1
|
Jannat R, Zahangir MM, Naziat A, Majharul Islam SM, Abdelazim AM, Mahboub HH, Shahjahan M. Hypoxia alters the upper thermal limits and blood physiology in zebrafish, Danio rerio. J Therm Biol 2024; 121:103837. [PMID: 38552447 DOI: 10.1016/j.jtherbio.2024.103837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 05/26/2024]
Abstract
Hypoxic aquatic environments occur more frequently as a result of climate change, thereby exerting challenges on the physiological and metabolic functions of aquatic animals. In this study, a model fish, zebrafish (Danio rerio) was used to observe the climate-induced hypoxic effect on the upper thermal limit (critical thermal maximum; CTmax), hemoglobin, and blood glucose levels, and abnormalities of erythrocytes at cellular and nuclear level. The value of CTmax decreased significantly under hypoxia (39.10 ± 0.96 °C) compared to normoxia (43.70 ± 0.91 °C). At CTmax, hemoglobin levels were much lower (9.33 ± 0.60 g/dL) and blood glucose levels were significantly higher (194.20 ± 11.33 mg/L) under hypoxia than they were under normoxia and at the beginning of the experiment. Increased frequencies of abnormalities in the erythrocytes at both cellular (fusion, twin, elongated, spindle and tear drop shaped) and nuclear (micronucleus, karyopyknosis, binuclei, nuclear degeneration and notched nuclei) levels were also found under hypoxia compared to normoxia. These results suggest that hypoxic conditions significantly alter the temperature tolerance and subsequent physiology in zebrafish. Our findings will aid in the development of effective management techniques for aquatic environments with minimum oxygen availability.
Collapse
Affiliation(s)
- Rayeda Jannat
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymemsingh, 2202, Bangladesh.
| | - Md Mahiuddin Zahangir
- Department of Fish Biology and Biotechnology, Chattogram Veterinary and Animal Sciences University, Chattogram, 4225, Bangladesh.
| | - Azmaien Naziat
- Department of Fish Biology and Biotechnology, Chattogram Veterinary and Animal Sciences University, Chattogram, 4225, Bangladesh.
| | - S M Majharul Islam
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymemsingh, 2202, Bangladesh.
| | - Aaser M Abdelazim
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, 67714, P.O. Box 255, Saudi Arabia.
| | - Heba H Mahboub
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, PO Box 44519, Zagazig, 4511, Sharkia, Egypt.
| | - Md Shahjahan
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymemsingh, 2202, Bangladesh.
| |
Collapse
|
2
|
Martinez GJ, Appleton M, Kipp ZA, Loria AS, Min B, Hinds TD. Glucocorticoids, their uses, sexual dimorphisms, and diseases: new concepts, mechanisms, and discoveries. Physiol Rev 2024; 104:473-532. [PMID: 37732829 PMCID: PMC11281820 DOI: 10.1152/physrev.00021.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/07/2023] [Accepted: 09/10/2023] [Indexed: 09/22/2023] Open
Abstract
The normal stress response in humans is governed by the hypothalamic-pituitary-adrenal (HPA) axis through heightened mechanisms during stress, raising blood levels of the glucocorticoid hormone cortisol. Glucocorticoids are quintessential compounds that balance the proper functioning of numerous systems in the mammalian body. They are also generated synthetically and are the preeminent therapy for inflammatory diseases. They act by binding to the nuclear receptor transcription factor glucocorticoid receptor (GR), which has two main isoforms (GRα and GRβ). Our classical understanding of glucocorticoid signaling is from the GRα isoform, which binds the hormone, whereas GRβ has no known ligands. With glucocorticoids being involved in many physiological and cellular processes, even small disruptions in their release via the HPA axis, or changes in GR isoform expression, can have dire ramifications on health. Long-term chronic glucocorticoid therapy can lead to a glucocorticoid-resistant state, and we deliberate how this impacts disease treatment. Chronic glucocorticoid treatment can lead to noticeable side effects such as weight gain, adiposity, diabetes, and others that we discuss in detail. There are sexually dimorphic responses to glucocorticoids, and women tend to have a more hyperresponsive HPA axis than men. This review summarizes our understanding of glucocorticoids and critically analyzes the GR isoforms and their beneficial and deleterious mechanisms and the sexual differences that cause a dichotomy in responses. We also discuss the future of glucocorticoid therapy and propose a new concept of dual GR isoform agonist and postulate why activating both isoforms may prevent glucocorticoid resistance.
Collapse
Affiliation(s)
- Genesee J Martinez
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Malik Appleton
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Zachary A Kipp
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Analia S Loria
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
- Barnstable Brown Diabetes Center, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Booki Min
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
| | - Terry D Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
- Barnstable Brown Diabetes Center, University of Kentucky College of Medicine, Lexington, Kentucky, United States
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States
| |
Collapse
|
3
|
Study on Psychological Stress Response and Intervention Countermeasures of Exposed Population under Sudden Public Health Crisis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3411960. [PMID: 35924272 PMCID: PMC9343183 DOI: 10.1155/2022/3411960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/15/2022] [Accepted: 07/06/2022] [Indexed: 11/26/2022]
Abstract
Background After the occurrence of public health emergencies, people will have a series of physiological reactions, which will develop into psychological stress disorder in serious cases. Based on this, the purpose of this study is to analyze the psychological stress response and intervention countermeasures of exposed people under sudden public health crisis. Objective To explore the psychological stress response and intervention countermeasures of exposed population under sudden public health crisis. Methods A total of 400 people under the sudden public health crisis that bring about serious damage to public health, mass diseases of unknown causes, major food and occupational poisoning, and other events that seriously affect public health from December 2020 to December 2021 were selected as the subjects of the study. It was randomly and equally divided into two groups to take different intervention measures, the control group was given routine public health crisis intervention measures, and the research group was given comprehensive intervention. The metabolism, social function defects, health symptoms, psychological status, quality of life, sleep quality, and stress reaction were compared between the two groups. Results The rate of good metabolism in the research group was significantly higher than that in the control group (P < 0.05). After intervention, the scores of Social Disability Screening Schedule (SDSS) and Symptom Checklist 90 (SCL-90) decreased in both groups, and the scores of SDSS and SCL-90 in the research group were lower than those in the control group. After intervention, the scores of self-rating depression scale and self-rating anxiety scale in the two groups decreased, and the scores of self-rating depression scale and self-rating anxiety scale in the research group were lower than those in the control group (P < 0.05). The sleep quality of the research group was better than that of the control group (P < 0.05). The stress response indexes such as cortisol, blood glucose, and C-reactive protein in the two groups were decreased after intervention. The stress response indexes such as cortisol, blood glucose, and C-reactive protein in the research group were lower than those in the control group (P < 0.05). Conclusion Giving that comprehensive intervention measures to people exposed to sudden public health crisis can effectively relax their stress response, reinvigorate their quality of life and sleep, reduce depression and anxiety, and improve their metabolism, therefore, in the case of the outbreak of public health crisis in the future, it is worth applying for reference and popularizing.
Collapse
|
4
|
D'Alessandro G, Ruffini N, Iacopini A, Annoni M, Kossowsky J, Cerritelli F. Overcoming placebo-related challenges in manual therapy trials: The ‘whats and hows’ and the ‘touch equality assumption’ proposals. INT J OSTEOPATH MED 2021. [DOI: 10.1016/j.ijosm.2021.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
5
|
von Mohr M, Kirsch LP, Fotopoulou A. Social touch deprivation during COVID-19: effects on psychological wellbeing and craving interpersonal touch. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210287. [PMID: 34527270 PMCID: PMC8424338 DOI: 10.1098/rsos.210287] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 08/23/2021] [Indexed: 05/09/2023]
Abstract
Social touch has positive effects on social affiliation and stress alleviation. However, its ubiquitous presence in human life does not allow the study of social touch deprivation 'in the wild'. Nevertheless, COVID-19-related restrictions such as social distancing allowed the systematic study of the degree to which social distancing affects tactile experiences and mental health. In this study, 1746 participants completed an online survey to examine intimate, friendly and professional touch experiences during COVID-19-related restrictions, their impact on mental health and the extent to which touch deprivation results in craving touch. We found that intimate touch deprivation during COVID-19-related restrictions is associated with higher anxiety and greater loneliness even though this type of touch is still the most experienced during the pandemic. Moreover, intimate touch is reported as the type of touch most craved during this period, thus being more prominent as the days practising social distancing increase. However, our results also show that the degree to which individuals crave touch during this period depends on individual differences in attachment style: the more anxiously attached, the more touch is craved; with the reverse pattern for avoidantly attached. These findings point to the important role of interpersonal and particularly intimate touch in times of distress and uncertainty.
Collapse
Affiliation(s)
- Mariana von Mohr
- Lab of Action and Body, Department of Psychology, Royal Holloway, University of London, London, UK
- Departamento de Psicología, Universidad Iberoamericana, México, Mexico
| | - Louise P. Kirsch
- Institute for Intelligent Systems and Robotics (ISIR), Sorbonne Université, Paris, France
- Université de Paris, INCC UMR 8002, 75006, Paris, France
| | - Aikaterini Fotopoulou
- Research Department of Clinical, Educational and Health Psychology, University College London, London, UK
| |
Collapse
|
6
|
Török B, Fazekas CL, Szabó A, Zelena D. Epigenetic Modulation of Vasopressin Expression in Health and Disease. Int J Mol Sci 2021; 22:ijms22179415. [PMID: 34502322 PMCID: PMC8430944 DOI: 10.3390/ijms22179415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 12/14/2022] Open
Abstract
Vasopressin is a ubiquitous molecule playing an important role in a wide range of physiological processes thereby implicated in the pathomechanism of many disorders. Its effect is well characterized through V2 receptors, which regulates the water resorption in kidney, while its vasoconstrictory effect through V1a receptor also received a lot of attention in the maintenance of blood pressure during shock. However, the most striking is its central effect both through the V1b receptors in stress-axis regulation as well as through V1a receptors regulating many aspects of our behavior (e.g., social behavior, learning and memory). Vasopressin has been implicated in the development of depression, due to its connection with chronic stress, as well as schizophrenia because of its involvement in social interactions and memory processes. Epigenetic changes may also play a role in the development of these disorders. The possible mechanism includes DNA methylation, histone modification and/or micro RNAs, and these possible regulations will be in the focus of our present review.
Collapse
Affiliation(s)
- Bibiána Török
- Institute of Experimental Medicine, 1083 Budapest, Hungary; (B.T.); (C.L.F.); (A.S.)
- János Szentágothai School of Neurosciences, Semmelweis University, 1085 Budapest, Hungary
| | - Csilla Lea Fazekas
- Institute of Experimental Medicine, 1083 Budapest, Hungary; (B.T.); (C.L.F.); (A.S.)
- János Szentágothai School of Neurosciences, Semmelweis University, 1085 Budapest, Hungary
| | - Adrienn Szabó
- Institute of Experimental Medicine, 1083 Budapest, Hungary; (B.T.); (C.L.F.); (A.S.)
- János Szentágothai School of Neurosciences, Semmelweis University, 1085 Budapest, Hungary
| | - Dóra Zelena
- Institute of Experimental Medicine, 1083 Budapest, Hungary; (B.T.); (C.L.F.); (A.S.)
- Centre for Neuroscience, Szentágothai Research Centre, Institute of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary
- Correspondence:
| |
Collapse
|
7
|
Basso JC, Satyal MK, Rugh R. Dance on the Brain: Enhancing Intra- and Inter-Brain Synchrony. Front Hum Neurosci 2021; 14:584312. [PMID: 33505255 PMCID: PMC7832346 DOI: 10.3389/fnhum.2020.584312] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022] Open
Abstract
Dance has traditionally been viewed from a Eurocentric perspective as a mode of self-expression that involves the human body moving through space, performed for the purposes of art, and viewed by an audience. In this Hypothesis and Theory article, we synthesize findings from anthropology, sociology, psychology, dance pedagogy, and neuroscience to propose The Synchronicity Hypothesis of Dance, which states that humans dance to enhance both intra- and inter-brain synchrony. We outline a neurocentric definition of dance, which suggests that dance involves neurobehavioral processes in seven distinct areas including sensory, motor, cognitive, social, emotional, rhythmic, and creative. We explore The Synchronicity Hypothesis of Dance through several avenues. First, we examine evolutionary theories of dance, which suggest that dance drives interpersonal coordination. Second, we examine fundamental movement patterns, which emerge throughout development and are omnipresent across cultures of the world. Third, we examine how each of the seven neurobehaviors increases intra- and inter-brain synchrony. Fourth, we examine the neuroimaging literature on dance to identify the brain regions most involved in and affected by dance. The findings presented here support our hypothesis that we engage in dance for the purpose of intrinsic reward, which as a result of dance-induced increases in neural synchrony, leads to enhanced interpersonal coordination. This hypothesis suggests that dance may be helpful to repattern oscillatory activity, leading to clinical improvements in autism spectrum disorder and other disorders with oscillatory activity impairments. Finally, we offer suggestions for future directions and discuss the idea that our consciousness can be redefined not just as an individual process but as a shared experience that we can positively influence by dancing together.
Collapse
Affiliation(s)
- Julia C Basso
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, United States.,Center for Transformative Research on Health Behaviors, Fralin Biomedical Research Institute, Virginia Tech, Blacksburg, VA, United States.,School of Neuroscience, Virginia Tech, Blacksburg, VA, United States
| | - Medha K Satyal
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA, United States
| | - Rachel Rugh
- Center for Communicating Science, Virginia Tech, Blacksburg, VA, United States.,School of Performing Arts, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
8
|
Monteleone AM, Cascino G, Ruzzi V, Pellegrino F, Patriciello G, Barone E, Carfagno M, Monteleone P, Maj M. Emotional traumatic experiences significantly contribute to identify a maltreated ecophenotype sub-group in eating disorders: Experimental evidence. EUROPEAN EATING DISORDERS REVIEW 2020; 29:269-280. [PMID: 33378110 DOI: 10.1002/erv.2818] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/21/2020] [Accepted: 12/11/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Eating disorders (EDs) are associated with a high prevalence of childhood maltreatment (CM). We aimed to experimentally assess if people with EDs and history of CM show altered biological, emotional and behavioural responses to the Trier Social Stress Test (TSST). METHODS According to Childhood Trauma Questionnaire cut-off scores, 29 participants (14 with anorexia nervosa [AN] and 15 with bulimia nervosa [BN]) were classified as maltreated (Mal) ED participants while 19 participants (11 with AN and eight with BN) without CM were identified as no maltreated (noMal) ED participants. Cortisol, anxiety and hunger responses to TSST and post-stress body dissatisfaction were measured. RESULTS Mal ED people showed heightened emotional reactivity, lower levels of hunger and more severe post-stress body dissatisfaction in comparison with noMal ones. Higher cortisol production was observed in people with AN, regardless of CM history, and in those with BN and emotional CM. Emotional trauma was the main CM type contributing to the experimental differences observed in Mal ED people. CONCLUSIONS This is the first study providing experimental and multi-level support to the maltreated ecophenoptype hypothesis in people with EDs. These findings may promote new insights into the biological bases of EDs and provide novel therapeutic implications.
Collapse
Affiliation(s)
| | - Giammarco Cascino
- Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', Section of Neurosciences, University of Salerno, Salerno, Italy
| | - Valeria Ruzzi
- Department of Psychiatry, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Francesca Pellegrino
- Department of Psychiatry, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | | | - Eugenia Barone
- Department of Psychiatry, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Marco Carfagno
- Department of Psychiatry, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Palmiero Monteleone
- Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', Section of Neurosciences, University of Salerno, Salerno, Italy
| | - Mario Maj
- Department of Psychiatry, University of Campania 'Luigi Vanvitelli', Naples, Italy
| |
Collapse
|
9
|
Noroña-Zhou AN, Morgan A, Glynn LM, Sandman CA, Baram TZ, Stern HS, Davis EP. Unpredictable maternal behavior is associated with a blunted infant cortisol response. Dev Psychobiol 2020; 62:882-888. [PMID: 32115696 DOI: 10.1002/dev.21964] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 02/03/2020] [Accepted: 02/09/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis is associated with poor physical and mental health. Early-life adversity may dysregulate cortisol response to subsequent stress. This study examines the association between patterns of maternal behavior and infant stress response to a challenge. Specifically, we test whether infant exposure to unpredictable maternal sensory signals is related to the cortisol response to a painful stressor. METHOD Participants were 102 mothers and their children enrolled in a longitudinal study. Patterns of maternal sensory signals were evaluated at 6 and 12 months during a 10-min mother-infant play episode. Entropy rate was calculated as a quantitative measure of the degree of unpredictability of maternal sensory signals (visual, auditory, and tactile) exhibited during the play episode. Infant saliva samples were collected for cortisol analysis before and after inoculation at 12 months. RESULTS Unpredictable patterns of maternal sensory signals were associated with a blunted infant cortisol response to a painful stressor. This relation persisted after evaluation of covariates including maternal sensitivity and maternal psychological distress. CONCLUSIONS This study provides evidence that unpredictable patterns of maternal sensory signals are one process through which caregiving affects the function of infant stress response systems.
Collapse
Affiliation(s)
- Amanda N Noroña-Zhou
- Department of Psychology, University of Denver, Denver, CO, USA.,Department of Psychiatry, University of Colorado Anschutz, Aurora, CO, USA
| | - Alyssa Morgan
- Department of Psychiatry, University of Colorado Anschutz, Aurora, CO, USA
| | - Laura M Glynn
- Department of Psychology, Chapman University, Orange, CA, USA
| | - Curt A Sandman
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA, USA
| | - Tallie Z Baram
- Department of Pediatrics, University of California, Irvine, CA, USA.,Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA.,Department of Neurology, University of California, Irvine, CA, USA
| | - Hal S Stern
- Department of Statistics, University of California, Irvine, CA, USA
| | - Elysia Poggi Davis
- Department of Psychology, University of Denver, Denver, CO, USA.,Department of Psychiatry, University of Colorado Anschutz, Aurora, CO, USA.,Department of Psychiatry and Human Behavior, University of California, Irvine, CA, USA
| |
Collapse
|
10
|
Tuscher JJ, Day JJ. Multigenerational epigenetic inheritance: One step forward, two generations back. Neurobiol Dis 2019; 132:104591. [PMID: 31470104 DOI: 10.1016/j.nbd.2019.104591] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/22/2019] [Accepted: 08/26/2019] [Indexed: 02/08/2023] Open
Abstract
Modifications to DNA and histone proteins serve a critical regulatory role in the developing and adult brain, and over a decade of research has established the importance of these "epigenetic" modifications in a wide variety of brain functions across the lifespan. Epigenetic patterns orchestrate gene expression programs that establish the phenotypic diversity of various cellular classes in the central nervous system, play a key role in experience-dependent gene regulation in the adult brain, and are commonly implicated in neurodevelopmental, psychiatric, and neurodegenerative disease states. In addition to these established roles, emerging evidence indicates that epigenetic information can potentially be transmitted to offspring, giving rise to inter- and trans-generational epigenetic inheritance phenotypes. However, our understanding of the cellular events that participate in this information transfer is incomplete, and the ability of this transfer to overcome complete epigenetic reprogramming during embryonic development is highly controversial. This review explores the existing literature on multigenerational epigenetic mechanisms in the central nervous system. First, we focus on the cellular mechanisms that may perpetuate or counteract this type of information transfer, and consider how epigenetic modification in germline and somatic cells regulate important aspects of cellular and organismal development. Next, we review the potential phenotypes resulting from ancestral experiences that impact gene regulatory modifications, including how these changes may give rise to unique metabolic phenotypes. Finally, we discuss several caveats and technical limitations that influence multigenerational epigenetic effects. We argue that studies reporting multigenerational epigenetic changes impacting the central nervous system must be interpreted with caution, and provide suggestions for how epigenetic information transfer can be mechanistically disentangled from genetic and environmental influences on brain function.
Collapse
Affiliation(s)
- Jennifer J Tuscher
- Department of Neurobiology, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Jeremy J Day
- Department of Neurobiology, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
11
|
Abstract
The developmental period constitutes a critical window of sensitivity to stress. Indeed, early-life adversity increases the risk to develop psychiatric diseases, but also gastrointestinal disorders such as the irritable bowel syndrome at adulthood. In the past decade, there has been huge interest in the gut-brain axis, especially as regards stress-related emotional behaviours. Animal models of early-life adversity, in particular, maternal separation (MS) in rodents, demonstrate lasting deleterious effects on both the gut and the brain. Here, we review the effects of MS on both systems with a focus on stress-related behaviours. In addition, we discuss more recent findings showing the impact of gut-directed interventions, including nutrition with pre- and probiotics, illustrating the role played by gut microbiota in mediating the long-term effects of MS. Overall, preclinical studies suggest that nutritional approaches with pro- and prebiotics may constitute safe and efficient strategies to attenuate the effects of early-life stress on the gut-brain axis. Further research is required to understand the complex mechanisms underlying gut-brain interaction dysfunctions after early-life stress as well as to determine the beneficial impact of gut-directed strategies in a context of early-life adversity in human subjects.
Collapse
|
12
|
Saré RM, Song A, Levine M, Lemons A, Loutaev I, Sheeler C, Hildreth C, Mfon A, Cooke S, Smith CB. Chronic Sleep Restriction in Developing Male Mice Results in Long Lasting Behavior Impairments. Front Behav Neurosci 2019; 13:90. [PMID: 31130852 PMCID: PMC6509425 DOI: 10.3389/fnbeh.2019.00090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/16/2019] [Indexed: 12/11/2022] Open
Abstract
Sleep abnormalities are prevalent in autism spectrum disorders (ASD). Moreover, the severity of ASD symptoms are correlated with the degree of disturbed sleep. We asked if disturbed sleep during brain development itself could lead to ASD-like symptoms, particularly behavioral manifestations. We reasoned that sleep is known to be important for normal brain development and plasticity, so disrupted sleep during development might result in changes that contribute to behavioral impairments associated with ASD. We sleep-restricted C57BL/6J male mice [beginning at postnatal day 5 (P5) and continuing through P52] 3 h per day by means of gentle handling and compared the data with a stress group (handled every 15 min during the 3-h period) and a control group (no additional handling). From P42–P52, we assessed the behavioral effects of sleep-restriction in this pre-recovery phase. Then, we allowed the mice to recover for 4 weeks and tested behavior once again. Compared to the control group, we found that sleep restricted-mice had long-lasting hypoactivity, and impaired social behavior; repetitive behavior was unaffected. These behavior changes were accompanied by an increase in the downstream signaling products of the mammalian target of rapamycin pathway. These data affirm the importance of undisturbed sleep during development and show that, at least in this model, sleep-restriction can play a causative role in the development of behavioral abnormalities. Assessing and treating sleep abnormalities in ASD may be important in alleviating some of the symptoms.
Collapse
Affiliation(s)
- Rachel Michelle Saré
- Section on Neuroadaptation and Protein Metabolism, Department of Health and Human Services, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Alex Song
- Section on Neuroadaptation and Protein Metabolism, Department of Health and Human Services, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Merlin Levine
- Section on Neuroadaptation and Protein Metabolism, Department of Health and Human Services, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Abigail Lemons
- Section on Neuroadaptation and Protein Metabolism, Department of Health and Human Services, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Inna Loutaev
- Section on Neuroadaptation and Protein Metabolism, Department of Health and Human Services, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Carrie Sheeler
- Section on Neuroadaptation and Protein Metabolism, Department of Health and Human Services, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Christine Hildreth
- Section on Neuroadaptation and Protein Metabolism, Department of Health and Human Services, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Angel Mfon
- Section on Neuroadaptation and Protein Metabolism, Department of Health and Human Services, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Spencer Cooke
- Section on Neuroadaptation and Protein Metabolism, Department of Health and Human Services, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Carolyn Beebe Smith
- Section on Neuroadaptation and Protein Metabolism, Department of Health and Human Services, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
13
|
EEG captures affective touch: CT-optimal touch and neural oscillations. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2019; 18:155-166. [PMID: 29404917 DOI: 10.3758/s13415-017-0560-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Tactile interactions are of developmental importance to social and emotional interactions across species. In beginning to understand the affective component of tactile stimulation, research has begun to elucidate the neural mechanisms that underscore slow, affective touch. Here, we extended this emerging body of work and examined whether affective touch (C tactile [CT]-optimal speed), as compared to nonaffective touch (non-CT-optimal speed) and no touch conditions, modulated EEG oscillations. We report an attenuation in alpha and beta activity to affective and nonaffective touch relative to the no touch condition. Further, we found an attenuation in theta activity specific to the affective, as compared to the nonaffective touch and no touch conditions. Similar to theta, we also observed an attenuation of beta oscillations during the affective touch condition, although only in parietal scalp sites. Decreased activity in theta and parietal-beta ranges may reflect attentional-emotional regulatory mechanisms; however, future work is needed to provide insight into the potential neural coupling between theta and beta and their specific role in encoding slow, tactile stimulation.
Collapse
|
14
|
Early Developmental Stress Affects Subsequent Gene Expression Response to an Acute Stress in Atlantic Salmon: An Approach for Creating Robust Fish for Aquaculture? G3-GENES GENOMES GENETICS 2019; 9:1597-1611. [PMID: 30885921 PMCID: PMC6505151 DOI: 10.1534/g3.119.400152] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Stress during early life has potential to program and alter the response to stressful events and metabolism in later life. Repeated short exposure of Atlantic salmon to cold water and air during embryonic (E), post-hatch (PH) or both phases of development (EPH) has been shown to alter the methylome and transcriptome and to affect growth performance during later life compared to untreated controls (CO). The aim of this study was to investigate how the transcriptome of these fish responds to subsequent acute stress at the start feeding stage, and to describe methylation differences that might steer these changes. EPH treated fish showed the strongest down-regulation of corticotropin releasing factor 1, up-regulation of glucocorticoid receptor and 3-oxo-5-alpha-steroid 4-dehydrogenase 2 gene expression and a suppressed cortisol response 3 hr after the acute stress, differences that could influence hormesis and be affecting how EPH fish cope and recover from the stress event. Growth hormone 2 and insulin-like growth factor 1 were more strongly down-regulated following acute stress in EPH treated fish relative to E, PH and CO fish. This indicates switching away from growth toward coping with stress following stressful events in EPH fish. Genes implicated in immune function such as major histocompatibility class 1A, T-cell receptor and toll-like receptor also responded to acute stress differently in EPH treated fish, indicating that repeated stresses during early life may affect robustness. Differential DNA methylation was detected in regions mapping <500 bases from genes differentially responding to acute stress suggesting the involvement of epigenetic mechanisms. Stress treatments applied during early development therefore have potential as a husbandry tool for boosting the productivity of aquaculture by affecting how fish respond to stresses at critical stages of production.
Collapse
|
15
|
Cramer T, Rosenberg T, Kisliouk T, Meiri N. PARP Inhibitor Affects Long-term Heat-stress Response via Changes in DNA Methylation. Neuroscience 2018; 399:65-76. [PMID: 30579833 DOI: 10.1016/j.neuroscience.2018.12.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 12/12/2018] [Accepted: 12/13/2018] [Indexed: 02/07/2023]
Abstract
Resilience to stress can be obtained by adjusting the stress-response set point during postnatal sensory development. Recent studies have implemented epigenetic mechanisms to play leading roles in improving resilience. We previously found that better resilience to heat stress in chicks can be achieved by conditioning them to moderate heat stress during their critical developmental period of thermal control establishment, 3 days posthatch. Furthermore, the expression level of corticotropin-releasing hormone (CRH) was found to play a direct role in determining future resilience or vulnerability to heat stress by alterations in its DNA-methylation and demethylation pattern. Here we demonstrate how intraperitoneal injection of poly (ADP-ribose) polymerase (PARP) inhibitor (PARPi) influences the DNA methylation pattern, thereby affecting the long-term heat-stress response. Single PARPi administration, induced a reduction in both 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC), without affecting body temperature. The accumulated effect of three PARPi doses brought about a long-term decrease in 5mC% and 5hmC%. These changes coincided with a reduction in body temperature in non-conditioned chicks, similar to that occurring in moderately conditioned heat-stress-resilient chicks. The observed changes in DNA methylation can be explained by decreased activity of the enzyme DNA methyltransferase as a result of the PARPi injection. Furthermore, evaluation of the DNA-methylation pattern along the CRH intron showed a reduction in 5mC% as a result of PARPi treatment, alongside a reduction in CRH mRNA expression. Thus, PARPi treatment can affect DNA methylation, which can alter hypothalamic-pituitary-adrenal (HPA) axis anchors such as CRH, thereby potentially enhancing long-term resilience to heat stress.
Collapse
Affiliation(s)
- Tomer Cramer
- Agricultural Research Organization, Volcani Center, Department of Poultry and Aquaculture Science, Rishon LeZiyyon 7528809, Israel; The Robert H. Smith Faculty of Agriculture, Food and Environment, Department of Animal Science, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Tali Rosenberg
- Agricultural Research Organization, Volcani Center, Department of Poultry and Aquaculture Science, Rishon LeZiyyon 7528809, Israel; The Robert H. Smith Faculty of Agriculture, Food and Environment, Department of Animal Science, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Tatiana Kisliouk
- Agricultural Research Organization, Volcani Center, Department of Poultry and Aquaculture Science, Rishon LeZiyyon 7528809, Israel
| | - Noam Meiri
- Agricultural Research Organization, Volcani Center, Department of Poultry and Aquaculture Science, Rishon LeZiyyon 7528809, Israel.
| |
Collapse
|
16
|
Di Segni M, Andolina D, Ventura R. Long-term effects of early environment on the brain: Lesson from rodent models. Semin Cell Dev Biol 2018; 77:81-92. [DOI: 10.1016/j.semcdb.2017.09.039] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/20/2017] [Accepted: 09/29/2017] [Indexed: 12/21/2022]
|
17
|
Hoeijmakers L, Lesuis SL, Krugers H, Lucassen PJ, Korosi A. A preclinical perspective on the enhanced vulnerability to Alzheimer's disease after early-life stress. Neurobiol Stress 2018; 8:172-185. [PMID: 29888312 PMCID: PMC5991337 DOI: 10.1016/j.ynstr.2018.02.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/17/2018] [Accepted: 02/20/2018] [Indexed: 12/13/2022] Open
Abstract
Stress experienced early in life (ES), in the form of childhood maltreatment, maternal neglect or trauma, enhances the risk for cognitive decline in later life. Several epidemiological studies have now shown that environmental and adult life style factors influence AD incidence or age-of-onset and early-life environmental conditions have attracted attention in this respect. There is now emerging interest in understanding whether ES impacts the risk to develop age-related neurodegenerative disorders, and their severity, such as in Alzheimer's disease (AD), which is characterized by cognitive decline and extensive (hippocampal) neuropathology. While this might be relevant for the identification of individuals at risk and preventive strategies, this topic and its possible underlying mechanisms have been poorly studied to date. In this review, we discuss the role of ES in modulating AD risk and progression, primarily from a preclinical perspective. We focus on the possible involvement of stress-related, neuro-inflammatory and metabolic factors in mediating ES-induced effects on later neuropathology and the associated impairments in neuroplasticity. The available studies suggest that the age of onset and progression of AD-related neuropathology and cognitive decline can be affected by ES, and may aggravate the progression of AD neuropathology. These relevant changes in AD pathology after ES exposure in animal models call for future clinical studies to elucidate whether stress exposure during the early-life period in humans modulates later vulnerability for AD.
Collapse
Affiliation(s)
| | | | | | | | - Aniko Korosi
- Brain Plasticity Group, Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands
| |
Collapse
|
18
|
Abstract
The endogenous oxytocin system plays a vital role in facilitating parturition, lactation and social interaction in humans and other mammals. It also impacts on a number of important endocrine, immune and neurotransmitter systems. A well-regulated oxytocin system has been proposed to increase resilience, and therefore reduce the likelihood of an individual developing mental illness or substance dependence. This review discusses the adverse external influences that can modulate oxytocin receptor and protein levels and impact on substance use and mental health. The paper highlights the impact of adversity such as poor maternal care, parental substance use and child abuse or neglect. We review clinical and preclinical data on the impact of adversity on the basis of the time of exposure from infancy and early childhood, to adolescence, adulthood to older age. Previous research suggests that dysregulation of the endogenous oxytocin system may be implicated in determining susceptibility to stress, anxiety, addiction and mental health conditions. The impact of external influence seems to be strongest in specific time periods where the system shows experience-based development or natural fluctuations in oxytocin levels. Interventions that target the oxytocin system during or soon after exposure to adversity may prove protective.
Collapse
|
19
|
Vaiserman AM, Koliada AK. Early-life adversity and long-term neurobehavioral outcomes: epigenome as a bridge? Hum Genomics 2017; 11:34. [PMID: 29246185 PMCID: PMC5732459 DOI: 10.1186/s40246-017-0129-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 12/04/2017] [Indexed: 12/12/2022] Open
Abstract
Accumulating evidence suggests that adversities at critical periods in early life, both pre- and postnatal, can lead to neuroendocrine perturbations, including hypothalamic-pituitary-adrenal axis dysregulation and inflammation persisting up to adulthood. This process, commonly referred to as biological embedding, may cause abnormal cognitive and behavioral functioning, including impaired learning, memory, and depressive- and anxiety-like behaviors, as well as neuropsychiatric outcomes in later life. Currently, the regulation of gene activity by epigenetic mechanisms is suggested to be a key player in mediating the link between adverse early-life events and adult neurobehavioral outcomes. Role of particular genes, including those encoding glucocorticoid receptor, brain-derived neurotrophic factor, as well as arginine vasopressin and corticotropin-releasing factor, has been demonstrated in triggering early adversity-associated pathological conditions. This review is focused on the results from human studies highlighting the causal role of epigenetic mechanisms in mediating the link between the adversity during early development, from prenatal stages through infancy, and adult neuropsychiatric outcomes. The modulation of epigenetic pathways involved in biological embedding may provide promising direction toward novel therapeutic strategies against neurological and cognitive dysfunctions in adult life.
Collapse
Affiliation(s)
- Alexander M Vaiserman
- Laboratory of Epigenetics, Institute of Gerontology, Vyshgorodskaya st. 67, Kiev, 04114, Ukraine.
| | - Alexander K Koliada
- Laboratory of Epigenetics, Institute of Gerontology, Vyshgorodskaya st. 67, Kiev, 04114, Ukraine
| |
Collapse
|
20
|
von Mohr M, Kirsch LP, Fotopoulou A. The soothing function of touch: affective touch reduces feelings of social exclusion. Sci Rep 2017; 7:13516. [PMID: 29044137 PMCID: PMC5647341 DOI: 10.1038/s41598-017-13355-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 09/19/2017] [Indexed: 11/29/2022] Open
Abstract
The mammalian need for social proximity, attachment and belonging may have an adaptive and evolutionary value in terms of survival and reproductive success. Consequently, ostracism may induce strong negative feelings of social exclusion. Recent studies suggest that slow, affective touch, which is mediated by a separate, specific C tactile neurophysiological system than faster, neutral touch, modulates the perception of physical pain. However, it remains unknown whether slow, affective touch, can also reduce feelings of social exclusion, a form of social pain. Here, we employed a social exclusion paradigm, namely the Cyberball task (N = 84), to examine whether the administration of slow, affective touch may reduce the negative feelings of ostracism induced by the social exclusion manipulations of the Cyberball task. As predicted, the provision of slow-affective, as compared to fast-neutral, touch led to a specific decrease in feelings of social exclusion, beyond general mood effects. These findings point to the soothing function of slow, affective touch, particularly in the context of social separation or rejection, and suggest a specific relation between affective touch and social bonding.
Collapse
Affiliation(s)
- Mariana von Mohr
- Research Department of Clinical, Educational and Health Psychology, University College London, London, United Kingdom.
| | - Louise P Kirsch
- Research Department of Clinical, Educational and Health Psychology, University College London, London, United Kingdom
| | - Aikaterini Fotopoulou
- Research Department of Clinical, Educational and Health Psychology, University College London, London, United Kingdom
| |
Collapse
|
21
|
Opioid Self-Administration is Attenuated by Early-Life Experience and Gene Therapy for Anti-Inflammatory IL-10 in the Nucleus Accumbens of Male Rats. Neuropsychopharmacology 2017; 42:2128-2140. [PMID: 28436446 PMCID: PMC5603817 DOI: 10.1038/npp.2017.82] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/11/2017] [Accepted: 04/12/2017] [Indexed: 12/28/2022]
Abstract
Early-life conditions can contribute to the propensity for developing neuropsychiatric disease, including substance abuse disorders. However, the long-lasting mechanisms that shape risk or resilience for drug addiction remain unclear. Previous work has shown that a neonatal handling procedure in rats (which promotes enriched maternal care) attenuates morphine conditioning, reduces morphine-induced glial activation, and increases microglial expression of the anti-inflammatory cytokine interleukin-10 (IL-10). We thus hypothesized that anti-inflammatory signaling may underlie the effects of early-life experience on later-life opioid drug-taking. Here we demonstrate that neonatal handling attenuates intravenous self-administration of the opioid remifentanil in a drug-concentration-dependent manner. Transcriptional profiling of the nucleus accumbens (NAc) from handled rats following repeated exposure to remifentanil reveals a suppression of pro-inflammatory cytokine and chemokine gene expression, consistent with an anti-inflammatory phenotype. To determine if anti-inflammatory signaling alters drug-taking behavior, we administered intracranial injections of plasmid DNA encoding IL-10 (pDNA-IL-10) into the NAc of non-handled rats. We discovered that pDNA-IL-10 treatment reduces remifentanil self-administration in a drug-concentration-dependent manner, similar to the effect of handling. In contrast, neither handling nor pDNA-IL-10 treatment alters self-administration of food or sucrose rewards. These collective observations suggest that neuroimmune signaling mechanisms in the NAc are shaped by early-life experience and may modify motivated behaviors for opioid drugs. Moreover, manipulation of the IL-10 signaling pathway represents a novel approach for influencing opioid reinforcement.
Collapse
|
22
|
Pattwell SS, Bath KG. Emotional learning, stress, and development: An ever-changing landscape shaped by early-life experience. Neurobiol Learn Mem 2017; 143:36-48. [PMID: 28458034 PMCID: PMC5540880 DOI: 10.1016/j.nlm.2017.04.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 04/24/2017] [Accepted: 04/26/2017] [Indexed: 12/19/2022]
Abstract
The capacity to learn to associate cues with negative outcomes is a highly adaptive process that appears to be conserved across species. However, when the cue is no longer a valid predictor of danger, but the emotional response persists, this can result in maladaptive behaviors, and in humans contribute to debilitating emotional disorders. Over the past several decades, work in neuroscience, psychiatry, psychology, and biology have uncovered key processes underlying, and structures governing, emotional responding and learning, as well as identified disruptions in the structural and functional integrity of these brain regions in models of pathology. In this review, we highlight some of this elegant body of work as well as incorporate emerging findings from the field of developmental neurobiology to emphasize how development contributes to changes in the ability to learn and express emotional responses, and how early experiences, such as stress, shape the development and functioning of these circuits.
Collapse
Affiliation(s)
- Siobhan S Pattwell
- Department of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109, United States.
| | - Kevin G Bath
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI 02912, United States
| |
Collapse
|
23
|
Fotopoulou A, Tsakiris M. Mentalizing homeostasis: The social origins of interoceptive inference. ACTA ACUST UNITED AC 2017. [DOI: 10.1080/15294145.2017.1294031] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
24
|
McIlwrick S, Pohl T, Chen A, Touma C. Late-Onset Cognitive Impairments after Early-Life Stress Are Shaped by Inherited Differences in Stress Reactivity. Front Cell Neurosci 2017; 11:9. [PMID: 28261058 PMCID: PMC5306385 DOI: 10.3389/fncel.2017.00009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 01/12/2017] [Indexed: 01/18/2023] Open
Abstract
Early-life stress (ELS) has been associated with lasting cognitive impairments and with an increased risk for affective disorders. A dysregulation of the hypothalamus-pituitary-adrenal (HPA) axis, the body’s main stress response system, is critically involved in mediating these long-term consequences of adverse early-life experience. It remains unclear to what extent an inherited predisposition for HPA axis sensitivity or resilience influences the relationship between ELS and cognitive impairments, and which neuroendocrine and molecular mechanisms may be involved. To investigate this, we exposed animals of the stress reactivity mouse model, consisting of three independent lines selectively bred for high (HR), intermediate (IR), or low (LR) HPA axis reactivity to a stressor, to ELS and assessed their cognitive performance, neuroendocrine function and hippocampal gene expression in early and in late adulthood. Our results show that HR animals that were exposed to ELS exhibited an HPA axis hyper-reactivity in early and late adulthood, associated with cognitive impairments in hippocampus-dependent tasks, as well as molecular changes in transcript levels involved in the regulation of HPA axis activity (Crh) and in neurotrophic action (Bdnf). In contrast, LR animals showed intact cognitive function across adulthood, with no change in stress reactivity. Intriguingly, LR animals that were exposed to ELS even showed significant signs of enhanced cognitive performance in late adulthood, which may be related to late-onset changes observed in the expression of Crh and Crhr1 in the dorsal hippocampus of these animals. Collectively, our findings demonstrate that the lasting consequences of ELS at the level of cognition differ as a function of inherited predispositions and suggest that an innate tendency for low stress reactivity may be protective against late-onset cognitive impairments after ELS.
Collapse
Affiliation(s)
- Silja McIlwrick
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry Munich, Germany
| | - Tobias Pohl
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry Munich, Germany
| | - Alon Chen
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of PsychiatryMunich, Germany; Department of Neurobiology, Weizmann Institute of ScienceRehovot, Israel
| | - Chadi Touma
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of PsychiatryMunich, Germany; Department of Behavioural Biology, University of OsnabrückOsnabrück, Germany
| |
Collapse
|
25
|
Nicol AL, Sieberg CB, Clauw DJ, Hassett AL, Moser SE, Brummett CM. The Association Between a History of Lifetime Traumatic Events and Pain Severity, Physical Function, and Affective Distress in Patients With Chronic Pain. THE JOURNAL OF PAIN 2016; 17:1334-1348. [DOI: 10.1016/j.jpain.2016.09.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 09/05/2016] [Accepted: 09/07/2016] [Indexed: 10/21/2022]
|
26
|
Krahé C, Drabek MM, Paloyelis Y, Fotopoulou A. Affective touch and attachment style modulate pain: a laser-evoked potentials study. Philos Trans R Soc Lond B Biol Sci 2016; 371:rstb.2016.0009. [PMID: 28080967 PMCID: PMC5062098 DOI: 10.1098/rstb.2016.0009] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2016] [Indexed: 11/15/2022] Open
Abstract
Affective touch and cutaneous pain are two sub-modalities of interoception with contrasting affective qualities (pleasantness/unpleasantness) and social meanings (care/harm), yet their direct relationship has not been investigated. In 50 women, taking into account individual attachment styles, we assessed the role of affective touch and particularly the contribution of the C tactile (CT) system in subjective and electrophysiological responses to noxious skin stimulation, namely N1 and N2-P2 laser-evoked potentials. When pleasant, slow (versus fast) velocity touch was administered to the (non-CT-containing) palm of the hand, higher attachment anxiety predicted increased subjective pain ratings, in the same direction as changes in N2 amplitude. By contrast, when pleasant touch was administered to CT-containing skin of the arm, higher attachment anxiety predicted attenuated N1 and N2 amplitudes. Higher attachment avoidance predicted opposite results. Thus, CT-based affective touch can modulate pain in early and late processing stages (N1 and N2 components), with the direction of effects depending on attachment style. Affective touch not involving the CT system seems to affect predominately the conscious perception of pain, possibly reflecting socio-cognitive factors further up the neurocognitive hierarchy. Affective touch may thus convey information about available social resources and gate pain responses depending on individual expectations of social support. This article is part of the themed issue ‘Interoception beyond homeostasis: affect, cognition and mental health’.
Collapse
Affiliation(s)
- Charlotte Krahé
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Marianne M Drabek
- Arthritis Research UK Pain Centre, University of Nottingham, Nottingham, UK
| | - Yannis Paloyelis
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Aikaterini Fotopoulou
- Research Department of Clinical, Educational and Health Psychology, University College London, London, UK
| |
Collapse
|
27
|
Santos JBG, Gonçalves TDS, Lima RFD, Crenitte PDAP. Sinais sugestivos de estresse infantil em escolares com transtorno de aprendizagem. REVISTA CEFAC 2016. [DOI: 10.1590/1982-0216201618420915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
RESUMO Objetivo: comparar sinais sugestivos de estresse entre crianças com transtornos de aprendizagem (com e sem intervenção fonoaudiológica) e em crianças sem qualquer dificuldade escolar, além de verificar sinais sugestivos de estresse entre os grupos de acordo com o sexo dos participantes. Métodos: participaram do estudo 25 crianças com transtorno de aprendizagem, 10 com diagnóstico, porém sem intervenção e 15 em intervenção fonoaudiológica, e 25 crianças sem queixas de aprendizagem. Em todos os grupos foi aplicada uma escala de estresse infantil. Resultados: observou-se que 43% das crianças com transtorno de aprendizagem sem intervenção, 56% das crianças com transtorno de aprendizagem em terapia e 83% das crianças sem o transtorno, apresentaram sinais de alerta. Estas diferenças não foram estatisticamente significantes. Também não foi encontrada esta diferença entre os sexos. Conclusão: nos dois grupos houve alta frequência de sinais de alerta para o estresse infantil, mostrando que este pode não ser um fator determinante no desempenho escolar na amostra estudada.
Collapse
|
28
|
Stress Response and Perinatal Reprogramming: Unraveling (Mal)adaptive Strategies. Neural Plast 2016; 2016:6752193. [PMID: 27057367 PMCID: PMC4812483 DOI: 10.1155/2016/6752193] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 02/17/2016] [Indexed: 12/28/2022] Open
Abstract
Environmental stressors induce coping strategies in the majority of individuals. The stress response, involving the activation of the hypothalamic-pituitary-adrenocortical axis and the consequent release of corticosteroid hormones, is indeed aimed at promoting metabolic, functional, and behavioral adaptations. However, behavioral stress is also associated with fast and long-lasting neurochemical, structural, and behavioral changes, leading to long-term remodeling of glutamate transmission, and increased susceptibility to neuropsychiatric disorders. Of note, early-life events, both in utero and during the early postnatal life, trigger reprogramming of the stress response, which is often associated with loss of stress resilience and ensuing neurobehavioral (mal)adaptations. Indeed, adverse experiences in early life are known to induce long-term stress-related neuropsychiatric disorders in vulnerable individuals. Here, we discuss recent findings about stress remodeling of excitatory neurotransmission and brain morphology in animal models of behavioral stress. These changes are likely driven by epigenetic factors that lie at the core of the stress-response reprogramming in individuals with a history of perinatal stress. We propose that reprogramming mechanisms may underlie the reorganization of excitatory neurotransmission in the short- and long-term response to stressful stimuli.
Collapse
|
29
|
Sousa N. The dynamics of the stress neuromatrix. Mol Psychiatry 2016; 21:302-12. [PMID: 26754952 PMCID: PMC4759204 DOI: 10.1038/mp.2015.196] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 10/04/2015] [Accepted: 10/21/2015] [Indexed: 01/08/2023]
Abstract
Stressful stimuli in healthy subjects trigger activation of a consistent and reproducible set of brain regions; yet, the notion that there is a single and constant stress neuromatrix is not sustainable. Indeed, after chronic stress exposure there is activation of many brain regions outside that network. This suggests that there is a distinction between the acute and the chronic stress neuromatrix. Herein, a new working model is proposed to understand the shift between these networks. The understanding of the factors that modulate these networks and their interplay will allow for a more comprehensive and holistic perspective of how the brain shifts 'back and forth' from a healthy to a stressed pattern and, ultimately, how the latter can be a trigger for several neurological and psychiatric conditions.
Collapse
Affiliation(s)
- N Sousa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus Gualtar, Braga, Portugal,ICVS/3B's–PT Government Associate Laboratory, Braga/Guimarães, Portugal,Clinical Academic Center–Braga, Braga, Portugal,Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal. E-mail:
| |
Collapse
|
30
|
Epigenetic and transgenerational reprogramming of brain development. Nat Rev Neurosci 2015; 16:332-44. [PMID: 25921815 DOI: 10.1038/nrn3818] [Citation(s) in RCA: 330] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neurodevelopmental programming - the implementation of the genetic and epigenetic blueprints that guide and coordinate normal brain development - requires tight regulation of transcriptional processes. During prenatal and postnatal time periods, epigenetic processes fine-tune neurodevelopment towards an end product that determines how an organism interacts with and responds to exposures and experiences throughout life. Epigenetic processes also have the ability to reprogramme the epigenome in response to environmental challenges, such as maternal stress, making the organism more or less adaptive depending on the future challenges presented. Epigenetic marks generated within germ cells as a result of environmental influences throughout life can also shape future generations long before conception occurs.
Collapse
|
31
|
Hoeijmakers L, Lucassen PJ, Korosi A. The interplay of early-life stress, nutrition, and immune activation programs adult hippocampal structure and function. Front Mol Neurosci 2015; 7:103. [PMID: 25620909 PMCID: PMC4288131 DOI: 10.3389/fnmol.2014.00103] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 12/16/2014] [Indexed: 01/08/2023] Open
Abstract
Early-life adversity increases the vulnerability to develop psychopathologies and cognitive decline later in life. This association is supported by clinical and preclinical studies. Remarkably, experiences of stress during this sensitive period, in the form of abuse or neglect but also early malnutrition or an early immune challenge elicit very similar long-term effects on brain structure and function. During early-life, both exogenous factors like nutrition and maternal care, as well as endogenous modulators, including stress hormones and mediator of immunological activity affect brain development. The interplay of these key elements and their underlying molecular mechanisms are not fully understood. We discuss here the hypothesis that exposure to early-life adversity (specifically stress, under/malnutrition and infection) leads to life-long alterations in hippocampal-related cognitive functions, at least partly via changes in hippocampal neurogenesis. We further discuss how these different key elements of the early-life environment interact and affect one another and suggest that it is a synergistic action of these elements that shapes cognition throughout life. Finally, we consider different intervention studies aiming to prevent these early-life adversity induced consequences. The emerging evidence for the intriguing interplay of stress, nutrition, and immune activity in the early-life programming calls for a more in depth understanding of the interaction of these elements and the underlying mechanisms. This knowledge will help to develop intervention strategies that will converge on a more complete set of changes induced by early-life adversity.
Collapse
Affiliation(s)
- Lianne Hoeijmakers
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam Amsterdam, Netherlands
| | - Paul J Lucassen
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam Amsterdam, Netherlands
| | - Aniko Korosi
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam Amsterdam, Netherlands
| |
Collapse
|
32
|
Romeo RD. Perspectives on stress resilience and adolescent neurobehavioral function. Neurobiol Stress 2015; 1:128-33. [PMID: 27589663 PMCID: PMC4721430 DOI: 10.1016/j.ynstr.2014.11.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 11/02/2014] [Indexed: 11/19/2022] Open
Abstract
Interest in adolescence as a crucial stage of neurobehavioral maturation is growing, as is the concern of how stress may perturb this critical period of development. Though it is well recognized that stress-related vulnerabilities increase during adolescence, not all adolescent individuals are uniformly affected by stress nor do stressful experiences inevitability lead to negative outcomes. Indeed, many adolescents show resilience to stress-induced dysfunctions. However, relatively little is known regarding the mechanisms that may mediate resilience to stress in adolescence. The goal of this brief review is to bring together a few separate, yet related lines of research that highlight specific variables that may influence stress resilience during adolescence, including early life programming of the hypothalamic-pituitary-adrenal (HPA) axis, stress inoculation, and genetic predisposition. Though we are far from a clear understanding of the factors that mediate resistance to stress-induced dysfunctions, it is imperative that we identify and delineate these aspects of resilience to help adolescents reach their full potential, even in the face of adversity.
Collapse
Affiliation(s)
- Russell D. Romeo
- Department of Psychology and Neuroscience and Behavior Program, Barnard College of Columbia University, New York, NY 10027, USA
| |
Collapse
|
33
|
Yam KY, Naninck EFG, Schmidt MV, Lucassen PJ, Korosi A. Early-life adversity programs emotional functions and the neuroendocrine stress system: the contribution of nutrition, metabolic hormones and epigenetic mechanisms. Stress 2015; 18:328-42. [PMID: 26260665 DOI: 10.3109/10253890.2015.1064890] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Clinical and pre-clinical studies have shown that early-life adversities, such as abuse or neglect, can increase the vulnerability to develop psychopathologies and cognitive decline later in life. Remarkably, the lasting consequences of stress during this sensitive period on the hypothalamic-pituitary-adrenal axis and emotional function closely resemble the long-term effects of early malnutrition and suggest a possible common pathway mediating these effects. During early-life, brain development is affected by both exogenous factors, like nutrition and maternal care as well as by endogenous modulators including stress hormones. These elements, while mostly considered for their independent actions, clearly do not act alone but rather in a synergistic manner. In order to better understand how the programming by early-life stress takes place, it is important to gain further insight into the exact interplay of these key elements, the possible common pathways as well as the underlying molecular mechanisms that mediate their effects. We here review evidence that exposure to both early-life stress and early-life under-/malnutrition similarly lead to life-long alterations on the neuroendocrine stress system and modify emotional functions. We further discuss how the different key elements of the early-life environment interact and affect one another and next suggest a possible role for the early-life adversity induced alterations in metabolic hormones and nutrient availability in shaping later stress responses and emotional function throughout life, possibly via epigenetic mechanisms. Such knowledge will help to develop intervention strategies, which gives the advantage of viewing the synergistic action of a more complete set of changes induced by early-life adversity.
Collapse
Affiliation(s)
- Kit-Yi Yam
- a Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam , XH Amsterdam , The Netherlands and
| | - Eva F G Naninck
- a Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam , XH Amsterdam , The Netherlands and
| | - Mathias V Schmidt
- b Department Stress Neurobiology and Neurogenetics , Max Planck Institute of Psychiatry , Munich , Germany
| | - Paul J Lucassen
- a Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam , XH Amsterdam , The Netherlands and
| | - Aniko Korosi
- a Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam , XH Amsterdam , The Netherlands and
| |
Collapse
|
34
|
Cramer T, Kisliouk T, Yeshurun S, Meiri N. The balance between stress resilience and vulnerability is regulated by corticotropin-releasing hormone during the critical postnatal period for sensory development. Dev Neurobiol 2014; 75:842-53. [PMID: 25447645 DOI: 10.1002/dneu.22252] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 11/24/2014] [Accepted: 11/26/2014] [Indexed: 11/06/2022]
Abstract
Determining whether a stressful event will lead to stress-resilience or vulnerability depends probably on an adjustable stress response set point, which is most likely effective during postnatal sensory development and involves the regulation of corticotrophin-releasing hormone (CRH) expression. During the critical period of thermal-control establishment in 3-day-old chicks, heat stress was found to render resilient or sensitized response, depending on the ambient temperature. These two different responses were correlated with the amount of activation of the hypothalamic-pituitary-adrenal (HPA) axis. The expression of CRH mRNA in the hypothalamic paraventricular nucleus was augmented during heat challenge a week after heat conditioning in chicks which were trained to be vulnerable to heat, while it declined in chicks that were trained to be resilient. To study the role of CRH in HPA-axis plasticity, CRH or Crh-antisense were intracranially injected into the third ventricle. CRH caused an elevation of both body temperature and plasma corticosterone level, while Crh-antisense caused an opposite response. Moreover, these effects had long term implications by reversing a week later, heat resilience into vulnerability and vice versa. Chicks that had been injected with CRH followed by exposure to mild heat stress, normally inducing resilience, demonstrated, a week later, an elevation in body temperature, and Crh mRNA level similar to heat vulnerability, while Crh-antisense injected chicks, which were exposed to harsh temperature, responded in heat resilience. These results demonstrate a potential role for CRH in determining the stress resilience/vulnerability balance.
Collapse
Affiliation(s)
- Tomer Cramer
- Department of Poultry and Aquaculture, Institute of Animal Science, ARO, The Volcani Center, Bet Dagan, 50250, Israel.,The Robert H. Smith Faculty of Agriculture, Food and Environment, Department of Animal Science, the Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Tatiana Kisliouk
- Department of Poultry and Aquaculture, Institute of Animal Science, ARO, The Volcani Center, Bet Dagan, 50250, Israel
| | - Shlomo Yeshurun
- Department of Poultry and Aquaculture, Institute of Animal Science, ARO, The Volcani Center, Bet Dagan, 50250, Israel.,The Robert H. Smith Faculty of Agriculture, Food and Environment, Department of Animal Science, the Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Noam Meiri
- Department of Poultry and Aquaculture, Institute of Animal Science, ARO, The Volcani Center, Bet Dagan, 50250, Israel
| |
Collapse
|
35
|
Vaiserman AM. Epigenetic programming by early-life stress: Evidence from human populations. Dev Dyn 2014; 244:254-65. [PMID: 25298004 DOI: 10.1002/dvdy.24211] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 09/29/2014] [Accepted: 09/29/2014] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND A substantial body of experimental and epidemiological evidence has been accumulated suggesting that stressful events in early life including acute perinatal stress, maternal deprivation or separation, and variation in maternal care may lead to neuroendocrine perturbations thereby affecting reproductive performance, cognitive functions, and stress responses as well as the risk for infectious, cardio-metabolic and psychiatric diseases in later life. RESULTS Findings from recent studies based on both genome-wide and candidate gene approaches highlighted the importance of mechanisms that are involved in epigenetic regulation of gene expression, such as DNA methylation, histone modifications, and non-coding RNAs, in the long-term effects of exposure to stress in early life. CONCLUSIONS This review is focused on the findings from human studies indicating the role of epigenetic mechanisms in the causal link between early-life stress and later-life health outcomes.
Collapse
Affiliation(s)
- A M Vaiserman
- D.F. Chebotarev State Institute of Gerontology NAMS of Ukraine, Kiev, Ukraine
| |
Collapse
|
36
|
McVicar A, Ravalier JM, Greenwood C. Biology of stress revisited: intracellular mechanisms and the conceptualization of stress. Stress Health 2014; 30:272-9. [PMID: 23868544 DOI: 10.1002/smi.2508] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 05/24/2013] [Accepted: 06/05/2013] [Indexed: 12/30/2022]
Abstract
Application of allostatic theory to stress during the 1990s refocused attention on internal responses to a perceived hazard, and the last 20 years has seen considerable developments in the biological contexts of stress. Evidence from neuroscience now suggests that secretion of the hormone cortisol is not only stimulated by the outcomes of cognitive transaction but it also feeds back and contributes positively to the cognitive adaptation that is a feature of stress resilience. More recently, the operative intracellular mechanisms are beginning to be understood and provide an insight into the regulation and maintenance of intracellular homeostasis that underpins adaptive change and vulnerability. The maintenance or appropriate modulation of intracellular homeostasis usually provides a buffering of potential adverse interactions. However, the capacity to do so is diminished during chronic stress leading to intracellular and subsequently systemic, homeostatic failure and hence maladaptation. This area of research seems far removed from cognitive theory, but placing intracellular homeostasis at the core of cognitive and biological responses supports the concept of stress as a genuinely psycho-biological phenomenon.
Collapse
Affiliation(s)
- Andrew McVicar
- Department of Allied Health and Medicine, Faculty of Health, Social Care and Education, Anglia Ruskin University, Chelmsford, Essex, UK
| | | | | |
Collapse
|
37
|
Tsalafouta A, Papandroulakis N, Gorissen M, Katharios P, Flik G, Pavlidis M. Ontogenesis of the HPI axis and molecular regulation of the cortisol stress response during early development in Dicentrarchus labrax. Sci Rep 2014; 4:5525. [PMID: 24984570 PMCID: PMC4078316 DOI: 10.1038/srep05525] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 06/06/2014] [Indexed: 11/28/2022] Open
Abstract
The cortisol stress response and the molecular programming of the corticoid axis were characterized for the first time during early ontogeny in a Mediterranean marine teleost, the European sea bass (Dicentrarchus labrax). Sea bass embryos, pre-larvae and larvae at specific points of development were exposed to acute stressors and the temporal patterns of cortisol whole body concentrations and the expression of genes involved in corticosteroid biosynthesis, degradation and signaling were determined. Expression of genes (gr1, gr2, mr, crf) involved into the corticoid response regulation combined with histological data indicated that, although a cortisol stress response is evident for the first time around first feeding, a pattern becomes established in larvae at flexion until the formation of all fins. Moreover, mRNA transcript levels of 11β-hydroxylase and 11β-hsd2 showed a strong correlation with the whole body cortisol concentrations. Concluding, our data reveal the presence of an adaptive mechanism in European sea bass at early ontogeny enabling to cope with external stressful stimuli and provide a better insight into the onset and regulation of the stress response in this species.
Collapse
Affiliation(s)
- A Tsalafouta
- University of Crete, Department of Biology, P.O. Box 2208, GR-714 09, Heraklion, Crete, Greece
| | - N Papandroulakis
- Hellenic Center for Marine Research, Institute of Aquaculture, P.O. Box 2214, Heraklion, Crete, Greece
| | - M Gorissen
- Department of Animal Physiology, Institute for Water and Wetland Research, Radboud University Nijmegen, Heyendaalseweg 135, 6525AJ, The Netherlands
| | - P Katharios
- Hellenic Center for Marine Research, Institute of Aquaculture, P.O. Box 2214, Heraklion, Crete, Greece
| | - G Flik
- Department of Animal Physiology, Institute for Water and Wetland Research, Radboud University Nijmegen, Heyendaalseweg 135, 6525AJ, The Netherlands
| | - M Pavlidis
- University of Crete, Department of Biology, P.O. Box 2208, GR-714 09, Heraklion, Crete, Greece
| |
Collapse
|
38
|
Selkrig J, Wong P, Zhang X, Pettersson S. Metabolic tinkering by the gut microbiome: Implications for brain development and function. Gut Microbes 2014; 5:369-80. [PMID: 24685620 PMCID: PMC4153776 DOI: 10.4161/gmic.28681] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Brain development is an energy demanding process that relies heavily upon diet derived nutrients. Gut microbiota enhance the host's ability to extract otherwise inaccessible energy from the diet via fermentation of complex oligosaccharides in the colon. This nutrient yield is estimated to contribute up to 10% of the host's daily caloric requirement in humans and fluctuates in response to environmental variations. Research over the past decade has demonstrated a surprising role for the gut microbiome in normal brain development and function. In this review we postulate that perturbations in the gut microbial-derived nutrient supply, driven by environmental variation, profoundly impacts upon normal brain development and function.
Collapse
Affiliation(s)
- Joel Selkrig
- School of Biological Sciences; Nanyang Technological University; Singapore, Singapore,Lee Kong Chain School of Medicine; Nanyang Technological University; Singapore, Singapore
| | - Peiyan Wong
- Program in Neuroscience and Behavioral Disorders; Duke-NUS Graduate Medical School Singapore; Singapore, Singapore,Behavioural Phenotyping Core Facility; Duke-NUS; Duke University Medical Center; Durham, NC USA
| | - Xiaodong Zhang
- Program in Neuroscience and Behavioral Disorders; Duke-NUS Graduate Medical School Singapore; Singapore, Singapore,Department of Physiology; National University of Singapore; Singapore, Singapore,Departments of Psychiatry and Behavioral Sciences; Duke University Medical Center; Durham, NC USA
| | - Sven Pettersson
- Lee Kong Chain School of Medicine; Nanyang Technological University; Singapore, Singapore,Department of Microbiology, Tumor, and Cell Biology (MTC); Karolinska Institute; Stockholm, Sweden,Correspondence to: Sven Pettersson,
| |
Collapse
|
39
|
Gapp K, von Ziegler L, Tweedie-Cullen RY, Mansuy IM. Early life epigenetic programming and transmission of stress-induced traits in mammals. Bioessays 2014; 36:491-502. [DOI: 10.1002/bies.201300116] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Katharina Gapp
- Brain Research Institute; Medical Faculty of the University Zürich and Department of Health Science and Technology of the ETH Zürich, Neuroscience Center Zürich; Switzerland
| | - Lukas von Ziegler
- Brain Research Institute; Medical Faculty of the University Zürich and Department of Health Science and Technology of the ETH Zürich, Neuroscience Center Zürich; Switzerland
| | - Ry Yves Tweedie-Cullen
- Brain Research Institute; Medical Faculty of the University Zürich and Department of Health Science and Technology of the ETH Zürich, Neuroscience Center Zürich; Switzerland
| | - Isabelle M. Mansuy
- Brain Research Institute; Medical Faculty of the University Zürich and Department of Health Science and Technology of the ETH Zürich, Neuroscience Center Zürich; Switzerland
| |
Collapse
|
40
|
Rincón-Cortés M, Sullivan RM. Early life trauma and attachment: immediate and enduring effects on neurobehavioral and stress axis development. Front Endocrinol (Lausanne) 2014; 5:33. [PMID: 24711804 PMCID: PMC3968754 DOI: 10.3389/fendo.2014.00033] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 03/05/2014] [Indexed: 01/22/2023] Open
Abstract
Over half a century of converging clinical and animal research indicates that early life experiences induce enduring neuroplasticity of the HPA-axis and the developing brain. This experience-induced neuroplasticity is due to alterations in the frequency and intensity of stimulation of pups' sensory systems (i.e., olfactory, somatosensory, gustatory) embedded in mother-infant interactions. This stimulation provides "hidden regulators" of pups' behavioral, physiological, and neural responses that have both immediate and enduring consequences, including those involving the stress response. While variation in stimulation can produce individual differences and adaptive behaviors, pathological early life experiences can induce maladaptive behaviors, initiate a pathway to pathology, and increase risk for later-life psychopathologies, such as mood and affective disorders, suggesting that infant-attachment relationships program later-life neurobehavioral function. Recent evidence suggests that the effects of maternal presence or absence during this sensory stimulation provide a major modulatory role in neural and endocrine system responses, which have minimal impact on pups' immediate neurobehavior but a robust impact on neurobehavioral development. This concept is reviewed here using two complementary rodent models of infant trauma within attachment: infant paired-odor-shock conditioning (mimicking maternal odor attachment learning) and rearing with an abusive mother that converge in producing a similar behavioral phenotype in later-life including depressive-like behavior as well as disrupted HPA-axis and amygdala function. The importance of maternal social presence on pups' immediate and enduring brain and behavior suggests unique processing of sensory stimuli in early life that could provide insight into the development of novel strategies for prevention and therapeutic interventions for trauma experienced with the abusive caregiver.
Collapse
Affiliation(s)
- Millie Rincón-Cortés
- Department of Neuroscience and Physiology, Sackler Institute for Graduate Biomedical Sciences, New York University School of Medicine, New York, NY, USA
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, New York, NY, USA
- New York University Child Study Center, Department of Child and Adolescent Psychiatry, New York University School of Medicine, New York, NY, USA
- *Correspondence: Millie Rincón-Cortés, Sullivan Laboratory, New York University Child Study Center, Department of Child and Adolescent Psychiatry, New York University School of Medicine, 1 Park Avenue, New York, NY 10016, USA e-mail:
| | - Regina M. Sullivan
- Department of Neuroscience and Physiology, Sackler Institute for Graduate Biomedical Sciences, New York University School of Medicine, New York, NY, USA
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, New York, NY, USA
- New York University Child Study Center, Department of Child and Adolescent Psychiatry, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
41
|
Early handling effect on female rat spatial and non-spatial learning and memory. Behav Processes 2013; 103:9-16. [PMID: 24216081 DOI: 10.1016/j.beproc.2013.10.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 10/11/2013] [Accepted: 10/27/2013] [Indexed: 01/11/2023]
Abstract
This study aims at providing an insight into early handling procedures on learning and memory performance in adult female rats. Early handling procedures were started on post-natal day 2 until 21, and consisted in 15 min, daily separations of the dams from their litters. Assessment of declarative memory was carried out in the novel-object recognition task; spatial learning, reference- and working memory were evaluated in the Morris water maze (MWM). Our results indicate that early handling induced an enhancement in: (1) declarative memory, in the object recognition task, both at 1h and 24h intervals; (2) reference memory in the probe test and working memory and behavioral flexibility in the "single-trial and four-trial place learning paradigm" of the MWM. Short-term separation by increasing maternal care causes a dampening in HPA axis response in the pups. A modulated activation of the stress response may help to protect brain structures, involved in cognitive function. In conclusion, this study shows the long-term effects of a brief maternal separation in enhancing object recognition-, spatial reference- and working memory in female rats, remarking the impact of early environmental experiences and the consequent maternal care on the behavioral adaptive mechanisms in adulthood.
Collapse
|
42
|
Cronholm PF, Ismailji T, Mettner J. Academy on Violence and Abuse: highlights of proceedings from the 2011 conference, "toward a new understanding". TRAUMA, VIOLENCE & ABUSE 2013; 14:271-281. [PMID: 23878147 DOI: 10.1177/1524838013495961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In April 2011, the Academy on Violence Abuse (http://www.avahealth.org/) convened a network of experts for its second annual conference, "Developing the Science of Violence and Abuse: Toward a New Understanding." The conference served as a forum for highlighting the growing body of research regarding the biological consequences and adverse health consequences of abuse. In doing so, it underscored an important scientific premise: By evaluating the impact of violence and abuse from birth to death, one can better evaluate the social, behavioral, psychological, and biological context and pathways that result in the morbidity, mortality, and quality of life of all affected individuals and communities. In this article, we summarize content presented by the conference's keynote speakers and provide citations that speakers have submitted to support their statements.
Collapse
Affiliation(s)
- Peter F Cronholm
- 1Department of Family Medicine and Community Health, Firearm and Injury Center at Penn, University of Pennsylvania, Philadelphia, PA, USA
| | | | | |
Collapse
|
43
|
Perinatal programming of adult hippocampal structure and function; emerging roles of stress, nutrition and epigenetics. Trends Neurosci 2013; 36:621-31. [PMID: 23998452 DOI: 10.1016/j.tins.2013.08.002] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 08/05/2013] [Accepted: 08/06/2013] [Indexed: 11/22/2022]
Abstract
Early-life stress lastingly affects adult cognition and increases vulnerability to psychopathology, but the underlying mechanisms remain elusive. In this Opinion article, we propose that early nutritional input together with stress hormones and sensory stimuli from the mother during the perinatal period act synergistically to program the adult brain, possibly via epigenetic mechanisms. We hypothesize that stress during gestation or lactation affects the intake of macro- and micronutrients, including dietary methyl donors, and/or impairs the dam's metabolism, thereby altering nutrient composition and intake by the offspring. In turn, this may persistently modulate gene expression via epigenetic programming, thus altering hippocampal structure and cognition. Understanding how the combination of stress, nutrition, and epigenetics shapes the adult brain is essential for effective therapies.
Collapse
|
44
|
Sakhai SA, Preslik J, Francis DD. Influence of housing variables on the development of stress-sensitive behaviors in the rat. Physiol Behav 2013; 120:156-63. [DOI: 10.1016/j.physbeh.2013.08.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 07/30/2013] [Accepted: 08/03/2013] [Indexed: 11/28/2022]
|
45
|
Seltzer LJ, Ziegler T, Connolly MJ, Prososki AR, Pollak SD. Stress-induced elevation of oxytocin in maltreated children: evolution, neurodevelopment, and social behavior. Child Dev 2013; 85:501-12. [PMID: 23865588 DOI: 10.1111/cdev.12136] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Child maltreatment often has a negative impact on the development of social behavior and health. The biobehavioral mechanisms through which these adverse outcomes emerge, however, are not clear. To better understand the ways in which early life adversity affects subsequent social behavior, changes in the neuropeptide oxytocin (OT) in children (n = 73) aged 8.1-11.5 years following a laboratory stressor were examined. Girls with histories of physical abuse have higher levels of urinary OT and lower levels of salivary cortisol following the stressor when compared to controls. Abused and control boys, however, do not differ in their hormonal responses. These data suggest that early adversity may disrupt the development of the stress regulation system in girls by middle childhood.
Collapse
|
46
|
Kirby ED, Muroy SE, Sun WG, Covarrubias D, Leong MJ, Barchas LA, Kaufer D. Acute stress enhances adult rat hippocampal neurogenesis and activation of newborn neurons via secreted astrocytic FGF2. eLife 2013; 2:e00362. [PMID: 23599891 PMCID: PMC3628086 DOI: 10.7554/elife.00362] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 02/27/2013] [Indexed: 12/19/2022] Open
Abstract
Stress is a potent modulator of the mammalian brain. The highly conserved stress hormone response influences many brain regions, particularly the hippocampus, a region important for memory function. The effect of acute stress on the unique population of adult neural stem/progenitor cells (NPCs) that resides in the adult hippocampus is unclear. We found that acute stress increased hippocampal cell proliferation and astrocytic fibroblast growth factor 2 (FGF2) expression. The effect of acute stress occurred independent of basolateral amygdala neural input and was mimicked by treating isolated NPCs with conditioned media from corticosterone-treated primary astrocytes. Neutralization of FGF2 revealed that astrocyte-secreted FGF2 mediated stress-hormone-induced NPC proliferation. 2 weeks, but not 2 days, after acute stress, rats also showed enhanced fear extinction memory coincident with enhanced activation of newborn neurons. Our findings suggest a beneficial role for brief stress on the hippocampus and improve understanding of the adaptive capacity of the brain. DOI:http://dx.doi.org/10.7554/eLife.00362.001.
Collapse
Affiliation(s)
- Elizabeth D Kirby
- Helen Wills Neuroscience Institute , University of California, Berkeley , Berkeley , United States
| | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Critically significant parental effects in behavioral genetics may be partly understood as a consequence of maternal brain structure and function of caregiving systems recently studied in humans as well as rodents. Key parental brain areas regulate emotions, motivation/reward, and decision making, as well as more complex social-cognitive circuits. Additional key environmental factors must include socioeconomic status and paternal brain physiology. These have implications for developmental and evolutionary biology as well as public policy.
Collapse
|
48
|
What's in a baby-cry? Locationist and constructionist frameworks in parental brain responses. Behav Brain Sci 2012; 35:167-8. [PMID: 22617675 DOI: 10.1017/s0140525x11001762] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Parental brain responses to baby stimuli constitute a unique model to study brain-basis frameworks of emotion. Results for baby-cry and picture stimuli may fit with both locationist and psychological constructionist hypotheses. Furthermore, the utility of either model may depend on postpartum timing and relationship. Endocrine effects may also be critical for accurate models to assess mental health risk and treatment.
Collapse
|
49
|
Baram TZ, Solodkin A, Davis EP, Stern H, Obenaus A, Sandman CA, Small SL. Fragmentation and unpredictability of early-life experience in mental disorders. Am J Psychiatry 2012; 169:907-15. [PMID: 22885631 PMCID: PMC3483144 DOI: 10.1176/appi.ajp.2012.11091347] [Citation(s) in RCA: 173] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Maternal sensory signals in early life play a crucial role in programming the structure and function of the developing brain, promoting vulnerability or resilience to emotional and cognitive disorders. In rodent models of early-life stress, fragmentation and unpredictability of maternally derived sensory signals provoke persistent cognitive and emotional dysfunction in offspring. Similar variability and inconsistency of maternal signals during both gestation and early postnatal human life may influence development of emotional and cognitive functions, including those that underlie later depression and anxiety.
Collapse
|
50
|
Swain JE, Konrath S, Brown SL, Finegood ED, Akce LB, Dayton CJ, Ho SS. Parenting and Beyond: Common Neurocircuits Underlying Parental and Altruistic Caregiving. PARENTING, SCIENCE AND PRACTICE 2012; 12:115-123. [PMID: 22971776 PMCID: PMC3437260 DOI: 10.1080/15295192.2012.680409] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Interpersonal relationships constitute the foundation on which human society is based. The infant-caregiver bond is the earliest and most influential of these relationships. Driven by evolutionary pressure for survival, parents feel compelled to provide care to their biological offspring. However, compassion for non-kin is also ubiquitous in human societies, motivating individuals to suppress their own self-interests to promote the well-being of non-kin members of the society. We argue that the process of early kinship-selective parental care provides the foundation for non-exclusive altruism via the activation of a general Caregiving System that regulates compassion in any of its forms. We propose a tripartite structure of this system that includes (1) the perception of need in another, (2) a caring motivational or feeling state, and (3) the delivery of a helping response to the individual in need. Findings from human and animal research point to specific neurobiological mechanisms including activation of the insula and the secretion of oxytocin that support the adaptive functioning of this Caregiving System.
Collapse
Affiliation(s)
- James E. Swain
- Department of Psychiatry, University of Michigan, Rachel Upjohn Building, 4250 Plymouth Road, Ann Arbor, Michigan 48109-2700 USA
| | | | | | | | | | | | | |
Collapse
|