1
|
Ortín Vela S, Beyeler MJ, Trofimova O, Iuliani I, Vargas Quiros JD, de Vries VA, Meloni I, Elwakil A, Hoogewoud F, Liefers B, Presby D, Ramdas WD, Tomasoni M, Schlingemann R, Klaver CCW, Bergmann S. Phenotypic and genetic characteristics of retinal vascular parameters and their association with diseases. Nat Commun 2024; 15:9593. [PMID: 39505872 DOI: 10.1038/s41467-024-52334-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 09/03/2024] [Indexed: 11/08/2024] Open
Abstract
Fundus images allow for non-invasive assessment of the retinal vasculature whose features provide important information on health. Using a fully automated image processing pipeline, we extract 17 different morphological vascular phenotypes, including median vessels diameter, diameter variability, main temporal angles, vascular density, central retinal equivalents, the number of bifurcations, and tortuosity, from over 130,000 fundus images of close to 72,000 UK Biobank subjects. We perform genome-wide association studies of these phenotypes. From this, we estimate their heritabilities, ranging between 5 and 25%, and genetic cross-phenotype correlations, which mostly mirror the corresponding phenotypic correlations, but tend to be slightly larger. Projecting our genetic association signals onto genes and pathways reveals remarkably low overlap suggesting largely decoupled mechanisms modulating the different phenotypes. We find that diameter variability, especially for the veins, associates with diseases including heart attack, pulmonary embolism, and age of death. Mendelian Randomization analysis suggests a causal influence of blood pressure and body mass index on retinal vessel morphology, among other results. We validate key findings in two independent smaller cohorts. Our analyses provide evidence that large-scale analysis of image-derived vascular phenotypes has sufficient power for obtaining functional and causal insights into the processes modulating the retinal vasculature.
Collapse
Affiliation(s)
- Sofía Ortín Vela
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| | - Michael J Beyeler
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| | - Olga Trofimova
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Ilaria Iuliani
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Jose D Vargas Quiros
- Department of Ophthalmology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Victor A de Vries
- Department of Ophthalmology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Ilenia Meloni
- Department of Ophthalmology, University of Lausanne, Fondation Asile des Aveugles, Jules Gonin Eye Hospital, Lausanne, Switzerland
- Platform for Research in Ocular Imaging, Department of Ophthalmology, University of Lausanne, Fondation Asile des Aveugles, Jules Gonin Eye Hospital, Lausanne, Switzerland
| | - Adham Elwakil
- Department of Ophthalmology, University of Lausanne, Fondation Asile des Aveugles, Jules Gonin Eye Hospital, Lausanne, Switzerland
- Platform for Research in Ocular Imaging, Department of Ophthalmology, University of Lausanne, Fondation Asile des Aveugles, Jules Gonin Eye Hospital, Lausanne, Switzerland
| | - Florence Hoogewoud
- Department of Ophthalmology, University of Lausanne, Fondation Asile des Aveugles, Jules Gonin Eye Hospital, Lausanne, Switzerland
| | - Bart Liefers
- Department of Ophthalmology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - David Presby
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Wishal D Ramdas
- Department of Ophthalmology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Mattia Tomasoni
- Department of Ophthalmology, University of Lausanne, Fondation Asile des Aveugles, Jules Gonin Eye Hospital, Lausanne, Switzerland
- Platform for Research in Ocular Imaging, Department of Ophthalmology, University of Lausanne, Fondation Asile des Aveugles, Jules Gonin Eye Hospital, Lausanne, Switzerland
| | - Reinier Schlingemann
- Department of Ophthalmology, University of Lausanne, Fondation Asile des Aveugles, Jules Gonin Eye Hospital, Lausanne, Switzerland
- Department of Ophthalmology, Amsterdam University Medical Centres, Amsterdam, The Netherlands
| | - Caroline C W Klaver
- Department of Ophthalmology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
- Institute of Molecular and Clinical Ophthalmology, University of Basel, Basel, Switzerland
| | - Sven Bergmann
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
- Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
2
|
Zeng X, Wang H, Wu T, Zhou Z, Zhou J, Fu H. Associations of intestinal diseases with anal diseases: a Mendelian randomization study. Sci Rep 2024; 14:24304. [PMID: 39414900 PMCID: PMC11484769 DOI: 10.1038/s41598-024-75082-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 10/01/2024] [Indexed: 10/18/2024] Open
Abstract
Although observational clinical studies have established an association between Intestinal Diseases (IDS) and Anal Diseases (ADS), the causal relationship is still not fully understood due to the limitations of observational studies. Genome-wide association study (GWAS) statistical data for IDS and ADS were obtained from publicly available databases. To assess the causal effects of IDS on ADS, we conducted Mendelian randomization analysis. The inverse variance weighted method indicated that Inflammatory bowel disease (IBD) had a significant causal relationship with three kinds of ADS: Anorectal abscess (ARB), Haemorrhoidal disease (HEM), and Fissure and fistula of anal and rectal regions (FISSANAL). Crohn's disease (CD) and Ulcerative colitis (UC) also showed significant causal effects with three ADS: ARB, HEM, and FISSANAL. Furthermore, a potential link between CD and BNA(Benign neoplasm of anus and anal canal), Irritable bowel syndrome (IBS) and HEM, Colorectal cancer (CRC) and BNA, and Celiac disease and MNA (Malignant neoplasm of anus and anal canal) was observed. This comprehensive MR analysis highlight the significant and increased risk of common Anal Diseases (ARB, FISSANAL, and HEM) in patients with IBD, CD, and UC. Additionally, potential positive causal associations emerged between IBS and HEM, CRC and BNA, as well as between celiac disease and MNA.
Collapse
Affiliation(s)
- XiaoYu Zeng
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - HanYu Wang
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Ting Wu
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - ZiNing Zhou
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - JianPing Zhou
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Hao Fu
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
3
|
Wu E, Cheng M, Yang S, Yuan W, Gu M, Lu D, Zhang L, Wang Q, Sun X, Shao W. Causal relationships of infection with Helicobacter pylori and herpesvirus on periodontitis: A Mendelian randomization study. Heliyon 2024; 10:e35904. [PMID: 39220896 PMCID: PMC11365429 DOI: 10.1016/j.heliyon.2024.e35904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Background To explore the causal association between Helicobacter pylori (H. pylori) infection, herpesvirus infection and periodontitis (PD) from a genetic perspective using Mendelian randomization (MR). Methods The PD data were derived from genome-wide association study (GWAS) from the Dental Endpoints (GLIDE) consortium, and the FinnGen Biobank provided data on H. pylori and herpesvirus infections. In addition, we examined GWAS data for subtypes of H. pylori and herpesvirus infection. Inverse variance weighting (IVW) was selected as a major analysis technique, and weighted median (WM), weighted model, simple model, and MR-Egger regression were added as supplementary methods. To verify the findings, the effects of pleiotropy and heterogeneity were assessed. Results Genetically predicted H. pylori infection (OR = 0.914, 95%CI = 0.693-1.205, P = 0.523), anti-H. pylori VacA (OR = 0.973, 95%CI = 0.895-1.057, P = 0.515), anti-H. pylori CagA (OR = 1.072, 95%CI = 0.986-1.164; P = 0.102), Epstein-Barr virus (EBV) infection (OR = 1.026, 95%CI = 0.940-1.120, P = 0.567), Herpes simplex virus (HSV) infection (OR = 0.962, 95%CI = 0.883-1.048, P = 0.372), cytomegalovirus (CMV) infection (OR = 1.025, 95%CI = 0.967-1.088, P = 0.415), EBV nuclear antigen-1 (EBNA1) (OR = 1.061, 95%CI = 0.930-1.209, P = 0.378), EBV virus capsid antigen (VCA) (OR = 1.043, 95CI% = 0.890-1.222, P = 0.603), HSV-1 (OR = 1.251, 95%CI = 0.782-2.001, P = 0.351), HSV-2 (OR = 1.020, 95%CI = 0.950-1.096, P = 0.585), CMV IgG (OR = 0.990, 95CI% = 0.882-1.111, P = 0.861) were not associated with PD, indicated that H. pylori and herpesvirus infection had no causal relationship to PD. Reverse studies also found no cause effect of PD on H. pylori or herpesvirus infection. The results of the sensitivity analysis suggested the robustness of the MR results. Conclusion This study offered preliminary proof that H. pylori and herpesvirus infections were not causally linked to PD, and vice versa. However, more robust instrumental variables (IVs) and larger samples of GWAS data were necessary for further MR analysis.
Collapse
Affiliation(s)
- Erli Wu
- Stomatologic Hospital & College, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Ming Cheng
- Stomatologic Hospital & College, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Shouxiang Yang
- Stomatologic Hospital & College, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Wanting Yuan
- Stomatologic Hospital & College, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Mengyun Gu
- Stomatologic Hospital & College, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Dandan Lu
- Stomatologic Hospital & College, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Lei Zhang
- Stomatologic Hospital & College, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China
- Arrail Dental Group, Beijing, 100012, China
| | - Qingqing Wang
- Stomatologic Hospital & College, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China
- Department of Periodontology, Anhui Stomatology Hospital Affiliated to Anhui Medical University, Hefei, 230032, China
| | - Xiaoyu Sun
- Stomatologic Hospital & College, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China
- Department of Periodontology, Anhui Stomatology Hospital Affiliated to Anhui Medical University, Hefei, 230032, China
| | - Wei Shao
- Stomatologic Hospital & College, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
4
|
Zhang C, Yang Z, Li X, Zhao L, Guo W, Deng W, Wang Q, Hu X, Li M, Sham PC, Xiao X, Li T. Unraveling NEK4 as a Potential Drug Target in Schizophrenia and Bipolar I Disorder: A Proteomic and Genomic Approach. Schizophr Bull 2024; 50:1185-1196. [PMID: 38869147 PMCID: PMC11349004 DOI: 10.1093/schbul/sbae094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
BACKGROUND AND HYPOTHESIS Investigating the shared brain protein and genetic components of schizophrenia (SCZ) and bipolar I disorder (BD-I) presents a unique opportunity to understand the underlying pathophysiological processes and pinpoint potential drug targets. STUDY DESIGN To identify overlapping susceptibility brain proteins in SCZ and BD-I, we carried out proteome-wide association studies (PWAS) and Mendelian Randomization (MR) by integrating human brain protein quantitative trait loci with large-scale genome-wide association studies for both disorders. We utilized transcriptome-wide association studies (TWAS) to determine the consistency of mRNA-protein dysregulation in both disorders. We applied pleiotropy-informed conditional false discovery rate (pleioFDR) analysis to identify common risk genetic loci for SCZ and BD-I. Additionally, we performed a cell-type-specific analysis in the human brain to detect risk genes notably enriched in distinct brain cell types. The impact of risk gene overexpression on dendritic arborization and axon length in neurons was also examined. STUDY RESULTS Our PWAS identified 42 proteins associated with SCZ and 14 with BD-I, among which NEK4, HARS2, SUGP1, and DUS2 were common to both conditions. TWAS and MR analysis verified the significant risk gene NEK4 for both SCZ and BD-I. PleioFDR analysis further supported genetic risk loci associated with NEK4 for both conditions. The cell-type specificity analysis revealed that NEK4 is expressed on the surface of glutamatergic neurons, and its overexpression enhances dendritic arborization and axon length in cultured primary neurons. CONCLUSIONS These findings underscore a shared genetic origin for SCZ and BD-I, offering novel insights for potential therapeutic target identification.
Collapse
Affiliation(s)
- Chengcheng Zhang
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Nanhu Brain-Computer Interface Institute, Hangzhou, China
| | - ZhiHui Yang
- Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xiaojing Li
- Department of Neurobiology, Affiliated Mental Health Center and Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Liansheng Zhao
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Wanjun Guo
- Department of Neurobiology, Affiliated Mental Health Center and Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Deng
- Department of Neurobiology, Affiliated Mental Health Center and Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qiang Wang
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Xun Hu
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ming Li
- Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Pak Chung Sham
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Centre for PanorOmic Sciences, The University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Xiao Xiao
- Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Tao Li
- Nanhu Brain-Computer Interface Institute, Hangzhou, China
- Department of Neurobiology, Affiliated Mental Health Center and Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Duan JY, You RX, Zhou Y, Xu F, Lin X, Shan SK, Zheng MH, Lei LM, Li FXZ, Guo B, Wu YY, Chen X, Tang KX, Cao YC, Wu YL, He SY, Xiao R, Yuan LQ. Assessment of causal association between the socio-economic status and osteoporosis and fractures: a bidirectional Mendelian randomization study in European population. J Bone Miner Res 2024; 39:942-955. [PMID: 38624186 DOI: 10.1093/jbmr/zjae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/27/2024] [Accepted: 04/11/2024] [Indexed: 04/17/2024]
Abstract
The correlation between socio-economic status (SES) and bone-related diseases garners increasing attention, prompting a bidirectional Mendelian randomization (MR) analysis in this study. Genetic data on SES indicators (average total household income before tax, years of schooling completed, and Townsend Deprivation Index at recruitment), femoral neck bone mineral density (FN-BMD), heel bone mineral density (eBMD), osteoporosis, and five different sites of fractures (spine, femur, lower leg-ankle, foot, and wrist-hand fractures) were derived from genome-wide association summary statistics of European ancestry. The inverse variance weighted method was employed to obtain the causal estimates, complemented by alternative MR techniques, including MR-Egger, weighted median, and MR-pleiotropy residual sum and outlier (MR-PRESSO). Furthermore, sensitivity analyses and multivariable MR were performed to enhance the robustness of our findings. Higher educational attainment exhibited associations with increased eBMD (β: .06, 95% confidence interval [CI]: 0.01-0.10, P = 7.24 × 10-3), and reduced risks of osteoporosis (OR: 0.78, 95% CI: 0.65-0.94, P = 8.49 × 10-3), spine fracture (OR: 0.76, 95% CI: 0.66-0.88, P = 2.94 × 10-4), femur fracture (OR: 0.78, 95% CI: 0.67-0.91, P = 1.33 × 10-3), lower leg-ankle fracture (OR: 0.79, 95% CI: 0.70-0.88, P = 2.05 × 10-5), foot fracture (OR: 0.78, 95% CI: 0.66-0.93, P = 5.92 × 10-3), and wrist-hand fracture (OR: 0.83, 95% CI: 0.73-0.95, P = 7.15 × 10-3). Material deprivation appeared to increase the risk of spine fracture (OR: 2.63, 95% CI: 1.43-4.85, P = 1.91 × 10-3). A higher FN-BMD level positively affected increased household income (β: .03, 95% CI: 0.01-0.04, P = 6.78 × 10-3). All these estimates were adjusted for body mass index, type 2 diabetes, smoking initiation, and frequency of alcohol intake. The MR analyses show that higher educational levels is associated with higher eBMD, reduced risk of osteoporosis and fractures, while material deprivation is positively related to spine fracture. Enhanced FN-BMD correlates with increased household income. These findings provide valuable insights for health guideline formulation and policy development.
Collapse
Affiliation(s)
- Jia-Yue Duan
- Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Rui-Xuan You
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenetics, Clinical Medical Research Center for Systemic Autoimmune Diseases in Hunan Province, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Yong Zhou
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Feng Xu
- Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Xiao Lin
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Su-Kang Shan
- Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Ming-Hui Zheng
- Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Li-Min Lei
- Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Fu-Xing-Zi Li
- Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Bei Guo
- Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Yun-Yun Wu
- Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Xi Chen
- Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Ke-Xin Tang
- Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Ye-Chi Cao
- Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Yan-Lin Wu
- Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Si-Yang He
- Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Rong Xiao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenetics, Clinical Medical Research Center for Systemic Autoimmune Diseases in Hunan Province, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Ling-Qing Yuan
- Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| |
Collapse
|
6
|
Liang J, Tang L, Yang J, Li Y, Yang X, Hou C. Gastroesophageal reflux disease and risk for arrhythmias: a Mendelian randomization analysis. Front Cardiovasc Med 2024; 11:1411784. [PMID: 39135614 PMCID: PMC11317468 DOI: 10.3389/fcvm.2024.1411784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/02/2024] [Indexed: 08/15/2024] Open
Abstract
Background Clinical observations and epidemiological studies suggest a potential linkage between gastroesophageal reflux disease (GERD) and arrhythmias, yet the underlying mechanism remains elusive. This study investigates the causal relationship between GERD and four types of arrhythmia through a genetic lens, employing Mendelian randomization analysis to elucidate the directionality of these associations. Methods Selected single nucleotide polymorphisms (SNPs) from genome-wide association study (GWAS) data were utilized as instrumental variables. The inverse variance weighting (IVW) method, MR-Egger regression analysis, and the weighted median method were employed in two-sample Mendelian randomization analysis. Horizontal pleiotropy was detected and corrected using the MR-PRESSO test and MR-Egger regression. The stability and reliability of the Mendelian randomization results were assessed using the leave-one-out method, Cochran's Q test, and funnel plots. The causal relationship between GERD and four types of arrhythmias was evaluated using the odds ratio (OR). Results IVW results indicated that GERD could increase the risk of arrhythmias. A one standard deviation increases in the logarithmically transformed GERD score resulted in a 34% increase in the risk of arrhythmia (OR = 1.34; 95% CI 1.19-1.51; p = 1.66E-06). No significant correlation was found between GERD and other arrhythmias. Conclusion A causal relationship exists between GERD and arrhythmias, suggesting that GERD increases the risk of developing these arrhythmias.
Collapse
Affiliation(s)
- JunHao Liang
- Cardiology, Dongguan Hospital of Guangzhou University of Traditional Chinese Medicine, Dongguan, Guangdong, China
| | - LuYi Tang
- Cardiology, Dongguan Hospital of Guangzhou University of Traditional Chinese Medicine, Dongguan, Guangdong, China
| | - JinHui Yang
- Cardiology, Dongguan Hospital of Guangzhou University of Traditional Chinese Medicine, Dongguan, Guangdong, China
| | - Yi Li
- Cardiology, Qidong City People’s Hospital, Nantong, Jiangsu, China
| | - XiQiao Yang
- Cardiology, Dongguan Hospital of Guangzhou University of Traditional Chinese Medicine, Dongguan, Guangdong, China
| | - ChiJun Hou
- Cardiology, Dongguan Hospital of Guangzhou University of Traditional Chinese Medicine, Dongguan, Guangdong, China
| |
Collapse
|
7
|
Wang H, Wang L, Zeng X, Zhang S, Huang Y, Zhang Q. Inflammatory bowel disease and risk for hemorrhoids: a Mendelian randomization analysis. Sci Rep 2024; 14:16677. [PMID: 39030236 PMCID: PMC11271563 DOI: 10.1038/s41598-024-66940-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 07/05/2024] [Indexed: 07/21/2024] Open
Abstract
Observational studies have reported an association between inflammatory bowel disease (IBD), which includes Crohn's disease (CD) and ulcerative colitis (UC), and hemorrhoids (HEM). However, the presence of a causal relationship within this observed association remains to be confirmed. Consequently, we utilized the Mendelian randomization (MR) method to assess the causal effects of IBD on hemorrhoids. We validated the association between IBD and hemorrhoids in humans based on genome-wide association studies (GWAS) data. To investigate the causal relationship between IBD and hemorrhoids, we performed a two-sample Mendelian randomization study using training and validation sets. The genetic variation data for IBD, CD, UC, and hemorrhoids were derived from published genome-wide association studies (GWAS) of individuals of European. Two-sample Mendelian randomization and Multivariable Mendelian randomization (MVMR) were employed to determine the causal relationship between IBD (CD or UC) and hemorrhoids. Genetically predicted overall IBD was positively associated with hemorrhoids risk, with ORs of 1.02 (95% CIs 1.01-1.03, P = 4.39 × 10-4) and 1.02 (95% CIs 1.01-1.03, P = 4.99 × 10-5) in the training and validation sets, respectively. Furthermore, we found that CD was positively associated with hemorrhoids risk, with ORs of 1.02 (95% CIs 1.01-1.03, P = 4.12 × 10-6) and 1.02 (95% CIs 1.01-1.02, P = 3.78 × 10-5) for CD in the training and validation sets, respectively. In addition, we found that UC in the training set was positively associated with hemorrhoids risk (ORs 1.02, 95% CIs 1.01-1.03, P = 4.65 × 10-3), while no significant causal relationship between UC and hemorrhoids was shown in the validation set (P > 0.05). However, after MVMR adjustment, UC in the training set was not associated with an increased risk of hemorrhoids. Our study showed that there is a causal relationship between CD and hemorrhoids, which may suggest that clinicians need to prevent the occurrence of hemorrhoids in CD patients.
Collapse
Affiliation(s)
- HanYu Wang
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Lu Wang
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - XiaoYu Zeng
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - ShiPeng Zhang
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yong Huang
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - QinXiu Zhang
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
8
|
Xu Z, Li L. Identification and validation of potential genes for the diagnosis of sepsis by bioinformatics and 2-sample Mendelian randomization study. Medicine (Baltimore) 2024; 103:e38917. [PMID: 39029061 PMCID: PMC11398799 DOI: 10.1097/md.0000000000038917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/21/2024] Open
Abstract
This integrated study combines bioinformatics, machine learning, and Mendelian randomization (MR) to discover and validate molecular biomarkers for sepsis diagnosis. Methods include differential expression analysis, weighted gene co-expression network analysis (WGCNA) for identifying sepsis-related modules and hub genes, and functional enrichment analyses to explore the roles of hub genes. Machine learning algorithms identify 3 diagnostic genes - CD177, LDHA, and MCEMP1 - consistently highly expressed in sepsis patients. The nomogram model effectively predicts sepsis risk, supported by receiver operator characteristic (ROC) curves. Correlations between diagnostic genes and immune cell infiltration are observed. MR analysis reveals a positive causal relationship between MCEMP1 and sepsis risk. In conclusion, this study presents potential sepsis diagnostic biomarkers, highlighting the genetic association of MCEMP1 with sepsis for insights into early diagnosis.
Collapse
Affiliation(s)
- Zhongbo Xu
- Emergency Department, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | | |
Collapse
|
9
|
Qin Y, Yang X, Ning Z. CAUSAL ROLES OF SERUM URIC ACID LEVELS AND GOUT IN SEPSIS: A MENDELIAN RANDOMIZATION STUDY. Shock 2024; 62:44-50. [PMID: 38517245 DOI: 10.1097/shk.0000000000002365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
ABSTRACT Objective: Several epidemiological studies have identified a potential link between serum uric acid (UA), gout, and sepsis. The primary objective of this study is to delve deeper into this connection, investigating the causal effect of UA and gout on sepsis by applying Mendelian randomization (MR). Methods: The causal relationship was analyzed using data from Genome-Wide Association Study (GWAS). Inverse variance weighting (IVW) was used as the main analysis method. Three complementary methods were used for our MR analysis, which included the MR-Egger regression method, the weighted median method, the simple median method. Horizontal pleiotropy was identified by MR-Egger intercept test. Cochran's Q statistics were employed to assess the existence of instrument heterogeneity. The leave-one-out method was used as a sensitivity analysis. Results: The IVW results indicated that there was a positive causal relationship between UA and sepsis (critical care) (odds ratio [OR] = 0.24, 95% confidence interval [CI]: 0.04 to 0.43, P = 0.018, F = 4,291.20). There was no significant association between UA and sepsis (28-day death in critical care) (OR = 0.10, 95% CI = -0.29 to 0.50, P = 0.604). There was no significant association between gout and sepsis (critical care) (OR = 0.85, 95% CI = -4.87 to 6.57, P = 0.771), and sepsis (28-day death in critical care) (OR = -6.30, 95% CI = -17.41 to 4.81, P = 0.267). Horizontal pleiotropy was absent in this study. The results were robust under all sensitivity analyses. Conclusion: The study revealed that elevated UA levels were causally linked with sepsis (critical care). No causal relationship had been found between UA and sepsis (28-day death in critical care), as well as between gout and sepsis.
Collapse
Affiliation(s)
| | - Xia Yang
- Department of General Practice, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P. R. China
| | - Zong Ning
- Department of General Practice, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P. R. China
| |
Collapse
|
10
|
Zeng X, Wang H, Deng Y, Deng Z, Bi W, Fu H. Causal relationship between obesity and anorectal abscess: a Mendelian randomization study. Front Med (Lausanne) 2024; 11:1437849. [PMID: 38975051 PMCID: PMC11225408 DOI: 10.3389/fmed.2024.1437849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 06/13/2024] [Indexed: 07/09/2024] Open
Abstract
Background Observational studies have indicated that obesity is a risk factor for anorectal abscess (ARB). However, it remains unclear whether a causal genetic relationship exists between obesity and ARB. Methods Univariate and multivariate Mendelian randomization (MR) were conducted using data from a large, published genome-wide association study (GWAS) of European ancestry to infer a causal relationship between obesity and ARB. Inverse variance weighted (IVW) analysis served as the primary analysis method, with results reported as odds ratios (OR). Results MR analysis revealed that body mass index (BMI) positively affects ARB (OR 1.974, 95% confidence interval (CI) 1.548-2.519, p = 4.34 × 10-8). The weighted median method (OR = 1.879, 95% CI 1.248-2.829, p = 0.002) and Bayesian model averaging (BMA) (OR = 1.88, 95% CI 1.477-2.392, p = 2.85 × 10-7) also demonstrated consistent results. Subsequently, the impact of several obesity-related characteristics on ARB was assessed. Body fat percentage (BF), whole body fat mass (FM), waist circumference (WC), and hip circumference (HC) were found to be causally associated with an increased risk of ARB. However, these associations vanished after adjusting for BMI effects. Conclusion The study confirms a positive causal effect of obesity on ARB, highlighting that reasonable weight control is an important strategy to reduce the incidence of ARB.
Collapse
Affiliation(s)
- XiaoYu Zeng
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - HanYu Wang
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yang Deng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - ZhiYu Deng
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Bi
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hao Fu
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
11
|
Sha H, Zhu W. Employing Bidirectional Two-Sample Mendelian Randomization Analysis to Verify the Potential of Polyunsaturated Fatty Acid Levels in the Prevention of Pancreatic Cancer. Curr Issues Mol Biol 2024; 46:6041-6051. [PMID: 38921031 PMCID: PMC11202278 DOI: 10.3390/cimb46060360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
Polyunsaturated fatty acids (PUFAs), specifically Omega-3 (FAω3) and docosahexaenoic acid (DHA), have been studied for their potential role in modulating pancreatic cancer (PC) risk. Although observational studies suggest a beneficial effect in reducing this risk, their findings are often limited by confounding variables and issues of reverse causation. This study used a two-way two-sample Mendelian randomization (MR) method to test the hypothesized genetic causal relationship between PUFAs and PC risk. Data from an extensive genome-wide association study (GWAS) were analyzed, focusing on FAω3 and FAω6 levels, their ratios, and DHA as variables and PC incidence as outcomes. This relationship was comprehensively evaluated using related MR methods, such as inverse variance weighting (IVW), MR Egger, and weighted median (WM). This study finds a significant negative correlation between FAω3 and DHA levels and PC risk, while FAω6 levels show no significant correlation. Interestingly, the ratio of FAω6 to FAω3 was positively associated with increased risk of PC. Neither the MR Egger nor the MR-PRESSO tests detected significant pleiotropy, nor did the Cochrane's Q test show significant heterogeneity. Leave-one-out analyzes further confirmed the robustness of these results. Using MR analysis of two samples, this study provides genetic causal evidence that FAω3 and DHA levels reduce the risk of PC, whereas the ratio of FAω6 to FAω3 increases the risk of PC. These insights highlight the potential utility of supplementing FAω3 and DHA or altering PUFAs in developing PC prevention strategies.
Collapse
Affiliation(s)
| | - Weifeng Zhu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nangchang 330006, China;
| |
Collapse
|
12
|
Jing Q, Liu X, Lv Z, Xue D. IL27 and IL1RN are causally associated with acute pancreatitis: a Mendelian randomization study. Aging (Albany NY) 2024; 16:8572-8584. [PMID: 38742942 PMCID: PMC11164491 DOI: 10.18632/aging.205825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/16/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND The interleukin (IL) plays a role in the development of acute pancreatitis (AP). However, the specific IL in AP has not been fully revealed. Therefore, the association between prospective IL and AP was studied via Mendelian randomization (MR). METHODS The HUGO Gene nomenclature committee (HGNC) database provided 47 interleukin related genes (ILRGs). ILRGs and differentially expressed genes (DEGs) from GSE194331 were overlapped to create differently expressed ILRGs (DE-ILRGs). The integrative epidemiology unit (IEU) open genome-wide association study (GWAS) database provided exposure and outcome datasets. Univariate MR (UVMR) analysis using MR-Egger, IVW, simple mode, and weighted mode was done. UVMR results were verified using sensitivity analysis. Drug prediction, MVMR analysis, and PPI network development were also performed. RESULTS Six DE-ILRGs were obtained. IL27 and IL1RN were substantially causally linked with AP by UVMR analysis (OR = 0.926, P < 0.001 and OR = 1.031, P = 0.023). Our sensitivity analysis showed the dependability of our results. Direct effect of IL27 was suggested by MVMR analysis. In the cytokine receptor binding pathway, IL27 and IL1RN interacted with IL36G and IL1R2. TAE-684, ARQ-680, and 12 other IL1RN and 14 IL27 medications were predicted. CONCLUSIONS IL1RN was identified as a risk factor for acute pancreatitis (AP), but IL27 was found to be a protective factor for AP.
Collapse
Affiliation(s)
- Qingxu Jing
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical, University, Harbin 150001, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Xuxu Liu
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical, University, Harbin 150001, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Zhenyi Lv
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical, University, Harbin 150001, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Dongbo Xue
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical, University, Harbin 150001, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| |
Collapse
|
13
|
Jennings MV, Martínez-Magaña JJ, Courchesne-Krak NS, Cupertino RB, Vilar-Ribó L, Bianchi SB, Hatoum AS, Atkinson EG, Giusti-Rodriguez P, Montalvo-Ortiz JL, Gelernter J, Artigas MS, Elson SL, Edenberg HJ, Fontanillas P, Palmer AA, Sanchez-Roige S. A phenome-wide association and Mendelian randomisation study of alcohol use variants in a diverse cohort comprising over 3 million individuals. EBioMedicine 2024; 103:105086. [PMID: 38580523 PMCID: PMC11121167 DOI: 10.1016/j.ebiom.2024.105086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/01/2024] [Accepted: 03/11/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND Alcohol consumption is associated with numerous negative social and health outcomes. These associations may be direct consequences of drinking, or they may reflect common genetic factors that influence both alcohol consumption and other outcomes. METHODS We performed exploratory phenome-wide association studies (PheWAS) of three of the best studied protective single nucleotide polymorphisms (SNPs) in genes encoding ethanol metabolising enzymes (ADH1B: rs1229984-T, rs2066702-A; ADH1C: rs698-T) using up to 1109 health outcomes across 28 phenotypic categories (e.g., substance-use, mental health, sleep, immune, cardiovascular, metabolic) from a diverse 23andMe cohort, including European (N ≤ 2,619,939), Latin American (N ≤ 446,646) and African American (N ≤ 146,776) populations to uncover new and perhaps unexpected associations. These SNPs have been consistently implicated by both candidate gene studies and genome-wide association studies of alcohol-related behaviours but have not been investigated in detail for other relevant phenotypes in a hypothesis-free approach in such a large cohort of multiple ancestries. To provide insight into potential causal effects of alcohol consumption on the outcomes significant in the PheWAS, we performed univariable two-sample and one-sample Mendelian randomisation (MR) analyses. FINDINGS The minor allele rs1229984-T, which is protective against alcohol behaviours, showed the highest number of PheWAS associations across the three cohorts (N = 232, European; N = 29, Latin American; N = 7, African American). rs1229984-T influenced multiple domains of health. We replicated associations with alcohol-related behaviours, mental and sleep conditions, and cardio-metabolic health. We also found associations with understudied traits related to neurological (migraines, epilepsy), immune (allergies), musculoskeletal (fibromyalgia), and reproductive health (preeclampsia). MR analyses identified evidence of causal effects of alcohol consumption on liability for 35 of these outcomes in the European cohort. INTERPRETATION Our work demonstrates that polymorphisms in genes encoding alcohol metabolising enzymes affect multiple domains of health beyond alcohol-related behaviours. Understanding the underlying mechanisms of these effects could have implications for treatments and preventative medicine. FUNDING MVJ, NCK, SBB, SSR and AAP were supported by T32IR5226 and 28IR-0070. SSR was also supported by NIDA DP1DA054394. NCK and RBC were also supported by R25MH081482. ASH was supported by funds from NIAAA K01AA030083. JLMO was supported by VA 1IK2CX002095. JLMO and JJMM were also supported by NIDA R21DA050160. JJMM was also supported by the Kavli Postdoctoral Award for Academic Diversity. EGA was supported by K01MH121659 from the NIMH/NIH, the Caroline Wiess Law Fund for Research in Molecular Medicine and the ARCO Foundation Young Teacher-Investigator Fund at Baylor College of Medicine. MSA was supported by the Instituto de Salud Carlos III and co-funded by the European Union Found: Fondo Social Europeo Plus (FSE+) (P19/01224, PI22/00464 and CP22/00128).
Collapse
Affiliation(s)
- Mariela V Jennings
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - José Jaime Martínez-Magaña
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, Orange, West Haven, CT, USA
| | | | - Renata B Cupertino
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Laura Vilar-Ribó
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain; Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
| | - Sevim B Bianchi
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Alexander S Hatoum
- Department of Psychology & Brain Sciences, Washington University in St. Louis, St Louis, MO, USA
| | - Elizabeth G Atkinson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Paola Giusti-Rodriguez
- Department of Psychiatry, University of Florida College of Medicine, Gainesville, FL, USA
| | - Janitza L Montalvo-Ortiz
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, Orange, West Haven, CT, USA; National Center of Posttraumatic Stress Disorder, VA CT Healthcare Center, West Haven, CT, USA
| | - Joel Gelernter
- VA CT Healthcare Center, Department Psychiatry, West Haven, CT, USA; Departments Psychiatry, Genetics, and Neuroscience, Yale Univ. School of Medicine, New Haven, CT, USA
| | - María Soler Artigas
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain; Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain; Department of Genetics, Microbiology, and Statistics, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | | | - Howard J Edenberg
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Sandra Sanchez-Roige
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA; Division of Genetic Medicine, Department of Medicine, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
14
|
Gallego-Fabrega C, Temprano-Sagrera G, Cárcel-Márquez J, Muiño E, Cullell N, Lledós M, Llucià-Carol L, Martin-Campos JM, Sobrino T, Castillo J, Millán M, Muñoz-Narbona L, López-Cancio E, Ribó M, Alvarez-Sabin J, Jiménez-Conde J, Roquer J, Tur S, Obach V, Arenillas JF, Segura T, Serrano-Heras G, Marti-Fabregas J, Freijo-Guerrero M, Moniche F, Castellanos MDM, Morrison AC, Smith NL, de Vries PS, Fernández-Cadenas I, Sabater-Lleal M. A multitrait genetic study of hemostatic factors and hemorrhagic transformation after stroke treatment. J Thromb Haemost 2024; 22:936-950. [PMID: 38103737 PMCID: PMC11103592 DOI: 10.1016/j.jtha.2023.11.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/08/2023] [Accepted: 11/27/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND Thrombolytic recombinant tissue plasminogen activator (r-tPA) treatment is the only pharmacologic intervention available in the ischemic stroke acute phase. This treatment is associated with an increased risk of intracerebral hemorrhages, known as hemorrhagic transformations (HTs), which worsen the patient's prognosis. OBJECTIVES To investigate the association between genetically determined natural hemostatic factors' levels and increased risk of HT after r-tPA treatment. METHODS Using data from genome-wide association studies on the risk of HT after r-tPA treatment and data on 7 hemostatic factors (factor [F]VII, FVIII, von Willebrand factor [VWF], FXI, fibrinogen, plasminogen activator inhibitor-1, and tissue plasminogen activator), we performed local and global genetic correlation estimation multitrait analyses and colocalization and 2-sample Mendelian randomization analyses between hemostatic factors and HT. RESULTS Local correlations identified a genomic region on chromosome 16 with shared covariance: fibrinogen-HT, P = 2.45 × 10-11. Multitrait analysis between fibrinogen-HT revealed 3 loci that simultaneously regulate circulating levels of fibrinogen and risk of HT: rs56026866 (PLXND1), P = 8.80 × 10-10; rs1421067 (CHD9), P = 1.81 × 10-14; and rs34780449, near ROBO1 gene, P = 1.64 × 10-8. Multitrait analysis between VWF-HT showed a novel common association regulating VWF and risk of HT after r-tPA at rs10942300 (ZNF366), P = 1.81 × 10-14. Mendelian randomization analysis did not find significant causal associations, although a nominal association was observed for FXI-HT (inverse-variance weighted estimate [SE], 0.07 [-0.29 to 0.00]; odds ratio, 0.87; 95% CI, 0.75-1.00; raw P = .05). CONCLUSION We identified 4 shared loci between hemostatic factors and HT after r-tPA treatment, suggesting common regulatory mechanisms between fibrinogen and VWF levels and HT. Further research to determine a possible mediating effect of fibrinogen on HT risk is needed.
Collapse
Affiliation(s)
- Cristina Gallego-Fabrega
- Stroke Pharmacogenomics and Genetics Group, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain. https://twitter.com/FabregaGallego
| | - Gerard Temprano-Sagrera
- Genomics of Complex Disease Group, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
| | - Jara Cárcel-Márquez
- Stroke Pharmacogenomics and Genetics Group, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
| | - Elena Muiño
- Stroke Pharmacogenomics and Genetics Group, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
| | - Natalia Cullell
- Stroke Pharmacogenomics and Genetics Group, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain; Neurology Unit, Hospital Universitari MútuaTerrassa, Terrassa, Spain
| | - Miquel Lledós
- Stroke Pharmacogenomics and Genetics Group, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
| | - Laia Llucià-Carol
- Stroke Pharmacogenomics and Genetics Group, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
| | - Jesús M Martin-Campos
- Stroke Pharmacogenomics and Genetics Group, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
| | - Tomás Sobrino
- Clinical Neurosciences Research Laboratories, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - José Castillo
- Department of Neurology, Hospital Clínico Universitario de Santiago (CHUS), Santiago de Compostela, Spain
| | - Mònica Millán
- Department of Neuroscience, Hospital Universitario Hermanos Trias y Pujol (HUGTP), Badalona, Spain
| | - Lucía Muñoz-Narbona
- Department of Neuroscience, Hospital Universitario Hermanos Trias y Pujol (HUGTP), Badalona, Spain
| | - Elena López-Cancio
- Stroke Unit, Neurology Department, Hospital Universitario Central de Asturias (HUCA), Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Marc Ribó
- Stroke Unit, Hospital Universitario Valle de Hebrón (HUVH), Barcelona, Spain
| | - Jose Alvarez-Sabin
- Department of Neurology, Hospital Universitario Valle de Hebrón (HUVH), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Jordi Jiménez-Conde
- Department of Neurology, Neurovascular Research Group, Instituto de investigaciones médicas Hospital del Mar (IMIM) Hospital del Mar, Barcelona, Spain
| | - Jaume Roquer
- Department of Neurology, Neurovascular Research Group, Instituto de investigaciones médicas Hospital del Mar (IMIM) Hospital del Mar, Barcelona, Spain
| | - Silvia Tur
- Department of Neurology, Hospital Universitario Son Espases (HUSE), Mallorca, Spain
| | - Victor Obach
- Department of Neurology, Hospital Clínic i Provincial de Barcelona, Barcelona, Spain
| | - Juan F Arenillas
- Department of Neurology, Hospital Clínico Universitario, University of Valladolid, Valladolid, Spain
| | - Tomas Segura
- Department of Neurology, Complejo Hospitalario Universitario de Albacete (CHUA), Universidad de Castilla-La Mancha (UCLM), Albacete, Spain
| | - Gemma Serrano-Heras
- Research Unit, Complejo Hospital Universitario de Albacete (CHUA), Albacete, Spain
| | - Joan Marti-Fabregas
- Department of Neurology, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain
| | | | - Francisco Moniche
- Department of Neurology, Hospital Universitario Virgen del Rocio, Instituto de Biomedicina de Sevilla (IBIS), Seville, Spain
| | - Maria Del Mar Castellanos
- Department of Neurology, Hospital Universitario de A Coruña (CHUAC), Biomedical Research Institute, A Coruña, Spain
| | - Alanna C Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, the University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Nicholas L Smith
- Department of Epidemiology, University of Washington, Seattle, Washington, USA; Kaiser Permanente Washington Health Research Institute, Kaiser Permanente Washington, Seattle, Washington, USA; Department of Veterans Affairs Office of Research and Development, Seattle Epidemiologic Research and Information Center, Seattle, Washington, USA
| | - Paul S de Vries
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, the University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Israel Fernández-Cadenas
- Stroke Pharmacogenomics and Genetics Group, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain.
| | - Maria Sabater-Lleal
- Genomics of Complex Disease Group, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain; Cardiovascular Medicine Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
15
|
Li Q, Wei Z, Zhang Y, Zheng C. Causal role of metabolites in non-small cell lung cancer: Mendelian randomization (MR) study. PLoS One 2024; 19:e0300904. [PMID: 38517880 PMCID: PMC10959361 DOI: 10.1371/journal.pone.0300904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/06/2024] [Indexed: 03/24/2024] Open
Abstract
On a global scale, lung cancer(LC) is the most commonly occurring form of cancer. Nonetheless, the process of screening and detecting it in its early stages presents significant challenges. Earlier research endeavors have recognized metabolites as potentially reliable biomarkers for LC. However, the majority of these studies have been limited in scope, featuring inconsistencies in terms of the relationships and levels of association observed.Moreover, there has been a lack of consistency in the types of biological samples utilized in previous studies. Therefore, the main objective of our research was to explore the correlation between metabolites and Non-small cell lung cancer (NSCLC).Thorough two-sample Mendelian randomization (TSMR) analysis, we investigated potential cause-and-effect relationships between 1400 metabolites and the risk of NSCLC.The analysis of TSMR revealed a significant causal impact of 61 metabolites on NSCLC.To ensure the reliability and validity of our findings, we perform FDR correction for P-values by Benjaminiand Hochberg(BH) method, Our results indicate that Oleate/vaccenate (18:1) levels and Caffeine to paraxanthine ratio may be causally associated with an increased risk of NSCLC [Oleate/vaccenate(18:1)levels: OR = 1.171,95%CI: 1.085-1.265, FDR = 0.036; Caffeine to paraxanthine ratio: OR = 1.386, 95%CI:1.191-1.612,FDR = 0.032].
Collapse
Affiliation(s)
- Qian Li
- Department of Cardiac Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, 650000, China
| | - Zedong Wei
- Department of Thoracic Surgery, Qianjiang Central Hospital, Qianjiang, 433100, China
| | - Yonglun Zhang
- Department of Thoracic Surgery, Qianjiang Central Hospital, Qianjiang, 433100, China
| | - Chongqing Zheng
- Department of Thoracic Surgery, Qianjiang Central Hospital, Qianjiang, 433100, China
| |
Collapse
|
16
|
Wei C, Wang X, Zeng J, Zhang G. Body mass index and risk of inflammatory breast disease: a Mendelian randomization study. NUTR HOSP 2024; 41:96-111. [PMID: 37522462 DOI: 10.20960/nh.04746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023] Open
Abstract
Introduction Introduction: in previous studies, obesity was identified as a risk factor for inflammatory breast disease, but its causality is uncertain. In the present study, we performed a two-sample Mendelian randomization (TSMR) analysis to investigate the causal relationship between obesity and inflammatory breast disease. Methods: we use body mass index (BMI) as a measure of obesity. Data for single nucleotide polymorphisms (SNPs) associated with BMI were obtained from UK Biobank. Data for single nucleotide polymorphisms (SNPs) associated with mastitis were obtained from FinnGen Biobank. We used several MR analysis methods, such as inverse-variance weighting (IVW), MR-Egger, weighted median, simple mode and weighted mode to make our results more convincing. We also performed MR-PRESSO test, MR-Egger test, heterogeneity test, pleiotropy test and leave-one-out analysis to make our analysis results more robust and credible. We used odds ratio (OR) to evaluate the causal relationship between BMI and mastitis. Results: based on the IVW random effects model, we found that a one-standard deviation (SD) increase in BMI increased the risk of mastitis by 62.1 % (OR = 1.621, 95 % CI: 1.262-2.083, p = 1.59E-4), which is almost consistent with the results of several other methods. Conclusions: in European individuals, an increase in the number of BMI increases the risk of inflammatory breast disease. People with high BMI need to control their weight to reduce the incidence of inflammatory breast disease.
Collapse
Affiliation(s)
- Changlong Wei
- The First Affiliated Hospital of Nanchang University
| | - Xiaofang Wang
- The First Affiliated Hospital of Nanchang University
| | - Jinsheng Zeng
- The First Affiliated Hospital of Nanchang University
| | - Gongyin Zhang
- The First Affiliated Hospital of Nanchang University
| |
Collapse
|
17
|
Cheng Z, Gao L, Huang P, Luo D, Bi C, Chen X. Genetic causal association between rheumatoid arthritis and periodontitis: a bidirectional two-sample Mendelian randomization analysis. Clin Oral Investig 2024; 28:107. [PMID: 38244137 DOI: 10.1007/s00784-024-05512-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 01/16/2024] [Indexed: 01/22/2024]
Abstract
BACKGROUND A link between rheumatoid arthritis (RA) and periodontitis (PD) has been established. However, their causal relationship remains unclear and the effect of different serotypes of RA on the PD development has not been investigated. This study aims to elucidate the causal association between PD and different serotypes of RA using Mendelian randomization (MR). METHODS A bidirectional two-sample MR analysis was performed using available large-scale genome-wide association studies statistics. The inverse-variance weighted (IVW) or multiplicative random-effects IVW was used to determine causality, depending on the heterogeneity of instrumental variables. Additional sensitivity analyses were also performed. RESULTS The forward MR analysis identified that seropositive RA (odds ratio (OR), 1.26; 95% confidence interval (CI), 1.07-1.44; p = 0.0018), but not seronegative RA (OR, 1.01; 95% CI, 0.95-1.06; p = 0.9098), was associated with an increased risk of PD. The reverse MR analysis did not show any significant causal effect of PD on RA, independent of the serotypes. The sensitivity tests (p > 0.05) confirmed the robustness and accuracy of these findings. CONCLUSION This study revealed that there was a genetic causal effect of seropositive RA on PD, suggesting that this subtype of RA patients may require specific clinical attention to prevent the development of PD.
Collapse
Affiliation(s)
- Zijian Cheng
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Zhejiang, Hangzhou, China
| | - Lu Gao
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Zhejiang, Hangzhou, China
| | - Peng Huang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Zhejiang, Hangzhou, China
| | - Dingwen Luo
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Zhejiang, Hangzhou, China
| | - Chunsheng Bi
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Zhejiang, Hangzhou, China
| | - Xiaoyan Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Zhejiang, Hangzhou, China.
| |
Collapse
|
18
|
Zhang L, Wang F, Xia K, Yu Z, Fu Y, Huang T, Fan D. Unlocking the Medicinal Mysteries: Preventing Lacunar Stroke with Drug Repurposing. Biomedicines 2023; 12:17. [PMID: 38275377 PMCID: PMC10813761 DOI: 10.3390/biomedicines12010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/10/2023] [Accepted: 12/11/2023] [Indexed: 01/27/2024] Open
Abstract
Currently, only the general control of the risk factors is known to prevent lacunar cerebral infarction, but it is unknown which type of medication for controlling the risk factors has a causal relationship with reducing the risk of lacunar infarction. To unlock this medical mystery, drug-target Mendelian randomization analysis was applied to estimate the effect of common antihypertensive agents, hypolipidemic agents, and hypoglycemic agents on lacunar stroke. Lacunar stroke data for the transethnic analysis were derived from meta-analyses comprising 7338 cases and 254,798 controls. We have confirmed that genetic variants mimicking calcium channel blockers were found to most stably prevent lacunar stroke. The genetic variants at or near HMGCR, NPC1L1, and APOC3 were predicted to decrease lacunar stroke incidence in drug-target MR analysis. These variants mimic the effects of statins, ezetimibe, and antisense anti-apoC3 agents, respectively. Genetically proxied GLP1R agonism had a marginal effect on lacunar stroke, while a genetically proxied improvement in overall glycemic control was associated with reduced lacunar stroke risk. Here, we show that certain categories of drugs currently used in clinical practice can more effectively reduce the risk of stroke. Repurposing several drugs with well-established safety and low costs for lacunar stroke prevention should be given high priority when doctors are making decisions in clinical practice. This may contribute to healthier brain aging.
Collapse
Affiliation(s)
- Linjing Zhang
- Department of Neurology, Peking University Third Hospital, Beijing 100191, China; (L.Z.); (F.W.); (K.X.); (Z.Y.); (Y.F.)
| | - Fan Wang
- Department of Neurology, Peking University Third Hospital, Beijing 100191, China; (L.Z.); (F.W.); (K.X.); (Z.Y.); (Y.F.)
| | - Kailin Xia
- Department of Neurology, Peking University Third Hospital, Beijing 100191, China; (L.Z.); (F.W.); (K.X.); (Z.Y.); (Y.F.)
| | - Zhou Yu
- Department of Neurology, Peking University Third Hospital, Beijing 100191, China; (L.Z.); (F.W.); (K.X.); (Z.Y.); (Y.F.)
| | - Yu Fu
- Department of Neurology, Peking University Third Hospital, Beijing 100191, China; (L.Z.); (F.W.); (K.X.); (Z.Y.); (Y.F.)
| | - Tao Huang
- Department of Neurology, Peking University Third Hospital, Beijing 100191, China; (L.Z.); (F.W.); (K.X.); (Z.Y.); (Y.F.)
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100871, China
- Center for Intelligent Public Health, Institute for Artificial Intelligence, Peking University, Beijing 100871, China
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing 100191, China; (L.Z.); (F.W.); (K.X.); (Z.Y.); (Y.F.)
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing 100191, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing 100871, China
| |
Collapse
|
19
|
Wang L, Zhou L, ZhangBao J, Huang W, Tan H, Fan Y, Lu C, Yu J, Wang M, Lu J, Zhao C, Zhang T, Quan C. Causal associations between prodromal infection and neuromyelitis optica spectrum disorder: A Mendelian randomization study. Eur J Neurol 2023; 30:3819-3827. [PMID: 37540821 DOI: 10.1111/ene.16014] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/16/2023] [Accepted: 07/27/2023] [Indexed: 08/06/2023]
Abstract
BACKGROUND AND PURPOSE Prodromal infections are associated with neuromyelitis optica spectrum disorder (NMOSD), but it remains unclear which type of infection has a causal association with NMOSD. We aimed to explore the causal associations between four herpesvirus infections (chickenpox, cold sores, mononucleosis and shingles) and NMOSD, as well as between other types of infections and NMOSD. METHODS For data on infections, we used the genome-wide association study (GWAS) summary statistics from the 23andMe cohort. For outcomes, we used the GWAS data of participants of European ancestry, including 215 NMOSD patients (132 anti-aquaporin-4 antibody [AQP4-ab]-positive patients and 83 AQP4-ab-negative patients) and 1244 normal controls. Single-nucleotide polymorphism (SNP) identification and two-sample Mendelian randomization (MR) analyses were then performed. RESULTS In the 23andMe cohort, we identified one SNP for chickenpox (rs9266089 in HLA-B gene), one SNP for cold scores (rs885950 in the POU5F1 gene), one SNP for mononucleosis (rs2596465 in the HCP5 gene), and three SNPs for shingles (rs2523591 in the HLA-B gene; rs7047299 in the IFNA21 gene; rs9260809 in the MICD gene). The association between cold sores and AQP4-ab-positive NMOSD reached statistical significance (odds ratio [OR] 745.318; 95% confidence interval [CI] 22.176, 25,049.53 [p < 0.001, Q < 0.001]). The association between shingles and AQP4-ab-positive NMOSD was also statistically significant (OR 21.073; 95% CI 4.271, 103.974 [p < 0.001, Q < 0.001]). No significant association was observed between other infections and AQP4-ab-positive or AQP4-ab-negative NMOSD. CONCLUSION These findings suggest there are positive associations between cold sores and shingles and AQP4-ab-positive NMOSD, indicating there may be causal links between herpes simplex virus and varicella-zoster virus infection and AQP4-ab-positive NMOSD.
Collapse
Affiliation(s)
- Liang Wang
- Department of Neurology and Rare Disease Center, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
| | - Lei Zhou
- Department of Neurology and Rare Disease Center, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
| | - Jingzi ZhangBao
- Department of Neurology and Rare Disease Center, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
| | - Wenjuan Huang
- Department of Neurology and Rare Disease Center, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
| | - Hongmei Tan
- Department of Neurology and Rare Disease Center, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
| | - Yuxin Fan
- Department of Neurology and Rare Disease Center, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
| | - Chuanzhen Lu
- Department of Neurology and Rare Disease Center, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
| | - Jian Yu
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Min Wang
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiahong Lu
- Department of Neurology and Rare Disease Center, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
| | - Chongbo Zhao
- Department of Neurology and Rare Disease Center, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
| | - Tiansong Zhang
- Department of Chinese Traditional Medicine, Jing'an District Hospital of Traditional Chinese Medicine, Shanghai, China
| | - Chao Quan
- Department of Neurology and Rare Disease Center, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
| |
Collapse
|
20
|
Huang Y, Zhang X, Li B, Zhu X, Li C, Zhou C, Gu C, Wang Y, Ma M, Fan Y, Xu X, Chen H, Zheng Z. Association of BMI and waist circumference with diabetic microvascular complications: A prospective cohort study from the UK Biobank and Mendelian randomization analysis. Diabetes Res Clin Pract 2023; 205:110975. [PMID: 37884062 DOI: 10.1016/j.diabres.2023.110975] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/11/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
AIMS To investigate the precise association between BMI and waist circumference (WC) and diabetic complications, including retinopathy (DR), nephropathy (DN) and peripheral neuropathy (DPN). METHODS A multivariable-adjusted Cox proportional hazard model was used to evaluate the observed association from 30,541 UK Biobank participants with diabetes. A two-sample Mendelian randomization (MR) framework was applied to summary-level GWASs of BMI and WC comprising a total of 461,460 and 462,166 participants from UK Biobank to explore the potential causal association. RESULTS Higher BMI and WC were associated with increased risks of DR, DN, and DPN (HR (95% CI), per-SD increase: BMI: DR 1.09 (1.04-1.13), DN 1.37 (1.33-1.41), DPN 1.27 (1.20-1.34); WC: DR 1.11 (1.07-1.16), DN 1.41 (1.36-1.46), DPN 1.38 (1.30-1.45)) in the UK Biobank cohort. Univariate MR indicated that increased BMI and WC were causal risk factors for these complications (OR (95% CI), per-SD increase: BMI: DR 1.33 (1.22-1.45), DN 1.74 (1.47-2.07), DPN 2.20 (1.67-2.90); WC: DR 1.43 (1.27-1.61), DN 2.03 (1.62-2.55), DPN 2.80 (1.99-3.92)), and the effect sizes remained significant after adjustment for glycated hemoglobin. CONCLUSIONS Prospective observational and MR analyses provided evidence that high BMI and WC may represent potential causal risk factors for diabetic microvascular complications. Weight control might modify the risks of these complications independently of glycemic control and should be considered as a therapeutic recommendation.
Collapse
Affiliation(s)
- Yikeng Huang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Eye Diseases, Shanghai Clinical Research Center for Eye Diseases, Shanghai Key Clinical Specialty, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, 100 Haining Road, Hongkou District, Shanghai 200080, China
| | - Xinyu Zhang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Eye Diseases, Shanghai Clinical Research Center for Eye Diseases, Shanghai Key Clinical Specialty, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, 100 Haining Road, Hongkou District, Shanghai 200080, China
| | - Bo Li
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Eye Diseases, Shanghai Clinical Research Center for Eye Diseases, Shanghai Key Clinical Specialty, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, 100 Haining Road, Hongkou District, Shanghai 200080, China
| | - Xinyu Zhu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Eye Diseases, Shanghai Clinical Research Center for Eye Diseases, Shanghai Key Clinical Specialty, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, 100 Haining Road, Hongkou District, Shanghai 200080, China
| | - Chenxin Li
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Eye Diseases, Shanghai Clinical Research Center for Eye Diseases, Shanghai Key Clinical Specialty, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, 100 Haining Road, Hongkou District, Shanghai 200080, China
| | - Chuandi Zhou
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Eye Diseases, Shanghai Clinical Research Center for Eye Diseases, Shanghai Key Clinical Specialty, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, 100 Haining Road, Hongkou District, Shanghai 200080, China
| | - Chufeng Gu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Eye Diseases, Shanghai Clinical Research Center for Eye Diseases, Shanghai Key Clinical Specialty, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, 100 Haining Road, Hongkou District, Shanghai 200080, China
| | - Yujie Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Eye Diseases, Shanghai Clinical Research Center for Eye Diseases, Shanghai Key Clinical Specialty, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, 100 Haining Road, Hongkou District, Shanghai 200080, China
| | - Mingming Ma
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Eye Diseases, Shanghai Clinical Research Center for Eye Diseases, Shanghai Key Clinical Specialty, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, 100 Haining Road, Hongkou District, Shanghai 200080, China
| | - Ying Fan
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Eye Diseases, Shanghai Clinical Research Center for Eye Diseases, Shanghai Key Clinical Specialty, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, 100 Haining Road, Hongkou District, Shanghai 200080, China
| | - Xun Xu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Eye Diseases, Shanghai Clinical Research Center for Eye Diseases, Shanghai Key Clinical Specialty, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, 100 Haining Road, Hongkou District, Shanghai 200080, China.
| | - Haibing Chen
- Department of Endocrinology and Metabolism, Shanghai 10th People's Hospital, Tongji University, 301 Middle Yanchang Road, Jingan District, Shanghai 200072, China.
| | - Zhi Zheng
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Eye Diseases, Shanghai Clinical Research Center for Eye Diseases, Shanghai Key Clinical Specialty, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, 100 Haining Road, Hongkou District, Shanghai 200080, China.
| |
Collapse
|
21
|
Zhang Z, Li L, Wu J. A Mendelian randomization-based approach to explore the relationship between leukocyte counts and breast cancer risk in European ethnic groups. Sci Rep 2023; 13:16979. [PMID: 37813992 PMCID: PMC10562486 DOI: 10.1038/s41598-023-44397-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 10/07/2023] [Indexed: 10/11/2023] Open
Abstract
Exploring the potential association between peripheral blood leukocyte counts and breast cancer risk by Mendelian randomization (MR) analysis methods. Genetic data related to peripheral blood sorting counts of leukocytes were collected from a genome-wide association study by Blood Cell Consortium (BCX). Single nucleotide polymorphic loci predicting peripheral blood sorting counts of these leukocytes were selected as instrumental variables according to the correlation assumption, independence assumption and exclusivity assumption of MR. The data on breast cancer and its subtypes were obtained from Breast Cancer Association Consortium (BCAC) and FinnGen Consortium. In this study, the Inverse-Variance Weighted (IVW), Weighted Median, MR-Egger, Maximum Likelihood (ML), MR-PRESSO and Constrained Maximum Likelihood and Model Averaging (cML-MA) methods of random effects models were used for MR analysis. Cochran's Q analysis, and MR-Egger intercept analysis were applied for sensitivity analysis. IVW and cML-MA were considered the primary analytical tools, and the results of the other 4 MRs were used as complementary and validation. The results suggest that there is no significant causal relationship between leukocyte count and breast cancer risk (IVW OR = 0.98 [95% CI: 0.93-1.03], p-value = 0.35; CML-MA OR = 1.01 [95% CI: 0.98-1.05], p-value = 0.51). In addition, we analyzed whether there was a potential correlation between the five main types of categorized leukocyte counts and different breast cancer subtypes. We did not find significant evidence to support a significant correlation between leukocyte counts and breast cancer subtypes.
Collapse
Affiliation(s)
- Zhitao Zhang
- Department of Breast, Fujian Maternity and Child Health Hospital, Fuzhou, China
| | - Lei Li
- Department of Pathology, University of Otago, Dunedin, 9016, New Zealand.
| | - Jianbin Wu
- Department of Breast, Fujian Maternity and Child Health Hospital, Fuzhou, China.
| |
Collapse
|
22
|
Chen GY, Fu LL, Ye B, Ao M, Yan M, Feng HC. Correlations between schizophrenia and lichen planus: a two-sample bidirectional Mendelian randomization study. Front Psychiatry 2023; 14:1243044. [PMID: 37772069 PMCID: PMC10525345 DOI: 10.3389/fpsyt.2023.1243044] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/28/2023] [Indexed: 09/30/2023] Open
Abstract
Background Several existing studies have shown a correlation between schizophrenia and lichen planus (LP). However, the causality of this relationship remains uncertain. Thus, this study aimed to examine the causal association between schizophrenia and LP. Methods A two-sample Mendelian randomization (MR) study was carried out to investigate whether schizophrenia is causally related to LP and vice versa, and genetic variants in this study were taken from previous genome-wide association studies. We used the inverse variance weighted (IVW) method as the main analysis. Furthermore, several sensitivity analyses were performed to assess heterogeneity, horizontal pleiotropy, and stability. Results Our results show that schizophrenia has a protective effect on LP (OR = 0.881, 95%CI = 0.795-0.975, p = 0.015). Conversely, we observed no significant relationship between LP and schizophrenia in reverse MR analysis (OR = 0.934, 95%CI = 0.851-1.026, p = 0.156). Conclusion Our two-sample Mendelian randomization study supports a significant causal relationship between LP and schizophrenia and finds that schizophrenia can reduce the incidence of LP. This is in contrast to previous findings and provides new insights into the relationship between LP and schizophrenia, but the exact mechanism needs further investigation.
Collapse
Affiliation(s)
- Guan-Yu Chen
- College of Stomatology, Guizhou Medical University, Guiyang, China
| | - Ling-ling Fu
- Department of Oral and Maxillofacial Surgery, Guiyang Hospital of Stomatology, Guiyang, China
| | - Bin Ye
- Department of Oral and Maxillofacial Surgery, Guiyang Hospital of Stomatology, Guiyang, China
| | - Man Ao
- Department of Oral and Maxillofacial Surgery, Guiyang Hospital of Stomatology, Guiyang, China
| | - Ming Yan
- Department of Oral and Maxillofacial Surgery, Guiyang Hospital of Stomatology, Guiyang, China
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hong-Chao Feng
- College of Stomatology, Guizhou Medical University, Guiyang, China
- Department of Oral and Maxillofacial Surgery, Guiyang Hospital of Stomatology, Guiyang, China
| |
Collapse
|
23
|
Kusters CDJ, Paul KC, Romero T, Sinsheimer JS, Ritz BR. Among men, androgens are associated with a decrease in Alzheimer's disease risk. Alzheimers Dement 2023; 19:3826-3834. [PMID: 36938850 PMCID: PMC10509321 DOI: 10.1002/alz.13013] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 03/21/2023]
Abstract
INTRODUCTION Increased levels of sex hormones have been hypothesized to decrease Alzheimer's disease (AD) risk. We assessed the association between sex steroid hormones with AD using a Mendelian randomization (MR) approach. METHODS An inverse-variance weighting (IVW) MR analysis was performed using effect estimates from external genome-wide association study (GWAS) summary statistics. We included independent variants (linkage disequilibrium R2 < 0.001) and a p-value threshold of 5 × 10-8 . RESULTS An increase in androgens was associated with a decreased AD risk among men: testosterone (odds ratio [OR]: 0.53; 95% confidence interval [CI]: 0.32-0.88; p-value: 0.01; false discovery rate [FDR] p-value: 0.03); dehydroepiandrosterone sulfate (DHEAS; OR: 0.56; 95% CI: 0.38-0.85; p-value: 0.01; FDR p-value: 0.03); and androsterone sulfate (OR: 0.69; 95% CI: 0.46-1.02; p-value: 0.06; FDR p-value: 0.10). There was no association between sex steroid hormones and AD among women, although analysis for estradiol had limited statistical power. DISCUSSION A higher concentration of androgens was associated with a decreased risk of AD among men of European ancestry, suggesting that androgens among men might be neuroprotective and could potentially prevent or delay an AD diagnosis. HIGHLIGHTS Sex hormones are hypothesized to play a role in developing Alzheimer's disease (AD). The effect of sex hormones on AD was assessed using Mendelian randomization (MR) analysis. Among women, genetically determined effects of sex hormones were limited or null. Among men, a higher concentration of androgens decreased AD risk. This study suggests a causal relationship between androgens and AD among men.
Collapse
Affiliation(s)
- Cynthia D J Kusters
- Department of Human Genetics, David Geffen School of Medicine, Los Angeles, California, USA
| | - Kimberly C Paul
- Department of Neurology, David Geffen School of Medicine, Los Angeles, California, USA
| | - Tahmineh Romero
- Statistics Core, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Janet S Sinsheimer
- Department of Human Genetics, David Geffen School of Medicine, Los Angeles, California, USA
- Department of Biostatistics, School of Public Health, University of California, Los Angeles, California, USA
- Department of Computational Medicine, David Geffen School of Medicine, Los Angeles, California, USA
| | - Beate R Ritz
- Department of Neurology, David Geffen School of Medicine, Los Angeles, California, USA
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, California, USA
- Department of Environmental Health, UCLA Fielding School of Public Health, Los Angeles, California, USA
| |
Collapse
|
24
|
Schoeler T, Speed D, Porcu E, Pirastu N, Pingault JB, Kutalik Z. Participation bias in the UK Biobank distorts genetic associations and downstream analyses. Nat Hum Behav 2023; 7:1216-1227. [PMID: 37106081 PMCID: PMC10365993 DOI: 10.1038/s41562-023-01579-9] [Citation(s) in RCA: 81] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 03/07/2023] [Indexed: 04/29/2023]
Abstract
While volunteer-based studies such as the UK Biobank have become the cornerstone of genetic epidemiology, the participating individuals are rarely representative of their target population. To evaluate the impact of selective participation, here we derived UK Biobank participation probabilities on the basis of 14 variables harmonized across the UK Biobank and a representative sample. We then conducted weighted genome-wide association analyses on 19 traits. Comparing the output from weighted genome-wide association analyses (neffective = 94,643 to 102,215) with that from standard genome-wide association analyses (n = 263,464 to 283,749), we found that increasing representativeness led to changes in SNP effect sizes and identified novel SNP associations for 12 traits. While heritability estimates were less impacted by weighting (maximum change in h2, 5%), we found substantial discrepancies for genetic correlations (maximum change in rg, 0.31) and Mendelian randomization estimates (maximum change in βSTD, 0.15) for socio-behavioural traits. We urge the field to increase representativeness in biobank samples, especially when studying genetic correlates of behaviour, lifestyles and social outcomes.
Collapse
Affiliation(s)
- Tabea Schoeler
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland.
- Department of Clinical, Educational and Health Psychology, University College London, London, UK.
| | - Doug Speed
- Quantitative Genetics and Genomics, Aarhus University, Aarhus, Denmark
| | - Eleonora Porcu
- Precision Medicine Unit, Biomedical Data Science Center, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Nicola Pirastu
- Genomics Research Centre, Human Technopole, Milan, Italy
| | - Jean-Baptiste Pingault
- Department of Clinical, Educational and Health Psychology, University College London, London, UK
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Zoltán Kutalik
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
- University Center for Primary Care and Public Health, Lausanne, Switzerland.
| |
Collapse
|
25
|
Wu Y, Song J, Liu M, Ma H, Zhang J. Integrating GWAS and proteome data to identify novel drug targets for MU. Sci Rep 2023; 13:10437. [PMID: 37369724 DOI: 10.1038/s41598-023-37177-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
Mouth ulcers have been associated with numerous loci in genome wide association studies (GWAS). Nonetheless, it remains unclear what mechanisms are involved in the pathogenesis of mouth ulcers at these loci, as well as what the most effective ulcer drugs are. Thus, we aimed to screen hub genes responsible for mouth ulcer pathogenesis. We conducted an imputed/in-silico proteome-wide association study to discover candidate genes that impact the development of mouth ulcers and affect the expression and concentration of associated proteins in the bloodstream. The integrative analysis revealed that 35 genes play a significant role in the development of mouth ulcers, both in terms of their protein and transcriptional levels. Following this analysis, the researchers identified 6 key genes, namely BTN3A3, IL12B, BPI, FAM213A, PLXNB2, and IL22RA2, which were related to the onset of mouth ulcers. By combining with multidimensional data, six genes were found to correlate with mouth ulcer pathogenesis, which can be useful for further biological and therapeutic research.
Collapse
Affiliation(s)
- Yadong Wu
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Guizhou Medical University, Guiyang, China
| | - Jukun Song
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Guizhou Medical University, Guiyang, China.
| | - Manyi Liu
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
| | - Hong Ma
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Guizhou Medical University, Guiyang, China.
| | - Junmei Zhang
- Department of Orthodontics, The Affiliated Stomatological Hospital of Guizhou Medical University, Guiyang, 550002, China.
| |
Collapse
|
26
|
Ding M, Zhang Z, Chen Z, Song J, Wang B, Jin F. Association between periodontitis and breast cancer: two-sample Mendelian randomization study. Clin Oral Investig 2023; 27:2843-2849. [PMID: 36749410 PMCID: PMC10264523 DOI: 10.1007/s00784-023-04874-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/22/2023] [Indexed: 02/08/2023]
Abstract
OBJECTIVES The purpose of this study was to investigate whether there is a causal relationship between periodontitis and breast cancer by Mendelian randomization analysis. MATERIALS AND METHODS We performed a two-sample bidirectional Mendelian randomization (MR) analysis using publicly released genome-wide association studies (GWAS) statistics. The inverse-variance weighted (IVW) method was used as the primary analysis. We applied complementary methods, including weighted median, weighted mode, simple mode, MR-Egger regression, and MR-pleiotropy residual sum and outlier (MR-PRESSO) to detect and correct for the effect of horizontal pleiotropy. RESULTS IVW MR analysis showed no effect of periodontitis on breast cancer (IVW OR=0.99, P =0.14). Similarly, no significant causal relationship between breast cancer and periodontitis was found in reverse MR analysis (IVW OR=0.95, P =0.83). The results of MR-Egger regression, weighted median, and weighted mode methods were consistent with those of the IVW method. Based on sensitivity analyses, horizontal pleiotropy is unlikely to distort causal estimates. CONCLUSIONS Although observational studies have reported an association between periodontitis and breast cancer, the results of our MR analysis do not support a causal relationship between periodontitis and breast cancer. CLINICAL RELEVANCE Mendelian randomization study can more clearly analyze the causal relationship between periodontitis and breast cancer, in order to provide a certain reference for clinicians and deepen the understanding of the relationship between periodontitis and breast cancer, to explore more possible associations between periodontitis and systemic diseases.
Collapse
Affiliation(s)
- Ming Ding
- School of Stomatology, Zunyi Medical University, Zunyi, China
- Department of Endodontics, Guiyang Stomatological Hospital, 253 Jiefang Road, Nanming District, Guiyang, 550005, Guizhou, China
| | - Zhonghua Zhang
- School of Stomatology, Zunyi Medical University, Zunyi, China
- Department of Endodontics, Guiyang Stomatological Hospital, 253 Jiefang Road, Nanming District, Guiyang, 550005, Guizhou, China
| | - Zhu Chen
- School of Stomatology, Zunyi Medical University, Zunyi, China.
- Department of Endodontics, Guiyang Stomatological Hospital, 253 Jiefang Road, Nanming District, Guiyang, 550005, Guizhou, China.
| | - Jukun Song
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Guizhou Medical University, Guiyang, China
| | - Beichuan Wang
- School of Stomatology, Zunyi Medical University, Zunyi, China
- Department of Endodontics, Guiyang Stomatological Hospital, 253 Jiefang Road, Nanming District, Guiyang, 550005, Guizhou, China
| | - Fuqian Jin
- School of Stomatology, Zunyi Medical University, Zunyi, China
- Department of Endodontics, Guiyang Stomatological Hospital, 253 Jiefang Road, Nanming District, Guiyang, 550005, Guizhou, China
| |
Collapse
|
27
|
Rasooly D, Peloso GM, Giambartolomei C. Bayesian Genetic Colocalization Test of Two Traits Using coloc. Curr Protoc 2022; 2:e627. [PMID: 36515558 DOI: 10.1002/cpz1.627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Genetic colocalization is an approach for determining whether a genetic variant at a particular locus is shared across multiple phenotypes. Genome-wide association studies (GWAS) have successfully mapped genetic variants associated with thousands of complex traits and diseases. However, a large proportion of GWAS signals fall in non-coding regions of the genome, making functional interpretation a challenge. Colocalization relies on a Bayesian framework that can integrate summary statistics, for example those derived from GWAS and expression quantitative trait loci (eQTL) mapping, to assess whether two or more independent association signals at a region of interest are consistent with a shared causal variant. The results from a colocalization analysis may be used to evaluate putative causal relationships between omics-based molecular measurements and a complex disease, and can generate hypotheses that may be followed up by tailored experiments. In this article, we present an easy and straightforward protocol for conducting a Bayesian test for colocalization of two traits using the 'coloc' package in R with summary-level results derived from GWAS and eQTL studies. We also provide general guidelines that can assist in the interpretation of findings generated from colocalization analyses. © 2022 Wiley Periodicals LLC. Basic Protocol: Performing a genetic colocalization analysis using the 'coloc' package in R and summary-level data Support Protocol: Installing the 'coloc' R package.
Collapse
Affiliation(s)
- Danielle Rasooly
- Division of Aging, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Gina M Peloso
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - Claudia Giambartolomei
- Non-Coding RNAs and RNA-Based Therapeutics, Istituto Italiano di Tecnologia, Via Morego, Genova, Italy
| |
Collapse
|
28
|
Zhang C, Qin F, Li X, Du X, Li T. Identification of novel proteins for lacunar stroke by integrating genome-wide association data and human brain proteomes. BMC Med 2022; 20:211. [PMID: 35733147 PMCID: PMC9219149 DOI: 10.1186/s12916-022-02408-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 05/17/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Previous genome-wide association studies (GWAS) have identified numerous risk genes for lacunar stroke, but it is challenging to decipher how they confer risk for the disease. We employed an integrative analytical pipeline to efficiently transform genetic associations to identify novel proteins for lacunar stroke. METHODS We systematically integrated lacunar stroke genome-wide association study (GWAS) (N=7338) with human brain proteomes (N=376) to perform proteome-wide association studies (PWAS), Mendelian randomization (MR), and Bayesian colocalization. We also used an independent human brain proteomic dataset (N=152) to annotate the new genes. RESULTS We found that the protein abundance of seven genes (ICA1L, CAND2, ALDH2, MADD, MRVI1, CSPG4, and PTPN11) in the brain was associated with lacunar stroke. These seven genes were mainly expressed on the surface of glutamatergic neurons, GABAergic neurons, and astrocytes. Three genes (ICA1L, CAND2, ALDH2) were causal in lacunar stroke (P < 0.05/proteins identified for PWAS; posterior probability of hypothesis 4 ≥ 75 % for Bayesian colocalization), and they were linked with lacunar stroke in confirmatory PWAS and independent MR. We also found that ICA1L is related to lacunar stroke at the brain transcriptome level. CONCLUSIONS Our present proteomic findings have identified ICA1L, CAND2, and ALDH2 as compelling genes that may give key hints for future functional research and possible therapeutic targets for lacunar stroke.
Collapse
Affiliation(s)
- Chengcheng Zhang
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Fengqin Qin
- Department of Neurology, the 3rd Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Xiaojing Li
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Xiangdong Du
- Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Tao Li
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China. .,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Zhejiang, Hangzhou, China.
| |
Collapse
|
29
|
Yu Z, Zhang L, Zhang G, Xia K, Yang Q, Huang T, Fan D. Lipids, Apolipoproteins, Statins and
ICH
: A Mendelian Randomization Study. Ann Neurol 2022; 92:390-399. [PMID: 35655417 DOI: 10.1002/ana.26426] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Zhou Yu
- Department of Neurology Peking University Third Hospital Beijing China
| | - Linjing Zhang
- Department of Neurology Peking University Third Hospital Beijing China
| | - Gan Zhang
- Department of Neurology Peking University Third Hospital Beijing China
| | - Kailin Xia
- Department of Neurology Peking University Third Hospital Beijing China
| | - Qiong Yang
- Department of Neurology Peking University Third Hospital Beijing China
| | - Tao Huang
- Department of Epidemiology & Biostatistics, School of Public Health Peking University Beijing China
- Department of Global Health, School of Public Health Peking University China
- Key Laboratory of Molecular Cardiovascular Sciences (Peking University), Ministry of Education China
| | - Dongsheng Fan
- Department of Neurology Peking University Third Hospital Beijing China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases Beijing China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education Peking University Beijing China
| |
Collapse
|
30
|
Wang YB, Yan SY, Li XH, Huang Q, Luo LS, Wang YY, Huang J, Jin YH, Zeng XT. Causal Association Between Periodontitis and Type 2 Diabetes: A Bidirectional Two-Sample Mendelian Randomization Analysis. Front Genet 2022; 12:792396. [PMID: 35082834 PMCID: PMC8784400 DOI: 10.3389/fgene.2021.792396] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/16/2021] [Indexed: 11/30/2022] Open
Abstract
Background: Previous observational studies have reported a bidirectional association between periodontitis and type 2 diabetes, but the causality of these relationships remains unestablished. We clarified the bidirectional causal association through two-sample Mendelian randomization (MR). Methods: We obtained summary-level data for periodontitis and type 2 diabetes from several published large-scale genome-wide association studies (GWAS) of individuals of European ancestry. For the casual effect of periodontitis on type 2 diabetes, we used five independent single-nucleotide polymorphisms (SNPs) specific to periodontitis from three GWAS. The summary statistics for the associations of exposure-related SNPs with type 2 diabetes were drawn from the GWAS in the Diabetes Genetics Replication and Meta-analysis (DIAGRAM) consortium and the FinnGen consortium R5 release, respectively. For the reversed causal inference, 132 and 49 SNPs associated with type 2 diabetes from the DIAGRAM consortium and the FinnGen consortium R5 release were included, and the summary-level statistics were obtained from the Gene-Lifestyle Interactions in Dental Endpoints consortium. Multiple approaches of MR were carried out. Results: Periodontitis was not causally related with the risk of type 2 diabetes (all p > 0.05). No causal effect of type 2 diabetes on periodontitis was found (all p > 0.05). Estimates were consistent across multiple MR analyses. Conclusion: This study based on genetic data does not support a bidirectional causal association between periodontitis and type 2 diabetes.
Collapse
Affiliation(s)
- Yong-Bo Wang
- Department of Stomatology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Si-Yu Yan
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xu-Hui Li
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qiao Huang
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Li-Sha Luo
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yun-Yun Wang
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jiao Huang
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ying-Hui Jin
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xian-Tao Zeng
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
31
|
Abstract
Mendelian randomization is a framework that uses measured variation in genes for assessing and estimating the causal effect of an exposure on an outcome. Multivariable Mendelian randomization is an extension that can assess the causal effect of multiple exposures on an outcome, and can be advantageous when considering a set (>1) of potentially correlated candidate risk factors in evaluating the causal effect of each on a health outcome, accounting for measured pleiotropy. This can be seen, for example, in determining the causal effects of lipids and cholesterol on type 2 diabetes risk, where the correlated risk factors share genetic predictors. Similar to univariate Mendelian randomization, multivariable Mendelian randomization can be conducted using two-sample summary-level data where the gene-exposure and gene-outcome associations are derived from separate samples from the same underlying population. Here, we present a protocol for conducting a two-sample multivariable Mendelian randomization study using the 'MVMR' package in R and summary-level genetic data. We also provide a protocol for searching and obtaining instruments using available data sources in the 'MRInstruments' R package. Finally, we provide general guidelines and discuss the utility of performing a multivariable Mendelian randomization analysis for simultaneously assessing causality of multiple exposures. © 2021 Wiley Periodicals LLC. Basic Protocol: Performing a two-sample multivariable Mendelian randomization analysis using the 'MVMR' package in R and summarized genetic data Support Protocol 1: Installing the 'MVMR' R package Support Protocol 2: Obtaining instruments from the 'MRInstruments' R package.
Collapse
Affiliation(s)
- Danielle Rasooly
- Division of Aging, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Gina M. Peloso
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| |
Collapse
|
32
|
Ou YN, Yang YX, Deng YT, Zhang C, Hu H, Wu BS, Liu Y, Wang YJ, Zhu Y, Suckling J, Tan L, Yu JT. Identification of novel drug targets for Alzheimer's disease by integrating genetics and proteomes from brain and blood. Mol Psychiatry 2021; 26:6065-6073. [PMID: 34381170 DOI: 10.1038/s41380-021-01251-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/25/2021] [Accepted: 07/28/2021] [Indexed: 11/09/2022]
Abstract
Genome-wide association studies (GWASs) have discovered numerous risk genes for Alzheimer's disease (AD), but how these genes confer AD risk is challenging to decipher. To efficiently transform genetic associations into drug targets for AD, we employed an integrative analytical pipeline using proteomes in the brain and blood by systematically applying proteome-wide association study (PWAS), Mendelian randomization (MR) and Bayesian colocalization. Collectively, we identified the brain protein abundance of 7 genes (ACE, ICA1L, TOM1L2, SNX32, EPHX2, CTSH, and RTFDC1) are causal in AD (P < 0.05/proteins identified for PWAS and MR; PPH4 >80% for Bayesian colocalization). The proteins encoded by these genes were mainly expressed on the surface of glutamatergic neurons and astrocytes. Of them, ACE with its protein abundance was also identified in significant association with AD on the blood-based studies and showed significance at the transcriptomic level. SNX32 was also found to be associated with AD at the blood transcriptomic level. Collectively, our current study results on genetic, proteomic, and transcriptomic approaches has identified compelling genes, which may provide important leads to design future functional studies and potential drug targets for AD.
Collapse
Affiliation(s)
- Ya-Nan Ou
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yu-Xiang Yang
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yue-Ting Deng
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Can Zhang
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Diseases (MIND), Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Hao Hu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Bang-Sheng Wu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi Liu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yan-Jiang Wang
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Ying Zhu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - John Suckling
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
33
|
Herpesvirus infections and Alzheimer's disease: a Mendelian randomization study. ALZHEIMERS RESEARCH & THERAPY 2021; 13:158. [PMID: 34560893 PMCID: PMC8464096 DOI: 10.1186/s13195-021-00905-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 09/15/2021] [Indexed: 12/14/2022]
Abstract
Background Observational studies have suggested that herpesvirus infection increased the risk of Alzheimer’s disease (AD), but it is unclear whether the association is causal. The aim of the present study is to evaluate the causal relationship between four herpesvirus infections and AD. Methods We performed a two-sample Mendelian randomization analysis to investigate association of four active herpesvirus infections with AD using summary statistics from genome-wide association studies. The four herpesvirus infections (i.e., chickenpox, shingles, cold sores, mononucleosis) are caused by varicella-zoster virus, herpes simplex virus type 1, and Epstein-Barr virus (EBV), respectively. A large summary statistics data from International Genomics of Alzheimer’s Project was used in primary analysis, including 21,982 AD cases and 41,944 controls. Validation was further performed using family history of AD data from UK Biobank (27,696 cases of maternal AD, 14,338 cases of paternal AD and 272,244 controls). Results We found evidence of a significant association between mononucleosis (caused by EBV) and risk of AD after false discovery rates (FDR) correction (odds ratio [OR] = 1.634, 95% confidence interval [CI] = 1.092–2.446, P = 0.017, FDR-corrected P = 0.034). It has been verified in validation analysis that mononucleosis is also associated with family history of AD (OR [95% CI] = 1.392 [1.061, 1.826], P = 0.017). Genetically predicted shingles were associated with AD risk (OR [95% CI] = 0.867 [0.784, 0.958], P = 0.005, FDR-corrected P = 0.020), while genetically predicted chickenpox was suggestively associated with increased family history of AD (OR [95% CI] = 1.147 [1.007, 1.307], P = 0.039). Conclusions Our findings provided evidence supporting a positive relationship between mononucleosis and AD, indicating a causal link between EBV infection and AD. Further elucidations of this association and underlying mechanisms are likely to identify feasible interventions to promote AD prevention. Supplementary Information The online version contains supplementary material available at 10.1186/s13195-021-00905-5.
Collapse
|
34
|
Williams JA, Russ D, Bravo-Merodio L, Cardoso VR, Pendleton SC, Aziz F, Acharjee A, Gkoutos GV. A Causal Web between Chronotype and Metabolic Health Traits. Genes (Basel) 2021; 12:genes12071029. [PMID: 34356044 PMCID: PMC8303793 DOI: 10.3390/genes12071029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/22/2021] [Accepted: 06/28/2021] [Indexed: 01/05/2023] Open
Abstract
Observational and experimental evidence has linked chronotype to both psychological and cardiometabolic traits. Recent Mendelian randomization (MR) studies have investigated direct links between chronotype and several of these traits, often in isolation of outside potential mediating or moderating traits. We mined the EpiGraphDB MR database for calculated chronotype–trait associations (p-value < 5 × 10−8). We then re-analyzed those relevant to metabolic or mental health and investigated for statistical evidence of horizontal pleiotropy. Analyses passing multiple testing correction were then investigated for confounders, colliders, intermediates, and reverse intermediates using the EpiGraphDB database, creating multiple chronotype–trait interactions among each of the the traits studied. We revealed 10 significant chronotype–exposure associations (false discovery rate < 0.05) exposed to 111 potential previously known confounders, 52 intermediates, 18 reverse intermediates, and 31 colliders. Chronotype–lipid causal associations collided with treatment and diabetes effects; chronotype–bipolar associations were mediated by breast cancer; and chronotype–alcohol intake associations were impacted by confounders and intermediate variables including known zeitgebers and molecular traits. We have reported the influence of chronotype on several cardiometabolic and behavioural traits, and identified potential confounding variables not reported on in studies while discovering new associations to drugs and disease.
Collapse
Affiliation(s)
- John A. Williams
- Centre for Computational Biology, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (D.R.); (L.B.-M.); (V.R.C.); (S.C.P.); (F.A.); (A.A.); (G.V.G.)
- Institute of Translational Medicine, University of Birmingham, Birmingham B15 2TT, UK
- Correspondence:
| | - Dominic Russ
- Centre for Computational Biology, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (D.R.); (L.B.-M.); (V.R.C.); (S.C.P.); (F.A.); (A.A.); (G.V.G.)
- Institute of Translational Medicine, University of Birmingham, Birmingham B15 2TT, UK
| | - Laura Bravo-Merodio
- Centre for Computational Biology, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (D.R.); (L.B.-M.); (V.R.C.); (S.C.P.); (F.A.); (A.A.); (G.V.G.)
- Institute of Translational Medicine, University of Birmingham, Birmingham B15 2TT, UK
| | - Victor Roth Cardoso
- Centre for Computational Biology, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (D.R.); (L.B.-M.); (V.R.C.); (S.C.P.); (F.A.); (A.A.); (G.V.G.)
- Institute of Translational Medicine, University of Birmingham, Birmingham B15 2TT, UK
| | - Samantha C. Pendleton
- Centre for Computational Biology, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (D.R.); (L.B.-M.); (V.R.C.); (S.C.P.); (F.A.); (A.A.); (G.V.G.)
- Institute of Translational Medicine, University of Birmingham, Birmingham B15 2TT, UK
| | - Furqan Aziz
- Centre for Computational Biology, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (D.R.); (L.B.-M.); (V.R.C.); (S.C.P.); (F.A.); (A.A.); (G.V.G.)
- Institute of Translational Medicine, University of Birmingham, Birmingham B15 2TT, UK
| | - Animesh Acharjee
- Centre for Computational Biology, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (D.R.); (L.B.-M.); (V.R.C.); (S.C.P.); (F.A.); (A.A.); (G.V.G.)
- Institute of Translational Medicine, University of Birmingham, Birmingham B15 2TT, UK
- NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospital Birmingham, Birmingham B15 2WB, UK
| | - Georgios V. Gkoutos
- Centre for Computational Biology, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (D.R.); (L.B.-M.); (V.R.C.); (S.C.P.); (F.A.); (A.A.); (G.V.G.)
- Institute of Translational Medicine, University of Birmingham, Birmingham B15 2TT, UK
- NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospital Birmingham, Birmingham B15 2WB, UK
- MRC Health Data Research UK (HDR), Midlands Site, Birmingham B15 2TT, UK
- NIHR Experimental Cancer Medicine Centre, Birmingham B15 2TT, UK
- NIHR Biomedical Research Centre, University Hospital Birmingham, Birmingham B15 2WB, UK
| |
Collapse
|
35
|
Adams DM, Reay WR, Geaghan MP, Cairns MJ. Investigation of glycaemic traits in psychiatric disorders using Mendelian randomisation revealed a causal relationship with anorexia nervosa. Neuropsychopharmacology 2021; 46:1093-1102. [PMID: 32920595 PMCID: PMC8115098 DOI: 10.1038/s41386-020-00847-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/02/2020] [Accepted: 08/24/2020] [Indexed: 12/22/2022]
Abstract
Data from observational studies have suggested an involvement of abnormal glycaemic regulation in the pathophysiology of psychiatric illness. This may be an attractive target for clinical intervention as glycaemia can be modulated by both lifestyle factors and pharmacological agents. However, observational studies are inherently confounded, and therefore, causal relationships cannot be reliably established. We employed genetic variants rigorously associated with three glycaemic traits (fasting glucose, fasting insulin, and glycated haemoglobin) as instrumental variables in a two-sample Mendelian randomisation analysis to investigate the causal effect of these measures on the risk for eight psychiatric disorders. A significant protective effect of a natural log transformed pmol/L increase in fasting insulin levels was observed for anorexia nervosa after the application of multiple testing correction (OR = 0.48 [95% CI: 0.33-0.71]-inverse-variance weighted estimate). There was no consistently strong evidence for a causal effect of glycaemic factors on the other seven psychiatric disorders considered. The relationship between fasting insulin and anorexia nervosa was supported by a suite of sensitivity analyses, with no statistical evidence of instrument heterogeneity or horizontal pleiotropy. Further investigation is required to explore the relationship between insulin levels and anorexia.
Collapse
Affiliation(s)
- Danielle M Adams
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
| | - William R Reay
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
- Centre for Brain and Mental Health Research, Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Michael P Geaghan
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
- Centre for Brain and Mental Health Research, Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Murray J Cairns
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia.
- Centre for Brain and Mental Health Research, Hunter Medical Research Institute, Newcastle, NSW, Australia.
| |
Collapse
|
36
|
Fadista J, Kraven LM, Karjalainen J, Andrews SJ, Geller F, Baillie JK, Wain LV, Jenkins RG, Feenstra B. Shared genetic etiology between idiopathic pulmonary fibrosis and COVID-19 severity. EBioMedicine 2021; 65:103277. [PMID: 33714028 PMCID: PMC7946355 DOI: 10.1016/j.ebiom.2021.103277] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/23/2021] [Accepted: 02/23/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a complex lung disease, characterized by progressive lung scarring. Severe COVID-19 is associated with substantial pneumonitis and has a number of shared major risk factors with IPF. This study aimed to determine the genetic correlation between IPF and severe COVID-19 and assess a potential causal role of genetically increased risk of IPF on COVID-19 severity. METHODS The genetic correlation between IPF and COVID-19 severity was estimated with linkage disequilibrium (LD) score regression. We performed a Mendelian randomization (MR) study for IPF causality in COVID-19. Genetic variants associated with IPF susceptibility (P<5 × 10-8) in previous genome-wide association studies (GWAS) were used as instrumental variables (IVs). Effect estimates of those IVs on COVID-19 severity were gathered from the GWAS meta-analysis by the COVID-19 Host Genetics Initiative (4,336 cases & 623,902 controls). FINDINGS We detected a positive genetic correlation of IPF with COVID-19 severity (rg=0·31 [95% CI 0·04-0·57], P = 0·023). The MR estimates for severe COVID-19 did not reveal any genetic association (OR 1·05, [95% CI 0·92-1·20], P = 0·43). However, outlier analysis revealed that the IPF risk allele rs35705950 at MUC5B had a different effect compared with the other variants. When rs35705950 was excluded, MR results provided evidence that genetically increased risk of IPF has a causal effect on COVID-19 severity (OR 1·21, [95% CI 1·06-1·38], P = 4·24 × 10-3). Furthermore, the IPF risk-allele at MUC5B showed an apparent protective effect against COVID-19 hospitalization only in older adults (OR 0·86, [95% CI 0·73-1·00], P = 2·99 × 10-2) . INTERPRETATION The strongest genetic determinant of IPF, rs35705950 at MUC5B, seems to confer protection against COVID-19, whereas the combined effect of all other IPF risk loci seem to confer risk of COVID-19 severity. The observed effect of rs35705950 could either be due to protective effects of mucin over-production on the airways or a consequence of selection bias due to (1) a patient group that is heavily enriched for the rs35705950 T undertaking strict self-isolation and/or (2) due to survival bias of the rs35705950 non-IPF risk allele carriers. Due to the diverse impact of IPF causal variants on SARS-CoV-2 infection, with a possible selection bias as an explanation, further investigation is needed to address this apparent paradox between variance at MUC5B and other IPF genetic risk factors. FUNDING Novo Nordisk Foundation and Oak Foundation.
Collapse
Affiliation(s)
- João Fadista
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark; Department of Clinical Sciences, Lund University Diabetes Centre, Malmö, Sweden; Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland.
| | - Luke M Kraven
- Department of Health Sciences, University of Leicester, Leicester, United Kingdom
| | - Juha Karjalainen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland; Massachusetts General Hospital, Boston, MA, United States; Broad Institute of Harvard and MIT, Cambridge, MA, United States
| | - Shea J Andrews
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Frank Geller
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - J Kenneth Baillie
- Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom; Intensive Care Unit, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| | - Louise V Wain
- Department of Health Sciences, University of Leicester, Leicester, United Kingdom; NIHR, Leicester Respiratory, Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - R Gisli Jenkins
- Nottingham University Hospitals NHS Trust, City Campus, Nottingham, United Kingdom; NIHR Biomedical Research Centre, University of Nottingham, Nottingham, United Kingdom
| | - Bjarke Feenstra
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| |
Collapse
|
37
|
Ou YN, Yang YX, Shen XN, Ma YH, Chen SD, Dong Q, Tan L, Yu JT. Genetically determined blood pressure, antihypertensive medications, and risk of Alzheimer's disease: a Mendelian randomization study. Alzheimers Res Ther 2021; 13:41. [PMID: 33563324 PMCID: PMC7874453 DOI: 10.1186/s13195-021-00782-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 02/01/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND Observational studies suggest that the use of antihypertensive medications (AHMs) is associated with a reduced risk of Alzheimer's disease (AD); however, these findings may be biased by confounding and reverse causality. We aimed to explore the effects of blood pressure (BP) and lowering systolic BP (SBP) via the protein targets of different AHMs on AD through a two-sample Mendelian randomization (MR) approach. METHODS Genetic proxies from genome-wide association studies of BP traits and BP-lowering variants in genes encoding AHM targets were extracted. Estimates were calculated by inverse-variance weighted method as the main model. MR Egger regression and leave-one-out analysis were performed to identify potential violations. RESULTS There was limited evidence that genetically predicted SBP/diastolic BP level affected AD risk based on 400/398 single nucleotide polymorphisms (SNPs), respectively (all P > 0.05). Suitable genetic variants for β-blockers (1 SNP), angiotensin receptor blockers (1 SNP), calcium channel blockers (CCBs, 45 SNPs), and thiazide diuretics (5 SNPs) were identified. Genetic proxies for CCB [odds ratio (OR) = 0.959, 95% confidence interval (CI) = 0.941-0.977, P = 3.92 × 10-6] and overall use of AHMs (OR = 0.961, 95% CI = 0.944-0.978, P = 5.74 × 10-6, SNPs = 52) were associated with a lower risk of AD. No notable heterogeneity and directional pleiotropy were identified (all P > 0.05). Additional analyses partly support these results. No single SNP was driving the observed effects. CONCLUSIONS This MR analysis found evidence that genetically determined lowering BP was associated with a lower risk of AD and CCB was identified as a promising strategy for AD prevention.
Collapse
Affiliation(s)
- Ya-Nan Ou
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China
| | - Yu-Xiang Yang
- Department of Neurology and Institute of Neurology, WHO Collaborating Center for Research and Training in Neurosciences, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xue-Ning Shen
- Department of Neurology and Institute of Neurology, WHO Collaborating Center for Research and Training in Neurosciences, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ya-Hui Ma
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China
| | - Shi-Dong Chen
- Department of Neurology and Institute of Neurology, WHO Collaborating Center for Research and Training in Neurosciences, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qiang Dong
- Department of Neurology and Institute of Neurology, WHO Collaborating Center for Research and Training in Neurosciences, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China.
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, WHO Collaborating Center for Research and Training in Neurosciences, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
38
|
Shen LX, Yang YX, Kuo K, Li HQ, Chen SD, Chen KL, Dong Q, Tan L, Yu JT. Social Isolation, Social Interaction, and Alzheimer's Disease: A Mendelian Randomization Study. J Alzheimers Dis 2021; 80:665-672. [PMID: 33579855 DOI: 10.3233/jad-201442] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Social isolation and social interaction have been suggested to be associated with Alzheimer's disease. However, the causality cannot be unambiguously assessed as traditional epidemiological methods are easily subject to unmeasured confounders and potential bias. OBJECTIVE To examine bidirectional relationships between social isolation, social interaction, and Alzheimer's disease using Mendelian randomization method for assessing potential causal inference. METHODS This bidirectional two-sample Mendelian randomization study used independent genetic variants associated with social isolation and social interaction (n = 302,567-487,647), and Alzheimer's disease (n = 455,258). MR analyses were performed using the inverse-variance-weighted (IVW) as the main MR analytical method to estimate the causal effect. For sensitivity analyses, we applied weighted median, MR Egger to further assess the credibility of the causal effect. RESULTS Of the five types of social engagement examined in our study, only one showed evidence of an association with the risk of Alzheimer's disease. Attendance at a gym or sports club (IVW OR per SD change: 0.670; 95% CI: 0.463-0.970; p = 0.034) was inversely associated with the risk of Alzheimer's disease. We also found that AD may reduce the attendance at religious group (IVW OR per SD change: 1.017; 95% CI: 1.005-1.030; p = 0.004). CONCLUSION This study suggests that regular attendance at a gym or sports club is causally associated with reduced risk of Alzheimer's disease. Further studies are warranted to elucidate potential mechanisms.
Collapse
Affiliation(s)
- Ling-Xiao Shen
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yu-Xiang Yang
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Kevin Kuo
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hong-Qi Li
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shi-Dong Chen
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ke-Liang Chen
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qiang Dong
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|