1
|
Payrits M, Zsidó BZ, Nehr-Majoros AK, Börzsei R, Helyes Z, Hetényi C, Szőke É. Lipid raft disruption inhibits the activation of Transient Receptor Potential Vanilloid 1, but not TRP Melastatin 3 and the voltage-gated L-type calcium channels in sensory neurons. Front Cell Dev Biol 2024; 12:1452306. [PMID: 39676793 PMCID: PMC11638188 DOI: 10.3389/fcell.2024.1452306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/18/2024] [Indexed: 12/17/2024] Open
Abstract
Transient Receptor Potential (TRP) ion channels like Vanilloid 1 (TRPV1) and Melastatin 3 (TRPM3) are nonselective cation channels expressed in primary sensory neurons and peripheral nerve endings, which are located in cholesterol- and sphingolipid-rich membrane lipid raft regions and have important roles in pain processing. Besides TRP ion channels a wide variety of voltage-gated ion channels were also described in the membrane raft regions of neuronal cells. Here we investigated the effects of lipid raft disruption by methyl-beta-cyclodextrin (MCD) and sphingomyelinase (SMase) on TRPV1, TRPM3 and voltage-gated L-type Ca2+ channel activation in cultured trigeminal neurons and sensory nerve terminals of the trachea. We also examined the mechanism of action of MCD by in silico modeling. Disruption of lipid rafts by MCD or SMase did not alter CIM0216-induced TRPM3 cation channel activation and the voltage-gated L-type Ca2+ channel activation by FPL 64126 or veratridine neither on trigeminal sensory neurons nor sensory nerve terminals. We provided the first structural explanation with in silico modeling that the activation of TRPV1, TRPM3 and voltage-gated L-type Ca2+ channels is affected differently by the cholesterol content surrounding them in the plasma membrane. It is concluded that modifying the hydrophobic interactions between lipid rafts and ion channels might provide a selective novel mechanism for peripheral analgesia.
Collapse
Affiliation(s)
- Maja Payrits
- Department of Pharmacology and Pharmacotherapy, Medical School and Centre for Neuroscience, University of Pécs, Pécs, Hungary
- National Laboratory for Drug Research and Development, Budapest, Hungary
- Hungarian Research Network, Chronic Pain Research Group, Pécs, Hungary
| | - Balázs Zoltán Zsidó
- National Laboratory for Drug Research and Development, Budapest, Hungary
- Pharmacoinformatics Unit, Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Andrea Kinga Nehr-Majoros
- Department of Pharmacology and Pharmacotherapy, Medical School and Centre for Neuroscience, University of Pécs, Pécs, Hungary
- National Laboratory for Drug Research and Development, Budapest, Hungary
- Hungarian Research Network, Chronic Pain Research Group, Pécs, Hungary
| | - Rita Börzsei
- National Laboratory for Drug Research and Development, Budapest, Hungary
- Pharmacoinformatics Unit, Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School and Centre for Neuroscience, University of Pécs, Pécs, Hungary
- National Laboratory for Drug Research and Development, Budapest, Hungary
- Hungarian Research Network, Chronic Pain Research Group, Pécs, Hungary
| | - Csaba Hetényi
- National Laboratory for Drug Research and Development, Budapest, Hungary
- Pharmacoinformatics Unit, Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Éva Szőke
- Department of Pharmacology and Pharmacotherapy, Medical School and Centre for Neuroscience, University of Pécs, Pécs, Hungary
- National Laboratory for Drug Research and Development, Budapest, Hungary
- Hungarian Research Network, Chronic Pain Research Group, Pécs, Hungary
| |
Collapse
|
2
|
Kashio M, Derouiche S, Yoshimoto RU, Sano K, Lei J, Kido MA, Tominaga M. Involvement of TRPV4 in temperature-dependent perspiration in mice. eLife 2024; 13:RP92993. [PMID: 38963781 PMCID: PMC11223765 DOI: 10.7554/elife.92993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024] Open
Abstract
Reports indicate that an interaction between TRPV4 and anoctamin 1 (ANO1) could be widely involved in water efflux of exocrine glands, suggesting that the interaction could play a role in perspiration. In secretory cells of sweat glands present in mouse foot pads, TRPV4 clearly colocalized with cytokeratin 8, ANO1, and aquaporin-5 (AQP5). Mouse sweat glands showed TRPV4-dependent cytosolic Ca2+ increases that were inhibited by menthol. Acetylcholine-stimulated sweating in foot pads was temperature-dependent in wild-type, but not in TRPV4-deficient mice and was inhibited by menthol both in wild-type and TRPM8KO mice. The basal sweating without acetylcholine stimulation was inhibited by an ANO1 inhibitor. Sweating could be important for maintaining friction forces in mouse foot pads, and this possibility is supported by the finding that wild-type mice climbed up a slippery slope more easily than TRPV4-deficient mice. Furthermore, TRPV4 expression was significantly higher in controls and normohidrotic skin from patients with acquired idiopathic generalized anhidrosis (AIGA) compared to anhidrotic skin from patients with AIGA. Collectively, TRPV4 is likely involved in temperature-dependent perspiration via interactions with ANO1, and TRPV4 itself or the TRPV4/ANO 1 complex would be targeted to develop agents that regulate perspiration.
Collapse
Affiliation(s)
- Makiko Kashio
- Division of Cell Signaling, National Institute for Physiological Sciences, National Institutes of Natural SciencesOkazakiJapan
- Thermal Biology Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural SciencesOkazakiJapan
- Department of Cell Physiology, Faculty of Life Sciences, Kumamoto UniversityKumamotoJapan
| | - Sandra Derouiche
- Division of Cell Signaling, National Institute for Physiological Sciences, National Institutes of Natural SciencesOkazakiJapan
| | - Reiko U Yoshimoto
- Division of Histology and Neuroanatomy, Department of Anatomy and Physiology, Faculty of Medicine, Saga UniversitySagaJapan
| | - Kenji Sano
- Department of Laboratory Medicine, Shinshu University HospitalMatsumotoJapan
| | - Jing Lei
- Division of Cell Signaling, National Institute for Physiological Sciences, National Institutes of Natural SciencesOkazakiJapan
- Thermal Biology Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural SciencesOkazakiJapan
- Department of Dermatology, Graduate School of Medicine, Osaka UniversitySuitaJapan
| | - Mizuho A Kido
- Division of Histology and Neuroanatomy, Department of Anatomy and Physiology, Faculty of Medicine, Saga UniversitySagaJapan
| | - Makoto Tominaga
- Division of Cell Signaling, National Institute for Physiological Sciences, National Institutes of Natural SciencesOkazakiJapan
- Thermal Biology Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural SciencesOkazakiJapan
- Thermal Biology Research Group, Nagoya Advanced Research and Development Center, Nagoya City UniversityNagoyaJapan
| |
Collapse
|
3
|
Yongming L, Yizhe X, Zhikai Q, Yupeng W, Xiang W, Mengyuan Y, Guoqing D, Hongsheng Z. Identification of ion channel-related genes as diagnostic markers and potential therapeutic targets for osteoarthritis through bioinformatics and machine learning-based approaches. Biomarkers 2024; 29:285-297. [PMID: 38767974 DOI: 10.1080/1354750x.2024.2358316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/05/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND Osteoarthritis (OA) is a debilitating joint disorder characterized by the progressive degeneration of articular cartilage. Although the role of ion channels in OA pathogenesis is increasingly recognized, diagnostic markers and targeted therapies remain limited. METHODS In this study, we analyzed the GSE48556 dataset to identify differentially expressed ion channel-related genes (DEGs) in OA and normal controls. We employed machine learning algorithms, least absolute shrinkage and selection operator(LASSO), and support vector machine recursive feature elimination(SVM-RFE) to select potential diagnostic markers. Then the gene set enrichment analysis (GSEA) and gene set variation analysis (GSVA) were performed to explore the potential diagnostic markers' involvement in biological pathways. Finally, weighted gene co-expression network analysis (WGCNA) was used to identify key genes associated with OA. RESULTS We identified a total of 47 DEGs, with the majority involved in transient receptor potential (TRP) pathways. Seven genes (CHRNA4, GABRE, HTR3B, KCNG2, KCNJ2, LRRC8C, and TRPM5) were identified as the best characteristic genes for distinguishing OA from healthy samples. We performed clustering analysis and identified two distinct subtypes of OA, C1, and C2, with differential gene expression and immune cell infiltration profiles. Then we identified three key genes (PPP1R3D, ZNF101, and LOC651309) associated with OA. We constructed a prediction model using these genes and validated it using the GSE46750 dataset, demonstrating reasonable accuracy and specificity. CONCLUSIONS Our findings provide novel insights into the role of ion channel-related genes in OA pathogenesis and offer potential diagnostic markers and therapeutic targets for the treatment of OA.
Collapse
Affiliation(s)
- Liu Yongming
- Shi's Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Traumatology & Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Xiong Yizhe
- Shi's Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Traumatology & Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Qian Zhikai
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Wang Yupeng
- Shi's Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Traumatology & Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Wang Xiang
- Shi's Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Traumatology & Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yin Mengyuan
- Department of Traditional Chinese Orthopedics, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Du Guoqing
- Shi's Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Traumatology & Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Zhan Hongsheng
- Shi's Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Traumatology & Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
4
|
Feng R, Sheng H, Lian Y. Advances in using ultrasound to regulate the nervous system. Neurol Sci 2024; 45:2997-3006. [PMID: 38436788 DOI: 10.1007/s10072-024-07426-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 02/23/2024] [Indexed: 03/05/2024]
Abstract
Ultrasound is a mechanical vibration with a frequency greater than 20 kHz. Due to its high spatial resolution, good directionality, and convenient operation in neural regulation, it has recently received increasing attention from scientists. However, the mechanism by which ultrasound regulates the nervous system is still unclear. This article mainly explores the possible mechanisms of ultrasound's mechanical effects, cavitation effects, thermal effects, and the rise of sonogenetics. In addition, the essence of action potential and its relationship with ultrasound were also discussed. Traditional theory treats nerve impulses as pure electrical signals, similar to cable theory. However, this theory cannot explain the phenomenon of inductance and cell membrane bulging out during the propagation of action potential. Therefore, the flexoelectric effect of cell membrane and soliton model reveal that action potential may also be a mechanical wave. Finally, we also elaborated the therapeutic effect of ultrasound on nervous system disease such as epilepsy, Parkinson's disease, and Alzheimer's disease.
Collapse
Affiliation(s)
- Rui Feng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hanqing Sheng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yajun Lian
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
5
|
Harris BJ, Nguyen PT, Zhou G, Wulff H, DiMaio F, Yarov-Yarovoy V. Toward high-resolution modeling of small molecule-ion channel interactions. Front Pharmacol 2024; 15:1411428. [PMID: 38919257 PMCID: PMC11196768 DOI: 10.3389/fphar.2024.1411428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/13/2024] [Indexed: 06/27/2024] Open
Abstract
Ion channels are critical drug targets for a range of pathologies, such as epilepsy, pain, itch, autoimmunity, and cardiac arrhythmias. To develop effective and safe therapeutics, it is necessary to design small molecules with high potency and selectivity for specific ion channel subtypes. There has been increasing implementation of structure-guided drug design for the development of small molecules targeting ion channels. We evaluated the performance of two RosettaLigand docking methods, RosettaLigand and GALigandDock, on the structures of known ligand-cation channel complexes. Ligands were docked to voltage-gated sodium (NaV), voltage-gated calcium (CaV), and transient receptor potential vanilloid (TRPV) channel families. For each test case, RosettaLigand and GALigandDock methods frequently sampled a ligand-binding pose within a root mean square deviation (RMSD) of 1-2 Å relative to the experimental ligand coordinates. However, RosettaLigand and GALigandDock scoring functions cannot consistently identify experimental ligand coordinates as top-scoring models. Our study reveals that the proper scoring criteria for RosettaLigand and GALigandDock modeling of ligand-ion channel complexes should be assessed on a case-by-case basis using sufficient ligand and receptor interface sampling, knowledge about state-specific interactions of the ion channel, and inherent receptor site flexibility that could influence ligand binding.
Collapse
Affiliation(s)
- Brandon J. Harris
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, United States
- Biophysics Graduate Group, University of California, Davis, Davis, CA, United States
| | - Phuong T. Nguyen
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, United States
| | - Guangfeng Zhou
- Department of Biochemistry, University of Washington, Seattle, WA, United States
- Institute for Protein Design, University of Washington, Seattle, WA, United States
| | - Heike Wulff
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Frank DiMaio
- Department of Biochemistry, University of Washington, Seattle, WA, United States
| | - Vladimir Yarov-Yarovoy
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, United States
- Biophysics Graduate Group, University of California, Davis, Davis, CA, United States
- Department of Anesthesiology and Pain Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
6
|
Liu X, Zhang M, He C, Jia S, Xiang R, Xu Y, Zhao M. Research focus and thematic trends of transient receptor potential vanilloid member 1 research: a bibliometric analysis of the global publications (1990-2023). NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1327-1346. [PMID: 37695335 DOI: 10.1007/s00210-023-02709-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
Recently, various studies have been devoted to the study of transient receptor potential vanilloid member 1 (TRPV1)-related diseases, potential drugs, and related mechanisms. The objective of this investigation was to examine the significant areas and cutting-edge developments in TRPV1 study within recent decades. Articles or reviews were obtained from the Web of Science Core Collection. VOSviewer 1.6.18 and CiteSpace 6.1 R2 software were utilized to examine publication growth, distribution by country/region, institution, journal, authorship, references, and keywords. The software identified keywords with a high citation burstiness to determine emerging topics. From 1990 to 2023, the annual global publications increased by 62,000%, from 1 to 621. Journal of neuroscience published the most manuscripts and Nature produced the highest citations. The USA, Seoul National University and Di marzo V were the most productive and impactful institution, country, and author, respectively. "TRPV1," "Capsaicin receptor," "Activation," and "Pain" are the most important keywords. The burst keywords "TRPV1 channel," "Oxidative stress," "TRPV1 structure," and "Cancer" are supposed to be the research frontiers. The present study offers valuable insights into the understanding of TRPV1 and pain-related conditions. The research on TRPV1 has demonstrated a steady increase in studies related to pain-related diseases in the past few decades. The significance of TRPV1 in cancer pathogenesis and the resolution of its structure will emerge as a new academic trend in this field, providing direction for more widespread and comprehensive studies in the future.
Collapse
Affiliation(s)
- Xin Liu
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Mengying Zhang
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Chongyang He
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Shubing Jia
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Rongwu Xiang
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Yijia Xu
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China.
| | - Mingyi Zhao
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China.
| |
Collapse
|
7
|
Maruhashi T, Miki H, Sogabe K, Oda A, Sumitani R, Oura M, Takahashi M, Harada T, Fujii S, Nakamura S, Kurahashi K, Endo I, Abe M. Acute suppression of translation by hyperthermia enhances anti-myeloma activity of carfilzomib. Int J Hematol 2024; 119:291-302. [PMID: 38252236 DOI: 10.1007/s12185-023-03706-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/27/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024]
Abstract
Hyperthermia is a unique treatment option for cancers. Multiple myeloma (MM) remains incurable and innovative therapeutic options are needed. We investigated the efficacy of hyperthermia and carfilzomib in combination against MM cells. Although MM cell lines exhibited different susceptibilities to pulsatile carfilzomib treatment, mild hyperthermia at 43℃ induced MM cell death in all cell lines in a time-dependent manner. Hyperthermia and carfilzomib cooperatively induced MM cell death even under suboptimal conditions. The pro-survival mediators PIM2 and NRF2 accumulated in MM cells due to inhibition of their proteasomal degradation by carfilzomib; however, hyperthermia acutely suppressed translation in parallel with phosphorylation of eIF2α to reduce these proteins in MM cells. Recovery of β5 subunit enzymatic activity from its immediate inhibition by carfilzomib was observed at 24 h in carfilzomib-insusceptible KMS-11, OPM-2, and RPMI8226 cells, but not in carfilzomib-sensitive MM.1S cells. However, heat treatment suppressed the recovery of β5 subunit activity in these carfilzomib-insusceptible cells. Therefore, hyperthermia re-sensitized MM cells to carfilzomib. Our results support the treatment of MM with hyperthermia in combination with carfilzomib. Further research is warranted on hyperthermia for drug-resistant extramedullary plasmacytoma.
Collapse
Affiliation(s)
- Tomoko Maruhashi
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Hirokazu Miki
- Division of Transfusion Medicine and Cell Therapy, Tokushima University Hospital, 2-50-1 Kuramoto-Cho, Tokushima, 770-8503, Japan.
| | - Kimiko Sogabe
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Asuka Oda
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Ryohei Sumitani
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Masahiro Oura
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Mamiko Takahashi
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Takeshi Harada
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Shiro Fujii
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Shingen Nakamura
- Department of Community Medicine and Medical Science, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Kiyoe Kurahashi
- Department of Community Medicine for Respirology, Hematology and Metabolism, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Itsuro Endo
- Department of Bioregulatory Sciences, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Masahiro Abe
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan.
- Department of Hematology, Kawashima Hospital, 6-1 Kitasakoichiban-Cho, Tokushima, 770-0011, Japan.
| |
Collapse
|
8
|
Zhou Y, Bennett TM, Ruzycki PA, Guo Z, Cao YQ, Shahidullah M, Delamere NA, Shiels A. A Cataract-Causing Mutation in the TRPM3 Cation Channel Disrupts Calcium Dynamics in the Lens. Cells 2024; 13:257. [PMID: 38334649 PMCID: PMC10854584 DOI: 10.3390/cells13030257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/10/2024] Open
Abstract
TRPM3 belongs to the melastatin sub-family of transient receptor potential (TRPM) cation channels and has been shown to function as a steroid-activated, heat-sensitive calcium ion (Ca2+) channel. A missense substitution (p.I65M) in the TRPM3 gene of humans (TRPM3) and mice (Trpm3) has been shown to underlie an inherited form of early-onset, progressive cataract. Here, we model the pathogenetic effects of this cataract-causing mutation using 'knock-in' mutant mice and human cell lines. Trpm3 and its intron-hosted micro-RNA gene (Mir204) were strongly co-expressed in the lens epithelium and other non-pigmented and pigmented ocular epithelia. Homozygous Trpm3-mutant lenses displayed elevated cytosolic Ca2+ levels and an imbalance of sodium (Na+) and potassium (K+) ions coupled with increased water content. Homozygous TRPM3-mutant human lens epithelial (HLE-B3) cell lines and Trpm3-mutant lenses exhibited increased levels of phosphorylated mitogen-activated protein kinase 1/extracellular signal-regulated kinase 2 (MAPK1/ERK2/p42) and MAPK3/ERK1/p44. Mutant TRPM3-M65 channels displayed an increased sensitivity to external Ca2+ concentration and an altered dose response to pregnenolone sulfate (PS) activation. Trpm3-mutant lenses shared the downregulation of genes involved in insulin/peptide secretion and the upregulation of genes involved in Ca2+ dynamics. By contrast, Trpm3-deficient lenses did not replicate the pathophysiological changes observed in Trpm3-mutant lenses. Collectively, our data suggest that a cataract-causing substitution in the TRPM3 cation channel elicits a deleterious gain-of-function rather than a loss-of-function mechanism in the lens.
Collapse
Affiliation(s)
- Yuefang Zhou
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Thomas M. Bennett
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Philip A. Ruzycki
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Zhaohua Guo
- Department of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yu-Qing Cao
- Department of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Mohammad Shahidullah
- Department of Physiology, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Nicholas A. Delamere
- Department of Physiology, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Alan Shiels
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
9
|
Amaya-Rodriguez CA, Carvajal-Zamorano K, Bustos D, Alegría-Arcos M, Castillo K. A journey from molecule to physiology and in silico tools for drug discovery targeting the transient receptor potential vanilloid type 1 (TRPV1) channel. Front Pharmacol 2024; 14:1251061. [PMID: 38328578 PMCID: PMC10847257 DOI: 10.3389/fphar.2023.1251061] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 12/14/2023] [Indexed: 02/09/2024] Open
Abstract
The heat and capsaicin receptor TRPV1 channel is widely expressed in nerve terminals of dorsal root ganglia (DRGs) and trigeminal ganglia innervating the body and face, respectively, as well as in other tissues and organs including central nervous system. The TRPV1 channel is a versatile receptor that detects harmful heat, pain, and various internal and external ligands. Hence, it operates as a polymodal sensory channel. Many pathological conditions including neuroinflammation, cancer, psychiatric disorders, and pathological pain, are linked to the abnormal functioning of the TRPV1 in peripheral tissues. Intense biomedical research is underway to discover compounds that can modulate the channel and provide pain relief. The molecular mechanisms underlying temperature sensing remain largely unknown, although they are closely linked to pain transduction. Prolonged exposure to capsaicin generates analgesia, hence numerous capsaicin analogs have been developed to discover efficient analgesics for pain relief. The emergence of in silico tools offered significant techniques for molecular modeling and machine learning algorithms to indentify druggable sites in the channel and for repositioning of current drugs aimed at TRPV1. Here we recapitulate the physiological and pathophysiological functions of the TRPV1 channel, including structural models obtained through cryo-EM, pharmacological compounds tested on TRPV1, and the in silico tools for drug discovery and repositioning.
Collapse
Affiliation(s)
- Cesar A. Amaya-Rodriguez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Departamento de Fisiología y Comportamiento Animal, Facultad de Ciencias Naturales, Exactas y Tecnología, Universidad de Panamá, Ciudad de Panamá, Panamá
| | - Karina Carvajal-Zamorano
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Daniel Bustos
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado Universidad Católica del Maule, Talca, Chile
- Laboratorio de Bioinformática y Química Computacional, Departamento de Medicina Traslacional, Facultad de Medicina, Universidad Católica del Maule, Talca, Chile
| | - Melissa Alegría-Arcos
- Núcleo de Investigación en Data Science, Facultad de Ingeniería y Negocios, Universidad de las Américas, Santiago, Chile
| | - Karen Castillo
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado Universidad Católica del Maule, Talca, Chile
| |
Collapse
|
10
|
Tempone MH, Borges-Martins VP, César F, Alexandrino-Mattos DP, de Figueiredo CS, Raony Í, dos Santos AA, Duarte-Silva AT, Dias MS, Freitas HR, de Araújo EG, Ribeiro-Resende VT, Cossenza M, P. Silva H, P. de Carvalho R, Ventura ALM, Calaza KC, Silveira MS, Kubrusly RCC, de Melo Reis RA. The Healthy and Diseased Retina Seen through Neuron-Glia Interactions. Int J Mol Sci 2024; 25:1120. [PMID: 38256192 PMCID: PMC10817105 DOI: 10.3390/ijms25021120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
The retina is the sensory tissue responsible for the first stages of visual processing, with a conserved anatomy and functional architecture among vertebrates. To date, retinal eye diseases, such as diabetic retinopathy, age-related macular degeneration, retinitis pigmentosa, glaucoma, and others, affect nearly 170 million people worldwide, resulting in vision loss and blindness. To tackle retinal disorders, the developing retina has been explored as a versatile model to study intercellular signaling, as it presents a broad neurochemical repertoire that has been approached in the last decades in terms of signaling and diseases. Retina, dissociated and arranged as typical cultures, as mixed or neuron- and glia-enriched, and/or organized as neurospheres and/or as organoids, are valuable to understand both neuronal and glial compartments, which have contributed to revealing roles and mechanisms between transmitter systems as well as antioxidants, trophic factors, and extracellular matrix proteins. Overall, contributions in understanding neurogenesis, tissue development, differentiation, connectivity, plasticity, and cell death are widely described. A complete access to the genome of several vertebrates, as well as the recent transcriptome at the single cell level at different stages of development, also anticipates future advances in providing cues to target blinding diseases or retinal dysfunctions.
Collapse
Affiliation(s)
- Matheus H. Tempone
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.H.T.); (F.C.); (D.P.A.-M.); (V.T.R.-R.)
| | - Vladimir P. Borges-Martins
- Department of Physiology and Pharmacology, Biomedical Institute and Program of Neurosciences, Federal Fluminense University, Niterói 24020-150, Brazil; (V.P.B.-M.); (A.A.d.S.); (M.C.); (R.C.C.K.)
| | - Felipe César
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.H.T.); (F.C.); (D.P.A.-M.); (V.T.R.-R.)
| | - Dio Pablo Alexandrino-Mattos
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.H.T.); (F.C.); (D.P.A.-M.); (V.T.R.-R.)
| | - Camila S. de Figueiredo
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil; (C.S.d.F.); (A.T.D.-S.); (E.G.d.A.); (R.P.d.C.); (A.L.M.V.); (K.C.C.)
| | - Ícaro Raony
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (Í.R.); (H.R.F.)
| | - Aline Araujo dos Santos
- Department of Physiology and Pharmacology, Biomedical Institute and Program of Neurosciences, Federal Fluminense University, Niterói 24020-150, Brazil; (V.P.B.-M.); (A.A.d.S.); (M.C.); (R.C.C.K.)
| | - Aline Teixeira Duarte-Silva
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil; (C.S.d.F.); (A.T.D.-S.); (E.G.d.A.); (R.P.d.C.); (A.L.M.V.); (K.C.C.)
| | - Mariana Santana Dias
- Laboratory of Gene Therapy and Viral Vectors, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.S.D.); (H.P.S.)
| | - Hércules Rezende Freitas
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (Í.R.); (H.R.F.)
| | - Elisabeth G. de Araújo
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil; (C.S.d.F.); (A.T.D.-S.); (E.G.d.A.); (R.P.d.C.); (A.L.M.V.); (K.C.C.)
- National Institute of Science and Technology on Neuroimmunomodulation—INCT-NIM, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil
| | - Victor Tulio Ribeiro-Resende
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.H.T.); (F.C.); (D.P.A.-M.); (V.T.R.-R.)
| | - Marcelo Cossenza
- Department of Physiology and Pharmacology, Biomedical Institute and Program of Neurosciences, Federal Fluminense University, Niterói 24020-150, Brazil; (V.P.B.-M.); (A.A.d.S.); (M.C.); (R.C.C.K.)
| | - Hilda P. Silva
- Laboratory of Gene Therapy and Viral Vectors, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.S.D.); (H.P.S.)
| | - Roberto P. de Carvalho
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil; (C.S.d.F.); (A.T.D.-S.); (E.G.d.A.); (R.P.d.C.); (A.L.M.V.); (K.C.C.)
| | - Ana L. M. Ventura
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil; (C.S.d.F.); (A.T.D.-S.); (E.G.d.A.); (R.P.d.C.); (A.L.M.V.); (K.C.C.)
| | - Karin C. Calaza
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil; (C.S.d.F.); (A.T.D.-S.); (E.G.d.A.); (R.P.d.C.); (A.L.M.V.); (K.C.C.)
| | - Mariana S. Silveira
- Laboratory for Investigation in Neuroregeneration and Development, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil;
| | - Regina C. C. Kubrusly
- Department of Physiology and Pharmacology, Biomedical Institute and Program of Neurosciences, Federal Fluminense University, Niterói 24020-150, Brazil; (V.P.B.-M.); (A.A.d.S.); (M.C.); (R.C.C.K.)
| | - Ricardo A. de Melo Reis
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.H.T.); (F.C.); (D.P.A.-M.); (V.T.R.-R.)
| |
Collapse
|
11
|
Huang J, Korsunsky A, Yazdani M, Chen J. Targeting TRP channels: recent advances in structure, ligand binding, and molecular mechanisms. Front Mol Neurosci 2024; 16:1334370. [PMID: 38273937 PMCID: PMC10808746 DOI: 10.3389/fnmol.2023.1334370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
Transient receptor potential (TRP) channels are a large and diverse family of transmembrane ion channels that are widely expressed, have important physiological roles, and are associated with many human diseases. These proteins are actively pursued as promising drug targets, benefitting greatly from advances in structural and mechanistic studies of TRP channels. At the same time, the complex, polymodal activation and regulation of TRP channels have presented formidable challenges. In this short review, we summarize recent progresses toward understanding the structural basis of TRP channel function, as well as potential ligand binding sites that could be targeted for therapeutics. A particular focus is on the current understanding of the molecular mechanisms of TRP channel activation and regulation, where many fundamental questions remain unanswered. We believe that a deeper understanding of the functional mechanisms of TRP channels will be critical and likely transformative toward developing successful therapeutic strategies targeting these exciting proteins. This endeavor will require concerted efforts from computation, structural biology, medicinal chemistry, electrophysiology, pharmacology, drug safety and clinical studies.
Collapse
Affiliation(s)
- Jian Huang
- Department of Chemistry, University of Massachusetts, Amherst, MA, United States
| | - Aron Korsunsky
- Department of Chemistry, University of Massachusetts, Amherst, MA, United States
| | - Mahdieh Yazdani
- Modeling and Informatics, Merck & Co., Inc., West Point, PA, United States
| | - Jianhan Chen
- Department of Chemistry, University of Massachusetts, Amherst, MA, United States
| |
Collapse
|
12
|
Wu F, Bu S, Wang H. Role of TRP Channels in Metabolism-Related Diseases. Int J Mol Sci 2024; 25:692. [PMID: 38255767 PMCID: PMC10815096 DOI: 10.3390/ijms25020692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 01/24/2024] Open
Abstract
Metabolic syndrome (MetS), with its high prevalence and significant impact on cardiovascular disease, poses a substantial threat to human health. The early identification of pathological abnormalities related to MetS and prevention of the risk of associated diseases is of paramount importance. Transient Receptor Potential (TRP) channels, a type of nonselective cation channel, are expressed in a variety of tissues and have been implicated in the onset and progression of numerous metabolism-related diseases. This study aims to review and discuss the expression and function of TRP channels in metabolism-related tissues and blood vessels, and to elucidate the interactions and mechanisms between TRP channels and metabolism-related diseases. A comprehensive literature search was conducted using keywords such as TRP channels, metabolic syndrome, pancreas, liver, oxidative stress, diabetes, hypertension, and atherosclerosis across various academic databases including PubMed, Google Scholar, Elsevier, Web of Science, and CNKI. Our review of the current research suggests that TRP channels may be involved in the development of metabolism-related diseases by regulating insulin secretion and release, lipid metabolism, vascular functional activity, oxidative stress, and inflammatory response. TRP channels, as nonselective cation channels, play pivotal roles in sensing various intra- and extracellular stimuli and regulating ion homeostasis by osmosis. They present potential new targets for the diagnosis or treatment of metabolism-related diseases.
Collapse
Affiliation(s)
| | | | - Hongmei Wang
- School of Medicine, Southeast University, Nanjing 210009, China; (F.W.); (S.B.)
| |
Collapse
|
13
|
Tranter JD, Kumar A, Nair VK, Sah R. Mechanosensing in Metabolism. Compr Physiol 2023; 14:5269-5290. [PMID: 38158369 DOI: 10.1002/cphy.c230005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Electrical mechanosensing is a process mediated by specialized ion channels, gated directly or indirectly by mechanical forces, which allows cells to detect and subsequently respond to mechanical stimuli. The activation of mechanosensitive (MS) ion channels, intrinsically gated by mechanical forces, or mechanoresponsive (MR) ion channels, indirectly gated by mechanical forces, results in electrical signaling across lipid bilayers, such as the plasma membrane. While the functions of mechanically gated channels within a sensory context (e.g., proprioception and touch) are well described, there is emerging data demonstrating functions beyond touch and proprioception, including mechanoregulation of intracellular signaling and cellular/systemic metabolism. Both MR and MS ion channel signaling have been shown to contribute to the regulation of metabolic dysfunction, including obesity, insulin resistance, impaired insulin secretion, and inflammation. This review summarizes our current understanding of the contributions of several MS/MR ion channels in cell types implicated in metabolic dysfunction, namely, adipocytes, pancreatic β-cells, hepatocytes, and skeletal muscle cells, and discusses MS/MR ion channels as possible therapeutic targets. © 2024 American Physiological Society. Compr Physiol 14:5269-5290, 2024.
Collapse
Affiliation(s)
- John D Tranter
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ashutosh Kumar
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Vinayak K Nair
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Rajan Sah
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, Missouri, USA
- Center for Cardiovascular Research, Washington University, St. Louis, Missouri, USA
- St. Louis VA Medical Center, St. Louis, Missouri, USA
| |
Collapse
|
14
|
Chiang MH, Lin YC, Wu T, Wu CL. Thermosensation and Temperature Preference: From Molecules to Neuronal Circuits in Drosophila. Cells 2023; 12:2792. [PMID: 38132112 PMCID: PMC10741703 DOI: 10.3390/cells12242792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
Temperature has a significant effect on all physiological processes of animals. Suitable temperatures promote responsiveness, movement, metabolism, growth, and reproduction in animals, whereas extreme temperatures can cause injury or even death. Thus, thermosensation is important for survival in all animals. However, mechanisms regulating thermosensation remain unexplored, mostly because of the complexity of mammalian neural circuits. The fruit fly Drosophila melanogaster achieves a desirable body temperature through ambient temperature fluctuations, sunlight exposure, and behavioral strategies. The availability of extensive genetic tools and resources for studying Drosophila have enabled scientists to unravel the mechanisms underlying their temperature preference. Over the past 20 years, Drosophila has become an ideal model for studying temperature-related genes and circuits. This review provides a comprehensive overview of our current understanding of thermosensation and temperature preference in Drosophila. It encompasses various aspects, such as the mechanisms by which flies sense temperature, the effects of internal and external factors on temperature preference, and the adaptive strategies employed by flies in extreme-temperature environments. Understanding the regulating mechanisms of thermosensation and temperature preference in Drosophila can provide fundamental insights into the underlying molecular and neural mechanisms that control body temperature and temperature-related behavioral changes in other animals.
Collapse
Affiliation(s)
- Meng-Hsuan Chiang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (M.-H.C.); (Y.-C.L.)
| | - Yu-Chun Lin
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (M.-H.C.); (Y.-C.L.)
| | - Tony Wu
- Department of Neurology, New Taipei Municipal TuCheng Hospital, Chang Gung Memorial Hospital, New Taipei City 23652, Taiwan;
| | - Chia-Lin Wu
- Department of Neurology, New Taipei Municipal TuCheng Hospital, Chang Gung Memorial Hospital, New Taipei City 23652, Taiwan;
- Department of Biochemistry, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Brain Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
15
|
Raisch T, Raunser S. The modes of action of ion-channel-targeting neurotoxic insecticides: lessons from structural biology. Nat Struct Mol Biol 2023; 30:1411-1427. [PMID: 37845413 DOI: 10.1038/s41594-023-01113-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 08/31/2023] [Indexed: 10/18/2023]
Abstract
Insecticides are indispensable tools for plant protection in modern agriculture. Despite having highly heterogeneous structures, many neurotoxic insecticides use similar principles to inhibit or deregulate neuronal ion channels. Insecticides targeting pentameric ligand-gated channels are structural mimetics of neurotransmitters or manipulate and deregulate the proteins. Those binding to (pseudo-)tetrameric voltage-gated(-like) channels, on the other hand, are natural or synthetic compounds that directly block the ion-conducting pore or prevent conformational changes in the transmembrane domain necessary for opening and closing the pore. The use of a limited number of inhibition mechanisms can be problematic when resistances arise and become more widespread. Therefore, there is a rising interest in the development of insecticides with novel mechanisms that evade resistance and are pest-insect-specific. During the last decade, most known insecticide targets, many with bound compounds, have been structurally characterized, bringing the rational design of novel classes of agrochemicals within closer reach than ever before.
Collapse
Affiliation(s)
- Tobias Raisch
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany.
| | - Stefan Raunser
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany.
| |
Collapse
|
16
|
Liu Y, Lyu Y, Zhu L, Wang H. Role of TRP Channels in Liver-Related Diseases. Int J Mol Sci 2023; 24:12509. [PMID: 37569884 PMCID: PMC10420300 DOI: 10.3390/ijms241512509] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
The liver plays a crucial role in preserving the homeostasis of an entire organism by metabolizing both endogenous and exogenous substances, a process that relies on the harmonious interactions of hepatocytes, hepatic stellate cells (HSCs), Kupffer cells (KCs), and vascular endothelial cells (ECs). The disruption of the liver's normal structure and function by diverse pathogenic factors imposes a significant healthcare burden. At present, most of the treatments for liver disease are palliative in nature, rather than curative or restorative. Transient receptor potential (TRP) channels, which are extensively expressed in the liver, play a crucial role in regulating intracellular cation concentration and serve as the origin or intermediary stage of certain signaling pathways that contribute to liver diseases. This review provides an overview of recent developments in liver disease research, as well as an examination of the expression and function of TRP channels in various liver cell types. Furthermore, we elucidate the molecular mechanism by which TRP channels mediate liver injury, liver fibrosis, and hepatocellular carcinoma (HCC). Ultimately, the present discourse delves into the current state of research and extant issues pertaining to the targeting of TRP channels in the treatment of liver diseases and other ailments. Despite the numerous obstacles encountered, TRP channels persist as an extremely important target for forthcoming clinical interventions aimed at treating liver diseases.
Collapse
Affiliation(s)
- Yusheng Liu
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing 210009, China; (Y.L.); (Y.L.)
| | - Yihan Lyu
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing 210009, China; (Y.L.); (Y.L.)
| | - Lijuan Zhu
- Key Laboratory of Developmental Genes and Human Diseases, MOE, Department of Histology and Embryology, School of Medicine, Southeast University, Nanjing 210009, China;
| | - Hongmei Wang
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing 210009, China; (Y.L.); (Y.L.)
| |
Collapse
|
17
|
Zheng D, Long S, Xi M. Identification of TRPM2 as a Potential Therapeutic Target Associated with Immune Infiltration: A Comprehensive Pan-Cancer Analysis and Experimental Verification in Ovarian Cancer. Int J Mol Sci 2023; 24:11912. [PMID: 37569287 PMCID: PMC10418504 DOI: 10.3390/ijms241511912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023] Open
Abstract
The exact role of Transient receptor potential melastatin 2 (TRPM2) in tumor progression and immunomodulation remains elusive. We comprehensively investigated the expression pattern, diagnostic value, prognostic impact, genetic and epigenetic alterations of TRPM2 in pan-cancer. Then, we explored underlying pathways associated with TRPM2 and immune-related signatures. Ovarian cancer (OV) specimens were enrolled to test the expression of TRPM2 by immunohistochemistry and RT-qPCR. OV cell A2780 transfected with shRNA targeting TRPM2 was used in subsequent experiments. TRPM2 was aberrantly expressed and associated with unfavorable prognosis across various cancers. It possesses significant diagnostic values with AUC > 0.90. TRPM2 participated in pathways mediating immunoregulation and tumorigenesis. The expression of TRPM2 was significantly correlated with tumor microenvironment scores, tumor-stemness index, macrophages infiltration, immune checkpoints, and immune-related genes. OV single-cell datasets also indicated that TRPM2 was predominantly distributed on macrophages and malignancies. The overexpressed TRPM2 in OV tissues was validated at both the mRNA and protein levels. TRPM2 expression was significantly correlated with type2 macrophage marker CD206. Knockdown of TRPM2 inhibited OV cell proliferation and promoted apoptosis. Overall, TRPM2 has relevance to an immunosuppressive tumor microenvironment by modulating macrophage. It could serve as a powerful biomarker for tumor screening and prognosis, and a potential therapeutic target for tumor treatment, especially for OV.
Collapse
Affiliation(s)
- Danxi Zheng
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, No. 20, Third Section of People’s South Road, Chengdu 610041, China;
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Chengdu 610041, China
| | - Siyu Long
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second Hospital, Sichuan University, Chengdu 610041, China;
| | - Mingrong Xi
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, No. 20, Third Section of People’s South Road, Chengdu 610041, China;
| |
Collapse
|
18
|
Du Preez S, Eaton-Fitch N, Smith PK, Marshall-Gradisnik S. Altered TRPM7-Dependent Calcium Influx in Natural Killer Cells of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Patients. Biomolecules 2023; 13:1039. [PMID: 37509075 PMCID: PMC10377690 DOI: 10.3390/biom13071039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a disabling multisystemic condition. The pathomechanism of ME/CFS remains unestablished; however, impaired natural killer (NK) cell cytotoxicity is a consistent feature of this condition. Calcium (Ca2+) is crucial for NK cell effector functions. Growing research recognises Ca2+ signalling dysregulation in ME/CFS patients and implicates transient receptor potential ion channel dysfunction. TRPM7 (melastatin) was recently considered in the pathoaetiology of ME/CFS as it participates in several Ca2+-dependent processes that are central to NK cell cytotoxicity which may be compromised in ME/CFS. TRPM7-dependent Ca2+ influx was assessed in NK cells isolated from n = 9 ME/CFS patients and n = 9 age- and sex-matched healthy controls (HCs) using live cell fluorescent imaging techniques. Slope (p < 0.05) was significantly reduced in ME/CFS patients compared with HCs following TRPM7 activation. Half-time of maximal response (p < 0.05) and amplitude (p < 0.001) were significantly reduced in the HCs compared with the ME/CFS patients following TRPM7 desensitisation. Findings from this investigation suggest that TRPM7-dependent Ca2+ influx is reduced with agonism and increased with antagonism in ME/CFS patients relative to the age- and sex-matched HCs. The outcomes reported here potentially reflect TRPM3 dysfunction identified in this condition suggesting that ME/CFS is a TRP ion channelopathy.
Collapse
Affiliation(s)
- Stanley Du Preez
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute, Griffith University, Gold Coast 4215, Australia
- Consortium Health International for Myalgic Encephalomyelitis, Menzies Health Institute Queensland, Griffith University, Gold Coast 4215, Australia
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast 4215, Australia
- School of Medicine and Dentistry, Griffith University, Gold Coast 4215, Australia
| | - Natalie Eaton-Fitch
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute, Griffith University, Gold Coast 4215, Australia
- Consortium Health International for Myalgic Encephalomyelitis, Menzies Health Institute Queensland, Griffith University, Gold Coast 4215, Australia
| | - Peter K Smith
- School of Medicine and Dentistry, Griffith University, Gold Coast 4215, Australia
- Queensland Allergy Services, Gold Coast 4215, Australia
| | - Sonya Marshall-Gradisnik
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute, Griffith University, Gold Coast 4215, Australia
- Consortium Health International for Myalgic Encephalomyelitis, Menzies Health Institute Queensland, Griffith University, Gold Coast 4215, Australia
| |
Collapse
|
19
|
Dryn DO, Melnyk MI, Melanaphy D, Kizub IV, Johnson CD, Zholos AV. Bidirectional TRP/L Type Ca 2+ Channel/RyR/BK Ca Molecular and Functional Signaloplex in Vascular Smooth Muscles. Biomolecules 2023; 13:biom13050759. [PMID: 37238629 DOI: 10.3390/biom13050759] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
TRP channels are expressed both in vascular myocytes and endothelial cells, but knowledge of their operational mechanisms in vascular tissue is particularly limited. Here, we show for the first time the biphasic contractile reaction with relaxation followed by a contraction in response to TRPV4 agonist, GSK1016790A, in a rat pulmonary artery preconstricted with phenylephrine. Similar responses were observed both with and without endothelium, and these were abolished by the TRPV4 selective blocker, HC067047, confirming the specific role of TRPV4 in vascular myocytes. Using selective blockers of BKCa and L-type voltage-gated Ca2+ channels (CaL), we found that the relaxation phase was inducted by BKCa activation generating STOCs, while subsequent slowly developing TRPV4-mediated depolarisation activated CaL, producing the second contraction phase. These results are compared to TRPM8 activation using menthol in rat tail artery. Activation of both types of TRP channels produces highly similar changes in membrane potential, namely slow depolarisation with concurrent brief hyperpolarisations due to STOCs. We thus propose a general concept of bidirectional TRP-CaL-RyR-BKCa molecular and functional signaloplex in vascular smooth muscles. Accordingly, both TRPV4 and TRPM8 channels enhance local Ca2+ signals producing STOCs via TRP-RyR-BKCa coupling while simultaneously globally engaging BKCa and CaL channels by altering membrane potential.
Collapse
Affiliation(s)
- Dariia O Dryn
- O.O. Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, 01024 Kyiv, Ukraine
| | - Mariia I Melnyk
- O.O. Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, 01024 Kyiv, Ukraine
- ESC "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, 01601 Kyiv, Ukraine
| | - Donal Melanaphy
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Igor V Kizub
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Christopher D Johnson
- Centre for Biomedical Sciences Education, Queen's University Belfast, Whitla Medical Building, Belfast BT9 7BL, UK
| | - Alexander V Zholos
- ESC "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, 01601 Kyiv, Ukraine
| |
Collapse
|
20
|
Davis MJ, Earley S, Li YS, Chien S. Vascular mechanotransduction. Physiol Rev 2023; 103:1247-1421. [PMID: 36603156 PMCID: PMC9942936 DOI: 10.1152/physrev.00053.2021] [Citation(s) in RCA: 63] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 01/07/2023] Open
Abstract
This review aims to survey the current state of mechanotransduction in vascular smooth muscle cells (VSMCs) and endothelial cells (ECs), including their sensing of mechanical stimuli and transduction of mechanical signals that result in the acute functional modulation and longer-term transcriptomic and epigenetic regulation of blood vessels. The mechanosensors discussed include ion channels, plasma membrane-associated structures and receptors, and junction proteins. The mechanosignaling pathways presented include the cytoskeleton, integrins, extracellular matrix, and intracellular signaling molecules. These are followed by discussions on mechanical regulation of transcriptome and epigenetics, relevance of mechanotransduction to health and disease, and interactions between VSMCs and ECs. Throughout this review, we offer suggestions for specific topics that require further understanding. In the closing section on conclusions and perspectives, we summarize what is known and point out the need to treat the vasculature as a system, including not only VSMCs and ECs but also the extracellular matrix and other types of cells such as resident macrophages and pericytes, so that we can fully understand the physiology and pathophysiology of the blood vessel as a whole, thus enhancing the comprehension, diagnosis, treatment, and prevention of vascular diseases.
Collapse
Affiliation(s)
- Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Scott Earley
- Department of Pharmacology, University of Nevada, Reno, Nevada
| | - Yi-Shuan Li
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
| | - Shu Chien
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
- Department of Medicine, University of California, San Diego, California
| |
Collapse
|
21
|
Kang Y, Xu L, Dong J, Huang Y, Yuan X, Li R, Chen L, Wang Z, Ji X. Calcium-based nanotechnology for cancer therapy. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
22
|
The Molecular Heterogeneity of Store-Operated Ca 2+ Entry in Vascular Endothelial Cells: The Different roles of Orai1 and TRPC1/TRPC4 Channels in the Transition from Ca 2+-Selective to Non-Selective Cation Currents. Int J Mol Sci 2023; 24:ijms24043259. [PMID: 36834672 PMCID: PMC9967124 DOI: 10.3390/ijms24043259] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Store-operated Ca2+ entry (SOCE) is activated in response to the inositol-1,4,5-trisphosphate (InsP3)-dependent depletion of the endoplasmic reticulum (ER) Ca2+ store and represents a ubiquitous mode of Ca2+ influx. In vascular endothelial cells, SOCE regulates a plethora of functions that maintain cardiovascular homeostasis, such as angiogenesis, vascular tone, vascular permeability, platelet aggregation, and monocyte adhesion. The molecular mechanisms responsible for SOCE activation in vascular endothelial cells have engendered a long-lasting controversy. Traditionally, it has been assumed that the endothelial SOCE is mediated by two distinct ion channel signalplexes, i.e., STIM1/Orai1 and STIM1/Transient Receptor Potential Canonical 1(TRPC1)/TRPC4. However, recent evidence has shown that Orai1 can assemble with TRPC1 and TRPC4 to form a non-selective cation channel with intermediate electrophysiological features. Herein, we aim at bringing order to the distinct mechanisms that mediate endothelial SOCE in the vascular tree from multiple species (e.g., human, mouse, rat, and bovine). We propose that three distinct currents can mediate SOCE in vascular endothelial cells: (1) the Ca2+-selective Ca2+-release activated Ca2+ current (ICRAC), which is mediated by STIM1 and Orai1; (2) the store-operated non-selective current (ISOC), which is mediated by STIM1, TRPC1, and TRPC4; and (3) the moderately Ca2+-selective, ICRAC-like current, which is mediated by STIM1, TRPC1, TRPC4, and Orai1.
Collapse
|
23
|
Wang X, Zhou Y, Wang D, Wang Y, Zhou Z, Ma X, Liu X, Dong Y. Cisplatin-induced ototoxicity: From signaling network to therapeutic targets. Biomed Pharmacother 2023; 157:114045. [PMID: 36455457 DOI: 10.1016/j.biopha.2022.114045] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/15/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
Administration of cisplatin, a common chemotherapeutic drug, has an inevitable side effect of sensorineural hearing loss. The main etiologies are stria vascularis injury, spiral ganglion degeneration, and hair cell death. Over several decades, the research scope of cisplatin-induced ototoxicity has expanded with the discovery of the molecular mechanism mediating inner ear cell death, highlighting the roles of reactive oxygen species and transport channels for cisplatin uptake into inner ear cells. Upon entering hair cells, cisplatin disrupts organelle metabolism, induces oxidative stress, and targets DNA to cause intracellular damage. Recent studies have also reported the role of inflammation in cisplatin-induced ototoxicity. In this article, we preform a narrative review of the latest reported molecular mechanisms of cisplatin-induced ototoxicity, from extracellular to intracellular. We build up a signaling network starting with cisplatin entering into the inner ear through the blood labyrinth barrier, disrupting cochlear endolymph homeostasis, and activating inflammatory responses of the outer hair cells. After entering the hair cells, cisplatin causes hair cell death via DNA damage, redox system imbalance, and mitochondrial and endoplasmic reticulum dysfunction, culminating in programmed cell death including apoptosis, necroptosis, autophagic death, pyroptosis, and ferroptosis. Based on the mentioned mechanisms, prominent therapeutic targets, such as channel-blocking drugs of cisplatin transporter, construction of cisplatin structural analogues, anti-inflammatory drugs, antioxidants, cell death inhibitors, and others, were collated. Considering the recent research efforts, we have analyzed the feasibility of the aforementioned therapeutic strategies and proposed our otoprotective approaches to overcome cisplatin-induced ototoxicity.
Collapse
Affiliation(s)
- Xilu Wang
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yingying Zhou
- Department of Obstetrics & gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Dali Wang
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi Wang
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhaoyu Zhou
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiulan Ma
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaofang Liu
- Department of Surgical Oncology, the First Affiliated Hospital of China Medical University, Shenyang, China.
| | - Yaodong Dong
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
24
|
Sukharev S, Anishkin A. Mechanosensitive Channels: History, Diversity, and Mechanisms. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES A: MEMBRANE AND CELL BIOLOGY 2022. [DOI: 10.1134/s1990747822090021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Liu J, Li X, Xu N, Han H, Li X. Role of ion channels in the mechanism of proteinuria (Review). Exp Ther Med 2022; 25:27. [PMID: 36561615 PMCID: PMC9748662 DOI: 10.3892/etm.2022.11726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/10/2022] [Indexed: 11/25/2022] Open
Abstract
Proteinuria is a common clinical manifestation of kidney diseases, such as glomerulonephritis, nephrotic syndrome, immunoglobulin A nephropathy and diabetic nephropathy. Therefore, proteinuria is considered to be a risk factor for renal dysfunction. Furthermore, proteinuria is also significantly associated with the progression of kidney diseases and increased mortality. Its occurrence is closely associated with damage to the structure of the glomerular filtration membrane. An impaired glomerular filtration membrane can affect the selective filtration function of the kidneys; therefore, several macromolecular substances, such as proteins, may pass through the filtration membrane and promote the manifestation of proteinuria. It has been reported that ion channels play a significant role in the mechanisms underlying proteinuria. Ion channel mutations or other dysfunctions have been implicated in several diseases, therefore ion channels could be used as major therapeutic targets. The mechanisms underlying the action of ion channels and ion transporters in proteinuria have been overlooked in the literature, despite their importance in identifying novel targets for treating proteinuria and delaying the progression of kidney diseases. The current review article focused on the four key ion channel groups, namely Na+, Ca2+, Cl- and K+ ion channels and the associated ion transporters.
Collapse
Affiliation(s)
- Jie Liu
- Department of Nephrology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261000, P.R. China
| | - Xuewei Li
- Department of Rheumatology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261000, P.R. China
| | - Ning Xu
- Department of Nephrology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261000, P.R. China
| | - Huirong Han
- Department of Anesthesiology, Weifang Medical University, Weifang, Shandong 261000, P.R. China
| | - Xiangling Li
- Department of Nephrology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261000, P.R. China,Correspondence to: Professor Xiangling Li, Department of Nephrology, Affiliated Hospital of Weifang Medical University, 2428 Yu He Road, Weifang, Shandong 261000, P.R. China
| |
Collapse
|
26
|
Yu M, Ye F, Ma C, Jin X, Ji H, Wang D, Yang Y, Zhu C, Tang Z. Ligustrazine mitigates chronic venous disease-induced pain hyperalgesia through desensitization of inflammation-associated TRPA1 activity in DRG. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115667. [PMID: 36030028 DOI: 10.1016/j.jep.2022.115667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/09/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ligustrazine, an important active ingredient extracted from Ligusticum chuanxiong hort, has been widely used to cure cardiovascular diseases and exerts an analgesic effect. AIMS OF THIS STUDY The aim of this study is to investigate whether ligustrazine mitigates chronic venous disease (CVeD)-induced pain and to explore its underlying mechanisms. MATERIALS AND METHODS A mouse model of CVeD was established by vein ligature. Ligustrazine was administered intraperitoneally to CVeD mice for a single injection (20 mg/kg, 100 mg/kg, and 200 mg/kg) or once a day for three weeks (100 mg/kg and 200 mg/kg), and TRPA1 overexpressed HEK 293 cells were treated with ligustrazine (600 μM) in the presence of mustard oil (100 μM) for 2 min. Patch clamp and calcium imaging were used to measure the inhibitory response of ligustrazine on DRG neurons and TRPA1 transfected HEK293 cells. RESULTS The present results showed that mice receiving vein ligature surgery exhibited obvious pain hypersensitivity to mechanical, cold and thermal stimuli, whereas ligustrazine significantly reversed the pain hyperalgesia in CVeD mice. Furthermore, ligustrazine desensitized transient receptor potential ankyrin 1 (TRPA1) activity in the dorsal root ganglion (DRG) neurons, resulting in suppressing the DRG neuronal excitability in the CVeD mice. However, ligustrazine could not directly inhibit the response of TRPA1 transfected HEK293 cells to mustard oil. Strikingly, ligustrazine restricted the macrophage infiltration and decreased the mRNA levels of Interleukin-1β (IL-1β) and NOD-like receptor protein 3 (NLRP3) in the DRG neurons of the CVeD mice. CONCLUSIONS The present study provided evidence that ligustrazine alleviated pain hypersensitivity to mechanical, cold and thermal stimuli in CVeD mice. Ligustrazine could weaken the activity of TRPA1 in the DRG to mitigate CVeD-induced pain hyperalgesia mainly through inhibition of inflammation. Our findings identify that ligustrazine may be a new therapeutic agent for the treatment of CVeD-induced pain.
Collapse
Affiliation(s)
- Mei Yu
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China; Department of Pharmacy, Taizhou Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Taizhou, Jiangsu, 225300, China
| | - Fan Ye
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Chao Ma
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Xiang Jin
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Haiwang Ji
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Dijun Wang
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Yan Yang
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Chan Zhu
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Zongxiang Tang
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China.
| |
Collapse
|
27
|
Li Y, Ren Q, Bo T, Mo M, Liu Y. AWA and ASH Homologous Sensing Genes of Meloidogyne incognita Contribute to the Tomato Infection Process. Pathogens 2022; 11:pathogens11111322. [PMID: 36365073 PMCID: PMC9693415 DOI: 10.3390/pathogens11111322] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
The AWA neurons of Caenorhabditis elegans mainly perceive volatile attractive odors, while the ASH neurons perceive pH, penetration, nociception, odor tropism, etc. The perceptual neurons of Meloidogyne incognita have been little studied. The number of infestations around and within tomato roots was significantly reduced after RNA interference for high-homology genes in AWA and ASH neurons compared between M. incognita and C. elegans. Through in situ hybridization, we further determined the expression and localization of the homologous genes Mi-odr-10 and Mi-gpa-6 in M. incognita. In this study, we found that M. incognita has neuronal sensing pathways similar to AWA and ASH perception of C. elegans for sensing chemical signals from tomato roots. Silencing the homologous genes in these pathways could affect the nematode perception and infestation of tomato root systems. The results contribute to elucidating the process of the plant host perception of M. incognita.
Collapse
Affiliation(s)
| | | | | | | | - Yajun Liu
- Correspondence: ; Tel.: +86-871-65031093
| |
Collapse
|
28
|
Immanuel T, Li J, Green TN, Bogdanova A, Kalev-Zylinska ML. Deregulated calcium signaling in blood cancer: Underlying mechanisms and therapeutic potential. Front Oncol 2022; 12:1010506. [PMID: 36330491 PMCID: PMC9623116 DOI: 10.3389/fonc.2022.1010506] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/21/2022] [Indexed: 02/05/2023] Open
Abstract
Intracellular calcium signaling regulates diverse physiological and pathological processes. In solid tumors, changes to calcium channels and effectors via mutations or changes in expression affect all cancer hallmarks. Such changes often disrupt transport of calcium ions (Ca2+) in the endoplasmic reticulum (ER) or mitochondria, impacting apoptosis. Evidence rapidly accumulates that this is similar in blood cancer. Principles of intracellular Ca2+ signaling are outlined in the introduction. We describe different Ca2+-toolkit components and summarize the unique relationship between extracellular Ca2+ in the endosteal niche and hematopoietic stem cells. The foundational data on Ca2+ homeostasis in red blood cells is discussed, with the demonstration of changes in red blood cell disorders. This leads to the role of Ca2+ in neoplastic erythropoiesis. Then we expand onto the neoplastic impact of deregulated plasma membrane Ca2+ channels, ER Ca2+ channels, Ca2+ pumps and exchangers, as well as Ca2+ sensor and effector proteins across all types of hematologic neoplasms. This includes an overview of genetic variants in the Ca2+-toolkit encoding genes in lymphoid and myeloid cancers as recorded in publically available cancer databases. The data we compiled demonstrate that multiple Ca2+ homeostatic mechanisms and Ca2+ responsive pathways are altered in hematologic cancers. Some of these alterations may have genetic basis but this requires further investigation. Most changes in the Ca2+-toolkit do not appear to define/associate with specific disease entities but may influence disease grade, prognosis, treatment response, and certain complications. Further elucidation of the underlying mechanisms may lead to novel treatments, with the aim to tailor drugs to different patterns of deregulation. To our knowledge this is the first review of its type in the published literature. We hope that the evidence we compiled increases awareness of the calcium signaling deregulation in hematologic neoplasms and triggers more clinical studies to help advance this field.
Collapse
Affiliation(s)
- Tracey Immanuel
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Jixia Li
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
- Department of Laboratory Medicine, School of Medicine, Foshan University, Foshan City, China
| | - Taryn N. Green
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Anna Bogdanova
- Red Blood Cell Research Group, Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zürich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zürich, Switzerland
| | - Maggie L. Kalev-Zylinska
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
- Haematology Laboratory, Department of Pathology and Laboratory Medicine, Auckland City Hospital, Auckland, New Zealand
| |
Collapse
|
29
|
Van den Eynde C, Held K, Ciprietti M, De Clercq K, Kerselaers S, Marchand A, Chaltin P, Voets T, Vriens J. Loratadine, an antihistaminic drug, suppresses the proliferation of endometrial stromal cells by inhibition of TRPV2. Eur J Pharmacol 2022; 928:175086. [PMID: 35714693 DOI: 10.1016/j.ejphar.2022.175086] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 06/01/2022] [Accepted: 06/01/2022] [Indexed: 11/03/2022]
Abstract
The transient receptor potential (TRP) channel TRPV2 is widely expressed in a variety of different cell types and tissues. However, elucidating the exact biological functions of TRPV2 is significantly hampered by the lack of selective pharmacological tools to modulate channel activity in vitro and in vivo. This study aimed to identify new compounds that modify TRPV2 activity via the use of a plate-based calcium imaging approach to screen a drug repurposing library. Three antihistaminic drugs, loratadine, astemizole and clemizole were identified to reduce calcium-influx evoked by the TRPV2 agonist tetrahydrocannabivarin in HEK293 cells expressing murine TRPV2. Using single-cell calcium-microfluorimetry and whole-cell patch clamp recordings, we further confirmed that all three compounds induced a concentration-dependent block of TRPV2-mediated Ca2+ influx and whole-cell currents, with loratadine being the most potent antagonist of TRPV2. Moreover, this study demonstrated that loratadine was able to block both the human and mouse TRPV2 orthologs, without inhibiting the activity of other closely related members of the TRPV superfamily. Finally, loratadine inhibited TRPV2-dependent responses in a primary culture of mouse endometrial stromal cells and attenuated cell proliferation and migration in in vitro cell proliferation and wound healing assays. Taken together, our study revealed that the antihistaminic drugs loratadine, astemizole and clemizole target TRPV2 in a concentration-dependent manner. The identification of these antihistaminic drugs as blockers of TRPV2 may form a new starting point for the synthesis of more potent and selective TRPV2 antagonists, which could further lead to the unravelling of the physiological role of the channel.
Collapse
Affiliation(s)
- Charlotte Van den Eynde
- Laboratory of Endometrium, Endometriosis & Reproductive Medicine, Department of Development and Regeneration, KU Leuven, Herestraat 49 box 611, 3000, Leuven, Belgium; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain & Disease Research, Herestraat 49 box 802, 3000, Leuven, Belgium
| | - Katharina Held
- Laboratory of Endometrium, Endometriosis & Reproductive Medicine, Department of Development and Regeneration, KU Leuven, Herestraat 49 box 611, 3000, Leuven, Belgium; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain & Disease Research, Herestraat 49 box 802, 3000, Leuven, Belgium
| | - Martina Ciprietti
- Laboratory of Endometrium, Endometriosis & Reproductive Medicine, Department of Development and Regeneration, KU Leuven, Herestraat 49 box 611, 3000, Leuven, Belgium; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain & Disease Research, Herestraat 49 box 802, 3000, Leuven, Belgium
| | - Katrien De Clercq
- Laboratory of Endometrium, Endometriosis & Reproductive Medicine, Department of Development and Regeneration, KU Leuven, Herestraat 49 box 611, 3000, Leuven, Belgium; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain & Disease Research, Herestraat 49 box 802, 3000, Leuven, Belgium
| | - Sara Kerselaers
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain & Disease Research, Herestraat 49 box 802, 3000, Leuven, Belgium
| | - Arnaud Marchand
- CISTIM Leuven vzw, Gaston Geenslaan 2, 3001, Leuven, Heverlee, Belgium
| | - Patrick Chaltin
- CISTIM Leuven vzw, Gaston Geenslaan 2, 3001, Leuven, Heverlee, Belgium; Centre for Drug Design and Discovery (CD3), KU Leuven, Gaston Geenslaan 2, 3001, Leuven, Heverlee, Belgium
| | - Thomas Voets
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain & Disease Research, Herestraat 49 box 802, 3000, Leuven, Belgium
| | - Joris Vriens
- Laboratory of Endometrium, Endometriosis & Reproductive Medicine, Department of Development and Regeneration, KU Leuven, Herestraat 49 box 611, 3000, Leuven, Belgium.
| |
Collapse
|
30
|
Liu H, Lin WY, Leibow SR, Morateck AJ, Ahuja M, Muallem S. TRPC3 channel gating by lipids requires localization at the ER/PM junctions defined by STIM1. J Biophys Biochem Cytol 2022; 221:213134. [PMID: 35416932 PMCID: PMC9011324 DOI: 10.1083/jcb.202107120] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/08/2021] [Accepted: 03/08/2022] [Indexed: 12/21/2022] Open
Abstract
TRPC3, a member of the transient receptor potential (TRP) superfamily of cation channels, is a lipid-regulated, Ca2+-permeable channel that mediates essential components of the receptor evoked Ca2+ signal. The modes and mechanisms by which lipids regulate TRPC3 and other members of the TRPC channel family are not well understood. Here, we report that PI(4,5)P2 regulates TRPC3 in three independent modes. PLC-dependent hydrolysis generates diacylglycerol (DAG) that interacts with lipid-binding site 2 in the channel pore. PI(4,5)P2 interacts with lipid site 1 to inhibit TRPC3 opening and regulate access of DAG to the pore lipid site 2. PI(4,5)P2 is required for regulating pore ionic selectivity by receptor stimulation. Notably, the activation and regulation of TRPC3 by PI(4,5)P2 require recruitment of TRPC3 to the ER/PM junctions at a PI(4,5)P2-rich domain. Accordingly, we identified an FFAT site at the TRPC3 N-terminal loop within the linker helices that envelope the C-terminus pole helix. The FFAT site interacts with the ER-resident VAPB to recruit TRPC3 to the ER/PM junctions and control its receptor-mediated activation. The TRPC3’s lipid interacting sites are fully conserved in TRPC6 and TRPC7 and in part in other TRPC channels. These findings inform on multiple modes of regulation of ion channels by lipids that may be relevant to diseases affected by aberrant TRPC channel functions.
Collapse
Affiliation(s)
- Haiping Liu
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD
| | - Wei-Yin Lin
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD
| | - Spencer R Leibow
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD
| | - Alexander J Morateck
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD
| | - Malini Ahuja
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD
| | - Shmuel Muallem
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD
| |
Collapse
|
31
|
Aizawa N, Fujita T. The TRPM8 channel as a potential therapeutic target for bladder hypersensitive disorders. J Smooth Muscle Res 2022; 58:11-21. [PMID: 35354708 PMCID: PMC8961290 DOI: 10.1540/jsmr.58.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In the lower urinary tract, transient receptor potential (TRP) channels are primarily involved in physiological function, especially in cellular sensors responding to chemical and physical stimuli. Among TRP channels, TRP melastatin 8 (TRPM8) channels, responding to cold temperature and/or chemical agents, such as menthol or icilin, are mainly expressed in the nerve endings of the primary afferent neurons and in the cell bodies of dorsal root ganglia innervating the urinary bladder (via Aδ- and C-fibers); this suggests that TRPM8 channels primarily contribute to bladder sensory (afferent) function. Storage symptoms of overactive bladder, benign prostatic hyperplasia, and interstitial cystitis are commonly related to sensory function (bladder hypersensitivity); thus, TRPM8 channels may also contribute to the pathophysiology of bladder hypersensitivity. Indeed, it has been reported in a pharmacological investigation using rodents that TRPM8 channels contribute to the pathophysiological bladder afferent hypersensitivity of mechanosensitive C-fibers. Similar findings have also been reported in humans. Therefore, a TRPM8 antagonist would be a promising therapeutic target for bladder hypersensitive disorders, including urinary urgency or nociceptive pain. In this review article, the functional role of the TRPM8 channel in the lower urinary tract and the potential of its antagonist for the treatment of bladder disorders was described.
Collapse
Affiliation(s)
- Naoki Aizawa
- Department of Pharmacology and Toxicology, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Tochigi 321-0293, Japan
| | - Tomoe Fujita
- Department of Pharmacology and Toxicology, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Tochigi 321-0293, Japan
| |
Collapse
|
32
|
He J, Li B, Han S, Zhang Y, Liu K, Yi S, Liu Y, Xiu M. Drosophila as a Model to Study the Mechanism of Nociception. Front Physiol 2022; 13:854124. [PMID: 35418874 PMCID: PMC8996152 DOI: 10.3389/fphys.2022.854124] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/28/2022] [Indexed: 12/15/2022] Open
Abstract
Nociception refers to the process of encoding and processing noxious stimuli, which allow animals to detect and avoid potentially harmful stimuli. Several types of stimuli can trigger nociceptive sensory transduction, including thermal, noxious chemicals, and harsh mechanical stimulation that depend on the corresponding nociceptors. In view of the high evolutionary conservation of the mechanisms that govern nociception from Drosophila melanogaster to mammals, investigation in the fruit fly Drosophila help us understand how the sensory nervous system works and what happen in nociception. Here, we present an overview of currently identified conserved genetics of nociception, the nociceptive sensory neurons responsible for detecting noxious stimuli, and various assays for evaluating different nociception. Finally, we cover development of anti-pain drug using fly model. These comparisons illustrate the value of using Drosophila as model for uncovering nociception mechanisms, which are essential for identifying new treatment goals and developing novel analgesics that are applicable to human health.
Collapse
Affiliation(s)
- Jianzheng He
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory for Transfer of Dunhuang Medicine at the Provincial and Ministerial Level, Gansu University of Chinese Medicine, Lanzhou, China
| | - Botong Li
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Shuzhen Han
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yuan Zhang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Kai Liu
- College of Integrated Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Simeng Yi
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yongqi Liu
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory for Transfer of Dunhuang Medicine at the Provincial and Ministerial Level, Gansu University of Chinese Medicine, Lanzhou, China
- *Correspondence: Yongqi Liu,
| | - Minghui Xiu
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory for Transfer of Dunhuang Medicine at the Provincial and Ministerial Level, Gansu University of Chinese Medicine, Lanzhou, China
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
- Minghui Xiu,
| |
Collapse
|
33
|
Virginio C, Aldegheri L, Nola S, Brodbeck D, Brault L, Raveglia LF, Barilli A, Sabat M, Myers R. Identification of positive modulators of TRPM5 channel from a high-throughput screen using a fluorescent membrane potential assay. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2022; 27:55-64. [PMID: 35058176 DOI: 10.1016/j.slasd.2021.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Transient Receptor Potential Melastatin 5 (TRPM5) is an intracellular calcium-activated cation-selective ion channel expressed in a variety of cell types. Dysfunction of this channel has recently been implied in a range of disease states including diabetes, enteric infections, inflammatory responses, parasitic infection and other pathologies. However, to date, agonists and positive modulators of this channel with sufficient selectivity to enable target validation studies have not been described, limiting the evaluation of TRPM5 biology and its potential as a drug target. We developed a high-throughput assay using a fluorescent membrane potential dye and a medium- and high-throughput electrophysiology assay using QPatch HTX and SyncroPatch 384PE. By employing these assays, we conducted a primary screening campaign and identified hit compounds as TRPM5 channel positive modulators. An initial selectivity profile confirmed hit selectivity to TRPM5 and is presented here. These small molecule TRPM5 compounds have a high potential both as early tool compounds to enable pharmacological studies of TRPM5 and as starting points for the development of potent, selective TRPM5 openers or positive modulators as novel drugs targeting several pathological states.
Collapse
Affiliation(s)
- Caterina Virginio
- Aptuit, an Evotec Company, Via Alessandro Fleming, 4, 37135 Verona, Italy.
| | - Laura Aldegheri
- Aptuit, an Evotec Company, Via Alessandro Fleming, 4, 37135 Verona, Italy
| | - Selena Nola
- Aptuit, an Evotec Company, Via Alessandro Fleming, 4, 37135 Verona, Italy
| | - Daniela Brodbeck
- Aptuit, an Evotec Company, Via Alessandro Fleming, 4, 37135 Verona, Italy
| | - Laurent Brault
- Aptuit, an Evotec Company, Via Alessandro Fleming, 4, 37135 Verona, Italy
| | - Luca F Raveglia
- Aptuit, an Evotec Company, Via Alessandro Fleming, 4, 37135 Verona, Italy
| | - Alessio Barilli
- Aptuit, an Evotec Company, Via Alessandro Fleming, 4, 37135 Verona, Italy
| | - Mark Sabat
- Takeda Pharmaceuticals, 9625 Towne Centre Drive, San Diego, CA 92121, United States
| | - Richard Myers
- Takeda Pharmaceuticals, 9625 Towne Centre Drive, San Diego, CA 92121, United States
| |
Collapse
|
34
|
Abstract
Animals rely on their sensory systems to inform them of ecologically relevant environmental variation. In the Southern Ocean, the thermal environment has remained between −1.9 and 5 °C for 15 Myr, yet we have no knowledge of how an Antarctic marine organism might sense their thermal habitat as we have yet to discover a thermosensitive ion channel that gates (opens/closes) below 10 °C. Here, we investigate the evolutionary dynamics of transient receptor potential (TRP) channels, which are the primary thermosensors in animals, within cryonotothenioid fishes—the dominant fish fauna of the Southern Ocean. We found cryonotothenioids have a similar complement of TRP channels as other teleosts (∼28 genes). Previous work has shown that thermosensitive gating in a given channel is species specific, and multiple channels act together to sense the thermal environment. Therefore, we combined evidence of changes in selective pressure, gene gain/loss dynamics, and the first sensory ganglion transcriptome in this clade to identify the best candidate TRP channels that might have a functional dynamic range relevant for frigid Antarctic temperatures. We concluded that TRPV1a, TRPA1b, and TRPM4 are the likeliest putative thermosensors, and found evidence of diversifying selection at sites across these proteins. We also put forward hypotheses for molecular mechanisms of other cryonotothenioid adaptations, such as reduced skeletal calcium deposition, sensing oxidative stress, and unusual magnesium homeostasis. By completing a comprehensive and unbiased survey of these genes, we lay the groundwork for functional characterization and answering long-standing thermodynamic questions of thermosensitive gating and protein adaptation to low temperatures.
Collapse
Affiliation(s)
- Julia M York
- Department of Integrative Biology, University of Texas at Austin, USA
- Corresponding author: E-mail:
| | - Harold H Zakon
- Department of Integrative Biology, University of Texas at Austin, USA
| |
Collapse
|
35
|
Panda S, Chatterjee O, Roy L, Chatterjee S. Targeting Ca 2+ signaling: A new arsenal against cancer. Drug Discov Today 2021; 27:923-934. [PMID: 34793973 DOI: 10.1016/j.drudis.2021.11.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/24/2021] [Accepted: 11/11/2021] [Indexed: 02/06/2023]
Abstract
The drug resistance of cancer cells is a major concern in medical oncology, resulting in the failure of chemotherapy. Ca2+ plays a pivotal role in inducing multidrug resistance in cancer cells. Calcium signaling is a critical regulator of many cancer hallmarks, such as angiogenesis, invasiveness, and migration. In this review, we describe the involvement of Ca2+ signaling and associated proteins in cancer progression and in the development of multidrug resistance in cancer cells. We also highlight the possibilities and challenges of targeting the Ca2+ channels, transporters, and pumps involved in Ca2+ signaling in cancer cells through structure-based drug design. This work will open a new therapeutic window to be used against cancer in upcoming years.
Collapse
Affiliation(s)
- Suman Panda
- Department of Biophysics, Bose Institute, P-1/12 CIT Road, Scheme VIIM, Kankurgachi, Kolkata 700054, India
| | - Oishika Chatterjee
- Department of Biophysics, Bose Institute, P-1/12 CIT Road, Scheme VIIM, Kankurgachi, Kolkata 700054, India
| | - Laboni Roy
- Department of Biophysics, Bose Institute, P-1/12 CIT Road, Scheme VIIM, Kankurgachi, Kolkata 700054, India
| | - Subhrangsu Chatterjee
- Department of Biophysics, Bose Institute, P-1/12 CIT Road, Scheme VIIM, Kankurgachi, Kolkata 700054, India.
| |
Collapse
|
36
|
Kriegler K, Leser C, Mayer P, Bracher F. Effective chiral pool synthesis of both enantiomers of the TRPML inhibitor trans-ML-SI3. Arch Pharm (Weinheim) 2021; 355:e2100362. [PMID: 34738656 DOI: 10.1002/ardp.202100362] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/10/2021] [Accepted: 10/12/2021] [Indexed: 01/05/2023]
Abstract
Two independent chiral pool syntheses of both enantiomers of the TRPML inhibitor, trans-ML-SI3, were developed, starting from commercially available (1S,2R)- and (1R,2S)-configured cis-2-aminocyclohexanols. Both routes lead to the target compounds in excellent enantiomeric purity and good overall yields. For the most attractive (-)-trans-enantiomer, the R,R-configuration was identified by these unambiguous syntheses, and the results were confirmed by single-crystal X-ray structure analysis. These effective synthetic approaches further allow flexible variation of prominent residues in ML-SI3 for future in-depth analysis of structure-activity relationships as both the piperazine and the N-sulfonyl residues are introduced into the molecule at late stages of the synthesis.
Collapse
Affiliation(s)
- Katharina Kriegler
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Charlotte Leser
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Peter Mayer
- Department of Chemistry, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Franz Bracher
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians University of Munich, Munich, Germany
| |
Collapse
|
37
|
Adachi T. [Molecular Mechanisms Underlying Cellular Responses to the Loading of Non-thermal Atmospheric Pressure Plasma-activated Solutions]. YAKUGAKU ZASSHI 2021; 141:1185-1194. [PMID: 34602515 DOI: 10.1248/yakushi.21-00134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Plasma medicine is a rapidly expanding new field of interdisciplinary research that combines physics, chemistry, biology, and medicine. Non-thermal atmospheric pressure plasma (NTAPP) has recently been applied to living cells and tissues, and has emerged as a novel technology for medical applications, such as wound healing, blood coagulation, and cancer treatment. NTAPP was found to affect cells indirectly through the treatment of cells with previously prepared medium irradiated by NTAPP, termed plasma-activated medium (PAM). The treatment of culture media with NTAPP results in the generation of a large amount of reactive oxygen species and reactive nitrogen species, and their derived species. We found that PAM triggered a spiral apoptotic cascade in the mitochondrial-nuclear network in A549 cancer cells. This process induced the depletion of total cellular NAD+ and elevations in intracellular calcium ion, ultimately leading to cell death. We also detected the production of hydroxyl radical and elevations in intracellular ferrous ions in PAM-treated cells. The elevations observed in ferrous ions may have been due to their release from the intracellular iron store, ferritin. However, difficulties are associated with applying PAM to the clinical phase because culture media cannot be used for medical treatments. The anti-tumor activity of plasma-activated Ringer's solution was significantly stronger than that of PAM. At the end, we herein demonstrated the advantages of the combined application of plasma-activated acetate Ringer's solution and hyperthermia, a heat treatment at 42℃, for A549 cancer cell death and elucidated the underlying mechanisms.
Collapse
Affiliation(s)
- Tetsuo Adachi
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University
| |
Collapse
|
38
|
Transient Receptor Potential Channels in the Epithelial-to-Mesenchymal Transition. Int J Mol Sci 2021; 22:ijms22158188. [PMID: 34360952 PMCID: PMC8348042 DOI: 10.3390/ijms22158188] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/19/2021] [Accepted: 07/27/2021] [Indexed: 12/14/2022] Open
Abstract
The epithelial-to-mesenchymal transition (EMT) is a strictly regulated process that is indispensable for normal development, but it can result in fibrosis and cancer progression. It encompasses a complete alteration of the cellular transcriptomic profile, promoting the expression of genes involved in cellular migration, invasion and proliferation. Extracellular signaling factors driving the EMT process require secondary messengers to convey their effects to their targets. Due to its remarkable properties, calcium represents an ideal candidate to translate molecular messages from receptor to effector. Therefore, calcium-permeable ion channels that facilitate the influx of extracellular calcium into the cytosol can exert major influences on cellular phenotype. Transient receptor potential (TRP) channels represent a superfamily of non-selective cation channels that decode physical and chemical stimuli into cellular behavior. Their role as cellular sensors renders them interesting proteins to study in the context of phenotypic transitions, such as EMT. In this review, we elaborate on the current knowledge regarding TRP channel expression and activity in cellular phenotype and EMT.
Collapse
|
39
|
Di Lorenzo F, Duda KA, Lanzetta R, Silipo A, De Castro C, Molinaro A. A Journey from Structure to Function of Bacterial Lipopolysaccharides. Chem Rev 2021; 122:15767-15821. [PMID: 34286971 DOI: 10.1021/acs.chemrev.0c01321] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Lipopolysaccharide (LPS) is a crucial constituent of the outer membrane of most Gram-negative bacteria, playing a fundamental role in the protection of bacteria from environmental stress factors, in drug resistance, in pathogenesis, and in symbiosis. During the last decades, LPS has been thoroughly dissected, and massive information on this fascinating biomolecule is now available. In this Review, we will give the reader a third millennium update of the current knowledge of LPS with key information on the inherent peculiar carbohydrate chemistry due to often puzzling sugar residues that are uniquely found on it. Then, we will drive the reader through the complex and multifarious immunological outcomes that any given LPS can raise, which is strictly dependent on its chemical structure. Further, we will argue about issues that still remain unresolved and that would represent the immediate future of LPS research. It is critical to address these points to complete our notions on LPS chemistry, functions, and roles, in turn leading to innovative ways to manipulate the processes involving such a still controversial and intriguing biomolecule.
Collapse
Affiliation(s)
- Flaviana Di Lorenzo
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy.,Task Force on Microbiome Studies, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy
| | - Katarzyna A Duda
- Research Center Borstel Leibniz Lung Center, Parkallee 4a, 23845 Borstel, Germany
| | - Rosa Lanzetta
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy
| | - Alba Silipo
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy.,Task Force on Microbiome Studies, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy
| | - Cristina De Castro
- Task Force on Microbiome Studies, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy.,Department of Agricultural Sciences, University of Naples Federico II, Via Università 96, 80055 Portici, Naples, Italy
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy.,Task Force on Microbiome Studies, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy.,Department of Chemistry, School of Science, Osaka University, 1-1 Osaka University Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
40
|
Chen Z, Kerwin M, Keenan O, Montell C. Conserved Modules Required for Drosophila TRP Function in Vivo. J Neurosci 2021; 41:5822-5832. [PMID: 34099505 PMCID: PMC8265800 DOI: 10.1523/jneurosci.0200-21.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 11/21/2022] Open
Abstract
Transient receptor potential (TRP) channels are broadly required in animals for sensory physiology. To provide insights into regulatory mechanisms, the structures of many TRPs have been solved. This has led to new models, some of which have been tested in vitro Here, using the classical TRP required for Drosophila visual transduction, we uncovered structural requirements for channel function in photoreceptor cells. Using a combination of molecular genetics, field recordings, protein expression analysis, and molecular modeling, we interrogated roles for the S4-S5 linker and the TRP domain, and revealed mutations in the S4-S5 linker that impair channel opening or closing. We also uncovered differential requirements for the two highly conserved motifs in the TRP domain for activation and protein stability. By performing genetic complementation, we found an intrasubunit interaction between the S4-S5 linker and the S5 segment that contributes to activation. This analysis highlights key structural requirements for TRP channel opening, closing, folding, and for intrasubunit interactions in a native context-Drosophila photoreceptor cells.SIGNIFICANCE STATEMENT The importance of TRP channels for sensory biology and human health has motivated tremendous effort in trying to understand the roles of the structural motifs essential for their activation, inactivation, and protein folding. In the current work, we have exploited the unique advantages of the Drosophila visual system to reveal mechanistic insights into TRP channel function in a native system-photoreceptor cells. Using a combination of electrophysiology (field recordings), cell biology, and molecular modeling, we have revealed roles of key motifs for activation, inactivation and protein folding of TRP in vivo.
Collapse
Affiliation(s)
- Zijing Chen
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California 93106
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, California 93106
| | - Maggie Kerwin
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California 93106
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, California 93106
| | - Orlaith Keenan
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California 93106
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, California 93106
| | - Craig Montell
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California 93106
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, California 93106
| |
Collapse
|
41
|
Sun W, Luo Y, Zhang F, Tang S, Zhu T. Involvement of TRP Channels in Adipocyte Thermogenesis: An Update. Front Cell Dev Biol 2021; 9:686173. [PMID: 34249940 PMCID: PMC8264417 DOI: 10.3389/fcell.2021.686173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/02/2021] [Indexed: 01/27/2023] Open
Abstract
Obesity prevalence became a severe global health problem and it is caused by an imbalance between energy intake and expenditure. Brown adipose tissue (BAT) is a major site of mammalian non-shivering thermogenesis or energy dissipation. Thus, modulation of BAT thermogenesis might be a promising application for body weight control and obesity prevention. TRP channels are non-selective calcium-permeable cation channels mainly located on the plasma membrane. As a research focus, TRP channels have been reported to be involved in the thermogenesis of adipose tissue, energy metabolism and body weight regulation. In this review, we will summarize and update the recent progress of the pathological/physiological involvement of TRP channels in adipocyte thermogenesis. Moreover, we will discuss the potential of TRP channels as future therapeutic targets for preventing and combating human obesity and related-metabolic disorders.
Collapse
Affiliation(s)
- Wuping Sun
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Yixuan Luo
- Department of Cardiovascular Surgery, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Fei Zhang
- Department of Cardiovascular Surgery, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Shuo Tang
- Department of Orthopaedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Tao Zhu
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
42
|
Barilli A, Aldegheri L, Bianchi F, Brault L, Brodbeck D, Castelletti L, Feriani A, Lingard I, Myers R, Nola S, Piccoli L, Pompilio D, Raveglia LF, Salvagno C, Tassini S, Virginio C, Sabat M. From High-Throughput Screening to Target Validation: Benzo[ d]isothiazoles as Potent and Selective Agonists of Human Transient Receptor Potential Cation Channel Subfamily M Member 5 Possessing In Vivo Gastrointestinal Prokinetic Activity in Rodents. J Med Chem 2021; 64:5931-5955. [PMID: 33890770 DOI: 10.1021/acs.jmedchem.1c00065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Transient receptor potential cation channel subfamily M member 5 (TRPM5) is a nonselective monovalent cation channel activated by intracellular Ca2+ increase. Within the gastrointestinal system, TRPM5 is expressed in the stoma, small intestine, and colon. In the search for a selective agonist of TRPM5 possessing in vivo gastrointestinal prokinetic activity, a high-throughput screening was performed and compound 1 was identified as a promising hit. Hit validation and hit to lead activities led to the discovery of a series of benzo[d]isothiazole derivatives. Among these, compounds 61 and 64 showed nanomolar activity and excellent selectivity (>100-fold) versus related cation channels. The in vivo drug metabolism and pharmacokinetic profile of compound 64 was found to be ideal for a compound acting locally at the intestinal level, with minimal absorption into systemic circulation. Compound 64 was tested in vivo in a mouse motility assay at 100 mg/kg, and demonstrated increased prokinetic activity.
Collapse
Affiliation(s)
- Alessio Barilli
- Aptuit, an Evotec Company, Via Alessandro Fleming, 4, Verona 37135, Italy
| | - Laura Aldegheri
- Aptuit, an Evotec Company, Via Alessandro Fleming, 4, Verona 37135, Italy
| | - Federica Bianchi
- Aptuit, an Evotec Company, Via Alessandro Fleming, 4, Verona 37135, Italy
| | - Laurent Brault
- Aptuit, an Evotec Company, Via Alessandro Fleming, 4, Verona 37135, Italy
| | - Daniela Brodbeck
- Aptuit, an Evotec Company, Via Alessandro Fleming, 4, Verona 37135, Italy
| | - Laura Castelletti
- Aptuit, an Evotec Company, Via Alessandro Fleming, 4, Verona 37135, Italy
| | - Aldo Feriani
- Aptuit, an Evotec Company, Via Alessandro Fleming, 4, Verona 37135, Italy
| | - Iain Lingard
- Aptuit, an Evotec Company, Via Alessandro Fleming, 4, Verona 37135, Italy
| | - Richard Myers
- Takeda Pharmaceuticals, 9625 Towne Centre Drive, San Diego, California 92121, United States
| | - Selena Nola
- Aptuit, an Evotec Company, Via Alessandro Fleming, 4, Verona 37135, Italy
| | - Laura Piccoli
- Aptuit, an Evotec Company, Via Alessandro Fleming, 4, Verona 37135, Italy
| | - Daniela Pompilio
- Aptuit, an Evotec Company, Via Alessandro Fleming, 4, Verona 37135, Italy
| | - Luca F Raveglia
- Aptuit, an Evotec Company, Via Alessandro Fleming, 4, Verona 37135, Italy
| | - Cristian Salvagno
- Aptuit, an Evotec Company, Via Alessandro Fleming, 4, Verona 37135, Italy
| | - Sabrina Tassini
- Aptuit, an Evotec Company, Via Alessandro Fleming, 4, Verona 37135, Italy
| | - Caterina Virginio
- Aptuit, an Evotec Company, Via Alessandro Fleming, 4, Verona 37135, Italy
| | - Mark Sabat
- Takeda Pharmaceuticals, 9625 Towne Centre Drive, San Diego, California 92121, United States
| |
Collapse
|
43
|
Zhang H, Yu P, Lin H, Jin Z, Zhao S, Zhang Y, Xu Q, Jin H, Liu Z, Yang W, Zhang L. The Discovery of Novel ACA Derivatives as Specific TRPM2 Inhibitors that Reduce Ischemic Injury Both In Vitro and In Vivo. J Med Chem 2021; 64:3976-3996. [PMID: 33784097 DOI: 10.1021/acs.jmedchem.0c02129] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The transient receptor potential melastatin 2 (TRPM2) channel is associated with ischemia/reperfusion injury, inflammation, cancer, and neurodegenerative diseases. However, the limit of specific inhibitors impedes the development of TRPM2-targeted therapeutic agents. To discover more potent and selective TRPM2 inhibitors, 59 N-(p-amylcinnamoyl) anthranilic acid (ACA) derivatives were synthesized and evaluated using calcium imaging and electrophysiology approaches. Systematic structure-activity relationship studies resulted in some potent compounds inhibiting the TRPM2 channel with sub-micromolar half-maximal inhibitory concentration values. Among them, the preferred compound A23 exhibited TRPM2 selectivity over TRPM8 and TRPV1 channels as well as phospholipase A2 and showed neuroprotective activity in vitro. Following pharmacokinetic studies, A23 was further evaluated in a transient middle cerebral artery occlusion model in vivo, which significantly reduced cerebral infarction. These data indicate that A23 might serve as a useful tool for TRPM2-related research as well as a lead compound for the development of therapeutic agents for ischemic injury.
Collapse
Affiliation(s)
- Han Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P. R. China
| | - Peilin Yu
- Department of Toxicology, and Department of Medical Oncology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, P. R. China
| | - Hongwei Lin
- Department of Biophysics, and Department of Neurosurgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, P. R. China
| | - Zefang Jin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P. R. China
| | - Siqi Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P. R. China
| | - Yi Zhang
- Department of Biophysics, and Department of Neurosurgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, P. R. China
| | - Qingxia Xu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P. R. China
| | - Hongwei Jin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P. R. China
| | - Zhenming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P. R. China
| | - Wei Yang
- Department of Biophysics, and Department of Neurosurgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, P. R. China
| | - Liangren Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P. R. China
| |
Collapse
|
44
|
Zhou Y, Xu B. New insights into molecular mechanisms of "Cold or Hot" nature of food: When East meets West. Food Res Int 2021; 144:110361. [PMID: 34053554 DOI: 10.1016/j.foodres.2021.110361] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 01/04/2023]
Abstract
Traditional Chinese medicines are largely adopted in China and have a key importance in the world medical system. Cold-hot nature is the important characteristics of food and Chinese Materia Medica in the traditional Chinese medicine, relating to food functions in the organism. As compared to the studies on the cold and hot nature in Chinese medicine, the research studies carried out to establish the association between cold-hot nature and food are insufficient. Intending to investigate the criteria to discriminate the cold-hot nature of food and Chinese medicine scientifically, this review collected the cold-hot nature-related literature in recent 20 years in several popular databases such as PubMed, Google Scholar, and Science Direct. This review explored that the cold and hot natures are not only linked to the chemical components such as water, carbohydrates, lipids, and amino acids, but also correlated to the biological effects, comprising of energy metabolism, inflammation response, oxidation reaction, immune response, and cell growth and proliferation. Besides, this review further put forward the possibility that cold-hot nature of food and Chinese medicine exert different biological effects on the inflammatory response via regulating the signaling pathways viz. NF-κB and MAPK. More extensive studies are needed to consider the overall connections between both the biological effects and chemical components and how food processing affects the cold-hot nature of the food.
Collapse
Affiliation(s)
- Yifan Zhou
- Food Science and Technology Program, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China
| | - Baojun Xu
- Food Science and Technology Program, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China.
| |
Collapse
|
45
|
Heath-Heckman E, Yoo S, Winchell C, Pellegrino M, Angstadt J, Lammardo VB, Bautista D, De-Miguel FF, Weisblat D. Transcriptional profiling of identified neurons in leech. BMC Genomics 2021; 22:215. [PMID: 33765928 PMCID: PMC7992859 DOI: 10.1186/s12864-021-07526-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 03/11/2021] [Indexed: 12/13/2022] Open
Abstract
Background While leeches in the genus Hirudo have long been models for neurobiology, the molecular underpinnings of nervous system structure and function in this group remain largely unknown. To begin to bridge this gap, we performed RNASeq on pools of identified neurons of the central nervous system (CNS): sensory T (touch), P (pressure) and N (nociception) neurons; neurosecretory Retzius cells; and ganglia from which these four cell types had been removed. Results Bioinformatic analyses identified 3565 putative genes whose expression differed significantly among the samples. These genes clustered into 9 groups which could be associated with one or more of the identified cell types. We verified predicted expression patterns through in situ hybridization on whole CNS ganglia, and found that orthologous genes were for the most part similarly expressed in a divergent leech genus, suggesting evolutionarily conserved roles for these genes. Transcriptional profiling allowed us to identify candidate phenotype-defining genes from expanded gene families. Thus, we identified one of eight hyperpolarization-activated cyclic-nucleotide gated (HCN) channels as a candidate for mediating the prominent sag current in P neurons, and found that one of five inositol triphosphate receptors (IP3Rs), representing a sub-family of IP3Rs absent from vertebrate genomes, is expressed with high specificity in T cells. We also identified one of two piezo genes, two of ~ 65 deg/enac genes, and one of at least 16 transient receptor potential (trp) genes as prime candidates for involvement in sensory transduction in the three distinct classes of leech mechanosensory neurons. Conclusions Our study defines distinct transcriptional profiles for four different neuronal types within the leech CNS, in addition to providing a second ganglionic transcriptome for the species. From these data we identified five gene families that may facilitate the sensory capabilities of these neurons, thus laying the basis for future work leveraging the strengths of the leech system to investigate the molecular processes underlying and linking mechanosensation, cell type specification, and behavior. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07526-0.
Collapse
Affiliation(s)
- Elizabeth Heath-Heckman
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA, USA. .,Current address: Department of Integrative Biology, Michigan State University, East Lansing, MI, USA.
| | - Shinja Yoo
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Christopher Winchell
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Maurizio Pellegrino
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA, USA.,Current address: Invitae Corporation, San Francisco, CA, USA
| | - James Angstadt
- Department of Biology, Siena College, Loudonville, New York, NY, USA
| | | | - Diana Bautista
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Francisco F De-Miguel
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - David Weisblat
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
46
|
Horváth Á, Payrits M, Steib A, Kántás B, Biró-Süt T, Erostyák J, Makkai G, Sághy É, Helyes Z, Szőke É. Analgesic Effects of Lipid Raft Disruption by Sphingomyelinase and Myriocin via Transient Receptor Potential Vanilloid 1 and Transient Receptor Potential Ankyrin 1 Ion Channel Modulation. Front Pharmacol 2021; 11:593319. [PMID: 33584270 PMCID: PMC7873636 DOI: 10.3389/fphar.2020.593319] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/24/2020] [Indexed: 01/09/2023] Open
Abstract
Transient Receptor Potential (TRP) Vanilloid 1 and Ankyrin 1 (TRPV1, TRPA1) cation channels are expressed in nociceptive primary sensory neurons, and integratively regulate nociceptor and inflammatory functions. Lipid rafts are liquid-ordered plasma membrane microdomains rich in cholesterol, sphingomyelin and gangliosides. We earlier showed that lipid raft disruption inhibits TRPV1 and TRPA1 functions in primary sensory neuronal cultures. Here we investigated the effects of sphingomyelinase (SMase) cleaving membrane sphingomyelin and myriocin (Myr) prohibiting sphingolipid synthesis in mouse pain models of different mechanisms. SMase (50 mU) or Myr (1 mM) pretreatment significantly decreased TRPV1 activation (capsaicin)-induced nocifensive eye-wiping movements by 37 and 41%, respectively. Intraplantar pretreatment by both compounds significantly diminished TRPV1 stimulation (resiniferatoxin)-evoked thermal allodynia developing mainly by peripheral sensitization. SMase (50 mU) also decreased mechanical hyperalgesia related to both peripheral and central sensitizations. SMase (50 mU) significantly reduced TRPA1 activation (formalin)-induced acute nocifensive behaviors by 64% in the second, neurogenic inflammatory phase. Myr, but not SMase altered the plasma membrane polarity related to the cholesterol composition as shown by fluorescence spectroscopy. These are the first in vivo results showing that sphingolipids play a key role in lipid raft integrity around nociceptive TRP channels, their activation and pain sensation. It is concluded that local SMase administration might open novel perspective for analgesic therapy.
Collapse
Affiliation(s)
- Ádám Horváth
- Deparment of Pharmacology and Pharmacotherapy, University of Pécs, Medical School, Pécs, Hungary.,János Szentágothai Research Centre and Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Maja Payrits
- Deparment of Pharmacology and Pharmacotherapy, University of Pécs, Medical School, Pécs, Hungary.,János Szentágothai Research Centre and Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Anita Steib
- Deparment of Pharmacology and Pharmacotherapy, University of Pécs, Medical School, Pécs, Hungary.,János Szentágothai Research Centre and Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Boglárka Kántás
- Deparment of Pharmacology and Pharmacotherapy, University of Pécs, Medical School, Pécs, Hungary.,János Szentágothai Research Centre and Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Tünde Biró-Süt
- Deparment of Pharmacology and Pharmacotherapy, University of Pécs, Medical School, Pécs, Hungary.,János Szentágothai Research Centre and Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - János Erostyák
- János Szentágothai Research Centre and Centre for Neuroscience, University of Pécs, Pécs, Hungary.,Department of Experimental Physics, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Géza Makkai
- János Szentágothai Research Centre and Centre for Neuroscience, University of Pécs, Pécs, Hungary.,Department of Experimental Physics, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Éva Sághy
- Deparment of Pharmacology and Pharmacotherapy, University of Pécs, Medical School, Pécs, Hungary.,János Szentágothai Research Centre and Centre for Neuroscience, University of Pécs, Pécs, Hungary.,Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Zsuzsanna Helyes
- Deparment of Pharmacology and Pharmacotherapy, University of Pécs, Medical School, Pécs, Hungary.,János Szentágothai Research Centre and Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Éva Szőke
- Deparment of Pharmacology and Pharmacotherapy, University of Pécs, Medical School, Pécs, Hungary.,János Szentágothai Research Centre and Centre for Neuroscience, University of Pécs, Pécs, Hungary
| |
Collapse
|
47
|
Horváth G, Csikós E, Andres EV, Bencsik T, Takátsy A, Gulyás-Fekete G, Turcsi E, Deli J, Szőke É, Kemény Á, Payrits M, Szente L, Kocsis M, Molnár P, Helyes Z. Analyzing the Carotenoid Composition of Melilot ( Melilotus officinalis (L.) Pall.) Extracts and the Effects of Isolated (All- E)-lutein-5,6-epoxide on Primary Sensory Neurons and Macrophages. Molecules 2021; 26:503. [PMID: 33477841 PMCID: PMC7832904 DOI: 10.3390/molecules26020503] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/15/2021] [Accepted: 01/15/2021] [Indexed: 11/16/2022] Open
Abstract
Melilotus officinalis is known to contain several types of secondary metabolites. In contrast, the carotenoid composition of this medicinal plant has not been investigated, although it may also contribute to the biological activities of the drug, such as anti-inflammatory effects. Therefore, this study focuses on the isolation and identification of carotenoids from Meliloti herba and on the effect of isolated (all-E)-lutein 5,6-epoxide on primary sensory neurons and macrophages involved in nociception, as well as neurogenic and non-neurogenic inflammatory processes. The composition of the plant extracts was analyzed by high performance liquid chromatography (HPLC). The main carotenoid was isolated by column liquid chromatography (CLC) and identified by MS and NMR. The effect of water-soluble lutein 5,6-epoxide-RAMEB (randomly methylated-β-cyclodextrin) was investigated on Ca2+-influx in rat primary sensory neurons induced by the activation of the transient receptor potential ankyrin 1 receptor agonist to mustard-oil and on endotoxin-induced IL-1β release from isolated mouse peritoneal macrophages. (all-E)-Lutein 5,6-epoxide significantly decreased the percent of responsive primary sensory neurons compared to the vehicle-treated stimulated control. Furthermore, endotoxin-evoked IL-1β release from macrophages was significantly decreased by 100 µM lutein 5,6-epoxide compared to the vehicle-treated control. The water-soluble form of lutein 5,6-epoxide-RAMEB decreases the activation of primary sensory neurons and macrophages, which opens perspectives for its analgesic and anti-inflammatory applications.
Collapse
Affiliation(s)
- Györgyi Horváth
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, 7624 Pécs, Hungary; (E.C.); (E.V.A.); (T.B.); (J.D.); (P.M.)
| | - Eszter Csikós
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, 7624 Pécs, Hungary; (E.C.); (E.V.A.); (T.B.); (J.D.); (P.M.)
| | - Eichertné Violetta Andres
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, 7624 Pécs, Hungary; (E.C.); (E.V.A.); (T.B.); (J.D.); (P.M.)
| | - Tímea Bencsik
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, 7624 Pécs, Hungary; (E.C.); (E.V.A.); (T.B.); (J.D.); (P.M.)
| | - Anikó Takátsy
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary; (A.T.); (G.G.-F.); (E.T.)
| | - Gergely Gulyás-Fekete
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary; (A.T.); (G.G.-F.); (E.T.)
| | - Erika Turcsi
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary; (A.T.); (G.G.-F.); (E.T.)
| | - József Deli
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, 7624 Pécs, Hungary; (E.C.); (E.V.A.); (T.B.); (J.D.); (P.M.)
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary; (A.T.); (G.G.-F.); (E.T.)
| | - Éva Szőke
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, 7624 Pécs, Hungary; (É.S.); (Á.K.); (M.P.); (Z.H.)
| | - Ágnes Kemény
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, 7624 Pécs, Hungary; (É.S.); (Á.K.); (M.P.); (Z.H.)
- Department of Medical Biology and Central Electron Microscope Laboratory, Medical School, University of Pécs, 7624 Pécs, Hungary
- Szentágothai Research Centre, Centre for Neuroscience, University of Pécs, 7624 Pécs, Hungary
| | - Maja Payrits
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, 7624 Pécs, Hungary; (É.S.); (Á.K.); (M.P.); (Z.H.)
- Szentágothai Research Centre, Centre for Neuroscience, University of Pécs, 7624 Pécs, Hungary
| | | | - Marianna Kocsis
- Department of Plant Biology, Institute of Biology, Faculty of Sciences, University of Pécs, 7624 Pécs, Hungary;
| | - Péter Molnár
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, 7624 Pécs, Hungary; (E.C.); (E.V.A.); (T.B.); (J.D.); (P.M.)
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, 7624 Pécs, Hungary; (É.S.); (Á.K.); (M.P.); (Z.H.)
- Szentágothai Research Centre, Centre for Neuroscience, University of Pécs, 7624 Pécs, Hungary
| |
Collapse
|
48
|
Oronowicz J, Reinhard J, Reinach PS, Ludwiczak S, Luo H, Omar Ba Salem MH, Kraemer MM, Biebermann H, Kakkassery V, Mergler S. Ascorbate-induced oxidative stress mediates TRP channel activation and cytotoxicity in human etoposide-sensitive and -resistant retinoblastoma cells. J Transl Med 2021; 101:70-88. [PMID: 32948812 PMCID: PMC7758186 DOI: 10.1038/s41374-020-00485-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 07/29/2020] [Accepted: 08/11/2020] [Indexed: 02/08/2023] Open
Abstract
There are indications that pharmacological doses of ascorbate (Asc) used as an adjuvant improve the chemotherapeutic management of cancer. This favorable outcome stems from its cytotoxic effects due to prooxidative mechanisms. Since regulation of intracellular Ca2+ levels contributes to the maintenance of cell viability, we hypothesized that one of the effects of Asc includes disrupting regulation of intracellular Ca2+ homeostasis. Accordingly, we determined if Asc induced intracellular Ca2+ influx through activation of pertussis sensitive Gi/o-coupled GPCR which in turn activated transient receptor potential (TRP) channels in both etoposide-resistant and -sensitive retinoblastoma (WERI-Rb1) tumor cells. Ca2+ imaging, whole-cell patch-clamping, and quantitative real-time PCR (qRT-PCR) were performed in parallel with measurements of RB cell survival using Trypan Blue cell dye exclusion. TRPM7 gene expression levels were similar in both cell lines whereas TRPV1, TRPM2, TRPA1, TRPC5, TRPV4, and TRPM8 gene expression levels were downregulated in the etoposide-resistant WERI-Rb1 cells. In the presence of extracellular Ca2+, 1 mM Asc induced larger intracellular Ca2+ transients in the etoposide-resistant WERI-Rb1 than in their etoposide-sensitive counterpart. With either 100 µM CPZ, 500 µM La3+, 10 mM NAC, or 100 µM 2-APB, these Ca2+ transients were markedly diminished. These inhibitors also had corresponding inhibitory effects on Asc-induced rises in whole-cell currents. Pertussis toxin (PTX) preincubation blocked rises in Ca2+ influx. Microscopic analyses showed that after 4 days of exposure to 1 mM Asc cell viability fell by nearly 100% in both RB cell lines. Taken together, one of the effects underlying oxidative mediated Asc-induced WERI-Rb1 cytotoxicity stems from its promotion of Gi/o coupled GPCR mediated increases in intracellular Ca2+ influx through TRP channels. Therefore, designing drugs targeting TRP channel modulation may be a viable approach to increase the efficacy of chemotherapeutic treatment of RB. Furthermore, Asc may be indicated as a possible supportive agent in anti-cancer therapies.
Collapse
Affiliation(s)
- Jakub Oronowicz
- Klinik für Augenheilkunde, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Jacqueline Reinhard
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Peter Sol Reinach
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, PR China
| | - Szymon Ludwiczak
- Klinik für Augenheilkunde, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Huan Luo
- Klinik für Augenheilkunde, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Marah Hussain Omar Ba Salem
- Klinik für Augenheilkunde, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Miriam Monika Kraemer
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Heike Biebermann
- Institut für Experimentelle Pädiatrische Endokrinologie, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Vinodh Kakkassery
- Universität zu Lübeck, Klinik für Augenheilkunde - Universitätsklinikum Schleswig-Holstein (Campus Lübeck), Lübeck, Germany.
| | - Stefan Mergler
- Klinik für Augenheilkunde, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
49
|
Yu S, Li C, Ding Y, Huang S, Wang W, Wu Y, Wang F, Wang A, Han Y, Sun Z, Lu Y, Gu N. Exploring the 'cold/hot' properties of traditional Chinese medicine by cell temperature measurement. PHARMACEUTICAL BIOLOGY 2020; 58:208-218. [PMID: 32114881 PMCID: PMC7067177 DOI: 10.1080/13880209.2020.1732429] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Context: It is common sense that chewing a mint leaf can cause a cooling feeling, while chewing ginger root will produce a burning feeling. In Traditional Chinese Medicine (TCM), this phenomenon is referred to as 'cold/hot' properties of herbs. Herein, it is reported that TCM with different "cold/hot" properties have different effects on the variation of cells.Objective: To explore the intrinsic 'cold/hot' properties of TCM from the perspective of cellular and molecular biology.Materials and methods: A375 cells were selected using Cancer Cell Line Encyclopaedia (CCLE) analysis and western blots. Hypaconitine and baicalin were selected by structural similarity analysis from 56 and 140 compounds, respectively. A wireless thermometry system was used to measure cellular temperature change induced by different compounds. Alteration of intracellular calcium influx was investigated by means of calcium imaging.Results: The IC50 values of GSK1016790A, HC067047, hypaconitine, and baicalin for A375 cells are 8.363 nM, 816.4 μM, 286.4 μM and 29.84 μM, respectively. And, 8 μM hypaconitine induced obvious calcium influx while 8 μM baicalin inhibited calcium influx induced by TRPV4 activation. Cellular temperature elevated significantly when treated with GSK1016790A or hypaconitine, while the results were reversed when cells were treated with HC067047 or baicalin.Discussion and conclusions: The changes in cellular temperature are speculated to be caused by the alteration of intracellular calcium influx mediated by TRPV4. In addition, the 'cold/hot' properties of compounds in TCM can be classified by using cellular temperature detection.
Collapse
Affiliation(s)
- Suyun Yu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Can Li
- School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yushi Ding
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shuai Huang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuanyuan Wu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fangxu Wang
- The State Key Laboratory of Bioelectronics and Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Sciences and Medical Engineering of Southeast University, Nanjing, China
- Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou, China
| | - Aiyun Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuexia Han
- The State Key Laboratory of Bioelectronics and Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Sciences and Medical Engineering of Southeast University, Nanjing, China
- Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou, China
| | - Zhiguang Sun
- Jiangsu Provincial Second Chinese Medicine Hospital, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- CONTACT Yin Lu
| | - Ning Gu
- The State Key Laboratory of Bioelectronics and Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Sciences and Medical Engineering of Southeast University, Nanjing, China
- Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou, China
- Ning Gu
| |
Collapse
|
50
|
Bamps D, Vriens J, de Hoon J, Voets T. TRP Channel Cooperation for Nociception: Therapeutic Opportunities. Annu Rev Pharmacol Toxicol 2020; 61:655-677. [PMID: 32976736 DOI: 10.1146/annurev-pharmtox-010919-023238] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chronic pain treatment remains a sore challenge, and in our aging society, the number of patients reporting inadequate pain relief continues to grow. Current treatment options all have their drawbacks, including limited efficacy and the propensity of abuse and addiction; the latter is exemplified by the ongoing opioid crisis. Extensive research in the last few decades has focused on mechanisms underlying chronic pain states, thereby producing attractive opportunities for novel, effective and safe pharmaceutical interventions. Members of the transient receptor potential (TRP) ion channel family represent innovative targets to tackle pain sensation at the root. Three TRP channels, TRPV1, TRPM3, and TRPA1, are of particular interest, as they were identified as sensors of chemical- and heat-induced pain in nociceptor neurons. This review summarizes the knowledge regarding TRP channel-based pain therapies, including the bumpy road of the clinical development of TRPV1 antagonists, the current status of TRPA1 antagonists, and the future potential of targeting TRPM3.
Collapse
Affiliation(s)
- Dorien Bamps
- Center for Clinical Pharmacology, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Joris Vriens
- Laboratory of Endometrium, Endometriosis and Reproductive Medicine, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Jan de Hoon
- Center for Clinical Pharmacology, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Thomas Voets
- Laboratory of Ion Channel Research, VIB-KU Leuven Center for Brain and Disease Research, 3000 Leuven, Belgium; .,Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|