1
|
Jiang YQ, Lee DK, Guo W, Li M, Sun Q. Hypothalamic regulation of hippocampal CA1 interneurons by the supramammillary nucleus. Cell Rep 2024; 43:114898. [PMID: 39446584 DOI: 10.1016/j.celrep.2024.114898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 09/14/2024] [Accepted: 10/05/2024] [Indexed: 10/26/2024] Open
Abstract
The hypothalamic supramammillary nucleus (SuM) projects heavily to the hippocampus to regulate hippocampal activity and plasticity. Although the projections from the SuM to the dentate gyrus (DG) and CA2 have been extensively studied, whether the SuM projects to CA1, the main hippocampal output region, is unclear. Here, we report a glutamatergic pathway from the SuM that selectively excites CA1 interneurons in the border between the stratum radiatum (SR) and the stratum lacunosum-moleculare (SLM). We find that the SuM projects selectively to a narrow band in the CA1 SR/SLM and monosynaptically excites SR/SLM interneurons, including vasoactive intestinal peptide-expressing (VIP+) and neuron-derived neurotrophic factor-expressing (NDNF+) cells, but completely avoids making monosynaptic contacts with CA1 pyramidal neurons (PNs) or parvalbumin-expressing (PV+) or somatostatin-expressing (SOM+) cells. Moreover, SuM activation drives spikes in most SR/SLM interneurons to suppress CA1 PN excitability. Taken together, our findings reveal that the SuM can directly regulate hippocampal output region CA1, bypassing CA2, CA3, and the DG.
Collapse
Affiliation(s)
- Yu-Qiu Jiang
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Daniel K Lee
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Wanyi Guo
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Minghua Li
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Qian Sun
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| |
Collapse
|
2
|
Escobedo A, Holloway SA, Votoupal M, Cone AL, Skelton H, Legaria AA, Ndiokho I, Floyd T, Kravitz AV, Bruchas MR, Norris AJ. Glutamatergic supramammillary nucleus neurons respond to threatening stressors and promote active coping. eLife 2024; 12:RP90972. [PMID: 38829200 PMCID: PMC11147510 DOI: 10.7554/elife.90972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
Threat-response neural circuits are conserved across species and play roles in normal behavior and psychiatric diseases. Maladaptive changes in these neural circuits contribute to stress, mood, and anxiety disorders. Active coping in response to stressors is a psychosocial factor associated with resilience against stress-induced mood and anxiety disorders. The neural circuitry underlying active coping is poorly understood, but the functioning of these circuits could be key for overcoming anxiety and related disorders. The supramammillary nucleus (SuM) has been suggested to be engaged by threat. SuM has many projections and a poorly understood diversity of neural populations. In studies using mice, we identified a unique population of glutamatergic SuM neurons (SuMVGLUT2+::POA) based on projection to the preoptic area of the hypothalamus (POA) and found SuMVGLUT2+::POA neurons have extensive arborizations. SuMVGLUT2+::POA neurons project to brain areas that mediate features of the stress and threat responses including the paraventricular nucleus thalamus (PVT), periaqueductal gray (PAG), and habenula (Hb). Thus, SuMVGLUT2+::POA neurons are positioned as a hub, connecting to areas implicated in regulating stress responses. Here we report SuMVGLUT2+::POA neurons are recruited by diverse threatening stressors, and recruitment correlated with active coping behaviors. We found that selective photoactivation of the SuMVGLUT2+::POA population drove aversion but not anxiety like behaviors. Activation of SuMVGLUT2+::POA neurons in the absence of acute stressors evoked active coping like behaviors and drove instrumental behavior. Also, activation of SuMVGLUT2+::POA neurons was sufficient to convert passive coping strategies to active behaviors during acute stress. In contrast, we found activation of GABAergic (VGAT+) SuM neurons (SuMVGAT+) neurons did not alter drive aversion or active coping, but termination of photostimulation was followed by increased mobility in the forced swim test. These findings establish a new node in stress response circuitry that has projections to many brain areas and evokes flexible active coping behaviors.
Collapse
Affiliation(s)
- Abraham Escobedo
- Department of Anesthesiology, Washington University in St. LouisSt. LouisUnited States
| | - Salli-Ann Holloway
- Department of Anesthesiology, Washington University in St. LouisSt. LouisUnited States
| | - Megan Votoupal
- Department of Medicine, Northwestern University Feinberg School of MedicineChicagoUnited States
| | - Aaron L Cone
- Department of Anesthesiology, Washington University in St. LouisSt. LouisUnited States
| | - Hannah Skelton
- Department of Anesthesiology, Washington University in St. LouisSt. LouisUnited States
| | - Alex A Legaria
- Department of Neuroscience, Washington University in St. LouisSt. LouisUnited States
- Department of Psychiatry, Washington University in St. LouisSt. LouisUnited States
| | - Imeh Ndiokho
- Medical College of WisconsinMilwaukeeUnited States
| | - Tasheia Floyd
- Department of Obstetrics and Gynecology, Washington University in St. LouisSt. LouisUnited States
| | - Alexxai V Kravitz
- Department of Anesthesiology, Washington University in St. LouisSt. LouisUnited States
- Department of Neuroscience, Washington University in St. LouisSt. LouisUnited States
- Department of Psychiatry, Washington University in St. LouisSt. LouisUnited States
| | - Michael R Bruchas
- Center for Neurobiology of Addiction, Pain, and Emotion University of WashingtonSeattleUnited States
- Department of Anesthesiology and Pain Medicine University of WashingtonSeattleUnited States
- Department of Pharmacology University of WashingtonSeattleUnited States
- Department of Bioengineering University of WashingtonSeattleUnited States
| | - Aaron J Norris
- Department of Anesthesiology, Washington University in St. LouisSt. LouisUnited States
| |
Collapse
|
3
|
Froula JM, Rose JJ, Krook-Magnuson C, Krook-Magnuson E. Distinct functional classes of CA1 hippocampal interneurons are modulated by cerebellar stimulation in a coordinated manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.14.594213. [PMID: 38798335 PMCID: PMC11118308 DOI: 10.1101/2024.05.14.594213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
There is mounting evidence that the cerebellum impacts hippocampal functioning, but the impact of the cerebellum on hippocampal interneurons remains obscure. Using miniscopes in freely behaving animals, we find optogenetic stimulation of Purkinje cells alters the calcium activity of a large percentage of CA1 interneurons. This includes both increases and decreases in activity. Remarkably, this bidirectional impact occurs in a coordinated fashion, in line with interneurons' functional properties. Specifically, CA1 interneurons activated by cerebellar stimulation are commonly locomotion-active, while those inhibited by cerebellar stimulation are commonly rest-active interneurons. We additionally find that subsets of CA1 interneurons show altered activity during object investigations, suggesting a role in the processing of objects in space. Importantly, these neurons also show coordinated modulation by cerebellar stimulation: CA1 interneurons that are activated by cerebellar stimulation are more likely to be activated, rather than inhibited, during object investigations, while interneurons that show decreased activity during cerebellar stimulation show the opposite profile. Therefore, CA1 interneurons play a role in object processing and in cerebellar impacts on the hippocampus, providing insight into previously noted altered CA1 processing of objects in space with cerebellar stimulation. We examined two different stimulation locations (IV/V Vermis; Simplex) and two different stimulation approaches (7Hz or a single 1s light pulse) - in all cases, the cerebellum induces similar coordinated CA1 interneuron changes congruent with an explorative state. Overall, our data show that the cerebellum impacts CA1 interneurons in a bidirectional and coordinated fashion, positioning them to play an important role in cerebello-hippocampal communication. Significance Statement Acute manipulation of the cerebellum can affect the activity of cells in CA1, and perturbing normal cerebellar functioning can affect hippocampal-dependent spatial processing, including the processing of objects in space. Despite the importance of interneurons on the local hippocampal circuit, it was unknown how cerebellar activation impacts CA1 inhibitory neurons. We find that stimulating the cerebellum robustly affects multiple populations of CA1 interneurons in a bidirectional, coordinated manner, according to their functional profiles during behavior, including locomotion and object investigations. Our work also provides support for a role of CA1 interneurons in spatial processing of objects, with populations of interneurons showing altered activity during object investigations.
Collapse
|
4
|
Wen Y, Jiang J, Zhai F, Fan F, Lu J. Sleep-wake dependent hippocampal regulation of fear memory. Sleep Med 2024; 115:162-173. [PMID: 38367358 DOI: 10.1016/j.sleep.2024.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/05/2024] [Accepted: 02/11/2024] [Indexed: 02/19/2024]
Abstract
The hippocampus (HPC) plays a pivotal role in fear learning and memory. Our two recent studies suggest that rapid eye movement (REM) sleep via the HPC downregulates fear memory consolidation and promotes fear extinction. However, it is not clear whether and how the dorsal and the ventral HPC regulates fear memory differently; and how the HPC in wake regulates fear memory. By chemogenetic stimulating in the HPC directly and its afferent entorhinal cortex that selectively activated the HPC in REM sleep for 3-6 h post-fear-acquisition, we found that HPC activation in REM sleep consolidated fear extinction memory. In particular, dorsal HPC (dHPC) stimulation in REM sleep virtually eliminated fear memory by enhancing fear extinction and reducing fear memory consolidation. By contrast, chemogenetic stimulating HPC afferent the supramammillary nucleus (SUM) induced 3-hr wake with HPC activation impaired fear extinction. Finally, desipramine (DMI) injection that selectively eliminated REM sleep for >6 h impaired fear extinction. Our results demonstrate that the HPC is critical for fear memory regulation; and wake HPC and REM sleep HPC have an opposite role in fear extinction of respective impairment and consolidation.
Collapse
Affiliation(s)
- Yujun Wen
- Ningxia Key Laboratory of Craniocerebral Diseases, Department of Anatomy, Histology and Embryology, School of Basic Medicine, Ningxia Medical University, Yinchuan, China; Department of Neurology, Beth Israel Deaconess Medical Center, Boston, USA.
| | - Jinhong Jiang
- Jiangsu Province Key Laboratory in Anesthesiology, Xuzhou Medical University, Xuzhou, China; Department of Neurology, Beth Israel Deaconess Medical Center, Boston, USA
| | - Feng Zhai
- Department of Otolaryngology, School of Medicine, Shanghai Children's Medical Center, Shanghai Jiaotong University, Shanghai, China; Department of Neurology, Beth Israel Deaconess Medical Center, Boston, USA
| | - Fangfang Fan
- Stroke Center and Department of Neurology, First Hospital of Jilin University, Changchun, China; Department of Neurology, Beth Israel Deaconess Medical Center, Boston, USA
| | - Jun Lu
- Stroke Center and Department of Neurology, First Hospital of Jilin University, Changchun, China; Department of Neurology, Beth Israel Deaconess Medical Center, Boston, USA.
| |
Collapse
|
5
|
Thirtamara Rajamani K, Barbier M, Lefevre A, Niblo K, Cordero N, Netser S, Grinevich V, Wagner S, Harony-Nicolas H. Oxytocin activity in the paraventricular and supramammillary nuclei of the hypothalamus is essential for social recognition memory in rats. Mol Psychiatry 2024; 29:412-424. [PMID: 38052983 PMCID: PMC11116117 DOI: 10.1038/s41380-023-02336-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 11/09/2023] [Accepted: 11/17/2023] [Indexed: 12/07/2023]
Abstract
Oxytocin plays an important role in modulating social recognition memory. However, the direct implication of oxytocin neurons of the paraventricular nucleus of the hypothalamus (PVH) and their downstream hypothalamic targets in regulating short- and long-term forms of social recognition memory has not been fully investigated. In this study, we employed a chemogenetic approach to target the activity of PVH oxytocin neurons in male rats and found that specific silencing of this neuronal population led to an impairment in short- and long-term social recognition memory. We combined viral-mediated fluorescent labeling of oxytocin neurons with immunohistochemical techniques and identified the supramammillary nucleus (SuM) of the hypothalamus as a target of PVH oxytocinergic axonal projections in rats. We used multiplex fluorescence in situ hybridization to label oxytocin receptors in the SuM and determined that they are predominantly expressed in glutamatergic neurons, including those that project to the CA2 region of the hippocampus. Finally, we used a highly selective oxytocin receptor antagonist in the SuM to examine the involvement of oxytocin signaling in modulating short- and long-term social recognition memory and found that it is necessary for the formation of both. This study discovered a previously undescribed role for the SuM in regulating social recognition memory via oxytocin signaling and reinforced the specific role of PVH oxytocin neurons in regulating this form of memory.
Collapse
Affiliation(s)
- Keerthi Thirtamara Rajamani
- Department of Psychiatry and Seaver Autism Center for Research and Treatment at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Seaver Autism Center for Research and Treatment at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Robert Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Marie Barbier
- Department of Psychiatry and Seaver Autism Center for Research and Treatment at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Seaver Autism Center for Research and Treatment at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Arthur Lefevre
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- Cortical Systems and Behavior Laboratory, University of California San Diego, San Diego, CA, USA
| | - Kristi Niblo
- Department of Psychiatry and Seaver Autism Center for Research and Treatment at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Seaver Autism Center for Research and Treatment at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nicholas Cordero
- CUNY School of Medicine, The City College of New York, 160 Convent Avenue, New York, NY, USA
| | - Shai Netser
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Valery Grinevich
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Shlomo Wagner
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Hala Harony-Nicolas
- Department of Psychiatry and Seaver Autism Center for Research and Treatment at the Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Seaver Autism Center for Research and Treatment at the Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
6
|
Cola RB, Roccaro-Waldmeyer DM, Naim S, Babalian A, Seebeck P, Alvarez-Bolado G, Celio MR. Chemo- and optogenetic activation of hypothalamic Foxb1-expressing neurons and their terminal endings in the rostral-dorsolateral PAG leads to tachypnea, bradycardia, and immobility. eLife 2024; 12:RP86737. [PMID: 38300670 PMCID: PMC10945554 DOI: 10.7554/elife.86737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024] Open
Abstract
Foxb1 -expressing neurons occur in the dorsal premammillary nucleus (PMd) and further rostrally in the parvafox nucleus, a longitudinal cluster of neurons in the lateral hypothalamus of rodents. The descending projection of these Foxb1+ neurons end in the dorsolateral part of the periaqueductal gray (dlPAG). The functional role of the Foxb1+ neuronal subpopulation in the PMd and the parvafox nucleus remains elusive. In this study, the activity of the Foxb1+ neurons and of their terminal endings in the dlPAG in mice was selectively altered by employing chemo- and optogenetic tools. Our results show that in whole-body barometric plethysmography, hM3Dq-mediated, global Foxb1+ neuron excitation activates respiration. Time-resolved optogenetic gain-of-function manipulation of the terminal endings of Foxb1+ neurons in the rostral third of the dlPAG leads to abrupt immobility and bradycardia. Chemogenetic activation of Foxb1+ cell bodies and ChR2-mediated excitation of their axonal endings in the dlPAG led to a phenotypical presentation congruent with a 'freezing-like' situation during innate defensive behavior.
Collapse
Affiliation(s)
- Reto B Cola
- Anatomy and program in Neuroscience, Faculty of Science and Medicine, University of FribourgFribourgSwitzerland
| | - Diana M Roccaro-Waldmeyer
- Anatomy and program in Neuroscience, Faculty of Science and Medicine, University of FribourgFribourgSwitzerland
| | - Samara Naim
- Anatomy and program in Neuroscience, Faculty of Science and Medicine, University of FribourgFribourgSwitzerland
| | - Alexandre Babalian
- Anatomy and program in Neuroscience, Faculty of Science and Medicine, University of FribourgFribourgSwitzerland
| | - Petra Seebeck
- Zurich integrative Rodent Physiology (ZIRP), University of ZürichZürichSwitzerland
| | | | - Marco R Celio
- Anatomy and program in Neuroscience, Faculty of Science and Medicine, University of FribourgFribourgSwitzerland
| |
Collapse
|
7
|
Liang M, Jian T, Tao J, Wang X, Wang R, Jin W, Chen Q, Yao J, Zhao Z, Yang X, Xiao J, Yang Z, Liao X, Chen X, Wang L, Qin H. Hypothalamic supramammillary neurons that project to the medial septum modulate wakefulness in mice. Commun Biol 2023; 6:1255. [PMID: 38087004 PMCID: PMC10716381 DOI: 10.1038/s42003-023-05637-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
The hypothalamic supramammillary nucleus (SuM) plays a crucial role in controlling wakefulness, but the downstream target regions participating in this control process remain unknown. Here, using circuit-specific fiber photometry and single-neuron electrophysiology together with electroencephalogram, electromyogram and behavioral recordings, we find that approximately half of SuM neurons that project to the medial septum (MS) are wake-active. Optogenetic stimulation of axonal terminals of SuM-MS projection induces a rapid and reliable transition to wakefulness from non-rapid-eye movement or rapid-eye movement sleep, and chemogenetic activation of SuMMS projecting neurons significantly increases wakefulness time and prolongs latency to sleep. Consistently, chemogenetically inhibiting these neurons significantly reduces wakefulness time and latency to sleep. Therefore, these results identify the MS as a functional downstream target of SuM and provide evidence for the modulation of wakefulness by this hypothalamic-septal projection.
Collapse
Affiliation(s)
- Mengru Liang
- Department of Anatomy, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Tingliang Jian
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, 400038, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jie Tao
- Advanced Institute for Brain and Intelligence, School of Medicine, Guangxi University, Nanning, 530004, China
| | - Xia Wang
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing, 400044, China
| | - Rui Wang
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Wenjun Jin
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Qianwei Chen
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Jiwei Yao
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing, 400044, China
| | - Zhikai Zhao
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing, 400044, China
| | - Xinyu Yang
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing, 400044, China
| | - Jingyu Xiao
- Department of Anesthesiology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Zhiqi Yang
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Xiang Liao
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing, 400044, China
| | - Xiaowei Chen
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, 400038, China.
- Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing, 400064, China.
| | - Liecheng Wang
- Department of Anatomy, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| | - Han Qin
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing, 400044, China.
- Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing, 400064, China.
| |
Collapse
|
8
|
Kesner AJ, Mozaffarilegha M, Thirtamara Rajamani K, Arima Y, Harony-Nicolas H, Hashimotodani Y, Ito HT, Song J, Ikemoto S. Hypothalamic Supramammillary Control of Cognition and Motivation. J Neurosci 2023; 43:7538-7546. [PMID: 37940587 PMCID: PMC10634554 DOI: 10.1523/jneurosci.1320-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/07/2023] [Accepted: 08/21/2023] [Indexed: 11/10/2023] Open
Abstract
The supramammillary nucleus (SuM) is a small region in the ventromedial posterior hypothalamus. The SuM has been relatively understudied with much of the prior focus being on its connection with septo-hippocampal circuitry. Thus, most studies conducted until the 21st century examined its role in hippocampal processes, such as theta rhythm and learning/memory. In recent years, the SuM has been "rediscovered" as a crucial hub for several behavioral and cognitive processes, including reward-seeking, exploration, and social memory. Additionally, it has been shown to play significant roles in hippocampal plasticity and adult neurogenesis. This review highlights findings from recent studies using cutting-edge systems neuroscience tools that have shed light on these fascinating roles for the SuM.
Collapse
Affiliation(s)
- Andrew J Kesner
- Unit on Motivation and Arousal, Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, Intramural Research Program, National Institutes of Health, Bethesda, Maryland 20892
| | | | - Keerthi Thirtamara Rajamani
- Appel Alzheimer's Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10021
| | - Yosuke Arima
- Neurocircuitry of Motivation Section, Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224
- Center on Compulsive Behaviors, Intramural Research Program, National Institutes of Health, Bethesda, Maryland 20894
| | - Hala Harony-Nicolas
- Department of Psychiatry, Department of Neuroscience, Seaver Autism Center for Research and Treatment, Friedman Brain Institute, Mindich Child Health and Development Institute at the Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Yuki Hashimotodani
- Graduate School of Brain Science, Doshisha University, Kyotanabe, Kyoto Japan 610-0394
| | - Hiroshi T Ito
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany 60438
| | - Juan Song
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599
- Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Satoshi Ikemoto
- Neurocircuitry of Motivation Section, Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224
| |
Collapse
|
9
|
Kowalczyk T, Staszelis A, Bocian R, Siwiec M, Sowa JE, Tokarski K, Kaźmierska-Grębowska P, Caban B. Posterior hypothalamic theta rhythm: Electrophysiological basis and involvement of glutamatergic receptors. Hippocampus 2023; 33:844-861. [PMID: 36688619 DOI: 10.1002/hipo.23500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 12/20/2022] [Accepted: 12/29/2022] [Indexed: 01/24/2023]
Abstract
The posterior hypothalamic area (PHa), including the supramammillary nucleus (SuM) and posterior hypothalamic nuclei, forms a crucial part of the ascending brainstem hippocampal synchronizing pathway, that is involved in the frequency programming and modulation of rhythmic theta activity generated in limbic structures. Recent investigations show that in addition to being a modulator of limbic theta activity, the PHa is capable of producing well-synchronized local theta field potentials by itself. The purpose of this study was to examine the ability of the PHa to generate theta field potentials and accompanying cell discharges in response to glutamatergic stimulation under both in vitro and in vivo conditions. The second objective was to examine the electrophysiological properties of neurons located in the SuM and posterior hypothalamic nuclei. Extracellular in vivo and in vitro as well as intracellular in vitro experiments revealed that glutamatergic stimulation of PHa with kainic acid induces well-synchronized local theta field oscillations in both the supramammillary and posterior hypothalamic nuclei. Furthermore, the glutamatergic PHa theta rhythm recorded extracellularly was accompanied by the activity of specific subtypes of theta-related neurons. We identify, for the first time, a subpopulation of supramammillary and posterior hypothalamic neurons that express clear subthreshold membrane potential oscillations in the theta frequency range.
Collapse
Affiliation(s)
- Tomasz Kowalczyk
- Department of Neurobiology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Agata Staszelis
- Department of Neurobiology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Renata Bocian
- Department of Neurobiology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Marcin Siwiec
- Department of Physiology, Maj Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland
| | - Joanna E Sowa
- Department of Physiology, Maj Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland
| | - Krzysztof Tokarski
- Department of Physiology, Maj Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland
| | | | - Bartosz Caban
- Department of Neurobiology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| |
Collapse
|
10
|
Li M, Kinney JL, Jiang YQ, Lee DK, Wu Q, Lee D, Xiong WC, Sun Q. Hypothalamic Supramammillary Nucleus Selectively Excites Hippocampal CA3 Interneurons to Suppress CA3 Pyramidal Neuron Activity. J Neurosci 2023; 43:4612-4624. [PMID: 37117012 PMCID: PMC10286942 DOI: 10.1523/jneurosci.1910-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 04/30/2023] Open
Abstract
A key mode of neuronal communication between distant brain regions is through excitatory synaptic transmission mediated by long-range glutamatergic projections emitted from principal neurons. The long-range glutamatergic projection normally forms numerous en passant excitatory synapses onto both principal neurons and interneurons along its path. Under physiological conditions, the monosynaptic excitatory drive onto postsynaptic principal neurons outweighs disynaptic feedforward inhibition, with the net effect of depolarizing principal neurons. In contrast with this conventional doctrine, here we report that a glutamatergic projection from the hypothalamic supramammillary nucleus (SuM) largely evades postsynaptic pyramidal neurons (PNs), but preferentially target interneurons in the hippocampal CA3 region to predominantly provide feedforward inhibition. Using viral-based retrograde and anterograde tracing and ChannelRhodopsin2 (ChR2)-assisted patch-clamp recording in mice of either sex, we show that SuM projects sparsely to CA3 and provides minimal excitation onto CA3 PNs. Surprisingly, despite its sparse innervation, the SuM input inhibits all CA3 PNs along the transverse axis. Further, we find that SuM provides strong monosynaptic excitation onto CA3 parvalbumin-expressing interneurons evenly along the transverse axis, which likely mediates the SuM-driven feedforward inhibition. Together, our results demonstrate that a novel long-range glutamatergic pathway largely evades principal neurons, but rather preferentially innervates interneurons in a distant brain region to suppress principal neuron activity. Moreover, our findings reveal a new means by which SuM regulates hippocampal activity through SuM-to-CA3 circuit, independent of the previously focused projections from SuM to CA2 or dentate gyrus.SIGNIFICANCE STATEMENT The dominant mode of neuronal communication between brain regions is the excitatory synaptic transmission mediated by long-range glutamatergic projections, which form en passant excitatory synapses onto both pyramidal neurons and interneurons along its path. Under normal conditions, the excitation onto postsynaptic neurons outweighs feedforward inhibition, with the net effect of depolarization. In contrast with this conventional doctrine, here we report that a glutamatergic input from hypothalamic supramammillary nucleus (SuM) largely evades PNs but selectively targets interneurons to almost exclusively provide disynaptic feedforward inhibition onto hippocampal CA3 PNs. Thus, our findings reveal a novel subcortical-hippocampal circuit that enables SuM to regulate hippocampal activity via SuM-CA3 circuit, independent of its projections to CA2 or dentate gyrus.
Collapse
Affiliation(s)
- Minghua Li
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Jessica L Kinney
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Yu-Qiu Jiang
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Daniel K Lee
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Qiwen Wu
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Daehoon Lee
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Wen-Cheng Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Qian Sun
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| |
Collapse
|
11
|
Raghuraman R, Navakkode S, Sajikumar S. Alteration of hippocampal CA2 plasticity and social memory in adult rats impacted by juvenile stress. Hippocampus 2023; 33:745-758. [PMID: 36965045 PMCID: PMC10946601 DOI: 10.1002/hipo.23531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 03/09/2023] [Accepted: 03/11/2023] [Indexed: 03/27/2023]
Abstract
The hippocampal CA2 region has received greater attention in recent years due to its fundamental role in social memory and hippocampus-dependent memory processing. Unlike entorhinal cortical inputs, the Schaffer collateral inputs to CA2 do not support activity-dependent long-term potentiation (LTP), which serves as the basis for long-term memories. This LTP-resistant zone also expresses genes that restrict plasticity. With the aim of exploring social interaction and sociability in rats that were subjected to juvenile stress, we addressed questions about how the neural circuitry is altered and its effects on social behavior. Although there was induction of LTP in both Schaffer collateral and entorhinal cortical pathways in juvenile-stressed rats, LTP declined in both pathways after 2-3 h. Moreover, exogenous bath application of substance P, a neuropeptide that resulted in slow onset long-lasting potentiation in control animals while it failed to induce LTP in juvenile-stressed rats. Our study reveals that juvenile-stressed rats show behavioral and cellular abnormalities with a long-lasting impact in adulthood.
Collapse
Affiliation(s)
- Radha Raghuraman
- Department of PhysiologyNational University of SingaporeSingapore117593Singapore
- Life Sciences Institute Neurobiology ProgrammeCentre for Life Sciences, National University of SingaporeSingapore117456Singapore
- Present address:
Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia University Irving Medical CenterNew YorkNew York10032USA
| | - Sheeja Navakkode
- Lee Kong Chian School of MedicineNanyang Technological UniversitySingapore308232Singapore
| | - Sreedharan Sajikumar
- Department of PhysiologyNational University of SingaporeSingapore117593Singapore
- Life Sciences Institute Neurobiology ProgrammeCentre for Life Sciences, National University of SingaporeSingapore117456Singapore
- Healthy Longevity Translational Research ProgrammeYong Loo Lin School of Medicine, National University of SingaporeSingapore117456Singapore
| |
Collapse
|
12
|
Ros-Bernal F, Gil-Miravet I, Lucerón J, Navarro-Sánchez M, Castillo-Gómez E, Gundlach AL, Olucha-Bordonau FE. Postnatal development of the relaxin-3 innervation of the rat medial septum. Front Neurosci 2023; 17:1176587. [PMID: 37234259 PMCID: PMC10206071 DOI: 10.3389/fnins.2023.1176587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/17/2023] [Indexed: 05/27/2023] Open
Abstract
Introduction The septal area provides a rich innervation to the hippocampus regulating hippocampal excitability to different behavioral states and modulating theta rhythmogenesis. However, little is known about the neurodevelopmental consequences of its alterations during postnatal development. The activity of the septohippocampal system is driven and/or modulated by ascending inputs, including those arising from the nucleus incertus (NI), many of which contain the neuropeptide, relaxin-3 (RLN3). Methods We examined at the molecular and cellular level the ontogeny of RLN3 innervation of the septal area in postnatal rat brains. Results Up until P13-15 there were only scattered fibers in the septal area, but a dense plexus had appeared by P17 that was extended and consolidated throughout the septal complex by P20. There was a decrease in the level of colocalization of RLN3 and synaptophysin between P15 and P20 that was reversed between P20 and adulthood. Biotinylated 3-kD dextran amine injections into the septum, revealed retrograde labeling present in the brainstem at P10-P13, but a decrease in anterograde fibers in the NI between P10-20. Simultaneously, a differentiation process began during P10-17, resulting in fewer NI neurons double-labeled for serotonin and RLN3. Discussion The onset of the RLN3 innervation of the septum complex between P17-20 is correlated with the onset of hippocampal theta rhythm and several learning processes associated with hippocampal function. Together, these data highlight the relevance and need for further analysis of this stage for normal and pathological septohippocampal development.
Collapse
Affiliation(s)
- Francisco Ros-Bernal
- Unitat Predepartamental de Medicina, Facultad de Ciencias de la Slud, Universitat Jaume I, Castellón, Spain
| | - Isis Gil-Miravet
- Unitat Predepartamental de Medicina, Facultad de Ciencias de la Slud, Universitat Jaume I, Castellón, Spain
| | - Jorge Lucerón
- Unitat Predepartamental de Medicina, Facultad de Ciencias de la Slud, Universitat Jaume I, Castellón, Spain
| | - Mónica Navarro-Sánchez
- Unitat Predepartamental de Medicina, Facultad de Ciencias de la Slud, Universitat Jaume I, Castellón, Spain
| | - Esther Castillo-Gómez
- Unitat Predepartamental de Medicina, Facultad de Ciencias de la Slud, Universitat Jaume I, Castellón, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, (CIBERSAM), Madrid, Spain
| | - Andrew L. Gundlach
- The Florey Institute of Neuroscience and Mental Health, Florey Department of Neuroscience and Mental Health and Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Francisco E. Olucha-Bordonau
- Unitat Predepartamental de Medicina, Facultad de Ciencias de la Slud, Universitat Jaume I, Castellón, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, (CIBERSAM), Madrid, Spain
| |
Collapse
|
13
|
Hirai H, Sakaba T, Hashimotodani Y. Subcortical glutamatergic inputs exhibit a Hebbian form of long-term potentiation in the dentate gyrus. Cell Rep 2022; 41:111871. [PMID: 36577371 DOI: 10.1016/j.celrep.2022.111871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/19/2022] [Accepted: 12/01/2022] [Indexed: 12/28/2022] Open
Abstract
The hippocampus receives glutamatergic and GABAergic inputs from subcortical regions. Despite the important roles of these subcortical inputs in the regulation of hippocampal circuit, it has not been explored whether associative activation of the subcorticohippocampal pathway induces Hebbian plasticity of subcortical inputs. Here, we demonstrate that the hypothalamic supramammillary nucleus (SuM) to the dentate granule cell (GC) synapses, which co-release glutamate and GABA, undergo associative long-term potentiation (LTP) of glutamatergic, but not GABAergic, co-transmission. This LTP is induced by pairing of SuM inputs with GC spikes. We found that this Hebbian LTP is input-specific, requires NMDA receptors and CaMKII activation, and is expressed postsynaptically. By the net increase in excitatory drive of SuM inputs following LTP induction, associative inputs of SuM and the perforant path effectively discharge GCs. Our results highlight the important role of associative plasticity at SuM-GC synapses in the regulation of dentate gyrus activity and for the encoding of SuM-related information.
Collapse
Affiliation(s)
- Himawari Hirai
- Graduate School of Brain Science, Doshisha University, Kyoto 610-0394, Japan
| | - Takeshi Sakaba
- Graduate School of Brain Science, Doshisha University, Kyoto 610-0394, Japan
| | - Yuki Hashimotodani
- Graduate School of Brain Science, Doshisha University, Kyoto 610-0394, Japan.
| |
Collapse
|
14
|
Qin H, Fu L, Jian T, Jin W, Liang M, Li J, Chen Q, Yang X, Du H, Liao X, Zhang K, Wang R, Liang S, Yao J, Hu B, Ren S, Zhang C, Wang Y, Hu Z, Jia H, Konnerth A, Chen X. REM sleep-active hypothalamic neurons may contribute to hippocampal social-memory consolidation. Neuron 2022; 110:4000-4014.e6. [PMID: 36272414 DOI: 10.1016/j.neuron.2022.09.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 07/29/2022] [Accepted: 09/02/2022] [Indexed: 11/05/2022]
Abstract
The hippocampal CA2 region plays a key role in social memory. The encoding of such memory involves afferent activity from the hypothalamic supramammillary nucleus (SuM) to CA2. However, the neuronal circuits required for consolidation of freshly encoded social memory remain unknown. Here, we used circuit-specific optical and single-cell electrophysiological recordings in mice to explore the role of sleep in social memory consolidation and its underlying circuit mechanism. We found that SuM neurons projecting to CA2 were highly active during rapid-eye-movement (REM) sleep but not during non-REM sleep or quiet wakefulness. REM-sleep-selective optogenetic silencing of these neurons impaired social memory. By contrast, the silencing of another group of REM sleep-active SuM neurons that projects to the dentate gyrus had no effect on social memory. Therefore, we provide causal evidence that the REM sleep-active hypothalamic neurons that project to CA2 are specifically required for the consolidation of social memory.
Collapse
Affiliation(s)
- Han Qin
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing 400044, China; Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China.
| | - Ling Fu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Key Laboratory for Biomedical Photonics of Ministry of Education, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Tingliang Jian
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Wenjun Jin
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | - Mengru Liang
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China; Department of Anatomy, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Jin Li
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | - Qianwei Chen
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | - Xinyu Yang
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing 400044, China
| | - Haoran Du
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing 400044, China
| | - Xiang Liao
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing 400044, China
| | - Kuan Zhang
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | - Rui Wang
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | - Shanshan Liang
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | - Jiwei Yao
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing 400044, China
| | - Bo Hu
- Institute of Brain and Intelligence, Third Military Medical University, Chongqing 400038, China
| | - Shuancheng Ren
- Institute of Brain and Intelligence, Third Military Medical University, Chongqing 400038, China
| | - Chunqing Zhang
- Institute of Brain and Intelligence, Third Military Medical University, Chongqing 400038, China
| | - Yanjiang Wang
- Institute of Brain and Intelligence, Third Military Medical University, Chongqing 400038, China
| | - Zhian Hu
- Institute of Brain and Intelligence, Third Military Medical University, Chongqing 400038, China
| | - Hongbo Jia
- Advanced Institute for Brain and Intelligence, Guangxi University, Nanning 530004, China; Institute of Neuroscience and the Munich Cluster for Systems Neurology, Technical University of Munich, 80802 Munich, Germany; Brain Research Instrument Innovation Center, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China; Combinatorial NeuroImaging Core Facility, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
| | - Arthur Konnerth
- Advanced Institute for Brain and Intelligence, Guangxi University, Nanning 530004, China; Institute of Neuroscience and the Munich Cluster for Systems Neurology, Technical University of Munich, 80802 Munich, Germany
| | - Xiaowei Chen
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China; Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing 400064, China.
| |
Collapse
|
15
|
Hashimoto M, Brito SI, Venner A, Pasqualini AL, Yang TL, Allen D, Fuller PM, Anthony TE. Lateral septum modulates cortical state to tune responsivity to threat stimuli. Cell Rep 2022; 41:111521. [PMID: 36288710 PMCID: PMC9645245 DOI: 10.1016/j.celrep.2022.111521] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 08/17/2022] [Accepted: 09/26/2022] [Indexed: 11/30/2022] Open
Abstract
Sudden unexpected environmental changes capture attention and, when perceived as potentially dangerous, evoke defensive behavioral states. Perturbations of the lateral septum (LS) can produce extreme hyperdefensiveness even to innocuous stimuli, but how this structure influences stimulus-evoked defensive responses and threat perception remains unclear. Here, we show that Crhr2-expressing neurons in mouse LS exhibit phasic activation upon detection of threatening but not rewarding stimuli. Threat-stimulus-driven activity predicts the probability but not vigor or type of defensive behavior evoked. Although necessary for and sufficient to potentiate stimulus-triggered defensive responses, LSCrhr2 neurons do not promote specific behaviors. Rather, their stimulation elicits negative valence and physiological arousal. Moreover, LSCrhr2 activity tracks brain state fluctuations and drives cortical activation and rapid awakening in the absence of threat. Together, our findings suggest that LS directs bottom-up modulation of cortical function to evoke preparatory defensive internal states and selectively enhance responsivity to threat-related stimuli.
Collapse
Affiliation(s)
- Mariko Hashimoto
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Salvador Ignacio Brito
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Anne Venner
- Department of Neurology, Beth Israel Deaconess Medical Center and Division of Sleep Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Amanda Loren Pasqualini
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Tracy Lulu Yang
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - David Allen
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Patrick Michael Fuller
- Department of Neurology, Beth Israel Deaconess Medical Center and Division of Sleep Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Todd Erryl Anthony
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; Departments of Psychiatry and Neurology, Boston Children's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
16
|
Rondi-Reig L, Paradis AL, Fallahnezhad M. A Liaison Brought to Light: Cerebellum-Hippocampus, Partners for Spatial Cognition. CEREBELLUM (LONDON, ENGLAND) 2022; 21:826-837. [PMID: 35752720 DOI: 10.1007/s12311-022-01422-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/24/2022] [Indexed: 01/18/2023]
Abstract
This review focuses on the functional and anatomical links between the cerebellum and the hippocampus and the role of their interplay in goal-directed navigation and spatial cognition. We will describe the interactions between the cerebellum and the hippocampus at different scales: a macroscopic scale revealing the joint activations of these two structures at the level of neuronal circuits, a mesoscopic scale highlighting the synchronization of neuronal oscillations, and finally a cellular scale where we will describe the activity of hippocampal neuronal assemblies following a targeted manipulation of the cerebellar system. We will take advantage of this framework to summarize the different anatomical pathways that may sustain this multiscale interaction. We will finally consider the possible influence of the cerebellum on pathologies traditionally associated with hippocampal dysfunction.
Collapse
Affiliation(s)
- Laure Rondi-Reig
- Institut de Biologie Paris Seine (IBPS), Cerebellum Navigation and Memory Team (CeZaMe), Sorbonne Université, CNRS, INSERM, Neurosciences Paris Seine (NPS), 75005, Paris, France.
| | - Anne-Lise Paradis
- Institut de Biologie Paris Seine (IBPS), Cerebellum Navigation and Memory Team (CeZaMe), Sorbonne Université, CNRS, INSERM, Neurosciences Paris Seine (NPS), 75005, Paris, France
| | - Mehdi Fallahnezhad
- Institut de Biologie Paris Seine (IBPS), Cerebellum Navigation and Memory Team (CeZaMe), Sorbonne Université, CNRS, INSERM, Neurosciences Paris Seine (NPS), 75005, Paris, France
| |
Collapse
|
17
|
Vertes RP, Linley SB, Rojas AKP. Structural and functional organization of the midline and intralaminar nuclei of the thalamus. Front Behav Neurosci 2022; 16:964644. [PMID: 36082310 PMCID: PMC9445584 DOI: 10.3389/fnbeh.2022.964644] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/07/2022] [Indexed: 12/03/2022] Open
Abstract
The midline and intralaminar nuclei of the thalamus form a major part of the "limbic thalamus;" that is, thalamic structures anatomically and functionally linked with the limbic forebrain. The midline nuclei consist of the paraventricular (PV) and paratenial nuclei, dorsally and the rhomboid and nucleus reuniens (RE), ventrally. The rostral intralaminar nuclei (ILt) consist of the central medial (CM), paracentral (PC) and central lateral (CL) nuclei. We presently concentrate on RE, PV, CM and CL nuclei of the thalamus. The nucleus reuniens receives a diverse array of input from limbic-related sites, and predominantly projects to the hippocampus and to "limbic" cortices. The RE participates in various cognitive functions including spatial working memory, executive functions (attention, behavioral flexibility) and affect/fear behavior. The PV receives significant limbic-related afferents, particularly the hypothalamus, and mainly distributes to "affective" structures of the forebrain including the bed nucleus of stria terminalis, nucleus accumbens and the amygdala. Accordingly, PV serves a critical role in "motivated behaviors" such as arousal, feeding/consummatory behavior and drug addiction. The rostral ILt receives both limbic and sensorimotor-related input and distributes widely over limbic and motor regions of the frontal cortex-and throughout the dorsal striatum. The intralaminar thalamus is critical for maintaining consciousness and directly participates in various sensorimotor functions (visuospatial or reaction time tasks) and cognitive tasks involving striatal-cortical interactions. As discussed herein, while each of the midline and intralaminar nuclei are anatomically and functionally distinct, they collectively serve a vital role in several affective, cognitive and executive behaviors - as major components of a brainstem-diencephalic-thalamocortical circuitry.
Collapse
Affiliation(s)
- Robert P. Vertes
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL, United States
- Department of Psychology, Florida Atlantic University, Boca Raton, FL, United States
| | - Stephanie B. Linley
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL, United States
- Department of Psychology, Florida Atlantic University, Boca Raton, FL, United States
- Department of Psychological Science, University of North Georgia, Dahlonega, GA, United States
| | - Amanda K. P. Rojas
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL, United States
| |
Collapse
|
18
|
Aguggia JP, Cornejo MP, Fernandez G, De Francesco PN, Mani BK, Cassano D, Cabral A, Valdivia S, García Romero G, Reynaldo M, Fehrentz JA, Zigman JM, Perello M. Growth hormone secretagogue receptor signaling in the supramammillary nucleus targets nitric oxide-producing neurons and controls recognition memory in mice. Psychoneuroendocrinology 2022; 139:105716. [PMID: 35290931 DOI: 10.1016/j.psyneuen.2022.105716] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/21/2022] [Accepted: 03/07/2022] [Indexed: 11/27/2022]
Abstract
Ghrelin is a stomach-derived hormone that acts via the growth hormone secretagogue receptor (GHSR). Recent evidence suggests that some of ghrelin's actions may be mediated via the supramammillary nucleus (SuM). Not only does ghrelin bind to cells within the mouse SuM, but ghrelin also activates SuM cells and intra-SuM ghrelin administration induces feeding in rats. In the current study, we aimed to further characterize ghrelin action in the SuM. We first investigated a mouse model expressing enhanced green fluorescent protein (eGFP) under the promoter of GHSR (GHSR-eGFP mice). We found that the SuM of GHSR-eGFP mice contains a significant amount of eGFP cells, some of which express neuronal nitric oxide synthase. Centrally-, but not systemically-, injected ghrelin reached the SuM, where it induced c-Fos expression. Furthermore, a 5-day 40% calorie restriction protocol, but not a 2-day fast, increased c-Fos expression in non-eGFP+ cells of the SuM of GHSR-eGFP mice, whereas c-Fos induction by calorie restriction was not observed in GHSR-deficient mice. Exposure of satiated mice to a binge-like eating protocol also increased c-Fos expression in non-eGFP+ cells of the SuM of GHSR-eGFP mice in a GHSR-dependent manner. Finally, intra-SuM-injected ghrelin did not acutely affect food intake, locomotor activity, behavioral arousal or spatial memory but increased recognition memory. Thus, we provide a compelling neuroanatomical characterization of GHSR SuM neurons and its behavioral implications in mice.
Collapse
Affiliation(s)
- Julieta P Aguggia
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], La Plata, Buenos Aires, Argentina
| | - María P Cornejo
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], La Plata, Buenos Aires, Argentina
| | - Gimena Fernandez
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], La Plata, Buenos Aires, Argentina
| | - Pablo N De Francesco
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], La Plata, Buenos Aires, Argentina
| | - Bharath K Mani
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Daniela Cassano
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], La Plata, Buenos Aires, Argentina
| | - Agustina Cabral
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], La Plata, Buenos Aires, Argentina
| | - Spring Valdivia
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], La Plata, Buenos Aires, Argentina
| | - Guadalupe García Romero
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], La Plata, Buenos Aires, Argentina
| | - Mirta Reynaldo
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], La Plata, Buenos Aires, Argentina
| | - Jean-Alain Fehrentz
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS-Université Montpellier-ENSCM, Faculté de Pharmacie, Montpellier, France
| | - Jeffrey M Zigman
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Mario Perello
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], La Plata, Buenos Aires, Argentina; Department of Surgical Sciences, Functional Pharmacology and Neuroscience, University of Uppsala, Uppsala, Sweden.
| |
Collapse
|
19
|
Hones VI, Mizumori SJY. Response Flexibility: The Role of the Lateral Habenula. Front Behav Neurosci 2022; 16:852235. [PMID: 35444521 PMCID: PMC9014270 DOI: 10.3389/fnbeh.2022.852235] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/01/2022] [Indexed: 01/13/2023] Open
Abstract
The ability to make appropriate decisions that result in an optimal outcome is critical for survival. This process involves assessing the environment as well as integrating prior knowledge about the environment with information about one's current internal state. There are many neural structures that play critical roles in mediating these processes, but it is not yet known how such information coalesces to influence behavioral output. The lateral habenula (LHb) has often been cited as a structure critical for adaptive and flexible responding when environmental contexts and internal state changes. A challenge, however, has been understanding how LHb promotes response flexibility. In this review, we hypothesize that the LHb enables flexible responding following the integration of context memory and internal state information by signaling downstream brainstem structures known to drive hippocampal theta. In this way, animals respond more flexibly in a task situation not because the LHb selects a particular action, but rather because LHb enhances a hippocampal neural state that is often associated with greater attention, arousal, and exploration. In freely navigating animals, these are essential conditions that are needed to discover and implement appropriate alternative choices and behaviors. As a corollary to our hypothesis, we describe short- and intermediate-term functions of the LHb. Finally, we discuss the effects on the behavior of LHb dysfunction in short- and intermediate-timescales, and then suggest that new therapies may act on the LHb to alleviate the behavioral impairments following long-term LHb disruption.
Collapse
Affiliation(s)
- Victoria I. Hones
- Department of Psychology, University of Washington, Seattle, WA, United States
| | - Sheri J. Y. Mizumori
- Department of Psychology, University of Washington, Seattle, WA, United States
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, United States
| |
Collapse
|
20
|
Spool JA, Bergan JF, Remage-Healey L. A neural circuit perspective on brain aromatase. Front Neuroendocrinol 2022; 65:100973. [PMID: 34942232 PMCID: PMC9667830 DOI: 10.1016/j.yfrne.2021.100973] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 12/23/2022]
Abstract
This review explores the role of aromatase in the brain as illuminated by a set of conserved network-level connections identified in several vertebrate taxa. Aromatase-expressing neurons are neurochemically heterogeneous but the brain regions in which they are found are highly-conserved across the vertebrate lineage. During development, aromatase neurons have a prominent role in sexual differentiation of the brain and resultant sex differences in behavior and human brain diseases. Drawing on literature primarily from birds and rodents, we delineate brain regions that express aromatase and that are strongly interconnected, and suggest that, in many species, aromatase expression essentially defines the Social Behavior Network. Moreover, in several cases the inputs to and outputs from this core Social Behavior Network also express aromatase. Recent advances in molecular and genetic tools for neuroscience now enable in-depth and taxonomically diverse studies of the function of aromatase at the neural circuit level.
Collapse
Affiliation(s)
- Jeremy A Spool
- Center for Neuroendocrine Studies, Neuroscience and Behavior Graduate Program, University of Massachusetts, Amherst, MA 01003, United States
| | - Joseph F Bergan
- Center for Neuroendocrine Studies, Neuroscience and Behavior Graduate Program, University of Massachusetts, Amherst, MA 01003, United States
| | - Luke Remage-Healey
- Center for Neuroendocrine Studies, Neuroscience and Behavior Graduate Program, University of Massachusetts, Amherst, MA 01003, United States.
| |
Collapse
|
21
|
Excitatory selective LTP of supramammillary glutamatergic/GABAergic cotransmission potentiates dentate granule cell firing. Proc Natl Acad Sci U S A 2022; 119:e2119636119. [PMID: 35333647 PMCID: PMC9060512 DOI: 10.1073/pnas.2119636119] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
It is now established that many neurons can release multiple transmitters. Recent studies revealed that fast-acting neurotransmitters, glutamate and GABA, are coreleased from the same presynaptic terminals in some adult brain regions. The dentate gyrus (DG) granule cells (GCs) are innervated by the hypothalamic supramammillary nucleus (SuM) afferents that corelease glutamate and GABA. However, how these functionally opposing neurotransmitters contribute to DG information processing remains unclear. We show that glutamatergic, but not GABAergic, cotransmission exhibits long-term potentiation (LTP) at SuM-GC synapses. By the excitatory selective LTP, the excitation/inhibition balance of SuM inputs increases, and GC firing is enhanced. This study provides evidence that glutamatergic/GABAergic cotransmission balance is rapidly changed in an activity-dependent manner, and such plasticity may modulate DG activity. Emerging evidence indicates that the functionally opposing neurotransmitters, glutamate and GABA, are coreleased from the same presynaptic terminals in some adult brain regions. The supramammillary nucleus (SuM) is one region that coreleases glutamate and GABA in the dentate gyrus (DG) through its afferents. Although the SuM-DG pathway has been implicated in various brain functions, little is known about the functional roles of the peculiar features of glutamate/GABA corelease. Here, we show that depolarization of granule cells (GCs) triggers postsynaptic long-term potentiation (LTP) of glutamatergic, but not GABAergic, cotransmission at SuM-GC synapses. Moreover, the burst activity of perforant-path inputs heterosynaptically induces LTP at excitatory SuM-GC synapses. This non-Hebbian LTP requires postsynaptic Ca2+ influx, Ca2+/calmodulin-dependent protein kinase II (CaMKII) activity, and exocytosis of AMPA receptors. Glutamatergic transmission-selective expression of LTP increases the excitatory drive such that SuM inputs become sufficient to discharge GCs. Our results highlight a form of LTP, which dynamically and rapidly changes the glutamatergic/GABAergic cotransmission balance and contributes to DG network activity.
Collapse
|
22
|
Seeking motivation and reward: roles of dopamine, hippocampus and supramammillo-septal pathway. Prog Neurobiol 2022; 212:102252. [PMID: 35227866 PMCID: PMC8961455 DOI: 10.1016/j.pneurobio.2022.102252] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 02/09/2022] [Accepted: 02/23/2022] [Indexed: 01/07/2023]
Abstract
Reinforcement learning and goal-seeking behavior are thought to be mediated by midbrain dopamine neurons. However, little is known about neural substrates of curiosity and exploratory behavior, which occur in the absence of clear goal or reward. This is despite behavioral scientists having long suggested that curiosity and exploratory behaviors are regulated by an innate drive. We refer to such behavior as information-seeking behavior and propose 1) key neural substrates and 2) the concept of environment prediction error as a framework to understand information-seeking processes. The cognitive aspect of information-seeking behavior, including the perception of salience and uncertainty, involves, in part, the pathways from the posterior hypothalamic supramammillary region to the hippocampal formation. The vigor of such behavior is modulated by the following: supramammillary glutamatergic neurons; their projections to medial septal glutamatergic neurons; and the projections of medial septal glutamatergic neurons to ventral tegmental dopaminergic neurons. Phasic responses of dopaminergic neurons are characterized as signaling potentially important stimuli rather than rewards. This paper describes how novel stimuli and uncertainty trigger seeking motivation and how these neural substrates modulate information-seeking behavior.
Collapse
|
23
|
Farrell JS, Lovett-Barron M, Klein PM, Sparks FT, Gschwind T, Ortiz AL, Ahanonu B, Bradbury S, Terada S, Oijala M, Hwaun E, Dudok B, Szabo G, Schnitzer MJ, Deisseroth K, Losonczy A, Soltesz I. Supramammillary regulation of locomotion and hippocampal activity. Science 2021; 374:1492-1496. [PMID: 34914519 PMCID: PMC9154354 DOI: 10.1126/science.abh4272] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Locomotor speed is a basic input used to calculate one’s position, but where this signal comes from is unclear. We identified neurons in the supramammillary nucleus (SuM) of the rodent hypothalamus that were highly correlated with future locomotor speed and reliably drove locomotion when activated. Robust locomotion control was specifically identified in Tac1 (substance P)–expressing (SuMTac1+) neurons, the activation of which selectively controlled the activity of speed-modulated hippocampal neurons. By contrast, Tac1-deficient (SuMTac1−) cells weakly regulated locomotion but potently controlled the spike timing of hippocampal neurons and were sufficient to entrain local network oscillations. These findings emphasize that the SuM not only regulates basic locomotor activity but also selectively shapes hippocampal neural activity in a manner that may support spatial navigation.
Collapse
Affiliation(s)
| | - Matthew Lovett-Barron
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, CA, USA
| | - Peter M. Klein
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Fraser T. Sparks
- Department of Neuroscience, Columbia University, New York, USA
- Kavli Institute for Brain Sciences, Columbia University, New York, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, USA
| | - Tilo Gschwind
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Anna L. Ortiz
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Biafra Ahanonu
- Departments of Biology and Applied Physics, Stanford University, Stanford, CA, USA
- Department of Anatomy, University of California, San Francisco, CA, USA
| | - Susanna Bradbury
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Satoshi Terada
- Department of Neuroscience, Columbia University, New York, USA
- Kavli Institute for Brain Sciences, Columbia University, New York, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, USA
| | - Mikko Oijala
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Ernie Hwaun
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Barna Dudok
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Gergely Szabo
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Mark J. Schnitzer
- Departments of Biology and Applied Physics, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Attila Losonczy
- Department of Neuroscience, Columbia University, New York, USA
- Kavli Institute for Brain Sciences, Columbia University, New York, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, USA
| | - Ivan Soltesz
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| |
Collapse
|
24
|
Smiley JF, Bleiwas C, Canals-Baker S, Williams SZ, Sears R, Teixeira CM, Wilson DA, Saito M. Neonatal ethanol causes profound reduction of cholinergic cell number in the basal forebrain of adult animals. Alcohol 2021; 97:1-11. [PMID: 34464696 DOI: 10.1016/j.alcohol.2021.08.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 05/24/2021] [Accepted: 08/12/2021] [Indexed: 11/26/2022]
Abstract
In animal models that mimic human third-trimester fetal development, ethanol causes substantial cellular apoptosis in the brain, but for most brain structures, the extent of permanent neuron loss that persists into adulthood is unknown. We injected ethanol into C57BL/6J mouse pups at postnatal day 7 (P7) to model human late-gestation ethanol toxicity, and then used stereological methods to investigate adult cell numbers in several subcortical neurotransmitter systems that project extensively in the forebrain to regulate arousal states. Ethanol treatment caused especially large reductions (34-42%) in the cholinergic cells of the basal forebrain, including cholinergic cells in the medial septal/vertical diagonal band nuclei (Ch1/Ch2) and in the horizontal diagonal band/substantia innominata/nucleus basalis nuclei (Ch3/Ch4). Cell loss was also present in non-cholinergic basal forebrain cells, as demonstrated by 34% reduction of parvalbumin-immunolabeled GABA cells and 25% reduction of total Nissl-stained neurons in the Ch1/Ch2 region. In contrast, cholinergic cells in the striatum were reduced only 12% by ethanol, and those of the brainstem pedunculopontine/lateral dorsal tegmental nuclei (Ch5/Ch6) were not significantly reduced. Similarly, ethanol did not significantly reduce dopamine cells of the ventral tegmental area/substantia nigra or serotonin cells in the dorsal raphe nucleus. Orexin (hypocretin) cells in the hypothalamus showed a modest reduction (14%). Our findings indicate that the basal forebrain is especially vulnerable to alcohol exposure in the late gestational period. Reduction of cholinergic and GABAergic projection neurons from the basal forebrain that regulate forebrain arousal may contribute to the behavioral and cognitive deficits associated with neonatal ethanol exposure.
Collapse
|
25
|
The Role of the Posterior Hypothalamus in the Modulation and Production of Rhythmic Theta Oscillations. Neuroscience 2021; 470:100-115. [PMID: 34271089 DOI: 10.1016/j.neuroscience.2021.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/18/2021] [Accepted: 07/05/2021] [Indexed: 11/24/2022]
Abstract
Theta rhythm recorded as an extracellular synchronous field potential is generated in a number of brain sites including the hippocampus. The physiological occurrence of hippocampal theta rhythm is associated with the activation of a number of structures forming the ascending brainstem-hippocampal synchronizing pathway. Experimental evidence indicates that the supramammillary nucleus and posterior hypothalamic nuclei, considered as the posterior hypothalamic area, comprise a critical node of this ascending pathway. The posterior hypothalamic area plays an important role in movement control, place-learning, memory processing, emotion and arousal. In the light of multiplicity of functions of the posterior hypothalamic area and the influence of theta field oscillations on a number of neural processes, it is the authors' intent to summarize the data concerning the involvement of the supramammillary nucleus and posterior hypothalamic nuclei in the modulation of limbic theta rhythmicity as well as the ability of these brain structures to independently generate theta rhythmicity.
Collapse
|
26
|
Staszelis A, Kowalczyk T. The role of the posterior hypothalamic area
in the generation of theta rhythm. POSTEP HIG MED DOSW 2021. [DOI: 10.5604/01.3001.0014.9333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Theta rhythm is one of the best synchronized patterns of the oscillatory activity recorded in
the mammalian brain. In humans, this rhythm is associated with REM sleep, spatial navigation,
memory functions, analytical and language processes. On the other hand, it can be treated as
a non-specific marker of such pathological states of the central nervous system as Alzheimer’s
disease or epilepsy. The hippocampal formation is the key structure involved in the generation
of this bioelectric phenomenon, both in humans and rodents (the most commonly studied laboratory
animals). Theta rhythm appearance in the hippocampus is dependent on the interaction
of multiple different structures of the nervous system. One of them is the posterior hypothalamic
area (PHa), which constitutes a crucial part of the neuronal system modulating the ability
of the hippocampal formation to generate theta rhythm. Although the research results encompassed
in this paper emphasize the essential role of the PHa as a modulator of the hippocampal
theta rhythm, it was the authors’ intent to indicate that this area is also capable of generating
local rhythmical theta oscillations, independently of the influence of other brain structures.
Collapse
Affiliation(s)
- Agata Staszelis
- Katedra Neurobiologii, Wydział Biologii i Ochrony Środowiska, Uniwersytet Łódzki, Łódź
| | - Tomasz Kowalczyk
- Katedra Neurobiologii, Wydział Biologii i Ochrony Środowiska, Uniwersytet Łódzki, Łódź
| |
Collapse
|
27
|
Robert V, Therreau L, Chevaleyre V, Lepicard E, Viollet C, Cognet J, Huang AJ, Boehringer R, Polygalov D, McHugh TJ, Piskorowski RA. Local circuit allowing hypothalamic control of hippocampal area CA2 activity and consequences for CA1. eLife 2021; 10:63352. [PMID: 34003113 PMCID: PMC8154026 DOI: 10.7554/elife.63352] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 05/17/2021] [Indexed: 12/28/2022] Open
Abstract
The hippocampus is critical for memory formation. The hypothalamic supramammillary nucleus (SuM) sends long-range projections to hippocampal area CA2. While the SuM-CA2 connection is critical for social memory, how this input acts on the local circuit is unknown. Using transgenic mice, we found that SuM axon stimulation elicited mixed excitatory and inhibitory responses in area CA2 pyramidal neurons (PNs). Parvalbumin-expressing basket cells were largely responsible for the feedforward inhibitory drive of SuM over area CA2. Inhibition recruited by the SuM input onto CA2 PNs increased the precision of action potential firing both in conditions of low and high cholinergic tone. Furthermore, SuM stimulation in area CA2 modulated CA1 activity, indicating that synchronized CA2 output drives a pulsed inhibition in area CA1. Hence, the network revealed here lays basis for understanding how SuM activity directly acts on the local hippocampal circuit to allow social memory encoding.
Collapse
Affiliation(s)
- Vincent Robert
- INSERM UMR1266, Institute of Psychiatry and Neuroscience of Paris, Team Synaptic Plasticity and Neural Networks, Université de Paris, Paris, France
| | - Ludivine Therreau
- INSERM UMR1266, Institute of Psychiatry and Neuroscience of Paris, Team Synaptic Plasticity and Neural Networks, Université de Paris, Paris, France
| | - Vivien Chevaleyre
- INSERM UMR1266, Institute of Psychiatry and Neuroscience of Paris, Team Synaptic Plasticity and Neural Networks, Université de Paris, Paris, France.,GHU Paris Psychiatrie and Neurosciences, Paris, France
| | - Eude Lepicard
- INSERM UMR1266, Institute of Psychiatry and Neuroscience of Paris, Team Synaptic Plasticity and Neural Networks, Université de Paris, Paris, France
| | - Cécile Viollet
- INSERM UMR1266, Institute of Psychiatry and Neuroscience of Paris, Team Synaptic Plasticity and Neural Networks, Université de Paris, Paris, France
| | - Julie Cognet
- INSERM UMR1266, Institute of Psychiatry and Neuroscience of Paris, Team Synaptic Plasticity and Neural Networks, Université de Paris, Paris, France
| | - Arthur Jy Huang
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Saitama, Japan
| | - Roman Boehringer
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Saitama, Japan
| | - Denis Polygalov
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Saitama, Japan
| | - Thomas J McHugh
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Saitama, Japan
| | - Rebecca Ann Piskorowski
- INSERM UMR1266, Institute of Psychiatry and Neuroscience of Paris, Team Synaptic Plasticity and Neural Networks, Université de Paris, Paris, France.,GHU Paris Psychiatrie and Neurosciences, Paris, France
| |
Collapse
|
28
|
Supramammillary neurons projecting to the septum regulate dopamine and motivation for environmental interaction in mice. Nat Commun 2021; 12:2811. [PMID: 33990558 PMCID: PMC8121914 DOI: 10.1038/s41467-021-23040-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 04/06/2021] [Indexed: 12/29/2022] Open
Abstract
The supramammillary region (SuM) is a posterior hypothalamic structure, known to regulate hippocampal theta oscillations and arousal. However, recent studies reported that the stimulation of SuM neurons with neuroactive chemicals, including substances of abuse, is reinforcing. We conducted experiments to elucidate how SuM neurons mediate such effects. Using optogenetics, we found that the excitation of SuM glutamatergic (GLU) neurons was reinforcing in mice; this effect was relayed by their projections to septal GLU neurons. SuM neurons were active during exploration and approach behavior and diminished activity during sucrose consumption. Consistently, inhibition of SuM neurons disrupted approach responses, but not sucrose consumption. Such functions are similar to those of mesolimbic dopamine neurons. Indeed, the stimulation of SuM-to-septum GLU neurons and septum-to-ventral tegmental area (VTA) GLU neurons activated mesolimbic dopamine neurons. We propose that the supramammillo-septo-VTA pathway regulates arousal that reinforces and energizes behavioral interaction with the environment.
Collapse
|
29
|
Zhang Y, Stoelzel C, Ezrokhi M, Tsai TH, Cincotta AH. Activation State of the Supramammillary Nucleus Regulates Body Composition and Peripheral Fuel Metabolism. Neuroscience 2021; 466:125-147. [PMID: 33991623 DOI: 10.1016/j.neuroscience.2021.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/22/2021] [Accepted: 05/05/2021] [Indexed: 10/21/2022]
Abstract
Whole body fuel metabolism and energy balance are controlled by an interactive brain neuronal circuitry involving multiple brain centers regulating cognition, circadian rhythms, reward, feeding and peripheral biochemical metabolism. The hypothalamic supramammillary nucleus (SuMN) comprises an integral node having connections with these metabolically relevant centers, and thus could be a key central coordination center for regulating peripheral energy balance. This study investigated the effect of chronically diminishing or increasing SuMN neuronal activity on body composition and peripheral fuel metabolism. The influence of neuronal activity level at the SuMN area on peripheral metabolism was investigated via chronic (2-4 week) direct SuMN treatment with agents that inhibit neuronal activity (GABAa receptor agonist [Muscimol] and AMPA plus NMDA glutamate receptor antagonists [CNQX plus dAP5, respectively]) in high fat fed animals refractory to the obesogenic effects of high fat diet. Such treatment reduced SuMN neuronal activity and induced metabolic syndrome, and likewise did so in animals fed low fat diet including inducement of glucose intolerance, insulin resistance, hyperinsulinemia, hyperleptinemia, and increased body weight gain and fat mass coupled with both increased food consumption and feed efficiency. Consistent with these results, circadian-timed activation of neuronal activity at the SuMN area with daily local infusion of glutamate receptor agonists, AMPA or NMDA at the natural daily peak of SuMN neuronal activity improved insulin resistance and obesity in high fat diet-induced insulin resistant animals. These studies are the first of their kind to identify the SuMN area as a novel brain locus that regulates peripheral fuel metabolism.
Collapse
Affiliation(s)
- Yahong Zhang
- VeroScience LLC, Tiverton, RI 02878, United States.
| | | | | | | | | |
Collapse
|
30
|
Billwiller F, Castillo L, Elseedy H, Ivanov AI, Scapula J, Ghestem A, Carponcy J, Libourel PA, Bras H, Abdelmeguid NE, Krook-Magnuson E, Soltesz I, Bernard C, Luppi PH, Esclapez M. GABA-glutamate supramammillary neurons control theta and gamma oscillations in the dentate gyrus during paradoxical (REM) sleep. Brain Struct Funct 2020; 225:2643-2668. [PMID: 32970253 PMCID: PMC7674372 DOI: 10.1007/s00429-020-02146-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 09/08/2020] [Indexed: 12/25/2022]
Abstract
Several studies suggest that neurons from the lateral region of the SuM (SuML) innervating the dorsal dentate gyrus (DG) display a dual GABAergic and glutamatergic transmission and are specifically activated during paradoxical (REM) sleep (PS). The objective of the present study is to characterize the anatomical, neurochemical and electrophysiological properties of the SuML-DG projection neurons and to determine how they control DG oscillations and neuronal activation during PS and other vigilance states. For this purpose, we combine structural connectivity techniques using neurotropic viral vectors (rabies virus, AAV), neurochemical anatomy (immunohistochemistry, in situ hybridization) and imaging (light, electron and confocal microscopy) with in vitro (patch clamp) and in vivo (LFP, EEG) optogenetic and electrophysiological recordings performed in transgenic VGLUT2-cre male mice. At the cellular level, we show that the SuML-DG neurons co-release GABA and glutamate on dentate granule cells and increase the activity of a subset of DG granule cells. At the network level, we show that activation of the SuML-DG pathway increases theta power and frequency during PS as well as gamma power during PS and waking in the DG. At the behavioral level, we show that the activation of this pathway does not change animal behavior during PS, induces awakening during slow wave sleep and increases motor activity during waking. These results suggest that the SuML-DG pathway is capable of supporting the increase of theta and gamma power in the DG observed during PS and plays an important modulatory role of DG network activity during this state.
Collapse
Affiliation(s)
- Francesca Billwiller
- UMR 5292 CNRS/U1028 INSERM, Centre hospitalier le vinatier, Neurocampus, University Lyon I, Bron, France
| | - Laura Castillo
- INSERM, INS, Institut de Neurosciences des Systèmes, Aix-Marseille Univ, Marseille, France
| | - Heba Elseedy
- INSERM, INS, Institut de Neurosciences des Systèmes, Aix-Marseille Univ, Marseille, France
- Zoology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Anton Ivanovich Ivanov
- INSERM, INS, Institut de Neurosciences des Systèmes, Aix-Marseille Univ, Marseille, France
| | - Jennyfer Scapula
- INSERM, INS, Institut de Neurosciences des Systèmes, Aix-Marseille Univ, Marseille, France
| | - Antoine Ghestem
- INSERM, INS, Institut de Neurosciences des Systèmes, Aix-Marseille Univ, Marseille, France
| | - Julien Carponcy
- UMR 5292 CNRS/U1028 INSERM, Centre hospitalier le vinatier, Neurocampus, University Lyon I, Bron, France
| | - Paul Antoine Libourel
- UMR 5292 CNRS/U1028 INSERM, Centre hospitalier le vinatier, Neurocampus, University Lyon I, Bron, France
| | - Hélène Bras
- CNRS, INT, Institut de Neurosciences Timone, Aix-Marseille Univ, Marseille, France
| | | | | | - Ivan Soltesz
- Department of Neurosurgery, Stanford University, Stanford, USA
| | - Christophe Bernard
- INSERM, INS, Institut de Neurosciences des Systèmes, Aix-Marseille Univ, Marseille, France
| | - Pierre-Hervé Luppi
- UMR 5292 CNRS/U1028 INSERM, Centre hospitalier le vinatier, Neurocampus, University Lyon I, Bron, France
| | - Monique Esclapez
- INSERM, INS, Institut de Neurosciences des Systèmes, Aix-Marseille Univ, Marseille, France.
| |
Collapse
|
31
|
Vicente AF, Slézia A, Ghestem A, Bernard C, Quilichini PP. In Vivo Characterization of Neurophysiological Diversity in the Lateral Supramammillary Nucleus during Hippocampal Sharp-wave Ripples of Adult Rats. Neuroscience 2020; 435:95-111. [PMID: 32222556 DOI: 10.1016/j.neuroscience.2020.03.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 02/13/2020] [Accepted: 03/22/2020] [Indexed: 01/12/2023]
Abstract
The extent of the networks that control the genesis and modulation of hippocampal sharp-wave ripples (SPW-Rs), which are involved in memory consolidation, remains incompletely understood. Here, we performed a detailed in vivo analysis of single cell firing in the lateral supramammillary nucleus (lSuM) during theta and slow oscillations, including SPW-Rs, in anesthetized rats. We classified neurons as SPW-R-active and SPW-R-unchanged according to whether or not they increased their firing during SPW-Rs. We show that lSuM SPW-R-active neurons increase their firing prior to SPW-Rs peak power and prior to hippocampal excitatory cell activation. Moreover, lSuM SPW-R-active neurons show increased firing activity during theta and slow oscillations as compared to unchanged neurons. These results suggest that a sub-population of lSuM neurons can interact with the hippocampus during SPW-Rs, raising the possibility that the lSuM may modulate memory consolidation.
Collapse
Affiliation(s)
- Ana F Vicente
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France.
| | - Andrea Slézia
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Antoine Ghestem
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | | | | |
Collapse
|
32
|
Plaisier F, Hume C, Menzies J. Neural connectivity between the hypothalamic supramammillary nucleus and appetite- and motivation-related regions of the rat brain. J Neuroendocrinol 2020; 32:e12829. [PMID: 31925973 PMCID: PMC7065010 DOI: 10.1111/jne.12829] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 12/06/2019] [Accepted: 01/08/2020] [Indexed: 12/20/2022]
Abstract
The supramammillary nucleus (SuM) has an emerging role in appetite control. We have shown that the rat SuM is activated during hunger or food anticipation, or by ghrelin administration. In the present study, we characterised the connectivity between the SuM and key appetite- and motivation-related nuclei in the rat. In adult wild-type rats, or rats expressing Cre recombinase under the control of the tyrosine hydroxylase (TH) promoter (TH-Cre rats), we used c-Fos immunohistochemistry to visualise and correlate the activation of medial SuM (SuMM) with activation in the lateral hypothalamic area (LH), the dorsomedial hypothalamus (DMH) or the ventral tegmental area (VTA) after voluntary consumption of a high-sugar, high-fat food. To determine neuroanatomical connectivity, we used retrograde and anterograde tracing methods to specifically investigate the neuronal inputs and outputs of the SuMM. After consumption of the food there were positive correlations between c-Fos expression in the SuMM and the LH, DMH and VTA (P = 0.0001, 0.01 and 0.004). Using Fluoro-Ruby as a retrograde tracer, we demonstrate the existence of inputs from the LH, DMH, VTA and ventromedial hypothalamus (VMH) to the SuMM. The SuMM showed reciprocal inputs to the LH and DMH, and we identified a TH-positive output from SuMM to DMH. We co-labelled retrogradely-labelled sections for TH in the VMH, or for TH, orexin and melanin-concentrating hormone in the LH and DMH. However, we did not observe any colocalisation of immunoreactivity with any retrogradely-labelled cells. Viral mapping in TH-Cre rats confirms the existence of a reciprocal SuMM-DMH connection and shows that TH-positive cells project from the SuMM and VTA to the lateral septal area and cingulate cortex, respectively. These data provide evidence for the connectivity of the SuMM to brain regions involved in appetite control, and form the foundation for functional and behavioural studies aiming to further characterise the brain circuitry controlling eating behaviours.
Collapse
Affiliation(s)
- Fabrice Plaisier
- Centre for Discovery Brain SciencesEdinburgh Medical School: Biomedical SciencesUniversity of EdinburghEdinburghUK
| | - Catherine Hume
- Centre for Discovery Brain SciencesEdinburgh Medical School: Biomedical SciencesUniversity of EdinburghEdinburghUK
| | - John Menzies
- Centre for Discovery Brain SciencesEdinburgh Medical School: Biomedical SciencesUniversity of EdinburghEdinburghUK
- ZJU‐UoE InstituteZhejiang University School of Medicine, Zhejiang University International CampusHainingZhejiangChina
| |
Collapse
|
33
|
Chauvière L. Update on temporal lobe‐dependent information processing, in health and disease. Eur J Neurosci 2019; 51:2159-2204. [DOI: 10.1111/ejn.14594] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/06/2019] [Accepted: 09/27/2019] [Indexed: 01/29/2023]
Affiliation(s)
- Laëtitia Chauvière
- INSERM U1266 Institut de Psychiatrie et de Neurosciences de Paris (IPNP) Paris France
| |
Collapse
|
34
|
Hashimotodani Y, Karube F, Yanagawa Y, Fujiyama F, Kano M. Supramammillary Nucleus Afferents to the Dentate Gyrus Co-release Glutamate and GABA and Potentiate Granule Cell Output. Cell Rep 2019; 25:2704-2715.e4. [PMID: 30517859 DOI: 10.1016/j.celrep.2018.11.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 08/28/2018] [Accepted: 10/31/2018] [Indexed: 10/27/2022] Open
Abstract
The supramammillary nucleus (SuM) of the hypothalamus projects to the dentate gyrus (DG) and the CA2 region of the hippocampus. Although the SuM-to-hippocampus circuits have been implicated in spatial and emotional memory formation, little is known about precise neural connections between the SuM and hippocampus. Here, we report that axons of SuM neurons make monosynaptic connections to granule cells (GCs) and GABAergic interneurons, but not to hilar mossy cells, in the DG and co-release glutamate and γ-aminobutyric acid (GABA) at these synapses. Although inputs from the SuM can excite some interneurons, the inputs alone fail to generate spikes in GCs. However, despite the insufficient excitatory drive and GABAergic co-transmission, SuM inputs have net excitatory effects on GCs and can potentiate GC firing when temporally associated with perforant path inputs. Our results indicate that the SuM influences DG information processing by modulating GC outputs.
Collapse
Affiliation(s)
- Yuki Hashimotodani
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; Laboratory of Molecular Synaptic Function, Graduate School of Brain Science, Doshisha University, Kyotanabe 610-0394, Japan.
| | - Fuyuki Karube
- Laboratory of Neural Circuitry, Graduate School of Brain Science, Doshisha University, Kyotanabe 610-0394, Japan
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| | - Fumino Fujiyama
- Laboratory of Neural Circuitry, Graduate School of Brain Science, Doshisha University, Kyotanabe 610-0394, Japan
| | - Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo 113-0033, Japan.
| |
Collapse
|
35
|
Dolleman-van der Weel MJ, Griffin AL, Ito HT, Shapiro ML, Witter MP, Vertes RP, Allen TA. The nucleus reuniens of the thalamus sits at the nexus of a hippocampus and medial prefrontal cortex circuit enabling memory and behavior. Learn Mem 2019; 26:191-205. [PMID: 31209114 PMCID: PMC6581009 DOI: 10.1101/lm.048389.118] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/16/2019] [Indexed: 12/12/2022]
Abstract
The nucleus reuniens of the thalamus (RE) is a key component of an extensive network of hippocampal and cortical structures and is a fundamental substrate for cognition. A common misconception is that RE is a simple relay structure. Instead, a better conceptualization is that RE is a critical component of a canonical higher-order cortico-thalamo-cortical circuit that supports communication between the medial prefrontal cortex (mPFC) and the hippocampus (HC). RE dysfunction is implicated in several clinical disorders including, but not limited to Alzheimer's disease, schizophrenia, and epilepsy. Here, we review key anatomical and physiological features of the RE based primarily on studies in rodents. We present a conceptual model of RE circuitry within the mPFC-RE-HC system and speculate on the computations RE enables. We review the rapidly growing literature demonstrating that RE is critical to, and its neurons represent, aspects of behavioral tasks that place demands on memory focusing on its role in navigation, spatial working memory, the temporal organization of memory, and executive functions.
Collapse
Affiliation(s)
- Margriet J Dolleman-van der Weel
- Department of Anatomy and Neurosciences, VU University Medical Center, Amsterdam NL-1007MB, The Netherlands
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam NL-1098XH, The Netherlands
| | - Amy L Griffin
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware 19716, USA
| | - Hiroshi T Ito
- Max Planck Institute for Brain Research, 60438, Frankfurt am Main, Germany
| | - Matthew L Shapiro
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York 12208, USA
| | - Menno P Witter
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, NTNU Norwegian University of Science and Technology, Trondheim NO-7491, Norway
| | - Robert P Vertes
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, Florida 33431, USA
| | - Timothy A Allen
- Cognitive Neuroscience Program, Department of Psychology, Florida International University, Miami, Florida 33199, USA
- Department of Environmental Health Sciences, Florida International University, Miami, Florida 33199, USA
| |
Collapse
|
36
|
Barbier M, Risold PY. The claustrum is a target for projections from the supramammillary nucleus in the rat. Neuroscience 2019; 409:261-275. [PMID: 30930128 DOI: 10.1016/j.neuroscience.2019.03.045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/18/2019] [Accepted: 03/20/2019] [Indexed: 12/23/2022]
Abstract
Injection of the anterograde tracer Phaseolus vulgaris leucoagglutinin (PHAL) into the rat rostral and caudal supramammillary nucleus (SUM) provided expected patterns of projections into the hippocampus and the septal region. In addition, unexpectedly intense projections were observed into the claustrum defined by parvalbumin expression. Injections of the retrograde tracer fluorogold (FG) into the hippocampus and the region of the claustrum showed that the cells of origin of these projections distributed similarly within the borders of the SUM. The SUM is usually involved in control of hippocampal theta activity, but the observation of intense projections into the claustrum indicates that it may also influence isocortical processes. Therefore, the SUM may coordinate sensory processing in the isocortex with memory formation in the hippocampus.
Collapse
Affiliation(s)
- Marie Barbier
- EA481, Neurosciences Intégratives et Cliniques, UFR Santé, 19 rue Ambroise Paré, Université de Bourgogne Franche-Comté, 25030 Besançon cedex, France.
| | - Pierre-Yves Risold
- EA481, Neurosciences Intégratives et Cliniques, UFR Santé, 19 rue Ambroise Paré, Université de Bourgogne Franche-Comté, 25030 Besançon cedex, France
| |
Collapse
|
37
|
Silva C, McNaughton N. Are periaqueductal gray and dorsal raphe the foundation of appetitive and aversive control? A comprehensive review. Prog Neurobiol 2019; 177:33-72. [DOI: 10.1016/j.pneurobio.2019.02.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 01/19/2019] [Accepted: 02/08/2019] [Indexed: 12/28/2022]
|
38
|
Abstract
Barbier and colleagues confirm a projection from the supramammillary nucleus to the claustrum using immunohistochemistry to validate the structural boundaries of the claustrum. This refines earlier conclusions made by Vertes and colleagues and highlights the importance of properly anatomically characterizing the claustrum for future structural and functional studies.
Collapse
Affiliation(s)
- Houman Qadir
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Brian N Mathur
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| |
Collapse
|
39
|
Pilly PK, Howard MD, Bhattacharyya R. Modeling Contextual Modulation of Memory Associations in the Hippocampus. Front Hum Neurosci 2018; 12:442. [PMID: 30473660 PMCID: PMC6237880 DOI: 10.3389/fnhum.2018.00442] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 10/12/2018] [Indexed: 11/13/2022] Open
Abstract
We present a computational model of how memories can be contextually acquired and recalled in the hippocampus. Our adaptive contextual memory model comprises the lateral entorhinal cortex (LEC), the dentate gyrus (DG) and areas CA3 and CA1 in the hippocampus, and assumes external inputs about context that originate in the prefrontal cortex (PFC). Specifically, we propose that there is a top-down bias on the excitability of cells in the DG of the hippocampus that recruits a sub-population of cells to differentiate contexts, independent of experienced stimuli, expanding the "pattern separation" role typically attributed to the DG. It has been demonstrated in rats that if PFC is inactivated, both acquisition and recall of memory associations are impaired. However, PFC inactivation during acquisition of one set of memory associations surprisingly leads to subsequent facilitation of the acquisition of a conflicting set of memory associations in the same context under normal PFC operation. We provide here the first computational and algorithmic account of how the absence or presence of the top-down contextual biases on the excitability of DG cells during different learning phases of these experiments explains these data. Our model simulates PFC inactivation as the loss of inhibitory control on DG, which leads to full or partial activation of DG cells related to conflicting memory associations previously acquired in different contexts. This causes context-inappropriate memory traces to become active in the CA3 recurrent network and thereby the output CA1 area within the hippocampus. We show that these incongruous memory patterns proactively interfere with and slow the acquisition of new memory associations. Further, we demonstrate that pattern completion within CA3 in response to a partial cue for the recall of previously acquired memories is also impaired by PFC inactivation for the same reason. Pre-training the model with interfering memories in contexts different from those used in the experiments, simulating a lifetime of experiences, was crucial to reproduce the rat behavioral data. Finally, we made several testable predictions based on the model that suggest future experiments to deepen our understanding of brain-wide memory processes.
Collapse
Affiliation(s)
- Praveen K Pilly
- Center for Human-Machine Collaboration, Information and Systems Sciences Laboratory, HRL Laboratories Malibu, CA, United States
| | - Michael D Howard
- Center for Human-Machine Collaboration, Information and Systems Sciences Laboratory, HRL Laboratories Malibu, CA, United States
| | - Rajan Bhattacharyya
- Center for Human-Machine Collaboration, Information and Systems Sciences Laboratory, HRL Laboratories Malibu, CA, United States
| |
Collapse
|
40
|
Caban B, Staszelis A, Kazmierska P, Kowalczyk T, Konopacki J. Postnatal Development of the Posterior Hypothalamic Theta Rhythm and Local Cell Discharges in Rat Brain Slices. Dev Neurobiol 2018; 78:1049-1063. [DOI: 10.1002/dneu.22628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 06/25/2018] [Accepted: 06/26/2018] [Indexed: 02/05/2023]
Affiliation(s)
- Bartosz Caban
- Faculty of Biology and Environmental Protection, Department of Neurobiology; University of Lodz; Lodz Poland
| | - Agata Staszelis
- Faculty of Biology and Environmental Protection, Department of Neurobiology; University of Lodz; Lodz Poland
| | - Paulina Kazmierska
- Faculty of Biology and Environmental Protection, Department of Neurobiology; University of Lodz; Lodz Poland
| | - Tomasz Kowalczyk
- Faculty of Biology and Environmental Protection, Department of Neurobiology; University of Lodz; Lodz Poland
| | - Jan Konopacki
- Faculty of Biology and Environmental Protection, Department of Neurobiology; University of Lodz; Lodz Poland
| |
Collapse
|
41
|
Ito HT, Moser EI, Moser MB. Supramammillary Nucleus Modulates Spike-Time Coordination in the Prefrontal-Thalamo-Hippocampal Circuit during Navigation. Neuron 2018; 99:576-587.e5. [DOI: 10.1016/j.neuron.2018.07.021] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 05/30/2018] [Accepted: 07/13/2018] [Indexed: 12/26/2022]
|
42
|
Leung LS, Ma J. Medial septum modulates hippocampal gamma activity and prepulse inhibition in an N-methyl-d-aspartate receptor antagonist model of schizophrenia. Schizophr Res 2018; 198:36-44. [PMID: 28801194 DOI: 10.1016/j.schres.2017.07.053] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 07/25/2017] [Accepted: 07/28/2017] [Indexed: 01/07/2023]
Abstract
We reviewed the participation of the septohippocampal system in an animal model of schizophrenia that was acutely induced by systemic injection of an N-methyl-d-aspartate (NMDA) receptor antagonist such as phencyclidine, MK-801 and ketamine. The NMDA receptor antagonist-induced model of schizophrenia is characterized by behavioral and electrophysiological disruptions, including a decrease in prepulse inhibition of the acoustic startle response (PPI), hyperlocomotion, decrease in gating of hippocampal auditory evoked potentials and robust increase in hippocampal gamma (30-100Hz) oscillations. Similar disruptions were also induced by a single electrographic seizure in the hippocampus. The behavioral and electrophysiological disruptions induced by an NMDA receptor antagonist can be reduced by inactivation or lesion of GABAergic neurons in the medial septum, deep brain stimulation of the medial septum or nucleus accumbens, or positive modulation of GABAB receptors. Our results suggest a close association between high-amplitude hippocampal gamma oscillations and psychosis-relevant behaviors including PPI loss, behavioral hyperactivity and loss in auditory gating. Abnormal electrophysiology suggests a disruption of somatic and apical dendritic inhibition in the hippocampus, resulting in distorted sensory integration, and impaired cognitive and memory processing. The hippocampus is suggested to be a hub in a brain network that participates in psychosis-relevant behaviors, through its direct projection to the nucleus accumbens, or through indirect connections via the entorhinal, cingulate and prefrontal cortices.
Collapse
Affiliation(s)
- L Stan Leung
- Department of Physiology and Pharmacology, The University of Western Ontario, London N6A 5C1, Canada.
| | - Jingyi Ma
- Department of Physiology and Pharmacology, The University of Western Ontario, London N6A 5C1, Canada
| |
Collapse
|
43
|
Korotkova T, Ponomarenko A, Monaghan CK, Poulter SL, Cacucci F, Wills T, Hasselmo ME, Lever C. Reconciling the different faces of hippocampal theta: The role of theta oscillations in cognitive, emotional and innate behaviors. Neurosci Biobehav Rev 2018; 85:65-80. [DOI: 10.1016/j.neubiorev.2017.09.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 08/22/2017] [Accepted: 09/02/2017] [Indexed: 12/30/2022]
|
44
|
Hippocampal area CA2: properties and contribution to hippocampal function. Cell Tissue Res 2018; 373:525-540. [PMID: 29335778 DOI: 10.1007/s00441-017-2769-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 12/07/2017] [Indexed: 12/30/2022]
Abstract
This review focuses on area CA2 of the hippocampus, as recent results have revealed the unique properties and surprising role of this region in encoding social, temporal and contextual aspects of memory. Originally identified and described by Lorente de No, in 1934, this region of the hippocampus has unique intra-and extra-hippocampal connectivity, sending and receiving input to septal and hypothalamic regions. Recent in vivo studies have indicated that CA2 pyramidal neurons encode spatial information during immobility and play an important role in the generation of sharp-wave ripples. Furthermore, CA2 neurons act to control overall excitability in the hippocampal network and have been found to be consistently altered in psychiatric diseases, indicating that normal function of this region is necessary for normal cognition. With its unique role, area CA2 has a unique molecular profile, interneuron density and composition. Furthermore, this region has an unusual manifestation of synaptic plasticity that does not occur post-synaptically at pyramidal neuron dendrities but through the local network of inhibitory neurons. While much progress has recently been made in understanding the large contribution of area CA2 to social memory formation, much still needs to be learned.
Collapse
|
45
|
Shim HS, Park HJ, Lee MS, Ye M, Shim I. The role of the supramammillary area of the hypothalamus in cognitive functions. Anim Cells Syst (Seoul) 2018. [DOI: 10.1080/19768354.2018.1427627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Hyun Soo Shim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Hyun-Jung Park
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Mi-Sook Lee
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Minsook Ye
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Insop Shim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| |
Collapse
|
46
|
Pedersen NP, Ferrari L, Venner A, Wang JL, Abbott SBG, Vujovic N, Arrigoni E, Saper CB, Fuller PM. Supramammillary glutamate neurons are a key node of the arousal system. Nat Commun 2017; 8:1405. [PMID: 29123082 PMCID: PMC5680228 DOI: 10.1038/s41467-017-01004-6] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 08/10/2017] [Indexed: 12/27/2022] Open
Abstract
Basic and clinical observations suggest that the caudal hypothalamus comprises a key node of the ascending arousal system, but the cell types underlying this are not fully understood. Here we report that glutamate-releasing neurons of the supramammillary region (SuMvglut2) produce sustained behavioral and EEG arousal when chemogenetically activated. This effect is nearly abolished following selective genetic disruption of glutamate release from SuMvglut2 neurons. Inhibition of SuMvglut2 neurons decreases and fragments wake, also suppressing theta and gamma frequency EEG activity. SuMvglut2 neurons include a subpopulation containing both glutamate and GABA (SuMvgat/vglut2) and another also expressing nitric oxide synthase (SuMNos1/Vglut2). Activation of SuMvgat/vglut2 neurons produces minimal wake and optogenetic stimulation of SuMvgat/vglut2 terminals elicits monosynaptic release of both glutamate and GABA onto dentate granule cells. Activation of SuMNos1/Vglut2 neurons potently drives wakefulness, whereas inhibition reduces REM sleep theta activity. These results identify SuMvglut2 neurons as a key node of the wake−sleep regulatory system. Supramammillary nucleus (SuM) neurons have been studied in the context of REM sleep but their possible role in mediating wakefulness is not known. Here the authors elucidate the distinct functional contributions of three subpopulations in the SuM on electrographical and behavioral arousal in mice using genetically targeted approaches.
Collapse
Affiliation(s)
- Nigel P Pedersen
- Department of Neurology and Epilepsy Service, Emory University, Atlanta, GA, 30322, USA.
| | - Loris Ferrari
- Department of Neurology, Beth Israel Deaconess Medical Center, Bostan, MA, 02215, USA.,Division of Sleep Medicine, Harvard Medical School, Bostan, MA, 02215, USA
| | - Anne Venner
- Department of Neurology, Beth Israel Deaconess Medical Center, Bostan, MA, 02215, USA.,Division of Sleep Medicine, Harvard Medical School, Bostan, MA, 02215, USA
| | - Joshua L Wang
- Department of Neurology, Beth Israel Deaconess Medical Center, Bostan, MA, 02215, USA
| | - Stephen B G Abbott
- Department of Neurology, Beth Israel Deaconess Medical Center, Bostan, MA, 02215, USA
| | - Nina Vujovic
- Division of Sleep Medicine, Harvard Medical School, Bostan, MA, 02215, USA
| | - Elda Arrigoni
- Department of Neurology, Beth Israel Deaconess Medical Center, Bostan, MA, 02215, USA.,Division of Sleep Medicine, Harvard Medical School, Bostan, MA, 02215, USA
| | - Clifford B Saper
- Department of Neurology, Beth Israel Deaconess Medical Center, Bostan, MA, 02215, USA.,Division of Sleep Medicine, Harvard Medical School, Bostan, MA, 02215, USA
| | - Patrick M Fuller
- Department of Neurology, Beth Israel Deaconess Medical Center, Bostan, MA, 02215, USA. .,Division of Sleep Medicine, Harvard Medical School, Bostan, MA, 02215, USA.
| |
Collapse
|
47
|
Tsanov M. Differential and complementary roles of medial and lateral septum in the orchestration of limbic oscillations and signal integration. Eur J Neurosci 2017; 48:2783-2794. [DOI: 10.1111/ejn.13746] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 10/06/2017] [Accepted: 10/09/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Marian Tsanov
- Trinity College Institute of Neuroscience; Trinity College Dublin; Dublin 2 Ireland
| |
Collapse
|
48
|
Young CK, Ruan M, McNaughton N. A Critical Assessment of Directed Connectivity Estimates with Artificially Imposed Causality in the Supramammillary-Septo-Hippocampal Circuit. Front Syst Neurosci 2017; 11:72. [PMID: 29033799 PMCID: PMC5627232 DOI: 10.3389/fnsys.2017.00072] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 09/19/2017] [Indexed: 11/23/2022] Open
Abstract
Algorithms for estimating directed connectivity have become indispensable to further understand the neurodynamics between functionally coupled brain areas. The evaluation of directed connectivity on the propagation of brain activity has largely been based on simulated data or toy models, where various hidden properties of neurophysiological data may not be fully recapitulated. In this study, directionality was unequivocally manipulated in the freely moving rat in a unique dataset, where normal oscillatory interactions between the supramammillary nucleus (SuM) and hippocampus (HPC) were attenuated by temporary medial septal (MS) inactivation, and replaced by electrical stimulation of the fornix to evaluate the performance of several directed connectivity assessment methods. The directed transfer function, partial directed coherence, directed coherence, pair-wise Geweke-Granger causality, phase slope index, and phase transfer entropy, all found SuM to HPC theta propagation when the MS is inactivated, and HPC activity was driven by peaks of simultaneously recorded SuM theta. As expected from theoretical expectations and simulated data, signal features including coupling strength, signal-to-noise ratio, and stationarity all weakly affected directed connectivity measures. We conclude that all the examined directed connectivity estimates correctly identify artificially imposed uni-directionality of brain oscillations in freely moving animals. Non-auto-regressive modeling based methods appear to be the most robust, and are least affected by inherent features in data such as signal-to-noise ratio and stationarity.
Collapse
Affiliation(s)
- Calvin K Young
- Department of Psychology and Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Ming Ruan
- Department of Psychology and Brain Health Research Centre, University of Otago, Dunedin, New Zealand.,Wuhan Asia Heart Hospital, Wuhan, China
| | - Neil McNaughton
- Department of Psychology and Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| |
Collapse
|
49
|
Ariffin MZ, Low CM, Khanna S. Medial Septum Modulates Cellular Response Induced in Hippocampus on Microinjection of Cholinergic Agonists into Hypothalamic Lateral Supramammillary Nucleus. Front Neuroanat 2017; 11:79. [PMID: 28966579 PMCID: PMC5605574 DOI: 10.3389/fnana.2017.00079] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/31/2017] [Indexed: 11/13/2022] Open
Abstract
Cholinergic mechanisms in supramammillary nucleus (SuM), especially the lateral SuM (lSuM) modulates septo-hippocampal neural activity. The lSuM, as compared to the contiguous medial SuM (mSuM) has relatively dense projections to hippocampus and cingulate cortex (Cg). In the present study, we have investigated whether the effects of cholinergic activation of SuM on hippocampal and cortical neural activities involve a cooperative interaction with the medial septum (MS). Microinjection of the broad-spectrum cholinergic agonist, carbachol, or the cholinergic-nicotinic receptor agonist, nicotine, into the lSuM and the mSuM in urethane anesthetized rat evoked a similar pattern of hippocampal theta rhythm. Despite that, only the lSuM microinjections resulted in an increase in expression of c-Fos-like immunoreactivity (c-Fos-ir) in neurons, including interneurons, of the ipsilateral hippocampus with a very dense expression in dentate gyrus. Likewise, a robust induction of c-Fos-ir was also observed in the ipsilateral Cg. Inhibition of the MS with muscimol pre-treatment attenuated both carbachol-evoked c-Fos-ir and theta activation. The findings indicate that cholinergic–nicotinic mechanisms in lSuM evoke not only neural activation via the ascending synchronizing pathway but also an MS-modulated expression of the plasticity-related molecule c-Fos in cortical regions that are strongly innervated by the lSuM.
Collapse
Affiliation(s)
- Mohammed Z Ariffin
- Department of Physiology, Yong Loo Lin School of Medicine, National University of SingaporeSingapore, Singapore
| | - Chian-Ming Low
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of SingaporeSingapore, Singapore.,Department of Anesthesia, Yong Loo Lin School of Medicine, National University of SingaporeSingapore, Singapore
| | - Sanjay Khanna
- Department of Physiology, Yong Loo Lin School of Medicine, National University of SingaporeSingapore, Singapore.,Neurobiology Program, Life Science Institute, National University of SingaporeSingapore, Singapore
| |
Collapse
|
50
|
Dillingham CM, Jankowski MM, Chandra R, Frost BE, O'Mara SM. The claustrum: Considerations regarding its anatomy, functions and a programme for research. Brain Neurosci Adv 2017; 1:2398212817718962. [PMID: 32166134 PMCID: PMC7058237 DOI: 10.1177/2398212817718962] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/29/2017] [Indexed: 01/20/2023] Open
Abstract
The claustrum is a highly conserved but enigmatic structure, with connections to the entire cortical mantle, as well as to an extended and extensive range of heterogeneous subcortical structures. Indeed, the human claustrum is thought to have the highest number of connections per millimetre cubed of any other brain region. While there have been relatively few functional investigations of the claustrum, many theoretical suggestions have been put forward, including speculation that it plays a key role in the generation of consciousness in the mammalian brain. Other claims have been more circumspect, suggesting that the claustrum has a particular role in, for example, orchestrating cortical activity, spatial information processing or decision making. Here, we selectively review certain key recent anatomical, electrophysiological and behavioural experimental advances in claustral research and present evidence that calls for a reassessment of its anatomical boundaries in the rodent. We conclude with some open questions for future research.
Collapse
Affiliation(s)
| | - Maciej M Jankowski
- Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ruchi Chandra
- Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Bethany E Frost
- Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Shane M O'Mara
- Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|