1
|
El Eid L, Deane-Alder K, Rujan RM, Mariam Z, Oqua AI, Manchanda Y, Belousoff MJ, Bernardino de la Serna J, Sloop KW, Rutter GA, Montoya A, Withers DJ, Millership S, Bouzakri K, Jones B, Reynolds CA, Sexton PM, Wootten D, Deganutti G, Tomas A. In vivo functional profiling and structural characterisation of the human Glp1r A316T variant. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.19.619191. [PMID: 39484598 PMCID: PMC11527029 DOI: 10.1101/2024.10.19.619191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are effective therapies for type 2 diabetes (T2D) and obesity, yet patient responses are variable. Variation in the human Glp1r gene might be directly linked to therapeutic responses. A naturally occurring missense variant, A316T, protects against T2D and cardiovascular disease. Here, we have generated and characterised a human Glp1r A316T mouse model. Human Glp1r A316T/A316T mice displayed lower fasting blood glucose versus wildtype littermates, even under metabolic stress, and exhibited alterations in islet cytoarchitecture and α/β identity under a high-fat, high-sucrose diet. This was however associated with blunted responses to GLP-1RAs in vivo. Further investigations in rodent and human β-cell models demonstrated that human Glp1r A316T exhibits characteristics of constitutive activation but dampened GLP-1RA responses. Results are further supported by cryo-EM analyses and molecular dynamics simulations of GLP-1R A316T structure, collectively demonstrating that the A316T variant governs basal GLP-1R activity and pharmacological responses to GLP-1R-targeting therapies.
Collapse
|
2
|
Nienhaus F, Burkhardt F, König N, Schmitt RH. Compensating the Meniscus Effect in Phase Contrast Microscopy Using an LCD for Adaptive Condenser Annulus Shifting. Microsc Res Tech 2025. [PMID: 39821289 DOI: 10.1002/jemt.24808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/02/2025] [Accepted: 01/04/2025] [Indexed: 01/19/2025]
Abstract
The meniscus effect in cell culture vessels limits the observable areas with phase contrast microscopy. For meniscus effect compensation in microtiter plates (MTPs), we present a method using an LCD to replace the fixed condenser annulus, which enables adaptive annulus shifting based on image analysis. This approach led to an increase in phase contrast area by a factor of 8.3. Utilizing a standard phase contrast microscope, we substituted the static condenser annulus with a transparent LCD that displays an adaptive annulus, which can be repositioned to counteract meniscus-induced refraction across an entire MTP-24 well. We developed image analysis using Bertrand lens images to determine the misalignment between annulus center and phase ring, enabling the calculation of the required annulus shift. Experiments demonstrate the effectiveness of this image analysis technique. The detected shift was translated into new LCD settings through a linear regression model to ensure proper alignment for the following image. We proved that an algorithm based on background brightness yields a reliable metric for assessing phase contrast conditions within well-plates. The proposed approach substantially increased the phase contrast area in 24-well MTPs at 10× magnification from 5.0% with conventional microscopy to 41.9%, thereby restoring phase contrast conditions throughout the well, except near the edges.
Collapse
Affiliation(s)
- Florian Nienhaus
- Fraunhofer Institute for Production Technology IPT, Aachen, Germany
| | - Finn Burkhardt
- Fraunhofer Institute for Production Technology IPT, Aachen, Germany
| | - Niels König
- Fraunhofer Institute for Production Technology IPT, Aachen, Germany
| | - Robert H Schmitt
- Fraunhofer Institute for Production Technology IPT, Aachen, Germany
- WZL, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
3
|
Giarrizzo M, LaComb JF, Patel HR, Reddy RG, Haley JD, Graves LM, Iwanowicz EJ, Bialkowska AB. TR-107, an Agonist of Caseinolytic Peptidase Proteolytic Subunit, Disrupts Mitochondrial Metabolism and Inhibits the Growth of Human Colorectal Cancer Cells. Mol Cancer Ther 2024; 23:1761-1778. [PMID: 39233476 PMCID: PMC11614700 DOI: 10.1158/1535-7163.mct-24-0170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/01/2024] [Accepted: 08/22/2024] [Indexed: 09/06/2024]
Abstract
Oxidative phosphorylation is an essential metabolic process for cancer proliferation and therapy resistance. The ClpXP complex maintains mitochondrial proteostasis by degrading misfolded proteins. Madera Therapeutics has developed a class of highly potent and selective small-molecule activators (TR compounds) of the ClpXP component caseinolytic peptidase proteolytic subunit (ClpP). This approach to cancer therapy eliminates substrate recognition and activates nonspecific protease function within mitochondria, which has shown encouraging preclinical efficacy in multiple malignancies. The class-leading compound TR-107 has demonstrated significantly improved potency in ClpP affinity and activation and enhanced pharmacokinetic properties over the multitargeting clinical agent ONC201. In this study, we investigate the in vitro efficacy of TR-107 against human colorectal cancer cells. TR-107 inhibited colorectal cancer cell proliferation in a dose- and time-dependent manner and induced cell cycle arrest at low nanomolar concentrations. Mechanistically, TR-107 downregulated the expression of proteins involved in the mitochondrial unfolded protein response and mitochondrial DNA transcription and translation. TR-107 attenuated oxygen consumption rate and glycolytic compensation, confirming inactivation of oxidative phosphorylation and a reduction in total cellular respiration. Multiomics analysis of treated cells indicated a downregulation of respiratory chain complex subunits and an upregulation of mitophagy and ferroptosis pathways. Further evaluation of ferroptosis revealed a depletion of antioxidant and iron toxicity defenses that could potentiate sensitivity to combinatory chemotherapeutics. Together, this study provides evidence and insight into the subcellular mechanisms employed by colorectal cancer cells in response to potent ClpP agonism. Our findings demonstrate a productive approach to disrupting mitochondrial metabolism, supporting the translational potential of TR-107.
Collapse
Affiliation(s)
- Michael Giarrizzo
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
| | - Joseph F LaComb
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
| | - Hetvi R Patel
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
| | - Rohan G Reddy
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
| | - John D Haley
- Department of Pathology, Stony Brook University, Stony Brook, New York
- Developmental Therapeutics at SBU Cancer Center, Stony Brook University, Stony Brook, New York
- SBU Proteomics Center, Stony Brook University, Stony Brook, New York
| | - Lee M Graves
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | | - Agnieszka B Bialkowska
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
| |
Collapse
|
4
|
Datta R, Miskolci V, Gallego-López GM, Britt E, Gillette A, Kralovec A, Giese MA, Qian T, Votava J, Fan J, Huttenlocher A, Skala M. Single cell autofluorescence imaging reveals immediate metabolic shifts of neutrophils with activation across biological systems. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.26.605362. [PMID: 39211087 PMCID: PMC11360992 DOI: 10.1101/2024.07.26.605362] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Neutrophils, the most abundant leukocytes in human peripheral circulation, are crucial for the innate immune response. They are typically quiescent but rapidly activate in response to infection and inflammation, performing diverse functions such as oxidative burst, phagocytosis, and NETosis, which require significant metabolic adaptation. Deeper insights into such metabolic changes will help identify regulation of neutrophil functions in health and diseases. Due to their short lifespan and associated technical challenges, the metabolic processes of neutrophils are not completely understood. This study uses optical metabolic imaging (OMI), which entails optical redox ratio and fluorescence lifetime imaging microscopy of intrinsic metabolic coenzymes NAD(P)H and FAD to assess the metabolic state of single neutrophils. Primary human neutrophils were imaged in vitro under a variety of activation conditions and metabolic pathway inhibitors, while metabolic and functional changes were confirmed with mass spectrometry, oxidative burst, and NETosis measurements. Our findings show that neutrophils undergo rapid metabolic remodeling to a reduced redox state indicated by changes in NAD(P)H lifetime and optical redox ratio, with a shift to an oxidized redox state during activation. Additionally, single cell OMI analysis reveals a heterogeneous metabolic response across neutrophils and human donors to live pathogen infection ( Pseudomonas aeruginosa and Toxoplasma gondii ). Finally, consistent OMI changes with activation were confirmed between in vitro human and in vivo zebrafish larvae neutrophils. This study demonstrates the potential of OMI as a versatile tool for studying neutrophil metabolism and underscores its use across different biological systems, offering insights into neutrophil metabolic activity and function at a single cell level.
Collapse
|
5
|
Pragnere S, Courtial EJ, Dubreuil F, Errazuriz-Cerda E, Marquette C, Petiot E, Pailler-Mattei C. Tuning viscoelasticity and stiffness in bioprinted hydrogels for enhanced 3D cell culture: A multi-scale mechanical analysis. J Mech Behav Biomed Mater 2024; 159:106696. [PMID: 39205347 DOI: 10.1016/j.jmbbm.2024.106696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/26/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024]
Abstract
Bioprinted hydrogels are extensively studied to provide an artificial matrix for 3D cell culture. The success of bioprinting hydrogels relies on fine-tuning their rheology and composition to achieve shear-thinning behavior. However, a challenge arises from the limited viscoelastic and stiffness range accessible from a single hydrogel formulation. Nevertheless, hydrogel mechanical properties are recognized as essential cues influencing cell phenotype, migration, and differentiation. Thus, it is crucial to develop a system to easily modulate bioprinted hydrogels' mechanical behaviors. In this work, we modulated the viscoelastic properties and stiffness of bioprinted hydrogels composed of fibrinogen, alginate, and gelatin by tuning the crosslinking bath solution. Various concentrations of calcium ionically crosslinked alginate, while transglutaminase crosslinked gelatin. Subsequently, we characterized the mechanical behavior of our bioprinted hydrogels from the nanoscale to the macroscale. This approach enabled the production of diverse bioprinted constructs, either with similar elastic behavior but different elastic moduli or with similar elastic moduli but different viscoelastic behavior from the same hydrogel formulation. Culturing fibroblasts in the hydrogels for 33 days revealed a preference for cell growth and matrix secretion in the viscoelastic hydrogels. This work demonstrates the suitability of the method to decouple the effects of material mechanical from biochemical composition cues on 3D cultured cells.
Collapse
Affiliation(s)
- Sarah Pragnere
- Laboratory of Tribology and System Dynamics UMR-CNRS 5513, Ecole Centrale de, Lyon, France; Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600, MB, Eindhoven, the Netherlands
| | - Edwin-Joffrey Courtial
- 3d.FAB, Univ Lyon, Université Lyon 1, CNRS, INSA, CPE-Lyon, ICBMS, UMR 5246, 43, Bd Du 11, Villeurbanne cedex, France
| | - Frédéric Dubreuil
- Laboratory of Tribology and System Dynamics UMR-CNRS 5513, Ecole Centrale de, Lyon, France
| | | | - Christophe Marquette
- 3d.FAB, Univ Lyon, Université Lyon 1, CNRS, INSA, CPE-Lyon, ICBMS, UMR 5246, 43, Bd Du 11, Villeurbanne cedex, France
| | - Emma Petiot
- 3d.FAB, Univ Lyon, Université Lyon 1, CNRS, INSA, CPE-Lyon, ICBMS, UMR 5246, 43, Bd Du 11, Villeurbanne cedex, France
| | - Cyril Pailler-Mattei
- Laboratory of Tribology and System Dynamics UMR-CNRS 5513, Ecole Centrale de, Lyon, France; University of Lyon, Université Claude Bernard Lyon 1, ISPB-Faculté de Pharmacie de, Lyon, France.
| |
Collapse
|
6
|
Manchanda Y, ElEid L, Oqua AI, Ramchunder Z, Choi J, Shchepinova MM, Rutter GA, Inoue A, Tate EW, Jones B, Tomas A. Engineered mini-G proteins block the internalization of cognate GPCRs and disrupt downstream intracellular signaling. Sci Signal 2024; 17:eabq7038. [PMID: 38954638 DOI: 10.1126/scisignal.abq7038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/07/2024] [Indexed: 07/04/2024]
Abstract
Mini-G proteins are engineered, thermostable variants of Gα subunits designed to stabilize G protein-coupled receptors (GPCRs) in their active conformations. Because of their small size and ease of use, they are popular tools for assessing GPCR behaviors in cells, both as reporters of receptor coupling to Gα subtypes and for cellular assays to quantify compartmentalized signaling at various subcellular locations. Here, we report that overexpression of mini-G proteins with their cognate GPCRs disrupted GPCR endocytic trafficking and associated intracellular signaling. In cells expressing the Gαs-coupled GPCR glucagon-like peptide 1 receptor (GLP-1R), coexpression of mini-Gs, a mini-G protein derived from Gαs, blocked β-arrestin 2 recruitment and receptor internalization and disrupted endosomal GLP-1R signaling. These effects did not involve changes in receptor phosphorylation or lipid nanodomain segregation. Moreover, we found that mini-G proteins derived from Gαi and Gαq also inhibited the internalization of GPCRs that couple to them. Finally, we developed an alternative intracellular signaling assay for GLP-1R using a nanobody specific for active Gαs:GPCR complexes (Nb37) that did not affect GLP-1R internalization. Our results have important implications for designing methods to assess intracellular GPCR signaling.
Collapse
Affiliation(s)
- Yusman Manchanda
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, UK
| | - Liliane ElEid
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, UK
| | - Affiong I Oqua
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, UK
| | - Zenouska Ramchunder
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, UK
| | - Jiyoon Choi
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, UK
| | - Maria M Shchepinova
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, London, UK
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, UK
- CR-CHUM, Université de Montréal, Montréal, QC, Canada
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Edward W Tate
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, London, UK
| | - Ben Jones
- Section of Endocrinology and Investigative Medicine, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, UK
| | - Alejandra Tomas
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, UK
| |
Collapse
|
7
|
Bridge L, Chen S, Jones B. Computational modelling of dynamic cAMP responses to GPCR agonists for exploration of GLP-1R ligand effects in pancreatic β-cells and neurons. Cell Signal 2024; 119:111153. [PMID: 38556030 DOI: 10.1016/j.cellsig.2024.111153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
The glucagon-like peptide-1 receptor (GLP-1R) is a class B G protein-coupled receptor (GPCR) which plays important physiological roles in insulin release and promoting fullness. GLP-1R agonists initiate cellular responses by cyclic AMP (cAMP) pathway signal transduction. Understanding of the potential of GLP-1R agonists in the treatment of type 2 diabetes may be advanced by considering the cAMP dynamics for agonists at GLP-1R in both pancreatic β-cells (important in insulin release) and neurons (important in appetite regulation). Receptor desensitisation in the cAMP pathway is known to be an important regulatory mechanism, with different ligands differentially promoting G protein activation and desensitisation. Here, we use mathematical modelling to quantify and understand experimentally obtained cAMP timecourses for two GLP-1R agonists, exendin-F1 (ExF1) and exendin-D3 (ExD3), which give markedly different signals in β-cells and neurons. We formulate an ordinary differential equation (ODE) model for the dynamics of cAMP signalling in response to G protein-coupled receptor (GPCR) ligands, encompassing ligand binding, receptor activation, G protein activation, desensitisation and second messenger generation. We validate our model initially by fitting to timecourse data for HEK293 cells, then proceed to parameterise the model for β-cells and neurons. Through numerical simulation and sensitivity studies, our analysis adds support to the hypothesis that ExF1 offers more potential glucose regulation benefit than ExD3 over long timescales via signalling in pancreatic β-cells, but that there is little difference between the two ligands in the potential appetite suppression effects offered via long-time signalling in neurons on the same timescales.
Collapse
|
8
|
Manucci AC, Fiore APZP, Genesi GL, Bruni-Cardoso A. The basement membrane regulates the cellular localization and the cytoplasmic interactome of Yes-Associated Protein (YAP) in mammary epithelial cells. J Cell Biochem 2024; 125:e30606. [PMID: 38779980 DOI: 10.1002/jcb.30606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/16/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
The Hippo pathway, a signaling cascade involved in the regulation of organ size and several other processes, acts as a conduit between extracellular matrix (ECM) cues and cellular responses. We asked whether the basement membrane (BM), a specialized ECM component known to induce quiescence and differentiation in mammary epithelial cells, would regulate the localization, activity, and interactome of YAP, a Hippo pathway effector. To address this question, we used a broad range of experimental approaches, including 2D and 3D cultures of both mouse and human mammary epithelial cells, as well as the developing mouse mammary gland. In contrast to malignant cells, nontumoral cells cultured with a reconstituted BM (rBM) displayed higher concentrations of YAP in the cytoplasm. Incidentally, when in the nucleus of rBM-treated cells, YAP resided preferentially at the nuclear periphery. In agreement with our cell culture experiments, YAP exhibited cytoplasmic predominance in ductal cells of developing mammary epithelia, where a denser BM is found. Conversely, terminal end bud (TEB) cells with a thinner BM displayed higher nucleus-to-cytoplasm ratios of YAP. Bioinformatic analysis revealed that genes regulated by YAP were overrepresented in the transcriptomes of microdissected TEBs. Consistently, mouse epithelial cells exposed to the rBM expressed lower levels of YAP-regulated genes, although the protein level of YAP and Hippo components were slightly altered by the treatment. Mass spectrometry analysis identified a differential set of proteins interacting with YAP in cytoplasmic fractions of mouse epithelial cells in the absence or presence of rBM. In untreated cells, YAP interactants were enriched in processes related to ubiquitin-mediated proteolysis, whereas in cells exposed to rBM YAP interactants were mainly key proteins related to amino acid, amino sugar, and carbohydrate metabolism. Collectively, we unraveled that the BM induces YAP translocation or retention in the cytoplasm of nontumoral epithelial cells and that in the cytoplasm YAP seems to undertake novel functions in metabolic pathways.
Collapse
Affiliation(s)
- Antonio Carlos Manucci
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | | | - Giovani Luiz Genesi
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Alexandre Bruni-Cardoso
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
9
|
Qatan AAI, Tanbara S, Inamori M, Fukumori K, Kino–oka M. Spatial heterogeneity analysis of seeding of human induced pluripotent stem cells for neuroectodermal differentiation. Regen Ther 2024; 26:922-931. [PMID: 39508058 PMCID: PMC11539164 DOI: 10.1016/j.reth.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/28/2024] [Accepted: 10/10/2024] [Indexed: 11/08/2024] Open
Abstract
Introduction Preparing a uniform cell population in high-density seeding of adherent human induced pluripotent stem cells (hiPSC) requires stable culture conditions and consistent culture operation. In this study, we evaluated cell distribution patterns by changing cell seeding operations and their impact on differentiation toward the neuroectodermal lineage. Methods The hiPSC line 201B7 was seeded at 1.23 × 105 cells/cm2 following a conventional operation, prolongated time of cell seeding suspension or vessel tilting during cell seeding operation. Fluorescent imaging of cell nuclei was performed 24 h following cell seeding and used for spatial heterogeneity analysis. Flow cytometric analysis was also performed seven days after cell differentiation induction toward neuroectodermal lineage. Results Indices for spatial heterogeneity following high-density cell seeding were proposed to assess cell distribution patterns. Global heterogeneity (H G) was shown to be mostly affected by vessel tilting during cell seeding operation, while local heterogeneity (H L) was affected by prolongated time of cell seeding suspension. Changes in both spatial heterogeneities in the hiPSC population resulted in a lower yield of target neuroectodermal cells compared with the control operation. Conclusion High-density hiPSC seeding is critical for achieving a higher yield of target cells of neuroectodermal lineage. Understanding the spatial heterogeneity in early stages detects errors in cell culture motion and predicts cell fate in later stages of cell culture.
Collapse
Affiliation(s)
- Ali Ahmed Issa Qatan
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2–1 Yamadaoka, Suita, Osaka 565–0871, Japan
| | - Shinji Tanbara
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2–1 Yamadaoka, Suita, Osaka 565–0871, Japan
| | - Masakazu Inamori
- Cell Manufacturing Systems Engineering (Healios) Joint Research Chair, Graduate School of Engineering, Osaka University, 2–1 Yamadaoka, Suita, Osaka 565–0871, Japan
| | - Kazuhiro Fukumori
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2–1 Yamadaoka, Suita, Osaka 565–0871, Japan
| | - Masahiro Kino–oka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2–1 Yamadaoka, Suita, Osaka 565–0871, Japan
- Cell Manufacturing Systems Engineering (Healios) Joint Research Chair, Graduate School of Engineering, Osaka University, 2–1 Yamadaoka, Suita, Osaka 565–0871, Japan
- Research Base for Cell Manufacturability, TechnoArena, Graduate School of Engineering, Osaka University, 2–1 Yamadaoka, Suita, Osaka 565–0871, Japan
| |
Collapse
|
10
|
Tidwell TR, Røsland G, Tronstad KJ, Søreide K, Hagland HR. Comparing in vitro cytotoxic drug sensitivity in colon and pancreatic cancer using 2D and 3D cell models: Contrasting viability and growth inhibition in clinically relevant dose and repeated drug cycles. Cancer Med 2024; 13:e7318. [PMID: 38872378 PMCID: PMC11176582 DOI: 10.1002/cam4.7318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/05/2024] [Accepted: 05/08/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND In vitro drug screening that is more translatable to the in vivo tumor environment can reduce both time and cost of cancer drug development. Here we address some of the shortcomings in screening and show how treatment with 5-fluorouracil (5-FU) in 2D and 3D culture models of colorectal cancer (CRC) and pancreatic ductal adenocarcinomas (PDAC) give different responses regarding growth inhibition. METHODS The sensitivity of the cell lines at clinically relevant 5-FU concentrations was monitored over 4 days of treatment in both 2D and 3D cultures for CRC (SW948 and HCT116) and PDAC (Panc-1 and MIA-Pa-Ca-2) cell lines. The 3D cultures were maintained beyond this point to enable a second treatment cycle at Day 14, following the timeline of a standard clinical 5-FU regimen. RESULTS Evaluation after one cycle did not reveal significant growth inhibition in any of the CRC or PDAC 2D models. By the end of the second cycle of treatment the CRC spheroids reached 50% inhibition at clinically achievable concentrations in the 3D model, but not in the 2D model. The PDAC models were not sensitive to clinical doses even after two cycles. High content viability metrics point to even lower response in the resistant PDAC models. CONCLUSION This study reveals the limitations of testing drugs in 2D cancer models and short exposure in 3D models, and the importance of using appropriate growth inhibition analysis. We found that screening with longer exposure and several cycles of treatment in 3D models suggests a more reliable way to assess drug sensitivity.
Collapse
Affiliation(s)
- Tia R Tidwell
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, Norway
| | - Gro Røsland
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | | | - Kjetil Søreide
- Department of Gastrointestinal Surgery, Stavanger University Hospital, Stavanger, Norway
- Department of Clinical medicine, University of Bergen, Bergen, Norway
- Gastrointestinal Translational Research Group, Stavanger University Hospital, Stavanger, Norway
| | - Hanne R Hagland
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, Norway
| |
Collapse
|
11
|
Hindle J, Williams A, Kim Y, Kim D, Patil K, Khatkar P, Osgood Q, Nelson C, Routenberg DA, Howard M, Liotta LA, Kashanchi F, Branscome H. hTERT-Immortalized Mesenchymal Stem Cell-Derived Extracellular Vesicles: Large-Scale Manufacturing, Cargo Profiling, and Functional Effects in Retinal Epithelial Cells. Cells 2024; 13:861. [PMID: 38786083 PMCID: PMC11120263 DOI: 10.3390/cells13100861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
As the economic burden associated with vision loss and ocular damage continues to rise, there is a need to explore novel treatment strategies. Extracellular vesicles (EVs) are enriched with various biological cargo, and there is abundant literature supporting the reparative and immunomodulatory properties of stem cell EVs across a broad range of pathologies. However, one area that requires further attention is the reparative effects of stem cell EVs in the context of ocular damage. Additionally, most of the literature focuses on EVs isolated from primary stem cells; the use of EVs isolated from human telomerase reverse transcriptase (hTERT)-immortalized stem cells has not been thoroughly examined. Using our large-scale EV-manufacturing platform, we reproducibly manufactured EVs from hTERT-immortalized mesenchymal stem cells (MSCs) and employed various methods to characterize and profile their associated cargo. We also utilized well-established cell-based assays to compare the effects of these EVs on both healthy and damaged retinal pigment epithelial cells. To the best of our knowledge, this is the first study to establish proof of concept for reproducible, large-scale manufacturing of hTERT-immortalized MSC EVs and to investigate their potential reparative properties against damaged retinal cells. The results from our studies confirm that hTERT-immortalized MSC EVs exert reparative effects in vitro that are similar to those observed in primary MSC EVs. Therefore, hTERT-immortalized MSCs may represent a more consistent and reproducible platform than primary MSCs for generating EVs with therapeutic potential.
Collapse
Affiliation(s)
| | - Anastasia Williams
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA (K.P.)
| | - Yuriy Kim
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA (K.P.)
| | | | - Kajal Patil
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA (K.P.)
| | - Pooja Khatkar
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA (K.P.)
| | | | - Collin Nelson
- Meso Scale Diagnostics, L.L.C., Rockville, MD 20850, USA (D.A.R.)
| | | | - Marissa Howard
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA 20110, USA
| | - Lance A. Liotta
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA 20110, USA
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA (K.P.)
| | - Heather Branscome
- ATCC, Manassas, VA 20110, USA
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA (K.P.)
| |
Collapse
|
12
|
Rivera J, Valerdi-Negreros JC, Vázquez-Enciso DM, Argueta-Zepeda FS, Vinuesa P. Phylogenomic, structural, and cell biological analyses reveal that Stenotrophomonas maltophilia replicates in acidified Rab7A-positive vacuoles of Acanthamoeba castellanii. Microbiol Spectr 2024; 12:e0298823. [PMID: 38319117 PMCID: PMC10913462 DOI: 10.1128/spectrum.02988-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/15/2024] [Indexed: 02/07/2024] Open
Abstract
Acanthamoeba species are clinically relevant free-living amoebae (FLA) ubiquitously found in soil and water bodies. Metabolically active trophozoites graze on diverse microbes via phagocytosis. However, functional studies on Rab GTPases (Rabs), which are critical for controlling vesicle trafficking and maturation, are scarce for this FLA. This knowledge gap can be partly explained by the limited genetic tools available for Acanthamoeba cell biology. Here, we developed plasmids to generate fusions of A. castellanii strain Neff proteins to the N- or C-termini of mEGFP and mCherry2. Phylogenomic and structural analyses of the 11 Neff Rab7 paralogs found in the RefSeq assembly revealed that eight of them had non-canonical sequences. After correcting the gene annotation for the Rab7A ortholog, we generated a line stably expressing an mEGFP-Rab7A fusion, demonstrating its correct localization to acidified macropinocytic and phagocytic vacuoles using fluorescence microscopy live cell imaging (LCI). Direct labeling of live Stenotrophomonas maltophilia ESTM1D_MKCAZ16_6a (Sm18) cells with pHrodo Red, a pH-sensitive dye, demonstrated that they reside within acidified, Rab7A-positive vacuoles. We constructed new mini-Tn7 delivery plasmids and tagged Sm18 with constitutively expressed mScarlet-I. Co-culture experiments of Neff trophozoites with Sm18::mTn7TC1_Pc_mScarlet-I, coupled with LCI and microplate reader assays, demonstrated that Sm18 underwent multiple replication rounds before reaching the extracellular medium via non-lytic exocytosis. We conclude that S. maltophilia belongs to the class of bacteria that can use amoeba as an intracellular replication niche within a Stenotrophomonas-containing vacuole that interacts extensively with the endocytic pathway.IMPORTANCEDiverse Acanthamoeba lineages (genotypes) are of increasing clinical concern, mainly causing amoebic keratitis and granulomatous amebic encephalitis among other infections. S. maltophilia ranks among the top 10 most prevalent multidrug-resistant opportunistic nosocomial pathogens and is a recurrent member of the microbiome hosted by Acanthamoeba and other free-living amoebae. However, little is known about the molecular strategies deployed by Stenotrophomonas for an intracellular lifestyle in amoebae and other professional phagocytes such as macrophages, which allow the bacterium to evade the immune system and the action of antibiotics. Our plasmids and easy-to-use microtiter plate co-culture assays should facilitate investigations into the cellular microbiology of Acanthamoeba interactions with Stenotrophomonas and other opportunistic pathogens, which may ultimately lead to the discovery of new molecular targets and antimicrobial therapies to combat difficult-to-treat infections caused by these ubiquitous microbes.
Collapse
Affiliation(s)
- Javier Rivera
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico
| | - Julio C. Valerdi-Negreros
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico
- Programa de Doctorado en Ciencias Biomédicas, UNAM, Mexico City, Mexico
| | - Diana M. Vázquez-Enciso
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico
- Programa de Maestría y Doctorado en Ciencias Bioquímicas, UNAM, Mexico City, Mexico
| | - Fulvia-Stefany Argueta-Zepeda
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico
- Programa de Maestría y Doctorado en Ciencias Bioquímicas, UNAM, Mexico City, Mexico
| | - Pablo Vinuesa
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico
| |
Collapse
|
13
|
Gregor BW, Coston ME, Adams EM, Arakaki J, Borensztejn A, Do TP, Fuqua MA, Haupt A, Hendershott MC, Leung W, Mueller IA, Nath A, Nelson AM, Rafelski SM, Sanchez EE, Swain-Bowden MJ, Tang WJ, Thirstrup DJ, Wiegraebe W, Whitney BP, Yan C, Gunawardane RN, Gaudreault N. Automated human induced pluripotent stem cell culture and sample preparation for 3D live-cell microscopy. Nat Protoc 2024; 19:565-594. [PMID: 38087082 DOI: 10.1038/s41596-023-00912-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 09/08/2023] [Indexed: 02/12/2024]
Abstract
To produce abundant cell culture samples to generate large, standardized image datasets of human induced pluripotent stem (hiPS) cells, we developed an automated workflow on a Hamilton STAR liquid handler system. This was developed specifically for culturing hiPS cell lines expressing fluorescently tagged proteins, which we have used to study the principles by which cells establish and maintain robust dynamic localization of cellular structures. This protocol includes all details for the maintenance, passage and seeding of cells, as well as Matrigel coating of 6-well plastic plates and 96-well optical-grade, glass plates. We also developed an automated image-based hiPS cell colony segmentation and feature extraction pipeline to streamline the process of predicting cell count and selecting wells with consistent morphology for high-resolution three-dimensional (3D) microscopy. The imaging samples produced with this protocol have been used to study the integrated intracellular organization and cell-to-cell variability of hiPS cells to train and develop deep learning-based label-free predictions from transmitted-light microscopy images and to develop deep learning-based generative models of single-cell organization. This protocol requires some experience with robotic equipment. However, we provide details and source code to facilitate implementation by biologists less experienced with robotics. The protocol is completed in less than 10 h with minimal human interaction. Overall, automation of our cell culture procedures increased our imaging samples' standardization, reproducibility, scalability and consistency. It also reduced the need for stringent culturist training and eliminated culturist-to-culturist variability, both of which were previous pain points of our original manual pipeline workflow.
Collapse
Affiliation(s)
| | | | | | - Joy Arakaki
- Allen Institute for Cell Science, Seattle, WA, USA
| | | | - Thao P Do
- Allen Institute for Cell Science, Seattle, WA, USA
| | | | - Amanda Haupt
- Allen Institute for Cell Science, Seattle, WA, USA
| | | | - Winnie Leung
- Allen Institute for Cell Science, Seattle, WA, USA
| | | | - Aditya Nath
- Allen Institute for Cell Science, Seattle, WA, USA
| | | | | | | | | | - W Joyce Tang
- Allen Institute for Cell Science, Seattle, WA, USA
| | | | | | | | - Calysta Yan
- Allen Institute for Cell Science, Seattle, WA, USA
| | | | | |
Collapse
|
14
|
Samuels TL, Blaine‐Sauer S, Yan K, Johnston N. Amprenavir inhibits pepsin-mediated laryngeal epithelial disruption and E-cadherin cleavage in vitro. Laryngoscope Investig Otolaryngol 2023; 8:953-962. [PMID: 37621274 PMCID: PMC10446255 DOI: 10.1002/lio2.1102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 06/12/2023] [Indexed: 08/26/2023] Open
Abstract
Background Laryngopharyngeal reflux (LPR) causes chronic cough, throat clearing, hoarseness, and dysphagia and can promote laryngeal carcinogenesis. More than 20% of the US population suffers from LPR and there is no effective medical therapy. Pepsin is a predominant source of damage during LPR which disrupts laryngeal barrier function potentially via E-cadherin cleavage proteolysis and downstream matrix metalloproteinase (MMP) dysregulation. Fosamprenavir (FDA-approved HIV therapeutic and prodrug of amprenavir) is a pepsin-inhibiting LPR therapeutic candidate shown to rescue damage in an LPR mouse model. This study aimed to examine amprenavir protection against laryngeal monolayer disruption and related E-cadherin proteolysis and MMP dysregulation in vitro. Methods Laryngeal (TVC HPV) cells were exposed to buffered saline, pH 7.4 or pH 4 ± 1 mg/mL pepsin ± amprenavir (10-60 min). Analysis was performed by microscopy, Western blot, and real time polymerase chain reaction (qPCR). Results Amprenavir (1 μM) rescued pepsin acid-mediated cell dissociation (p < .05). Pepsin acid caused E-cadherin cleavage indicative of regulated intramembrane proteolysis (RIP) and increased MMP-1,3,7,9,14 24-h postexposure (p < .05). Acid alone did not cause cell dissociation or E-cadherin cleavage. Amprenavir (10 μM) protected against E-cadherin cleavage and MMP-1,9,14 induction (p < .05). Conclusions Amprenavir, at serum concentrations achievable provided the manufacturer's recommended dose of fosamprenavir for HIV, protects against pepsin-mediated cell dissociation, E-cadherin cleavage, and MMP dysregulation thought to contribute to barrier dysfunction and related symptoms during LPR. Fosamprenavir to amprenavir conversion by laryngeal epithelia, serum and saliva, and relative drug efficacies in an LPR mouse model are under investigation to inform development of inhaled formulations for LPR.
Collapse
Affiliation(s)
- Tina L. Samuels
- Department of Otolaryngology and Communication Sciences, Medical College of WisconsinMilwaukeeWisconsinUSA
| | - Simon Blaine‐Sauer
- Department of Otolaryngology and Communication Sciences, Medical College of WisconsinMilwaukeeWisconsinUSA
| | - Ke Yan
- Department of Pediatrics Quantitative Health Sciences, Medical College of WisconsinMilwaukeeWisconsinUSA
| | - Nikki Johnston
- Department of Otolaryngology and Communication Sciences, Medical College of WisconsinMilwaukeeWisconsinUSA
- Department of Microbiology and ImmunologyMedical College of WisconsinMilwaukeeWisconsinUSA
| |
Collapse
|
15
|
Won P, Coyle S, Ko SH, Quinn D, Hsia KJ, LeDuc P, Majidi C. Controlling C2C12 Cytotoxicity on Liquid Metal Embedded Elastomer (LMEE). Adv Healthc Mater 2023; 12:e2202430. [PMID: 36706458 PMCID: PMC11468040 DOI: 10.1002/adhm.202202430] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/17/2023] [Indexed: 01/28/2023]
Abstract
Liquid metal embedded elastomers (LMEEs) are highly stretchable composites comprising microscopic droplets of eutectic gallium-indium (EGaIn) liquid metal embedded in a soft rubber matrix. They have a unique combination of mechanical, electrical, and thermal properties that make them attractive for potential applications in flexible electronics, thermal management, wearable computing, and soft robotics. However, the use of LMEEs in direct contact with human tissue or organs requires an understanding of their biocompatibility and cell cytotoxicity. In this study, the cytotoxicity of C2C12 cells in contact with LMEE composites composed of EGaIn droplets embedded with a polydimethylsiloxane (PDMS) matrix is investigated. In particular, the influence of EGaIn volume ratio and shear mixing time during synthesis on cell proliferation and viability is examined. The special case of electrically-conductive LMEE composites in which a percolating network of EGaIn droplets is created through "mechanical sintering" is also examined. This study in C2C12 cytotoxicity represents a first step in determining whether LMEE is safe for use in implantable biomedical devices and biohybrid systems.
Collapse
Affiliation(s)
- Phillip Won
- Mechanical EngineeringCarnegie Mellon UniversityPittsburghPA15213USA
| | - Stephen Coyle
- Mechanical EngineeringCarnegie Mellon UniversityPittsburghPA15213USA
| | - Seung Hwan Ko
- Mechanical EngineeringSeoul National UniversitySeoul08826Republic of Korea
| | - David Quinn
- Mechanical EngineeringCarnegie Mellon UniversityPittsburghPA15213USA
| | - K. Jimmy Hsia
- Chemical & Biomedical EngineeringNanyang Technical UniversitySingapore639798Singapore
- Mechanical & Aerospace EngineeringNanyang Technical UniversitySingapore639798Singapore
| | - Philip LeDuc
- Biomedical EngineeringCarnegie Mellon UniversityPittsburghPA15213USA
- Mechanical EngineeringCarnegie Mellon UniversityPittsburghPA15213USA
| | - Carmel Majidi
- Biomedical EngineeringCarnegie Mellon UniversityPittsburghPA15213USA
- Mechanical EngineeringCarnegie Mellon UniversityPittsburghPA15213USA
| |
Collapse
|
16
|
Balaban AE, Nguyen LTS, Parajón E, Robinson DN. Nonmuscle myosin IIB is a driver of cellular reprogramming. Mol Biol Cell 2023; 34:ar71. [PMID: 37074945 PMCID: PMC10295488 DOI: 10.1091/mbc.e21-08-0386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 03/27/2023] [Accepted: 04/10/2023] [Indexed: 04/20/2023] Open
Abstract
Nonmuscle myosin IIB (NMIIB) is considered a primary force generator during cell motility. Yet many cell types, including motile cells, do not necessarily express NMIIB. Given the potential of cell engineering for the next wave of technologies, adding back NMIIB could be a strategy for creating supercells with strategically altered cell morphology and motility. However, we wondered what unforeseen consequences could arise from such an approach. Here, we leveraged pancreatic cancer cells, which do not express NMIIB. We generated a series of cells where we added back NMIIB and strategic mutants that increase the ADP-bound time or alter the phosphorylation control of bipolar filament assembly. We characterized the cellular phenotypes and conducted RNA-seq analysis. The addition of NMIIB and the different mutants all have specific consequences for cell morphology, metabolism, cortical tension, mechanoresponsiveness, and gene expression. Major modes of ATP production are shifted, including alterations in spare respiratory capacity and the dependence on glycolysis or oxidative phosphorylation. Several metabolic and growth pathways undergo significant changes in gene expression. This work demonstrates that NMIIB is highly integrated with many cellular systems and simple cell engineering has a profound impact that extends beyond the primary contractile activity presumably being added to the cells.
Collapse
Affiliation(s)
- Amanda E. Balaban
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Ly T. S. Nguyen
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Eleana Parajón
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Douglas N. Robinson
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Departments of Pharmacology and Molecular Sciences, Medicine, and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218
| |
Collapse
|
17
|
Tomalty HE, Graham LA, Walker VK, Davies PL. Chilling injury in human kidney tubule cells after subzero storage is not mitigated by antifreeze protein addition. Cryobiology 2023:S0011-2240(23)00034-2. [PMID: 37164251 DOI: 10.1016/j.cryobiol.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/26/2023] [Accepted: 05/06/2023] [Indexed: 05/12/2023]
Abstract
By preventing freezing, antifreeze proteins (AFPs) can permit cells and organs to be stored at subzero temperatures. As metabolic rates decrease with decreasing temperature, subzero static cold storage (SZ-SCS) could provide more time for tissue matching and potentially lead to fewer discarded organs. Human kidneys are generally stored for under 24 h and the tubule epithelium is known to be particularly sensitive to static cold storage (SCS). Here, telomerase-immortalized proximal-tubule epithelial cells from humans, which closely resemble their progenitors, were used as a proxy to assess the potential benefit of SZ-SCS for kidneys. The effects of hyperactive AFPs from a beetle and Cryostasis Storage Solution were compared to University of Wisconsin Solution at standard SCS temperatures (4 °C) and at -6 °C for up to six days. Although the AFPs helped guard against freezing, lower storage temperatures under these conditions were not beneficial. Compared to cells at 4 °C, those stored at -6 °C showed decreased viability as well as increased lactate dehydrogenase release and apoptosis. This suggests that this kidney cell type might be prone to chilling injury and that the addition of AFPs to enable SZ-SCS may not be effective for increasing storage times.
Collapse
Affiliation(s)
- Heather E Tomalty
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada.
| | - Laurie A Graham
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada.
| | - Virginia K Walker
- Department of Biology, Queen's University, Kingston, Ontario, K7L 3N6, Canada.
| | - Peter L Davies
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada.
| |
Collapse
|
18
|
Blaine-Sauer S, Samuels TL, Yan K, Johnston N. The Protease Inhibitor Amprenavir Protects against Pepsin-Induced Esophageal Epithelial Barrier Disruption and Cancer-Associated Changes. Int J Mol Sci 2023; 24:6765. [PMID: 37047737 PMCID: PMC10095080 DOI: 10.3390/ijms24076765] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023] Open
Abstract
Gastroesophageal reflux disease (GERD) significantly impacts patient quality of life and is a major risk factor for the development of Barrett's esophagus (BE) and esophageal adenocarcinoma (EAC). Proton pump inhibitors (PPIs) are the standard-of-care for GERD and are among the most prescribed drugs in the world, but do not protect against nonacid components of reflux such as pepsin, or prevent reflux-associated carcinogenesis. We recently identified an HIV protease inhibitor amprenavir that inhibits pepsin and demonstrated the antireflux therapeutic potential of its prodrug fosamprenavir in a mouse model of laryngopharyngeal reflux. In this study, we assessed the capacity of amprenavir to protect against esophageal epithelial barrier disruption in vitro and related molecular events, E-cadherin cleavage, and matrix metalloproteinase induction, which are associated with GERD severity and esophageal cancer. Herein, weakly acidified pepsin (though not acid alone) caused cell dissociation accompanied by regulated intramembrane proteolysis of E-cadherin. Soluble E-cadherin responsive matrix metalloproteinases (MMPs) were transcriptionally upregulated 24 h post-treatment. Amprenavir, at serum concentrations achievable given the manufacturer-recommended dose of fosamprenavir, protected against pepsin-induced cell dissociation, E-cadherin cleavage, and MMP induction. These results support a potential therapeutic role for amprenavir in GERD recalcitrant to PPI therapy and for preventing GERD-associated neoplastic changes.
Collapse
Affiliation(s)
- Simon Blaine-Sauer
- Department of Otolaryngology and Communication Science, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (S.B.-S.)
| | - Tina L. Samuels
- Department of Otolaryngology and Communication Science, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (S.B.-S.)
| | - Ke Yan
- Department of Pediatrics Quantitative Health Sciences, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Nikki Johnston
- Department of Otolaryngology and Communication Science, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (S.B.-S.)
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
19
|
Manchanda Y, Bitsi S, Chen S, Broichhagen J, Bernardino de la Serna J, Jones B, Tomas A. Enhanced Endosomal Signaling and Desensitization of GLP-1R vs GIPR in Pancreatic Beta Cells. Endocrinology 2023; 164:7034684. [PMID: 36774542 PMCID: PMC10016038 DOI: 10.1210/endocr/bqad028] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/02/2023] [Accepted: 02/09/2023] [Indexed: 02/13/2023]
Abstract
The incretin receptors, glucagon-like peptide-1 receptor (GLP-1R) and glucose-dependent insulinotropic polypeptide receptor (GIPR), are prime therapeutic targets for the treatment of type 2 diabetes (T2D) and obesity. They are expressed in pancreatic beta cells where they potentiate insulin release in response to food intake. Despite GIP being the main incretin in healthy individuals, GLP-1R has been favored as a therapeutic target due to blunted GIPR responses in T2D patients and conflicting effects of GIPR agonists and antagonists in improving glucose tolerance and preventing weight gain. There is, however, a recently renewed interest in GIPR biology, following the realization that GIPR responses can be restored after an initial period of blood glucose normalization and the recent development of dual GLP-1R/GIPR agonists with superior capacity for controlling blood glucose levels and weight. The importance of GLP-1R trafficking and subcellular signaling in the control of receptor outputs is well established, but little is known about the pattern of spatiotemporal signaling from the GIPR in beta cells. Here, we have directly compared surface expression, trafficking, and signaling characteristics of both incretin receptors in pancreatic beta cells to identify potential differences that might underlie distinct pharmacological responses associated with each receptor. Our results indicate increased cell surface levels, internalization, degradation, and endosomal vs plasma membrane activity for the GLP-1R, while the GIPR is instead associated with increased plasma membrane recycling, reduced desensitization, and enhanced downstream signal amplification. These differences might have potential implications for the capacity of each incretin receptor to control beta cell function.
Collapse
Affiliation(s)
- Yusman Manchanda
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, UK
| | - Stavroula Bitsi
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, UK
| | - Shiqian Chen
- Section of Endocrinology and Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, UK
| | - Johannes Broichhagen
- Chemical Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin 13125, Germany
| | | | - Ben Jones
- Correspondence: Alejandra Tomas, PhD, Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK, ; or Ben Jones, MD, PhD, Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK,
| | - Alejandra Tomas
- Correspondence: Alejandra Tomas, PhD, Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK, ; or Ben Jones, MD, PhD, Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK,
| |
Collapse
|
20
|
LIFTOSCOPE: development of an automated AI-based module for time-effective and contactless analysis and isolation of cells in microtiter plates. J Biol Eng 2023; 17:10. [PMID: 36750866 PMCID: PMC9903473 DOI: 10.1186/s13036-023-00329-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 01/27/2023] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND The cultivation, analysis, and isolation of single cells or cell cultures are fundamental to modern biological and medical processes. The novel LIFTOSCOPE technology aims to integrate analysis and isolation into one versatile, fully automated device. METHODS LIFTOSCOPE's three core technologies are high-speed microscopy for rapid full-surface imaging of cell culture vessels, AI-based semantic segmentation of microscope images for localization and evaluation of cells, and laser-induced forward transfer (LIFT) for contact-free isolation of cells and cell clusters. LIFT transfers cells from a standard microtiter plate (MTP) across an air gap to a receiver plate, from where they can be further cultivated. The LIFT laser is integrated into the optical path of an inverse microscope, allowing to switch quickly between microscopic observation and cell transfer. RESULTS Tests of the individual process steps prove the feasibility of the concept. A prototype setup shows the compatibility of the microscope stage with the LIFT laser. A specifically designed MTP adapter to hold a receiver plate has been designed and successfully used for material transfers. A suitable AI algorithm has been found for cell selection. CONCLUSION LIFTOSCOPE speeds up cell cultivation and analysis with a target process time of 10 minutes, which can be achieved if the cell transfer is sped up using a more efficient path-finding algorithm. Some challenges remain, like finding a suitable cell transfer medium. SIGNIFICANCE The LIFTOSCOPE system can be used to extend existing cell cultivation systems and microscopes for fully automated biotechnological applications.
Collapse
|
21
|
Janczyk PŁ, Żyłkiewicz E, De Hoyos H, West T, Matson DR, Choi WC, Young HMR, Derewenda ZS, Stukenberg PT. Aurora A phosphorylates Ndel1 to reduce the levels of Mad1 and NuMA at spindle poles. Mol Biol Cell 2023; 34:br1. [PMID: 36350697 PMCID: PMC9816647 DOI: 10.1091/mbc.e21-09-0438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022] Open
Abstract
Dynein inactivates the spindle assembly checkpoint (SAC) by transporting checkpoint proteins away from kinetochores toward spindle poles in a process known as "stripping." We find that inhibition of Aurora A kinase, which is localized to spindle poles, enables the accumulation of the spindle checkpoint activator Mad1 at poles where it is normally absent. Aurora kinases phosphorylate the dynein activator NudE neurodevelopment protein 1 like 1 (Ndel1) on Ser285 and Mad1 accumulates at poles when Ndel1 is replaced by a nonphosphorylatable mutant in human cells. The pole focusing protein NuMA, transported to poles by dynein, also accumulates at poles in cells harboring a mutant Ndel1. Phosphorylation of Ndel1 on Ser285 is required for robust spindle checkpoint activity and regulates the poles of asters in Xenopus extracts. Our data suggest that dynein/SAC complexes that are generated at kinetochores and then transported directionally toward poles on microtubules are inhibited by Aurora A before they reach spindle poles. These data suggest that Aurora A generates a spatial signal at spindle poles that controls dynein transport and spindle function.
Collapse
Affiliation(s)
- Paweł Ł. Janczyk
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22903
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA 22903
| | - Eliza Żyłkiewicz
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22903
| | - Henry De Hoyos
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22903
| | - Thomas West
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22903
| | - Daniel R. Matson
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22903
| | - Won-Chan Choi
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22903
| | - Heather M. Raimer Young
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22903
| | - Zygmunt S. Derewenda
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22903
| | - P. Todd Stukenberg
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22903
| |
Collapse
|
22
|
Liyanage W, Wu T, Kannan S, Kannan RM. Dendrimer-siRNA Conjugates for Targeted Intracellular Delivery in Glioblastoma Animal Models. ACS APPLIED MATERIALS & INTERFACES 2022; 14:46290-46303. [PMID: 36214413 DOI: 10.1021/acsami.2c13129] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Small interfering RNAs (siRNAs) are potent weapons for gene silencing, with an opportunity to correct defective genes and stop the production of undesirable proteins, with many applications in central nervous system (CNS) disorders. However, successful delivery of siRNAs to the brain parenchyma faces obstacles such as the blood-brain barrier (BBB), brain tissue penetration, and targeting of specific cells. In addition, siRNAs are unstable under physiological conditions and are susceptible to protein binding and enzymatic degradation, necessitating a higher dosage to remain effective. To address these issues and advance siRNA delivery, we report the development of covalently conjugated hydroxyl-terminated poly(amidoamine) (PAMAM) dendrimer-siRNA conjugates, demonstrated with a siRNA against GFP (siGFP) conjugate (D-siGFP) utilizing glutathione-sensitive linkers. This allows for precise nucleic acid loading, protects the payload from premature degradation, delivers the siRNA cargo into cells, and achieves significant GFP knockdown in vitro (∼40%) and in vivo (∼30%). Compared to commercially available delivery systems such as RNAi Max and Lipofectamine, D-siGFP retains the potency of the siRNA in vitro. In addition, the dendrimer-siGFP conjugate significantly enhances the half-life of siRNA in the presence of plasma and endonucleases and maintains the passive targeting ability of PAMAM dendrimers to reactive microglia. When administered intratumorally to orthotopic glioblastoma multiform tumors (GBM) in CX3CR-1GFP mice, D-siGFP localizes in tumor-associated macrophages (TAMs) within the tumor parenchyma, minimizing off-target effects in other cell populations. The facile conjugation strategy for dendrimer-siRNA conjugates presented here offers a promising approach for targeted, systemic intracellular delivery of siRNA, serving as a potential bridge for the clinical translation of RNAi therapies.
Collapse
Affiliation(s)
- Wathsala Liyanage
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Tony Wu
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Sujatha Kannan
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
- Hugo W. Moser Research Institute at Kennedy Krieger, Inc., Baltimore, Maryland 21205, United States
- Kennedy Krieger Institute-Johns Hopkins University for Cerebral Palsy Research Excellence, Baltimore, Maryland 21218, United States
| | - Rangaramanujam M Kannan
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Hugo W. Moser Research Institute at Kennedy Krieger, Inc., Baltimore, Maryland 21205, United States
- Kennedy Krieger Institute-Johns Hopkins University for Cerebral Palsy Research Excellence, Baltimore, Maryland 21218, United States
| |
Collapse
|
23
|
Wulftange WJ, Kucukal E, Man Y, An R, Monchamp K, Sevrain CD, Dashora HR, Owusu-Ansah AT, Bode A, Ilich A, Little JA, Key NS, Gurkan UA. Antithrombin-III mitigates thrombin-mediated endothelial cell contraction and sickle red blood cell adhesion in microscale flow. Br J Haematol 2022; 198:893-902. [PMID: 35822297 PMCID: PMC9542057 DOI: 10.1111/bjh.18328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 11/27/2022]
Abstract
Individuals with sickle cell disease (SCD) have persistently elevated thrombin generation that results in a state of systemic hypercoagulability. Antithrombin‐III (ATIII), an endogenous serine protease inhibitor, inhibits several enzymes in the coagulation cascade, including thrombin. Here, we utilize a biomimetic microfluidic device to model the morphology and adhesive properties of endothelial cells (ECs) activated by thrombin and examine the efficacy of ATIII in mitigating the adhesion of SCD patient‐derived red blood cells (RBCs) and EC retraction. Microfluidic devices were fabricated, seeded with ECs, and incubated under physiological shear stress. Cells were then activated with thrombin with or without an ATIII pretreatment. Blood samples from subjects with normal haemoglobin (HbAA) and subjects with homozygous SCD (HbSS) were used to examine RBC adhesion to ECs. Endothelial cell surface adhesion molecule expression and confluency in response to thrombin and ATIII treatments were also evaluated. We found that ATIII pretreatment of ECs reduced HbSS RBC adhesion to thrombin‐activated endothelium. Furthermore, ATIII mitigated cellular contraction and reduced surface expression of von Willebrand factor and vascular cell adhesion molecule‐1 (VCAM‐1) mediated by thrombin. Our findings suggest that, by attenuating thrombin‐mediated EC damage and RBC adhesion to endothelium, ATIII may alleviate the thromboinflammatory manifestations of SCD.
Collapse
Affiliation(s)
- William J Wulftange
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Erdem Kucukal
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Yuncheng Man
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Ran An
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Karamoja Monchamp
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Charlotte D Sevrain
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Himanshu R Dashora
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Amma T Owusu-Ansah
- Department of Pediatrics, Division of Hematology Oncology, University Hospitals Rainbow Babies and Children's Hospital, Cleveland, Ohio, USA
| | - Allison Bode
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Anton Ilich
- Division of Hematology and UNC Blood Research Center, Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jane A Little
- Division of Hematology and UNC Blood Research Center, Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Nigel S Key
- Division of Hematology and UNC Blood Research Center, Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Umut A Gurkan
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, Ohio, USA.,Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA.,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
24
|
Rosoff G, Elkabetz S, Gheber LA. Machine-Learning-Aided Quantification of Area Coverage of Adherent Cells from Phase-Contrast Images. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2022; 28:1-8. [PMID: 35638222 DOI: 10.1017/s1431927622000794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The advances in machine learning (ML) software availability, efficiency, and friendliness, combined with the increase in the computation power of personal computers, are harnessed to rapidly and (relatively) effortlessly analyze time-lapse image series of adherent cell cultures, taken with phase-contrast microscopy (PCM). Since PCM is arguably the most widely used technique to visualize adherent cells in a label-free, noninvasive, and nondisruptive manner, the ability to easily extract quantitative information on the area covered by cells, should provide a valuable tool for investigation. We demonstrate two cases, in one we monitor the shrinking of cells in response to a toxicant, and in the second we measure the proliferation curve of mesenchymal stem cells (MSCs).
Collapse
Affiliation(s)
- Gal Rosoff
- Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Shir Elkabetz
- Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Levi A Gheber
- Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
25
|
Ma Z, Toledo MAS, Wanek P, Elsafi Mabrouk MH, Smet F, Pulak R, Pieske S, Piotrowski T, Herfs W, Brecher C, Schmitt RH, Wagner W, Zenke M. Cell Cluster Sorting in Automated Differentiation of Patient-specific Induced Pluripotent Stem Cells Towards Blood Cells. Front Bioeng Biotechnol 2022; 10:755983. [PMID: 35662848 PMCID: PMC9157239 DOI: 10.3389/fbioe.2022.755983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 04/04/2022] [Indexed: 11/28/2022] Open
Abstract
Induced pluripotent stem cells (iPS cells) represent a particularly versatile stem cell type for a large array of applications in biology and medicine. Taking full advantage of iPS cell technology requires high throughput and automated iPS cell culture and differentiation. We present an automated platform for efficient and robust iPS cell culture and differentiation into blood cells. We implemented cell cluster sorting for analysis and sorting of iPS cell clusters in order to establish clonal iPS cell lines with high reproducibility and efficacy. Patient-specific iPS cells were induced to differentiate towards hematopoietic cells via embryoid body (EB) formation. EB size impacts on iPS cell differentiation and we applied cell cluster sorting to obtain EB of defined size for efficient blood cell differentiation. In summary, implementing cell cluster sorting into the workflow of iPS cell cloning, growth and differentiation represent a valuable add-on for standard and automated iPS cell handling.
Collapse
Affiliation(s)
- Zhiyao Ma
- Department of Cell Biology, Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany
- Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Marcelo Augusto Szymanskide Toledo
- Department of Cell Biology, Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany
- Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Paul Wanek
- Department of Cell Biology, Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany
- Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Mohamed H. Elsafi Mabrouk
- Department of Cell Biology, Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany
- Helmholtz Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Aachen, Germany
| | | | - Rock Pulak
- Union Biometrica, Holliston, MA, United States
| | - Simon Pieske
- Laboratory for Machine Tools and Production Engineering, RWTH Aachen University, Aachen, Germany
| | | | - Werner Herfs
- Laboratory for Machine Tools and Production Engineering, RWTH Aachen University, Aachen, Germany
| | - Christian Brecher
- Laboratory for Machine Tools and Production Engineering, RWTH Aachen University, Aachen, Germany
- Fraunhofer Institute for Production Technology, Aachen, Germany
| | - Robert H. Schmitt
- Laboratory for Machine Tools and Production Engineering, RWTH Aachen University, Aachen, Germany
- Fraunhofer Institute for Production Technology, Aachen, Germany
| | - Wolfgang Wagner
- Department of Cell Biology, Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany
- Helmholtz Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Aachen, Germany
| | - Martin Zenke
- Department of Cell Biology, Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany
- Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
26
|
Stölting H, Baillon L, Frise R, Bonner K, Hewitt RJ, Molyneaux PL, Gore ML, Barclay WS, Saglani S, Lloyd CM. Distinct airway epithelial immune responses after infection with SARS-CoV-2 compared to H1N1. Mucosal Immunol 2022; 15:952-963. [PMID: 35840680 PMCID: PMC9284972 DOI: 10.1038/s41385-022-00545-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 05/30/2022] [Accepted: 06/16/2022] [Indexed: 02/08/2023]
Abstract
Children are less likely than adults to suffer severe symptoms when infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), while influenza A H1N1 severity is comparable across ages except for the very young or elderly. Airway epithelial cells play a vital role in the early defence against viruses via their barrier and immune functions. We investigated viral replication and immune responses in SARS-CoV-2-infected bronchial epithelial cells from healthy paediatric (n = 6; 2.5-5.6 years old) and adult (n = 4; 47-63 years old) subjects and compared cellular responses following infection with SARS-CoV-2 or Influenza A H1N1. While infection with either virus triggered robust transcriptional interferon responses, including induction of type I (IFNB1) and type III (IFNL1) interferons, markedly lower levels of interferons and inflammatory proteins (IL-6, IL-8) were released following SARS-CoV-2 compared to H1N1 infection. Only H1N1 infection caused disruption of the epithelial layer. Interestingly, H1N1 infection resulted in sustained upregulation of SARS-CoV-2 entry factors FURIN and NRP1. We did not find any differences in the epithelial response to SARS-CoV-2 infection between paediatric and adult cells. Overall, SARS-CoV-2 had diminished potential to replicate, affect morphology and evoke immune responses in bronchial epithelial cells compared to H1N1.
Collapse
Affiliation(s)
- Helen Stölting
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Laury Baillon
- Department of Infectious Disease, Imperial College London, London, UK
| | - Rebecca Frise
- Department of Infectious Disease, Imperial College London, London, UK
| | - Katie Bonner
- National Heart and Lung Institute, Imperial College London, London, UK
- Chelsea and Westminster Hospital Foundation Trust, London, UK
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Richard J Hewitt
- National Heart and Lung Institute, Imperial College London, London, UK
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Philip L Molyneaux
- National Heart and Lung Institute, Imperial College London, London, UK
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Mindy L Gore
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Wendy S Barclay
- Department of Infectious Disease, Imperial College London, London, UK
| | - Sejal Saglani
- National Heart and Lung Institute, Imperial College London, London, UK.
| | - Clare M Lloyd
- National Heart and Lung Institute, Imperial College London, London, UK.
| |
Collapse
|
27
|
Cell alignment modulated by surface nano-topography - Roles of cell-matrix and cell-cell interactions. Acta Biomater 2022; 142:149-159. [PMID: 35124266 DOI: 10.1016/j.actbio.2022.01.057] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 01/19/2022] [Accepted: 01/31/2022] [Indexed: 12/27/2022]
Abstract
The propensity of cells to align in particular directions is relevant to a number of areas, including tissue engineering and biohybrid robotics. Cell alignment is modulated through various extracellular conditions including surface topographies, mechanical cues from cell-matrix interactions, and cell-cell interactions. Understanding of these conditions provides guidance for desirable cellular structure constructions. In this study, we examine the roles of surface topographies and cell-cell interactions in inducing cell alignment. We employed wavy surface topographies at the nanometer scale as a model extracellular environment for cell culture. The results show that, within a certain range of wavelengths and amplitudes of the surface topographies, cell alignment is dependent on cell confluency. This dependence on both topology and confluency suggests interplay between cell-cell and cell-matrix interactions in inducing cell alignment. Images of sparsely distributed and confluent cells also demonstrated clear differences in the structures of their focal adhesion complexes. To understand this effect, we introduced anti-N-cadherin to cell culture to inhibit cell-cell interactions. The results show that, when anti-N-cadherin was applied, cells on wavy surfaces required greater confluency to achieve the same alignment compared to that in the absence of anti-N-cadherin. The understanding of the cell alignment mechanisms will be important in numerous potential applications such as scaffold design, tissue repair, and development of biohybrid robotic systems. STATEMENT OF SIGNIFICANCE: Cell alignment plays a critical role in numerous biological functions. Advances in tissue engineering utilizes cell alignment to restore, maintain, or even replace different types of biological tissues. The clinical impact that tissue engineering has made is facilitated by advancements in the understanding of interactions between scaffolds, biological factors, and cells. This work further elucidates the role of cell-cell interactions in promoting the organization of biological tissues.
Collapse
|
28
|
Rota CM, Brown AT, Addleson E, Ives C, Trumper E, Pelton K, Teh WP, Schniederjan MJ, Castellino RC, Buhrlage S, Lauffenburger DA, Ligon KL, Griffith LG, Segal RA. Synthetic extracellular matrices and astrocytes provide a supportive microenvironment for the cultivation and investigation of primary pediatric gliomas. Neurooncol Adv 2022; 4:vdac049. [PMID: 35669012 PMCID: PMC9159660 DOI: 10.1093/noajnl/vdac049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background Pediatric gliomas comprise a diverse set of brain tumor entities that have substantial long-term ramifications for patient survival and quality of life. However, the study of these tumors is currently limited due to a lack of authentic models. Additionally, many aspects of pediatric brain tumor biology, such as tumor cell invasiveness, have been difficult to study with currently available tools. To address these issues, we developed a synthetic extracellular matrix (sECM)-based culture system to grow and study primary pediatric brain tumor cells. Methods We developed a brain-like sECM material as a supportive scaffold for the culture of primary, patient-derived pediatric glioma cells and established patient-derived cell lines. Primary juvenile brainstem-derived murine astrocytes were used as a feeder layer to support the growth of primary human tumor cells. Results We found that our culture system facilitated the proliferation of various primary pediatric brain tumors, including low-grade gliomas, and enabled ex vivo testing of investigational therapeutics. Additionally, we found that tuning this sECM material allowed us to assess high-grade pediatric glioma cell invasion and evaluate therapeutic interventions targeting invasive behavior. Conclusion Our sECM culture platform provides a multipurpose tool for pediatric brain tumor researchers that enables both a wide breadth of biological assays and the cultivation of diverse tumor types.
Collapse
Affiliation(s)
- Christopher M Rota
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Alexander T Brown
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Emily Addleson
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Clara Ives
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Ella Trumper
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Kristine Pelton
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Wei Pin Teh
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | | | | | - Sara Buhrlage
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Keith L Ligon
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Linda G Griffith
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Rosalind A Segal
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| |
Collapse
|
29
|
Lucey M, Ashik T, Marzook A, Wang Y, Goulding J, Oishi A, Broichhagen J, Hodson DJ, Minnion J, Elani Y, Jockers R, Briddon SJ, Bloom SR, Tomas A, Jones B. Acylation of the Incretin Peptide Exendin-4 Directly Impacts Glucagon-Like Peptide-1 Receptor Signaling and Trafficking. Mol Pharmacol 2021; 100:319-334. [PMID: 34315812 PMCID: PMC8626645 DOI: 10.1124/molpharm.121.000270] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 07/14/2021] [Indexed: 11/22/2022] Open
Abstract
The glucagon-like peptide-1 receptor (GLP-1R) is a class B G protein-coupled receptor and mainstay therapeutic target for the treatment of type 2 diabetes and obesity. Recent reports have highlighted how biased agonism at the GLP-1R affects sustained glucose-stimulated insulin secretion through avoidance of desensitization and downregulation. A number of GLP-1R agonists (GLP-1RAs) feature a fatty acid moiety to prolong their pharmacokinetics via increased albumin binding, but the potential for these chemical changes to influence GLP-1R function has rarely been investigated beyond potency assessments for cAMP. Here, we directly compare the prototypical GLP-1RA exendin-4 with its C-terminally acylated analog, exendin-4-C16. We examine relative propensities of each ligand to recruit and activate G proteins and β-arrestins, endocytic and postendocytic trafficking profiles, and interactions with model and cellular membranes in HEK293 and HEK293T cells. Both ligands had similar cAMP potency, but exendin-4-C16 showed ∼2.5-fold bias toward G protein recruitment and a ∼60% reduction in β-arrestin-2 recruitment efficacy compared with exendin-4, as well as reduced GLP-1R endocytosis and preferential targeting toward recycling pathways. These effects were associated with reduced movement of the GLP-1R extracellular domain measured using a conformational biosensor approach and a ∼70% increase in insulin secretion in INS-1 832/3 cells. Interactions with plasma membrane lipids were enhanced by the acyl chain. Exendin-4-C16 showed extensive albumin binding and was highly effective for lowering of blood glucose in mice over at least 72 hours. Our study highlights the importance of a broad approach to the evaluation of GLP-1RA pharmacology. SIGNIFICANCE STATEMENT: Acylation is a common strategy to enhance the pharmacokinetics of peptide-based drugs. This work shows how acylation can also affect various other pharmacological parameters, including biased agonism, receptor trafficking, and interactions with the plasma membrane, which may be therapeutically important.
Collapse
Affiliation(s)
- Maria Lucey
- Section of Endocrinology and Investigative Medicine (M.L., T.A., A.M., J.M., S.R.B., B.J.) and Section of Cell Biology and Functional Genomics (Y.W., A.T.), Department of Metabolism, Digestion and Reproduction, and Department of Chemical Engineering (Y.E.), Imperial College London, London, United Kingdom; Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom (J.G., S.J.B.); Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, United Kingdom (J.G., D.J.H., S.J.B.); Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France (A.O., R.J.); Department of Anatomy, Kyorin University Faculty of Medicine, Tokyo, Japan (A.O.); Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany (J.B.); Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, United Kingdom (D.J.H.); and Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom (D.J.H.)
| | - Tanyel Ashik
- Section of Endocrinology and Investigative Medicine (M.L., T.A., A.M., J.M., S.R.B., B.J.) and Section of Cell Biology and Functional Genomics (Y.W., A.T.), Department of Metabolism, Digestion and Reproduction, and Department of Chemical Engineering (Y.E.), Imperial College London, London, United Kingdom; Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom (J.G., S.J.B.); Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, United Kingdom (J.G., D.J.H., S.J.B.); Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France (A.O., R.J.); Department of Anatomy, Kyorin University Faculty of Medicine, Tokyo, Japan (A.O.); Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany (J.B.); Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, United Kingdom (D.J.H.); and Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom (D.J.H.)
| | - Amaara Marzook
- Section of Endocrinology and Investigative Medicine (M.L., T.A., A.M., J.M., S.R.B., B.J.) and Section of Cell Biology and Functional Genomics (Y.W., A.T.), Department of Metabolism, Digestion and Reproduction, and Department of Chemical Engineering (Y.E.), Imperial College London, London, United Kingdom; Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom (J.G., S.J.B.); Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, United Kingdom (J.G., D.J.H., S.J.B.); Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France (A.O., R.J.); Department of Anatomy, Kyorin University Faculty of Medicine, Tokyo, Japan (A.O.); Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany (J.B.); Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, United Kingdom (D.J.H.); and Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom (D.J.H.)
| | - Yifan Wang
- Section of Endocrinology and Investigative Medicine (M.L., T.A., A.M., J.M., S.R.B., B.J.) and Section of Cell Biology and Functional Genomics (Y.W., A.T.), Department of Metabolism, Digestion and Reproduction, and Department of Chemical Engineering (Y.E.), Imperial College London, London, United Kingdom; Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom (J.G., S.J.B.); Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, United Kingdom (J.G., D.J.H., S.J.B.); Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France (A.O., R.J.); Department of Anatomy, Kyorin University Faculty of Medicine, Tokyo, Japan (A.O.); Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany (J.B.); Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, United Kingdom (D.J.H.); and Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom (D.J.H.)
| | - Joëlle Goulding
- Section of Endocrinology and Investigative Medicine (M.L., T.A., A.M., J.M., S.R.B., B.J.) and Section of Cell Biology and Functional Genomics (Y.W., A.T.), Department of Metabolism, Digestion and Reproduction, and Department of Chemical Engineering (Y.E.), Imperial College London, London, United Kingdom; Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom (J.G., S.J.B.); Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, United Kingdom (J.G., D.J.H., S.J.B.); Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France (A.O., R.J.); Department of Anatomy, Kyorin University Faculty of Medicine, Tokyo, Japan (A.O.); Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany (J.B.); Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, United Kingdom (D.J.H.); and Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom (D.J.H.)
| | - Atsuro Oishi
- Section of Endocrinology and Investigative Medicine (M.L., T.A., A.M., J.M., S.R.B., B.J.) and Section of Cell Biology and Functional Genomics (Y.W., A.T.), Department of Metabolism, Digestion and Reproduction, and Department of Chemical Engineering (Y.E.), Imperial College London, London, United Kingdom; Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom (J.G., S.J.B.); Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, United Kingdom (J.G., D.J.H., S.J.B.); Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France (A.O., R.J.); Department of Anatomy, Kyorin University Faculty of Medicine, Tokyo, Japan (A.O.); Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany (J.B.); Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, United Kingdom (D.J.H.); and Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom (D.J.H.)
| | - Johannes Broichhagen
- Section of Endocrinology and Investigative Medicine (M.L., T.A., A.M., J.M., S.R.B., B.J.) and Section of Cell Biology and Functional Genomics (Y.W., A.T.), Department of Metabolism, Digestion and Reproduction, and Department of Chemical Engineering (Y.E.), Imperial College London, London, United Kingdom; Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom (J.G., S.J.B.); Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, United Kingdom (J.G., D.J.H., S.J.B.); Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France (A.O., R.J.); Department of Anatomy, Kyorin University Faculty of Medicine, Tokyo, Japan (A.O.); Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany (J.B.); Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, United Kingdom (D.J.H.); and Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom (D.J.H.)
| | - David J Hodson
- Section of Endocrinology and Investigative Medicine (M.L., T.A., A.M., J.M., S.R.B., B.J.) and Section of Cell Biology and Functional Genomics (Y.W., A.T.), Department of Metabolism, Digestion and Reproduction, and Department of Chemical Engineering (Y.E.), Imperial College London, London, United Kingdom; Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom (J.G., S.J.B.); Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, United Kingdom (J.G., D.J.H., S.J.B.); Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France (A.O., R.J.); Department of Anatomy, Kyorin University Faculty of Medicine, Tokyo, Japan (A.O.); Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany (J.B.); Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, United Kingdom (D.J.H.); and Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom (D.J.H.)
| | - James Minnion
- Section of Endocrinology and Investigative Medicine (M.L., T.A., A.M., J.M., S.R.B., B.J.) and Section of Cell Biology and Functional Genomics (Y.W., A.T.), Department of Metabolism, Digestion and Reproduction, and Department of Chemical Engineering (Y.E.), Imperial College London, London, United Kingdom; Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom (J.G., S.J.B.); Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, United Kingdom (J.G., D.J.H., S.J.B.); Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France (A.O., R.J.); Department of Anatomy, Kyorin University Faculty of Medicine, Tokyo, Japan (A.O.); Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany (J.B.); Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, United Kingdom (D.J.H.); and Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom (D.J.H.)
| | - Yuval Elani
- Section of Endocrinology and Investigative Medicine (M.L., T.A., A.M., J.M., S.R.B., B.J.) and Section of Cell Biology and Functional Genomics (Y.W., A.T.), Department of Metabolism, Digestion and Reproduction, and Department of Chemical Engineering (Y.E.), Imperial College London, London, United Kingdom; Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom (J.G., S.J.B.); Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, United Kingdom (J.G., D.J.H., S.J.B.); Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France (A.O., R.J.); Department of Anatomy, Kyorin University Faculty of Medicine, Tokyo, Japan (A.O.); Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany (J.B.); Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, United Kingdom (D.J.H.); and Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom (D.J.H.)
| | - Ralf Jockers
- Section of Endocrinology and Investigative Medicine (M.L., T.A., A.M., J.M., S.R.B., B.J.) and Section of Cell Biology and Functional Genomics (Y.W., A.T.), Department of Metabolism, Digestion and Reproduction, and Department of Chemical Engineering (Y.E.), Imperial College London, London, United Kingdom; Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom (J.G., S.J.B.); Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, United Kingdom (J.G., D.J.H., S.J.B.); Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France (A.O., R.J.); Department of Anatomy, Kyorin University Faculty of Medicine, Tokyo, Japan (A.O.); Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany (J.B.); Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, United Kingdom (D.J.H.); and Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom (D.J.H.)
| | - Stephen J Briddon
- Section of Endocrinology and Investigative Medicine (M.L., T.A., A.M., J.M., S.R.B., B.J.) and Section of Cell Biology and Functional Genomics (Y.W., A.T.), Department of Metabolism, Digestion and Reproduction, and Department of Chemical Engineering (Y.E.), Imperial College London, London, United Kingdom; Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom (J.G., S.J.B.); Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, United Kingdom (J.G., D.J.H., S.J.B.); Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France (A.O., R.J.); Department of Anatomy, Kyorin University Faculty of Medicine, Tokyo, Japan (A.O.); Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany (J.B.); Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, United Kingdom (D.J.H.); and Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom (D.J.H.)
| | - Stephen R Bloom
- Section of Endocrinology and Investigative Medicine (M.L., T.A., A.M., J.M., S.R.B., B.J.) and Section of Cell Biology and Functional Genomics (Y.W., A.T.), Department of Metabolism, Digestion and Reproduction, and Department of Chemical Engineering (Y.E.), Imperial College London, London, United Kingdom; Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom (J.G., S.J.B.); Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, United Kingdom (J.G., D.J.H., S.J.B.); Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France (A.O., R.J.); Department of Anatomy, Kyorin University Faculty of Medicine, Tokyo, Japan (A.O.); Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany (J.B.); Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, United Kingdom (D.J.H.); and Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom (D.J.H.)
| | - Alejandra Tomas
- Section of Endocrinology and Investigative Medicine (M.L., T.A., A.M., J.M., S.R.B., B.J.) and Section of Cell Biology and Functional Genomics (Y.W., A.T.), Department of Metabolism, Digestion and Reproduction, and Department of Chemical Engineering (Y.E.), Imperial College London, London, United Kingdom; Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom (J.G., S.J.B.); Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, United Kingdom (J.G., D.J.H., S.J.B.); Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France (A.O., R.J.); Department of Anatomy, Kyorin University Faculty of Medicine, Tokyo, Japan (A.O.); Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany (J.B.); Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, United Kingdom (D.J.H.); and Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom (D.J.H.)
| | - Ben Jones
- Section of Endocrinology and Investigative Medicine (M.L., T.A., A.M., J.M., S.R.B., B.J.) and Section of Cell Biology and Functional Genomics (Y.W., A.T.), Department of Metabolism, Digestion and Reproduction, and Department of Chemical Engineering (Y.E.), Imperial College London, London, United Kingdom; Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom (J.G., S.J.B.); Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, United Kingdom (J.G., D.J.H., S.J.B.); Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France (A.O., R.J.); Department of Anatomy, Kyorin University Faculty of Medicine, Tokyo, Japan (A.O.); Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany (J.B.); Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, United Kingdom (D.J.H.); and Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom (D.J.H.)
| |
Collapse
|
30
|
Marzook A, Chen S, Pickford P, Lucey M, Wang Y, Corrêa IR, Broichhagen J, Hodson DJ, Salem V, Rutter GA, Tan TM, Bloom SR, Tomas A, Jones B. Evaluation of efficacy- versus affinity-driven agonism with biased GLP-1R ligands P5 and exendin-F1. Biochem Pharmacol 2021; 190:114656. [PMID: 34129856 PMCID: PMC8346945 DOI: 10.1016/j.bcp.2021.114656] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 02/09/2023]
Abstract
The glucagon-like peptide-1 receptor (GLP-1R) is an important regulator of glucose homeostasis and has been successfully targeted for the treatment of type 2 diabetes. Recently described biased GLP-1R agonists with selective reductions in β-arrestin versus G protein coupling show improved metabolic actions in vivo. However, two prototypical G protein-favouring GLP-1R agonists, P5 and exendin-F1, are reported to show divergent effects on insulin secretion. In this study we aimed to resolve this discrepancy by performing a side-by-side characterisation of these two ligands across a variety of in vitro and in vivo assays. Exendin-F1 showed reduced acute efficacy versus P5 for several readouts, including recruitment of mini-G proteins, G protein-coupled receptor kinases (GRKs) and β-arrestin-2. Maximal responses were also lower for both GLP-1R internalisation and the presence of active GLP-1R-mini-Gs complexes in early endosomes with exendin-F1 treatment. In contrast, prolonged insulin secretion in vitro and sustained anti-hyperglycaemic efficacy in mice were both greater with exendin-F1 than with P5. We conclude that the particularly low acute efficacy of exendin-F1 and associated reductions in GLP-1R downregulation appear to be more important than preservation of endosomal signalling to allow sustained insulin secretion responses. This has implications for the ongoing development of affinity- versus efficacy-driven biased GLP-1R agonists as treatments for metabolic disease.
Collapse
Affiliation(s)
- Amaara Marzook
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| | - Shiqian Chen
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| | - Phil Pickford
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| | - Maria Lucey
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| | - Yifan Wang
- Section of Cell Biology and Functional Genomics, Imperial College London, London, United Kingdom
| | | | | | - David J Hodson
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, United Kingdom; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Midlands, United Kingdom
| | - Victoria Salem
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom; Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Imperial College London, London, United Kingdom; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Tricia M Tan
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| | - Stephen R Bloom
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| | - Alejandra Tomas
- Section of Cell Biology and Functional Genomics, Imperial College London, London, United Kingdom
| | - Ben Jones
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
31
|
Diverse heterochromatin-associated proteins repress distinct classes of genes and repetitive elements. Nat Cell Biol 2021; 23:905-914. [PMID: 34354237 PMCID: PMC9248069 DOI: 10.1038/s41556-021-00725-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 06/30/2021] [Indexed: 12/28/2022]
Abstract
Heterochromatin, typically marked by histone H3 trimethylation at lysine 9 (H3K9me3) or lysine 27 (H3K27me3), represses different protein-coding genes in different cells, as well as repetitive elements. The basis for locus specificity is unclear. Previously, we identified 172 proteins that are embedded in sonication-resistant heterochromatin (srHC) harbouring H3K9me3. Here, we investigate in humans how 97 of the H3K9me3-srHC proteins repress heterochromatic genes. We reveal four groups of srHC proteins that each repress many common genes and repeat elements. Two groups repress H3K9me3-embedded genes with different extents of flanking srHC, one group is specific for srHC genes with H3K9me3 and H3K27me3, and one group is specific for genes with srHC as the primary feature. We find that the enhancer of rudimentary homologue (ERH) is conserved from Schizosaccharomyces pombe in repressing meiotic genes and, in humans, now represses other lineage-specific genes and repeat elements. The study greatly expands our understanding of H3K9me3-based gene repression in vertebrates.
Collapse
|
32
|
A Novel Method for Effective Cell Segmentation and Tracking in Phase Contrast Microscopic Images. SENSORS 2021; 21:s21103516. [PMID: 34070081 PMCID: PMC8158140 DOI: 10.3390/s21103516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 11/16/2022]
Abstract
Cell migration plays an important role in the identification of various diseases and physiological phenomena in living organisms, such as cancer metastasis, nerve development, immune function, wound healing, and embryo formulation and development. The study of cell migration with a real-time microscope generally takes several hours and involves analysis of the movement characteristics by tracking the positions of cells at each time interval in the images of the observed cells. Morphological analysis considers the shapes of the cells, and a phase contrast microscope is used to observe the shape clearly. Therefore, we developed a segmentation and tracking method to perform a kinetic analysis by considering the morphological transformation of cells. The main features of the algorithm are noise reduction using a block-matching 3D filtering method, k-means clustering to mitigate the halo signal that interferes with cell segmentation, and the detection of cell boundaries via active contours, which is an excellent way to detect boundaries. The reliability of the algorithm developed in this study was verified using a comparison with the manual tracking results. In addition, the segmentation results were compared to our method with unsupervised state-of-the-art methods to verify the proposed segmentation process. As a result of the study, the proposed method had a lower error of less than 40% compared to the conventional active contour method.
Collapse
|
33
|
Lica JJ, Wieczór M, Grabe GJ, Heldt M, Jancz M, Misiak M, Gucwa K, Brankiewicz W, Maciejewska N, Stupak A, Bagiński M, Rolka K, Hellmann A, Składanowski A. Effective Drug Concentration and Selectivity Depends on Fraction of Primitive Cells. Int J Mol Sci 2021; 22:ijms22094931. [PMID: 34066491 PMCID: PMC8125035 DOI: 10.3390/ijms22094931] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/15/2021] [Accepted: 04/23/2021] [Indexed: 12/25/2022] Open
Abstract
Poor efficiency of chemotherapeutics in the eradication of Cancer Stem Cells (CSCs) has been driving the search for more active and specific compounds. In this work, we show how cell density-dependent stage culture profiles can be used in drug development workflows to achieve more robust drug activity (IC50 and EC50) results. Using flow cytometry and light microscopy, we characterized the cytological stage profiles of the HL-60-, A-549-, and HEK-293-derived sublines with a focus on their primitive cell content. We then used a range of cytotoxic substances—C-123, bortezomib, idarubicin, C-1305, doxorubicin, DMSO, and ethanol—to highlight typical density-related issues accompanying drug activity determination. We also showed that drug EC50 and selectivity indices normalized to primitive cell content are more accurate activity measurements. We tested our approach by calculating the corrected selectivity index of a novel chemotherapeutic candidate, C-123. Overall, our study highlights the usefulness of accounting for primitive cell fractions in the assessment of drug efficiency.
Collapse
Affiliation(s)
- Jan Jakub Lica
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland; (K.G.); (K.R.)
- Correspondence:
| | - Miłosz Wieczór
- Department of Physical Chemistry, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdansk, Poland;
| | - Grzegorz Jan Grabe
- Department of Microbiology, Harvard Medical School, 4 Blackfan Circle, Boston, MA 02115, USA;
| | - Mateusz Heldt
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdansk, Poland; (M.H.); (M.J.); (M.M.); (W.B.); (N.M.); (M.B.); (A.S.)
| | - Marta Jancz
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdansk, Poland; (M.H.); (M.J.); (M.M.); (W.B.); (N.M.); (M.B.); (A.S.)
| | - Majus Misiak
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdansk, Poland; (M.H.); (M.J.); (M.M.); (W.B.); (N.M.); (M.B.); (A.S.)
| | - Katarzyna Gucwa
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland; (K.G.); (K.R.)
| | - Wioletta Brankiewicz
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdansk, Poland; (M.H.); (M.J.); (M.M.); (W.B.); (N.M.); (M.B.); (A.S.)
| | - Natalia Maciejewska
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdansk, Poland; (M.H.); (M.J.); (M.M.); (W.B.); (N.M.); (M.B.); (A.S.)
| | - Anna Stupak
- Polpharma Biologics S.A., Gdansk Science & Technology Park, Building A, 80-172 Gdansk, Poland;
| | - Maciej Bagiński
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdansk, Poland; (M.H.); (M.J.); (M.M.); (W.B.); (N.M.); (M.B.); (A.S.)
| | - Krzysztof Rolka
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland; (K.G.); (K.R.)
| | - Andrzej Hellmann
- Department of Hematology and Transplantology, Medical University of Gdansk, 80-214 Gdansk, Poland;
| | - Andrzej Składanowski
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdansk, Poland; (M.H.); (M.J.); (M.M.); (W.B.); (N.M.); (M.B.); (A.S.)
| |
Collapse
|
34
|
Durens M, Soliman M, Millonig J, DiCicco-Bloom E. Engrailed-2 is a cell autonomous regulator of neurogenesis in cultured hippocampal neural stem cells. Dev Neurobiol 2021; 81:724-735. [PMID: 33852756 DOI: 10.1002/dneu.22824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 11/07/2022]
Abstract
Abnormalities in genes that regulate early brain development are known risk factors for neurodevelopmental disorders. Engrailed-2 (En2) is a homeodomain transcription factor with established roles in cerebellar patterning. En2 is highly expressed in the developing mid-hindbrain region, and En2 knockout (KO) mice exhibit major deficits in mid-hindbrain structures. However, En2 is also expressed in forebrain regions including the hippocampus, but its function is unknown. Previous studies have shown that the hippocampus of En2-KO mice exhibits reductions in its volume and cell numbers due to aberrant neurogenesis. Aberrant neurogenesis is due, in part, to noncell autonomous effects, specifically, reductions of innervating norepinephrine fibers from the locus coeruleus. In this study, we investigate possible cell autonomous roles of En2 in hippocampal neurogenesis. We examine proliferation, survival, and differentiation using cultures of hippocampal neurospheres of P7 wild-type (WT) and En2-KO hippocampal neural progenitor cells (NPCs). At 7 days, En2-KO neurospheres were larger on average than WT spheres and exhibited 2.5-fold greater proliferation and 2-fold increase in apoptotic cells, similar to in vivo KO phenotype. Further, En2-KO cultures exhibited 40% less cells with neurite projections, suggesting decreased differentiation. Lastly, reestablishing En2 expression in En2-KO NPCs rescued excess proliferation. These results indicate that En2 functions in hippocampal NPCs by inhibiting proliferation and promoting survival and differentiation in a cell autonomous manner. More broadly, this study suggests that En2 impacts brain structure and function in diverse regions outside of the mid-hindbrain.
Collapse
Affiliation(s)
- Madel Durens
- School of Graduate Studies, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Mai Soliman
- School of Graduate Studies, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - James Millonig
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Emanuel DiCicco-Bloom
- School of Graduate Studies, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
35
|
Carstens JL, Yang S, Correa de Sampaio P, Zheng X, Barua S, McAndrews KM, Rao A, Burks JK, Rhim AD, Kalluri R. Stabilized epithelial phenotype of cancer cells in primary tumors leads to increased colonization of liver metastasis in pancreatic cancer. Cell Rep 2021; 35:108990. [PMID: 33852841 PMCID: PMC8078733 DOI: 10.1016/j.celrep.2021.108990] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/25/2021] [Accepted: 03/23/2021] [Indexed: 12/30/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is therapeutically recalcitrant and metastatic. Partial epithelial to mesenchymal transition (EMT) is associated with metastasis; however, a causal connection needs further unraveling. Here, we use single-cell RNA sequencing and genetic mouse models to identify the functional roles of partial EMT and epithelial stabilization in PDAC growth and metastasis. A global EMT expression signature identifies ∼50 cancer cell clusters spanning the epithelial-mesenchymal continuum in both human and murine PDACs. The combined genetic suppression of Snail and Twist results in PDAC epithelial stabilization and increased liver metastasis. Genetic deletion of Zeb1 in PDAC cells also leads to liver metastasis associated with cancer cell epithelial stabilization. We demonstrate that epithelial stabilization leads to the enhanced collective migration of cancer cells and modulation of the immune microenvironment, which likely contribute to efficient liver colonization. Our study provides insights into the diverse mechanisms of metastasis in pancreatic cancer and potential therapeutic targets.
Collapse
Affiliation(s)
- Julienne L Carstens
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Sujuan Yang
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Pedro Correa de Sampaio
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Xiaofeng Zheng
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Souptik Barua
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77030, USA
| | - Kathleen M McAndrews
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Arvind Rao
- Department of Computational Medicine and Bioinformatics, Biostatistics, Radiation Oncology, University of Michigan, Ann Arbor, MI 48105, USA
| | - Jared K Burks
- Department of Leukemia, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Andrew D Rhim
- Department of Gastroenterology, Hepatology, and Nutrition, Division of Internal Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; Department of Bioengineering, Rice University, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
36
|
Fully Automated Cultivation of Adipose-Derived Stem Cells in the StemCellDiscovery—A Robotic Laboratory for Small-Scale, High-Throughput Cell Production Including Deep Learning-Based Confluence Estimation. Processes (Basel) 2021. [DOI: 10.3390/pr9040575] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Laboratory automation is a key driver in biotechnology and an enabler for powerful new technologies and applications. In particular, in the field of personalized therapies, automation in research and production is a prerequisite for achieving cost efficiency and broad availability of tailored treatments. For this reason, we present the StemCellDiscovery, a fully automated robotic laboratory for the cultivation of human mesenchymal stem cells (hMSCs) in small scale and in parallel. While the system can handle different kinds of adherent cells, here, we focus on the cultivation of adipose-derived hMSCs. The StemCellDiscovery provides an in-line visual quality control for automated confluence estimation, which is realized by combining high-speed microscopy with deep learning-based image processing. We demonstrate the feasibility of the algorithm to detect hMSCs in culture at different densities and calculate confluences based on the resulting image. Furthermore, we show that the StemCellDiscovery is capable of expanding adipose-derived hMSCs in a fully automated manner using the confluence estimation algorithm. In order to estimate the system capacity under high-throughput conditions, we modeled the production environment in a simulation software. The simulations of the production process indicate that the robotic laboratory is capable of handling more than 95 cell culture plates per day.
Collapse
|
37
|
Zhang Z, Leong KW, Vliet KV, Barbastathis G, Ravasio A. Deep learning for label-free nuclei detection from implicit phase information of mesenchymal stem cells. BIOMEDICAL OPTICS EXPRESS 2021; 12:1683-1706. [PMID: 33796381 PMCID: PMC7984805 DOI: 10.1364/boe.420266] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/21/2021] [Indexed: 05/13/2023]
Abstract
Monitoring of adherent cells in culture is routinely performed in biological and clinical laboratories, and it is crucial for large-scale manufacturing of cells needed in cell-based clinical trials and therapies. However, the lack of reliable and easily implementable label-free techniques makes this task laborious and prone to human subjectivity. We present a deep-learning-based processing pipeline that locates and characterizes mesenchymal stem cell nuclei from a few bright-field images captured at various levels of defocus under collimated illumination. Our approach builds upon phase-from-defocus methods in the optics literature and is easily applicable without the need for special microscopy hardware, for example, phase contrast objectives, or explicit phase reconstruction methods that rely on potentially bias-inducing priors. Experiments show that this label-free method can produce accurate cell counts as well as nuclei shape statistics without the need for invasive staining or ultraviolet radiation. We also provide detailed information on how the deep-learning pipeline was designed, built and validated, making it straightforward to adapt our methodology to different types of cells. Finally, we discuss the limitations of our technique and potential future avenues for exploration.
Collapse
Affiliation(s)
- Zhengyun Zhang
- BioSyM IRG, Singapore-MIT Alliance for Research and Technology (SMART) Centre, 1 CREATE Way, #04-13/14 Enterprise Wing, Singapore 138602, Singapore
| | - Kim Whye Leong
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore
| | - Krystyn Van Vliet
- BioSyM IRG, Singapore-MIT Alliance for Research and Technology (SMART) Centre, 1 CREATE Way, #04-13/14 Enterprise Wing, Singapore 138602, Singapore
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - George Barbastathis
- BioSyM IRG, Singapore-MIT Alliance for Research and Technology (SMART) Centre, 1 CREATE Way, #04-13/14 Enterprise Wing, Singapore 138602, Singapore
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Andrea Ravasio
- Institute of Biological and Medical Engineering, School of Engineering, Medicine and Biological Sciences, Pontificia Universidad Cátolica de Chile, Vicuña Makenna 4860, Macul, Santiago, Chile
| |
Collapse
|
38
|
Barger PC, Liles MR, Beck BH, Newton JC. Differential production and secretion of potentially toxigenic extracellular proteins from hypervirulent Aeromonas hydrophila under biofilm and planktonic culture. BMC Microbiol 2021; 21:8. [PMID: 33407117 PMCID: PMC7788984 DOI: 10.1186/s12866-020-02065-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/07/2020] [Indexed: 12/17/2022] Open
Abstract
Background Hypervirulent Aeromonas hydrophila (vAh) is an emerging pathogen in freshwater aquaculture that results in the loss of over 3 million pounds of marketable channel catfish, Ictalurus punctatus, and channel catfish hybrids (I. punctatus, ♀ x blue catfish, I. furcatus, ♂) each year from freshwater catfish production systems in Alabama, U.S.A. vAh isolates are clonal in nature and are genetically unique from, and significantly more virulent than, traditional A. hydrophila isolates from fish. Even with the increased virulence, natural infections cannot be reproduced in aquaria challenges making it difficult to determine modes of infection and the pathophysiology behind the devastating mortalities that are commonly observed. Despite the intimate connection between environmental adaptation and plastic response, the role of environmental adaption on vAh pathogenicity and virulence has not been previously explored. In this study, secreted proteins of vAh cultured as free-living planktonic cells and within a biofilm were compared to elucidate the role of biofilm growth on virulence. Results Functional proteolytic assays found significantly increased degradative activity in biofilm secretomes; in contrast, planktonic secretomes had significantly increased hemolytic activity, suggesting higher toxigenic potential. Intramuscular injection challenges in a channel catfish model showed that in vitro degradative activity translated into in vivo tissue destruction. Identification of secreted proteins by HPLC-MS/MS revealed the presence of many putative virulence proteins under both growth conditions. Biofilm grown vAh produced higher levels of proteolytic enzymes and adhesins, whereas planktonically grown cells secreted higher levels of toxins, porins, and fimbrial proteins. Conclusions This study is the first comparison of the secreted proteomes of vAh when grown in two distinct ecological niches. These data on the adaptive physiological response of vAh based on growth condition increase our understanding of how environmental niche partitioning could affect vAh pathogenicity and virulence. Increased secretion of colonization factors and degradative enzymes during biofilm growth and residency may increase bacterial attachment and host invasiveness, while increased secretion of hemolysins, porins, and other potential toxins under planktonic growth (or after host invasion) could result in increased host mortality. The results of this research underscore the need to use culture methods that more closely mimic natural ecological habitat growth to improve our understanding of vAh pathogenesis. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-020-02065-2.
Collapse
Affiliation(s)
- Priscilla C Barger
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA. .,Biological Sciences, College of Sciences and Math, Auburn University, Auburn, AL, USA.
| | - Mark R Liles
- Biological Sciences, College of Sciences and Math, Auburn University, Auburn, AL, USA
| | - Benjamin H Beck
- USDA ARS Aquatic Animal Health Research Unit, Auburn, AL, USA
| | - Joseph C Newton
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA.
| |
Collapse
|
39
|
Mota SM, Rogers RE, Haskell AW, McNeill EP, Kaunas R, Gregory CA, Giger ML, Maitland KC. Automated mesenchymal stem cell segmentation and machine learning-based phenotype classification using morphometric and textural analysis. J Med Imaging (Bellingham) 2021; 8:014503. [PMID: 33542945 PMCID: PMC7849042 DOI: 10.1117/1.jmi.8.1.014503] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 01/11/2021] [Indexed: 01/22/2023] Open
Abstract
Purpose: Mesenchymal stem cells (MSCs) have demonstrated clinically relevant therapeutic effects for treatment of trauma and chronic diseases. The proliferative potential, immunomodulatory characteristics, and multipotentiality of MSCs in monolayer culture is reflected by their morphological phenotype. Standard techniques to evaluate culture viability are subjective, destructive, or time-consuming. We present an image analysis approach to objectively determine morphological phenotype of MSCs for prediction of culture efficacy. Approach: The algorithm was trained using phase-contrast micrographs acquired during the early and mid-logarithmic stages of MSC expansion. Cell regions are localized using edge detection, thresholding, and morphological operations, followed by cell marker identification using H-minima transform within each region to differentiate individual cells from cell clusters. Clusters are segmented using marker-controlled watershed to obtain single cells. Morphometric and textural features are extracted to classify cells based on phenotype using machine learning. Results: Algorithm performance was validated using an independent test dataset of 186 MSCs in 36 culture images. Results show 88% sensitivity and 86% precision for overall cell detection and a mean Sorensen-Dice coefficient of 0.849 ± 0.106 for segmentation per image. The algorithm exhibited an area under the curve of 0.816 (CI 95 = 0.769 to 0.886) and 0.787 (CI 95 = 0.716 to 0.851) for classifying MSCs according to their phenotype at early and mid-logarithmic expansion, respectively. Conclusions: The proposed method shows potential to segment and classify low and moderately dense MSCs based on phenotype with high accuracy and robustness. It enables quantifiable and consistent morphology-based quality assessment for various culture protocols to facilitate cytotherapy development.
Collapse
Affiliation(s)
- Sakina M. Mota
- Texas A&M University, Department of Biomedical Engineering, College Station, Texas, United States
| | - Robert E. Rogers
- Texas A&M Health Science Center, College of Medicine, Bryan, Texas, United States
| | - Andrew W. Haskell
- Texas A&M Health Science Center, College of Medicine, Bryan, Texas, United States
| | - Eoin P. McNeill
- Texas A&M Health Science Center, College of Medicine, Bryan, Texas, United States
| | - Roland Kaunas
- Texas A&M University, Department of Biomedical Engineering, College Station, Texas, United States
- Texas A&M Health Science Center, College of Medicine, Bryan, Texas, United States
| | - Carl A. Gregory
- Texas A&M Health Science Center, College of Medicine, Bryan, Texas, United States
| | - Maryellen L. Giger
- University of Chicago, Department of Radiology, Committee on Medical Physics, Chicago, Illinois, United States
| | - Kristen C. Maitland
- Texas A&M University, Department of Biomedical Engineering, College Station, Texas, United States
| |
Collapse
|
40
|
Jones B, McGlone ER, Fang Z, Pickford P, Corrêa IR, Oishi A, Jockers R, Inoue A, Kumar S, Görlitz F, Dunsby C, French PMW, Rutter GA, Tan T, Tomas A, Bloom SR. Genetic and biased agonist-mediated reductions in β-arrestin recruitment prolong cAMP signaling at glucagon family receptors. J Biol Chem 2021; 296:100133. [PMID: 33268378 PMCID: PMC7948418 DOI: 10.1074/jbc.ra120.016334] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/29/2020] [Accepted: 12/01/2020] [Indexed: 01/20/2023] Open
Abstract
Receptors for the peptide hormones glucagon-like peptide-1 (GLP-1R), glucose-dependent insulinotropic polypeptide (GIPR), and glucagon (GCGR) are important regulators of insulin secretion and energy metabolism. GLP-1R agonists have been successfully deployed for the treatment of type 2 diabetes, but it has been suggested that their efficacy is limited by target receptor desensitization and downregulation due to recruitment of β-arrestins. Indeed, recently described GLP-1R agonists with reduced β-arrestin-2 recruitment have delivered promising results in preclinical and clinical studies. We therefore aimed to determine if the same phenomenon could apply to the closely related GIPR and GCGR. In HEK293 cells depleted of both β-arrestin isoforms the duration of G protein-dependent cAMP/PKA signaling was increased in response to the endogenous ligand for each receptor. Moreover, in wildtype cells, "biased" GLP-1, GCG, and GIP analogs with selective reductions in β-arrestin-2 recruitment led to reduced receptor endocytosis and increased insulin secretion over a prolonged stimulation period, although the latter effect was only seen at high agonist concentrations. Biased GCG analogs increased the duration of cAMP signaling, but this did not lead to increased glucose output from hepatocytes. Our study provides a rationale for the development of GLP-1R, GIPR, and GCGR agonists with reduced β-arrestin recruitment, but further work is needed to maximally exploit this strategy for therapeutic purposes.
Collapse
Affiliation(s)
- Ben Jones
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom.
| | - Emma Rose McGlone
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| | - Zijian Fang
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| | - Phil Pickford
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| | | | - Atsuro Oishi
- Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France
| | - Ralf Jockers
- Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Sunil Kumar
- Department of Physics, Imperial College London, London, United Kingdom
| | - Frederik Görlitz
- Department of Physics, Imperial College London, London, United Kingdom
| | - Chris Dunsby
- Department of Physics, Imperial College London, London, United Kingdom
| | - Paul M W French
- Department of Physics, Imperial College London, London, United Kingdom
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Imperial College London, London, United Kingdom; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Tricia Tan
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| | - Alejandra Tomas
- Section of Cell Biology and Functional Genomics, Imperial College London, London, United Kingdom.
| | - Stephen R Bloom
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
41
|
Bryja A, Latosiński G, Jankowski M, Angelova Volponi A, Mozdziak P, Shibli JA, Bryl R, Spaczyńska J, Piotrowska-Kempisty H, Krawiec K, Kempisty B, Dyszkiewicz-Konwińska M. Transcriptomic and Morphological Analysis of Cells Derived from Porcine Buccal Mucosa-Studies on an In Vitro Model. Animals (Basel) 2020; 11:ani11010015. [PMID: 33374146 PMCID: PMC7824432 DOI: 10.3390/ani11010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Domestic pigs express high phylogenetic similarity to humans and are often used as a compatible model in biomedical research. Porcine tissues are used as an accessible biomaterial in human skin transplants and tissue architecture reconstruction. We used transcriptional analysis to investigate the dynamics of complex biological system of the mucosa. Additionally, we performed computer analysis of microscopic images of cultured cells in vitro. Computer analysis of images identified epithelial cells and connective tissue cells in in vitro culture. Abstract Transcriptional analysis and live-cell imaging are a powerful tool to investigate the dynamics of complex biological systems. In vitro expanded porcine oral mucosal cells, consisting of populations of epithelial and connective lineages, are interesting and complex systems for study via microarray transcriptomic assays to analyze gene expression profile. The transcriptomic analysis included 56 ontological groups with particular focus on 7 gene ontology groups that are related to the processes of differentiation and development. Most analyzed genes were upregulated after 7 days and downregulated after 15 and 30 days of in vitro culture. The performed transcriptomic analysis was then extended to include automated analysis of differential interference contrast microscopy (DIC) images obtained during in vitro culture. The analysis of DIC imaging allowed to identify the different populations of keratinocytes and fibroblasts during seven days of in vitro culture, and it was possible to evaluate the proportion of these two populations of cells. Porcine mucosa may be a suitable model for reference research on human tissues. In addition, it can provide a reference point for research on the use of cells, scaffolds, or tissues derived from transgenic animals for applications in human tissues reconstruction.
Collapse
Affiliation(s)
- Artur Bryja
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznań, Poland; (A.B.); (M.J.); (R.B.); (M.D.-K.)
| | - Grzegorz Latosiński
- Institute of Computing Science, Poznan University of Technology, 60-965 Poznań, Poland; (G.L.); (K.K.)
| | - Maurycy Jankowski
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznań, Poland; (A.B.); (M.J.); (R.B.); (M.D.-K.)
| | - Ana Angelova Volponi
- Department of Craniofacial Development and Stem Cell Biology, King’s College University of London, London WC2R 2LS, UK;
| | - Paul Mozdziak
- Graduate Physiology Program, North Carolina State University, Raleigh, NC 27695, USA;
| | - Jamil A. Shibli
- Department of Periodontology and Oral Implantology, Dental Research Division, University of Guarulhos, Guarulhos 07030-010, SP, Brazil;
| | - Rut Bryl
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznań, Poland; (A.B.); (M.J.); (R.B.); (M.D.-K.)
| | - Julia Spaczyńska
- Department of Toxicology, Poznan University of Medical Sciences, 61-631 Poznań, Poland; (J.S.); (H.P.-K.)
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, 61-631 Poznań, Poland; (J.S.); (H.P.-K.)
| | - Krzysztof Krawiec
- Institute of Computing Science, Poznan University of Technology, 60-965 Poznań, Poland; (G.L.); (K.K.)
| | - Bartosz Kempisty
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznań, Poland; (A.B.); (M.J.); (R.B.); (M.D.-K.)
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznań, Poland
- Department of Veterinary Surgery, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland
- Correspondence: ; Tel.: +48-61-8546418
| | - Marta Dyszkiewicz-Konwińska
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznań, Poland; (A.B.); (M.J.); (R.B.); (M.D.-K.)
- Department of Biomaterials and Experimental Dentistry, Poznan University of Medical Sciences, 61-701 Poznań, Poland
| |
Collapse
|
42
|
Piotrowski T, Rippel O, Elanzew A, Nießing B, Stucken S, Jung S, König N, Haupt S, Stappert L, Brüstle O, Schmitt R, Jonas S. Deep-learning-based multi-class segmentation for automated, non-invasive routine assessment of human pluripotent stem cell culture status. Comput Biol Med 2020; 129:104172. [PMID: 33352307 DOI: 10.1016/j.compbiomed.2020.104172] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 12/06/2020] [Accepted: 12/07/2020] [Indexed: 12/21/2022]
Abstract
Human induced pluripotent stem cells (hiPSCs) are capable of differentiating into a variety of human tissue cells. They offer new opportunities for personalized medicine and drug screening. This requires large quantities of high quality hiPSCs, obtainable only via automated cultivation. One of the major requirements of an automated cultivation is a regular, non-invasive analysis of the cell condition, e.g. by whole-well microscopy. However, despite the urgency of this requirement, there are currently no automatic, image-processing-based solutions for multi-class routine quantification of this nature. This paper describes a method to fully automate the cell state recognition based on phase contrast microscopy and deep-learning. This approach can be used for in process control during an automated hiPSC cultivation. The U-Net based algorithm is capable of segmenting important parameters of hiPSC colony formation and can discriminate between the classes hiPSC colony, single cells, differentiated cells and dead cells. The model achieves more accurate results for the classes hiPSC colonies, differentiated cells, single hiPSCs and dead cells than visual estimation by a skilled expert. Furthermore, parameters for each hiPSC colony are derived directly from the classification result such as roundness, size, center of gravity and inclusions of other cells. These parameters provide localized information about the cell state and enable well based treatment of the cell culture in automated processes. Thus, the model can be exploited for routine, non-invasive image analysis during an automated hiPSC cultivation. This facilitates the generation of high quality hiPSC derived products for biomedical purposes.
Collapse
Affiliation(s)
- Tobias Piotrowski
- Fraunhofer Institute for Production Technology IPT, Aachen, Germany.
| | - Oliver Rippel
- Fraunhofer Institute for Production Technology IPT, Aachen, Germany
| | - Andreas Elanzew
- Life & Brain GmbH, Cellomics Unit, Bonn, Germany; Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty &University Hospital Bonn, Bonn, Germany
| | - Bastian Nießing
- Fraunhofer Institute for Production Technology IPT, Aachen, Germany
| | | | - Sven Jung
- Fraunhofer Institute for Production Technology IPT, Aachen, Germany
| | - Niels König
- Fraunhofer Institute for Production Technology IPT, Aachen, Germany
| | - Simone Haupt
- Life & Brain GmbH, Cellomics Unit, Bonn, Germany
| | | | - Oliver Brüstle
- Life & Brain GmbH, Cellomics Unit, Bonn, Germany; Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty &University Hospital Bonn, Bonn, Germany
| | - Robert Schmitt
- Fraunhofer Institute for Production Technology IPT, Aachen, Germany; Laboratory for Machine Tools and Production (WZL), RWTH Aachen, Germany
| | - Stephan Jonas
- Department of Medical Informatics, RWTH Aachen University, Germany
| |
Collapse
|
43
|
Welter H, Herrmann C, Fröhlich T, Flenkenthaler F, Eubler K, Schorle H, Nettersheim D, Mayerhofer A, Müller-Taubenberger A. Filamin A Orchestrates Cytoskeletal Structure, Cell Migration and Stem Cell Characteristics in Human Seminoma TCam-2 Cells. Cells 2020; 9:E2563. [PMID: 33266100 PMCID: PMC7761120 DOI: 10.3390/cells9122563] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/19/2020] [Accepted: 11/26/2020] [Indexed: 12/16/2022] Open
Abstract
Filamins are large dimeric F-actin cross-linking proteins, crucial for the mechanosensitive properties of a number of cell types. Due to their interaction with a variety of different proteins, they exert important regulatory functions. However, in the human testis the role of filamins has been insufficiently explored. Immunohistochemical staining of human testis samples identified filamin A (FLNA) in spermatogonia and peritubular myoid cells. Investigation of different testicular tumor samples indicated that seminoma also express FLNA. Moreover, mass spectrometric analyses identified FLNA as one of the most abundant proteins in human seminoma TCam-2 cells. We therefore focused on FLNA in TCam-2 cells, and identified by co-immunoprecipitation LAD1, RUVBL1 and DAZAP1, in addition to several cytoskeletal proteins, as interactors of FLNA. To study the role of FLNA in TCam-2 cells, we generated FLNA-deficient cells using the CRISPR/Cas9 system. Loss of FLNA causes an irregular arrangement of the actin cytoskeleton and mechanical instability, impaired adhesive properties and disturbed migratory behavior. Furthermore, transcriptional activity of typical stem cell factors is increased in the absence of FLNA. In summary, our data suggest that FLNA is crucially involved in balancing stem cell characteristics and invasive properties in human seminoma cells and possibly human testicular germ cells.
Collapse
Affiliation(s)
- Harald Welter
- Anatomy III, Cell Biology, Biomedical Center, Ludwig Maximillian University of Munich, 82152 Planegg, Martinsried, Germany; (H.W.); (C.H.); (K.E.); (A.M.-T.)
| | - Carola Herrmann
- Anatomy III, Cell Biology, Biomedical Center, Ludwig Maximillian University of Munich, 82152 Planegg, Martinsried, Germany; (H.W.); (C.H.); (K.E.); (A.M.-T.)
| | - Thomas Fröhlich
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig Maximilian University of Munich, 81377 Munich, Germany; (T.F.); (F.F.)
| | - Florian Flenkenthaler
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig Maximilian University of Munich, 81377 Munich, Germany; (T.F.); (F.F.)
| | - Katja Eubler
- Anatomy III, Cell Biology, Biomedical Center, Ludwig Maximillian University of Munich, 82152 Planegg, Martinsried, Germany; (H.W.); (C.H.); (K.E.); (A.M.-T.)
| | - Hubert Schorle
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, 53127 Bonn, Germany;
| | - Daniel Nettersheim
- Department of Urology, Urological Research Lab, Translational UroOncology, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Artur Mayerhofer
- Anatomy III, Cell Biology, Biomedical Center, Ludwig Maximillian University of Munich, 82152 Planegg, Martinsried, Germany; (H.W.); (C.H.); (K.E.); (A.M.-T.)
| | - Annette Müller-Taubenberger
- Anatomy III, Cell Biology, Biomedical Center, Ludwig Maximillian University of Munich, 82152 Planegg, Martinsried, Germany; (H.W.); (C.H.); (K.E.); (A.M.-T.)
| |
Collapse
|
44
|
Zhang F, Zhang R, Wei M, Zhang Y. A novel method of cell culture based on the microfluidic chip for regulation of cell density. Biotechnol Bioeng 2020; 118:852-862. [PMID: 33124683 DOI: 10.1002/bit.27614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/14/2020] [Accepted: 10/20/2020] [Indexed: 12/16/2022]
Abstract
The regulation of cell density is an important segment in microfluidic cell culture, particularly in the repeated assays. Traditionally, consistent cell density is difficult to achieve, owing to the inaccurate regulation of cell density with manual feedback. A novel cell culture method with automatic feedback is proposed for real-time regulation of cell density based on microfluidic chip in this paper. Here, an integrated microfluidic system combining cell culture, density detection, and control of proliferation rate was developed. Interdigital electrode structures were sputtered on the microchannel automatically to provide the real-time feedback information of impedance. The most sensitive frequency was studied to improve the detection resolution of the sensing chip. Cells were cultured on the chip surface and cell density was detected by monitoring the alternation of the impedance. The feedback controller was established by the least squares support vector machines. Then, the cell proliferation rate was automatically controlled using the feedback controller to achieve the desired cell density in the repeated assays. The results show that the standard error of this method is 2.8% indicating that the method can keep a consistency of cell density in the repeated assays. This study provides a basis for improving the accuracy and repeatability in the further assays of finding the optimal drug concentration.
Collapse
Affiliation(s)
- Fei Zhang
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Rongbiao Zhang
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Mingji Wei
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yecheng Zhang
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
45
|
Fang Z, Chen S, Manchanda Y, Bitsi S, Pickford P, David A, Shchepinova MM, Corrêa Jr IR, Hodson DJ, Broichhagen J, Tate EW, Reimann F, Salem V, Rutter GA, Tan T, Bloom SR, Tomas A, Jones B. Ligand-Specific Factors Influencing GLP-1 Receptor Post-Endocytic Trafficking and Degradation in Pancreatic Beta Cells. Int J Mol Sci 2020; 21:E8404. [PMID: 33182425 PMCID: PMC7664906 DOI: 10.3390/ijms21218404] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/01/2020] [Accepted: 11/02/2020] [Indexed: 12/30/2022] Open
Abstract
The glucagon-like peptide-1 receptor (GLP-1R) is an important regulator of blood glucose homeostasis. Ligand-specific differences in membrane trafficking of the GLP-1R influence its signalling properties and therapeutic potential in type 2 diabetes. Here, we have evaluated how different factors combine to control the post-endocytic trafficking of GLP-1R to recycling versus degradative pathways. Experiments were performed in primary islet cells, INS-1 832/3 clonal beta cells and HEK293 cells, using biorthogonal labelling of GLP-1R to determine its localisation and degradation after treatment with GLP-1, exendin-4 and several further GLP-1R agonist peptides. We also characterised the effect of a rare GLP1R coding variant, T149M, and the role of endosomal peptidase endothelin-converting enzyme-1 (ECE-1), in GLP1R trafficking. Our data reveal how treatment with GLP-1 versus exendin-4 is associated with preferential GLP-1R targeting towards a recycling pathway. GLP-1, but not exendin-4, is a substrate for ECE-1, and the resultant propensity to intra-endosomal degradation, in conjunction with differences in binding affinity, contributes to alterations in GLP-1R trafficking behaviours and degradation. The T149M GLP-1R variant shows reduced signalling and internalisation responses, which is likely to be due to disruption of the cytoplasmic region that couples to intracellular effectors. These observations provide insights into how ligand- and genotype-specific factors can influence GLP-1R trafficking.
Collapse
Affiliation(s)
- Zijian Fang
- Section of Endocrinology and Investigative Medicine, Imperial College London, London W12 0NN, UK; (Z.F.); (S.C.); (P.P.); (V.S.); (T.T.); (S.R.B.)
- Wellcome Trust–Medical Research Council Cambridge Stem Cell Institute and Department of Haematology, University of Cambridge, Cambridge CB2 0AW, UK
| | - Shiqian Chen
- Section of Endocrinology and Investigative Medicine, Imperial College London, London W12 0NN, UK; (Z.F.); (S.C.); (P.P.); (V.S.); (T.T.); (S.R.B.)
| | - Yusman Manchanda
- Section of Cell Biology and Functional Genomics, Imperial College London, London W12 0NN, UK; (Y.M.); (S.B.); (G.A.R.)
| | - Stavroula Bitsi
- Section of Cell Biology and Functional Genomics, Imperial College London, London W12 0NN, UK; (Y.M.); (S.B.); (G.A.R.)
| | - Philip Pickford
- Section of Endocrinology and Investigative Medicine, Imperial College London, London W12 0NN, UK; (Z.F.); (S.C.); (P.P.); (V.S.); (T.T.); (S.R.B.)
| | - Alessia David
- Centre for Bioinformatics and System Biology, Department of Life Sciences, Imperial College London, London SW7 2BX, UK;
| | - Maria M. Shchepinova
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, 80 Wood Lane, London W12 0BZ, UK; (M.M.S.); (E.W.T.)
| | | | - David J. Hodson
- Institute of Metabolism and Systems Research (IMSR), and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham B15 2TT, UK;
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TT, UK
| | - Johannes Broichhagen
- Department of Chemical Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125 Berlin, Germany;
- Department of Chemical Biology, Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
| | - Edward W. Tate
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, 80 Wood Lane, London W12 0BZ, UK; (M.M.S.); (E.W.T.)
| | - Frank Reimann
- Institute of Metabolic Science & MRC Metabolic Diseases Unit, University of Cambridge, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0QQ, UK;
| | - Victoria Salem
- Section of Endocrinology and Investigative Medicine, Imperial College London, London W12 0NN, UK; (Z.F.); (S.C.); (P.P.); (V.S.); (T.T.); (S.R.B.)
| | - Guy A. Rutter
- Section of Cell Biology and Functional Genomics, Imperial College London, London W12 0NN, UK; (Y.M.); (S.B.); (G.A.R.)
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 639798, Singapore
| | - Tricia Tan
- Section of Endocrinology and Investigative Medicine, Imperial College London, London W12 0NN, UK; (Z.F.); (S.C.); (P.P.); (V.S.); (T.T.); (S.R.B.)
| | - Stephen R. Bloom
- Section of Endocrinology and Investigative Medicine, Imperial College London, London W12 0NN, UK; (Z.F.); (S.C.); (P.P.); (V.S.); (T.T.); (S.R.B.)
| | - Alejandra Tomas
- Section of Cell Biology and Functional Genomics, Imperial College London, London W12 0NN, UK; (Y.M.); (S.B.); (G.A.R.)
| | - Ben Jones
- Section of Endocrinology and Investigative Medicine, Imperial College London, London W12 0NN, UK; (Z.F.); (S.C.); (P.P.); (V.S.); (T.T.); (S.R.B.)
| |
Collapse
|
46
|
Cruvinel E, Ogusuku I, Cerioni R, Rodrigues S, Gonçalves J, Góes ME, Alvim JM, Silva AC, Lino VDS, Boccardo E, Goulart E, Pereira A, Dariolli R, Valadares M, Biagi D. Long-term single-cell passaging of human iPSC fully supports pluripotency and high-efficient trilineage differentiation capacity. SAGE Open Med 2020; 8:2050312120966456. [PMID: 33149912 PMCID: PMC7586033 DOI: 10.1177/2050312120966456] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 09/24/2020] [Indexed: 12/11/2022] Open
Abstract
Objectives: To establish a straightforward single-cell passaging cultivation method that enables high-quality maintenance of human induced pluripotent stem cells without the appearance of karyotypic abnormalities or loss of pluripotency. Methods: Cells were kept in culture for over 50 passages, following a structured chronogram of passage and monitoring cell growth by population doubling time calculation and cell confluence. Standard procedures for human induced pluripotent stem cells monitoring as embryonic body formation, karyotyping and pluripotency markers expression were evaluated in order to assess the cellular state in long-term culture. Cells that underwent these tests were then subjected to differentiation into keratinocytes, cardiomyocytes and definitive endoderm to evaluate its differentiation capacity. Results: Human induced pluripotent stem cells clones maintained its pluripotent capability as well as chromosomal integrity and were able to generate derivatives from the three germ layers at high passages by embryoid body formation and high-efficient direct differentiation into keratinocytes, cardiomyocytes and definitive endoderm. Conclusions: Our findings support the routine of human induced pluripotent stem cells single-cell passaging as a reliable procedure even after long-term cultivation, providing healthy human induced pluripotent stem cells to be used in drug discovery, toxicity, and disease modeling as well as for therapeutic approaches.
Collapse
Affiliation(s)
| | | | | | | | | | - Maria Elisa Góes
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | | | | | - Vanesca de Souza Lino
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Enrique Boccardo
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ernesto Goulart
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Alexandre Pereira
- Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Rafael Dariolli
- PluriCell Biotech, São Paulo, Brazil.,Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | |
Collapse
|
47
|
Characterization of heterogeneous primary human cartilage-derived cell population using non-invasive live-cell phase-contrast time-lapse imaging. Cytotherapy 2020; 23:488-499. [PMID: 33092987 DOI: 10.1016/j.jcyt.2020.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 01/14/2023]
Abstract
Reliable and reproducible cell therapy strategies to treat osteoarthritis demand an improved characterization of the cell and heterogeneous cell population resident in native cartilage tissue. Using live-cell phase-contrast time-lapse imaging (PC-TLI), this study investigates the morphological attributes and biological performance of the three primary biological objects enzymatically isolated from primary human cartilage: connective tissue progenitors (CTPs), non-progenitors (NPs) and multi-cellular structures (MCSs). The authors' results demonstrated that CTPs were smaller in size in comparison to NPs (P < 0.001). NPs remained part of the adhered cell population throughout the cell culture period. Both NPs and CTP progeny on day 8 increased in size and decreased in circularity in comparison to their counterparts on day 1, although the percent change was considerably less in CTP progeny (P < 0.001). PC-TLI analyses indicated three colony types: single-CTP-derived (29%), multiple-CTP-derived (26%) and MCS-derived (45%), with large heterogeneity with respect to cell morphology, proliferation rate and cell density. On average, clonal (CL) (P = 0.009) and MCS (P = 0.001) colonies exhibited higher cell density (cells per colony area) than multi-clonal (MC) colonies; however, it is interesting to note that the behavior of CL (less cells per colony and less colony area) and MCS (high cells per colony and high colony area) colonies was quite different. Overall effective proliferation rate (EPR) of the CTPs that formed CL colonies was higher than the EPR of CTPs that formed MC colonies (P = 0.02), most likely due to CTPs with varying EPR that formed the MC colonies. Finally, the authors demonstrated that lag time before first cell division of a CTP (early attribute) could potentially help predict its proliferation rate long-term. Quantitative morphological characterization using non-invasive PC-TLI serves as a reliable and reproducible technique to understand cell heterogeneity. Size and circularity parameters can be used to distinguish CTP from NP populations. Morphological cell and colony features can also be used to reliably and reproducibly identify CTP subpopulations with preferred proliferation and differentiation potentials in an effort to improve cell manufacturing and therapeutic outcomes.
Collapse
|
48
|
Komen J, Westerbeek EY, Kolkman RW, Roesthuis J, Lievens C, van den Berg A, van der Meer AD. Controlled pharmacokinetic anti-cancer drug concentration profiles lead to growth inhibition of colorectal cancer cells in a microfluidic device. LAB ON A CHIP 2020; 20:3167-3178. [PMID: 32729598 DOI: 10.1039/d0lc00419g] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We present a microfluidic device to expose cancer cells to a dynamic, in vivo-like concentration profile of a drug, and quantify efficacy on-chip. About 30% of cancer patients receive drug therapy. In conventional cell culture experiments drug efficacy is tested under static concentrations, e.g. 1 μM for 48 hours, whereas in vivo, drug concentration follows a pharmacokinetic profile with an initial peak and a decline over time. With the rise of microfluidic cell culture models, including organs-on-chips, there are opportunities to more realistically mimic in vivo-like concentrations. Our microfluidic device contains a cell culture chamber and a drug-dosing channel separated by a transparent membrane, to allow for shear stress-free drug exposure and label-free growth quantification. Dynamic drug concentration profiles in the cell culture chamber were controlled by continuously flowing controlled concentrations of drug in the dosing channel. The control over drug concentrations in the cell culture chambers was validated with fluorescence experiments and numerical simulations. Exposure of HCT116 colorectal cancer cells to static concentrations of the clinically used drug oxaliplatin resulted in a sensible dose-effect curve. Dynamic, in vivo-like drug exposure also led to statistically significant lower growth compared to untreated control. Continuous exposure to the average concentration of the in vivo-like exposure seems more effective than exposure to the peak concentration (Cmax) only. We expect that our microfluidic system will improve efficacy prediction of in vitro models, including organs-on-chips, and may lead to future clinical optimization of drug administration schedules.
Collapse
Affiliation(s)
- Job Komen
- BIOS Lab on a Chip group, MESA+ Institute for Nanotechnology, University of Twente, P. O. Box 217, 7500 AE Enschede, The Netherlands.
| | - Eiko Y Westerbeek
- BIOS Lab on a Chip group, MESA+ Institute for Nanotechnology, University of Twente, P. O. Box 217, 7500 AE Enschede, The Netherlands. and μFlow Group, Department of Chemical Engineering, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Ruben W Kolkman
- BIOS Lab on a Chip group, MESA+ Institute for Nanotechnology, University of Twente, P. O. Box 217, 7500 AE Enschede, The Netherlands. and Molecular Nanofabrication Group, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
| | - Julia Roesthuis
- BIOS Lab on a Chip group, MESA+ Institute for Nanotechnology, University of Twente, P. O. Box 217, 7500 AE Enschede, The Netherlands.
| | - Caroline Lievens
- Geo-Information Science and Earth Observation (ITC), University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Albert van den Berg
- BIOS Lab on a Chip group, MESA+ Institute for Nanotechnology, University of Twente, P. O. Box 217, 7500 AE Enschede, The Netherlands.
| | - Andries D van der Meer
- Applied Stem Cell Technology, TechMed Centre, University of Twente, P. O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
49
|
Carlsen J, Cömert C, Bross P, Palmfeldt J. Optimized High-Contrast Brightfield Microscopy Application for Noninvasive Proliferation Assays of Human Cell Cultures. Assay Drug Dev Technol 2020; 18:215-225. [PMID: 32692633 DOI: 10.1089/adt.2020.981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
High-contrast brightfield (HCBF) microscopy has emerged as a strong tool for noninvasive counting of cells in culture. HCBF imaging delivers precise cell growth data and is completely label free rendering it an attractive alternative to common cell counting procedures that often adversely affect cell growth. With computational image analysis, HCBF achieves efficient high-throughput automated workflows, extremely relevant for drug and chemical screens in pharmaceutical, toxicological, and biomedical research. We demonstrate the applicability of HCBF microscopy to count three common cell types (HEK293, Huh7, and primary human dermal fibroblasts) with diverse morphology challenging the method. The three cell types required different analysis settings, and we identified two parameters of the computational image analysis, which after cell-specific optimization significantly improved the cell counting accuracy, namely the lower size limit and the intensity threshold. Three-dimensional (3D) imaging approaches, which have obtained great attention in recent years, were an interesting prospect to combine with HCBF microscopy. We optimized the analysis of two 3D outputs but found 3D HCBF imaging to be inferior to the optimized single-layer HCBF imaging for cell counting. HCBF cell counts were highly linearly correlated with (R2 > 0.99) and highly similar (<15% difference) to cell counts obtained through Hoechst staining, over a broad range of densities allowing at least this level of accuracy for two to three cell generations in Huh7 cells and fibroblasts. Counts of HEK293 cells correlated somewhat less. In conclusion, the HCBF cell counting method is excellently suited for cell proliferation assays and cytotoxicity assays.
Collapse
Affiliation(s)
- Jasper Carlsen
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, Aarhus N, Denmark
| | - Cagla Cömert
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, Aarhus N, Denmark
| | - Peter Bross
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, Aarhus N, Denmark
| | - Johan Palmfeldt
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, Aarhus N, Denmark
| |
Collapse
|
50
|
Maddah M, Mandegar MA, Dame K, Grafton F, Loewke K, Ribeiro AJS. Quantifying drug-induced structural toxicity in hepatocytes and cardiomyocytes derived from hiPSCs using a deep learning method. J Pharmacol Toxicol Methods 2020; 105:106895. [PMID: 32629158 DOI: 10.1016/j.vascn.2020.106895] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/17/2020] [Accepted: 06/24/2020] [Indexed: 12/15/2022]
Abstract
Cardiac and hepatic toxicity result from induced disruption of the functioning of cardiomyocytes and hepatocytes, respectively, which is tightly related to the organization of their subcellular structures. Cellular structure can be analyzed from microscopy imaging data. However, subtle or complex structural changes that are not easily perceived may be missed by conventional image-analysis techniques. Here we report the evaluation of PhenoTox, an image-based deep-learning method of quantifying drug-induced structural changes using human hepatocytes and cardiomyocytes derived from human induced pluripotent stem cells. We assessed the ability of the deep learning method to detect variations in the organization of cellular structures from images of fixed or live cells. We also evaluated the power and sensitivity of the method for detecting toxic effects of drugs by conducting a set of experiments using known toxicants and other methods of screening for cytotoxic effects. Moreover, we used PhenoTox to characterize the effects of tamoxifen and doxorubicin-which cause liver toxicity-on hepatocytes. PhenoTox revealed differences related to loss of cytochrome P450 3A4 activity, for which it showed greater sensitivity than a caspase 3/7 assay. Finally, PhenoTox detected structural toxicity in cardiomyocytes, which was correlated with contractility defects induced by doxorubicin, erlotinib, and sorafenib. Taken together, the results demonstrated that PhenoTox can capture the subtle morphological changes that are early signs of toxicity in both hepatocytes and cardiomyocytes.
Collapse
Affiliation(s)
| | | | - Keri Dame
- Division of Applied Regulatory Science, Office of Translational Science, Office of Clinical Pharmacology, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | | | | | - Alexandre J S Ribeiro
- Division of Applied Regulatory Science, Office of Translational Science, Office of Clinical Pharmacology, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA.
| |
Collapse
|