1
|
Geng S, Zhu L, Wang Y, Liu Q, Yu C, Shi S, Yu S. Co-Colorectal cancer stem cells employ the FADS1/DDA axis to evade NK cell-mediated immunosuppression after co-cultured with NK cells under hypoxia. Int Immunopharmacol 2024; 143:113535. [PMID: 39488917 DOI: 10.1016/j.intimp.2024.113535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/19/2024] [Accepted: 10/27/2024] [Indexed: 11/05/2024]
Abstract
Colorectal cancer (CRC) ranks as China's second most common cancer and fifth top cancer death cause. The study highlights the role of Natural Killer (NK) cells in targeting cancer stem cells (CSCs) that evade immune responses in CRC. Colorectal cancer stem cells (CCSCs) were stem from HT-29 cells and co-cultured with NK cells under normoxic or hypoxic conditions. The impact of this co-culture was evaluated using CCK8 assays for NK cell viability, ELISA for cytokine level changes, and flow cytometry for assessing NK cell apoptosis and activation. Comprehensive metabolomic and transcriptomic analyses were also performed to identify key genes and metabolites involved in the interaction between CCSCs and NK cells Co-culture of CCSCs with NK cells under hypoxia reduced NK cytotoxicity, increased NK apoptosis, and altered cytokine secretion by decreasing IFN-γ and TNF-α levels while increasing IL-6. Transcriptomic and metabolomic analysis identified 4 genes (FADS1, ALDH3A2, GCSH, MTCL1) and 3 metabolites (glyoxylic acid, spermine, DDA) as significant. Interfering with FADS1 counteracted the suppression of IFN-γ and TNF-α induced by CSC cells. Curiously, this inhibition caused by si-FADS1 could be neutralized by the addition of exogenous DDA. Co-culturing with NK cells notably increased spermine levels. Exogenous spermine resulted in a significant reduction in HT-29 cell death rates at 32 µM, 64 µM, and 128 µM, compared to NK cells without spermine. Our research explored CCSCs employed the FADS1/DDA axis to evade NK cell-mediated immunosuppression after co-cultured with NK cells under hypoxia.
Collapse
Affiliation(s)
- Shan Geng
- Central Laboratory of the People's Hospital of Dazu, The Affiliated Dazu Hospital of Chongqing Medical University, 402360 Chongqing, China
| | - Lei Zhu
- Department of General Surgery, The First People's Hospital of Kunming, 650034 Kunming, Yunnan Province, China
| | - Yanping Wang
- Central Laboratory of the People's Hospital of Dazu, The Affiliated Dazu Hospital of Chongqing Medical University, 402360 Chongqing, China
| | - Qiang Liu
- Department of General Surgery, The Affiliated Dazu Hospital of Chongqing Medical University, 402360 Chongqing, China
| | - Caiyu Yu
- Department of Hernia Surgery, Qujing No.1 Hospital, 655099 Qujing, Yunnan Province, China
| | - Shan Shi
- Office of Hospital, The Affiliated Dazu Hospital of Chongqing Medical University, 402360 Chongqing, China.
| | - Shaohong Yu
- Department of General Surgery, The Affiliated Dazu Hospital of Chongqing Medical University, 402360 Chongqing, China.
| |
Collapse
|
2
|
Tran T, Galdina V, Urquidi O, Reis Galvão D, Rieben R, Adachi TBM, Puga Yung GL, Seebach JD. Assessment of NK cytotoxicity and interactions with porcine endothelial cells by live-cell imaging in 2D static and 3D microfluidic systems. Sci Rep 2024; 14:24199. [PMID: 39406778 PMCID: PMC11480498 DOI: 10.1038/s41598-024-75217-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024] Open
Abstract
Natural Killer (NK) cells are pivotal in immune responses to viral infections, malignancies, autoimmune diseases, and transplantation. Assessment of NK cell adhesion, migration, and cytotoxicity is fundamental for in vitro studies. We propose a novel live-cell tracking method that addresses these three major aspects of NK cell function using human NK cells and primary porcine aortic endothelial cells (PAECs) in two-dimensional (2D) static assays and an in-house cylindrical 3D microfluidic system. The results showed a significant increase of NK cytotoxicity against pTNF-activated PAECs, with apoptotic cell death observed in the majority of dead cells, while no difference was observed in the conventional Delfia assay. Computed analysis of NK cell trajectories revealed distinct migratory behaviors, including trajectory length, diameter, average speed, and arrest coefficient. In 3D microfluidic experiments, NK cell attachment to pTNF-activated PAECs substantially increased, accompanied by more dead PAECs compared to control conditions. NK cell trajectories showed versatile migration in various directions and interactions with PAECs. This study uniquely demonstrates NK attachment and killing in a 3D system that mimics blood vessel conditions. Our microscope method offers sensitive single-cell level results, addressing diverse aspects of NK functions. It is adaptable for studying other immune and target cells, providing insights into various biological questions.
Collapse
Affiliation(s)
- Thao Tran
- Department of Medicine, Laboratory of Translational Immunology, Division of Immunology and Allergy, Faculty of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Viktoriia Galdina
- Department of Medicine, Laboratory of Translational Immunology, Division of Immunology and Allergy, Faculty of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Oscar Urquidi
- Department of Physical Chemistry, Faculty of Science, University of Geneva, Geneva, Switzerland
| | - Daniela Reis Galvão
- Department of Medicine, Laboratory of Translational Immunology, Division of Immunology and Allergy, Faculty of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Robert Rieben
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Takuji B M Adachi
- Department of Physical Chemistry, Faculty of Science, University of Geneva, Geneva, Switzerland
| | - Gisella L Puga Yung
- Department of Medicine, Laboratory of Translational Immunology, Division of Immunology and Allergy, Faculty of Medicine, Geneva University Hospitals, Geneva, Switzerland.
| | - Jörg D Seebach
- Department of Medicine, Laboratory of Translational Immunology, Division of Immunology and Allergy, Faculty of Medicine, Geneva University Hospitals, Geneva, Switzerland.
| |
Collapse
|
3
|
Amarilla-Irusta A, Zenarruzabeitia O, Sevilla A, Sandá V, Lopez-Pardo A, Astarloa-Pando G, Pérez-Garay R, Pérez-Fernández S, Meijide S, Imaz-Ayo N, Arana-Arri E, Amo L, Borrego F. CD151 identifies an NK cell subset that is enriched in COVID-19 patients and correlates with disease severity. J Infect 2024; 89:106304. [PMID: 39374860 DOI: 10.1016/j.jinf.2024.106304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/27/2024] [Accepted: 09/29/2024] [Indexed: 10/09/2024]
Abstract
Severe coronavirus disease 2019 (COVID-19) often leads to acute respiratory distress syndrome and multi-organ dysfunction, driven by a dysregulated immune response, including a cytokine storm with elevated proinflammatory cytokine levels. Natural killer (NK) cells are part of the innate immune system with a fundamental role in the defense against viral infections. However, during COVID-19 acute infection, they exhibit an altered phenotype and impaired functionality contributing to the immunopathogenesis of the disease. In this work, we have studied a cohort of patients with COVID-19 (ranging from mild to severe) by analyzing IL-15, TGF-β, PlGF and GDF-15 plasma levels and performing multiparametric flow cytometry studies. Our results revealed that severe COVID-19 patients exhibited high levels of IL-15, PlGF and GDF-15, along with an enrichment of an NK cell subset expressing the CD151 tetraspanin, which correlated with IL-15 plasma levels and disease severity. In patients, these CD151+ NK cells displayed a more activated phenotype characterized by an increased expression of HLA-DR, CD38 and granzyme B, a distinct receptor repertoire, with lower levels of CD160 and CD31 and higher levels of CD55 and, remarkably, a higher expression of tissue-resident markers CD103 and the NK cell decidual marker CD9. Last of all, in individuals with severe disease, we identified an expansion of a CD151brightCD9+ NK cell subset, suggesting that these cells play a specific role in COVID-19. Altogether, our findings suggest that CD151+ NK cells may have a relevant role in COVID-19 immunopathogenesis.
Collapse
Affiliation(s)
| | - Olatz Zenarruzabeitia
- Immunopathology Group, Biobizkaia Health Research Institute, Barakaldo, Spain; Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Arrate Sevilla
- Immunopathology Group, Biobizkaia Health Research Institute, Barakaldo, Spain
| | - Víctor Sandá
- Immunopathology Group, Biobizkaia Health Research Institute, Barakaldo, Spain
| | - Ainara Lopez-Pardo
- Immunopathology Group, Biobizkaia Health Research Institute, Barakaldo, Spain
| | | | - Raquel Pérez-Garay
- Immunopathology Group, Biobizkaia Health Research Institute, Barakaldo, Spain; Clinical Analysis Service, Cruces University Hospital, OSI Ezkerraldea-Enkarterri-Cruces, Barakaldo, Spain
| | - Silvia Pérez-Fernández
- Scientific Coordination Facility, Biobizkaia Health Research Institute, Barakaldo, Spain
| | - Susana Meijide
- Scientific Coordination Facility, Biobizkaia Health Research Institute, Barakaldo, Spain
| | - Natale Imaz-Ayo
- Scientific Coordination Facility, Biobizkaia Health Research Institute, Barakaldo, Spain
| | - Eunate Arana-Arri
- Scientific Coordination Facility, Biobizkaia Health Research Institute, Barakaldo, Spain
| | - Laura Amo
- Immunopathology Group, Biobizkaia Health Research Institute, Barakaldo, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Francisco Borrego
- Immunopathology Group, Biobizkaia Health Research Institute, Barakaldo, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
4
|
Hjorth M, Egan CL, Telles GD, Pal M, Gallego-Ortega D, Fuller OK, McLennan ED, Gillis RD, Oh TG, Muscat GEO, Tegegne S, Mah MS, Skhinas J, Estevez E, Adams TE, McKay MJ, Molloy M, Watt KI, Qian H, Gregorevic P, Cox TR, Hojman P, Midtgaard J, Christensen JF, Friedrichsen M, Iozzo RV, Sloan EK, Drew BG, Wojtaszewski JFP, Whitham M, Febbraio MA. Decorin, an exercise-induced secretory protein, is associated with improved prognosis in breast cancer patients but does not mediate anti-tumorigenic tissue crosstalk in mice. JOURNAL OF SPORT AND HEALTH SCIENCE 2024:100991. [PMID: 39341495 DOI: 10.1016/j.jshs.2024.100991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/19/2024] [Accepted: 08/08/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Regular exercise can reduce incidence and progression of breast cancer, but the mechanisms for such effects are not fully understood. METHODS We used a variety of rodent and human experimental model systems to determine whether exercise training can reduce tumor burden in breast cancer and to identify mechanism associated with any exercise training effects on tumor burden. RESULTS We show that voluntary wheel running slows tumor development in the mammary specific polyomavirus middle T antigen overexpression (MMTV-PyMT) mouse model of breast cancer but only when mice are not housed alone. We identify the proteoglycan decorin as a contraction-induced secretory factor that systemically increases in patients with breast cancer immediately following exercise. Moreover, high expression of decorin in tumors is associated with improved prognosis in patients, while treatment of breast cancer cells in vitro with decorin reduces cell proliferation. Notwithstanding, when we overexpressed decorin in murine muscle or injected recombinant decorin systemically into mouse models of breast cancer, elevated plasma decorin concentrations did not result in higher tumor decorin levels and tumor burden was not improved. CONCLUSION Exercise training is anti-tumorigenic in a mouse model of luminal breast cancer, but the effect is abrogated by social isolation. The proteoglycan decorin is an exercise-induced secretory protein, and tumor decorin levels are positively associated with improved prognosis in patients. The hypothesis that elevated plasma decorin is a mechanism by which exercise training improves breast cancer progression in humans is not, however, supported by our pre-clinical data since elevated circulating decorin did not increase tumor decorin levels in these models.
Collapse
Affiliation(s)
- Marit Hjorth
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo 0317, Norway; Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Casey L Egan
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia
| | - Guilherme D Telles
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia; Laboratory of Neuromuscular Adaptations to Strength Training, School of Physical Education and Sport, University of São Paulo (USP), São Paulo 05508-030, Brazil; Center of Study in Exercise and Oncology (CEEO), Campinas 13083-888, Brazil
| | - Martin Pal
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; School of Dentistry & Medical Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - David Gallego-Ortega
- School of Biomedical Engineering, University of Technology, Sydney, NSW 2678, Australia
| | - Oliver K Fuller
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia
| | - Emma D McLennan
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia
| | - Ryan D Gillis
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia
| | - Tae Gyu Oh
- College of Medicine, University of Oklahoma, Oklahoma City, OK 73117, USA; Institute of Molecular Biosciences, University of Queensland, St. Lucia, QLD 4072, Australia
| | - George E O Muscat
- Institute of Molecular Biosciences, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Surafel Tegegne
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia
| | - Michael Sm Mah
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia
| | - Joanna Skhinas
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Emma Estevez
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | | | - Matthew J McKay
- Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW 2109, Australia; School of Medical Sciences, University of Sydney, Sydney, NSW 2050, Australia
| | - Mark Molloy
- Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW 2109, Australia; School of Medical Sciences, University of Sydney, Sydney, NSW 2050, Australia
| | - Kevin I Watt
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC 3053, Australia; Department of Physiology, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Hongwei Qian
- Department of Physiology, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Paul Gregorevic
- Department of Physiology, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Thomas R Cox
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | | | | | | | - Martin Friedrichsen
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen 2100, Denmark
| | - Renato V Iozzo
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19144, USA
| | - Erica K Sloan
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia
| | - Brian G Drew
- Baker Heart and Diabetes Institute, Prahran, VIC 3004, Australia
| | - Jørgen F P Wojtaszewski
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen 2100, Denmark
| | - Martin Whitham
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston B15 2TT, UK.
| | - Mark A Febbraio
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia.
| |
Collapse
|
5
|
Guo X, Xiao T, Lin L, Gao Q, Lai B, Liu X, Zhong Z. Proliferation capability of natural killer cells upon cytokines stimulation correlated negatively with serum lactate dehydrogenase level in coronary artery disease patients. Front Immunol 2024; 15:1436747. [PMID: 39286242 PMCID: PMC11402710 DOI: 10.3389/fimmu.2024.1436747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/16/2024] [Indexed: 09/19/2024] Open
Abstract
Background Natural killer (NK) cells are proposed to participate in coronary artery disease (CAD) development. However, little is known about how CAD patients' NK cells respond to different stimulatory factors in terms of proliferation capability. Methods and results Twenty-nine CAD patients' peripheral blood NK cells were isolated and individually treated with IL-2, IL-12, IL-15, IL-18, IL-21, cortisone acetate, hydrocortisone, or ascorbic acid for 36 hours, followed by cell cycle analysis using flow cytometry. The ratio of S and G2/M phase cell number to total cell number was defined as a proliferation index (PrI) and used for proliferative capability indication. The results showed that these eight factors resulted in different life cycle changes in the 29 NK cell samples. Remarkably, 28 out of 29 NK cell samples showed an obvious increase in PrI upon ascorbic acid treatment. The serum lactate dehydrogenase (LDH) level of the 29 CAD patients was measured. The results showed a negative correlation between serum LDH level and the CAD patients' NK cell PrI upon stimulation of interleukins, but not the non-interleukin stimulators. Consistently, a retrospective analysis of 46 CAD patients and 32 healthy donors showed that the circulating NK cell number negatively correlated with the serum LDH level in CAD patients. Unexpectedly, addition of LDH to NK cells significantly enhanced the production of IFN-γ, IL-10 and TNF-α, suggesting a strong regulatory role on NK cell's function. Conclusion Ascorbic acid could promote the proliferation of the CAD patients' NK cells; LDH serum level may function as an indicator for NK cell proliferation capability and an immune-regulatory factor.
Collapse
Affiliation(s)
- Xuemin Guo
- Institute of Basic Medical Sciences, Meizhou People’s Hospital, Meizhou, China
- Guangdong Engineering Technological Research Center for Clinical Molecular Diagnosis and Antibody Drugs, Meizhou, China
| | - Ting Xiao
- Institute of Basic Medical Sciences, Meizhou People’s Hospital, Meizhou, China
- Guangdong Engineering Technological Research Center for Clinical Molecular Diagnosis and Antibody Drugs, Meizhou, China
| | - Li Lin
- Institute of Basic Medical Sciences, Meizhou People’s Hospital, Meizhou, China
- Guangdong Engineering Technological Research Center for Clinical Molecular Diagnosis and Antibody Drugs, Meizhou, China
| | - Qianqian Gao
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong, Hong Kong SAR, China
| | - Bifa Lai
- Institute of Basic Medical Sciences, Meizhou People’s Hospital, Meizhou, China
| | - Xianhui Liu
- Institute of Basic Medical Sciences, Meizhou People’s Hospital, Meizhou, China
| | - Zhixiong Zhong
- Institute of Basic Medical Sciences, Meizhou People’s Hospital, Meizhou, China
- Guangdong Engineering Technological Research Center for Clinical Molecular Diagnosis and Antibody Drugs, Meizhou, China
| |
Collapse
|
6
|
Huang M, Liu Y, Yan Q, Peng M, Ge J, Mo Y, Wang Y, Wang F, Zeng Z, Li Y, Fan C, Xiong W. NK cells as powerful therapeutic tool in cancer immunotherapy. Cell Oncol (Dordr) 2024; 47:733-757. [PMID: 38170381 DOI: 10.1007/s13402-023-00909-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Natural killer (NK) cells have gained considerable attention and hold great potential for their application in tumor immunotherapy. This is mainly due to their MHC-unrestricted and pan-specific recognition capabilities, as well as their ability to rapidly respond to and eliminate target cells. To artificially generate therapeutic NK cells, various materials can be utilized, such as peripheral blood mononuclear cells (PBMCs), umbilical cord blood (UCB), induced pluripotent stem cells (iPSCs), and NK cell lines. Exploiting the therapeutic potential of NK cells to treat tumors through in vivo and in vitro therapeutic modalities has yielded positive therapeutic results. CONCLUSION This review provides a comprehensive description of NK cell therapeutic approaches for tumors and discusses the current problems associated with these therapeutic approaches and the prospects of NK cell therapy for tumors.
Collapse
Affiliation(s)
- Mao Huang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yixuan Liu
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Qijia Yan
- Department of Pathology, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Miao Peng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Junshang Ge
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yongzhen Mo
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yumin Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Fuyan Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yong Li
- Department of Medicine, Comprehensive Cancer Center, Baylor College of Medicine, Alkek Building, RM N720, Houston, TX, USA
| | - Chunmei Fan
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, 410013, Changsha, Hunan Province, China.
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.
| |
Collapse
|
7
|
Geng S, Yu X, Yu S. Efficacy and safety of natural killer cells injection combined with XELOX chemotherapy in postoperative patients with stage III colorectal cancer in China: a prospective randomised controlled clinical trial study protocol. BMJ Open 2024; 14:e080377. [PMID: 38531576 DOI: 10.1136/bmjopen-2023-080377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is the second most frequently diagnosed cancer and the fifth leading cause of cancer-related death in China. However, resistance to multiple chemotherapeutics after surgery leads to failure of the main therapy to CRC. Natural killer (NK) cells are innate cytotoxic lymphocytes that exhibit strong cytotoxic activity against tumour cells. NK cell-based therapy, either alone or in combination with chemotherapy, has achieved favourable results and holds promise for addressing recurrence and metastasis in CRC patients after surgery. METHODS AND ANALYSIS This is a prospective, randomised controlled clinical trial to evaluate efficacy and safety of interleukin 2 activated NK cells injection combined with XELOX (capecitabine plus oxaliplatin)-based chemotherapy for postoperative CRC patients. Participants will be randomly divided into treatment group and control group, and every group includes 40 patients. The treatment group will also receive NK cells (5×109) with+XELOX-based chemotherapy, while the control group will receive only XELOX-based chemotherapy. This treatment will be repeated for eight cycles (6 months). The follow-up period lasts about 3 years, during which CEA, CA19-9, CA125, enhancement CT and colonoscopy will be conducted. The primary endpoints of this study are progression-free survival and overall survival, while the secondary endpoint is safety (number and severity of adverse events). Additionally, we aim to identify cancer stem cells in peripheral blood and predictive biomarkers (cytokines secreted by NK cells and activated markers of NK cells) that indicate patients who achieve an effective response. ETHICS AND DISSEMINATION The study has been approved by the Clinical Research Ethics Committee of our hospital (approval number 2023LLSC006) and the Chinese Clinical Trials. It will be conducted in accordance with the Declaration of Helsinki. Written informed consent will be obtained from all participants. The study findings will be submitted to peer-reviewed journals for publication. TRIAL REGISTRATION NUMBER Chinese Clinical Trials Registry (ChiCTR2300075861).
Collapse
Affiliation(s)
- Shan Geng
- Department of Endocrinology, The People's Hospital of Dazu Chongqing, Chongqing, China
| | - Xingrui Yu
- Department of Computer Science, Xiamen University, Xiamen, China
| | - Shaohong Yu
- Department of General Surgery, The People's Hospital of Dazu Chongqing, Chongqing, China
| |
Collapse
|
8
|
Park J, Kim S, Jangid AK, Park HW, Kim K. Networked Cluster Formation via Trigonal Lipid Modules for Augmented Ex Vivo NK Cell Priming. Int J Mol Sci 2024; 25:1556. [PMID: 38338836 PMCID: PMC10855780 DOI: 10.3390/ijms25031556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Current cytokine-based natural killer (NK) cell priming techniques have exhibited limitations such as the deactivation of biological signaling molecules and subsequent insufficient maturation of the cell population during mass cultivation processes. In this study, we developed an amphiphilic trigonal 1,2-distearoyl-sn-glycero-3-phosphorylethanolamine (DSPE) lipid-polyethylene glycol (PEG) material to assemble NK cell clusters via multiple hydrophobic lipid insertions into cellular membranes. Our lipid conjugate-mediated ex vivo NK cell priming sufficiently augmented the structural modulation of clusters, facilitated diffusional signal exchanges, and finally activated NK cell population with the clusters. Without any inhibition in diffusional signal exchanges and intrinsic proliferative efficacy of NK cells, effectively prime NK cell clusters produced increased interferon-gamma, especially in the early culture periods. In conclusion, the present study demonstrates that our novel lipid conjugates could serve as a promising alternative for future NK cell mass production.
Collapse
Affiliation(s)
| | | | | | | | - Kyobum Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul 22012, Republic of Korea; (J.P.); (S.K.); (A.K.J.); (H.W.P.)
| |
Collapse
|
9
|
Besla R, Penuel E, Del Rosario G, Cosino E, Myrta S, Dillon M, Lazar GA, Nickles D, Spiess C, Yu SF, Polson AG. T cell-Dependent Bispecific Therapy Enhances Innate Immune Activation and Antibody-Mediated Killing. Cancer Immunol Res 2024; 12:60-71. [PMID: 37902604 DOI: 10.1158/2326-6066.cir-23-0072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/15/2023] [Accepted: 10/26/2023] [Indexed: 10/31/2023]
Abstract
T cell-retargeting therapies have transformed the therapeutic landscape for hematologic diseases. T cell-dependent bispecific antibodies (TDB) function as conditional agonists that induce a polyclonal T-cell response, resulting in target cell destruction and cytokine release. The relationship between this response and its effects on surrounding innate immune populations has not been fully explored. Here we show that treatment with mosunetuzumab in patients results in natural killer (NK) cell activation in the peripheral blood. We modeled this phenomenon in vitro and found that TDB-mediated killing activated NK cells, increasing NK function and antibody-dependent cellular cytotoxicity (ADCC), and enhanced the capability of macrophages to perform antibody-dependent cellular phagocytosis (ADCP). This enhancement was triggered by cytokines released through TDB treatment, with IL2 and IFNγ being major drivers for increased ADCC and ADCP, respectively. Surprisingly, cytolytic ability could be further augmented through neutralization of IL10 for NK cells and TNFα for macrophages. Finally, we showed that TDB treatment enhanced the efficacy of Fc-driven killing to an orthogonal solid tumor target in vivo. These results provide rationale for novel antibody therapy combinations that take advantage of both adaptive and innate immune responses.
Collapse
Affiliation(s)
- Rickvinder Besla
- Genentech Research and Early Development, Genentech Inc., South San Francisco, California
| | - Elicia Penuel
- Genentech Research and Early Development, Genentech Inc., South San Francisco, California
| | - Geoff Del Rosario
- Genentech Research and Early Development, Genentech Inc., South San Francisco, California
| | - Ely Cosino
- Genentech Research and Early Development, Genentech Inc., South San Francisco, California
| | | | - Mike Dillon
- Genentech Research and Early Development, Genentech Inc., South San Francisco, California
| | - Greg A Lazar
- Genentech Research and Early Development, Genentech Inc., South San Francisco, California
| | - Dorothee Nickles
- Genentech Research and Early Development, Genentech Inc., South San Francisco, California
| | - Christoph Spiess
- Genentech Research and Early Development, Genentech Inc., South San Francisco, California
| | - Shang-Fan Yu
- Genentech Research and Early Development, Genentech Inc., South San Francisco, California
| | - Andrew G Polson
- Genentech Research and Early Development, Genentech Inc., South San Francisco, California
| |
Collapse
|
10
|
Nip C, Wang L, Liu C. CD200/CD200R: Bidirectional Role in Cancer Progression and Immunotherapy. Biomedicines 2023; 11:3326. [PMID: 38137547 PMCID: PMC10741515 DOI: 10.3390/biomedicines11123326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
As an immune checkpoint molecule, CD200 serves a foundational role in regulating immune homeostasis and promoting self-tolerance. While CD200 expression occurs in various immune cell subsets and normal tissues, its aberrant expression patterns in hematologic malignancies and solid tumors have been linked to immune evasion and cancer progression under pathological conditions, particularly through interactions with its cognate receptor, CD200R. Through this CD200/CD200R signaling pathway, CD200 exerts its immunosuppressive effects by inhibiting natural killer (NK) cell activation, cytotoxic T cell functions, and M1-polarized macrophage activity, while also facilitating expansion of myeloid-derived suppressor cells (MDSCs) and Tregs. Moreover, CD200/CD200R expression has been linked to epithelial-to-mesenchymal transition and distant metastasis, further illustrating its role in cancer progression. Conversely, CD200 has also been shown to exert anti-tumor effects in certain cancer types, such as breast carcinoma and melanoma, indicating that CD200 may exert bidirectional effects on cancer progression depending on the specific tumor microenvironment (TME). Regardless, modulating the CD200/CD200R axis has garnered clinical interest as a potential immunotherapeutic strategy for cancer therapy, as demonstrated by early-phase clinical trials. However, further research is necessary to fully understand the complex interactions of CD200 in the tumor microenvironment and to optimize its therapeutic potential in cancer immunotherapy.
Collapse
Affiliation(s)
- Christopher Nip
- Department of Urologic Surgery, University of California, Davis, CA 95817, USA; (C.N.); (L.W.)
| | - Leyi Wang
- Department of Urologic Surgery, University of California, Davis, CA 95817, USA; (C.N.); (L.W.)
- Graduate Group in Integrative Pathobiology, University of California, Davis, CA 95817, USA
| | - Chengfei Liu
- Department of Urologic Surgery, University of California, Davis, CA 95817, USA; (C.N.); (L.W.)
- Graduate Group in Integrative Pathobiology, University of California, Davis, CA 95817, USA
- UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95817, USA
| |
Collapse
|
11
|
Jiang H, Jiang J. Balancing act: the complex role of NK cells in immune regulation. Front Immunol 2023; 14:1275028. [PMID: 38022497 PMCID: PMC10652757 DOI: 10.3389/fimmu.2023.1275028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Natural killer (NK) cells, as fundamental components of innate immunity, can quickly react to abnormalities within the body. In-depth research has revealed that NK cells possess regulatory functions not only in innate immunity but also in adaptive immunity under various conditions. Multiple aspects of the adaptive immune process are regulated through NK cells. In our review, we have integrated multiple studies to illuminate the regulatory function of NK cells in regulating B cell and T cell responses during adaptive immune processes, focusing on aspects including viral infections and the tumor microenvironment (TME). These insights provide us with many new understandings on how NK cells regulate different phases of the adaptive immune response.
Collapse
Affiliation(s)
- Hongwei Jiang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Institute for Cell Therapy, Soochow University, Changzhou, Jiangsu, China
| | - Jingting Jiang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Institute for Cell Therapy, Soochow University, Changzhou, Jiangsu, China
| |
Collapse
|
12
|
Thacker G, Henry S, Nandi A, Debnath R, Singh S, Nayak A, Susnik B, Boone MM, Zhang Q, Kesmodel SB, Gumber S, Das GM, Kambayashi T, Dos Santos CO, Chakrabarti R. Immature natural killer cells promote progression of triple-negative breast cancer. Sci Transl Med 2023; 15:eabl4414. [PMID: 36888695 PMCID: PMC10875969 DOI: 10.1126/scitranslmed.abl4414] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 01/26/2023] [Indexed: 03/10/2023]
Abstract
Natural killer (NK) cells are cytotoxic lymphocytes that accumulate within the tumor microenvironment and are generally considered to be antitumorigenic. Using single-cell RNA sequencing and functional analysis of multiple triple-negative breast cancer (TNBC) and basal tumor samples, we observed a unique subcluster of Socs3highCD11b-CD27- immature NK cells that were present only in TNBC samples. These tumor-infiltrating NK cells expressed a reduced cytotoxic granzyme signature and, in mice, were responsible for activating cancer stem cells through Wnt signaling. NK cell-mediated activation of these cancer stem cells subsequently enhanced tumor progression in mice, whereas depletion of NK cells or Wnt ligand secretion from NK cells by LGK-974 decreased tumor progression. In addition, NK cell depletion or inhibition of their function improved anti-programmed cell death ligand 1 (PD-L1) antibody or chemotherapy response in mice with TNBC. Furthermore, tumor samples from patients with TNBC and non-TNBC revealed that increased numbers of CD56bright NK cells were present in TNBC tumors and were correlated to poor overall survival in patients with TNBC. Together, our findings identify a population of protumorigenic NK cells that may be exploited for both diagnostic and therapeutic strategies to improve outcomes for patients with TNBC.
Collapse
Affiliation(s)
- Gatha Thacker
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Samantha Henry
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Ajeya Nandi
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rahul Debnath
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Snahlata Singh
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anupma Nayak
- Department of Pathology and Laboratory Medicine at the Hospital of the University of Pennsylvania, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Barbara Susnik
- Department of Pathology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Melinda M Boone
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Qing Zhang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Susan B Kesmodel
- DeWitt Daughtry Family Department of Surgery, Division of Surgical Oncology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Sanjeev Gumber
- Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Gokul M Das
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Taku Kambayashi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Camila O. Dos Santos
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Rumela Chakrabarti
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
13
|
Saini P, Adeniji OS, Bordoloi D, Kinslow J, Martinson J, Parent DM, Hong KY, Koshy J, Kulkarni AJ, Zilberstein NF, Balk RA, Moy JN, Giron LB, Tracy RP, Keshavarzian A, Muthumani K, Landay A, Weiner DB, Abdel-Mohsen M. Siglec-9 Restrains Antibody-Dependent Natural Killer Cell Cytotoxicity against SARS-CoV-2. mBio 2023; 14:e0339322. [PMID: 36728420 PMCID: PMC9973332 DOI: 10.1128/mbio.03393-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 12/23/2022] [Indexed: 02/03/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection alters the immunological profiles of natural killer (NK) cells. However, whether NK antiviral functions are impaired during severe coronavirus disease 2019 (COVID-19) and what host factors modulate these functions remain unclear. We found that NK cells from hospitalized COVID-19 patients degranulate less against SARS-CoV-2 antigen-expressing cells (in direct cytolytic and antibody-dependent cell cytotoxicity [ADCC] assays) than NK cells from mild COVID-19 patients or negative controls. The lower NK degranulation was associated with higher plasma levels of SARS-CoV-2 nucleocapsid antigen. Phenotypic and functional analyses showed that NK cells expressing the glyco-immune checkpoint Siglec-9 elicited higher ADCC than Siglec-9- NK cells. Consistently, Siglec-9+ NK cells exhibit an activated and mature phenotype with higher expression of CD16 (FcγRIII; mediator of ADCC), CD57 (maturation marker), and NKG2C (activating receptor), along with lower expression of the inhibitory receptor NKG2A, than Siglec-9- CD56dim NK cells. These data are consistent with the concept that the NK cell subpopulation expressing Siglec-9 is highly activated and cytotoxic. However, the Siglec-9 molecule itself is an inhibitory receptor that restrains NK cytotoxicity during cancer and other viral infections. Indeed, blocking Siglec-9 significantly enhanced the ADCC-mediated NK degranulation and lysis of SARS-CoV-2-antigen-positive target cells. These data support a model in which the Siglec-9+ CD56dim NK subpopulation is cytotoxic even while it is restrained by the inhibitory effects of Siglec-9. Alleviating the Siglec-9-mediated restriction on NK cytotoxicity may further improve NK immune surveillance and presents an opportunity to develop novel immunotherapeutic tools against SARS-CoV-2 infected cells. IMPORTANCE One mechanism that cancer cells use to evade natural killer cell immune surveillance is by expressing high levels of sialoglycans, which bind to Siglec-9, a glyco-immune checkpoint molecule on NK cells. This binding inhibits NK cell cytotoxicity. Several viruses, such as hepatitis B virus (HBV) and HIV, also use a similar mechanism to evade NK surveillance. We found that NK cells from SARS-CoV-2-hospitalized patients are less able to function against cells expressing SARS-CoV-2 Spike protein than NK cells from SARS-CoV-2 mild patients or uninfected controls. We also found that the cytotoxicity of the Siglec-9+ NK subpopulation is indeed restrained by the inhibitory nature of the Siglec-9 molecule and that blocking Siglec-9 can enhance the ability of NK cells to target cells expressing SARS-CoV-2 antigens. Our results suggest that a targetable glyco-immune checkpoint mechanism, Siglec-9/sialoglycan interaction, may contribute to the ability of SARS-CoV-2 to evade NK immune surveillance.
Collapse
Affiliation(s)
- Pratima Saini
- The Wistar Institute, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | - Kai Ying Hong
- The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Jane Koshy
- The Wistar Institute, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | | - Kar Muthumani
- The Wistar Institute, Philadelphia, Pennsylvania, USA
| | | | | | | |
Collapse
|
14
|
Li M, Jin Y, He J. Purtscher-like retinopathy associated with systemic lupus erythematosus treated with rituximab plus low-dose interleukin-2: A case report. Int J Rheum Dis 2023. [PMID: 36806905 DOI: 10.1111/1756-185x.14623] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 01/30/2023] [Accepted: 02/07/2023] [Indexed: 02/22/2023]
Abstract
Purtscher-like retinopathy, an occlusive microvasculopathy, is a rare and severe ophthalmic complication of systemic lupus erythematosus (SLE) characterized by a sudden loss of vision with retinal whitening, cotton wool spots and minimal intraretinal hemorrhage. Recovery in visual acuity is usually poor even with prompt treatment. This case showed a patient with SLE concurrent Purtscher-like retinopathy treated with rituximab and interleukin-2 (IL-2) with good prognosis. A 16-year-old female with a 2-year history of SLE was admitted because of unrelieved disease activity of SLE when treated with a high dose of corticosteroids and immunosuppressants and she further suffered from reduced visual acuity in both eyes. She was diagnosed with Purtscher-like retinopathy secondary to SLE after ocular examination. Rituximab and low-dose IL-2 for systemic treatment and intravitreal injection of anti-vascular endothelial growth factor antibody to right eye were given. The SLE disease was completely relieved with the sight recovering and no recurrence of Purtscher-like retinopathy was reported during 6-year follow-up. Purtscher-like retinopathy associated with SLE should be treated early and promptly. Rituximab should be considered in SLE patients with Purtscher-like retinopathy who have an incomplete response to initial immunosuppressive therapy and low-dose IL-2 may help induction of clinical remission.
Collapse
Affiliation(s)
- Min Li
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China
| | - Yuebo Jin
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China
| | - Jing He
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China
| |
Collapse
|
15
|
Terrén I, Astarloa-Pando G, Amarilla-Irusta A, Borrego F. P815-based redirected degranulation assay to study human NK cell effector functions. Methods Cell Biol 2023; 173:33-48. [PMID: 36653084 DOI: 10.1016/bs.mcb.2022.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Natural killer (NK) cells are part of the innate immune system, the classic cytotoxic population of innate lymphoid cells (ILCs). They can directly kill virus-infected or tumor cells through different mechanisms without prior sensitization using their lytic functions in response to different signals (target cell ligands and/or inflammatory cytokines) and secreting cytokines, such as interferon gamma (IFNγ) and tumor necrosis factor (TNF). NK cells use antibody-dependent cell-mediated cytotoxicity (ADCC) to recognize and kill cells expressing target antigens when they are antibody coated. Redirected cytotoxicity is a technique used to target cells that do not per se activate NK cells. Here, we use redirected degranulation, a surrogate technique that correlates with redirected lysis. The P815 cell line (mouse mastocytoma) express fragment crystallizable gamma receptor II (FcγRII) and therefore could bind the Fc portion of mouse IgG antibodies, which through their fragment antigen-binding (Fab) may recognize NK cells activating receptors leading to target cell lysis. This technique could be used to determine the inhibitory or activating capacity of different receptors or isoforms and in immunotherapy using T cell and NK cell activators.
Collapse
Affiliation(s)
- Iñigo Terrén
- Biocruces Bizkaia Health Research Institute, Immunopathology Group, Barakaldo, Spain
| | | | | | - Francisco Borrego
- Biocruces Bizkaia Health Research Institute, Immunopathology Group, Barakaldo, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
16
|
Lu C, Liu Y, Ali NM, Zhang B, Cui X. The role of innate immune cells in the tumor microenvironment and research progress in anti-tumor therapy. Front Immunol 2023; 13:1039260. [PMID: 36741415 PMCID: PMC9893925 DOI: 10.3389/fimmu.2022.1039260] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/14/2022] [Indexed: 01/20/2023] Open
Abstract
Innate immune cells in the tumor microenvironment (TME) mainly include macrophages, neutrophils, natural killer cells, dendritic cells and bone marrow derived suppressor cells. They play an anti-tumor or pro-tumor role by secreting various cytokines, chemokines and other factors, and determine the occurrence and development of tumors. Comprehending the role of innate immune cells in tumorigenesis and progression can help improve therapeutic approaches targeting innate immune cells in the TME, increasing the likelihood of favorable prognosis. In this review, we discussed the cell biology of innate immune cells, their role in tumorigenesis and development, and the current status of innate immune cell-based immunotherapy, in order to provide an overview for future research lines and clinical trials.
Collapse
Affiliation(s)
- Chenglin Lu
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ying Liu
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China,Department of Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Nasra Mohamoud Ali
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Bin Zhang
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China,*Correspondence: Xiaonan Cui, ; Bin Zhang,
| | - Xiaonan Cui
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China,*Correspondence: Xiaonan Cui, ; Bin Zhang,
| |
Collapse
|
17
|
He J, Chen J, Miao M, Zhang R, Cheng G, Wang Y, Feng R, Huang B, Luan H, Jia Y, Jin Y, Zhang X, Shao M, Wang Y, Zhang X, Li J, Zhao X, Wang H, Liu T, Xiao X, Zhang X, Su Y, Mu R, Ye H, Li R, Liu X, Liu Y, Li C, Liu H, Hu F, Guo J, Liu W, Zhang WB, Jacob A, Ambrus JL, Ding C, Yu D, Sun X, Li Z. Efficacy and Safety of Low-Dose Interleukin 2 for Primary Sjögren Syndrome: A Randomized Clinical Trial. JAMA Netw Open 2022; 5:e2241451. [PMID: 36355371 PMCID: PMC9650609 DOI: 10.1001/jamanetworkopen.2022.41451] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
IMPORTANCE Primary Sjögren syndrome (pSS) is a systemic autoimmune disease associated with dysregulated immune cells, with no efficient therapy. There is a need to study potential therapeutic approaches. OBJECTIVE To investigate the efficacy, safety, and immune response of low-dose interleukin 2 (LD-IL-2) in the treatment of pSS. DESIGN, SETTING, AND PARTICIPANTS A double-blind, placebo-controlled randomized clinical trial was conducted with a 2-group superiority design from June 2015 to August 2017. Sixty patients, aged 18 to 70 years, were recruited from Peking University People's Hospital. Efficacy analyses were based on the intention-to-treat (ITT) principle. Data were analyzed from December 2018 to March 2020. INTERVENTIONS Patients with pSS were treated with LD-IL-2 or placebo for 12 weeks and accompanied by 12 weeks of follow-up. MAIN OUTCOMES AND MEASURES The primary end point was defined as a 3-point or greater improvement on the European League Against Rheumatism Sjögren's Syndrome Disease Activity Index (ESSDAI) by week 24. The secondary end points included other clinical responses, safety, and changes of immune cell subsets at week 12 and 24. RESULTS Sixty patients with pSS were recruited, with 30 in the LD-IL-2 group (mean [SD] age, 47.6 [12.8] years; 30 [100%] women) and 30 in the placebo group (mean [SD] age, 51.0 [11.9] years; 30 [100%] women), and 57 completed the trial. More patients in the LD-IL-2 group (20 [66.7%]) achieved ESSDAI score reduction of at least 3 points than in the placebo group (8 [26.7%]) at week 24 (P = .004). There were greater resolutions of dryness, pain, and fatigue in the LD-IL-2 group than placebo group at week 12 (dryness: difference, -18.33 points; 95% CI, -28.46 to -8.21 points; P = .001; pain: difference, -10.33 points; 95% CI, -19.38 to -1.29 points; P = .03; fatigue: difference, -11.67 points; 95% CI, -20.65 to -2.68 points; P = .01). No severe adverse events were observed in either group. In addition, the LD-IL-2 group showed a significant decrease in infection compared with the placebo group (1 [3.3%] vs 9 [30.0%]; P = .006). Immunological analysis revealed that LD-IL-2 promoted an expansion of regulatory T cells and regulatory CD24highCD27+ B cells. CONCLUSIONS AND RELEVANCE In this randomized clinical trial, LD-IL-2 was effective and well tolerated in patients with pSS, and it restored immune balance, with enhanced regulatory T cells and CD24highCD27+ B cells. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT02464319.
Collapse
Affiliation(s)
- Jing He
- Department of Rheumatology and Immunology, Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis, Peking University People’s Hospital, Beijing, China
| | - Jiali Chen
- Department of Rheumatology and Immunology, Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis, Peking University People’s Hospital, Beijing, China
| | - Miao Miao
- Department of Rheumatology and Immunology, Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis, Peking University People’s Hospital, Beijing, China
| | - Ruijun Zhang
- Department of Rheumatology and Immunology, Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis, Peking University People’s Hospital, Beijing, China
| | - Gong Cheng
- Department of Rheumatology and Immunology, Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis, Peking University People’s Hospital, Beijing, China
| | - Yifan Wang
- Department of Rheumatology and Immunology, Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis, Peking University People’s Hospital, Beijing, China
| | - Ruiling Feng
- Department of Rheumatology and Immunology, Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis, Peking University People’s Hospital, Beijing, China
| | - Bo Huang
- Department of Rheumatology and Immunology, Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis, Peking University People’s Hospital, Beijing, China
| | - Huijie Luan
- Department of Rheumatology and Immunology, Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis, Peking University People’s Hospital, Beijing, China
| | - Yuan Jia
- Department of Rheumatology and Immunology, Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis, Peking University People’s Hospital, Beijing, China
| | - Yuebo Jin
- Department of Rheumatology and Immunology, Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis, Peking University People’s Hospital, Beijing, China
| | - Xiaoying Zhang
- Department of Rheumatology and Immunology, Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis, Peking University People’s Hospital, Beijing, China
| | - Miao Shao
- Department of Rheumatology and Immunology, Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis, Peking University People’s Hospital, Beijing, China
| | - Yu Wang
- Center for Applied Statistics and School of Statistics, Renmin University of China, Beijing, China
| | - Xia Zhang
- Department of Rheumatology and Immunology, Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis, Peking University People’s Hospital, Beijing, China
| | - Jing Li
- Department of Rheumatology and Immunology, Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis, Peking University People’s Hospital, Beijing, China
| | - Xiaozhen Zhao
- Department of Rheumatology and Immunology, Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis, Peking University People’s Hospital, Beijing, China
| | - Han Wang
- Department of Rheumatology and Immunology, Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis, Peking University People’s Hospital, Beijing, China
| | - Tian Liu
- Department of Rheumatology and Immunology, Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis, Peking University People’s Hospital, Beijing, China
| | - Xian Xiao
- Department of Rheumatology and Immunology, Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis, Peking University People’s Hospital, Beijing, China
| | - Xuewu Zhang
- Department of Rheumatology and Immunology, Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis, Peking University People’s Hospital, Beijing, China
| | - Yin Su
- Department of Rheumatology and Immunology, Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis, Peking University People’s Hospital, Beijing, China
| | - Rong Mu
- Department of Rheumatology and Immunology, Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis, Peking University People’s Hospital, Beijing, China
| | - Hua Ye
- Department of Rheumatology and Immunology, Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis, Peking University People’s Hospital, Beijing, China
| | - Ru Li
- Department of Rheumatology and Immunology, Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis, Peking University People’s Hospital, Beijing, China
| | - Xu Liu
- Department of Rheumatology and Immunology, Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis, Peking University People’s Hospital, Beijing, China
| | - Yanying Liu
- Department of Rheumatology and Immunology, Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis, Peking University People’s Hospital, Beijing, China
| | - Chun Li
- Department of Rheumatology and Immunology, Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis, Peking University People’s Hospital, Beijing, China
| | - Huixin Liu
- Department of Clinical Epidemiology and Biostatistics, Peking University People’s Hospital, Beijing, China
| | - Fanlei Hu
- Department of Rheumatology and Immunology, Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis, Peking University People’s Hospital, Beijing, China
| | - Jianping Guo
- Department of Rheumatology and Immunology, Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis, Peking University People’s Hospital, Beijing, China
| | - Wanli Liu
- Institute for Immunology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Wen-Bin Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, People’s Republic of China
| | | | | | - Changhai Ding
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Di Yu
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
- Ian Frazer Centre for Children’s Immunotherapy Research, Child Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Xiaolin Sun
- Department of Rheumatology and Immunology, Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis, Peking University People’s Hospital, Beijing, China
| | - Zhanguo Li
- Department of Rheumatology and Immunology, Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis, Peking University People’s Hospital, Beijing, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| |
Collapse
|
18
|
Hosseinalizadeh H, Habibi Roudkenar M, Mohammadi Roushandeh A, Kuwahara Y, Tomita K, Sato T. Natural killer cell immunotherapy in glioblastoma. Discov Oncol 2022; 13:113. [PMID: 36305981 PMCID: PMC9616998 DOI: 10.1007/s12672-022-00567-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/21/2022] [Indexed: 11/04/2022] Open
Abstract
Glioblastoma (GBM) is one of the most difficult cancers to treat because GBM has the high therapeutic resistance. Recently, immunotherapies for GBM have been used instead of conventional treatments. Among them, Natural killer (NK) cell-based immunotherapy has the potential to treat GBM due to its properties such as the absence of restriction by antigen-antibody reaction and deep penetration into the tumor microenvironment. Especially, genetically engineered NK cells, such as chimeric antigen receptor (CAR)-NK cells, dual antigen-targeting CAR NK cells, and adapter chimeric antigen receptor NK cells are considered to be an important tool for GBM immunotherapy. Therefore, this review describes the recent efforts of NK cell-based immunotherapy in GBM patients. We also describe key receptors expressing on NK cells such as killer cell immunoglobulin-like receptor, CD16, and natural killer group 2, member D (NKG2DL) receptor and discuss the function and importance of these molecules.
Collapse
Affiliation(s)
- Hamed Hosseinalizadeh
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Mehryar Habibi Roudkenar
- Burn and Regenerative Medicine Research Center, School of Medicine, Velayat Hospital, Guilan University of Medical Sciences, Rasht, Iran.
- Department of Applied Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan.
| | - Amaneh Mohammadi Roushandeh
- Burn and Regenerative Medicine Research Center, School of Medicine, Velayat Hospital, Guilan University of Medical Sciences, Rasht, Iran
- Department of Applied Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yoshikazu Kuwahara
- Division of Radiation Biology and Medicine, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Kazuo Tomita
- Department of Applied Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan.
| | - Tomoaki Sato
- Department of Applied Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
19
|
Jeong S, Kim YG, Kim S, Kim K. Enhanced anticancer efficacy of primed natural killer cells via coacervate-mediated exogenous interleukin-15 delivery. Biomater Sci 2022; 10:5968-5979. [PMID: 36048163 DOI: 10.1039/d2bm00876a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Effective exogenous delivery of interleukin (IL)-15 to natural killer (NK) cells with subsequent anticancer efficacy could be a promising immune cell-based cancer immunotherapy. For the protection of encapsulated cargo IL-15 while maintaining its bioactivity under physiological conditions, we utilized a coacervate (Coa) consisting of a cationic methoxy polyethylene glycol-poly(ethylene arginyl aspartate diglyceride) (mPEG-PEAD) polymer, anionic counterpart heparin, and cargo IL-15. mPEGylation into the backbone cation effectively preserved the colloidal stability of Coa in harsh environments and enhanced the protection of cargo IL-15 than normal Coa without mPEGylation. Proliferation and anticancer efficacy of primed NK cells through co-culture with multiple cancer cell lines were enhanced in the mPEG-Coa group due to the maintained bioactivity of cargo IL-15 during the ex vivo expansion of NK cells. These facilitated functions of NK cells were also supported by the increased expression of mRNAs related to anticancer effects of NK cells, including cytotoxic granules, death ligands, anti-apoptotic proteins, and activation receptors. In summary, our Coa-mediated exogenous IL-15 delivery could be an effective ex vivo priming technique for NK cells with sustained immune activation that can effectively facilitate its usage for cancer immunotherapy.
Collapse
Affiliation(s)
- Sehwan Jeong
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul, Republic of Korea.
| | - Young Guk Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul, Republic of Korea.
| | - Sungjun Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul, Republic of Korea.
| | - Kyobum Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul, Republic of Korea.
| |
Collapse
|
20
|
Mendoza-Valderrey A, Alvarez M, De Maria A, Margolin K, Melero I, Ascierto ML. Next Generation Immuno-Oncology Strategies: Unleashing NK Cells Activity. Cells 2022; 11:3147. [PMID: 36231109 PMCID: PMC9562848 DOI: 10.3390/cells11193147] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/06/2022] [Accepted: 10/02/2022] [Indexed: 11/19/2022] Open
Abstract
In recent years, immunotherapy has become a powerful therapeutic option against multiple malignancies. The unique capacity of natural killer (NK) cells to attack cancer cells without antigen specificity makes them an optimal immunotherapeutic tool for targeting tumors. Several approaches are currently being pursued to maximize the anti-tumor properties of NK cells in the clinic, including the development of NK cell expansion protocols for adoptive transfer, the establishment of a favorable microenvironment for NK cell activity, the redirection of NK cell activity against tumor cells, and the blockage of inhibitory mechanisms that constrain NK cell function. We here summarize the recent strategies in NK cell-based immunotherapies and discuss the requirement to further optimize these approaches for enhancement of the clinical outcome of NK cell-based immunotherapy targeting tumors.
Collapse
Affiliation(s)
- Alberto Mendoza-Valderrey
- Rosalie and Harold Rae Brown Cancer Immunotherapy Research Program, Borstein Family Melanoma Program, Translational Immunology Department, Saint John’s Cancer Institute, Santa Monica, CA 90404, USA
| | - Maite Alvarez
- Program for Immunology and Immunotherapy, CIMA, Universidad de Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Andrea De Maria
- Department of Health Sciences, University of Genoa, 16126 Genova, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Kim Margolin
- Borstein Family Melanoma Program, Saint John’s Cancer Institute, Santa Monica, CA 90404, USA
| | - Ignacio Melero
- Program for Immunology and Immunotherapy, CIMA, Universidad de Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Department of Immunology and Immunotherapy, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Maria Libera Ascierto
- Rosalie and Harold Rae Brown Cancer Immunotherapy Research Program, Borstein Family Melanoma Program, Translational Immunology Department, Saint John’s Cancer Institute, Santa Monica, CA 90404, USA
| |
Collapse
|
21
|
Franklin M, Connolly E, Hussell T. Recruited and Tissue-Resident Natural Killer Cells in the Lung During Infection and Cancer. Front Immunol 2022; 13:887503. [PMID: 35844626 PMCID: PMC9284027 DOI: 10.3389/fimmu.2022.887503] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/17/2022] [Indexed: 11/23/2022] Open
Abstract
Natural killer (NK) cells are an important component of the innate immune system, and have a key role in host defense against infection and in tumor surveillance. Tumors and viruses employ remarkably similar strategies to avoid recognition and killing by NK cells and so much can be learnt by comparing NK cells in these disparate diseases. The lung is a unique tissue environment and immune cells in this organ, including NK cells, exist in a hypofunctional state to prevent activation against innocuous stimuli. Upon infection, rapid NK cell infiltration into the lung occurs, the amplitude of which is determined by the extent of inflammation and damage. Activated NK cells kill infected cells and produce pro-inflammatory cytokines and chemokines to recruit cells of the adaptive immune system. More recent evidence has shown that NK cells also play an additional role in resolution of inflammation. In lung cancer however, NK cell recruitment is impaired and those that are present have reduced functionality. The majority of lung NK cells are circulatory, however recently a small population of tissue-resident lung NK cells has been described. The specific role of this subset is yet to be determined, but they show similarity to resident memory T cell subsets. Whether resident or recruited, NK cells are important in the control of pulmonary infections, but equally, can drive excessive inflammation if not regulated. In this review we discuss how NK cells are recruited, controlled and retained in the specific environment of the lung in health and disease. Understanding these mechanisms in the context of infection may provide opportunities to promote NK cell recruitment and function in the lung tumor setting.
Collapse
|
22
|
Zhang JQ, Zhang SX, Wang J, Qiao J, Qiu MT, Wu XY, Chen JW, Gao C, Li XF. Low-dose IL-2 therapy limits the reduction in absolute numbers of peripheral lymphocytes in systemic lupus erythematosus patients with infection. Curr Med Res Opin 2022; 38:1037-1044. [PMID: 35414310 DOI: 10.1080/03007995.2022.2065145] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is a heterogeneous autoimmune disorder characterized by disturbed cellular and humoral immune responses. Dysregulations of immune system and immunosuppressive medications predispose SLE patients to infection. This study aims to investigate the alterations and absolute concentrations of lymphocyte subpopulations in SLE patients with different infection and their responses of low-dose IL-2 therapy. METHODS A total of 333 patients with SLE without recent infection, 162 patients suffering infection, and age and sex-matched 132 healthy controls (HCs) were recruited. Of them, 54 SLE patients (including 41 non-infected group and 13 infected group) received a 5-day course of low-dose IL-2 administration at a dose of 0.5 million IU per day. Lymphocyte subpopulations were analyzed by flow cytometry. RESULTS Patients with SLE had lower levels of lymphocyte subpopulations in peripheral blood such as T, B, NK, CD4 + T, CD8+ T, Th1, Th2, Th17, and Treg cells, and the reduction in these cells was more obvious in patients with infection (p <.05 to p <.01). Low-dose IL-2 effectively expanded T (p <.001), B (p <.001), CD4 + T (p <.01), CD8 + T (p <.001), Th1 (p <.01), Th17 (p <.1), and Treg cells (p <.01) of SLE patients, these cells were comparable to that of HCs after the IL-2 treatment. CONCLUSIONS Patients with SLE had insufficiency of circulating lymphocyte subsets. This phenomenon was more obverse in those accompanying infection, suggesting the low concentration of lymphocytes may be used as indicators of high infection risk in SLE patients. Low-dose IL-2 induced expansion of Treg cells and NK cells, which may contribute to the restoration of immune homeostasis in SLE patients.
Collapse
Affiliation(s)
- Jia-Qian Zhang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Key laboratory of Cellular Physiology, Shanxi Medical University, Ministry of Education, Shanxi, China
| | - Sheng-Xiao Zhang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Key laboratory of Cellular Physiology, Shanxi Medical University, Ministry of Education, Shanxi, China
| | - Jia Wang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Key laboratory of Cellular Physiology, Shanxi Medical University, Ministry of Education, Shanxi, China
| | - Jun Qiao
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Key laboratory of Cellular Physiology, Shanxi Medical University, Ministry of Education, Shanxi, China
| | - Meng-Ting Qiu
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Key laboratory of Cellular Physiology, Shanxi Medical University, Ministry of Education, Shanxi, China
| | - Xiao-Yan Wu
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Key laboratory of Cellular Physiology, Shanxi Medical University, Ministry of Education, Shanxi, China
| | - Jun-Wen Chen
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Chong Gao
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xiao-Feng Li
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Key laboratory of Cellular Physiology, Shanxi Medical University, Ministry of Education, Shanxi, China
| |
Collapse
|
23
|
Advances of research of Fc-fusion protein that activate NK cells for tumor immunotherapy. Int Immunopharmacol 2022; 109:108783. [PMID: 35561479 DOI: 10.1016/j.intimp.2022.108783] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/02/2022] [Accepted: 04/14/2022] [Indexed: 12/21/2022]
Abstract
The rapid development of bioengineering technology has introduced Fc-fusion proteins, representing a novel kind of recombinant protein, as promising biopharmaceutical products in tumor therapy. Numerous related anti-tumor Fc-fusion proteins have been investigated and are in different stages of development. Fc-fusion proteins are constructed by fusing the Fc-region of the antibody with functional proteins or peptides. They retain the bioactivity of the latter and partial properties of the former. This structural and functional advantage makes Fc-fusion proteins an effective tool in tumor immunotherapy, especially for the recruitment and activation of natural killer (NK) cells, which play a critical role in tumor immunotherapy. Even though tumor cells have developed mechanisms to circumvent the cytotoxic effect of NK cells or induce defective NK cells, Fc-fusion proteins have been proven to effectively activate NK cells to kill tumor cells in different ways, such as antibody-dependent cell-mediated cytotoxicity (ADCC), activate NK cells in different ways in order to promote killing of tumor cells. In this review, we focus on NK cell-based immunity for cancers and current research progress of the Fc-fusion proteins for anti-tumor therapy by activating NK cells.
Collapse
|
24
|
Sönmez C, Wölfer J, Holling M, Brokinkel B, Stummer W, Wiendl H, Thomas C, Schulte-Mecklenbeck A, Grauer OM. Blockade of inhibitory killer cell immunoglobulin-like receptors and IL-2 triggering reverses the functional hypoactivity of tumor-derived NK-cells in glioblastomas. Sci Rep 2022; 12:6769. [PMID: 35474089 PMCID: PMC9042843 DOI: 10.1038/s41598-022-10680-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/11/2022] [Indexed: 11/09/2022] Open
Abstract
Killer cell immunoglobulin-like receptors (KIRs) comprise a group of highly polymorphic inhibitory receptors which are specific for classical HLA class-I molecules. Peripheral blood and freshly prepared tumor cell suspensions (n = 60) as well as control samples (n = 32) were investigated for the distribution, phenotype, and functional relevance of CD158ab/KIR2DL1,-2/3 expressing NK-cells in glioblastoma (GBM) patients. We found that GBM were scarcely infiltrated by NK-cells that preferentially expressed CD158ab/KIR2DL1,-2/3 as inhibitory receptors, displayed reduced levels of the activating receptors CD335/NKp46, CD226/DNAM-1, CD159c/NKG2C, and showed diminished capacity to produce IFN-γ and perforin. Functional hypoactivity of GBM-derived NK-cells persisted despite IL-2 preactivation. Blockade with a specific KIR2DL-1,2/3 monoclonal antibody reversed NK-cell inhibition and significantly enhanced degranulation and IFN-γ production of IL-2 preactivated NK-cells in the presence of primary GBM cells and HLA-C expressing but not HLA class-I deficient K562 cells. Additional analysis revealed that significant amounts of IL-2 could be produced by tumor-derived CD4+ and CD8+CD45RA- memory T-cells after combined anti-CD3/anti-CD28 stimulation. Our data indicate that both blockade of inhibitory KIR and IL-2 triggering of tumor-derived NK-cells are necessary to enhance NK-cell responsiveness in GBM.
Collapse
Affiliation(s)
- Cüneyt Sönmez
- Department of Neurology With Institute of Translational Neurology, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, 48149, Münster, Germany.,Department of Spine Surgery, Klinikum Herford, 32049, Herford, Germany
| | - Johannes Wölfer
- Department of Neurosurgery, University Hospital Münster, Münster, Germany.,Department of Neurosurgery and Spine Surgery, Hufeland Klinikum GmbH, 99974, Mühlhausen, Germany
| | - Markus Holling
- Department of Neurosurgery, University Hospital Münster, Münster, Germany
| | - Benjamin Brokinkel
- Department of Neurosurgery, University Hospital Münster, Münster, Germany
| | - Walter Stummer
- Department of Neurosurgery, University Hospital Münster, Münster, Germany
| | - Heinz Wiendl
- Department of Neurology With Institute of Translational Neurology, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, 48149, Münster, Germany
| | - Christian Thomas
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Andreas Schulte-Mecklenbeck
- Department of Neurology With Institute of Translational Neurology, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, 48149, Münster, Germany
| | - Oliver M Grauer
- Department of Neurology With Institute of Translational Neurology, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, 48149, Münster, Germany.
| |
Collapse
|
25
|
Fuchs S, Scheffschick A, Gunnarsson I, Brauner H. Natural Killer Cells in Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis - A Review of the Literature. Front Immunol 2022; 12:796640. [PMID: 35116030 PMCID: PMC8805084 DOI: 10.3389/fimmu.2021.796640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 12/20/2021] [Indexed: 01/22/2023] Open
Abstract
Anti-neutrophil cytoplasmic antibody (ANCA)- associated vasculitis (AAV) is a group of systemic autoimmune diseases characterized by inflammation of small- and medium-sized vessels. The three main types of AAV are granulomatosis with polyangiitis (GPA), microscopic polyangiitis (MPA) and eosinophilic granulomatosis with polyangiitis (EGPA). A growing number of studies focus on natural killer (NK) cells in AAV. NK cells are innate lymphoid cells with important roles in anti-viral and anti-tumor defense, but their roles in the pathogenesis of autoimmunity is less well established. In this review, we will present a summary of what is known about the number, phenotype and function of NK cells in patients with AAV. We review the literature on NK cells in the circulation of AAV patients, studies on tissue resident NK cells and how the treatment affects NK cells.
Collapse
Affiliation(s)
- Sina Fuchs
- Division of Rheumatology, Department of Medicine, Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Andrea Scheffschick
- Division of Rheumatology, Department of Medicine, Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Iva Gunnarsson
- Division of Rheumatology, Department of Medicine, Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Rheumatology, Karolinska University Hospital, Stockholm, Sweden
| | - Hanna Brauner
- Division of Rheumatology, Department of Medicine, Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Dermato-Venereology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
26
|
da Silva LHR, Catharino LCC, da Silva VJ, Evangelista GCM, Barbuto JAM. The War Is on: The Immune System against Glioblastoma—How Can NK Cells Drive This Battle? Biomedicines 2022; 10:biomedicines10020400. [PMID: 35203609 PMCID: PMC8962431 DOI: 10.3390/biomedicines10020400] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/09/2021] [Accepted: 12/16/2021] [Indexed: 11/24/2022] Open
Abstract
Natural killer (NK) cells are innate lymphocytes that play an important role in immunosurveillance, acting alongside other immune cells in the response against various types of malignant tumors and the prevention of metastasis. Since their discovery in the 1970s, they have been thoroughly studied for their capacity to kill neoplastic cells without the need for previous sensitization, executing rapid and robust cytotoxic activity, but also helper functions. In agreement with this, NK cells are being exploited in many ways to treat cancer. The broad arsenal of NK-based therapies includes adoptive transfer of in vitro expanded and activated cells, genetically engineered cells to contain chimeric antigen receptors (CAR-NKs), in vivo stimulation of NK cells (by cytokine therapy, checkpoint blockade therapies, etc.), and tumor-specific antibody-guided NK cells, among others. In this article, we review pivotal aspects of NK cells’ biology and their contribution to immune responses against tumors, as well as providing a wide perspective on the many antineoplastic strategies using NK cells. Finally, we also discuss those approaches that have the potential to control glioblastoma—a disease that, currently, causes inevitable death, usually in a short time after diagnosis.
Collapse
Affiliation(s)
- Lucas Henrique Rodrigues da Silva
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508000, Brazil; (L.H.R.d.S.); (L.C.C.C.); (V.J.d.S.); (G.C.M.E.)
| | - Luana Correia Croda Catharino
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508000, Brazil; (L.H.R.d.S.); (L.C.C.C.); (V.J.d.S.); (G.C.M.E.)
| | - Viviane Jennifer da Silva
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508000, Brazil; (L.H.R.d.S.); (L.C.C.C.); (V.J.d.S.); (G.C.M.E.)
- Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Departamento de Hematologia, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 0124690, Brazil
| | - Gabriela Coeli Menezes Evangelista
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508000, Brazil; (L.H.R.d.S.); (L.C.C.C.); (V.J.d.S.); (G.C.M.E.)
| | - José Alexandre Marzagão Barbuto
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508000, Brazil; (L.H.R.d.S.); (L.C.C.C.); (V.J.d.S.); (G.C.M.E.)
- Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Departamento de Hematologia, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 0124690, Brazil
- Correspondence: ; Tel.: +55-11-3091-7375
| |
Collapse
|
27
|
Ghasemzadeh M, Ghasemzadeh A, Hosseini E. Exhausted NK cells and cytokine storms in COVID-19: Whether NK cell therapy could be a therapeutic choice. Hum Immunol 2022; 83:86-98. [PMID: 34583856 PMCID: PMC8423992 DOI: 10.1016/j.humimm.2021.09.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/17/2021] [Accepted: 09/04/2021] [Indexed: 02/08/2023]
Abstract
The global outbreak of coronavirus-2019 (COVID-19) still claims more lives daily around the world due to the lack of a definitive treatment and the rapid tendency of virus to mutate, which even jeopardizes vaccination efficacy. At the forefront battle against SARS-CoV-2, an effective innate response to the infection has a pivotal role in the initial control and treatment of disease. However, SARS-CoV-2 subtly interrupts the equations of immune responses, disrupting the cytolytic antiviral effects of NK cells, while seriously activating infected macrophages and other immune cells to induce an unleashed "cytokine storm", a dangerous and uncontrollable inflammatory response causing life-threatening symptoms in patients. Notably, the NK cell exhaustion with ineffective cytolytic function against the sources of exaggerated cytokine release, acts as an Achilles' heel which exacerbates the severity of COVID-19. Given this, approaches that improve NK cell cytotoxicity may benefit treatment protocols. As a suggestion, adoptive transfer of NK or CAR-NK cells with proper cytotolytic potentials and the lowest capacity of cytokine-release (for example CD56dim NK cells brightly express activating receptors), to severe COVID-19 patients may provide an effective cure especially in cases suffering from cytokine storms. More intriguingly, the ongoing evidence for persistent clonal expansion of NK memory cells characterized by an activating phenotype in response to viral infections, can benefit the future studies on vaccine development and adoptive NK cell therapy in COVID-19. Whether vaccinated volunteers or recovered patients can also be considered as suitable candidates for cell donation could be the subject of future research.
Collapse
Affiliation(s)
- Mehran Ghasemzadeh
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | | | - Ehteramolsadat Hosseini
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran; Department of Immunology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, Victoria, Australia; Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
28
|
Cienfuegos-Jimenez O, Vazquez-Garza E, Rojas-Martinez A. CAR-NK Cells for Cancer Therapy: Molecular Redesign of the Innate Antineoplastic Response. Curr Gene Ther 2021; 22:303-318. [PMID: 34923939 DOI: 10.2174/1566523222666211217091724] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/14/2021] [Accepted: 10/22/2021] [Indexed: 11/22/2022]
Abstract
The Chimeric Antigen Receptor (CAR) has arisen as a powerful synthetic biology-based technology with demonstrated versatility for implementation in T and NK cells. Despite CAR T cell successes in clinical trials, several challenges remain to be addressed regarding adverse events and long-term efficacy. NK cells present an attractive alternative with intrinsic advantages over T cells for treating solid and liquid tumors. Early preclinical and clinical trials suggest at least two major advantages: improved safety and an off-the-shelf application in patients due to its HLA independence. Due to the early stages of CAR NK translation to clinical trials, limited data is currently available. By analyzing these results, it seems that CAR NK cells could offer a reduced probability of Cytokine Release Syndrome (CRS) or Graft versus Host Disease (GvHD) in cancer patients, reducing safety concerns. Furthermore, NK cell therapy approaches may be boosted by combining it with immunological checkpoint inhibitors and by implementing genetic circuits to direct CAR-bearing cell behavior. This review provides a description of the CAR technology for modifying NK cells and the translation from preclinical studies to early clinical trials in this new field of immunotherapy.
Collapse
Affiliation(s)
- Oscar Cienfuegos-Jimenez
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud. Monterrey, CP64710, Mexico
| | - Eduardo Vazquez-Garza
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud. Monterrey, CP64710, Mexico
| | - Augusto Rojas-Martinez
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud. Monterrey, CP64710, Mexico
| |
Collapse
|
29
|
Baysal H, De Pauw I, Zaryouh H, Peeters M, Vermorken JB, Lardon F, De Waele J, Wouters A. The Right Partner in Crime: Unlocking the Potential of the Anti-EGFR Antibody Cetuximab via Combination With Natural Killer Cell Chartering Immunotherapeutic Strategies. Front Immunol 2021; 12:737311. [PMID: 34557197 PMCID: PMC8453198 DOI: 10.3389/fimmu.2021.737311] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/19/2021] [Indexed: 12/12/2022] Open
Abstract
Cetuximab has an established role in the treatment of patients with recurrent/metastatic colorectal cancer and head and neck squamous cell cancer (HNSCC). However, the long-term effectiveness of cetuximab has been limited by the development of acquired resistance, leading to tumor relapse. By contrast, immunotherapies can elicit long-term tumor regression, but the overall response rates are much more limited. In addition to epidermal growth factor (EGFR) inhibition, cetuximab can activate natural killer (NK) cells to induce antibody-dependent cellular cytotoxicity (ADCC). In view of the above, there is an unmet need for the majority of patients that are treated with both monotherapy cetuximab and immunotherapy. Accumulated evidence from (pre-)clinical studies suggests that targeted therapies can have synergistic antitumor effects through combination with immunotherapy. However, further optimizations, aimed towards illuminating the multifaceted interplay, are required to avoid toxicity and to achieve better therapeutic effectiveness. The current review summarizes existing (pre-)clinical evidence to provide a rationale supporting the use of combined cetuximab and immunotherapy approaches in patients with different types of cancer.
Collapse
Affiliation(s)
- Hasan Baysal
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | - Ines De Pauw
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | - Hannah Zaryouh
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | - Marc Peeters
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium.,Department of Medical Oncology, Antwerp University Hospital, Edegem, Belgium
| | - Jan Baptist Vermorken
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium.,Department of Medical Oncology, Antwerp University Hospital, Edegem, Belgium
| | - Filip Lardon
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | - Jorrit De Waele
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | - An Wouters
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| |
Collapse
|
30
|
Kim YJ, Kim BK, Park SJ, Kim JH. Impact of Fusobacterium nucleatum in the gastrointestinal tract on natural killer cells. World J Gastroenterol 2021; 27:4879-4889. [PMID: 34447232 PMCID: PMC8371507 DOI: 10.3748/wjg.v27.i29.4879] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/17/2021] [Accepted: 07/05/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Gut microbial dysbiosis contributes to the development and progression of colorectal cancer (CRC). Natural killer (NK) cells are involved in early defense mechanisms to kill infective pathogens and tumor cells by releasing chemokines and cytokines. To better understand the relationship between the gut microbiome and CRC, it was hypothesized here that a high abundance of Fusobacterium nucleatum (F. nucleatum) in the gastrointestinal tract could cause reduced NK cell activity.
AIM To identify associations between gastrointestinal tract F. nucleatum levels and NK cell activity.
METHODS In vitro experiments were performed on NK cells treated with F. nucleatum, Peptostreptococcus anaerobius, and Parvimonas micra to identify the effects of gut microbiome species on NK cells. Following 24 and 48 h of treatment, NK cell counts were measured. In parallel studies, C57BL/6 mice were given broad-spectrum antibiotics in their drinking water to reduce resident gut flora. After 3 wk, the mice received the various bacterial species or phosphate-buffered saline (PBS) via oral gavage every 2 d for 6 wk. At the study end, blood samples were acquired to perform NK cell activity assessment and cytokine analysis. Intestinal tissues were collected and analyzed via immunohistochemistry (IHC).
RESULTS The data show that after 3 wk of broad-spectrum antibiotic treatment, levels of total bacteria and F. nucleatum were markedly decreased in mice. Gavage of F. nucleatum significantly decreased NK cell activity relative to the activities of cells from mice treated with antibiotics only and PBS. The administration of F. nucleatum decreased the proportion of NK46+ cells based on IHC staining and increased the production of interleukin-1β and tumor necrosis factor-α.
CONCLUSION High levels of F. nucleatum in the gastrointestinal tract reduced NK cell activity in mice, and the decrease in NK cell activity might be affected by increased pro-inflammatory cytokines after F. nucleatum treatment.
Collapse
Affiliation(s)
- Yeon Ji Kim
- Institute of Gastroenterology, Kosin University College of Medicine, Busan 49267, Spain
| | - Bu Kyung Kim
- Department of Internal Medicine, Kosin University College of Medicine, Busan 49267, South Korea
| | - Seun Ja Park
- Department of Internal Medicine, Kosin University College of Medicine, Busan 49267, South Korea
| | - Jae Hyun Kim
- Department of Internal Medicine, Kosin University College of Medicine, Busan 49267, South Korea
| |
Collapse
|
31
|
Bhagyaraj E, Wang H, Yang X, Hoffman C, Akgul A, Goodwin ZI, Pascual DW. Mucosal Vaccination Primes NK Cell-Dependent Development of CD8 + T Cells Against Pulmonary Brucella Infection. Front Immunol 2021; 12:697953. [PMID: 34305935 PMCID: PMC8293993 DOI: 10.3389/fimmu.2021.697953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/21/2021] [Indexed: 11/13/2022] Open
Abstract
Past studies with the live, double-mutant B. abortus (znBAZ) strain resulted in nearly complete protection of mice against pulmonary challenge with wild-type (wt) Brucella via a dominant CD8+ T cell response. To understand the contribution innate immune cells in priming CD8+ T cell responses, mice were nasally dosed with wt B. abortus, smooth vaccine strain 19 (S19), or znBAZ, and examined for innate immune cell activation. Flow cytometric analysis revealed that znBAZ, but not wt B. abortus nor S19 infection, induces up to a 5-fold increase in the frequency of IFN-γ-producing NK cells in mouse lungs. These NK cells express increased CXCR3 and Ki67, indicating their recruitment and proliferation subsequent to znBAZ infection. Their activation status was augmented noted by the increased NKp46 and granzyme B, but decreased NKG2A expression. Further analysis demonstrated that both lung caspase-1+ inflammatory monocytes and monocyte-derived macrophages secrete chemokines and cytokines responsible for NK cell recruitment and activation. Moreover, neutralizing IL-18, an NK cell-activating cytokine, reduced the znBAZ-induced early NK cell response. NK cell depletion also significantly impaired lung dendritic cell (DC) activation and migration to the lower respiratory lymph nodes (LRLNs). Both lung DC activation and migration to LRLNs were significantly impaired in NK cell-depleted or IFN-γ-/- mice, particularly the CD11b+ and monocytic DC subsets. Furthermore, znBAZ vaccination significantly induced CD8+ T cells, and upon in vivo NK cell depletion, CD8+ T cells were reduced 3-fold compared to isotype-treated mice. In summary, these data show that znBAZ induces lung IFN-γ+ NK cells, which plays a critical role in influencing lung DC activation, migration, and promoting protective CD8+ T cell development.
Collapse
Affiliation(s)
| | | | | | | | | | | | - David W. Pascual
- Department of Infectious Diseases & Immunology, University of Florida, Gainesville, FL, United States
| |
Collapse
|
32
|
Tonetti CR, de Souza-Araújo CN, Yoshida A, da Silva RF, Alves PCM, Mazzola TN, Derchain S, Fernandes LGR, Guimarães F. Ovarian Cancer-Associated Ascites Have High Proportions of Cytokine-Responsive CD56bright NK Cells. Cells 2021; 10:cells10071702. [PMID: 34359872 PMCID: PMC8306021 DOI: 10.3390/cells10071702] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/24/2022] Open
Abstract
Ovarian cancer is the most lethal gynecological malignancy, with serous histotype as the most prevalent epithelial ovarian cancer (EOC). Peritoneal ascites is a frequent comorbidity in advanced EOC. EOC-associated ascites provide a reliable sampling source for studying lymphocytes directly from tumor environment. Herein, we carried out flow cytometry-based analysis to readdress issues on NK and T lymphocyte subsets in women with advanced EOC, additionally evaluating phenotypic modulation of their intracellular pathways involved in interleukin (IL)-2 and IL-15 signaling. Results depicted ascites as an inflammatory and immunosuppressive environment, presenting significantly (p < 0.0001) higher amounts of IL-6 and IL-10 than in the patients' blood, as well as significantly (p < 0.05) increased expression of checkpoint inhibitory receptors (programmed death protein-1, PD-1) and ectonucleotidase (CD39) on T lymphocytes. However, NK lymphocytes from EOC-associated ascites showed higher (p < 0.05) pS6 phosphorylation compared with NK from blood. Additionally, in vitro treatment of lymphocytes with IL-2 or IL-15 elicited significantly (p < 0.001) phosphorylation of the STAT5 protein in NK, CD3 and CD8 lymphocytes, both from blood and ascites. EOC-associated ascites had a significantly (p < 0.0001) higher proportion of NK CD56bright lymphocytes than blood, which, in addition, were more responsive (p < 0.05) to stimulation by IL-2 than CD56dim NK. EOC-associated ascites allow studies on lymphocyte phenotype modulation in the tumor environment, where inflammatory profile contrasts with the presence of immunosuppressive elements and development of cellular self-regulating mechanisms.
Collapse
Affiliation(s)
- Cláudia Rodrigues Tonetti
- School of Medicine Sciences, University of Campinas, Rua Tessália Vieira de Camargo-126, Campinas CEP 13083-887, SP, Brazil; (C.R.T.); (C.N.d.S.-A.); (R.F.d.S.); (S.D.); (L.G.R.F.)
| | - Caroline Natânia de Souza-Araújo
- School of Medicine Sciences, University of Campinas, Rua Tessália Vieira de Camargo-126, Campinas CEP 13083-887, SP, Brazil; (C.R.T.); (C.N.d.S.-A.); (R.F.d.S.); (S.D.); (L.G.R.F.)
| | - Adriana Yoshida
- Centro de Atenção Integral à Saúde da Mulher (CAISM), Women’s Hospital José Aristodemo Pinotti, University of Campinas, Rua Alexander Fleming-101, Campinas CEP 13083-881, SP, Brazil;
| | - Rodrigo Fernandes da Silva
- School of Medicine Sciences, University of Campinas, Rua Tessália Vieira de Camargo-126, Campinas CEP 13083-887, SP, Brazil; (C.R.T.); (C.N.d.S.-A.); (R.F.d.S.); (S.D.); (L.G.R.F.)
| | - Paulo César Martins Alves
- Center for Investigation in Pediatrics, University of Campinas, Rua Tessália Vieira de Camargo-126, Campinas CEP 13083-887, SP, Brazil; (P.C.M.A.); (T.N.M.)
| | - Taís Nitsch Mazzola
- Center for Investigation in Pediatrics, University of Campinas, Rua Tessália Vieira de Camargo-126, Campinas CEP 13083-887, SP, Brazil; (P.C.M.A.); (T.N.M.)
| | - Sophie Derchain
- School of Medicine Sciences, University of Campinas, Rua Tessália Vieira de Camargo-126, Campinas CEP 13083-887, SP, Brazil; (C.R.T.); (C.N.d.S.-A.); (R.F.d.S.); (S.D.); (L.G.R.F.)
- Centro de Atenção Integral à Saúde da Mulher (CAISM), Women’s Hospital José Aristodemo Pinotti, University of Campinas, Rua Alexander Fleming-101, Campinas CEP 13083-881, SP, Brazil;
| | - Luís Gustavo Romani Fernandes
- School of Medicine Sciences, University of Campinas, Rua Tessália Vieira de Camargo-126, Campinas CEP 13083-887, SP, Brazil; (C.R.T.); (C.N.d.S.-A.); (R.F.d.S.); (S.D.); (L.G.R.F.)
| | - Fernando Guimarães
- School of Medicine Sciences, University of Campinas, Rua Tessália Vieira de Camargo-126, Campinas CEP 13083-887, SP, Brazil; (C.R.T.); (C.N.d.S.-A.); (R.F.d.S.); (S.D.); (L.G.R.F.)
- Centro de Atenção Integral à Saúde da Mulher (CAISM), Women’s Hospital José Aristodemo Pinotti, University of Campinas, Rua Alexander Fleming-101, Campinas CEP 13083-881, SP, Brazil;
- Correspondence: ; Tel.: +55-(19)-35219462
| |
Collapse
|
33
|
Human NK Cells in Autologous Hematopoietic Stem Cell Transplantation for Cancer Treatment. Cancers (Basel) 2021; 13:cancers13071589. [PMID: 33808201 PMCID: PMC8037172 DOI: 10.3390/cancers13071589] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Natural killer (NK) cells are key elements of the innate immune system that have the ability to kill transformed (tumor and virus-infected) cells without prior sensitization. Hematopoietic stem cell transplantation (HSCT) is a medical procedure used in the treatment of a variety of cancers. The early reconstitution of NK cells after HSCT and their functions support the therapeutic potential of these cells in allogenic HSCT. However, the role of NK cells in autologous HSCT is less clear. In this review, we have summarized general aspects of NK cell biology. In addition, we have also reviewed factors that affect autologous HSCT outcome, with particular attention to the role played by NK cells. Abstract Natural killer (NK) cells are phenotypically and functionally diverse lymphocytes with the ability to recognize and kill malignant cells without prior sensitization, and therefore, they have a relevant role in tumor immunosurveillance. NK cells constitute the main lymphocyte subset in peripheral blood in the first week after hematopoietic stem cell transplantation (HSCT). Although the role that NK cells play in allogenic HSCT settings has been documented for years, their significance and beneficial effects associated with the outcome after autologous HSCT are less recognized. In this review, we have summarized fundamental aspects of NK cell biology, such as, NK cell subset diversity, their effector functions, and differentiation. Moreover, we have reviewed the factors that affect autologous HSCT outcome, with particular attention to the role played by NK cells and their receptor repertoire in this regard.
Collapse
|
34
|
Lamb MG, Rangarajan HG, Tullius BP, Lee DA. Natural killer cell therapy for hematologic malignancies: successes, challenges, and the future. Stem Cell Res Ther 2021; 12:211. [PMID: 33766099 PMCID: PMC7992329 DOI: 10.1186/s13287-021-02277-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/10/2021] [Indexed: 12/20/2022] Open
Abstract
The adoptive transfer of natural killer (NK) cells is an emerging therapy in the field of immuno-oncology. In the last 3 decades, NK cells have been utilized to harness the anti-tumor immune response in a wide range of malignancies, most notably with early evidence of efficacy in hematologic malignancies. NK cells are dysfunctional in patients with hematologic malignancies, and their number and function are further impaired by chemotherapy, radiation, and immunosuppressants used in initial therapy and hematopoietic stem cell transplantation. Restoring this innate immune deficit may lead to improved therapeutic outcomes. NK cell adoptive transfer has proven to be a safe in these settings, even in the setting of HLA mismatch, and a deeper understanding of NK cell biology and optimized expansion techniques have improved scalability and therapeutic efficacy. Here, we review the use of NK cell therapy in hematologic malignancies and discuss strategies to further improve the efficacy of NK cells against these diseases.
Collapse
Affiliation(s)
- Margaret G Lamb
- Division of Hematology, Oncology, and Bone Marrow Transplant, Nationwide Children's Hospital, 700 Children's Drive, Suite 5A.1, Columbus, OH, 43205-2664, USA. .,Department of Pediatrics, The Ohio State University School of Medicine, Columbus, OH, USA.
| | - Hemalatha G Rangarajan
- Division of Hematology, Oncology, and Bone Marrow Transplant, Nationwide Children's Hospital, 700 Children's Drive, Suite 5A.1, Columbus, OH, 43205-2664, USA.,Department of Pediatrics, The Ohio State University School of Medicine, Columbus, OH, USA
| | - Brian P Tullius
- Division of Hematology, Oncology, and Bone Marrow Transplant, Nationwide Children's Hospital, 700 Children's Drive, Suite 5A.1, Columbus, OH, 43205-2664, USA.,Department of Pediatrics, The Ohio State University School of Medicine, Columbus, OH, USA
| | - Dean A Lee
- Division of Hematology, Oncology, and Bone Marrow Transplant, Nationwide Children's Hospital, 700 Children's Drive, Suite 5A.1, Columbus, OH, 43205-2664, USA.,Department of Pediatrics, The Ohio State University School of Medicine, Columbus, OH, USA
| |
Collapse
|
35
|
Wierdak M, Surmiak M, Milian-Ciesielska K, Rubinkiewicz M, Rzepa A, Wysocki M, Major P, Kłęk S, Pędziwiatr M. Immunonutrition Changes Inflammatory Response in Colorectal Cancer: Results from a Pilot Randomized Clinical Trial. Cancers (Basel) 2021; 13:cancers13061444. [PMID: 33809994 PMCID: PMC8005085 DOI: 10.3390/cancers13061444] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/11/2021] [Accepted: 03/16/2021] [Indexed: 01/08/2023] Open
Abstract
Simple Summary Nutritional support for patients who underwent surgery for colorectal cancer is widely accepted for reducing the incidence of perioperative complications. Immunonutrition is generally recommended to decrease the incidence of infectious complications. However, there is little clinical data regarding the impact of such treatment on tumor biology. Some basic studies show its negative impact on the development of the tumor, while others suggest it might be beneficial. Currently, there is no clinical evidence for any effect of immunonutrition on tumor tissues in vivo. Therefore, we designed this pilot randomized controlled trial to investigate the impact of immunonutrition compared with standard nutritional support in the preoperative period on the inflammatory response, cytokine expression, and leukocyte infiltration in the tumor tissue. Changes in tumor necrosis factor alpha (TNF-α), interleukin 8 or chemokine (C-X-C motif) ligand (CXCL8), and chemokine (C-X-C motif) ligand 1 (CXCL1) expression were observed after the intervention. In the immune group, a decrease in neutrophil infiltration was observed. Immunonutrition in the preoperative period influenced inflammatory response in patients with colorectal cancer. Abstract Introduction: Surgery is the first choice of treatment for colorectal cancer. Nutritional support in the form of oral nutritional supplements (ONSs) in the preoperative period is widely accepted for reducing the incidence of perioperative complications, and immunonutrition is generally recommended. However, there is little clinical data regarding the impact of such treatment on tumor biology. Material and Methods: In this study, tumor tissue and blood samples were collected from 26 patients during preoperative colonoscopy at the time of clinical diagnosis (sample A). Group 1 received standard ONSs (3× Nutricia Nutridrink Protein per day) for 2 weeks before surgery. In group 2, immune ONSs (2× Nestle Impact Oral) were administered for the same duration. Tumor tissue (sample B) was then retrieved from the tumor after resection. Changes in the expression levels of inflammatory cytokines (TNF-α, interleukin 8 or chemokine (C-X-C motif) ligand (CXCL8), stromal cell-derived factor 1 (SDF1a), chemokine (C-X-C motif) ligand 6 (CXCL6), chemokine (C-X-C motif) ligand (CXCL2), myeloperoxidase (MPO), and CXCL1) were assessed during the perioperative course. Results: TNF-α expression differed after intervention between the two groups (immune group 31.63 ± 13.28; control group 21.54 ± 6.84; p = 0.049) and prior to and after intervention in the control group (prior to intervention 35.68 ± 24.41; after intervention 21.54 ± 6.84; p = 0.038). Changes in CXCL8 expression in the control group occurred prior to and after intervention (prior to intervention 2975.93 ± 1484.04; after intervention 1584.85 ± 1659.84; p = 0.041). CXCL1 expression was increased in the immune group and decreased in the control group (immune group 2698.27 (1538.14–5124.70); control group 953.75 (457.85–1534.60); p = 0.032). In both groups, a decrease in superficial neutrophil infiltration was observed, but this was only statistically significant in the immune group. There was no impact of the observed differences between the two groups on surgical outcomes (morbidity, length of stay, readmissions). Conclusions: Immunonutrition in the preoperative period compared with standard nutritional support may influence inflammatory cytokine expression and leukocyte infiltration in patients with colorectal cancer.
Collapse
Affiliation(s)
- Mateusz Wierdak
- 2nd Department of General Surgery, Jagiellonian University Medical College, 31-008 Krakow, Poland; (M.W.); (M.R.); (A.R.); (M.W.); (P.M.)
| | - Marcin Surmiak
- Department of Internal Medicine, Jagiellonian University Medical College, 31-008 Krakow, Poland;
| | | | - Mateusz Rubinkiewicz
- 2nd Department of General Surgery, Jagiellonian University Medical College, 31-008 Krakow, Poland; (M.W.); (M.R.); (A.R.); (M.W.); (P.M.)
| | - Anna Rzepa
- 2nd Department of General Surgery, Jagiellonian University Medical College, 31-008 Krakow, Poland; (M.W.); (M.R.); (A.R.); (M.W.); (P.M.)
| | - Michał Wysocki
- 2nd Department of General Surgery, Jagiellonian University Medical College, 31-008 Krakow, Poland; (M.W.); (M.R.); (A.R.); (M.W.); (P.M.)
| | - Piotr Major
- 2nd Department of General Surgery, Jagiellonian University Medical College, 31-008 Krakow, Poland; (M.W.); (M.R.); (A.R.); (M.W.); (P.M.)
| | - Stanisław Kłęk
- Surgical Oncology Clinic, National Cancer Institute, 31-501 Krakow, Poland;
| | - Michał Pędziwiatr
- 2nd Department of General Surgery, Jagiellonian University Medical College, 31-008 Krakow, Poland; (M.W.); (M.R.); (A.R.); (M.W.); (P.M.)
- Correspondence: ; Tel.: +48-12-400-2600
| |
Collapse
|
36
|
Cribbs AP, Filippakopoulos P, Philpott M, Wells G, Penn H, Oerum H, Valge-Archer V, Feldmann M, Oppermann U. Dissecting the Role of BET Bromodomain Proteins BRD2 and BRD4 in Human NK Cell Function. Front Immunol 2021; 12:626255. [PMID: 33717143 PMCID: PMC7953504 DOI: 10.3389/fimmu.2021.626255] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/13/2021] [Indexed: 12/19/2022] Open
Abstract
Natural killer (NK) cells are innate lymphocytes that play a pivotal role in the immune surveillance and elimination of transformed or virally infected cells. Using a chemo-genetic approach, we identify BET bromodomain containing proteins BRD2 and BRD4 as central regulators of NK cell functions, including direct cytokine secretion, NK cell contact-dependent inflammatory cytokine secretion from monocytes as well as NK cell cytolytic functions. We show that both BRD2 and BRD4 control inflammatory cytokine production in NK cells isolated from healthy volunteers and from rheumatoid arthritis patients. In contrast, knockdown of BRD4 but not of BRD2 impairs NK cell cytolytic responses, suggesting BRD4 as critical regulator of NK cell mediated tumor cell elimination. This is supported by pharmacological targeting where the first-generation pan-BET bromodomain inhibitor JQ1(+) displays anti-inflammatory effects and inhibit tumor cell eradication, while the novel bivalent BET bromodomain inhibitor AZD5153, which shows differential activity towards BET family members, does not. Given the important role of both cytokine-mediated inflammatory microenvironment and cytolytic NK cell activities in immune-oncology therapies, our findings present a compelling argument for further clinical investigation.
Collapse
Affiliation(s)
- Adam P Cribbs
- Botnar Research Center, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, National Institute of Health Research Oxford Biomedical Research Unit (BRU), University of Oxford, Oxford, United Kingdom
| | | | - Martin Philpott
- Botnar Research Center, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, National Institute of Health Research Oxford Biomedical Research Unit (BRU), University of Oxford, Oxford, United Kingdom
| | - Graham Wells
- Botnar Research Center, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, National Institute of Health Research Oxford Biomedical Research Unit (BRU), University of Oxford, Oxford, United Kingdom
| | - Henry Penn
- Arthritis Centre, Northwick Park Hospital, Harrow, United Kingdom
| | - Henrik Oerum
- Roche Innovation Center Copenhagen A/S, Hørsholm, Denmark
| | - Viia Valge-Archer
- Bioscience, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Marc Feldmann
- Kennedy Institute of Rheumatology Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, Oxford, United Kingdom
| | - Udo Oppermann
- Botnar Research Center, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, National Institute of Health Research Oxford Biomedical Research Unit (BRU), University of Oxford, Oxford, United Kingdom.,Freiburg Institute of Advanced Studies, Freiburg, Germany.,Oxford Centre for Translational Myeloma Research, Oxford, United Kingdom
| |
Collapse
|
37
|
Houra M, Nazem-Kazerani F, Mortazavi M, Hadavi M, Moosavi SM, Arababadi MK. The roles played by IL-10, IL-23 and IL-17A in term delivery. J Neonatal Perinatal Med 2021; 14:85-93. [PMID: 32310191 DOI: 10.3233/npm-190360] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND The immune system significantly participates in the development of the successful delivery process. The roles played by cytokine molecules in the induction of term delivery are yet to be clarified. The aim of this project was to explore the serum levels of interleukin-10 (IL-10), IL-17A, and IL-23 in the mothers with term and prolonged pregnancy and their infants. MATERIALS AND METHODS In this study, 60 samples were collected from either mothers with term and prolonged pregnancy or their infants, collectively 240 samples. Serum levels of IL-10, IL-17A and IL-23 were explored using enzyme linked immunosorbent assay (ELISA) technique. RESULTS IL-10 serum levels significantly decreased in the neonates with prolonged pregnancy when compared to their mothers. Serum levels of IL-23 were increased either in term or prolonged pregnancy neonates when compared to their corresponded mothers. Serum levels of IL-10 and IL-23 significantly decreased and increased, respectively, in the female in comparison to male in the prolonged pregnancy neonates. IL-10 also significantly decreased in the term mothers who had higher gravidity. CONCLUSION Although, IL-17A does not play a key role in the delivery mechanism, IL-10 and IL-23 may be considered as potential factors in the modulation of term delivery.
Collapse
Affiliation(s)
- M Houra
- Geriatric Care Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - F Nazem-Kazerani
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.,Department of Gynecology and Obstetrics, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - M Mortazavi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.,Department of Gynecology and Obstetrics, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - M Hadavi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.,Department of Anesthesia, Faculty of Paramedicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - S M Moosavi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.,Department of Laboratory Sciences, Faculty of Paramedicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - M K Arababadi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.,Department of Laboratory Sciences, Faculty of Paramedicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
38
|
Rosenstock P, Kaufmann T. Sialic Acids and Their Influence on Human NK Cell Function. Cells 2021; 10:263. [PMID: 33572710 PMCID: PMC7911748 DOI: 10.3390/cells10020263] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 12/14/2022] Open
Abstract
Sialic acids are sugars with a nine-carbon backbone, present on the surface of all cells in humans, including immune cells and their target cells, with various functions. Natural Killer (NK) cells are cells of the innate immune system, capable of killing virus-infected and tumor cells. Sialic acids can influence the interaction of NK cells with potential targets in several ways. Different NK cell receptors can bind sialic acids, leading to NK cell inhibition or activation. Moreover, NK cells have sialic acids on their surface, which can regulate receptor abundance and activity. This review is focused on how sialic acids on NK cells and their target cells are involved in NK cell function.
Collapse
Affiliation(s)
- Philip Rosenstock
- Institute for Physiological Chemistry, Martin-Luther-University Halle-Wittenberg, Hollystr. 1, D-06114 Halle/Saale, Germany;
| | | |
Collapse
|
39
|
Abstract
Natural killer cells are powerful effectors of innate immunity that constitute a first line of defense against cancer. NK cells express an array of germline-encoded receptors which allow them to eliminate transformed cells and spare normal, healthy cells. Owing to their ability to kill circulating tumor cells, NK cells play a major role in the protection against cancer metastases. There is also convincing evidence that NK cells protect against some hematological cancers such as acute myeloid leukemia. However, the importance of NK cells for the control of established solid tumors is rather uncertain. Several mechanisms impede NK cell-mediated elimination of solid tumors, starting with the incapacity of NK cells to infiltrate the core of the tumor. In addition, immune escape mechanisms are at play in both solid and hematological cancers. These include the immunoediting of tumor cells and aberrant chronic inflammation that renders NK cells ineffective. In this chapter, I review the phenotypic characteristics of NK cells within the tumor microenvironment. Furthermore, I describe the mechanisms by which NK cells contribute to antitumor immunity. Finally, I review the different immune-evasion factors that impair NK cell activity against cancer.
Collapse
|
40
|
Veerabathiran R, Ragunath B, Kaviarasan V, Mohammed V, Ahmed SSSJ. Identification of selected genes associated with the SARS-CoV-2: a therapeutic approach and disease severity. BULLETIN OF THE NATIONAL RESEARCH CENTRE 2021; 45:79. [PMID: 33907373 PMCID: PMC8063172 DOI: 10.1186/s42269-021-00540-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/13/2021] [Indexed: 05/06/2023]
Abstract
BACKGROUND The ongoing pandemic of COVID-19 viruses takes its sole origin from the Wuhan Huanan seafood market, China. The first case was recorded as viral pneumonia and later became a worldwide pandemic (officially declared by WHO on March 11, 2020). MAIN BODY SARS-CoV-2 is an extremely infectious and transferrable virus that develops severe conditions like respiratory syndrome, high blood pressure and weakens the immune system. Coronavirus falls under the Coronaviridae family and Beta coronavirus genus. Affected individuals will encounter problems starting with fever followed by severe complications like SARS, ARDS, and many others. These SARS-CoV and MERS-CoV enter the host cells by the endosomal pathway, and about 16 non-structural proteins are involved in assembling the viral RNA synthesis complex. They possess a positive-sense single-stranded RNA, and about four major genes are mainly associated with the development of ASRD, SARS, and other respiratory problems. CONCLUSION Susceptibility of these four major genes such as ACE2, IL-2, 7 and 10, TNF, and VEGF is associated with COVID-19. This highlights the identification of the above-mentioned genes that can be used as potential biomarkers for early diagnosis and targeted drug delivery for treating the SARS-CoV-2 neurological symptoms and reducing inflammation in the brain.
Collapse
Affiliation(s)
- Ramakrishnan Veerabathiran
- Human Cytogenetics and Genomics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI) Chettinad Academy of Research and Education (CARE), Kelambakkam, Tamilnadu 603103 India
| | - Barath Ragunath
- Human Cytogenetics and Genomics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI) Chettinad Academy of Research and Education (CARE), Kelambakkam, Tamilnadu 603103 India
| | - Vaishak Kaviarasan
- Human Cytogenetics and Genomics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI) Chettinad Academy of Research and Education (CARE), Kelambakkam, Tamilnadu 603103 India
| | - Vajagathali Mohammed
- Human Cytogenetics and Genomics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI) Chettinad Academy of Research and Education (CARE), Kelambakkam, Tamilnadu 603103 India
| | - Shiek S. S. J. Ahmed
- Drug Discovery and Multi-Omics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI) Chettinad Academy of Research and Education (CARE), Kelambakkam, Tamilnadu 603103 India
| |
Collapse
|
41
|
Affiliation(s)
- Vladimir Jurisic
- Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
42
|
King CA, Wegman AD, Endy TP. Mobilization and Activation of the Innate Immune Response to Dengue Virus. Front Cell Infect Microbiol 2020; 10:574417. [PMID: 33224897 PMCID: PMC7670994 DOI: 10.3389/fcimb.2020.574417] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/28/2020] [Indexed: 12/17/2022] Open
Abstract
Dengue virus is an important human pathogen, infecting an estimated 400 million individuals per year and causing symptomatic disease in a subset of approximately 100 million. Much of the effort to date describing the host response to dengue has focused on the adaptive immune response, in part because of the well-established roles of antibody-dependent enhancement and T cell original sin as drivers of severe dengue upon heterotypic secondary infection. However, the innate immune system is a crucial factor in the host response to dengue, as it both governs the fate and vigor of the adaptive immune response, and mediates the acute inflammatory response in tissues. In this review, we discuss the innate inflammatory response to dengue infection, focusing on the role of evolutionarily conserved innate immune cells, their effector functions, and clinical course.
Collapse
Affiliation(s)
- Christine A. King
- Department of Microbiology and Immunology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
| | | | | |
Collapse
|
43
|
Zwirner NW, Domaica CI, Fuertes MB. Regulatory functions of NK cells during infections and cancer. J Leukoc Biol 2020; 109:185-194. [PMID: 33095941 DOI: 10.1002/jlb.3mr0820-685r] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 08/16/2020] [Accepted: 09/24/2020] [Indexed: 01/02/2023] Open
Abstract
After recognition, NK cells can kill susceptible target cells through perforin-dependent mechanisms or by inducing death receptor-mediated apoptosis, and they can also secrete cytokines that are pivotal for immunomodulation. Despite the critical role as effector cells against tumors and virus-infected cells, NK cells have been implicated in the regulation of T cell-mediated responses in different models of autoimmunity, transplantation, and viral infections. Here, we review the mechanisms described for NK cell-mediated inhibition of adaptive immune responses, with spotlight on the emerging evidence of their regulatory role that shapes antitumor immune responses.
Collapse
Affiliation(s)
- Norberto W Zwirner
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carolina I Domaica
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Mercedes B Fuertes
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
44
|
Coxiella burnetii-Infected NK Cells Release Infectious Bacteria by Degranulation. Infect Immun 2020; 88:IAI.00172-20. [PMID: 32817330 DOI: 10.1128/iai.00172-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 08/10/2020] [Indexed: 01/24/2023] Open
Abstract
Natural killer (NK) cells are critically involved in the early immune response against various intracellular pathogens, including Coxiella burnetii and Chlamydia psittaci Chlamydia-infected NK cells functionally mature, induce cellular immunity, and protect themselves by killing the bacteria in secreted granules. Here, we report that infected NK cells do not allow intracellular multiday growth of Coxiella, as is usually observed in other host cell types. C. burnetii-infected NK cells display maturation and gamma interferon (IFN-γ) secretion, as well as the release of Coxiella-containing lytic granules. Thus, NK cells possess a potent program to restrain and expel different types of invading bacteria via degranulation. Strikingly, though, in contrast to Chlamydia, expulsed Coxiella organisms largely retain their infectivity and, hence, escape the cell-autonomous self-defense mechanism in NK cells.
Collapse
|
45
|
Ehsani V, Mortazavi M, Ghorban K, Dadmanesh M, Bahramabadi R, Rezayati MT, Javadi-Moghadam E, Rezaei Z, Sabzali Z, Fatemi I, Sheikh Fathollahi M, Kazemi Arababadi M. Role of maternal interleukin-8 (IL-8) in normal-term birth in the human. Reprod Fertil Dev 2020; 31:1049-1056. [PMID: 30922438 DOI: 10.1071/rd18361] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 01/07/2019] [Indexed: 12/17/2022] Open
Abstract
Cytokines are the main factors involved in the normal functions of the placenta and delivery process. The aim of this project was to compare serum levels of interleukin-8 (IL-8), IL-6, tumour necrosis factor α (TNF-α) and transforming growth factor β (TGF-β) in term and prolonged-pregnancy mothers and their neonates. This study was performed on 240 participants including 60 term and prolonged-pregnancy neonates and their corresponding mothers. Serum levels of IL-8, IL-6, TNF-α and TGF-β were evaluated by the enzyme-linked immunosorbent assay technique. The results revealed that IL-8 serum levels were significantly lower in the prolonged-pregnancy mothers and their neonates when compared with term mothers and their neonates. Data analysis also revealed a negative correlation between TGF-β and age of prolonged-pregnancy mothers. A poor positive correlation between IL-6 and head circumference of term neonates was also observed. IL-8 may play crucial roles in the process of on-time delivery and age may significantly affect TGF-β production in prolonged-pregnancy mothers. Pro-inflammatory cytokines, such as IL-6, can also be considered as main factors involved in fetal growth.
Collapse
Affiliation(s)
- Vahid Ehsani
- Immunology of Infectious Diseases Research Centre, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, 7719617996, Iran
| | - Maryam Mortazavi
- Immunology of Infectious Diseases Research Centre, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, 7719617996, Iran; and Department of Gynaecology and Obstetrics, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, 7719617996, Iran; and Corresponding author.
| | - Khodayar Ghorban
- Department of Immunology, Faculty of Medicine, Aja University of Medical Sciences, Tehran, Iran
| | - Maryam Dadmanesh
- Department of Infectious Diseases, Faculty of Medicine, Aja University of Medical Sciences, Tehran, Iran
| | - Reza Bahramabadi
- Immunology of Infectious Diseases Research Centre, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, 7719617996, Iran; and Pathology and Stem Cell Research Center, Kerman University of Medical Sciences, Kerman, 7616913555, Iran
| | - Mohammad-Taghi Rezayati
- Immunology of Infectious Diseases Research Centre, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, 7719617996, Iran
| | - Esmat Javadi-Moghadam
- Department of Gynaecology and Obstetrics, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, 7719617996, Iran
| | - Zahra Rezaei
- Department of Gynaecology and Obstetrics, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, 7719617996, Iran
| | - Zahra Sabzali
- Department of Gynaecology and Obstetrics, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, 7719617996, Iran
| | - Iman Fatemi
- Physiology-Pharmacology Research Centre, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, 7719617996, Iran; and Department of Physiology and Pharmacology, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, 7719617996, Iran
| | - Mahmood Sheikh Fathollahi
- Immunology of Infectious Diseases Research Centre, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, 7719617996, Iran; and Department of Biostatistics, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, 7719617996, Iran
| | - Mohammad Kazemi Arababadi
- Immunology of Infectious Diseases Research Centre, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, 7719617996, Iran; and Department of Laboratory Medicine, Faculty of Paramedicine, Rafsanjan University of Medical Sciences, Rafsanjan, 7719617996, Iran
| |
Collapse
|
46
|
Lee Y, Shin H, Kim J. In vivo Anti-Cancer Effects of Resveratrol Mediated by NK Cell Activation. J Innate Immun 2020; 13:94-106. [PMID: 32937636 DOI: 10.1159/000510315] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 07/19/2020] [Indexed: 12/11/2022] Open
Abstract
Natural killer (NK) cells are innate immune lymphocytes that play an important role in anti-viral and anti-tumour immune responses. Several cancer immunotherapy approaches targeting NK cells are currently in clinical or preclinical development. Here, we aimed to find food nutrients that activate NK cells and determine their usefulness as candidates for anti-cancer and anti-metastatic drugs. Resveratrol appeared to activate NK cells most effectively among the substances tested and synergistically increased IFN-γ secretion and NK cell cytotoxicity with interleukin-2 (IL-2). CD107a, NKp30, and NKG2D expression levels were upregulated on the surface of NK cells upon treatment with resveratrol in combination with IL-2 compared with treatment with IL-2 alone. Moreover, NK cell activity in human and mouse whole blood was enhanced upon treatment with resveratrol. Most importantly, administration of resveratrol effectively inhibited tumour growth and metastasis in mice. In conclusion, we suggest that resveratrol may represent a candidate anti-cancer drug that acts by activating NK cells in vivo.
Collapse
Affiliation(s)
- Yoojin Lee
- Department of Microbiology and Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Heewook Shin
- Department of Microbiology and Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jongsun Kim
- Department of Microbiology and Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea,
| |
Collapse
|
47
|
Soleimanian S, Yaghobi R. Harnessing Memory NK Cell to Protect Against COVID-19. Front Pharmacol 2020; 11:1309. [PMID: 32973527 PMCID: PMC7468462 DOI: 10.3389/fphar.2020.01309] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023] Open
Abstract
The worldwide struggle against the coronavirus disease 2019 (COVID-19) as a public health crisis continues to sweep across the globe. Up to now, effective antiviral treatment against COVID-19 is not available. Therefore, throughout virus infections, a thorough clarification of the virus-host immune system interactions will be most probably helpful to encounter these challenges. Emerging evidence suggests that just like SARS and MERS, COVID-19 primarily suppresses the innate immune system, enabling its stable propagation during the early stage of infection. Consequently, proinflammatory cytokines and chemokines have been increasing during infection progression associated with severe lung pathology. It is imperative to consider hyper inflammation in vaccine designing, as vaccine-induced immune responses must have a protective role against infection without leading to immunopathology. Among the front-line responders to viral infections, Natural Killer (NK) cells have immense therapeutic potential, forming a bridge between innate and adaptive responses. A subset of NK cells exhibits putatively increased effector functions against viruses following pathogen-specific and immunization. Memory NK cells have higher cytotoxicity and effector activity, compared with the conventional NK cells. As a pioneering strategy, prompt accumulation and long-term maintenance of these memory NK cells could be an efficacious viral treatment. According to the high prevalence of human cytomegalovirus (HCMV) infection in the world, it remains to be determined whether HCMV adaptive NK cells could play a protective role against this new emerging virus. In addition, the new adaptive-like KIR+NKG2C+ NK cell subset (the adaptive-like lung tissue residue [tr]NK cell) in the context of the respiratory infection at this site could specifically exhibit the expansion upon COVID-19. Another aspect of NK cells we should note, utilizing modified NK cells such as allogeneic off-the-shelf CAR-NK cells as a state-of-the-art strategy for the treatment of COVID-19. In this line, we speculate introducing NKG2C into chimeric antigen receptors in NK cells might be a potential approach in future viral immunotherapy for emerging viruses. In this contribution, we will briefly discuss the current status and future perspective of NK cells, which provide to successfully exploit NK cell-mediated antiviral activity that may offer important new tools in COVID-19 treatment.
Collapse
Affiliation(s)
| | - Ramin Yaghobi
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
48
|
Kupz A, Pai S, Giacomin PR, Whan JA, Walker RA, Hammoudi PM, Smith NC, Miller CM. Treatment of mice with S4B6 IL-2 complex prevents lethal toxoplasmosis via IL-12- and IL-18-dependent interferon-gamma production by non-CD4 immune cells. Sci Rep 2020; 10:13115. [PMID: 32753607 PMCID: PMC7403597 DOI: 10.1038/s41598-020-70102-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/23/2020] [Indexed: 01/08/2023] Open
Abstract
Toxoplasmic encephalitis is an AIDS-defining condition. The decline of IFN-γ-producing CD4+ T cells in AIDS is a major contributing factor in reactivation of quiescent Toxoplasma gondii to an actively replicating stage of infection. Hence, it is important to characterize CD4-independent mechanisms that constrain acute T. gondii infection. We investigated the in vivo regulation of IFN-γ production by CD8+ T cells, DN T cells and NK cells in response to acute T. gondii infection. Our data show that processing of IFN-γ by these non-CD4 cells is dependent on both IL-12 and IL-18 and the secretion of bioactive IL-18 in response to T. gondii requires the sensing of viable parasites by multiple redundant inflammasome sensors in multiple hematopoietic cell types. Importantly, our results show that expansion of CD8+ T cells, DN T cells and NK cell by S4B6 IL-2 complex pre-treatment increases survival rates of mice infected with T. gondii and this is dependent on IL-12, IL-18 and IFN-γ. Increased survival is accompanied by reduced pathology but is independent of expansion of TReg cells or parasite burden. This provides evidence for a protective role of IL2C-mediated expansion of non-CD4 cells and may represent a promising lead to adjunct therapy for acute toxoplasmosis.
Collapse
Affiliation(s)
- Andreas Kupz
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, 4878, Australia.
| | - Saparna Pai
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, 4878, Australia
| | - Paul R Giacomin
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, 4878, Australia
| | - Jennifer A Whan
- Advanced Analytical Centre, James Cook University, Cairns, QLD, 4878, Australia
| | - Robert A Walker
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, 4878, Australia
| | - Pierre-Mehdi Hammoudi
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Nicholas C Smith
- School of Science and Health, Western Sydney University, Parramatta South Campus, Sydney, NSW, 2116, Australia.,School of Life Sciences, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Catherine M Miller
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, 4878, Australia.,Discipline of Biomedicine, College of Public Health, Medical and Veterinary Science, James Cook University, Cairns, QLD, 4878, Australia
| |
Collapse
|
49
|
Market M, Angka L, Martel AB, Bastin D, Olanubi O, Tennakoon G, Boucher DM, Ng J, Ardolino M, Auer RC. Flattening the COVID-19 Curve With Natural Killer Cell Based Immunotherapies. Front Immunol 2020; 11:1512. [PMID: 32655581 PMCID: PMC7324763 DOI: 10.3389/fimmu.2020.01512] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/09/2020] [Indexed: 12/14/2022] Open
Abstract
Natural Killer (NK) cells are innate immune responders critical for viral clearance and immunomodulation. Despite their vital role in viral infection, the contribution of NK cells in fighting SARS-CoV-2 has not yet been directly investigated. Insights into pathophysiology and therapeutic opportunities can therefore be inferred from studies assessing NK cell phenotype and function during SARS, MERS, and COVID-19. These studies suggest a reduction in circulating NK cell numbers and/or an exhausted phenotype following infection and hint toward the dampening of NK cell responses by coronaviruses. Reduced circulating NK cell levels and exhaustion may be directly responsible for the progression and severity of COVID-19. Conversely, in light of data linking inflammation with coronavirus disease severity, it is necessary to examine NK cell potential in mediating immunopathology. A common feature of coronavirus infections is that significant morbidity and mortality is associated with lung injury and acute respiratory distress syndrome resulting from an exaggerated immune response, of which NK cells are an important component. In this review, we summarize the current understanding of how NK cells respond in both early and late coronavirus infections, and the implication for ongoing COVID-19 clinical trials. Using this immunological lens, we outline recommendations for therapeutic strategies against COVID-19 in clearing the virus while preventing the harm of immunopathological responses.
Collapse
Affiliation(s)
- Marisa Market
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Leonard Angka
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Andre B. Martel
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, Canada
- Division of General Surgery, Department of Surgery, University of Ottawa, Ottawa, ON, Canada
| | - Donald Bastin
- Schulich School of Medicine, University of Western Ontario, London, ON, Canada
| | - Oladunni Olanubi
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Gayashan Tennakoon
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Dominique M. Boucher
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Juliana Ng
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Michele Ardolino
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, Canada
- Centre for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, ON, Canada
| | - Rebecca C. Auer
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, Canada
- Division of General Surgery, Department of Surgery, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
50
|
Wang J, Matosevic S. Functional and metabolic targeting of natural killer cells to solid tumors. Cell Oncol (Dordr) 2020; 43:577-600. [DOI: 10.1007/s13402-020-00523-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2020] [Indexed: 12/15/2022] Open
|