1
|
Li N, Zheng G, Fu L, Liu N, Chen T, Lu S. Designed dualsteric modulators: A novel route for drug discovery. Drug Discov Today 2024; 29:104141. [PMID: 39168404 DOI: 10.1016/j.drudis.2024.104141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/01/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024]
Abstract
Orthosteric and allosteric modulators, which constitute the majority of current drugs, bind to the orthosteric and allosteric sites of target proteins, respectively. However, the clinical efficacy of these agents is frequently compromised by poor selectivity or reduced potency. Dualsteric modulators feature two linked pharmacophores that bind to orthosteric and allosteric sites of the target proteins simultaneously, thereby offering a promising avenue to achieve both potency and specificity. In this review, we summarize recent structures available for dualsteric modulators in complex with their target proteins, elucidating detailed drug-target interactions and dualsteric action patterns. Moreover, we provide a design and optimization strategy for dualsteric modulators based on structure-based drug design approaches.
Collapse
Affiliation(s)
- Nuan Li
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Guodong Zheng
- Department of VIP Clinic, Changhai Hospital, Affiliated to Naval Medical University, Shanghai 200433, China
| | - Lili Fu
- Department of Nephrology, People's Hospital of Pudong New Area, Shanghai University of Medicine & Health Sciences, Shanghai 201299, China
| | - Ning Liu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Ting Chen
- Department of Cardiology, Changzheng Hospital, Affiliated to Naval Medical University, Shanghai 200003, China.
| | - Shaoyong Lu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
2
|
Qian M, Sun Z, Chen X, Van Calenbergh S. Study of G protein-coupled receptors dimerization: From bivalent ligands to drug-like small molecules. Bioorg Chem 2023; 140:106809. [PMID: 37651896 DOI: 10.1016/j.bioorg.2023.106809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/27/2023] [Accepted: 08/22/2023] [Indexed: 09/02/2023]
Abstract
In the past decades an increasing number of studies revealed that G protein-coupled receptors (GPCRs) are capable of forming dimers or even higher-ordered oligomers, which may modulate receptor function and act as potential drug targets. In this review, we briefly summarized the design strategy of bivalent GPCR ligands and mainly focused on how to use them to study and/or detect GPCP dimerization in vitro and in vivo. Bivalent ligands show specific properties relative to their corresponding monomeric ligands because they are able to bind to GPCR homodimers or heterodimers simultaneously. For example, bivalent ligands with optimal length of spacers often exhibited higher binding affinities for dimers compared to that of monomers. Furthermore, bivalent ligands displayed specific signal transduction compared to monovalent ligands. Finally, we give our perspective on targeting GPCR dimers from traditional bivalent ligands to more drug-like small molecules.
Collapse
Affiliation(s)
- Mingcheng Qian
- School of Pharmacy, Changzhou University, Changzhou 213164, Jiangsu, China; Laboratory for Medicinal Chemistry, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium.
| | - Zhengyang Sun
- School of Pharmacy, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Xin Chen
- School of Pharmacy, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Serge Van Calenbergh
- Laboratory for Medicinal Chemistry, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium.
| |
Collapse
|
3
|
Bueschbell B, Magalhães PR, Barreto CA, Melo R, Schiedel AC, Machuqueiro M, Moreira IS. The World of GPCR dimers - Mapping dopamine receptor D 2 homodimers in different activation states and configuration arrangements. Comput Struct Biotechnol J 2023; 21:4336-4353. [PMID: 37711187 PMCID: PMC10497915 DOI: 10.1016/j.csbj.2023.08.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/16/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are known to dimerize, but the molecular and structural basis of GPCR dimers is not well understood. In this study, we developed a computational framework to generate models of symmetric and asymmetric GPCR dimers using different monomer activation states and identified their most likely interfaces with molecular details. We chose the dopamine receptor D2 (D2R) homodimer as a case study because of its biological relevance and the availability of structural information. Our results showed that transmembrane domains 4 and 5 (TM4 and TM5) are mostly found at the dimer interface of the D2R dimer and that these interfaces have a subset of key residues that are mostly nonpolar from TM4 and TM5, which was in line with experimental studies. In addition, TM2 and TM3 appear to be relevant for D2R dimers. In some cases, the inactive configuration is unaffected by the partnered protomer, whereas in others, the active protomer adopts the properties of an inactive receptor. Additionally, the β-arrestin configuration displayed the properties of an active receptor in the absence of an agonist, suggesting that a switch to another meta-state during dimerization occurred. Our findings are consistent with the experimental data, and this method can be adapted to study heterodimers and potentially extended to include additional proteins such as G proteins or β-arrestins. In summary, this approach provides insight into the impact of the conformational status of partnered protomers on the overall quaternary GPCR macromolecular structure and dynamics.
Collapse
Affiliation(s)
- Beatriz Bueschbell
- CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-456 Coimbra, Portugal
- IIIs-Institute for Interdisciplinary Research, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Pedro R. Magalhães
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande C8 bdg, 1749-016 Lisboa, Portugal
| | - Carlos A.V. Barreto
- CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-456 Coimbra, Portugal
- IIIs-Institute for Interdisciplinary Research, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Rita Melo
- CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-456 Coimbra, Portugal
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, University of Coimbra, Coimbra, Portugal
| | - Anke C. Schiedel
- Department of Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, D-53121 Bonn, Germany
| | - Miguel Machuqueiro
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande C8 bdg, 1749-016 Lisboa, Portugal
| | - Irina S. Moreira
- Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-535 Coimbra, Portugal
| |
Collapse
|
4
|
Cerutis DR, Weston MD, Miyamoto T. Entering, Linked with the Sphinx: Lysophosphatidic Acids Everywhere, All at Once, in the Oral System and Cancer. Int J Mol Sci 2023; 24:10278. [PMID: 37373424 PMCID: PMC10299546 DOI: 10.3390/ijms241210278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/08/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Oral health is crucial to overall health, and periodontal disease (PDD) is a chronic inflammatory disease. Over the past decade, PDD has been recognized as a significant contributor to systemic inflammation. Here, we relate our seminal work defining the role of lysophosphatidic acid (LPA) and its receptors (LPARs) in the oral system with findings and parallels relevant to cancer. We discuss the largely unexplored fine-tuning potential of LPA species for biological control of complex immune responses and suggest approaches for the areas where we believe more research should be undertaken to advance our understanding of signaling at the level of the cellular microenvironment in biological processes where LPA is a key player so we can better treat diseases such as PDD, cancer, and emerging diseases.
Collapse
Affiliation(s)
- D. Roselyn Cerutis
- Department of Oral Biology, Creighton University School of Dentistry, Omaha, NE 68178, USA;
| | - Michael D. Weston
- Department of Oral Biology, Creighton University School of Dentistry, Omaha, NE 68178, USA;
| | - Takanari Miyamoto
- Department of Periodontics, Creighton University School of Dentistry, Omaha, NE 68178, USA;
| |
Collapse
|
5
|
Saha S, González-Maeso J. The crosstalk between 5-HT 2AR and mGluR2 in schizophrenia. Neuropharmacology 2023; 230:109489. [PMID: 36889432 PMCID: PMC10103009 DOI: 10.1016/j.neuropharm.2023.109489] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/26/2023] [Accepted: 03/05/2023] [Indexed: 03/08/2023]
Abstract
Schizophrenia is a severe brain disorder that usually produces a lifetime of disability. First generation or typical antipsychotics such as haloperidol and second generation or atypical antipsychotics such as clozapine and risperidone remain the current standard for schizophrenia treatment. In some patients with schizophrenia, antipsychotics produce complete remission of positive symptoms, such as hallucinations and delusions. However, antipsychotic drugs are ineffective against cognitive deficits and indeed treated schizophrenia patients have small improvements or even deterioration in several cognitive domains. This underlines the need for novel and more efficient therapeutic targets for schizophrenia treatment. Serotonin and glutamate have been identified as key parts of two neurotransmitter systems involved in fundamental brain processes. Serotonin (or 5-hydroxytryptamine) 5-HT2A receptor (5-HT2AR) and metabotropic glutamate 2 receptor (mGluR2) are G protein-coupled receptors (GPCRs) that interact at epigenetic and functional levels. These two receptors can form GPCR heteromeric complexes through which their pharmacology, function and trafficking becomes affected. Here we review past and current research on the 5-HT2AR-mGluR2 heterocomplex and its potential implication in schizophrenia and antipsychotic drug action. This article is part of the Special Issue on "The receptor-receptor interaction as a new target for therapy".
Collapse
Affiliation(s)
- Somdatta Saha
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Javier González-Maeso
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA.
| |
Collapse
|
6
|
From the Catastrophic Objective Irreproducibility of Cancer Research and Unavoidable Failures of Molecular Targeted Therapies to the Sparkling Hope of Supramolecular Targeted Strategies. Int J Mol Sci 2023; 24:ijms24032796. [PMID: 36769134 PMCID: PMC9917659 DOI: 10.3390/ijms24032796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
The unprecedented non-reproducibility of the results published in the field of cancer research has recently come under the spotlight. In this short review, we try to highlight some general principles in the organization and evolution of cancerous tumors, which objectively lead to their enormous variability and, consequently, the irreproducibility of the results of their investigation. This heterogeneity is also extremely unfavorable for the effective use of molecularly targeted medicine. Against the seemingly comprehensive background of this heterogeneity, we single out two supramolecular characteristics common to all tumors: the clustered nature of tumor interactions with their microenvironment and the formation of biomolecular condensates with tumor-specific distinctive features. We suggest that these features can form the basis of strategies for tumor-specific supramolecular targeted therapies.
Collapse
|
7
|
Juza R, Musilek K, Mezeiova E, Soukup O, Korabecny J. Recent advances in dopamine D 2 receptor ligands in the treatment of neuropsychiatric disorders. Med Res Rev 2023; 43:55-211. [PMID: 36111795 DOI: 10.1002/med.21923] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 07/29/2022] [Accepted: 08/09/2022] [Indexed: 02/04/2023]
Abstract
Dopamine is a biologically active amine synthesized in the central and peripheral nervous system. This biogenic monoamine acts by activating five types of dopamine receptors (D1-5 Rs), which belong to the G protein-coupled receptor family. Antagonists and partial agonists of D2 Rs are used to treat schizophrenia, Parkinson's disease, depression, and anxiety. The typical pharmacophore with high D2 R affinity comprises four main areas, namely aromatic moiety, cyclic amine, central linker and aromatic/heteroaromatic lipophilic fragment. From the literature reviewed herein, we can conclude that 4-(2,3-dichlorophenyl), 4-(2-methoxyphenyl)-, 4-(benzo[b]thiophen-4-yl)-1-substituted piperazine, and 4-(6-fluorobenzo[d]isoxazol-3-yl)piperidine moieties are critical for high D2 R affinity. Four to six atoms chains are optimal for D2 R affinity with 4-butoxyl as the most pronounced one. The bicyclic aromatic/heteroaromatic systems are most frequently occurring as lipophilic appendages to retain high D2 R affinity. In this review, we provide a thorough overview of the therapeutic potential of D2 R modulators in the treatment of the aforementioned disorders. In addition, this review summarizes current knowledge about these diseases, with a focus on the dopaminergic pathway underlying these pathologies. Major attention is paid to the structure, function, and pharmacology of novel D2 R ligands, which have been developed in the last decade (2010-2021), and belong to the 1,4-disubstituted aromatic cyclic amine group. Due to the abundance of data, allosteric D2 R ligands and D2 R modulators from patents are not discussed in this review.
Collapse
Affiliation(s)
- Radomir Juza
- Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Kamil Musilek
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic.,Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Eva Mezeiova
- Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic.,Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Ondrej Soukup
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Jan Korabecny
- Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic.,Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
8
|
Gregory KJ, Jörg M. Chemical biology-based approaches to study adenosine A 2A - dopamine D 2 receptor heteromers. Purinergic Signal 2022; 18:395-398. [PMID: 35348986 PMCID: PMC9832194 DOI: 10.1007/s11302-022-09860-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 03/15/2022] [Indexed: 01/14/2023] Open
Affiliation(s)
- Karen J. Gregory
- grid.1002.30000 0004 1936 7857Drug Discovery Biology Theme, ARC Centre for Cryo-Electron Microscopy of Membrane Proteins and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052 Australia
| | - Manuela Jörg
- Medicinal Chemistry Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia. .,Chemistry-School of Natural & Environmental Sciences, Newcastle University Centre for Cancer, Newcastle University, Bedson Building, Newcastle Upon Tyne, NE1 7RU, UK.
| |
Collapse
|
9
|
Caniceiro AB, Bueschbell B, Schiedel AC, Moreira IS. Class A and C GPCR Dimers in Neurodegenerative Diseases. Curr Neuropharmacol 2022; 20:2081-2141. [PMID: 35339177 PMCID: PMC9886835 DOI: 10.2174/1570159x20666220327221830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/21/2022] [Accepted: 03/23/2022] [Indexed: 11/22/2022] Open
Abstract
Neurodegenerative diseases affect over 30 million people worldwide with an ascending trend. Most individuals suffering from these irreversible brain damages belong to the elderly population, with onset between 50 and 60 years. Although the pathophysiology of such diseases is partially known, it remains unclear upon which point a disease turns degenerative. Moreover, current therapeutics can treat some of the symptoms but often have severe side effects and become less effective in long-term treatment. For many neurodegenerative diseases, the involvement of G proteincoupled receptors (GPCRs), which are key players of neuronal transmission and plasticity, has become clearer and holds great promise in elucidating their biological mechanism. With this review, we introduce and summarize class A and class C GPCRs, known to form heterodimers or oligomers to increase their signalling repertoire. Additionally, the examples discussed here were shown to display relevant alterations in brain signalling and had already been associated with the pathophysiology of certain neurodegenerative diseases. Lastly, we classified the heterodimers into two categories of crosstalk, positive or negative, for which there is known evidence.
Collapse
Affiliation(s)
- Ana B. Caniceiro
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; ,These authors contributed equally to this work.
| | - Beatriz Bueschbell
- PhD Programme in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Casa Costa Alemão, 3030-789 Coimbra, Portugal; ,These authors contributed equally to this work.
| | - Anke C. Schiedel
- Department of Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, D-53121 Bonn, Germany;
| | - Irina S. Moreira
- University of Coimbra, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; ,Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, 3004-504 Coimbra, Portugal,Address correspondence to this author at the Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, 3004-504 Coimbra, Portugal; E-mail:
| |
Collapse
|
10
|
Gado F, Ferrisi R, Polini B, Mohamed KA, Ricardi C, Lucarini E, Carpi S, Domenichini F, Stevenson LA, Rapposelli S, Saccomanni G, Nieri P, Ortore G, Pertwee RG, Ghelardini C, Di Cesare Mannelli L, Chiellini G, Laprairie RB, Manera C. Design, Synthesis, and Biological Activity of New CB2 Receptor Ligands: from Orthosteric and Allosteric Modulators to Dualsteric/Bitopic Ligands. J Med Chem 2022; 65:9918-9938. [PMID: 35849804 PMCID: PMC10168668 DOI: 10.1021/acs.jmedchem.2c00582] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The design of dualsteric/bitopic agents as single chemical entities able to simultaneously interact with both the orthosteric and an allosteric binding site represents a novel approach in medicinal chemistry. Biased dualsteric/bitopic agents could enhance certain signaling pathways while diminishing the others that cause unwanted side effects. We have designed, synthesized, and functionally characterized the first CB2R heterobivalent bitopic ligands. In contrast to the parent orthosteric compound, our bitopic ligands selectively target CB2R versus CB1R and show a functional selectivity for the cAMP signaling pathway versus βarrestin2 recruitment. Moreover, the most promising bitopic ligand FD-22a displayed anti-inflammatory activity in a human microglial cell inflammatory model and antinociceptive activity in vivo in an experimental mouse model of neuropathic pain. Finally, computational studies clarified the binding mode of these compounds inside the CB2R, further confirming their bitopic nature.
Collapse
Affiliation(s)
- Francesca Gado
- Department of Pharmacy, University of Pisa, Pisa 56126, Italy
| | - Rebecca Ferrisi
- Department of Pharmacy, University of Pisa, Pisa 56126, Italy
| | - Beatrice Polini
- Department of Pharmacy, University of Pisa, Pisa 56126, Italy.,Department of Pathology, University of Pisa, Pisa 56126, Italy
| | - Kawthar A Mohamed
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon SK S7N 5E5, Canada
| | | | - Elena Lucarini
- Department of Neuroscience, Psychology, Drug Research and Child Health, Section of Pharmacology and Toxicology, University of Florence, Florence 50139, Italy
| | - Sara Carpi
- Department of Pharmacy, University of Pisa, Pisa 56126, Italy.,NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro, Pisa 56126, Italy
| | | | - Lesley A Stevenson
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, Scotland, U.K
| | - Simona Rapposelli
- Department of Pharmacy, University of Pisa, Pisa 56126, Italy.,CISUP, Centre for Instrumentation Sharing Pisa University, Lungarno Pacinotti 43, Pisa 56126, Italy
| | | | - Paola Nieri
- Department of Pharmacy, University of Pisa, Pisa 56126, Italy
| | | | - Roger G Pertwee
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, Scotland, U.K
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health, Section of Pharmacology and Toxicology, University of Florence, Florence 50139, Italy
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health, Section of Pharmacology and Toxicology, University of Florence, Florence 50139, Italy
| | - Grazia Chiellini
- Department of Pathology, University of Pisa, Pisa 56126, Italy.,CISUP, Centre for Instrumentation Sharing Pisa University, Lungarno Pacinotti 43, Pisa 56126, Italy
| | - Robert B Laprairie
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon SK S7N 5E5, Canada.,Department of Pharmacology, College of Medicine, Dalhousie University, Halifax B3H 4R2, Nova Scotia, Canada
| | - Clementina Manera
- Department of Pharmacy, University of Pisa, Pisa 56126, Italy.,CISUP, Centre for Instrumentation Sharing Pisa University, Lungarno Pacinotti 43, Pisa 56126, Italy
| |
Collapse
|
11
|
Dysfunctional Heteroreceptor Complexes as Novel Targets for the Treatment of Major Depressive and Anxiety Disorders. Cells 2022; 11:cells11111826. [PMID: 35681521 PMCID: PMC9180493 DOI: 10.3390/cells11111826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/10/2022] [Accepted: 05/20/2022] [Indexed: 02/01/2023] Open
Abstract
Among mental diseases, major depressive disorder (MDD) and anxiety deserve a special place due to their high prevalence and their negative impact both on society and patients suffering from these disorders. Consequently, the development of novel strategies designed to treat them quickly and efficiently, without or at least having limited side effects, is considered a highly important goal. Growing evidence indicates that emerging properties are developed on recognition, trafficking, and signaling of G-protein coupled receptors (GPCRs) upon their heteromerization with other types of GPCRs, receptor tyrosine kinases, and ionotropic receptors such as N-methyl-D-aspartate (NMDA) receptors. Therefore, to develop new treatments for MDD and anxiety, it will be important to identify the most vulnerable heteroreceptor complexes involved in MDD and anxiety. This review focuses on how GPCRs, especially serotonin, dopamine, galanin, and opioid heteroreceptor complexes, modulate synaptic and volume transmission in the limbic networks of the brain. We attempt to provide information showing how these emerging concepts can contribute to finding new ways to treat both MDD and anxiety disorders.
Collapse
|
12
|
Harms M, Hansson RF, Carmali S, Almeida-Hernández Y, Sanchez-Garcia E, Münch J, Zelikin AN. Dimerization of the Peptide CXCR4-Antagonist on Macromolecular and Supramolecular Protraction Arms Affords Increased Potency and Enhanced Plasma Stability. Bioconjug Chem 2022; 33:594-607. [PMID: 35293739 DOI: 10.1021/acs.bioconjchem.2c00034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Peptides are prime drug candidates due to their high specificity of action but are disadvantaged by low proteolytic stability. Here, we focus on the development of stabilized analogues of EPI-X4, an endogenous peptide antagonist of CXCR4. We synthesized macromolecular peptide conjugates and performed side-by-side comparison with their albumin-binding counterparts and considered monovalent conjugates, divalent telechelic conjugates, and Y-shaped peptide dimers. All constructs were tested for competition with the CXCR4 antibody-receptor engagement, inhibition of receptor activation, and inhibition of the CXCR4-tropic human immunodeficiency virus infection. We found that the Y-shaped conjugates were more potent than the parent peptide and at the same time more stable in human plasma, with a favorable outlook for translational studies.
Collapse
Affiliation(s)
- Mirja Harms
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Rikke Fabech Hansson
- Department of Chemistry and iNano Interdisciplinary Nanoscience Centre, Aarhus University, Aarhus 8000, Denmark
| | - Sheiliza Carmali
- Department of Chemistry and iNano Interdisciplinary Nanoscience Centre, Aarhus University, Aarhus 8000, Denmark
| | - Yasser Almeida-Hernández
- Computational Biochemistry, Center of Medical Biotechnology, University Duisburg-Essen, D-45141 Essen, Germany
| | - Elsa Sanchez-Garcia
- Computational Biochemistry, Center of Medical Biotechnology, University Duisburg-Essen, D-45141 Essen, Germany
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Alexander N Zelikin
- Department of Chemistry and iNano Interdisciplinary Nanoscience Centre, Aarhus University, Aarhus 8000, Denmark
| |
Collapse
|
13
|
Ma H, Li M, Pagare PP, Wang H, Nassehi N, Santos EJ, Negus SS, Selley DE, Zhang Y. Novel bivalent ligands carrying potential antinociceptive effects by targeting putative mu opioid receptor and chemokine receptor CXCR4 heterodimers. Bioorg Chem 2022; 120:105641. [PMID: 35093692 PMCID: PMC9187593 DOI: 10.1016/j.bioorg.2022.105641] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/12/2022] [Accepted: 01/21/2022] [Indexed: 01/26/2023]
Abstract
The functional interactions between opioid and chemokine receptors have been implicated in the pathological process of chronic pain. Mounting studies have indicated the possibility that a MOR-CXCR4 heterodimer may be involved in nociception and related pharmacologic effects. Herein we have synthesized a series of bivalent ligands containing both MOR agonist and CXCR4 antagonist pharmacophores with an aim to investigate the functional interactions between these two receptors. In vitro studies demonstrated reasonable recognition of designed ligands at both respective receptors. Further antinociceptive testing in mice revealed compound 1a to be the most promising member of this series. Additional molecular modeling studies corroborated the findings observed. Taken together, we identified the first bivalent ligand 1a showing promising antinociceptive effect by targeting putative MOR-CXCR4 heterodimers, which may serve as a novel chemical probe to further develop more potent bivalent ligands with potential application in analgesic therapies for chronic pain management.
Collapse
Affiliation(s)
- Hongguang Ma
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, Virginia 23298, United States
| | - Mengchu Li
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, Virginia 23298, United States
| | - Piyusha P. Pagare
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, Virginia 23298, United States
| | - Huiqun Wang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, Virginia 23298, United States
| | - Nima Nassehi
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Richmond, Virginia 23298, United States
| | - Edna J. Santos
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Richmond, Virginia 23298, United States
| | - S. Stevens Negus
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Richmond, Virginia 23298, United States
| | - Dana E. Selley
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Richmond, Virginia 23298, United States
| | - Yan Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, VA 23298, United States.
| |
Collapse
|
14
|
Pulido D, Casadó-Anguera V, Gómez-Autet M, Llopart N, Moreno E, Casajuana-Martin N, Ferré S, Pardo L, Casadó V, Royo M. Heterobivalent Ligand for the Adenosine A 2A-Dopamine D 2 Receptor Heteromer. J Med Chem 2022; 65:616-632. [PMID: 34982555 DOI: 10.1021/acs.jmedchem.1c01763] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A G protein-coupled receptor heteromer that fulfills the established criteria for its existence in vivo is the complex between adenosine A2A (A2AR) and dopamine D2 (D2R) receptors. Here, we have designed and synthesized heterobivalent ligands for the A2AR-D2R heteromer with various spacer lengths. The indispensable simultaneous binding of these ligands to the two different orthosteric sites of the heteromer has been evaluated by radioligand competition-binding assays in the absence and presence of specific peptides that disrupt the formation of the heteromer, label-free dynamic mass redistribution assays in living cells, and molecular dynamic simulations. This combination of techniques has permitted us to identify compound 26 [KDB1 (A2AR) = 2.1 nM, KDB1 (D2R) = 0.13 nM], with a spacer length of 43-atoms, as a true bivalent ligand that simultaneously binds to the two different orthosteric sites. Moreover, bioluminescence resonance energy transfer experiments indicate that 26 favors the stabilization of the A2AR-D2R heteromer.
Collapse
Affiliation(s)
- Daniel Pulido
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 08034 Barcelona, Spain.,Department of Surfactants and Nanobiotechnology, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain
| | - Verònica Casadó-Anguera
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, 08028 Barcelona, Spain
| | - Marc Gómez-Autet
- Laboratori de Medicina Computacional, Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Natàlia Llopart
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, 08028 Barcelona, Spain
| | - Estefanía Moreno
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, 08028 Barcelona, Spain
| | - Nil Casajuana-Martin
- Laboratori de Medicina Computacional, Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Sergi Ferré
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, United States
| | - Leonardo Pardo
- Laboratori de Medicina Computacional, Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Vicent Casadó
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, 08028 Barcelona, Spain
| | - Miriam Royo
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 08034 Barcelona, Spain.,Department of Surfactants and Nanobiotechnology, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain
| |
Collapse
|
15
|
Budzinski J, Maschauer S, Kobayashi H, Couvineau P, Vogt H, Gmeiner P, Roggenhofer A, Prante O, Bouvier M, Weikert D. Bivalent ligands promote endosomal trafficking of the dopamine D3 receptor-neurotensin receptor 1 heterodimer. Commun Biol 2021; 4:1062. [PMID: 34508168 PMCID: PMC8433439 DOI: 10.1038/s42003-021-02574-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 08/18/2021] [Indexed: 02/08/2023] Open
Abstract
Bivalent ligands are composed of two pharmacophores connected by a spacer of variable size. These ligands are able to simultaneously recognize two binding sites, for example in a G protein-coupled receptor heterodimer, resulting in enhanced binding affinity. Taking advantage of previously described heterobivalent dopamine-neurotensin receptor ligands, we demonstrate specific interactions between dopamine D3 (D3R) and neurotensin receptor 1 (NTSR1), two receptors with expression in overlapping brain areas that are associated with neuropsychiatric diseases and addiction. Bivalent ligand binding to D3R-NTSR1 dimers results in picomolar binding affinity and high selectivity compared to the binding to monomeric receptors. Specificity of the ligands for the D3R-NTSR1 receptor pair over D2R-NTSR1 dimers can be achieved by a careful choice of the linker length. Bivalent ligands enhance and stabilize the receptor-receptor interaction leading to NTSR1-controlled internalization of D3R into endosomes via recruitment of β-arrestin, highlighting a potential mechanism for dimer-specific receptor trafficking and signalling.
Collapse
Affiliation(s)
- Julian Budzinski
- grid.5330.50000 0001 2107 3311Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Simone Maschauer
- grid.5330.50000 0001 2107 3311Department of Nuclear Medicine, Molecular Imaging and Radiochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Hiroyuki Kobayashi
- grid.14848.310000 0001 2292 3357Department of Biochemistry and Molecular Medicine, Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC Canada
| | - Pierre Couvineau
- grid.14848.310000 0001 2292 3357Department of Biochemistry and Molecular Medicine, Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC Canada
| | - Hannah Vogt
- grid.5330.50000 0001 2107 3311Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Peter Gmeiner
- grid.5330.50000 0001 2107 3311Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Anna Roggenhofer
- grid.5330.50000 0001 2107 3311Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Olaf Prante
- grid.5330.50000 0001 2107 3311Department of Nuclear Medicine, Molecular Imaging and Radiochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Michel Bouvier
- grid.14848.310000 0001 2292 3357Department of Biochemistry and Molecular Medicine, Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC Canada
| | - Dorothee Weikert
- grid.5330.50000 0001 2107 3311Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
16
|
Zlotos DP, Abdelmalek CM, Botros LS, Banoub MM, Mandour YM, Breitinger U, El Nady A, Breitinger HG, Sotriffer C, Villmann C, Jensen AA, Holzgrabe U. C-2-Linked Dimeric Strychnine Analogues as Bivalent Ligands Targeting Glycine Receptors. JOURNAL OF NATURAL PRODUCTS 2021; 84:382-394. [PMID: 33596384 DOI: 10.1021/acs.jnatprod.0c01030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Strychnine is the prototypic antagonist of glycine receptors, a family of pentameric ligand-gated ion channels. Recent high-resolution structures of homomeric glycine receptors have confirmed the presence of five orthosteric binding sites located in the extracellular subunit interfaces of the receptor complex that are targeted by strychnine. Here, we report the synthesis and extensive pharmacological evaluation of bivalent ligands composed of two strychnine pharmacophores connected by appropriate spacers optimized toward simultaneous binding to two adjacent orthosteric sites of homomeric α1 glycine receptors. In all bivalent ligands, the two strychnine units were linked through C-2 by amide spacers of various lengths ranging from 6 to 69 atoms. Characterization of the compounds in two functional assays and in a radioligand binding assay indicated that compound 11a, with a spacer consisting of 57 atoms, may be capable of bridging the homomeric α1 GlyRs by simultaneous occupation of two adjacent strychnine-binding sites. The findings are supported by docking experiments to the crystal structure of the homomeric glycine receptor. Based on its unique binding mode, its relatively high binding affinity and antagonist potency, and its slow binding kinetics, the bivalent strychnine analogue 11a could be a valuable tool to study the functional properties of glycine receptors.
Collapse
Affiliation(s)
- Darius P Zlotos
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, The German University in Cairo, New Cairo City, 11835 Cairo, Egypt
| | - Carine M Abdelmalek
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, The German University in Cairo, New Cairo City, 11835 Cairo, Egypt
| | - Liza S Botros
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, The German University in Cairo, New Cairo City, 11835 Cairo, Egypt
| | - Maha M Banoub
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, The German University in Cairo, New Cairo City, 11835 Cairo, Egypt
| | - Yasmine M Mandour
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, The German University in Cairo, New Cairo City, 11835 Cairo, Egypt
- School of Life and Medical Sciences, University of Hertfordshire hosted by Global Academic Foundation, New Administrative Capitol, 11865 Cairo, Egypt
| | - Ulrike Breitinger
- Department of Biochemistry, Faculty of Pharmacy and Biotechnology, The German University in Cairo, New Cairo City, 11835 Cairo, Egypt
| | - Ahmed El Nady
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, The German University in Cairo, New Cairo City, 11835 Cairo, Egypt
| | - Hans-Georg Breitinger
- Department of Biochemistry, Faculty of Pharmacy and Biotechnology, The German University in Cairo, New Cairo City, 11835 Cairo, Egypt
| | - Christoph Sotriffer
- Institute of Pharmacy and Food Chemistry, University of Würzburg, 97074 Würzburg, Germany
| | - Carmen Villmann
- Institute of Clinical Neurobiology, University Hospital, University of Würzburg, 97078 Würzburg, Germany
| | - Anders A Jensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Ulrike Holzgrabe
- Institute of Pharmacy and Food Chemistry, University of Würzburg, 97074 Würzburg, Germany
| |
Collapse
|
17
|
Ullmann T, Gienger M, Budzinski J, Hellmann J, Hübner H, Gmeiner P, Weikert D. Homobivalent Dopamine D 2 Receptor Ligands Modulate the Dynamic Equilibrium of D 2 Monomers and Homo- and Heterodimers. ACS Chem Biol 2021; 16:371-379. [PMID: 33435665 DOI: 10.1021/acschembio.0c00895] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Dopamine D2 receptors (D2Rs) are major targets in the treatment of psychiatric and neurodegenerative diseases. As with many other G protein-coupled receptors (GPCRs), D2Rs interact within the cellular membrane, leading to a transient receptor homo- or heterodimerization. These interactions are known to alter ligand binding, signaling, and receptor trafficking. Bivalent ligands are ideally suited to target GPCR dimers and are composed of two pharmacophores connected by a spacer element. If properly designed, bivalent ligands are able to engange the two orthosteric binding sites of a GPCR dimer simultaneously. Taking advantage of previously developed ligands for heterodimers of D2R and the neurotensin receptor 1 (NTSR1), we synthesized homobivalent ligands targeting D2R. Employing bioluminescence resonance energy transfer, we found that the bivalent ligands 3b and 4b comprising a 92-atom spacer are able to foster D2R-homodimerization while simultaneously reducing interactions of D2R with NTSR1. Both receptors are coexpressed in the central nervous system and involved in important physiological processes. The newly developed bivalent ligands are excellent tools to further understand the pharmacological consequences of D2R homo- and heterodimerization. Not limited to the dopaminergic system, modifying class A GPCRs' dynamic equilibrium between monomers, homomers, and heteromers with bivalent ligands may represent a novel pharmacological concept paving the way toward innovative drugs.
Collapse
Affiliation(s)
- Tamara Ullmann
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Marie Gienger
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Julian Budzinski
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Jan Hellmann
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Harald Hübner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Dorothee Weikert
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| |
Collapse
|
18
|
Díaz JL, Cuevas F, Pazos G, Álvarez-Bercedo P, Oliva AI, Sarmentero MÁ, Font D, Jiménez-Aquino A, Morón M, Port A, Pascual R, Dordal A, Portillo-Salido E, Reinoso RF, Vela JM, Almansa C. Bicyclic Diazepinones as Dual Ligands of the α2δ-1 Subunit of Voltage-Gated Calcium Channels and the Norepinephrine Transporter. J Med Chem 2021; 64:2167-2185. [PMID: 33591743 DOI: 10.1021/acs.jmedchem.0c01867] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The synthesis and pharmacological activity of a new series of bicyclic diazepinones with dual activity toward the α2δ-1 subunit of voltage-gated calcium channels (Cavα2δ-1) and the norepinephrine transporter (NET) are reported. Exploration of the positions amenable for substitution on a nonaminoacidic Cavα2δ-1 scaffold allowed the identification of favorable positions for the attachment of NET pharmacophores. Among the patterns explored, attachment of the 2-ethylamino-9-methyl-6-phenyl-6,7,8,9-tetrahydro-5H-pyrimido[4,5-e][1,4]diazepin-5-one framework to the meta-position of the phenyl ring of the 3-methylamino-1-phenylpropoxy and 3-methylamino-1-thiophenylpropoxy moieties provided dual compounds with excellent NET functionality. Alternative bicyclic frameworks were also explored, and some lead molecules were identified, which showed a balanced dual profile and exhibited good ADMET properties.
Collapse
Affiliation(s)
- José Luis Díaz
- ESTEVE Pharmaceuticals, Torre Esteve, Passeig de la Zona Franca, 109, 08038 Barcelona, Spain
| | - Félix Cuevas
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Gonzalo Pazos
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Paula Álvarez-Bercedo
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Ana I Oliva
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - M Ángeles Sarmentero
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Daniel Font
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Agustín Jiménez-Aquino
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - María Morón
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Adriana Port
- ESTEVE Pharmaceuticals, Torre Esteve, Passeig de la Zona Franca, 109, 08038 Barcelona, Spain
| | - Rosalía Pascual
- ESTEVE Pharmaceuticals, Torre Esteve, Passeig de la Zona Franca, 109, 08038 Barcelona, Spain
| | - Albert Dordal
- ESTEVE Pharmaceuticals, Torre Esteve, Passeig de la Zona Franca, 109, 08038 Barcelona, Spain
| | - Enrique Portillo-Salido
- ESTEVE Pharmaceuticals, Torre Esteve, Passeig de la Zona Franca, 109, 08038 Barcelona, Spain
| | - Raquel F Reinoso
- ESTEVE Pharmaceuticals, Torre Esteve, Passeig de la Zona Franca, 109, 08038 Barcelona, Spain
| | - José Miguel Vela
- ESTEVE Pharmaceuticals, Torre Esteve, Passeig de la Zona Franca, 109, 08038 Barcelona, Spain
| | - Carmen Almansa
- ESTEVE Pharmaceuticals, Torre Esteve, Passeig de la Zona Franca, 109, 08038 Barcelona, Spain
| |
Collapse
|
19
|
Prasad K, de Vries EFJ, Elsinga PH, Dierckx RAJO, van Waarde A. Allosteric Interactions between Adenosine A 2A and Dopamine D 2 Receptors in Heteromeric Complexes: Biochemical and Pharmacological Characteristics, and Opportunities for PET Imaging. Int J Mol Sci 2021; 22:ijms22041719. [PMID: 33572077 PMCID: PMC7915359 DOI: 10.3390/ijms22041719] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/17/2022] Open
Abstract
Adenosine and dopamine interact antagonistically in living mammals. These interactions are mediated via adenosine A2A and dopamine D2 receptors (R). Stimulation of A2AR inhibits and blockade of A2AR enhances D2R-mediated locomotor activation and goal-directed behavior in rodents. In striatal membrane preparations, adenosine decreases both the affinity and the signal transduction of D2R via its interaction with A2AR. Reciprocal A2AR/D2R interactions occur mainly in striatopallidal GABAergic medium spiny neurons (MSNs) of the indirect pathway that are involved in motor control, and in striatal astrocytes. In the nucleus accumbens, they also take place in MSNs involved in reward-related behavior. A2AR and D2R co-aggregate, co-internalize, and co-desensitize. They are at very close distance in biomembranes and form heteromers. Antagonistic interactions between adenosine and dopamine are (at least partially) caused by allosteric receptor–receptor interactions within A2AR/D2R heteromeric complexes. Such interactions may be exploited in novel strategies for the treatment of Parkinson’s disease, schizophrenia, substance abuse, and perhaps also attention deficit-hyperactivity disorder. Little is known about shifting A2AR/D2R heteromer/homodimer equilibria in the brain. Positron emission tomography with suitable ligands may provide in vivo information about receptor crosstalk in the living organism. Some experimental approaches, and strategies for the design of novel imaging agents (e.g., heterobivalent ligands) are proposed in this review.
Collapse
Affiliation(s)
- Kavya Prasad
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands; (E.F.J.d.V.); (P.H.E.); (R.A.J.O.D.)
- Correspondence: (K.P.); (A.v.W.); Tel.: +31-50-3613215
| | - Erik F. J. de Vries
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands; (E.F.J.d.V.); (P.H.E.); (R.A.J.O.D.)
| | - Philip H. Elsinga
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands; (E.F.J.d.V.); (P.H.E.); (R.A.J.O.D.)
| | - Rudi A. J. O. Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands; (E.F.J.d.V.); (P.H.E.); (R.A.J.O.D.)
- Department of Diagnostic Sciences, Ghent University Faculty of Medicine and Health Sciences, C.Heymanslaan 10, 9000 Gent, Belgium
| | - Aren van Waarde
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands; (E.F.J.d.V.); (P.H.E.); (R.A.J.O.D.)
- Correspondence: (K.P.); (A.v.W.); Tel.: +31-50-3613215
| |
Collapse
|
20
|
Qian M, Ricarte A, Wouters E, Dalton JAR, Risseeuw MDP, Giraldo J, Van Calenbergh S. Discovery of a true bivalent dopamine D 2 receptor agonist. Eur J Med Chem 2021; 212:113151. [PMID: 33450620 DOI: 10.1016/j.ejmech.2020.113151] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/06/2020] [Accepted: 12/28/2020] [Indexed: 10/22/2022]
Abstract
Employing two different alkyne-modified dopamine agonists to construct bivalent compounds via click chemistry resulted in the identification of a bivalent ligand (11c) for dopamine D2 receptor homodimer, which, compared to its parent monomeric alkyne, showed a 16-fold higher binding affinity for the dopamine D2 receptor and a 5-fold higher potency in a cAMP assay in HEK 293T cells stably expressing D2R. Molecular modeling revealed that 11c can indeed bridge the orthosteric binding sites of a D2R homodimer in a relaxed conformation via the TM5-TM6 interface and allows to largely rationalize the results of the receptor assays.
Collapse
Affiliation(s)
- Mingcheng Qian
- Department of Medicinal Chemistry, School of Pharmacy, Changzhou University, Changzhou, 213164, Jiangsu, China; Laboratory for Medicinal Chemistry, Ghent University, Ottergemsesteenweg 460, B-9000, Ghent, Belgium
| | - Adrián Ricarte
- Laboratory of Molecular Neuropharmacology and Bioinformatics, Unitat de Bioestadística, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigaciói InnovacióParc Taulí (I3PT), Institut de Neurociències, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Elise Wouters
- Laboratory of Toxicology, Ghent University, Ottergemsesteenweg 460, B-9000, Ghent, Belgium
| | - James A R Dalton
- Laboratory of Molecular Neuropharmacology and Bioinformatics, Unitat de Bioestadística, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigaciói InnovacióParc Taulí (I3PT), Institut de Neurociències, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Martijn D P Risseeuw
- Laboratory for Medicinal Chemistry, Ghent University, Ottergemsesteenweg 460, B-9000, Ghent, Belgium
| | - Jesús Giraldo
- Laboratory of Molecular Neuropharmacology and Bioinformatics, Unitat de Bioestadística, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigaciói InnovacióParc Taulí (I3PT), Institut de Neurociències, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Serge Van Calenbergh
- Laboratory for Medicinal Chemistry, Ghent University, Ottergemsesteenweg 460, B-9000, Ghent, Belgium.
| |
Collapse
|
21
|
Huang B, St Onge CM, Ma H, Zhang Y. Design of bivalent ligands targeting putative GPCR dimers. Drug Discov Today 2020; 26:189-199. [PMID: 33075471 DOI: 10.1016/j.drudis.2020.10.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/15/2020] [Accepted: 10/09/2020] [Indexed: 12/17/2022]
Abstract
G protein-coupled receptors (GPCRs) have been exploited as primary targets for drug discovery, and GPCR dimerization offers opportunities for drug design and disease treatment. An important strategy for targeting putative GPCR dimers is the use of bivalent ligands, which are single molecules that contain two pharmacophores connected through a spacer. Here, we discuss the selection of pharmacophores, the optimal length and chemical composition of the spacer, and the choice of spacer attachment points to the pharmacophores. Furthermore, we review the most recent advances (from 2018 to the present) in the design, discovery and development of bivalent ligands. We aim to reveal the state-of-the-art design strategy for bivalent ligands and provide insights into future opportunities in this promising field of drug discovery.
Collapse
Affiliation(s)
- Boshi Huang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E. Leigh Street, Richmond, VA 23298, USA
| | - Celsey M St Onge
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E. Leigh Street, Richmond, VA 23298, USA
| | - Hongguang Ma
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E. Leigh Street, Richmond, VA 23298, USA
| | - Yan Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E. Leigh Street, Richmond, VA 23298, USA.
| |
Collapse
|
22
|
Poulie CBM, Liu N, Jensen AA, Bunch L. Design, Synthesis, and Pharmacological Characterization of Heterobivalent Ligands for the Putative 5-HT 2A/mGlu 2 Receptor Complex. J Med Chem 2020; 63:9928-9949. [PMID: 32815361 DOI: 10.1021/acs.jmedchem.0c01058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We report the synthesis of the first series of heterobivalent ligands targeting the putative heteromeric 5-HT2A/mGlu2 receptor complex, based on the 5-HT2A antagonist MDL-100,907 and the mGlu2 ago-PAM JNJ-42491293. The functional properties of monovalent and heterobivalent ligands were characterized in 5-HT2A-, mGlu2/Gqo5-, 5-HT2A/mGlu2-, and 5-HT2A/mGlu2/Gqo5-expressing HEK293 cells using a Ca2+ imaging assay and a [3H]ketanserin binding assay. Pronounced functional crosstalk was observed between the two receptors in 5-HT2A/mGlu2 and 5-HT2A/mGlu2/Gqo5 cells. While the synthesized monovalent ligands retained the 5-HT2A antagonist and mGlu2 ago-PAM functionalities, the seven bivalent ligands inhibited 5-HT-induced responses in 5-HT2A/mGlu2 cells and both 5-HT- and Glu-induced responses in 5-HT2A/mGlu2/Gqo5 cells. However, no definitive correlation between the functional potency and spacer length of the ligands was observed, an observation substantiated by the binding affinities exhibited by the compounds in 5-HT2A, 5-HT2A/mGlu2, and 5-HT2A/mGlu2/Gqo5 cells. In conclusion, while functional crosstalk between 5-HT2A and mGlu2 was demonstrated, it remains unclear how these heterobivalent ligands interact with the putative receptor complex.
Collapse
Affiliation(s)
- Christian B M Poulie
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen OE, Denmark
| | - Na Liu
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen OE, Denmark
| | - Anders A Jensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen OE, Denmark
| | - Lennart Bunch
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen OE, Denmark
| |
Collapse
|
23
|
Majewski MW, Gandhi DM, Holyst T, Wang Z, Hernandez I, Rosas R, Zhu J, Weiler H, Dockendorff C. Synthesis and initial pharmacology of dual-targeting ligands for putative complexes of integrin αVβ3 and PAR2. RSC Med Chem 2020; 11:940-949. [PMID: 33479689 PMCID: PMC7496306 DOI: 10.1039/d0md00098a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 06/24/2020] [Indexed: 11/21/2022] Open
Abstract
Unpublished data from our labs led us to hypothesize that activated protein C (aPC) may initiate an anti-inflammatory signal in endothelial cells by modulating both the integrin αVβ3 and protease-activated receptor 2 (PAR2), which may exist in close proximity on the cellular surface. To test this hypothesis and to probe the possible inflammation-related pathway, we designed and synthesized dual-targeting ligands composed of modified versions of two αVβ3 ligands and two agonists of PAR2. These novel ligands were connected via copper-catalyzed alkyne-azide cycloadditions with polyethylene glycol (PEG) spacers of variable length. Initial in vitro pharmacology with EA.hy926 and HUVEC endothelial cells indicated that these ligands are effective binders of αVβ3 and potent agonists of PAR2. These were also used in preliminary studies investigating their effects on PAR2 signaling in the presence of inflammatory agents, and represent the first examples of ligands targeting both PARs and integrins, though concurrent binding to αVβ3 and PAR2 has not yet been demonstrated.
Collapse
Affiliation(s)
- Mark W Majewski
- Department of Chemistry , Marquette University , P.O. Box 1881 , Milwaukee , WI 53201-1881 , USA . ; Tel: +1 414 288 1617
| | - Disha M Gandhi
- Department of Chemistry , Marquette University , P.O. Box 1881 , Milwaukee , WI 53201-1881 , USA . ; Tel: +1 414 288 1617
| | - Trudy Holyst
- Blood Research Institute , Versiti , Milwaukee , WI 53226 , USA
| | - Zhengli Wang
- Blood Research Institute , Versiti , Milwaukee , WI 53226 , USA
| | - Irene Hernandez
- Blood Research Institute , Versiti , Milwaukee , WI 53226 , USA
| | - Ricardo Rosas
- Department of Chemistry , Marquette University , P.O. Box 1881 , Milwaukee , WI 53201-1881 , USA . ; Tel: +1 414 288 1617
| | - Jieqing Zhu
- Blood Research Institute , Versiti , Milwaukee , WI 53226 , USA
- Department of Biochemistry , Medical College of Wisconsin , Milwaukee , WI 53226 , USA
| | - Hartmut Weiler
- Blood Research Institute , Versiti , Milwaukee , WI 53226 , USA
- Department of Physiology , Medical College of Wisconsin , Milwaukee , WI 53226 , USA
| | - Chris Dockendorff
- Department of Chemistry , Marquette University , P.O. Box 1881 , Milwaukee , WI 53201-1881 , USA . ; Tel: +1 414 288 1617
| |
Collapse
|
24
|
García M, Virgili M, Alonso M, Alegret C, Fernández B, Port A, Pascual R, Monroy X, Vidal-Torres A, Serafini MT, Vela JM, Almansa C. 4-Aryl-1-oxa-4,9-diazaspiro[5.5]undecane Derivatives as Dual μ-Opioid Receptor Agonists and σ 1 Receptor Antagonists for the Treatment of Pain. J Med Chem 2020; 63:2434-2454. [PMID: 31743642 DOI: 10.1021/acs.jmedchem.9b01256] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The synthesis and pharmacological activity of a new series of 1-oxa-4,9-diazaspiro[5.5]undecane derivatives as potent dual ligands for the sigma-1 receptor (σ1R) and the μ-opioid receptor (MOR) are reported. The different positions of the central scaffold, designed using a merging strategy of both target pharmacophores, were explored using a versatile synthetic approach. Phenethyl derivatives in position 9, substituted pyridyl moieties in position 4 and small alkyl groups in position 2 provided the best profiles. One of the best compounds, 15au, showed a balanced dual profile (i.e., MOR agonism and sigma antagonism) and a potent analgesic activity, comparable to the MOR agonist oxycodone in the paw pressure test in mice. Contrary to oxycodone, as expected from the addition of σ1R antagonism, 15au showed local, peripheral activity in this test, which was reversed by the σ1R agonist PRE-084. At equianalgesic doses, 15au showed less constipation than oxycodone, providing evidence that dual MOR agonism and σ1R antagonism may be a useful strategy for obtaining potent and safer analgesics.
Collapse
Affiliation(s)
- Mónica García
- Drug Discovery and Preclinical Development, Carrer Baldiri Reixac, ESTEVE Pharmaceuticals SA, 4-8 Parc Científic de Barcelona, 08028 Barcelona, Spain
| | - Marina Virgili
- Carrer Baldiri Reixac, Enantia, SL, 10 Parc Científic de Barcelona, 08028 Barcelona, Spain
| | - Mònica Alonso
- Carrer Baldiri Reixac, Enantia, SL, 10 Parc Científic de Barcelona, 08028 Barcelona, Spain
| | - Carles Alegret
- Carrer Baldiri Reixac, Enantia, SL, 10 Parc Científic de Barcelona, 08028 Barcelona, Spain
| | - Begoña Fernández
- Drug Discovery and Preclinical Development, Carrer Baldiri Reixac, ESTEVE Pharmaceuticals SA, 4-8 Parc Científic de Barcelona, 08028 Barcelona, Spain
| | - Adriana Port
- Drug Discovery and Preclinical Development, Carrer Baldiri Reixac, ESTEVE Pharmaceuticals SA, 4-8 Parc Científic de Barcelona, 08028 Barcelona, Spain
| | - Rosalía Pascual
- Drug Discovery and Preclinical Development, Carrer Baldiri Reixac, ESTEVE Pharmaceuticals SA, 4-8 Parc Científic de Barcelona, 08028 Barcelona, Spain
| | - Xavier Monroy
- Drug Discovery and Preclinical Development, Carrer Baldiri Reixac, ESTEVE Pharmaceuticals SA, 4-8 Parc Científic de Barcelona, 08028 Barcelona, Spain
| | - Alba Vidal-Torres
- Drug Discovery and Preclinical Development, Carrer Baldiri Reixac, ESTEVE Pharmaceuticals SA, 4-8 Parc Científic de Barcelona, 08028 Barcelona, Spain
| | - María-Teresa Serafini
- Drug Discovery and Preclinical Development, Carrer Baldiri Reixac, ESTEVE Pharmaceuticals SA, 4-8 Parc Científic de Barcelona, 08028 Barcelona, Spain
| | - José Miguel Vela
- Drug Discovery and Preclinical Development, Carrer Baldiri Reixac, ESTEVE Pharmaceuticals SA, 4-8 Parc Científic de Barcelona, 08028 Barcelona, Spain
| | - Carmen Almansa
- Drug Discovery and Preclinical Development, Carrer Baldiri Reixac, ESTEVE Pharmaceuticals SA, 4-8 Parc Científic de Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
25
|
Pérez-Benito L, Henry A, Matsoukas MT, Lopez L, Pulido D, Royo M, Cordomí A, Tresadern G, Pardo L. The size matters? A computational tool to design bivalent ligands. Bioinformatics 2019; 34:3857-3863. [PMID: 29850769 PMCID: PMC6223368 DOI: 10.1093/bioinformatics/bty422] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 05/23/2018] [Indexed: 12/15/2022] Open
Abstract
Motivation Bivalent ligands are increasingly important such as for targeting G protein-coupled receptor (GPCR) dimers or proteolysis targeting chimeras (PROTACs). They contain two pharmacophoric units that simultaneously bind in their corresponding binding sites, connected with a spacer chain. Here, we report a molecular modelling tool that links the pharmacophore units via the shortest pathway along the receptors van der Waals surface and then scores the solutions providing prioritization for the design of new bivalent ligands. Results Bivalent ligands of known dimers of GPCRs, PROTACs and a model bivalent antibody/antigen system were analysed. The tool could rapidly assess the preferred linker length for the different systems and recapitulated the best reported results. In the case of GPCR dimers the results suggest that in some cases these ligands might bind to a secondary binding site at the extracellular entrance (vestibule or allosteric site) instead of the orthosteric binding site. Availability and implementation Freely accessible from the Molecular Operating Environment svl exchange server (https://svl.chemcomp.com/). Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Laura Pérez-Benito
- Laboratori de Medicina Computacional, Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Andrew Henry
- Chemical Computing Group, St John's Innovation Centre Cowley Road, Cambridge, UK
| | - Minos-Timotheos Matsoukas
- Department of Pharmacy, University Campus, University of Patras, School of Health Sciences, Rion, Patras, Greece
| | - Laura Lopez
- Laboratori de Medicina Computacional, Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Daniel Pulido
- Combinatorial Chemistry Unit, Barcelona Science Park, Barcelona, Spain.,Centro de Investigación Biomédica en Red-Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Miriam Royo
- Combinatorial Chemistry Unit, Barcelona Science Park, Barcelona, Spain.,Centro de Investigación Biomédica en Red-Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Arnau Cordomí
- Laboratori de Medicina Computacional, Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | - Leonardo Pardo
- Laboratori de Medicina Computacional, Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
26
|
Agnetta L, Bermudez M, Riefolo F, Matera C, Claro E, Messerer R, Littmann T, Wolber G, Holzgrabe U, Decker M. Fluorination of Photoswitchable Muscarinic Agonists Tunes Receptor Pharmacology and Photochromic Properties. J Med Chem 2019; 62:3009-3020. [DOI: 10.1021/acs.jmedchem.8b01822] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Luca Agnetta
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Marcel Bermudez
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2 + 4, 14195 Berlin, Germany
| | - Fabio Riefolo
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology, Carrer Baldiri Reixac 15-21, 08028 Barcelona, Spain
- Network Biomedical Research Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), 50018 Zaragoza, Spain
| | - Carlo Matera
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology, Carrer Baldiri Reixac 15-21, 08028 Barcelona, Spain
- Network Biomedical Research Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), 50018 Zaragoza, Spain
| | - Enrique Claro
- Institut de Neurociències (INc) and Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Medicina, Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193 Barcelona, Spain
| | - Regina Messerer
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Timo Littmann
- Institute of Pharmacy, University of Regensburg, Universitätstraße 31, 93053 Regensburg, Germany
| | - Gerhard Wolber
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2 + 4, 14195 Berlin, Germany
| | - Ulrike Holzgrabe
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Michael Decker
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
27
|
Matera C, Bono F, Pelucchi S, Collo G, Bontempi L, Gotti C, Zoli M, De Amici M, Missale C, Fiorentini C, Dallanoce C. The novel hybrid agonist HyNDA-1 targets the D3R-nAChR heteromeric complex in dopaminergic neurons. Biochem Pharmacol 2019; 163:154-168. [PMID: 30772268 DOI: 10.1016/j.bcp.2019.02.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/13/2019] [Indexed: 02/07/2023]
Abstract
In this paper, we designed, synthesized and tested a small set of three new derivatives potentially targeting the D3R-nAChR heteromer, a receptor complex recently identified and characterized as the molecular entity that, in dopaminergic neurons, mediates the neurotrophic effects of nicotine. By means of a partially rigidified spacer of variable length, we incorporated in the new compounds (1a-c) the pharmacophoric substructure of a known β2-subunit-containing nAChR agonist (A-84543) and that of the D2/D3R agonist drug ropinirole. All the compounds retained the ability to bind with high affinity both β2-subunit-containing nAChR and D3R. Compound 1a, renamed HyNDA-1, which is characterized by the shortest linker moiety, was the most interesting ligand. We found, in fact, that HyNDA-1 significantly modulated structural plasticity on both mice and human dopaminergic neurons, an effect strongly prevented by co-incubating this ligand with either nAChR or D3R antagonists. Moreover, the neurotrophic effects of HyNDA-1 were specifically lost by disrupting the complex with specific interfering peptides. Interestingly, by using the Bioluminescence Resonance Energy Transfer 2 (BRET2) assay in HEK-293 transfected cells, we also found that HyNDA-1 has the ability to increase the affinity of interaction between nAChR and D3R. Overall, our results indicate that the neurotrophic effects of HyNDA-1 are mediated by activation of the D3R-nAChR heteromeric complex specifically expressed on dopaminergic neurons.
Collapse
Affiliation(s)
- Carlo Matera
- Dipartimento di Scienze Farmaceutiche - Sezione di Chimica Farmaceutica "Pietro Pratesi", Università degli Studi di Milano, Via L. Mangiagalli 25, 20133 Milano, Italy
| | - Federica Bono
- Dipartimento di Medicina Molecolare e Traslazionale - Sezione di Farmacologia, Università degli Studi di Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Silvia Pelucchi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy
| | - Ginetta Collo
- Dipartimento di Medicina Molecolare e Traslazionale - Sezione di Farmacologia, Università degli Studi di Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Leonardo Bontempi
- Dipartimento di Medicina Molecolare e Traslazionale - Sezione di Farmacologia, Università degli Studi di Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Cecilia Gotti
- Istituto di Neuroscienze, CNR, Via Vanvitelli 32, 20129 Milan, Italy
| | - Michele Zoli
- Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze, Università degli Studi di Modena e Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| | - Marco De Amici
- Dipartimento di Scienze Farmaceutiche - Sezione di Chimica Farmaceutica "Pietro Pratesi", Università degli Studi di Milano, Via L. Mangiagalli 25, 20133 Milano, Italy
| | - Cristina Missale
- Dipartimento di Medicina Molecolare e Traslazionale - Sezione di Farmacologia, Università degli Studi di Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Chiara Fiorentini
- Dipartimento di Medicina Molecolare e Traslazionale - Sezione di Farmacologia, Università degli Studi di Brescia, Viale Europa 11, 25123 Brescia, Italy.
| | - Clelia Dallanoce
- Dipartimento di Scienze Farmaceutiche - Sezione di Chimica Farmaceutica "Pietro Pratesi", Università degli Studi di Milano, Via L. Mangiagalli 25, 20133 Milano, Italy.
| |
Collapse
|
28
|
Kaczor AA, Bartuzi D, Stępniewski TM, Matosiuk D, Selent J. Protein-Protein Docking in Drug Design and Discovery. Methods Mol Biol 2019; 1762:285-305. [PMID: 29594778 DOI: 10.1007/978-1-4939-7756-7_15] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Protein-protein interactions (PPIs) are responsible for a number of key physiological processes in the living cells and underlie the pathomechanism of many diseases. Nowadays, along with the concept of so-called "hot spots" in protein-protein interactions, which are well-defined interface regions responsible for most of the binding energy, these interfaces can be targeted with modulators. In order to apply structure-based design techniques to design PPIs modulators, a three-dimensional structure of protein complex has to be available. In this context in silico approaches, in particular protein-protein docking, are a valuable complement to experimental methods for elucidating 3D structure of protein complexes. Protein-protein docking is easy to use and does not require significant computer resources and time (in contrast to molecular dynamics) and it results in 3D structure of a protein complex (in contrast to sequence-based methods of predicting binding interfaces). However, protein-protein docking cannot address all the aspects of protein dynamics, in particular the global conformational changes during protein complex formation. In spite of this fact, protein-protein docking is widely used to model complexes of water-soluble proteins and less commonly to predict structures of transmembrane protein assemblies, including dimers and oligomers of G protein-coupled receptors (GPCRs). In this chapter we review the principles of protein-protein docking, available algorithms and software and discuss the recent examples, benefits, and drawbacks of protein-protein docking application to water-soluble proteins, membrane anchoring and transmembrane proteins, including GPCRs.
Collapse
Affiliation(s)
- Agnieszka A Kaczor
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modelling Lab, Medical University of Lublin, Lublin, Poland. .,School of Pharmacy, University of Eastern Finland, Kuopio, Finland.
| | - Damian Bartuzi
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modelling Lab, Medical University of Lublin, Lublin, Poland
| | - Tomasz Maciej Stępniewski
- GPCR Drug Discovery Group, Research Programme on Biomedical Informatics (GRIB), Universitat Pompeu Fabra (UPF)-Hospital del Mar Medical Research Institute (IMIM), Parc de Recerca Biomèdica de Barcelona (PRBB), Barcelona, Spain
| | - Dariusz Matosiuk
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modelling Lab, Medical University of Lublin, Lublin, Poland
| | - Jana Selent
- GPCR Drug Discovery Group, Research Programme on Biomedical Informatics (GRIB), Universitat Pompeu Fabra (UPF)-Hospital del Mar Medical Research Institute (IMIM), Parc de Recerca Biomèdica de Barcelona (PRBB), Barcelona, Spain
| |
Collapse
|
29
|
Majewski MW, Gandhi DM, Rosas R, Kodali R, Arnold LA, Dockendorff C. Design and Evaluation of Heterobivalent PAR1-PAR2 Ligands as Antagonists of Calcium Mobilization. ACS Med Chem Lett 2019; 10:121-126. [PMID: 30655958 DOI: 10.1021/acsmedchemlett.8b00538] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 12/03/2018] [Indexed: 12/28/2022] Open
Abstract
A novel class of bivalent ligands targeting putative protease-activated receptor (PAR) heteromers has been prepared based upon reported antagonists for the subtypes PAR1 and PAR2. Modified versions of the PAR1 antagonist RWJ-58259 containing alkyne adapters were connected via cycloaddition reactions to azide-capped polyethylene glycol (PEG) spacers attached to imidazopyridazine-based PAR2 antagonists. Initial studies of the PAR1-PAR2 antagonists indicated that they inhibited G alpha q-mediated calcium mobilization in endothelial and cancer cells driven by both PAR1 and PAR2 agonists. Compounds of this novel class hold promise for the prevention of restenosis, cancer cell metastasis, and other proliferative disorders.
Collapse
Affiliation(s)
- Mark W. Majewski
- Department of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, Wisconsin 53201-1881, United States
| | - Disha M. Gandhi
- Department of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, Wisconsin 53201-1881, United States
| | - Ricardo Rosas
- Department of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, Wisconsin 53201-1881, United States
| | - Revathi Kodali
- Department of Chemistry and Biochemistry, Milwaukee Institute for Drug Discovery, University of Wisconsin, Milwaukee, Wisconsin 53211, United States
| | - Leggy A. Arnold
- Department of Chemistry and Biochemistry, Milwaukee Institute for Drug Discovery, University of Wisconsin, Milwaukee, Wisconsin 53211, United States
| | - Chris Dockendorff
- Department of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, Wisconsin 53201-1881, United States
| |
Collapse
|
30
|
Karamitri A, Sadek MS, Journé AS, Gbahou F, Gerbier R, Osman MB, Habib SAM, Jockers R, Zlotos DP. O-linked melatonin dimers as bivalent ligands targeting dimeric melatonin receptors. Bioorg Chem 2019; 85:349-356. [PMID: 30658234 DOI: 10.1016/j.bioorg.2019.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 12/30/2018] [Accepted: 01/02/2019] [Indexed: 12/17/2022]
Abstract
A series of dimeric melatonin analogues 3a-e obtained by connecting two melatonin molecules through the methoxy oxygen atoms with spacers spanning 16-24 atoms and the agomelatine dimer 7 were synthesized and characterized in 2-[125-I]-iodomelatonin binding assays, bioluminescence resonance energy transfer (BRET) experiments, and in functional cAMP and β-arrestin recruitment assays at MT1 and MT2 receptors. The binding affinity of 3a-e generally increased with increasing linker length. Bivalent ligands 3a-e increased BRET signals of MT1 dimers up to 3-fold compared to the monomeric control ligand indicating the simultaneous binding of the two pharmacophores to dimeric receptors. Bivalent ligands 3c and 7 exhibited important changes in functional properties on the Gi/cAMP pathway but not on the β-arrestin pathway compared to their monomeric counterparts. Interestingly, 3c (20 atoms spacer) shows inverse agonistic properties at MT2 on the Gi/cAMP pathway. In conclusion, these findings indicate that O-linked melatonin dimers are promising tools to develop signaling pathway-based bivalent melatonin receptor ligands.
Collapse
Affiliation(s)
- Angeliki Karamitri
- Inserm, U1016, Institut Cochin, Paris, France; CNRS UMR 8104, Paris, France; Univ. Paris Descartes, Sorbonne Paris Cite, Paris, France
| | - Mirna S Sadek
- The German University in Cairo, Department of Pharmaceutical Chemistry, New Cairo City, 11835 Cairo, Egypt.
| | - Anne-Sophie Journé
- Inserm, U1016, Institut Cochin, Paris, France; CNRS UMR 8104, Paris, France; Univ. Paris Descartes, Sorbonne Paris Cite, Paris, France
| | - Florence Gbahou
- Inserm, U1016, Institut Cochin, Paris, France; CNRS UMR 8104, Paris, France; Univ. Paris Descartes, Sorbonne Paris Cite, Paris, France.
| | - Romain Gerbier
- Inserm, U1016, Institut Cochin, Paris, France; CNRS UMR 8104, Paris, France; Univ. Paris Descartes, Sorbonne Paris Cite, Paris, France
| | - Mai B Osman
- The German University in Cairo, Department of Pharmaceutical Chemistry, New Cairo City, 11835 Cairo, Egypt
| | - Samy A M Habib
- The German University in Cairo, Department of Pharmaceutical Chemistry, New Cairo City, 11835 Cairo, Egypt
| | - Ralf Jockers
- Inserm, U1016, Institut Cochin, Paris, France; CNRS UMR 8104, Paris, France; Univ. Paris Descartes, Sorbonne Paris Cite, Paris, France.
| | - Darius P Zlotos
- The German University in Cairo, Department of Pharmaceutical Chemistry, New Cairo City, 11835 Cairo, Egypt.
| |
Collapse
|
31
|
Pulido D, Casadó-Anguera V, Pérez-Benito L, Moreno E, Cordomí A, López L, Cortés A, Ferré S, Pardo L, Casadó V, Royo M. Design of a True Bivalent Ligand with Picomolar Binding Affinity for a G Protein-Coupled Receptor Homodimer. J Med Chem 2018; 61:9335-9346. [PMID: 30257092 DOI: 10.1021/acs.jmedchem.8b01249] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Bivalent ligands have emerged as chemical tools to study G protein-coupled receptor dimers. Using a combination of computational, chemical, and biochemical tools, here we describe the design of bivalent ligand 13 with high affinity ( KDB1 = 21 pM) for the dopamine D2 receptor (D2R) homodimer. Bivalent ligand 13 enhances the binding affinity relative to monovalent compound 15 by 37-fold, indicating simultaneous binding at both protomers. Using synthetic peptides with amino acid sequences of transmembrane (TM) domains of D2R, we provide evidence that TM6 forms the interface of the homodimer. Notably, the disturber peptide TAT-TM6 decreased the binding of bivalent ligand 13 by 52-fold and had no effect on monovalent compound 15, confirming the D2R homodimer through TM6 ex vivo. In conclusion, by using a versatile multivalent chemical platform, we have developed a precise strategy to generate a true bivalent ligand that simultaneously targets both orthosteric sites of the D2R homodimer.
Collapse
Affiliation(s)
- Daniel Pulido
- Biomaterials and Nanomedicine , Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) , Barcelona Science Park , 08028 Barcelona , Spain.,Combinatorial Chemistry Unit , Barcelona Science Park , 08028 Barcelona , Spain
| | - Verònica Casadó-Anguera
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology , University of Barcelona , 08028 Barcelona , Spain.,Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED) , 08028 Barcelona , Spain.,Institute of Biomedicine , University of Barcelona (IBUB) , 08028 Barcelona , Spain
| | - Laura Pérez-Benito
- Laboratory of Computational Medicine, Biostatistics Unit, Faculty of Medicine , Universitat Autònoma de Barcelona , 08193 Bellaterra , Spain
| | - Estefanía Moreno
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology , University of Barcelona , 08028 Barcelona , Spain.,Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED) , 08028 Barcelona , Spain.,Institute of Biomedicine , University of Barcelona (IBUB) , 08028 Barcelona , Spain
| | - Arnau Cordomí
- Laboratory of Computational Medicine, Biostatistics Unit, Faculty of Medicine , Universitat Autònoma de Barcelona , 08193 Bellaterra , Spain
| | - Laura López
- Laboratory of Computational Medicine, Biostatistics Unit, Faculty of Medicine , Universitat Autònoma de Barcelona , 08193 Bellaterra , Spain
| | - Antoni Cortés
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology , University of Barcelona , 08028 Barcelona , Spain.,Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED) , 08028 Barcelona , Spain.,Institute of Biomedicine , University of Barcelona (IBUB) , 08028 Barcelona , Spain
| | - Sergi Ferré
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program , National Institutes of Health , Baltimore , Maryland 21224 , United States
| | - Leonardo Pardo
- Laboratory of Computational Medicine, Biostatistics Unit, Faculty of Medicine , Universitat Autònoma de Barcelona , 08193 Bellaterra , Spain
| | - Vicent Casadó
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology , University of Barcelona , 08028 Barcelona , Spain.,Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED) , 08028 Barcelona , Spain.,Institute of Biomedicine , University of Barcelona (IBUB) , 08028 Barcelona , Spain
| | - Miriam Royo
- Biomaterials and Nanomedicine , Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) , Barcelona Science Park , 08028 Barcelona , Spain.,Combinatorial Chemistry Unit , Barcelona Science Park , 08028 Barcelona , Spain
| |
Collapse
|
32
|
Carli M, Kolachalam S, Aringhieri S, Rossi M, Giovannini L, Maggio R, Scarselli M. Dopamine D2 Receptors Dimers: How can we Pharmacologically Target Them? Curr Neuropharmacol 2018; 16:222-230. [PMID: 28521704 PMCID: PMC5883381 DOI: 10.2174/1570159x15666170518151127] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/08/2017] [Accepted: 05/17/2017] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Dopamine D2 and D3 receptors can form homo- and heterodimers and are important targets in Schizophrenia and Parkinson's. Recently, many efforts have been made to pharmacologically target these receptor complexes. This review focuses on various strategies to act specifically on dopamine receptor dimers, that are transiently formed. METHODS Various binding and functional assays were reviewed to study the properties of bivalent ligands, particularly for the dualsteric compound SB269,652. The dimerization of D2 and D3 receptors were analyzed by using single particle tracking microscopy. RESULTS The specific targeting of dopamine D2 and D3 dimers can be achieved with bifunctional ligands, composed of two pharmacophores binding the two orthosteric sites of the dimeric complex. If the target is a homodimer, then the ligand is homobivalent. Instead, if the target is a heterodimer, then the ligand is heterobivalent. However, there is some concern regarding pharmacokinetics and binding properties of such drugs. Recently, a new generation of bitopic compounds with dualsteric properties have been discovered that bind to the orthosteric and the allosteric sites in one monomeric receptor. Regarding dopamine D2 and D3 receptors, a new dualsteric molecule SB269,652 was shown to have selective negative allosteric properties across D2 and D3 homodimers, but it behaves as an orthosteric antagonist on receptor monomer. Targeting dimers is also complicated as they are transiently formed with varying monomer/dimer ratio. Furthermore, this ratio can be altered by administering an agonist or a bifunctional antagonist. CONCLUSION Last 15 years have witnessed an explosive amount of work aimed at generating bifunctional compounds as a novel strategy to target GPCR homo- and heterodimers, including dopamine receptors. Their clinical use is far from trivial, but, at least, they have been used to validate the existence of receptor dimers in-vitro and in-vivo. The dualsteric compound SB269, 652, with its peculiar pharmacological profile, may offer therapeutic advantages and a better tolerability in comparison with pure antagonists at D2 and D3 receptors and pave the way for a new generation of antipsychotic drugs.
Collapse
Affiliation(s)
- Marco Carli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Shivakumar Kolachalam
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Stefano Aringhieri
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Mario Rossi
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD. United States
| | - Luca Giovannini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Roberto Maggio
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Marco Scarselli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| |
Collapse
|
33
|
Olson KM, Keresztes A, Tashiro JK, Daconta LV, Hruby VJ, Streicher JM. Synthesis and Evaluation of a Novel Bivalent Selective Antagonist for the Mu-Delta Opioid Receptor Heterodimer that Reduces Morphine Withdrawal in Mice. J Med Chem 2018; 61:6075-6086. [PMID: 29939746 DOI: 10.1021/acs.jmedchem.8b00403] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A major limitation in the study of the mu-delta opioid receptor heterodimer (MDOR) is that few selective pharmacological tools exist and no heteromer-selective antagonists. We thus designed a series of variable-length (15-41 atoms) bivalent linked peptides with selective but moderate/low-affinity pharmacophores for the mu and delta opioid receptors. We observed a U-shaped MDOR potency/affinity profile in vitro, with the 24-atom spacer length (D24M) producing the highest MDOR potency/affinity (<1 nM) and selectivity (≥89-fold). We further evaluated D24M in mice and observed that D24M dose-dependently antagonized tail flick antinociception produced by the MDOR agonists CYM51010 and Deltorphin-II, without antagonizing the monomer agonists DAMGO and DSLET. We also observed that D24M sharply reduced withdrawal behavior in models of acute and chronic morphine dependence. These findings suggest that D24M is a first-in-class high-potency MDOR-selective antagonist both in vitro and in vivo.
Collapse
|
34
|
Soto CA, Shashack MJ, Fox RG, Bubar MJ, Rice KC, Watson CS, Cunningham KA, Gilbertson SR, Anastasio NC. Novel Bivalent 5-HT 2A Receptor Antagonists Exhibit High Affinity and Potency in Vitro and Efficacy in Vivo. ACS Chem Neurosci 2018; 9:514-521. [PMID: 29111677 DOI: 10.1021/acschemneuro.7b00309] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The 5-HT2A receptor (5-HT2AR) plays an important role in various neuropsychiatric disorders, including substance use disorder and schizophrenia. Homodimerization of this receptor has been suggested, but tools that allow direct assessment of the relevance of the 5-HT2AR:5-HT2AR homodimer in these disorders are necessary. We chemically modified the selective 5-HT2AR antagonist M100907 to synthesize a series of homobivalent ligands connected by ethylene glycol linkers of varying lengths that may be useful tools for probing 5-HT2AR:5-HT2AR homodimer function. We tested these molecules for 5-HT2AR antagonist activity in a cell line stably expressing the functional 5-HT2AR and quantified a downstream signaling target, activation (phosphorylation) of extracellular regulated kinases 1/2 (ERK1/2), in comparison to in vivo efficacy of altering spontaneous or cocaine-evoked locomotor activity in rats. All of the synthetic compounds inhibited 5-HT-mediated phosphorylation of ERK1/2 in the cellular signaling assay; the potency of the bivalent ligands varied as a function of linker length, with the intermediate linker lengths being the most potent. The Ki values for the binding of bivalent ligands to 5-HT2AR were only slightly lower than the values for the parent (+)-M100907 compound, but significant selectivity for 5-HT2AR over 5-HT2BR or 5-HT2CR binding was retained. In addition, the 11-atom-linked bivalent 5-HT2AR antagonist (2 mg/kg, intraperitoneally) demonstrated efficacy on par with that of (+)-M100907 in inhibiting cocaine-evoked hyperactivity. As we develop further strategies for ligand-evoked receptor assembly and analyses of diverse signaling and functional roles, these novel homobivalent 5-HT2AR antagonist ligands will serve as useful in vitro and in vivo probes of 5-HT2AR structure and function.
Collapse
Affiliation(s)
| | | | | | | | - Kenner C. Rice
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Bethesda, Maryland 20892, United States
| | | | | | - Scott R. Gilbertson
- Department of Chemistry, University of Houston, Houston, Texas 77004, United States
| | | |
Collapse
|
35
|
Calo' G, Rizzi A, Ruzza C, Ferrari F, Pacifico S, Gavioli EC, Salvadori S, Guerrini R. Peptide welding technology - A simple strategy for generating innovative ligands for G protein coupled receptors. Peptides 2018; 99:195-204. [PMID: 29031796 DOI: 10.1016/j.peptides.2017.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 09/20/2017] [Accepted: 10/11/2017] [Indexed: 12/19/2022]
Abstract
Based on their high selectivity of action and low toxicity, naturally occurring peptides have great potential in terms of drug development. However, the pharmacokinetic properties of peptides, in particular their half life, are poor. Among different strategies developed for reducing susceptibility to peptidases, and thus increasing the duration of action of peptides, the generation of branched peptides has been described. However, the synthesis and purification of branched peptides are extremely complicated thus limiting their druggability. Here we present a novel and facile synthesis of tetrabranched peptides acting as GPCR ligands and their in vitro and vivo pharmacological characterization. Tetrabranched derivatives of nociceptin/orphanin FQ (N/OFQ), N/OFQ related peptides, opioid peptides, tachykinins, and neuropeptide S were generated with the strategy named peptide welding technology (PWT) and characterized by high yield and purity of the desired final product. In general, PWT derivatives displayed a pharmacological profile similar to that of the natural sequence in terms of affinity, pharmacological activity, potency, and selectivity of action in vitro. More importantly, in vivo studies demonstrated that PWT peptides are characterized by increased potency associated with long lasting duration of action. In conclusion, PWT derivatives of biologically active peptides can be viewed as innovative pharmacological tools for investigating those conditions and states in which selective and prolonged receptor stimulation promotes beneficial effects.
Collapse
Affiliation(s)
- Girolamo Calo'
- Section of Pharmacology, Department of Medical Sciences, and National Institute of Neurosciences, University of Ferrara, Italy.
| | - Anna Rizzi
- Section of Pharmacology, Department of Medical Sciences, and National Institute of Neurosciences, University of Ferrara, Italy
| | - Chiara Ruzza
- Section of Pharmacology, Department of Medical Sciences, and National Institute of Neurosciences, University of Ferrara, Italy
| | - Federica Ferrari
- Section of Pharmacology, Department of Medical Sciences, and National Institute of Neurosciences, University of Ferrara, Italy
| | - Salvatore Pacifico
- Department of Chemical and Pharmaceutical Sciences and LTTA, University of Ferrara, Italy
| | - Elaine C Gavioli
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Severo Salvadori
- Department of Chemical and Pharmaceutical Sciences and LTTA, University of Ferrara, Italy
| | - Remo Guerrini
- Department of Chemical and Pharmaceutical Sciences and LTTA, University of Ferrara, Italy
| |
Collapse
|
36
|
She X, Pegoli A, Mayr J, Hübner H, Bernhardt G, Gmeiner P, Keller M. Heterodimerization of Dibenzodiazepinone-Type Muscarinic Acetylcholine Receptor Ligands Leads to Increased M 2R Affinity and Selectivity. ACS OMEGA 2017; 2:6741-6754. [PMID: 30023530 PMCID: PMC6044897 DOI: 10.1021/acsomega.7b01085] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 09/05/2017] [Indexed: 05/13/2023]
Abstract
In search for selective ligands for the muscarinic acetylcholine receptor (MR) subtype M2, the dimeric ligand approach, that is combining two pharmacophores in one and the same molecule, was pursued. Different types (agonists, antagonists, orthosteric, and allosteric) of monomeric MR ligands were combined by various linkers with a dibenzodiazepinone-type MR antagonist, affording five types of heterodimeric compounds ("DIBA-xanomeline," "DIBA-TBPB," "DIBA-77-LH-28-1," "DIBA-propantheline," and "DIBA-4-DAMP"), which showed high M2R affinities (pKi > 8.3). The heterodimeric ligand UR-SK75 (46) exhibited the highest M2R affinity and selectivity [pKi (M1R-M5R): 8.84, 10.14, 7.88, 8.59, and 7.47]. Two tritium-labeled dimeric derivatives ("DIBA-xanomeline"-type: [3H]UR-SK71 ([3H]44) and "DIBA-TBPB"-type: [3H]UR-SK59 ([3H]64)) were prepared to investigate their binding modes at hM2R. Saturation-binding experiments showed that these compounds address the orthosteric binding site of the M2R. The investigation of the effect of various allosteric MR modulators [gallamine (13), W84 (14), and LY2119620 (15)] on the equilibrium (13-15) or saturation (14) binding of [3H]64 suggested a competitive mechanism between [3H]64 and the investigated allosteric ligands, and consequently a dualsteric binding mode of 64 at the M2R.
Collapse
Affiliation(s)
- Xueke She
- Institute
of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Andrea Pegoli
- Institute
of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Judith Mayr
- Institute
of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Harald Hübner
- Department
of Chemistry and Pharmacy, Emil Fischer Center, Friedrich Alexander University, Schuhstr. 19, D-91052 Erlangen, Germany
| | - Günther Bernhardt
- Institute
of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Peter Gmeiner
- Department
of Chemistry and Pharmacy, Emil Fischer Center, Friedrich Alexander University, Schuhstr. 19, D-91052 Erlangen, Germany
| | - Max Keller
- Institute
of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
- E-mail: . Phone: (+49)941-9433329.
Fax: (+49)941-9434820 (M.K.)
| |
Collapse
|
37
|
Dobitz S, Aronoff MR, Wennemers H. Oligoprolines as Molecular Entities for Controlling Distance in Biological and Material Sciences. Acc Chem Res 2017; 50:2420-2428. [PMID: 28885830 DOI: 10.1021/acs.accounts.7b00340] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nature utilizes large biomolecules to fulfill tasks that require spatially well-defined arrangements at the molecular level such as electron transfer, ligand-receptor interactions, or catalysis. The creation of synthetic molecules that enable precise control over spacing and functionalization provides opportunities across diverse disciplines. Key requirements of functionalizable oligomeric scaffolds include the specific control of their molecular properties where the correct balance of flexibility and rigidity must be maintained in addition to the prerequisite of defined length. These molecules must ideally be equally applicable in aqueous and organic environments, they must be easy to synthesize in a controlled stepwise fashion, and they must be easily modified with a palette of chemical appendages having diverse functionalities. Oligoproline, a peptidic polymer comprised of repeating units of the amino acid proline, is an ideal platform to meet such challenges. Oligoproline derives its characteristic rigidity and well-defined secondary structure from the innate features of proline. It is the only naturally occurring amino acid that has its side-chain cyclized to its α-amino group, generating often-populated trans and cis conformers around the tertiary amide bonds formed in proline oligomers. Oligoprolines are widely applied to define distance on the molecular level as they are capable of serving as both a "molecular ruler" with a defined length and as a "molecular scaffold" with precisely located and predictably oriented substitutions along the polymeric backbone. Our investigations focus on the use of oligoproline as a molecular scaffold. Toward this end, we have investigated the role of solvent upon helical structure of oligoproline, and the effect that substituents on the pyrrolidine ring and the oligomer termini have on the stability of the helix. We have also further explored the molecular characteristics of oligoproline through spectroscopic and crystallographic methods. All of these structural insights laid the basis for implementation of oligoproline in materials science and chemical biology. Within this Account, we highlight the value of oligoprolines for applications in distinctly different research areas. Toward materials chemistry, we have utilized oligoprolines for the size-controlled generation of noble metal nanoparticles, and to probe the role of spatial preorganization of π-systems for molecular self-assembly. Within the biological realm, we have applied oligoprolines to probe the role of distance on G-protein coupled receptor-mediated ligand uptake by cancerous cells and to investigate the effects of charge preorganization on the efficacy of cationic cell-penetrating peptides.
Collapse
Affiliation(s)
- Stefanie Dobitz
- ETH Zürich, Laboratory of Organic Chemistry, D-CHAB, Vladimir-Prelog-Weg 3, CH-8093 Zürich, Switzerland
| | - Matthew R. Aronoff
- ETH Zürich, Laboratory of Organic Chemistry, D-CHAB, Vladimir-Prelog-Weg 3, CH-8093 Zürich, Switzerland
| | - Helma Wennemers
- ETH Zürich, Laboratory of Organic Chemistry, D-CHAB, Vladimir-Prelog-Weg 3, CH-8093 Zürich, Switzerland
| |
Collapse
|
38
|
Morales P, Reggio PH. An Update on Non-CB 1, Non-CB 2 Cannabinoid Related G-Protein-Coupled Receptors. Cannabis Cannabinoid Res 2017; 2:265-273. [PMID: 29098189 PMCID: PMC5665501 DOI: 10.1089/can.2017.0036] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The endocannabinoid system (ECS) has been shown to be of great importance in the regulation of numerous physiological and pathological processes. To date, two Class A G-protein-coupled receptors (GPCRs) have been discovered and validated as the main therapeutic targets of this system: the cannabinoid receptor type 1 (CB1), which is the most abundant neuromodulatory receptor in the brain, and the cannabinoid receptor type 2 (CB2), predominantly found in the immune system among other organs and tissues. Endogenous cannabinoid receptor ligands (endocannabinoids) and the enzymes involved in their synthesis, cell uptake, and degradation have also been identified as part of the ECS. However, its complex pharmacology suggests that other GPCRs may also play physiologically relevant roles in this therapeutically promising system. In the last years, GPCRs such as GPR18 and GPR55 have emerged as possible missing members of the cannabinoid family. This categorization still stimulates strong debate due to the lack of pharmacological tools to validate it. Because of their close phylogenetic relationship, the Class A orphan GPCRs, GPR3, GPR6, and GPR12, have also been associated with the cannabinoids. Moreover, certain endo-, phyto-, and synthetic cannabinoid ligands have displayed activity at other well-established GPCRs, including the opioid, adenosine, serotonin, and dopamine receptor families. In addition, the cannabinoid receptors have also been shown to form dimers with other GPCRs triggering cross-talk signaling under specific conditions. In this mini review, we aim to provide insight into the non-CB1, non-CB2 cannabinoid-related GPCRs that have been reported thus far. We consider the physiological relevance of these molecular targets in modulating the ECS.
Collapse
Affiliation(s)
- Paula Morales
- Chemistry and Biochemistry Department, UNC Greensboro, Greensboro, North Carolina
| | - Patricia H. Reggio
- Chemistry and Biochemistry Department, UNC Greensboro, Greensboro, North Carolina
| |
Collapse
|
39
|
Pacifico S, Carotenuto A, Brancaccio D, Novellino E, Marzola E, Ferrari F, Cerlesi MC, Trapella C, Preti D, Salvadori S, Calò G, Guerrini R. Structure- and conformation-activity studies of nociceptin/orphanin FQ receptor dimeric ligands. Sci Rep 2017; 7:45817. [PMID: 28383520 PMCID: PMC5382891 DOI: 10.1038/srep45817] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 03/06/2017] [Indexed: 02/04/2023] Open
Abstract
The peptide nociceptin/orphanin FQ (N/OFQ) and the N/OFQ receptor (NOP) constitute a neuropeptidergic system that modulates various biological functions and is currently targeted for the generation of innovative drugs. In the present study dimeric NOP receptor ligands with spacers of different lengths were generated using both peptide and non-peptide pharmacophores. The novel compounds (12 peptide and 7 nonpeptide ligands) were pharmacologically investigated in a calcium mobilization assay and in the mouse vas deferens bioassay. Both structure- and conformation-activity studies were performed. Results demonstrated that dimerization did not modify the pharmacological activity of both peptide and non-peptide pharmacophores. Moreover, when dimeric compounds were obtained with low potency peptide pharmacophores, dimerization recovered ligand potency. This effect depends on the doubling of the C-terminal address sequence rather than the presence of an additional N-terminal message sequence or modifications of peptide conformation.
Collapse
Affiliation(s)
- Salvatore Pacifico
- Department of Chemical and Pharmaceutical Sciences and LTTA, University of Ferrara, 44121 Ferrara, Italy
| | - Alfonso Carotenuto
- Department of Pharmacy, University of Naples “Federico II”, 80131 Naples, Italy
| | - Diego Brancaccio
- Department of Agraria (QuaSic.A.Tec.), Università Mediterranea di Reggio Calabria, 89122 – Reggio Calabria, Italy
| | - Ettore Novellino
- Department of Pharmacy, University of Naples “Federico II”, 80131 Naples, Italy
| | - Erika Marzola
- Department of Chemical and Pharmaceutical Sciences and LTTA, University of Ferrara, 44121 Ferrara, Italy
| | - Federica Ferrari
- Department of Medical Sciences, Section of Pharmacology and National Institute of Neuroscience, University of Ferrara, 44121 Ferrara, Italy
| | - Maria Camilla Cerlesi
- Department of Medical Sciences, Section of Pharmacology and National Institute of Neuroscience, University of Ferrara, 44121 Ferrara, Italy
| | - Claudio Trapella
- Department of Chemical and Pharmaceutical Sciences and LTTA, University of Ferrara, 44121 Ferrara, Italy
| | - Delia Preti
- Department of Chemical and Pharmaceutical Sciences and LTTA, University of Ferrara, 44121 Ferrara, Italy
| | - Severo Salvadori
- Department of Chemical and Pharmaceutical Sciences and LTTA, University of Ferrara, 44121 Ferrara, Italy
| | - Girolamo Calò
- Department of Medical Sciences, Section of Pharmacology and National Institute of Neuroscience, University of Ferrara, 44121 Ferrara, Italy
| | - Remo Guerrini
- Department of Chemical and Pharmaceutical Sciences and LTTA, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
40
|
Vardanyan RS, Cain JP, Haghighi SM, Kumirov VK, McIntosh MI, Sandweiss AJ, Porreca F, Hruby VJ. Synthesis and Investigation of Mixed μ-Opioid and δ-Opioid Agonists as Possible Bivalent Ligands for Treatment of Pain. J Heterocycl Chem 2017; 54:1228-1235. [PMID: 28819330 PMCID: PMC5557416 DOI: 10.1002/jhet.2696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Several studies have suggested functional association between μ-opioid and δ-opioid receptors and showed that μ-activity could be modulated by δ-ligands. The general conclusion is that agonists for the δ-receptor can enhance the analgesic potency and efficacy of μ-agonists. Our preliminary investigations demonstrate that new bivalent ligands constructed from the μ-agonist fentanyl and the δ-agonist enkephalin-like peptides are promising entities for creation of new analgesics with reduced side effects for treatment of neuropathic pain. A new superposition of the mentioned pharmacophores led to novel μ-bivalent/δ-bivalent compounds that demonstrate both μ-opioid and δ-opioid receptor agonist activity and high efficacy in anti-inflammatory and neuropathic pain models with the potential of reduced unwanted side effects.
Collapse
Affiliation(s)
- Ruben S. Vardanyan
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, US
| | - James P. Cain
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, US
| | | | - Vlad K. Kumirov
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, US
| | - Mary I. McIntosh
- Department of Pharmacology, University of Arizona Health Sciences Center, Tucson, AZ 85724, USA
| | - Alexander J. Sandweiss
- Department of Pharmacology, University of Arizona Health Sciences Center, Tucson, AZ 85724, USA
| | - Frank Porreca
- Department of Pharmacology, University of Arizona Health Sciences Center, Tucson, AZ 85724, USA
| | - Victor J. Hruby
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, US
| |
Collapse
|
41
|
Joshi T, Yan D, Hamed O, Tannheimer SL, Phillips GB, Wright CD, Kim M, Salmon M, Newton R, Giembycz MA. GS-5759, a Bifunctional β2-Adrenoceptor Agonist and Phosphodiesterase 4 Inhibitor for Chronic Obstructive Pulmonary Disease with a Unique Mode of Action: Effects on Gene Expression in Human Airway Epithelial Cells. J Pharmacol Exp Ther 2016; 360:324-340. [DOI: 10.1124/jpet.116.237743] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 12/05/2016] [Indexed: 12/31/2022] Open
|
42
|
Tabor A, Weisenburger S, Banerjee A, Purkayastha N, Kaindl JM, Hübner H, Wei L, Grömer TW, Kornhuber J, Tschammer N, Birdsall NJM, Mashanov GI, Sandoghdar V, Gmeiner P. Visualization and ligand-induced modulation of dopamine receptor dimerization at the single molecule level. Sci Rep 2016; 6:33233. [PMID: 27615810 PMCID: PMC5018964 DOI: 10.1038/srep33233] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/23/2016] [Indexed: 12/19/2022] Open
Abstract
G protein–coupled receptors (GPCRs), including dopamine receptors, represent a group of important pharmacological targets. An increased formation of dopamine receptor D2 homodimers has been suggested to be associated with the pathophysiology of schizophrenia. Selective labeling and ligand-induced modulation of dimerization may therefore allow the investigation of the pathophysiological role of these dimers. Using TIRF microscopy at the single molecule level, transient formation of homodimers of dopamine receptors in the membrane of stably transfected CHO cells has been observed. The equilibrium between dimers and monomers was modulated by the binding of ligands; whereas antagonists showed a ratio that was identical to that of unliganded receptors, agonist-bound D2 receptor-ligand complexes resulted in an increase in dimerization. Addition of bivalent D2 receptor ligands also resulted in a large increase in D2 receptor dimers. A physical interaction between the protomers was confirmed using high resolution cryogenic localization microscopy, with ca. 9 nm between the centers of mass.
Collapse
Affiliation(s)
- Alina Tabor
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich-Alexander University, Schuhstraße 19, 91052 Erlangen, Germany
| | - Siegfried Weisenburger
- Max Planck Institute for the Science of Light and Department of Physics, Friedrich-Alexander University, Günther-Scharowsky-Straße 1/ Bldg. 24, 91058 Erlangen, Germany
| | - Ashutosh Banerjee
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich-Alexander University, Schuhstraße 19, 91052 Erlangen, Germany
| | - Nirupam Purkayastha
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich-Alexander University, Schuhstraße 19, 91052 Erlangen, Germany
| | - Jonas M Kaindl
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich-Alexander University, Schuhstraße 19, 91052 Erlangen, Germany
| | - Harald Hübner
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich-Alexander University, Schuhstraße 19, 91052 Erlangen, Germany
| | - Luxi Wei
- Max Planck Institute for the Science of Light and Department of Physics, Friedrich-Alexander University, Günther-Scharowsky-Straße 1/ Bldg. 24, 91058 Erlangen, Germany
| | - Teja W Grömer
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander University, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander University, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Nuska Tschammer
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich-Alexander University, Schuhstraße 19, 91052 Erlangen, Germany
| | - Nigel J M Birdsall
- The Francis Crick Institute, Mill Hill Laboratory, Mill Hill, London NW7 1AA, UK
| | - Gregory I Mashanov
- The Francis Crick Institute, Mill Hill Laboratory, Mill Hill, London NW7 1AA, UK
| | - Vahid Sandoghdar
- Max Planck Institute for the Science of Light and Department of Physics, Friedrich-Alexander University, Günther-Scharowsky-Straße 1/ Bldg. 24, 91058 Erlangen, Germany
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich-Alexander University, Schuhstraße 19, 91052 Erlangen, Germany
| |
Collapse
|
43
|
Busnelli M, Kleinau G, Muttenthaler M, Stoev S, Manning M, Bibic L, Howell LA, McCormick PJ, Di Lascio S, Braida D, Sala M, Rovati GE, Bellini T, Chini B. Design and Characterization of Superpotent Bivalent Ligands Targeting Oxytocin Receptor Dimers via a Channel-Like Structure. J Med Chem 2016; 59:7152-66. [PMID: 27420737 DOI: 10.1021/acs.jmedchem.6b00564] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Dimeric/oligomeric states of G-protein coupled receptors have been difficult to target. We report here bivalent ligands consisting of two identical oxytocin-mimetics that induce a three order magnitude boost in G-protein signaling of oxytocin receptors (OTRs) in vitro and a 100- and 40-fold gain in potency in vivo in the social behavior of mice and zebrafish. Through receptor mutagenesis and interference experiments with synthetic peptides mimicking transmembrane helices (TMH), we show that such superpotent behavior follows from the binding of the bivalent ligands to dimeric receptors based on a TMH1-TMH2 interface. Moreover, in this arrangement, only the analogues with a well-defined spacer length (∼25 Å) precisely fit inside a channel-like passage between the two protomers of the dimer. The newly discovered oxytocin bivalent ligands represent a powerful tool for targeting dimeric OTR in neurodevelopmental and psychiatric disorders and, in general, provide a framework to untangle specific arrangements of G-protein coupled receptor dimers.
Collapse
Affiliation(s)
- Marta Busnelli
- CNR, Institute of Neuroscience , Milan, Italy 20129.,Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano , Milan, Italy 20129
| | - Gunnar Kleinau
- Institute of Experimental Pediatric Endocrinology, Charité-Universitätsmedizin Berlin , Berlin, Germany 13353
| | - Markus Muttenthaler
- Institute for Molecular Bioscience, The University of Queensland , Brisbane, Australia 4072
| | - Stoytcho Stoev
- Department of Biochemistry and Cancer Biology, University of Toledo , Toledo, Ohio 43614, United States
| | - Maurice Manning
- Department of Biochemistry and Cancer Biology, University of Toledo , Toledo, Ohio 43614, United States
| | - Lucka Bibic
- School of Pharmacy, University of East Anglia , Norwich Research Park, Norwich, U.K. NR4 7TJ
| | - Lesley A Howell
- School of Pharmacy, University of East Anglia , Norwich Research Park, Norwich, U.K. NR4 7TJ
| | - Peter J McCormick
- School of Pharmacy, University of East Anglia , Norwich Research Park, Norwich, U.K. NR4 7TJ
| | - Simona Di Lascio
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano , Milan, Italy 20129
| | - Daniela Braida
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano , Milan, Italy 20129
| | - Mariaelvina Sala
- CNR, Institute of Neuroscience , Milan, Italy 20129.,Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano , Milan, Italy 20129
| | - G Enrico Rovati
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano , Milan, Italy 20133
| | - Tommaso Bellini
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano , Milan, Italy 20129
| | - Bice Chini
- CNR, Institute of Neuroscience , Milan, Italy 20129
| |
Collapse
|
44
|
Hübner H, Schellhorn T, Gienger M, Schaab C, Kaindl J, Leeb L, Clark T, Möller D, Gmeiner P. Structure-guided development of heterodimer-selective GPCR ligands. Nat Commun 2016; 7:12298. [PMID: 27457610 PMCID: PMC4963535 DOI: 10.1038/ncomms12298] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 06/16/2016] [Indexed: 12/18/2022] Open
Abstract
Crystal structures of G protein-coupled receptor (GPCR) ligand complexes allow a rational design of novel molecular probes and drugs. Here we report the structure-guided design, chemical synthesis and biological investigations of bivalent ligands for dopamine D2 receptor/neurotensin NTS1 receptor (D2R/NTS1R) heterodimers. The compounds of types 1–3 consist of three different D2R pharmacophores bound to an affinity-generating lipophilic appendage, a polyethylene glycol-based linker and the NTS1R agonist NT(8-13). The bivalent ligands show binding affinity in the picomolar range for cells coexpressing both GPCRs and unprecedented selectivity (up to three orders of magnitude), compared with cells that only express D2Rs. A functional switch is observed for the bivalent ligands 3b,c inhibiting cAMP formation in cells singly expressing D2Rs but stimulating cAMP accumulation in D2R/NTS1R-coexpressing cells. Moreover, the newly synthesized bivalent ligands show a strong, predominantly NTS1R-mediated β-arrestin-2 recruitment at the D2R/NTS1R-coexpressing cells. G protein-coupled receptors (GPCRs) are involved in key signalling pathways and represent important targets for the treatment of neurological and psychiatric disorders. Here, the authors describe powerful bivalent ligands that efficiently bind to therapeutically relevant GPCR heterodimers
Collapse
Affiliation(s)
- Harald Hübner
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schuhstraße 19, Erlangen 91052, Germany
| | - Tamara Schellhorn
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schuhstraße 19, Erlangen 91052, Germany
| | - Marie Gienger
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schuhstraße 19, Erlangen 91052, Germany
| | - Carolin Schaab
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schuhstraße 19, Erlangen 91052, Germany
| | - Jonas Kaindl
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schuhstraße 19, Erlangen 91052, Germany.,Department of Chemistry and Pharmacy, Computer-Chemie-Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstraße 25, Erlangen 91052, Germany
| | - Laurin Leeb
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schuhstraße 19, Erlangen 91052, Germany
| | - Timothy Clark
- Department of Chemistry and Pharmacy, Computer-Chemie-Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstraße 25, Erlangen 91052, Germany.,Centre for Molecular Design, University of Portsmouth, King Henry Building, Portsmouth PO1 2DY, UK
| | - Dorothee Möller
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schuhstraße 19, Erlangen 91052, Germany
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schuhstraße 19, Erlangen 91052, Germany
| |
Collapse
|
45
|
Kleinau G, Müller A, Biebermann H. Oligomerization of GPCRs involved in endocrine regulation. J Mol Endocrinol 2016; 57:R59-80. [PMID: 27151573 DOI: 10.1530/jme-16-0049] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 05/04/2016] [Indexed: 12/27/2022]
Abstract
More than 800 different human membrane-spanning G-protein-coupled receptors (GPCRs) serve as signal transducers at biological barriers. These receptors are activated by a wide variety of ligands such as peptides, ions and hormones, and are able to activate a diverse set of intracellular signaling pathways. GPCRs are of central importance in endocrine regulation, which underpins the significance of comprehensively studying these receptors and interrelated systems. During the last decade, the capacity for multimerization of GPCRs was found to be a common and functionally relevant property. The interaction between GPCR monomers results in higher order complexes such as homomers (identical receptor subtype) or heteromers (different receptor subtypes), which may be present in a specific and dynamic monomer/oligomer equilibrium. It is widely accepted that the oligomerization of GPCRs is a mechanism for determining the fine-tuning and expansion of cellular processes by modification of ligand action, expression levels, and related signaling outcome. Accordingly, oligomerization provides exciting opportunities to optimize pharmacological treatment with respect to receptor target and tissue selectivity or for the development of diagnostic tools. On the other hand, GPCR heteromerization may be a potential reason for the undesired side effects of pharmacological interventions, faced with numerous and common mutual signaling modifications in heteromeric constellations. Finally, detailed deciphering of the physiological occurrence and relevance of specific GPCR/GPCR-ligand interactions poses a future challenge. This review will tackle the aspects of GPCR oligomerization with specific emphasis on family A GPCRs involved in endocrine regulation, whereby only a subset of these receptors will be discussed in detail.
Collapse
Affiliation(s)
- Gunnar Kleinau
- Institute of Experimental Pediatric Endocrinology (IEPE)Charité-Universitätsmedizin, Berlin, Germany
| | - Anne Müller
- Institute of Experimental Pediatric Endocrinology (IEPE)Charité-Universitätsmedizin, Berlin, Germany
| | - Heike Biebermann
- Institute of Experimental Pediatric Endocrinology (IEPE)Charité-Universitätsmedizin, Berlin, Germany
| |
Collapse
|
46
|
Multivalent approaches and beyond: novel tools for the investigation of dopamine D2 receptor pharmacology. Future Med Chem 2016; 8:1349-72. [DOI: 10.4155/fmc-2016-0010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The dopamine D2 receptor (D2R) has been implicated in the symptomology of disorders such as schizophrenia and Parkinson's disease. Multivalent ligands provide useful tools to investigate emerging concepts of G protein-coupled receptor drug action such as allostery, bitopic binding and receptor dimerization. This review focuses on the approaches taken toward the development of multivalent ligands for the D2R recently and highlights the challenges associated with each approach, their utility in probing D2R function and approaches to develop new D2R-targeting drugs. Furthermore, we extend our discussion to the possibility of designing multitarget ligands. The insights gained from such studies may provide the basis for improved therapeutic targeting of the D2R.
Collapse
|
47
|
Tian H, Fürstenberg A, Huber T. Labeling and Single-Molecule Methods To Monitor G Protein-Coupled Receptor Dynamics. Chem Rev 2016; 117:186-245. [DOI: 10.1021/acs.chemrev.6b00084] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- He Tian
- Laboratory of Chemical Biology
and Signal Transduction, The Rockefeller University, 1230 York
Avenue, New York, New York 10065, United States
| | - Alexandre Fürstenberg
- Laboratory of Chemical Biology
and Signal Transduction, The Rockefeller University, 1230 York
Avenue, New York, New York 10065, United States
| | - Thomas Huber
- Laboratory of Chemical Biology
and Signal Transduction, The Rockefeller University, 1230 York
Avenue, New York, New York 10065, United States
| |
Collapse
|
48
|
Mertens L, Hock KJ, Koenigs RM. Fluoroalkyl-Substituted Diazomethanes and Their Application in a General Synthesis of Pyrazoles and Pyrazolines. Chemistry 2016; 22:9542-5. [PMID: 27168358 DOI: 10.1002/chem.201601707] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Indexed: 01/27/2023]
Abstract
A novel continuous-flow approach for the synthesis of fluoroalkyl-substituted diazomethanes has been developed. Utilizing a cheap, self-made microreactor fluoroalkyl-substituted amines were transformed into the corresponding diazomethanes using tert-butyl nitrite and acetic acid as catalyst. These diazomethanes were employed in [2+3] cycloaddition reactions with olefins and alkynes, yielding valuable pyrazolines and pyrazoles in good to excellent yields.
Collapse
Affiliation(s)
- Lucas Mertens
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Katharina J Hock
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Rene M Koenigs
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany.
| |
Collapse
|
49
|
Abstract
The dynamics of protein binding pockets are crucial for their interaction specificity. Structural flexibility allows proteins to adapt to their individual molecular binding partners and facilitates the binding process. This implies the necessity to consider protein internal motion in determining and predicting binding properties and in designing new binders. Although accounting for protein dynamics presents a challenge for computational approaches, it expands the structural and physicochemical space for compound design and thus offers the prospect of improved binding specificity and selectivity. A cavity on the surface or in the interior of a protein that possesses suitable properties for binding a ligand is usually referred to as a binding pocket. The set of amino acid residues around a binding pocket determines its physicochemical characteristics and, together with its shape and location in a protein, defines its functionality. Residues outside the binding site can also have a long-range effect on the properties of the binding pocket. Cavities with similar functionalities are often conserved across protein families. For example, enzyme active sites are usually concave surfaces that present amino acid residues in a suitable configuration for binding low molecular weight compounds. Macromolecular binding pockets, on the other hand, are located on the protein surface and are often shallower. The mobility of proteins allows the opening, closing, and adaptation of binding pockets to regulate binding processes and specific protein functionalities. For example, channels and tunnels can exist permanently or transiently to transport compounds to and from a binding site. The influence of protein flexibility on binding pockets can vary from small changes to an already existent pocket to the formation of a completely new pocket. Here, we review recent developments in computational methods to detect and define binding pockets and to study pocket dynamics. We introduce five different classes of protein pocket dynamics: (1) appearance/disappearance of a subpocket in an existing pocket; (2) appearance/disappearance of an adjacent pocket on the protein surface in the direct vicinity of an already existing pocket; (3) pocket breathing, which may be caused by side-chain fluctuations or backbone or interdomain vibrational motion; (4) opening/closing of a channel or tunnel, connecting a pocket inside the protein with solvent, including lid motion; and (5) the appearance/disappearance of an allosteric pocket at a site on a protein distinct from an already existing pocket with binding of a ligand to the allosteric binding site affecting the original pocket. We suggest that the class of pocket dynamics, as well as the type and extent of protein motion affecting the binding pocket, should be factors considered in choosing the most appropriate computational approach to study a given binding pocket. Furthermore, we examine the relationship between pocket dynamics classes and induced fit, conformational selection, and gating models of ligand binding on binding kinetics and thermodynamics. We discuss the implications of protein binding pocket dynamics for drug design and conclude with potential future directions for computational analysis of protein binding pocket dynamics.
Collapse
Affiliation(s)
- Antonia Stank
- Heidelberg Institute for Theoretical Studies (HITS), Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany
| | - Daria B. Kokh
- Heidelberg Institute for Theoretical Studies (HITS), Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany
| | - Jonathan C. Fuller
- Heidelberg Institute for Theoretical Studies (HITS), Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany
| | - Rebecca C. Wade
- Heidelberg Institute for Theoretical Studies (HITS), Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany
- Center
for Molecular Biology of the University of Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| |
Collapse
|
50
|
Arnatt CK, Zhang Y. Bivalent ligands targeting chemokine receptor dimerization: molecular design and functional studies. Curr Top Med Chem 2016; 14:1606-18. [PMID: 25159160 DOI: 10.2174/1568026614666140827144752] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 05/14/2014] [Accepted: 05/14/2014] [Indexed: 12/27/2022]
Abstract
Increasing evidence has shown that chemokine receptors may form functional dimers with unique pharmacological profiles. A common practice to characterize such G protein-coupled receptor dimerization processes is to apply bivalent ligands as chemical probes which can interact with both receptors simultaneously. Currently, two chemokine receptor dimers have been studied by applying bivalent compounds: the CXCR4-CXCR4 homodimer and the CCR5-MOR heterodimer. These bivalent compounds have revealed how dimerization influences receptor function and may lead to novel therapeutics. Future design of bivalent ligands for chemokine receptor dimers may be aided with the recently available CXCR4 homodimer, and CCR5 monomer crystal structures by more accurately simulating chemokine receptors and their dimers.
Collapse
Affiliation(s)
| | - Yan Zhang
- Department of Medicinal Chemistry, Virginia Commonwealth University, 800 East Leigh Street, Richmond, VA 23298, USA.
| |
Collapse
|