be involved in mediating intergenerational effects. Sperm DNA methylation was largely altered in SL mice. However, these changes did not correlate with the hepatic transcriptome. Next, we analyzed small non-coding RNA content in the testes of mice from the parental generation. Two miRNAs (miR-457 and miR-201) appeared differentially expressed in the testes of SL-F0 mice. They are known to be expressed in mature spermatozoa, but not in oocytes nor early embryos, and they may regulate the transcription of lipogenic genes, but not clock genes, in hepatocytes. Hence, they are strong candidates to mediate the inheritance of adult hepatic steatosis in our murine model. In conclusion, litter size reduction leads to intergenerational effects through non-genomic mechanisms. In our model, DNA methylation does not seem to play a role on the circadian rhythm nor lipid genes. However, at least two paternal miRNAs might influence the expression of a few lipid-related genes in the first-generation offspring, F1.
Collapse
Affiliation(s)
| | - Sílvia Ribo
- Institut de Recerca Sant Joan de Déu (IRSJD), Esplugues, 08950 Barcelona, Spain
| | - Eduard Casas
- Josep Carreras Leukemia Research Institute (IJC), 08916 Badalona, Spain
| | | | - Marta Ramon-Krauel
- Institut de Recerca Sant Joan de Déu (IRSJD), Esplugues, 08950 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ruben Diaz
- Institut de Recerca Sant Joan de Déu (IRSJD), Esplugues, 08950 Barcelona, Spain
| | - Carles Lerin
- Institut de Recerca Sant Joan de Déu (IRSJD), Esplugues, 08950 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Susana G. Kalko
- Vall d’Hebron Research Institute (VHIR), 08035 Barcelona, Spain
| | - Tanya Vavouri
- Josep Carreras Leukemia Research Institute (IJC), 08916 Badalona, Spain
| | - Josep C. Jimenez-Chillaron
- Institut de Recerca Sant Joan de Déu (IRSJD), Esplugues, 08950 Barcelona, Spain
- School of Medicine, University of Barcelona, L’Hospitalet, 08907 Barcelona, Spain
- Correspondence: or ; Tel.: +34-934024267
| |
Collapse
|
17
|
Greeson KW, Crow KMS, Edenfield RC, Easley CA. Inheritance of paternal lifestyles and exposures through sperm DNA methylation. Nat Rev Urol 2023:10.1038/s41585-022-00708-9. [PMID: 36653672 DOI: 10.1038/s41585-022-00708-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2022] [Indexed: 01/19/2023]
Abstract
Many different lifestyle factors and chemicals present in the environment are a threat to the reproductive tracts of humans. The potential for parental preconception exposure to alter gametes and for these alterations to be passed on to offspring and negatively affect embryo growth and development is of concern. The connection between maternal exposures and offspring health is a frequent focus in epidemiological studies, but paternal preconception exposures are much less frequently considered and are also very important determinants of offspring health. Several environmental and lifestyle factors in men have been found to alter sperm epigenetics, which can regulate gene expression during early embryonic development. Epigenetic information is thought to be a mechanism that evolved for organisms to pass on information about their lived experiences to offspring. DNA methylation is a well-studied epigenetic regulator that is sensitive to environmental exposures in somatic cells and sperm. The continuous production of sperm from spermatogonial stem cells throughout a man's adult life and the presence of spermatogonial stem cells outside of the blood-testis barrier makes them susceptible to environmental insults. Furthermore, altered sperm DNA methylation patterns can be maintained throughout development and ultimately result in impairments, which could predispose offspring to disease. Innovations in human stem cell-based spermatogenic models can be used to elucidate the paternal origins of health and disease.
Collapse
Affiliation(s)
- Katherine W Greeson
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA.,Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | - Krista M S Crow
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA.,Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | - R Clayton Edenfield
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA.,Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | - Charles A Easley
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA. .,Regenerative Bioscience Center, University of Georgia, Athens, GA, USA.
| |
Collapse
|
18
|
Zhang S, Lin T, Zhang Y, Liu X, Huang H. Effects of parental overweight and obesity on offspring's mental health: A meta-analysis of observational studies. PLoS One 2022; 17:e0276469. [PMID: 36548252 PMCID: PMC9778529 DOI: 10.1371/journal.pone.0276469] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/03/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Children of parents who were overweight/obese prior to pregnancy face a variety of neurodevelopmental challenges. The goal of this meta-analysis is to compile evidence about the impact of parental overweight/obesity on their children's mental health. METHODS The databases Cochrane Library, EMBASE, Pubmed, PsycINFO, and Web of Science were searched until May 2022. The pooled effect size was calculated using the fixed and random effect models. We also performed I2 index, subgroup analyses, sensitivity analyses, quality assessment, and publication bias analysis. The protocol was registered on the PROSPERO database (CRD42022334408). RESULTS For maternal exposure (35 studies), both maternal overweight [OR 1.14 (95% CI 1.10,1.18)] and maternal obesity [OR 1.39 (95% CI (1.33, 1.45)] were significantly associated with offspring's mental disorders. Maternal pre-pregnancy overweight/obesity increased the risk of attention-deficit/hyperactivity disorder (ADHD) [OR 1.55 (95% CI 1.42,1.70)], autism spectrum disorder (ASD) [OR 1.37 (95% CI 1.22,1.55)], cognitive/intellectual delay [OR 1.40 (95% CI 1.21,1.63)], behavioral problems [OR 1.50 (95% CI 1.35,1.66)] and other mental diseases [OR 1.30 (95% CI 1.23,1.37)]. For paternal exposure (6 studies), paternal obesity [OR 1.17 (95% CI 1.06, 1.30)] but not overweight [OR 1.03 (95% CI 0.95,1.11)] was significantly associated with offspring's mental disorders. CONCLUSIONS Parental overweight/obesity might have negative consequences on offspring's mental health and pre-pregnancy weight control is advised.
Collapse
Affiliation(s)
- Shuyu Zhang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Tingting Lin
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Yu Zhang
- School of Nursing, Hangzhou Medical College, Hangzhou, China
| | - Xinmei Liu
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Hefeng Huang
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai, China
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- * E-mail:
| |
Collapse
|
19
|
Wei J, Wang T, Shu J, Liu Y, Song X, Sun M, Zhong T, Chen Q, Luo M, Zhang S, Huang P, Zhu P, Xie D, Qin J. Parental pre-pregnancy body mass index and risk of low birth weight in offspring: A prospective cohort study in central China. Front Public Health 2022; 10:1036689. [PMID: 36530688 PMCID: PMC9748483 DOI: 10.3389/fpubh.2022.1036689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/14/2022] [Indexed: 12/05/2022] Open
Abstract
Background Low birth weight (LBW) is one of the most common adverse pregnancy outcomes. Previous studies have consistently shown that maternal body mass index (BMI) status before and during pregnancy is associated with LBW. However, previous studies lacked an association between paternal BMI and the conjunction effect of a couple's BMI and LBW in the offspring. Therefore, we established a cohort of pre-pregnancy couples to prospectively assess the relationship between maternal and paternal pre-pregnancy BMI and offspring LBW, very low birth weight (VLBW), and extremely low birth weight (ELBW). Methods A prospective cohort study was established in Central China. A total of 34,104 pregnant women with singleton pregnancies at 8-14 gestational weeks and their husbands were finally enrolled and followed to 3 months postpartum. The multivariate logistic regression and restrictive cubic spline model were used to explore the relationship between parental pre-pregnancy BMI and the risk of LBW, VLBW, and ELBW in offspring. Results Of the 34,104 participants, maternal pre-pregnancy overweight and obesity were associated with a higher risk of LBW (overweight: OR = 1.720, 95% CI = 1.533 ~ 1.930; obesity: OR = 1.710, 95% CI = 1.360 ~ 2.151), VLBW (overweight: OR = 2.283, 95% CI = 1.839 ~ 2.834; obesity: OR = 4.023, 95% CI = 2.855 ~ 5.670), and ELBW (overweight: OR = 3.292, 95% CI = 2.151 ~ 5.036; obesity: OR = 3.467, 95% CI = 1.481 ~ 8.115), while underweight was associated with a higher risk of LBW (OR = 1.438, 95% CI = 1.294 ~ 1.599) and a lower risk of ELBW (OR = 0.473, 95% CI = 0.236 ~ 0.946). Paternal pre-pregnancy overweight and obesity were associated with a higher risk of LBW (overweight: OR = 1.637, 95% CI = 1.501 ~ 1.784; obesity: OR = 1.454, 95% CI = 1.289 ~ 1.641) and VLBW (overweight: OR = 1.310, 95% CI = 1.097 ~ 1.564; obesity: OR = 1.320, 95% CI = 1.037 ~ 1.681), while underweight was associated with a lower risk of LBW (OR = 0.660, 95% CI = 0.519 ~ 0.839). Parents who were both excessive-weights in pre-pregnancy BMI, as well as overweight mothers and normal-weight fathers before pre-pregnancy, were more likely to have offspring with LBW, VLBW, and ELBW. Dose-response relationship existed between parental pre-pregnancy and LBW, VLBW, and ELBW, except for paternal BMI and ELBW. Conclusions Parental pre-pregnancy BMI was associated with the risk of LBW in offspring. Management of weight before pregnancy for couples might help reduce their adverse pregnancy outcomes in future intervention studies.
Collapse
Affiliation(s)
- Jianhui Wei
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Tingting Wang
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China,Hunan Institute of Reproductive Medicine, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Jing Shu
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Yiping Liu
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Xinli Song
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Mengting Sun
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Taowei Zhong
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Qian Chen
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Manjun Luo
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Senmao Zhang
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Peng Huang
- Department of Cardiothoracic Surgery, Hunan Children's Hospital, Changsha, China
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Donghua Xie
- Hunan Institute of Reproductive Medicine, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China,Donghua Xie
| | - Jiabi Qin
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China,Hunan Institute of Reproductive Medicine, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China,Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China,Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, China,*Correspondence: Jiabi Qin
| |
Collapse
|
20
|
Walker RE, Quong S, Olivier P, Wu L, Xie J, Boyle J. Understanding Preconception Women’s Needs and Preferences for Digital Health Resources: Qualitative Study. JMIR Form Res 2022; 6:e39280. [PMID: 35930344 PMCID: PMC9391970 DOI: 10.2196/39280] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 11/15/2022] Open
Abstract
Background Improving preconception health can benefit all women, their children, and their families regardless of their individual pregnancy intentions. Rapidly increasing access to information technology and online engagement have created opportunities to use digital health resources to engage with preconception women regarding lifestyle behaviors. Objective This study explores how preconception women engage with digital health resources and online platforms to inform the design and development of a digital health resource to support women to make positive behavior change for their preconception health. Methods This codesign research followed the Double Diamond process, which focuses on contextualization and explorative processes in phase 1 and ideation and development processes in phase 2. Phase 1 is reported on in this study and was undertaken via a series of 1-on-1 in-depth interviews with female participants (N=12) aged 18-45 years over 3 months. Interviews were designed to explore participants’ lived experiences in relation to their health and desired supports for healthy lifestyle behaviors. The first interview focused on participants’ perceptions of health and health behaviors, the second interview focused on social connections for health, and the third interview focused on digital health information and supports. Conversations from the first interview informed the development of the second interview, and conversations from the second interview informed the development of the third interview. Community advisors (N=8) met to provide feedback and advice to the researchers throughout the interview process. Qualitative analyses of transcripts from interviews were undertaken by 2 researchers before a deductive process identified themes mapped to the capability, opportunity, motivation, and behavior (COM-B) framework. Results In total, 9 themes and 8 subthemes were identified from 124 codes. In relation to digital health resources, specifically, participants were already engaging with a range of digital health resources and had high expectations of these. Digital health resources needed to be easy to access, make women’s busy lives easier, be evidence based, and be reputable. Social connectedness was also highly important to our participants, with information and advice from peers with similar experiences being preferred over yet more online health information. Online communities facilitated these social interactions. Participants were open to the idea of chatbots and virtual assistants but acknowledged that they would not replace authentic social interactions. Conclusions Codesigned digital health resources should be evidence based, reputable, and easy to access. Social connections were considered highly important to women, and designers of digital health resources should consider how they can increase opportunities for women to connect and learn from each other to promote health behaviors.
Collapse
Affiliation(s)
- Ruth Elizabeth Walker
- Monash Centre for Health Research and Implementation, Monash University, Clayton, Australia
| | - Sara Quong
- Monash Centre for Health Research and Implementation, Monash University, Clayton, Australia
| | | | - Ling Wu
- Action Lab, Monash University, Clayton, Australia
| | - Jue Xie
- Action Lab, Monash University, Clayton, Australia
| | - Jacqueline Boyle
- Eastern Health Clinical School, Monash University, Box Hill, Australia
| |
Collapse
|
21
|
Boyle JA, Black K, Dorney E, Amor DJ, Brown L, Callander E, Camilleri R, Cheney K, Gordon A, Hammarberg K, Jeyapalan D, Leahy D, Millard J, Mills C, Musgrave L, Norman RJ, O'Brien C, Roach V, Skouteris H, Steel A, Walker S, Walker R. Setting Preconception Care Priorities in Australia Using a Delphi Technique. Semin Reprod Med 2022; 40:214-226. [PMID: 35760312 DOI: 10.1055/s-0042-1749683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Preconception health affects fertility, pregnancy, and future health outcomes but public awareness of this is low. Our aims were to rank priorities for preconception care (PCC), develop strategies to address these priorities, and establish values to guide future work in preconception healthcare in Australia. A Delphi technique involved two rounds of online voting and mid-round workshops. Inputs were a scoping review of PCC guidelines, a priority setting framework and existing networks that focus on health. During July and August, 2021, 23 multidisciplinary experts in PCC or social care, including a consumer advocate, completed the Delphi technique. Ten priority areas were identified, with health behaviors, medical history, weight, and reproductive health ranked most highly. Six strategies were identified. Underpinning values encompassed engagement with stakeholders, a life course view of preconception health, an integrated multi-sectorial approach and a need for large scale collaboration to implement interventions that deliver impact across health care, social care, policy and population health. Priority populations were considered within the social determinants of health. Health behaviors, medical history, weight, and reproductive health were ranked highly as PCC priorities. Key strategies to address priorities should be implemented with consideration of values that improve the preconception health of all Australians.
Collapse
Affiliation(s)
- Jacqueline A Boyle
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Monash University. Clayton, VIC, Australia
| | - Kirsten Black
- Faculty of Medicine and Health, Central Clinical School, The University of Sydney, Sydney, NSW, Australia
| | - Edwina Dorney
- Faculty of Medicine and Health, Central Clinical School, The University of Sydney, Sydney, NSW, Australia
| | - David J Amor
- Murdoch Children's Research Institute and University of Melbourne Department of Paediatrics, Royal Children's Hospital, Parkville, VIC, Australia
| | - Louise Brown
- Jean Hailes for Women's Health, East Melbourne, VIC, Australia
| | - Emily Callander
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Monash University. Clayton, VIC, Australia
| | - Renea Camilleri
- Jean Hailes for Women's Health, East Melbourne, VIC, Australia
| | - Kate Cheney
- Faculty of Medicine and Health, Central Clinical School, The University of Sydney, Sydney, NSW, Australia
| | - Adrienne Gordon
- Faculty of Medicine and Health, Central Clinical School, The University of Sydney, Sydney, NSW, Australia
| | - Karin Hammarberg
- Global and Women's Health, School of Public Health and Preventative Medicine, Monash University, Melbourne, VIC, Australia
| | - Dheepa Jeyapalan
- Victorian Health Promotion Foundation (VicHealth), Melbourne, VIC, Australia
| | - Deana Leahy
- Faculty of Education, Monash University, Clayton, VIC, Australia
| | - Jo Millard
- Australian Primary Health Care Nurses Association (APNA), Melbourne, VIC, Australia
| | - Catherine Mills
- Monash Bioethics Centre, Faculty of Arts, School of Philosophical, Historical and International Studies, Monash University, Clayton, VIC, Australia
| | - Loretta Musgrave
- Centre for Midwifery, Child and Family Health, School of Nursing and Midwifery, Faculty of Health, University of Technology Sydney, Ultimo, NSW, Australia
| | - Robert J Norman
- Robinson Research Institute, University of Adelaide, SA, Australia
| | | | - Vijay Roach
- Royal Australian and New Zealand College of Obstetricians and Gynaecologists, Melbourne, VIC, Australia
| | - Helen Skouteris
- Monash Warwick Professor in Health and Social Care Improvement and Implementation Science, Health and Social Care Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Amie Steel
- Australian Centre for Public and Population Health Research, Faculty of Health, University of Technology Sydney, Ultimo, NSW, Australia
| | - Sue Walker
- Maternal Fetal Medicine, Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Ruth Walker
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Monash University. Clayton, VIC, Australia
| |
Collapse
|
22
|
Liu X, Luo K, Zhang J, Yu H, Chen D. Exposure of Preconception Couples to Legacy and Emerging Per- and Polyfluoroalkyl Substances: Variations Within and Between Couples. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6172-6181. [PMID: 35016501 DOI: 10.1021/acs.est.1c07422] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Exploration of the exposure of preconception couples to per- and polyfluoroalkyl substances (PFAS), as well as the most important influencing factors, promotes the understanding of the joint effects of parental exposure on reproductive health. In the present study, a total of 938 preconception couples recruited through the Shanghai Birth Cohort were investigated for the variations of PFAS exposure and contributing factors within and between couples. While linear perfluorooctanoic acid (n-PFOA, median 20.4 ng/mL) and linear perfluorooctanesulfonic acid (n-PFOS, 12.1 ng/mL) remained dominant in plasma, emerging PFAS, particularly 6:2 chlorinated polyfluorinated ether sulfonate (10.5 ng/mL), 6:2 polyfluoroalkyl phosphate diester (0.41 ng/mL), and branched PFOS or PFOA isomers, were also frequently detected. Although individual PFAS were generally correlated within couples, gender differences significantly existed in the concentrations of most individual PFAS and isomer profiles of PFOS and PFOA. Men generally exhibited higher plasma concentrations than their partners, likely reflecting gender-specific elimination pathway and kinetics. Couple-based PFAS exposure also varied greatly. After adjustment for individual factors, several household factors, including annual household income, dwelling floor type, drinking water source, and living near farmlands, were found to be associated with couple-based PFAS exposure. Our study constitutes one of the few studies addressing couple-based exposure to PFAS and lays a solid ground for further assessment of the impacts of parental exposure on reproductive health.
Collapse
Affiliation(s)
- Xiaotu Liu
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Kai Luo
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200092, China
| | - Jun Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200092, China
| | - Hao Yu
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Da Chen
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| |
Collapse
|
23
|
Lønnebotn M, Calciano L, Johannessen A, Jarvis DL, Abramson MJ, Benediktsdóttir B, Bråbäck L, Franklin KA, Godoy R, Holm M, Janson C, Jõgi NO, Kirkeleit J, Malinovschi A, Pereira-Vega A, Schlünssen V, Dharmage SC, Accordini S, Gómez Real F, Svanes C. Parental Prepuberty Overweight and Offspring Lung Function. Nutrients 2022; 14:nu14071506. [PMID: 35406119 PMCID: PMC9002985 DOI: 10.3390/nu14071506] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/28/2022] [Accepted: 04/01/2022] [Indexed: 01/27/2023] Open
Abstract
In a recent study we found that fathers' but not mothers' onset of overweight in puberty was associated with asthma in adult offspring. The potential impact on offspring's adult lung function, a key marker of general and respiratory health, has not been studied. We investigated the potential causal effects of parents' overweight on adult offspring's lung function within the paternal and maternal lines. We included 929 offspring (aged 18-54, 54% daughters) of 308 fathers and 388 mothers (aged 40-66). Counterfactual-based multi-group mediation analyses by offspring's sex (potential moderator) were used, with offspring's prepubertal overweight and/or adult height as potential mediators. Unknown confounding was addressed by simulation analyses. Fathers' overweight before puberty had a negative indirect effect, mediated through sons' height, on sons' forced expiratory volume in one second (FEV1) (beta (95% CI): -144 (-272, -23) mL) and forced vital capacity (FVC) (beta (95% CI): -210 (-380, -34) mL), and a negative direct effect on sons' FVC (beta (95% CI): -262 (-501, -9) mL); statistically significant effects on FEV1/FVC were not observed. Mothers' overweight before puberty had neither direct nor indirect effects on offspring's lung function. Fathers' overweight starting before puberty appears to cause lower FEV1 and FVC in their future sons. The effects were partly mediated through sons' adult height but not through sons' prepubertal overweight.
Collapse
Affiliation(s)
- Marianne Lønnebotn
- Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, 5020 Bergen, Norway; (A.J.); (J.K.); (C.S.)
- Department of Occupational Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- Correspondence: ; Tel.: +47-9596-8484
| | - Lucia Calciano
- Unit of Epidemiology and Medical Statistics, Department of Diagnostics and Public Health, University of Verona, 37134 Verona, Italy; (L.C.); (S.A.)
| | - Ane Johannessen
- Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, 5020 Bergen, Norway; (A.J.); (J.K.); (C.S.)
| | - Deborah L. Jarvis
- Faculty of Medicine, National Heart & Lung Institute, Imperial College, London SW7 2AZ, UK;
- MRC-PHE Centre for Environment and Health, Imperial College, London W2 1PG, UK
| | - Michael J. Abramson
- School of Public Health & Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia;
| | | | - Lennart Bråbäck
- Section of Sustainable Health, Department of Public Health and Clinical Medicine, Umeå University, 901 87 Umeå, Sweden;
| | - Karl A. Franklin
- The Department of Surgical and Perioperative Sciences, Surgery, Umeå University, 901 87 Umeaa, Sweden;
| | - Raúl Godoy
- Department of Pulmonary Medicine, University Hospital Complex of Albacete, University of Castilla La Mancha, 02008 Albacete, Spain;
| | - Mathias Holm
- Occupational and Environmental Medicine, Institute of Medicine, School of Public Health and Community Medicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden;
| | - Christer Janson
- Department of Medical Sciences, Respiratory, Allergy and Sleep Research, Uppsala University, 751 85 Uppsala, Sweden;
| | - Nils O. Jõgi
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (N.O.J.); (F.G.R.)
| | - Jorunn Kirkeleit
- Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, 5020 Bergen, Norway; (A.J.); (J.K.); (C.S.)
- Department of Occupational Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| | - Andrei Malinovschi
- Department of Medical Sciences, Clinical Physiology, Uppsala University, 751 85 Uppsala, Sweden;
| | - Antonio Pereira-Vega
- Pneumology Service, Juan Ramón Jiménez University Hospital in Huelva, 21005 Huelva, Spain;
| | - Vivi Schlünssen
- Department of Public Health, Environment, Work and Health, Danish Ramazzini Centre, Aarhus University, 8000 Aarhus, Denmark;
- National Research Center for the Working Environment, 2100 Copenhagen, Denmark
| | - Shyamali C. Dharmage
- Allergy and Lung Health Unit, School of Population and Global Health, University of Melbourne, Melbourne, VIC 3010, Australia;
| | - Simone Accordini
- Unit of Epidemiology and Medical Statistics, Department of Diagnostics and Public Health, University of Verona, 37134 Verona, Italy; (L.C.); (S.A.)
| | - Francisco Gómez Real
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (N.O.J.); (F.G.R.)
- Department of Obstetrics and Gynecology, Haukeland University Hospital, 5053 Bergen, Norway
| | - Cecilie Svanes
- Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, 5020 Bergen, Norway; (A.J.); (J.K.); (C.S.)
- Department of Occupational Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| |
Collapse
|
24
|
Lin J, Gu W, Huang H. Effects of Paternal Obesity on Fetal Development and Pregnancy Complications: A Prospective Clinical Cohort Study. Front Endocrinol (Lausanne) 2022; 13:826665. [PMID: 35360083 PMCID: PMC8963983 DOI: 10.3389/fendo.2022.826665] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/10/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives To evaluate the association between paternal obesity and fetal development and pregnancy complications. Study Design This prospective cohort clinical trial analyzed data from 7683 women with singleton pregnancies. All study subjects were sequentially divided into four groups based on paternal BMI. We compared the differences in fetal growth and pregnancy complications between different paternal BMI groups by univariate logistic regression and independent t-test. Finally, the independent predictors of SGA and macrosomia were determined. Results The incidences of preeclampsia, cesarean section, SGA, macrosomia, and postpartum hemorrhage in the paternal obesity group were significantly higher than the normal BMI group. With the increase of paternal BMI, fetal ultrasound measurement parameter, neonatal and placental weight showed an increasing trend (trend P < 0.05). However, these differences disappeared in the obese group. The test for interaction showed the effect of paternal obesity on SGA and macrosomia was significantly affected by maternal obesity. We also found paternal obesity was an independent predictor of both SGA and macrosomia. Based on the above results, we plotted the Nomograms for clinical prediction. Conclusion Paternal obesity can affect fetal growth parameters and placental development, which has an adverse impact on pregnancy outcomes. Optimizing the paternal BMI will help improve the health of the next generation.
Collapse
Affiliation(s)
- Jing Lin
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Wei Gu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Hefeng Huang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| |
Collapse
|
25
|
A multifactorial model for the etiology of neuropsychiatric disorders: the role of advanced paternal age. Pediatr Res 2022; 91:757-770. [PMID: 33674740 DOI: 10.1038/s41390-021-01435-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 01/07/2021] [Accepted: 02/02/2021] [Indexed: 12/21/2022]
Abstract
Mental or neuropsychiatric disorders are widespread within our societies affecting one in every four people in the world. Very often the onset of a mental disorder (MD) occurs in early childhood and substantially reduces the quality of later life. Although the global burden of MDs is rising, mental health care is still suboptimal, partly due to insufficient understanding of the processes of disease development. New insights are needed to respond to this worldwide health problem. Next to the growing burden of MDs, there is a tendency to postpone pregnancy for various economic and practical reasons. In this review, we describe the current knowledge on the potential effect from advanced paternal age (APA) on development of autism spectrum disorder, schizophrenia, attention-deficit/hyperactivity disorder, bipolar disorder, obsessive-compulsive disorder, and Tourette syndrome. Although literature did not clearly define an age cut-off for APA, we here present a comprehensive multifactorial model for the development of MDs, including the role of aging, de novo mutations, epigenetic mechanisms, psychosocial environment, and selection into late fatherhood. Our model is part of the Paternal Origins of Health and Disease paradigm and may serve as a foundation for future epidemiological research designs. This blueprint will increase the understanding of the etiology of MDs and can be used as a practical guide for clinicians favoring early detection and developing a tailored treatment plan. Ultimately, this will help health policy practitioners to prevent the development of MDs and to inform health-care workers and the community about disease determinants. Better knowledge of the proportion of all risk factors, their interactions, and their role in the development of MDs will lead to an optimization of mental health care and management. IMPACT: We design a model of causation for MDs, integrating male aging, (epi)genetics, and environmental influences. It adds new insights into the current knowledge about associations between APA and MDs. In clinical practice, this comprehensive model may be helpful in early diagnosis and in treatment adopting a personal approach. It may help in identifying the proximate cause on an individual level or in a specific subpopulation. Besides the opportunity to measure the attributed proportions of risk factors, this model may be used as a blueprint to design prevention strategies for public health purposes.
Collapse
|
26
|
Wu D, Khan FA, Huo L, Sun F, Huang C. Alternative splicing and MicroRNA: epigenetic mystique in male reproduction. RNA Biol 2022; 19:162-175. [PMID: 35067179 PMCID: PMC8786336 DOI: 10.1080/15476286.2021.2024033] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Infertility is rarely life threatening, however, it poses a serious global health issue posing far-reaching socio-economic impacts affecting 12–15% of couples worldwide where male factor accounts for 70%. Functional spermatogenesis which is the result of several concerted coordinated events to produce sperms is at the core of male fertility, Alternative splicing and microRNA (miRNA) mediated RNA silencing (RNAi) constitute two conserved post-transcriptional gene (re)programming machinery across species. The former by diversifying transcriptome signature and the latter by repressing target mRNA activity orchestrate a spectrum of testicular events, and their dysfunctions has several implications in male infertility. This review recapitulates the knowledge of these mechanistic events in regulation of spermatogenesis and testicular homoeostasis. In addition, miRNA payload in sperm, vulnerable to paternal inputs, including unhealthy diet, infection and trauma, creates epigenetic memory to initiate intergenerational phenotype. Naive zygote injection of sperm miRNAs from stressed father recapitulates phenotypes of offspring of stressed father. The epigenetic inheritance of paternal pathologies through miRNA could be a tantalizing avenue to better appreciate ‘Paternal Origins of Health and Disease’ and the power of tiny sperm.
Collapse
Affiliation(s)
- Di Wu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, China
| | - Faheem Ahmed Khan
- Laboratory of Molecular Biology and Genomics, Department of Zoology, Faculty of Science, University of Central Punjab, Lahore, Pakistan
| | - Lijun Huo
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fei Sun
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, China
| | - Chunjie Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, China
| |
Collapse
|
27
|
Human transgenerational observations of regular smoking before puberty on fat mass in grandchildren and great-grandchildren. Sci Rep 2022; 12:1139. [PMID: 35064168 PMCID: PMC8782898 DOI: 10.1038/s41598-021-04504-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 12/15/2021] [Indexed: 12/13/2022] Open
Abstract
Previously, using data from the Avon Longitudinal Study of Parents and Children (ALSPAC) we showed that sons of fathers who had started smoking regularly before puberty (< 13 years) had increased fat mass during childhood, adolescence, and early adulthood. We now show that if the paternal grandfather had started smoking pre-puberty, compared with later in childhood (13–16 years), his granddaughters, but not grandsons, had evidence of excess fat mass at two ages: mean difference + 3.54 kg; (P with 1-tailed test) = 0.043 at 17 years, and + 5.49 kg; (P1 = 0.016) at age 24. When fathers of maternal grandfathers had started smoking pre-puberty, their great-granddaughters, but not great-grandsons, had excess body fat: + 5.35 kg (P1 = 0.050) at 17, and + 6.10 kg (P1 = 0.053) at 24 years. Similar associations were not found with lean mass, in a sensitivity analysis. To determine whether these results were due to the later generations starting to smoke pre-puberty, further analyses omitted those in subsequent generations who had smoked regularly from < 13 years. The results were similar. If these associations are confirmed in another dataset or using biomarkers, this will be one of the first human demonstrations of transgenerational effects of an environmental exposure across four generations.
Collapse
|
28
|
Condon EM, Dettmer A, Baker E, McFaul C, Stover CS. Early Life Adversity and Males: Biology, Behavior, and Implications for Fathers' Parenting. Neurosci Biobehav Rev 2022; 135:104531. [PMID: 35063493 PMCID: PMC9236197 DOI: 10.1016/j.neubiorev.2022.104531] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 01/23/2023]
Abstract
Fathers have an important and unique influence on child development, but influences on fathers' parenting have been vastly understudied in the scientific literature. In particular, very little empirical research exists on the effects of early life adversity (ELA; e.g. childhood maltreatment, parental separation) on later parenting among fathers. In this review, we draw from both the human and non-human animal literature to examine the effects of ELA, specifically among males, in the following areas: 1) neurobiology and neurocognitive functioning, 2) hormones and hormone receptors, 3) gene-environment interactions and epigenetics, and 4) behavior and development. Based on these findings, we present a conceptual model to describe the biological and behavioral pathways through which exposure to ELA may influence parenting among males, with a goal of guiding future research and intervention development in this area. Empirical studies are needed to improve understanding of the relationship between ELA and father's parenting, inform the development of paternal and biparental interventions, and prevent intergenerational transmission of ELA.
Collapse
Affiliation(s)
- Eileen M Condon
- University of Connecticut School of Nursing, 231 Glenbrook Rd, Storrs CT 06269, United States; Yale Early Stress and Adversity Consortium, United States.
| | - Amanda Dettmer
- Yale Early Stress and Adversity Consortium, United States; Yale Child Study Center, 230 S Frontage Rd, New Haven, CT 06519, United States
| | - Ellie Baker
- Yale Child Study Center, 230 S Frontage Rd, New Haven, CT 06519, United States; Division of Psychology and Language Science, University College London (UCL), 26 Bedford Way, Bloomsbury, London WC1H 0AP, United Kingdom
| | - Ciara McFaul
- Yale Child Study Center, 230 S Frontage Rd, New Haven, CT 06519, United States
| | - Carla Smith Stover
- Yale Early Stress and Adversity Consortium, United States; Yale Child Study Center, 230 S Frontage Rd, New Haven, CT 06519, United States
| |
Collapse
|
29
|
López-Cervantes JP, Lønnebotn M, Jogi NO, Calciano L, Kuiper IN, Darby MG, Dharmage SC, Gómez-Real F, Hammer B, Bertelsen RJ, Johannessen A, Würtz AML, Mørkve Knudsen T, Koplin J, Pape K, Skulstad SM, Timm S, Tjalvin G, Krauss-Etschmann S, Accordini S, Schlünssen V, Kirkeleit J, Svanes C. The Exposome Approach in Allergies and Lung Diseases: Is It Time to Define a Preconception Exposome? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:12684. [PMID: 34886409 PMCID: PMC8657011 DOI: 10.3390/ijerph182312684] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 12/30/2022]
Abstract
Emerging research suggests environmental exposures before conception may adversely affect allergies and lung diseases in future generations. Most studies are limited as they have focused on single exposures, not considering that these diseases have a multifactorial origin in which environmental and lifestyle factors are likely to interact. Traditional exposure assessment methods fail to capture the interactions among environmental exposures and their impact on fundamental biological processes, as well as individual and temporal factors. A valid estimation of exposure preconception is difficult since the human reproductive cycle spans decades and the access to germ cells is limited. The exposome is defined as the cumulative measure of external exposures on an organism (external exposome), and the associated biological responses (endogenous exposome) throughout the lifespan, from conception and onwards. An exposome approach implies a targeted or agnostic analysis of the concurrent and temporal multiple exposures, and may, together with recent technological advances, improve the assessment of the environmental contributors to health and disease. This review describes the current knowledge on preconception environmental exposures as related to respiratory health outcomes in offspring. We discuss the usefulness and feasibility of using an exposome approach in this research, advocating for the preconception exposure window to become included in the exposome concept.
Collapse
Affiliation(s)
- Juan Pablo López-Cervantes
- Center for International Health, Department of Global Public Health and Primary Care, University of Bergen, 5020 Bergen, Norway; (M.L.); (A.J.); (G.T.); (J.K.); (C.S.)
- Department of Occupational Medicine, Haukeland University Hospital, 5021 Bergen, Norway; (N.O.J.); (T.M.K.); (S.M.S.)
| | - Marianne Lønnebotn
- Center for International Health, Department of Global Public Health and Primary Care, University of Bergen, 5020 Bergen, Norway; (M.L.); (A.J.); (G.T.); (J.K.); (C.S.)
- Department of Occupational Medicine, Haukeland University Hospital, 5021 Bergen, Norway; (N.O.J.); (T.M.K.); (S.M.S.)
| | - Nils Oskar Jogi
- Department of Occupational Medicine, Haukeland University Hospital, 5021 Bergen, Norway; (N.O.J.); (T.M.K.); (S.M.S.)
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (F.G.-R.); (R.J.B.)
| | - Lucia Calciano
- Unit of Epidemiology and Medical Statistics, Department of Diagnostics and Public Health, University of Verona, 37134 Verona, Italy; (L.C.); (S.A.)
| | | | - Matthew G. Darby
- Institute of Infectious Disease and Molecular Medicine and Division of Immunology, University of Cape Town, Cape Town 7925, South Africa;
| | - Shyamali C. Dharmage
- School of Population and Global Health, University of Melbourne, Melbourne, VIC 3010, Australia; (S.C.D.); (J.K.)
| | - Francisco Gómez-Real
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (F.G.-R.); (R.J.B.)
- Department of Obstetrics and Gynecology, Haukeland University Hospital, 5053 Bergen, Norway
| | - Barbara Hammer
- Department of Pulmonology, Medical University of Vienna, 1090 Vienna, Austria;
| | | | - Ane Johannessen
- Center for International Health, Department of Global Public Health and Primary Care, University of Bergen, 5020 Bergen, Norway; (M.L.); (A.J.); (G.T.); (J.K.); (C.S.)
| | - Anne Mette Lund Würtz
- Danish Ramazzini Centre, Department of Public Health—Work, Environment and Health, Aarhus University, 8000 Aarhus, Denmark; (A.M.L.W.); (K.P.); (V.S.)
| | - Toril Mørkve Knudsen
- Department of Occupational Medicine, Haukeland University Hospital, 5021 Bergen, Norway; (N.O.J.); (T.M.K.); (S.M.S.)
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (F.G.-R.); (R.J.B.)
| | - Jennifer Koplin
- School of Population and Global Health, University of Melbourne, Melbourne, VIC 3010, Australia; (S.C.D.); (J.K.)
- Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia
| | - Kathrine Pape
- Danish Ramazzini Centre, Department of Public Health—Work, Environment and Health, Aarhus University, 8000 Aarhus, Denmark; (A.M.L.W.); (K.P.); (V.S.)
| | - Svein Magne Skulstad
- Department of Occupational Medicine, Haukeland University Hospital, 5021 Bergen, Norway; (N.O.J.); (T.M.K.); (S.M.S.)
| | - Signe Timm
- Department of Regional Health Research, University of Southern Denmark, 5230 Odense, Denmark;
- Research Unit, Kolding Hospital, University Hospital of Southern Denmark, 6000 Kolding, Denmark
| | - Gro Tjalvin
- Center for International Health, Department of Global Public Health and Primary Care, University of Bergen, 5020 Bergen, Norway; (M.L.); (A.J.); (G.T.); (J.K.); (C.S.)
- Department of Occupational Medicine, Haukeland University Hospital, 5021 Bergen, Norway; (N.O.J.); (T.M.K.); (S.M.S.)
| | | | - Simone Accordini
- Unit of Epidemiology and Medical Statistics, Department of Diagnostics and Public Health, University of Verona, 37134 Verona, Italy; (L.C.); (S.A.)
| | - Vivi Schlünssen
- Danish Ramazzini Centre, Department of Public Health—Work, Environment and Health, Aarhus University, 8000 Aarhus, Denmark; (A.M.L.W.); (K.P.); (V.S.)
- National Research Centre for the Working Environment, 2100 Copenhagen, Denmark
| | - Jorunn Kirkeleit
- Center for International Health, Department of Global Public Health and Primary Care, University of Bergen, 5020 Bergen, Norway; (M.L.); (A.J.); (G.T.); (J.K.); (C.S.)
- Department of Occupational Medicine, Haukeland University Hospital, 5021 Bergen, Norway; (N.O.J.); (T.M.K.); (S.M.S.)
| | - Cecilie Svanes
- Center for International Health, Department of Global Public Health and Primary Care, University of Bergen, 5020 Bergen, Norway; (M.L.); (A.J.); (G.T.); (J.K.); (C.S.)
- Department of Occupational Medicine, Haukeland University Hospital, 5021 Bergen, Norway; (N.O.J.); (T.M.K.); (S.M.S.)
| |
Collapse
|
30
|
Ghai M, Kader F. A Review on Epigenetic Inheritance of Experiences in Humans. Biochem Genet 2021; 60:1107-1140. [PMID: 34792705 DOI: 10.1007/s10528-021-10155-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 11/04/2021] [Indexed: 12/13/2022]
Abstract
If genetics defines the inheritance of DNA, epigenetics aims to regulate and make it adaptable. Epigenetic alterations include DNA methylation, chromatin remodelling, post-translational modifications of histone proteins and activity of non-coding RNAs. Several studies, especially in animal models, have reported transgenerational inheritance of epigenetic marks. However, evidence of transgenerational inheritance in humans via germline in the absence of any direct exposure to the driving external stimulus remains controversial. Most of the epimutations exist in relation with genetic variants. The present review looks at intergenerational and transgenerational inheritance in humans, (both father and mother) in response to diet, exposure to chemicals, stress, exercise, and disease status. If not transgenerational, at least intergenerational human studies could help to understand early processes of inheritance. In humans, female and male germline development follow separate paths of epigenetic events and both oocyte and sperm possess their own unique epigenomes. While DNA methylation alterations are reset during epigenetic reprogramming, non-coding RNAs via human sperm provide evidence of being reliable carriers for transgenerational inheritance. Human studies reveal that one mechanism of epigenetic inheritance cannot be applied to the complete human genome. Multiple factors including time, type, and tissue of exposure determine if the modified epigenetic mark could be transmissible and till which generation. Population-specific differences should also be taken into consideration while associating inheritance to an environmental exposure. A longitudinal study targeting one environmental factor, but different population groups should be conducted at a specific geographical location to pinpoint heritable epigenetic changes.
Collapse
Affiliation(s)
- Meenu Ghai
- Discipline of Genetics, School of Life Sciences, Westville Campus, University of KwaZulu-Natal, Private Bag X54001, Durban, KwaZulu Natal, South Africa.
| | - Farzeen Kader
- Discipline of Genetics, School of Life Sciences, Westville Campus, University of KwaZulu-Natal, Private Bag X54001, Durban, KwaZulu Natal, South Africa
| |
Collapse
|
31
|
Hsu CN, Hou CY, Hsu WH, Tain YL. Early-Life Origins of Metabolic Syndrome: Mechanisms and Preventive Aspects. Int J Mol Sci 2021; 22:11872. [PMID: 34769303 PMCID: PMC8584419 DOI: 10.3390/ijms222111872] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 10/31/2021] [Accepted: 10/31/2021] [Indexed: 02/07/2023] Open
Abstract
One of the leading global public-health burdens is metabolic syndrome (MetS), despite the many advances in pharmacotherapies. MetS, now known as "developmental origins of health and disease" (DOHaD), can have its origins in early life. Offspring MetS can be programmed by various adverse early-life conditions, such as nutrition imbalance, maternal conditions or diseases, maternal chemical exposure, and medication use. Conversely, early interventions have shown potential to revoke programming processes to prevent MetS of developmental origins, namely reprogramming. In this review, we summarize what is currently known about adverse environmental insults implicated in MetS of developmental origins, including the fundamental underlying mechanisms. We also describe animal models that have been developed to study the developmental programming of MetS. This review extends previous research reviews by addressing implementation of reprogramming strategies to prevent the programming of MetS. These mechanism-targeted strategies include antioxidants, melatonin, resveratrol, probiotics/prebiotics, and amino acids. Much work remains to be accomplished to determine the insults that could induce MetS, to identify the mechanisms behind MetS programming, and to develop potential reprogramming strategies for clinical translation.
Collapse
Affiliation(s)
- Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chih-Yao Hou
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan;
| | - Wei-Hsuan Hsu
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Chen Kung University, Tainan 701, Taiwan;
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| |
Collapse
|
32
|
Svanes C, Bertelsen RJ, Accordini S, Holloway JW, Júlíusson P, Boateng E, Krauss-Etchmann S, Schlünssen V, Gómez-Real F, Skulstad SM. Exposures during the prepuberty period and future offspring's health: evidence from human cohort studies†. Biol Reprod 2021; 105:667-680. [PMID: 34416759 PMCID: PMC8444705 DOI: 10.1093/biolre/ioab158] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/02/2021] [Accepted: 08/17/2021] [Indexed: 11/13/2022] Open
Abstract
Emerging evidence suggests that exposures in prepuberty, particularly in fathers-to-be, may impact the phenotype of future offspring. Analyses of the RHINESSA cohort find that offspring of father’s exposed to tobacco smoking or overweight that started in prepuberty demonstrate poorer respiratory health in terms of more asthma and lower lung function. A role of prepuberty onset smoking for offspring fat mass is suggested in the RHINESSA and ALSPAC cohorts, and historic studies suggest that ancestral nutrition during prepuberty plays a role for grand-offspring’s health and morbidity. Support for causal relationships between ancestral exposures and (grand-)offspring’s health in humans has been enhanced by advancements in statistical analyses that optimize the gain while accounting for the many complexities and deficiencies in human multigeneration data. The biological mechanisms underlying such observations have been explored in experimental models. A role of sperm small RNA in the transmission of paternal exposures to offspring phenotypes has been established, and chemical exposures and overweight have been shown to influence epigenetic programming in germ cells. For example, exposure of adolescent male mice to smoking led to differences in offspring weight and alterations in small RNAs in the spermatozoa of the exposed fathers. It is plausible that male prepuberty may be a time window of particular susceptibility, given the extensive epigenetic reprogramming taking place in the spermatocyte precursors at this age. In conclusion, epidemiological studies in humans, mechanistic research, and biological plausibility, all support the notion that exposures in the prepuberty of males may influence the phenotype of future offspring.
Collapse
Affiliation(s)
- Cecilie Svanes
- Department of Global Public Health and Primary Care, Centre for International Health, University of Bergen, Bergen, Norway.,Department of Occupational Medicine, Haukeland University Hospital, Bergen, Norway
| | - Randi J Bertelsen
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Oral Health Centre of Expertise Western Norway, Bergen, Norway
| | - Simone Accordini
- Unit of Epidemiology and Medical Statistics, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - John W Holloway
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, UK.,Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Pétur Júlíusson
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Health Register Research and Development, National Institute of Public Health, Bergen, Norway
| | - Eistine Boateng
- Early Life Origins of Chronic Lung Disease, Research Center Borstel, Leibniz Lung Center, German Center for Lung Research (DZL), Borstel, Germany
| | - Susanne Krauss-Etchmann
- Early Life Origins of Chronic Lung Disease, Research Center Borstel, Leibniz Lung Center, German Center for Lung Research (DZL), Borstel, Germany.,Institute of Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Vivi Schlünssen
- Department of Public Health-Work, Environment and Health, Danish Ramazzini Centre, Aarhus University, Denmark.,National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Francisco Gómez-Real
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Gynaecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
| | - Svein Magne Skulstad
- Department of Occupational Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
33
|
Merrill SM, Moore SR, Gladish N, Giesbrecht GF, Dewey D, Konwar C, MacIssac JL, Kobor MS, Letourneau NL. Paternal adverse childhood experiences: Associations with infant DNA methylation. Dev Psychobiol 2021; 63:e22174. [PMID: 34333774 DOI: 10.1002/dev.22174] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 06/17/2021] [Accepted: 06/24/2021] [Indexed: 12/14/2022]
Abstract
Adverse childhood experiences (ACEs), or cumulative childhood stress exposures, such as abuse, neglect, and household dysfunction, predict later health problems in both the exposed individuals and their offspring. One potential explanation suggests exposure to early adversity predicts epigenetic modification, especially DNA methylation (DNAm), linked to later health. Stress experienced preconception by mothers may associate with DNAm in the next generation. We hypothesized that fathers' exposure to ACEs also associates with their offspring DNAm, which, to our knowledge, has not been previously explored. An epigenome-wide association study (EWAS) of blood DNAm (n = 45) from 3-month-old infants was regressed onto fathers' retrospective ACEs at multiple Cytosine-phosphate-Guanosine (CpG) sites to discover associations. This accounted for infants' sex, age, ethnicity, cell type proportion, and genetic variability. Higher ACE scores associated with methylation values at eight CpGs. Post-hoc analysis found no contribution of paternal education, income, marital status, and parental postpartum depression, but did with paternal smoking and BMI along with infant sleep latency. These same CpGs also contributed to the association between paternal ACEs and offspring attention problems at 3 years. Collectively, these findings suggested there were biological associations with paternal early life adversity and offspring DNAm in infancy, potentially affecting offspring later childhood outcomes.
Collapse
Affiliation(s)
- Sarah M Merrill
- BC Children's Hospital Research Institute Vancouver, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.,Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Sarah R Moore
- BC Children's Hospital Research Institute Vancouver, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.,Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Nicole Gladish
- BC Children's Hospital Research Institute Vancouver, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.,Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Gerald F Giesbrecht
- Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada.,Owerko Centre at the Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Deborah Dewey
- Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada.,Owerko Centre at the Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Community Health Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Chaini Konwar
- BC Children's Hospital Research Institute Vancouver, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.,Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Julia L MacIssac
- BC Children's Hospital Research Institute Vancouver, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.,Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Michael S Kobor
- BC Children's Hospital Research Institute Vancouver, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.,Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada.,Program in Child and Brain Development, CIFAR, Toronto, Ontario, Canada
| | - Nicole L Letourneau
- Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada.,Owerko Centre at the Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Psychiatry, University of Calgary, Calgary, Alberta, Canada.,Faculty of Nursing, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
34
|
Montano L, Donato F, Bianco PM, Lettieri G, Guglielmino A, Motta O, Bonapace IM, Piscopo M. Semen quality as a potential susceptibility indicator to SARS-CoV-2 insults in polluted areas. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:37031-37040. [PMID: 34053043 PMCID: PMC8164491 DOI: 10.1007/s11356-021-14579-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/21/2021] [Indexed: 05/11/2023]
Abstract
The epidemic of the new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has impacted worldwide with its infectious spread and mortality rate. Thousands of articles have been published to tackle this crisis and many of these have indicated that high air pollution levels may be a contributing factor to high outbreak rates of COVID-19. Atmospheric pollutants, indeed, producing oxidative stress, inflammation, immuno-unbalance, and systemic coagulation, may be a possible significant co-factor of further damage, rendering the body prone to infections by a variety of pathogens, including viruses. Spermatozoa are extremely responsive to prooxidative effects produced by environmental pollutants and may serve as a powerful alert that signals the extent that environmental pressure, in a specific area, is doing damage to humans. In order to improve our current knowledge on this topic, this review article summarizes the relevant current observations emphasizing the weight that environmental pollution has on the sensitivity of a given population to several diseases and how semen quality, may be a potential indicator of sensitivity for virus insults (including SARS-CoV-2) in high polluted areas, and help to predict the risk for harmful effects of the SARS-CoV-2 epidemic. In addition, this review focused on the potential routes of virus transmission that may represent a population health risk and also identified the areas of critical importance that require urgent research to assess and manage the COVID-19 outbreak.
Collapse
Affiliation(s)
- Luigi Montano
- Andrology Unit, EcoFoodFertility Project, Coordination Unit, Local Health Authority (ASL) Salerno, Oliveto Citra, Via M. Clemente, 84020 Oliveto Citra, SA Italy
| | - Francesco Donato
- Department of Medical and Surgical Specialties Radiological Sciences and Public Health, Unit of Hygiene, Epidemiology, and Public Health, University of Brescia, Brescia, Italy
| | - Pietro Massimiliano Bianco
- ISPRA, Italian Institute for Environmental Protection and Research, Via Vitaliano Brancati 60, 00144 Rome, Italy
| | - Gennaro Lettieri
- Department of Biology, University of Naples Federico II, Via Cinthia 21, 80126 Napoli, Italy
| | | | - Oriana Motta
- Department of Medicine, Surgery and Dentistry, University of Salerno, Fisciano, Italy
| | - Ian Marc Bonapace
- Department of Biotechnology and Life Sciences, University of Insubria (VA), Varese, Italy
| | - Marina Piscopo
- Department of Biology, University of Naples Federico II, Via Cinthia 21, 80126 Napoli, Italy
| |
Collapse
|
35
|
Soubry A, Murphy SK, Vansant G, He Y, Price TM, Hoyo C. Opposing Epigenetic Signatures in Human Sperm by Intake of Fast Food Versus Healthy Food. Front Endocrinol (Lausanne) 2021; 12:625204. [PMID: 33967953 PMCID: PMC8103543 DOI: 10.3389/fendo.2021.625204] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/15/2021] [Indexed: 01/01/2023] Open
Abstract
Animal experiments have demonstrated that diets high in fats create a harmful environment for developing sperm cells, contributing to impaired reproductive health and induced risk for chronic diseases in the next generation. Changes at the level of the epigenome have been suggested to underlie these observations. Human data are limited to verify this hypothesis. While we earlier demonstrated a link between male obesity and DNA methylation changes at imprinted genes in mature sperm cells and newborns, it is currently unknown if -or how- a paternal eating pattern (related to obesity) is related to indices for epigenetic inheritance. We here aim to examine a yet unexplored link between consumption of healthy (rich in vitamins and fibers) or unhealthy ("fast") foods and methylation at imprint regulatory regions in DNA of sperm. We obtained semen and data from 67 men, as part of a North Carolina-based study: The Influence of the Environment on Gametic Epigenetic Reprogramming (TIEGER) study. Dietary data included intake of fruits/nuts, vegetables/soups, whole grain bread, meat, seafood/fish, and fatty or processed food items. Multiple regression models were used to explore the association between dietary habits and clinical sperm parameters as well as DNA methylation levels, quantified using bisulfite pyrosequencing at 12 differentially methylated regions (DMRs) of the following imprinted genes: GRB10, IGF2, H19, MEG3, NDN, NNAT, PEG1/MEST, PEG3, PLAGL1, SNRPN, and SGCE/PEG10. After adjusting for age, obesity status and recruitment method, we found that Total Motile Count (TMC) was significantly higher if men consumed fruits/nuts (β=+6.9, SE=1.9, p=0.0005) and vegetables (β=+5.4, SE=1.9, p=0.006), whereas consumption of fries was associated with lower TMC (β=-20.2, SE=8.7, p=0.024). Semen volume was also higher if vegetables or fruits/nuts were frequently consumed (β=+0.06, SE=0.03, p=0.03). Similarly, our sperm epigenetic analyses showed opposing associations for healthy versus fast food items. Frequent consumption of fries was related to a higher chance of sperm being methylated at the MEG3-IG CpG4 site (OR=1.073, 95%CI: 1.035-1.112), and high consumption of vegetables was associated with a lower risk of DNA methylation at the NNAT CpG3 site (OR=0.941, 95%CI: 0.914-0.968). These results remained significant after adjusting for multiple testing. We conclude that dietary habits are linked to sperm epigenetic outcomes. If carried into the next generation paternal unhealthy dietary patterns may result in adverse metabolic conditions and increased risk for chronic diseases in offspring.
Collapse
Affiliation(s)
- Adelheid Soubry
- Epidemiology Research Center, Department of Public Health and Primary Care, Faculty of Medicine, KU Leuven—University, Leuven, Belgium
- *Correspondence: Adelheid Soubry,
| | - Susan K. Murphy
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, Duke University Medical Center, Durham, NC, United States
- Duke University School of Medicine, Duke Cancer Institute, Durham, NC, United States
| | - Greet Vansant
- Epidemiology Research Center, Department of Public Health and Primary Care, Faculty of Medicine, KU Leuven—University, Leuven, Belgium
| | - Yang He
- Epidemiology Research Center, Department of Public Health and Primary Care, Faculty of Medicine, KU Leuven—University, Leuven, Belgium
| | - Thomas M. Price
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Duke University Medical Center, Durham, NC, United States
| | - Cathrine Hoyo
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
36
|
Larroya A, Pantoja J, Codoñer-Franch P, Cenit MC. Towards Tailored Gut Microbiome-Based and Dietary Interventions for Promoting the Development and Maintenance of a Healthy Brain. Front Pediatr 2021; 9:705859. [PMID: 34277527 PMCID: PMC8280474 DOI: 10.3389/fped.2021.705859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 05/31/2021] [Indexed: 01/07/2023] Open
Abstract
Mental health is determined by a complex interplay between the Neurological Exposome and the Human Genome. Multiple genetic and non-genetic (exposome) factors interact early in life, modulating the risk of developing the most common complex neurodevelopmental disorders (NDDs), with potential long-term consequences on health. To date, the understating of the precise etiology underpinning these neurological alterations, and their clinical management pose a challenge. The crucial role played by diet and gut microbiota in brain development and functioning would indicate that modulating the gut-brain axis may help protect against the onset and progression of mental-health disorders. Some nutritional deficiencies and gut microbiota alterations have been linked to NDDs, suggesting their potential pathogenic implications. In addition, certain dietary interventions have emerged as promising alternatives or adjuvant strategies for improving the management of particular NDDs, at least in particular subsets of subjects. The gut microbiota can be a key to mediating the effects of other exposome factors such as diet on mental health, and ongoing research in Psychiatry and Neuropediatrics is developing Precision Nutrition Models to classify subjects according to a diet response prediction based on specific individual features, including microbiome signatures. Here, we review current scientific evidence for the impact of early life environmental factors, including diet, on gut microbiota and neuro-development, emphasizing the potential long-term consequences on health; and also summarize the state of the art regarding the mechanisms underlying diet and gut microbiota influence on the brain-gut axis. Furthermore, we describe the evidence supporting the key role played by gut microbiota, diet and nutrition in neurodevelopment, as well as the effectiveness of certain dietary and microbiome-based interventions aimed at preventing or treating NDDs. Finally, we emphasize the need for further research to gain greater insight into the complex interplay between diet, gut microbiome and brain development. Such knowledge would help towards achieving tailored integrative treatments, including personalized nutrition.
Collapse
Affiliation(s)
- Ana Larroya
- Microbial Ecology, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Valencia, Spain
| | - Jorge Pantoja
- Department of Pediatrics, University Hospital De la Plana, Vila-Real, Castellón, Spain.,Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Pilar Codoñer-Franch
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain.,Department of Pediatrics, Dr. Peset University Hospital, Valencia, Spain.,Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, Valencia, Spain
| | - María Carmen Cenit
- Microbial Ecology, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Valencia, Spain.,Department of Pediatrics, University Hospital De la Plana, Vila-Real, Castellón, Spain.,Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| |
Collapse
|
37
|
Meireles ALF, Segabinazi E, Spindler C, Gasperini NF, Souza Dos Santos A, Pochmann D, Elsner VR, Marcuzzo S. Maternal resistance exercise promotes changes in neuroplastic and epigenetic marks of offspring's hippocampus during adult life. Physiol Behav 2020; 230:113306. [PMID: 33359430 DOI: 10.1016/j.physbeh.2020.113306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/19/2020] [Accepted: 12/22/2020] [Indexed: 12/01/2022]
Abstract
Studies indicate that gestational exercise practice positively impacts the offspring's cognition. Nevertheless, the influence of maternal resistance exercise, different periods of exercise practice, and the inter- and transgenerational effects involved in these responses are not known. This study sought to report the influence of the maternal practice of resistance exercise on offspring's cognitive function, exploring behavior, and neuroplastic and epigenetic marks in the hippocampus. Female Wistar rats were divided into four groups: sedentary (SS), exercised during pregnancy (SE), exercised before pregnancy (ES), and exercised before and during pregnancy (EE). Exercised rats were submitted to a resistance exercise protocol (vertical ladder climbing). Between postnatal days (P)81 and P85, male offspring were submitted to the Morris water maze test. At P85, the following analyses were performed in offspring's hippocampus: expression of IGF-1 and BrdU+ cells, global DNA methylation, H3/H4 acetylation, and HDAC2 amount. Only the offspring of SE mothers presented subtly better performance on learning and memory tasks, associated with lower HDAC2 amount. Offspring from ES mothers presented an overexpression of hippocampal neuroplastic marks (BrdU+ and IGF-1), as well as a decrease of DNA methylation and an increase in H4 acetylation. Offspring from EE mothers (continuously exercised) did not present modifications in plasticity or epigenetic parameters. This is the first study to observe the influence of maternal resistance exercise on offspring's brains. The findings provide evidence that offspring's hippocampus plasticity is influenced by exercise performed in isolated periods (pre- or gestationally) more than that performed continually.
Collapse
Affiliation(s)
- André Luís Ferreira Meireles
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Histofisiologia Comparada, Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Ethiane Segabinazi
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Histofisiologia Comparada, Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Christiano Spindler
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Histofisiologia Comparada, Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Natália Felix Gasperini
- Laboratório de Histofisiologia Comparada, Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Adriana Souza Dos Santos
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Histofisiologia Comparada, Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Daniela Pochmann
- Programa de Pós-Graduação em Biociências e Reabilitação, Centro Universitário Metodista-IPA, Porto Alegre, RS, Brazil
| | - Viviane Rostirola Elsner
- Programa de Pós-Graduação em Biociências e Reabilitação, Centro Universitário Metodista-IPA, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Simone Marcuzzo
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Histofisiologia Comparada, Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
38
|
Rutkowska J, Lagisz M, Bonduriansky R, Nakagawa S. Mapping the past, present and future research landscape of paternal effects. BMC Biol 2020; 18:183. [PMID: 33246472 PMCID: PMC7694421 DOI: 10.1186/s12915-020-00892-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/08/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Although in all sexually reproducing organisms an individual has a mother and a father, non-genetic inheritance has been predominantly studied in mothers. Paternal effects have been far less frequently studied, until recently. In the last 5 years, research on environmentally induced paternal effects has grown rapidly in the number of publications and diversity of topics. Here, we provide an overview of this field using synthesis of evidence (systematic map) and influence (bibliometric analyses). RESULTS We find that motivations for studies into paternal effects are diverse. For example, from the ecological and evolutionary perspective, paternal effects are of interest as facilitators of response to environmental change and mediators of extended heredity. Medical researchers track how paternal pre-fertilization exposures to factors, such as diet or trauma, influence offspring health. Toxicologists look at the effects of toxins. We compare how these three research guilds design experiments in relation to objects of their studies: fathers, mothers and offspring. We highlight examples of research gaps, which, in turn, lead to future avenues of research. CONCLUSIONS The literature on paternal effects is large and disparate. Our study helps in fostering connections between areas of knowledge that develop in parallel, but which could benefit from the lateral transfer of concepts and methods.
Collapse
Affiliation(s)
- Joanna Rutkowska
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, BEES, The University of New South Wales, Sydney, Australia
| | - Malgorzata Lagisz
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, BEES, The University of New South Wales, Sydney, Australia
| | - Russell Bonduriansky
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, BEES, The University of New South Wales, Sydney, Australia
| | - Shinichi Nakagawa
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, BEES, The University of New South Wales, Sydney, Australia
| |
Collapse
|
39
|
Murray R. Starting strong: Dietary, behavioral, and environmental factors that promote "strength" from conception to age 2 years. Appl Physiol Nutr Metab 2020; 45:1066-1070. [PMID: 32442385 DOI: 10.1139/apnm-2020-0073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Beginning with conception and continuing through childhood and adolescence, the word "strength" connotes the totality of optimal early bone and tissue growth; neural wiring of the brain; and acquisition of fine motor, gross motor, language, and socioemotional skills. The robustness of each of these attributes depend on 3 critical epigenetic (external) factors: the quality of nutrition; positive adult nurturing; and experiences acquired within a stimulating, safe environment that affords free exploration. This review highlights the relationship between the epigenetic factors in the period of conception to age 2 years and a child's future health, cognitive capacity, and social aptitude, which collectively comprise their "strength". This paper was presented as part of the 2018 Strength Summit conference entitled, The Role of Strength in Optimal Health and Well-being. Novelty Strength in infants signifies the totality of optimal early growth and neural wiring of the brain. Strength at this life stage also includes the acquisition of motor, language, and socioemotional skills. Three epigenetic factors are critical during birth to 24 months: nutrition, nurturing, and free exploration.
Collapse
Affiliation(s)
- Robert Murray
- The Ohio State University College of Medicine, Columbus, OH 43221, USA.,The Ohio State University College of Medicine, Columbus, OH 43221, USA
| |
Collapse
|
40
|
Van Cauwenbergh O, Di Serafino A, Tytgat J, Soubry A. Transgenerational epigenetic effects from male exposure to endocrine-disrupting compounds: a systematic review on research in mammals. Clin Epigenetics 2020; 12:65. [PMID: 32398147 PMCID: PMC7218615 DOI: 10.1186/s13148-020-00845-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 04/08/2020] [Indexed: 12/13/2022] Open
Abstract
Assessing long-term health effects from a potentially harmful environment is challenging. Endocrine-disrupting compounds (EDCs) have become omnipresent in our environment. Individuals may or may not experience clinical health issues from being exposed to the increasing environmental pollution in daily life, but an issue of high concern is that also the non-exposed progeny may encounter consequences of these ancestral exposures. Progress in understanding epigenetic mechanisms opens new perspectives to estimate the risk of man-made EDCs. However, the field of epigenetic toxicology is new and its application in public health or in the understanding of disease etiology is almost non-existent, especially if it concerns future generations. In this review, we investigate the literature on transgenerational inheritance of diseases, published in the past 10 years. We question whether persistent epigenetic changes occur in the male germ line after exposure to synthesized EDCs. Our systematic search led to an inclusion of 43 articles, exploring the effects of commonly used synthetic EDCs, such as plasticizers (phthalates and bisphenol A), pesticides (dichlorodiphenyltrichloroethane, atrazine, vinclozin, methoxychlor), dioxins, and polycyclic aromatic hydrocarbons (PAHs, such as benzo(a)pyrene). Most studies found transgenerational epigenetic effects, often linked to puberty- or adult-onset diseases, such as testicular or prostate abnormalities, metabolic disorders, behavioral anomalies, and tumor development. The affected epigenetic mechanisms included changes in DNA methylation patterns, transcriptome, and expression of DNA methyltransferases. Studies involved experiments in animal models and none were based on human data. In the future, human studies are needed to confirm animal findings. If not transgenerational, at least intergenerational human studies and studies on EDC-induced epigenetic effects on germ cells could help to understand early processes of inheritance. Next, toxicity tests of new chemicals need a more comprehensive approach before they are introduced on the market. We further point to the relevance of epigenetic toxicity tests in regard to public health of the current population but also of future generations. Finally, this review sheds a light on how the interplay of genetics and epigenetics may explain the current knowledge gap on transgenerational inheritance.
Collapse
Affiliation(s)
- Olivia Van Cauwenbergh
- Epidemiology Research Center, Department of Public Health and Primary Care, Faculty of Medicine, KU Leuven - University of Leuven, Leuven, Belgium
| | - Alessandra Di Serafino
- Epidemiology Research Center, Department of Public Health and Primary Care, Faculty of Medicine, KU Leuven - University of Leuven, Leuven, Belgium
- Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, University "G.d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Jan Tytgat
- Toxicology and Pharmacology, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven - University of Leuven, Leuven, Belgium
| | - Adelheid Soubry
- Epidemiology Research Center, Department of Public Health and Primary Care, Faculty of Medicine, KU Leuven - University of Leuven, Leuven, Belgium.
| |
Collapse
|
41
|
Guarner-Lans V, Ramírez-Higuera A, Rubio-Ruiz ME, Castrejón-Téllez V, Soto ME, Pérez-Torres I. Early Programming of Adult Systemic Essential Hypertension. Int J Mol Sci 2020; 21:E1203. [PMID: 32054074 PMCID: PMC7072742 DOI: 10.3390/ijms21041203] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/27/2020] [Accepted: 02/10/2020] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular diseases are being included in the study of developmental origins of health and disease (DOHaD) and essential systemic hypertension has also been added to this field. Epigenetic modifications are one of the main mechanisms leading to early programming of disease. Different environmental factors occurring during critical windows in the early stages of life may leave epigenetic cues, which may be involved in the programming of hypertension when individuals reach adulthood. Such environmental factors include pre-term birth, low weight at birth, altered programming of different organs such as the blood vessels and the kidney, and living in disadvantageous conditions in the programming of hypertension. Mechanisms behind these factors that impact on the programming include undernutrition, oxidative stress, inflammation, emotional stress, and changes in the microbiota. These factors and their underlying causes acting at the vascular level will be discussed in this paper. We also explore the establishment of epigenetic cues that may lead to hypertension at the vascular level such as DNA methylation, histone modifications (methylation and acetylation), and the role of microRNAs in the endothelial cells and blood vessel smooth muscle which participate in hypertension. Since epigenetic changes are reversible, the knowledge of this type of markers could be useful in the field of prevention, diagnosis or epigenetic drugs as a therapeutic approach to hypertension.
Collapse
Affiliation(s)
- Verónica Guarner-Lans
- Department of Physiology, Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City 14080, Mexico; (M.E.R.-R.); (V.C.-T.)
| | - Abril Ramírez-Higuera
- Nutrition Biochemistry Laboratory, Research and Food Development Unit. Veracruz Technological Institute, National Technological of Mexico, Veracruz 91897, Mexico;
| | - María Esther Rubio-Ruiz
- Department of Physiology, Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City 14080, Mexico; (M.E.R.-R.); (V.C.-T.)
| | - Vicente Castrejón-Téllez
- Department of Physiology, Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City 14080, Mexico; (M.E.R.-R.); (V.C.-T.)
| | - María Elena Soto
- Department of Immunology, Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico 14080, Mexico;
| | - Israel Pérez-Torres
- Department of Cardiovascular Biomedicine, Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico 14080, Mexico;
| |
Collapse
|
42
|
Bodden C, Hannan AJ, Reichelt AC. Diet-Induced Modification of the Sperm Epigenome Programs Metabolism and Behavior. Trends Endocrinol Metab 2020; 31:131-149. [PMID: 31744784 DOI: 10.1016/j.tem.2019.10.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 12/11/2022]
Abstract
Globally, obesity has reached epidemic proportions. The rapidly increasing numbers of overweight people can be traced back to overconsumption of energy-dense, poor-quality foods as well as physical inactivity. This development has far-reaching and costly implications. Not only is obesity associated with serious physiological and psychological complications, but mounting evidence also indicates a ripple effect through generations via epigenetic changes. Parental obesity could induce intergenerational and transgenerational changes in metabolic and brain function of the offspring. Most research has focused on maternal epigenetic and gestational effects; however, paternal contributions are likely to be substantial. We focus on the latest advances in understanding the mechanisms of epigenetic inheritance of obesity-evoked metabolic and neurobiological changes through the paternal germline that predict wide-ranging consequences for the following generation(s).
Collapse
Affiliation(s)
- Carina Bodden
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, 3010 VIC, Australia.
| | - Anthony J Hannan
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, 3010 VIC, Australia; Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, 3010 VIC, Australia.
| | - Amy C Reichelt
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, 3010 VIC, Australia; BrainsCAN, Western Interdisciplinary Research Building, Western University, London, ON, Canada; Robarts Research Institute, Western University, London, N6A 3K7 ON, Canada
| |
Collapse
|
43
|
Chen L, Wang P, Bahal R, Manautou JE, Zhong XB. Ontogenic mRNA expression of RNA modification writers, erasers, and readers in mouse liver. PLoS One 2019; 14:e0227102. [PMID: 31891622 PMCID: PMC6938302 DOI: 10.1371/journal.pone.0227102] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/12/2019] [Indexed: 01/09/2023] Open
Abstract
RNA modifications are recently emerged epigenetic modifications. These diverse RNA modifications have been shown to regulate multiple biological processes, including development. RNA modifications are dynamically controlled by the “writers, erasers, and readers”, where RNA modifying proteins are able to add, remove, and recognize specific chemical modification groups on RNAs. However, little is known about the ontogenic expression of these RNA modifying proteins in various organs, such as liver. In the present study, the hepatic mRNA expression of selected RNA modifying proteins involve in m6A, m1A, m5C, hm5C, m7G, and Ψ modifications was analyzed using the RNA-seq technique. Liver samples were collected from male C57BL/6 mice at several ages from prenatal through neonatal, infant, child to young adult. Results showed that most of the RNA modifying proteins were highly expressed in prenatal mouse liver with a dramatic drop at birth. After birth, most of the RNA modifying proteins showed a downregulation trend during liver maturation. Moreover, the RNA modifying proteins that belong to the same enzyme family were expressed at different abundances at the same ages in mouse liver. In conclusion, this study unveils that the mRNA expression of RNA modifying proteins follows specific ontogenic expression patterns in mice liver during maturation. These data indicated that the changes in expression of RNA modifying proteins might have a potential role to regulate gene expression in liver through alteration of RNA modification status.
Collapse
Affiliation(s)
- Liming Chen
- Department of Pharmaceutic Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut, United States of America
| | - Pei Wang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Raman Bahal
- Department of Pharmaceutic Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut, United States of America
| | - José E. Manautou
- Department of Pharmaceutic Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut, United States of America
| | - Xiao-bo Zhong
- Department of Pharmaceutic Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
44
|
Li W, Zheng X, Ren L, Fu W, Liu J, Xv J, Liu S, Wang J, Du G. Epigenetic hypomethylation and upregulation of GD3s in triple negative breast cancer. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:723. [PMID: 32042739 DOI: 10.21037/atm.2019.12.23] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Breast cancer remains a major health problem in the world. Triple-negative breast cancer (TNBC) is an aggressive subtype with very poor prognosis. Up to now, the mechanism behind TNBC's activity is still unclear and no candidate drug target has been identified. Thus, it is of critical importance to elucidate the pathways in TNBC and identify the relevant biomarkers. Recent studies showed that ganglioside D3 synthase (GD3s) played a very important role in development of cancers. However, the physiological functions and associated pathways of GD3s in TNBC are still unclear. Methods In silico analysis of the expression of GD3s in TNBC was conducted using The Cancer Genome Atlas (TCGA) and Oncomine databases. The proliferation of breast cancer cells was measured by MTT assay, colony formation by the soft agar method, and migration and invasion using Boyden chamber inserts. The methylation level of the gene encoding GD3s, ST8SIA1, in specimens was assessed by qMS-PCR and in silico using the UCSC gene browser. Protein expression was examined via immunohistochemistry (IHC), qRT-PCR and Western immunoblotting. Results In silico analysis showed a higher GD3s expression in ER- than ER+ breast cancers and GD3s was also highly expressed in TNBC compared to other types of breast cancers. The elevated GD3s expression in TNBC cells and tissues was associated with hypomethylation of the ST8SIA1 gene. Overexpression of GD3s in human breast cancer cells increased their proliferation, migration, invasion and colony formation ability. GD3s expression in breast cancers was closely associated with relapse-free survival (RFS) and overall survival (OS). Conclusions In summary, these results suggest that GD3s may be a potential biomarker and drug target in treatment of TNBC.
Collapse
Affiliation(s)
- Wan Li
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China.,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Xiangjin Zheng
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China.,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Liwen Ren
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China.,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Weiqi Fu
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China.,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Jinyi Liu
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China.,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Jun Xv
- Department of Endocrinology, Shanxi DAYI Hospital, Shanxi Medical University, Taiyuan 030002, China
| | - Shiwei Liu
- Department of Endocrinology, Shanxi DAYI Hospital, Shanxi Medical University, Taiyuan 030002, China
| | - Jinhua Wang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China.,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China.,Department of Translational Molecular Medicine, John Wayne Cancer Institute (JWCI) at Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Guanhua Du
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China.,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
45
|
Franzago M, La Rovere M, Guanciali Franchi P, Vitacolonna E, Stuppia L. Epigenetics and human reproduction: the primary prevention of the noncommunicable diseases. Epigenomics 2019; 11:1441-1460. [PMID: 31596147 DOI: 10.2217/epi-2019-0163] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Epigenetic regulation of gene expression plays a key role in affecting human health and diseases with particular regard to human reproduction. The major concern in this field is represented by the epigenetic modifications in the embryo and the increased risk of long-life disorders induced by the use of assisted reproduction techniques, able to affect the epigenetic assessment in the first steps of embryo development. In this review, we analyze the correlation between epigenetic modifications and human reproduction, suggesting that the reversibility of the epigenetic processes could represent a novel resource for the treatment of the couple's infertility and that parental lifestyle in periconceptional period could be considered as an important issue of primary prevention.
Collapse
Affiliation(s)
- Marica Franzago
- Department of Medicine & Aging, School of Medicine & Health Sciences, 'G. d'Annunzio' University, Chieti-Pescara, Chieti, Italy.,Center for Aging Studies & Translational Medicine (CESI-MET), 'G. d'Annunzio' University of Chieti-Pescara, Chieti, Italy
| | - Marina La Rovere
- Department of Psychological, Health & Territorial Sciences, School of Medicine & Health Sciences, 'G. d'Annunzio' University of Chieti-Pescara, Chieti, Italy
| | - Paolo Guanciali Franchi
- Department of Medical, Oral & Biotechnological Sciences, School of Medicine & Health Sciences, 'G. d'Annunzio' University of Chieti-Pescara, Chieti, Italy
| | - Ester Vitacolonna
- Department of Medicine & Aging, School of Medicine & Health Sciences, 'G. d'Annunzio' University, Chieti-Pescara, Chieti, Italy
| | - Liborio Stuppia
- Center for Aging Studies & Translational Medicine (CESI-MET), 'G. d'Annunzio' University of Chieti-Pescara, Chieti, Italy.,Department of Psychological, Health & Territorial Sciences, School of Medicine & Health Sciences, 'G. d'Annunzio' University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
46
|
Viluksela M, Pohjanvirta R. Multigenerational and Transgenerational Effects of Dioxins. Int J Mol Sci 2019; 20:E2947. [PMID: 31212893 PMCID: PMC6627869 DOI: 10.3390/ijms20122947] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 12/12/2022] Open
Abstract
Dioxins are ubiquitous and persistent environmental contaminants whose background levels are still reason for concern. There is mounting evidence from both epidemiological and experimental studies that paternal exposure to the most potent congener of dioxins, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), can lower the male/female ratio of offspring. Moreover, in laboratory rodents and zebrafish, TCDD exposure of parent animals has been reported to result in reduced reproductive performance along with other adverse effects in subsequent generations, foremost through the paternal but also via the maternal germline. These impacts have been accompanied by epigenetic alterations in placenta and/or sperm cells, including changes in methylation patterns of imprinted genes. Here, we review recent key studies in this field with an attempt to provide an up-to-date picture of the present state of knowledge to the reader. These studies provide biological plausibility for the potential of dioxin exposure at a critical time-window to induce epigenetic alterations across multiple generations and the significance of aryl hydrocarbon receptor (AHR) in mediating these effects. Currently available data do not allow to accurately estimate the human health implications of these findings, although epidemiological evidence on lowered male/female ratio suggests that this effect may take place at realistic human exposure levels.
Collapse
Affiliation(s)
- Matti Viluksela
- School of Pharmacy and Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
- Environmental Health Unit, National Institute for Health and Welfare, P.O. Box 95, FI-70701 Kuopio, Finland.
| | - Raimo Pohjanvirta
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, P.O. Box 66, FI-00014 Helsinki, Finland.
| |
Collapse
|
47
|
Bedi Y, Golding MC. Context is King — Questioning the causal role of DNA methylation in environmentally induced changes in gene expression. CURRENT OPINION IN TOXICOLOGY 2019. [DOI: 10.1016/j.cotox.2019.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
48
|
Time to cut the cord: recognizing and addressing the imbalance of DOHaD research towards the study of maternal pregnancy exposures. J Dev Orig Health Dis 2019; 10:509-512. [PMID: 30898185 DOI: 10.1017/s2040174419000072] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
49
|
Sargis RM, Heindel JJ, Padmanabhan V. Interventions to Address Environmental Metabolism-Disrupting Chemicals: Changing the Narrative to Empower Action to Restore Metabolic Health. Front Endocrinol (Lausanne) 2019; 10:33. [PMID: 30778334 PMCID: PMC6369180 DOI: 10.3389/fendo.2019.00033] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 01/16/2019] [Indexed: 12/17/2022] Open
Abstract
Metabolic disease rates have increased dramatically over the last four decades. Classic understanding of metabolic physiology has attributed these global trends to decreased physical activity and caloric excess; however, these traditional risk factors insufficiently explain the magnitude and rapidity of metabolic health deterioration. Recently, the novel contribution of environmental metabolism-disrupting chemicals (MDCs) to various metabolic diseases (including obesity, diabetes, and non-alcoholic fatty liver disease) is becoming recognized. As this burgeoning body of evidence has matured, various organic and inorganic pollutants of human and natural origin have emerged as metabolic disease risk factors based on population-level and experimental data. Recognition of these heretofore underappreciated metabolic stressors now mandates that efforts to mitigate the devastating consequences of metabolic disease include dedicated efforts to address environmental drivers of disease risk; however, there have not been adequate recommendations to reduce exposures or to mitigate the effects of exposures on disease outcomes. To address this knowledge gap and advance the clinical translation of MDC science, herein discussed are behaviors that increase exposures to MDCs, interventional studies to reduce those exposures, and small-scale clinical trials to reduce the body burden of MDCs. Also, we discuss evidence from cell-based and animal studies that provide insights into MDC mechanisms of action, the influence of modifiable dietary factors on MDC toxicity, and factors that modulate MDC transplacental carriage as well as their impact on metabolic homeostasis. A particular emphasis of this discussion is on critical developmental windows during which short-term MDC exposure can elicit long-term disruptions in metabolic health with potential inter- and transgenerational effects. While data gaps remain and further studies are needed, the current state of evidence regarding interventions to address MDC exposures illuminates approaches to address environmental drivers of metabolic disease risk. It is now incumbent on clinicians and public health agencies to incorporate this knowledge into comprehensive strategies to address the metabolic disease pandemic.
Collapse
Affiliation(s)
- Robert M. Sargis
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Jerrold J. Heindel
- Program on Endocrine Disruption Strategies, Commonweal, Bolinas, CA, United States
| | | |
Collapse
|
50
|
Melnik BC, Schmitz G. Exosomes of pasteurized milk: potential pathogens of Western diseases. J Transl Med 2019; 17:3. [PMID: 30602375 PMCID: PMC6317263 DOI: 10.1186/s12967-018-1760-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 12/21/2018] [Indexed: 12/16/2022] Open
Abstract
Milk consumption is a hallmark of western diet. According to common believes, milk consumption has beneficial effects for human health. Pasteurization of cow's milk protects thermolabile vitamins and other organic compounds including bioactive and bioavailable exosomes and extracellular vesicles in the range of 40-120 nm, which are pivotal mediators of cell communication via systemic transfer of specific micro-ribonucleic acids, mRNAs and regulatory proteins such as transforming growth factor-β. There is compelling evidence that human and bovine milk exosomes play a crucial role for adequate metabolic and immunological programming of the newborn infant at the beginning of extrauterine life. Milk exosomes assist in executing an anabolic, growth-promoting and immunological program confined to the postnatal period in all mammals. However, epidemiological and translational evidence presented in this review indicates that continuous exposure of humans to exosomes of pasteurized milk may confer a substantial risk for the development of chronic diseases of civilization including obesity, type 2 diabetes mellitus, osteoporosis, common cancers (prostate, breast, liver, B-cells) as well as Parkinson's disease. Exosomes of pasteurized milk may represent new pathogens that should not reach the human food chain.
Collapse
Affiliation(s)
- Bodo C. Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Am Finkenhügel 7A, 49076 Osnabrück, Germany
| | - Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, University of Regensburg, Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| |
Collapse
|