1
|
Tariq F, Ahrens L, Alygizakis NA, Audouze K, Benfenati E, Carvalho PN, Chelcea I, Karakitsios S, Karakoltzidis A, Kumar V, Mora Lagares L, Sarigiannis D, Selvestrel G, Taboureau O, Vorkamp K, Andersson PL. Computational Tools to Facilitate Early Warning of New Emerging Risk Chemicals. TOXICS 2024; 12:736. [PMID: 39453156 PMCID: PMC11511557 DOI: 10.3390/toxics12100736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/30/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024]
Abstract
Innovative tools suitable for chemical risk assessment are being developed in numerous domains, such as non-target chemical analysis, omics, and computational approaches. These methods will also be critical components in an efficient early warning system (EWS) for the identification of potentially hazardous chemicals. Much knowledge is missing for current use chemicals and thus computational methodologies complemented with fast screening techniques will be critical. This paper reviews current computational tools, emphasizing those that are accessible and suitable for the screening of new and emerging risk chemicals (NERCs). The initial step in a computational EWS is an automatic and systematic search for NERCs in literature and database sources including grey literature, patents, experimental data, and various inventories. This step aims at reaching curated molecular structure data along with existing exposure and hazard data. Next, a parallel assessment of exposure and effects will be performed, which will input information into the weighting of an overall hazard score and, finally, the identification of a potential NERC. Several challenges are identified and discussed, such as the integration and scoring of several types of hazard data, ranging from chemical fate and distribution to subtle impacts in specific species and tissues. To conclude, there are many computational systems, and these can be used as a basis for an integrated computational EWS workflow that identifies NERCs automatically.
Collapse
Affiliation(s)
- Farina Tariq
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden;
| | - Lutz Ahrens
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), 756 51 Uppsala, Sweden;
| | - Nikiforos A. Alygizakis
- Department of Chemistry, National and Kapodistrian University of Athens, 15772 Athens, Greece;
| | - Karine Audouze
- University Paris Cité, INSERM U1124, 75006 Paris, France; (K.A.); (O.T.)
| | - Emilio Benfenati
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy; (E.B.); (G.S.)
| | - Pedro N. Carvalho
- Department of Environmental Science, Aarhus University, 8000 Roskilde, Denmark; (P.N.C.); (K.V.)
| | - Ioana Chelcea
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden;
- Department of Chemical and Pharmaceutical Safety, Research Institutes of Sweden (RISE), 103 33 Stockholm, Sweden
| | - Spyros Karakitsios
- HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.K.); (A.K.); (D.S.)
- Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Achilleas Karakoltzidis
- HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.K.); (A.K.); (D.S.)
- Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Vikas Kumar
- Environmental Analysis and Management Using Computer Aided Process Engineering (AGACAPE), Institut d’Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili (URV), 43204 Reus, Spain;
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Liadys Mora Lagares
- Laboratory for Cheminformatics, Theory Department, National Institute of Chemistry, 1000 Ljubljana, Slovenia;
| | - Dimosthenis Sarigiannis
- HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.K.); (A.K.); (D.S.)
- Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- National Hellenic Research Foundation, 11635 Athens, Greece
- University School of Advanced Study IUSS, 27100 Pavia, Italy
| | - Gianluca Selvestrel
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy; (E.B.); (G.S.)
| | - Olivier Taboureau
- University Paris Cité, INSERM U1124, 75006 Paris, France; (K.A.); (O.T.)
| | - Katrin Vorkamp
- Department of Environmental Science, Aarhus University, 8000 Roskilde, Denmark; (P.N.C.); (K.V.)
| | | |
Collapse
|
2
|
Collins JJ, Reynolds J, Campos B, Engi P, Rivetti C, Pietrenko T, Viant MR, Fitton G. A proof-of-concept multi-tiered Bayesian approach for the integration of physiochemical properties and toxicokinetic time-course data for Daphnia magna. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 276:107107. [PMID: 39341088 DOI: 10.1016/j.aquatox.2024.107107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/27/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024]
Abstract
The use of in silico and in vitro methods, commonly referred to as New Approach Methodologies (NAMs), has been proposed to support environmental (and human) chemical safety decisions, ensuring enhanced environmental protection. Toxicokinetic models developed for environmentally relevant species are fundamental to the deployment of a NAMs-based safety strategy, enabling the conversion between external and internal chemical concentrations, although they require historical toxicokinetic data and robust physical models to be considered a viable solution. Daphnia magna is a key model organism in ecotoxicology albeit with limited and scattered quantitative toxicokinetic data, as for most invertebrates, resulting in a lack of robust toxicokinetic models. Moreover, current D. magna models are chemical specific, which restricts their applicability domain. One aim of this study was to address the current data availability limitations by collecting toxicokinetic time-course data for D. magna covering a broad chemical space and assessing the dataset's uniqueness. The collated toxicokinetic dataset included 48 time-courses for 30 chemicals from 17 studies, which was developed into an R package named AquaTK, with 11 studies unique to our work when compared to existing databases. Subsequently, a proof-of-concept Bayesian analysis was developed to estimate the steady-state concentration ratio (internal concentration / external concentration) from the data at three different levels of precision given three different data availability scenarios for environmental risk assessment. Specifically, an atrazine case study illustrates the multi-level modelling approach providing improvements (uncertainty reductions) in predictions of ratios for increasing amounts of data availability. Our work provides a consistent and self-contained Bayesian framework that irrespective of the hierarchy or resolution of individual experiments, can utilise the available information to generate optimal predictions of steady-state concentration ratios in D. magna. This approach is paramount to supporting the implementation of a NAMs based environmental safety paradigm shift in environmental risk assessment.
Collapse
Affiliation(s)
- Jacob-Joe Collins
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom.
| | - Joe Reynolds
- Unilever, Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, United Kingdom
| | - Bruno Campos
- Unilever, Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, United Kingdom
| | - Patrik Engi
- Unilever, Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, United Kingdom
| | - Claudia Rivetti
- Unilever, Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, United Kingdom
| | - Tymoteusz Pietrenko
- Unilever, Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, United Kingdom
| | - Mark R Viant
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - George Fitton
- Unilever, Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, United Kingdom
| |
Collapse
|
3
|
Castillo NA, James WR, Santos RO, Rezek R, Cerveny D, Boucek RE, Adams AJ, Trabelsi S, Distrubell A, Sandquist M, Fick J, Brodin T, Rehage JS. Identifying pathways of pharmaceutical exposure in a mesoconsumer marine fish. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135382. [PMID: 39088947 DOI: 10.1016/j.jhazmat.2024.135382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/03/2024]
Abstract
Pharmaceutical uptake involves processes that vary across aquatic systems and biota. However, single studies examining multiple environmental compartments, microhabitats, biota, and exposure pathways in mesoconsumer fish are sparse. We investigated the pharmaceutical burden in bonefish (Albula vulpes), pathways of exposure, and estimated exposure to a human daily dose. To evaluate exposure pathways, the number and composition of pharmaceuticals across compartments and the bioconcentration in prey and bonefish were assessed. To evaluate bioaccumulation, we proposed the use of a field-derived bioaccumulation factor (fBAF), due to variability inherent to natural systems. Exposure to a human daily dose was based on bonefish daily energetic requirements and consumption rates using pharmaceutical concentrations in prey. Pharmaceutical number and concentration were highest in prey, followed by bonefish, water and sediment. Fifteen pharmaceuticals were detected in common among bonefish, prey, and water; all of which bioconcentrated in prey and bonefish, and four bioaccumulated in bonefish. The composition of detected pharmaceuticals was compartment specific, and prey were most similar to bonefish. Bonefish were exposed to a maximum of 1.2 % of a human daily dose via prey consumption. Results highlight the need for multicompartment assessments of exposure and consideration of prey along with water as a pathway of exposure.
Collapse
Affiliation(s)
- N A Castillo
- Earth and Environment Department, Institute of Environment, Florida International University, Miami, FL, USA.
| | - W R James
- Earth and Environment Department, Institute of Environment, Florida International University, Miami, FL, USA; Department of Biology, Florida International University, Miami, FL, USA
| | - R O Santos
- Department of Biology, Florida International University, Miami, FL, USA
| | - R Rezek
- Department of Marine Science, Coastal Carolina University, Conway, SC, USA
| | - D Cerveny
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden; Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Vodňany, Czech Republic
| | - R E Boucek
- Bonefish and Tarpon Trust, Miami, FL, USA
| | - A J Adams
- Bonefish and Tarpon Trust, Miami, FL, USA; Florida Atlantic University Harbor Branch Oceanographic Institute, Fort Pierce, FL, USA
| | - S Trabelsi
- Earth and Environment Department, Institute of Environment, Florida International University, Miami, FL, USA
| | - A Distrubell
- Earth and Environment Department, Institute of Environment, Florida International University, Miami, FL, USA
| | - M Sandquist
- Earth and Environment Department, Institute of Environment, Florida International University, Miami, FL, USA
| | - J Fick
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - T Brodin
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - J S Rehage
- Earth and Environment Department, Institute of Environment, Florida International University, Miami, FL, USA
| |
Collapse
|
4
|
Gao Y. Application of toxicokinetic-toxicodynamic models in the aquatic ecological risk assessment of metals: A review. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 110:104511. [PMID: 39025423 DOI: 10.1016/j.etap.2024.104511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
The issue of toxic metal pollution is a considerable environmental concern owing to its complex nature, spatial and temporal variability, and susceptibility to environmental factors. Current water quality criteria and ecological risk assessments of metals are based on single-metal toxicity data from short-term, simplified indoor exposure conditions, ignoring the complexity of actual environmental conditions. This results in increased uncertainty in predicting toxic metal toxicity and risk assessment. Using appropriate bioavailability and effect modeling of metals is critical for establishing environmental quality standards and performing risk assessments for metals. Traditional dose-effect models are based on a static statistical relationship and fall short of revealing the bioavailability and effect processes of metals and do not effectively assess ecological impacts under complex exposure conditions. This paper summarizes the toxicokinetic-toxicodynamic (TK-TD) model, which is gaining interest in environmental and ecotoxicological research. The key concepts, and theories of its construction theories, are discussed and the application of the TK-TD model in toxicity prediction and risk assessment of different metals in the aquatic environment, and trends in the development of the TK-TD model are highlighted. The findings of our review prove that the TK-TD model can effectively predict toxic metal toxicity in real time and under complex exposure conditions in the future.
Collapse
Affiliation(s)
- Yongfei Gao
- College of Ecology, Taiyuan University of Technology, Taiyuan 030024, PR China; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province (Zhejiang Shuren University), Hangzhou 310015, PR China.
| |
Collapse
|
5
|
Aghito M, Pampanin DM, Nepstad R, Hole LR, Breivik Ø. Modelling and validation of polycyclic aromatic hydrocarbons emissions from offshore oil production facilities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173043. [PMID: 38734113 DOI: 10.1016/j.scitotenv.2024.173043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024]
Abstract
The development of numerical models for investigating the risks and impact caused by human activities to the marine environment is important. Herein, the recently developed ChemicalDrift Lagrangian dispersion model was coupled to a toxicokinetic model and applied to investigate emissions of polycyclic aromatic hydrocarbons (PAHs) discharged from oil and gas production facilities as produced water. The performance of the model was evaluated with available data from a monitoring survey conducted at two oil fields. The survey provided exposure concentrations by means of passive samplers and bioaccumulation data in caged mussels; multiple depths and locations were assessed. The study included 26 PAHs and alkylated derivatives, showing good agreement between the model and the survey measurements. The compounds dominating the scenario were naphthalenes and phenanthrenes. Model provided contamination gradients were in agreement with the survey results, with levels decreasing with distance away from the main sources and with higher concentrations at 20 m depth. ChemicalDrift and the toxicokinetic model provided detailed time series, showing peaks of C1-naphthalene bioaccumulation significantly higher than values accumulated at the end of the monitored period. The utilised model was able to separate the relative contributions of multiple platforms and to identify the major contamination sources, providing a valuable and versatile tool for assessing the impact of discharges at sea.
Collapse
Affiliation(s)
- Manuel Aghito
- The Norwegian Meteorological Institute, P.O. Box 7800, Bergen NO-5020, Norway; Geophysical Institute, University of Bergen, P.O. Box 7803, Bergen NO-5020, Norway.
| | - Daniela M Pampanin
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, P.O. Box 8600, Stavanger NO-4036, Norway
| | | | - Lars Robert Hole
- The Norwegian Meteorological Institute, P.O. Box 7800, Bergen NO-5020, Norway
| | - Øyvind Breivik
- The Norwegian Meteorological Institute, P.O. Box 7800, Bergen NO-5020, Norway; Geophysical Institute, University of Bergen, P.O. Box 7803, Bergen NO-5020, Norway
| |
Collapse
|
6
|
van den Heuvel-Greve MJ, Jonker MTO, Klaassen MA, Puts IC, Verbeeke G, Hoekema L, Foekema EM, Murk AJ. Temperate Versus Arctic: Unraveling the Effects of Temperature on Oil Toxicity in Gammarids. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:1627-1637. [PMID: 38837458 DOI: 10.1002/etc.5897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/05/2024] [Accepted: 04/20/2024] [Indexed: 06/07/2024]
Abstract
Shipping activities are increasing with sea ice receding in the Arctic, leading to higher risks of accidents and oil spills. Because Arctic toxicity data are limited, oil spill risk assessments for the Arctic are challenging to conduct. In the present study, we tested if acute oil toxicity metrics obtained at temperate conditions reflect those at Arctic conditions. The effects of temperature (4 °C, 12 °C, and 20 °C) on the median lethal concentration (LC50) and the critical body residue (CBR) of the temperate invertebrate Gammarus locusta exposed to water accommodated fractions of a fuel oil were determined. Both toxicity metrics decreased with increasing temperature. In addition, data for the temperate G. locusta were compared to data obtained for Arctic Gammarus species at 4 °C. The LC50 for the Arctic Gammarus sp. was a factor of 3 higher than that for the temperate G. locusta at 4 °C, but its CBR was similar, although both the exposure time and concentration were extended to reach lethality. Probably, this was a result of the larger size and higher weight and total lipid content of Arctic gammarids compared to the temperate gammarids. Taken together, the present data support the use of temperate acute oil toxicity data as a basis for assessing risks in the Arctic region, provided that the effects of temperature on oil fate and functional traits (e.g., body size and lipid content) of test species are considered. As such, using the CBR as a toxicity metric is beneficial because it is independent of functional traits, despite its temperature dependency. To the best of our knowledge, the present study is the first to report CBRs for oil. Environ Toxicol Chem 2024;43:1627-1637. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Martine J van den Heuvel-Greve
- Wageningen Marine Research, Wageningen University & Research, Yerseke, The Netherlands
- Marine Animal Ecology, Wageningen University, Wageningen, The Netherlands
| | - Michiel T O Jonker
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Michiel A Klaassen
- Wageningen Marine Research, Wageningen University & Research, Yerseke, The Netherlands
| | - Isolde C Puts
- Wageningen Marine Research, Wageningen University & Research, Yerseke, The Netherlands
- Arctic Research Center and Department of Ecoscience, Aarhus University, Aarhus, Denmark
| | - Gabrielle Verbeeke
- Wageningen Marine Research, Wageningen University & Research, Yerseke, The Netherlands
| | - Lisa Hoekema
- Wageningen Marine Research, Wageningen University & Research, Yerseke, The Netherlands
- Marine Animal Ecology, Wageningen University, Wageningen, The Netherlands
| | - Edwin M Foekema
- Wageningen Marine Research, Wageningen University & Research, Yerseke, The Netherlands
- Marine Animal Ecology, Wageningen University, Wageningen, The Netherlands
| | - Albertinka J Murk
- Marine Animal Ecology, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
7
|
Rispens B, Hendriks AJ. Towards process-based modelling and parameterisation of bioaccumulation in humans across PFAS congeners. CHEMOSPHERE 2024; 359:142253. [PMID: 38714250 DOI: 10.1016/j.chemosphere.2024.142253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 04/23/2024] [Accepted: 05/03/2024] [Indexed: 05/09/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a large class of stable toxic chemicals which have ended up in the environment and in organisms in significant concentrations. Toxicokinetic models are needed to facilitate extrapolation of bioaccumulation data across PFAS congeners and species. For the present study, we carried out an inventory of accumulation processes specific for PFAS, deviating from traditional Persistent Organic Pollutants (POPs). In addition, we reviewed toxicokinetic models on PFAS reported in literature, classifying them according to the number of compartments distinguished as a one-compartment model (1-CM), two-compartment model (2- CM) or a multi-compartment model, (multi-CM) as well as the accumulation processes included and the parameters used. As the inventory showed that simple 1-CMs were lacking, we developed a generic 1-CM of ourselves to include PFAS specific processes and validated the model for legacy perfluoroalkyl acids. Predicted summed elimination constants were accurate for long carbon chains (>C6), indicating that the model properly represented toxicokinetic processes for most congeners. Results for urinary elimination rate constants were mixed, which might be caused by the exclusion of reabsorption processes (renal reabsorption, enterohepatic circulation). The 1-CM needs to be improved further in order to better predict individual elimination pathways. Besides that, more data on PFAS-transporter specific processes are needed to extrapolate across PFAS congeners and species.
Collapse
Affiliation(s)
- Bjorn Rispens
- Department of Environmental Science, Radboud Institute for Biological and Environmental Sciences, Radboud University, Heyendaalseweg 135, 6525, AJ Nijmegen, the Netherlands
| | - A Jan Hendriks
- Department of Environmental Science, Radboud Institute for Biological and Environmental Sciences, Radboud University, Heyendaalseweg 135, 6525, AJ Nijmegen, the Netherlands.
| |
Collapse
|
8
|
Golosovskaia E, Örn S, Ahrens L, Chelcea I, Andersson PL. Studying mixture effects on uptake and tissue distribution of PFAS in zebrafish (Danio rerio) using physiologically based kinetic (PBK) modelling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168738. [PMID: 38030006 DOI: 10.1016/j.scitotenv.2023.168738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/17/2023] [Accepted: 11/19/2023] [Indexed: 12/01/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are ubiquitously distributed in the aquatic environment. They include persistent, mobile, bioaccumulative, and toxic chemicals and it is therefore critical to increase our understanding on their adsorption, distribution, metabolism, excretion (ADME). The current study focused on uptake of seven emerging PFAS in zebrafish (Danio rerio) and their potential maternal transfer. In addition, we aimed at increasing our understanding on mixture effects on ADME by developing a physiologically based kinetic (PBK) model capable of handling co-exposure scenarios of any number of chemicals. All studied chemicals were taken up in the fish to varying degrees, whereas only perfluorononanoate (PFNA) and perfluorooctanoate (PFOA) were quantified in all analysed tissues. Perfluorooctane sulfonamide (FOSA) was measured at concerningly high concentrations in the brain (Cmax over 15 μg/g) but also in the liver and ovaries. All studied PFAS were maternally transferred to the eggs, with FOSA and 6:2 perfluorooctane sulfonate (6,2 FTSA) showing significant (p < 0.02) signs of elimination from the embryos during the first 6 days of development, while perfluorobutane sulfonate (PFBS), PFNA, and perfluorohexane sulfonate (PFHxS) were not eliminated in embryos during this time-frame. The mixture PBK model resulted in >85 % of predictions within a 10-fold error and 60 % of predictions within a 3-fold error. At studied levels of PFAS exposure, competitive binding was not a critical factor for PFAS kinetics. Gill surface pH influenced uptake for some carboxylates but not the sulfonates. The developed PBK model provides an important tool in understanding kinetics under complex mixture scenarios and this use of New Approach Methodologies (NAMs) is critical in future risk assessment of chemicals and early warning systems.
Collapse
Affiliation(s)
| | - Stefan Örn
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Lutz Ahrens
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Ioana Chelcea
- Department of Chemistry, Umeå University, Umeå, Sweden
| | | |
Collapse
|
9
|
Balk F, Hüsser B, Hollender J, Schirmer K. Bioconcentration Assessment of Three Cationic Surfactants in Permanent Fish Cell Lines. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1452-1461. [PMID: 38214086 DOI: 10.1021/acs.est.3c05360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Cationic surfactants are used in many industrial processes and in consumer products with concurrent release into the aquatic environment, where they may accumulate in aquatic organisms to regulatoryly relevant thresholds. Here, we aimed to better understand the bioconcentration behavior of three selected cationic surfactants, namely N,N-dimethyldecylamine (T10), N-methyldodecylamine (S12), and N,N,N-trimethyltetradecylammonium cation (Q14), in the cells of fish liver (RTL-W1) and gill (RTgill-W1) cell lines. We conducted full mass balances for bioconcentration tests with the cell cultures, in which the medium, the cell surface, the cells themselves, and the plastic compartment were sampled and quantified for each surfactant by HPLC MS/MS. Accumulation in/to cells correlated with the surfactants' alkyl chain lengths and their membrane lipid-water partitioning coefficient, DMLW. Cell-derived bioconcentration factors (BCF) of T10 and S12 were within a factor of 3.5 to in vivo BCF obtained from the literature, while the cell-derived BCF values for Q14 were >100 times higher than the in vivo BCF. From our experiments, rainbow trout cell lines appear as a suitable conservative in vitro screening method for bioconcentration assessment of cationic surfactants and are promising for further testing.
Collapse
Affiliation(s)
- Fabian Balk
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- EPF Lausanne, School of Architecture, Civil and Environmental Engineering, 1015 Lausanne, Switzerland
| | - Bastian Hüsser
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- ETH Zürich, Department of Environmental Systems Science, 8092 Zürich, Switzerland
| | - Juliane Hollender
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- ETH Zürich, Department of Environmental Systems Science, 8092 Zürich, Switzerland
| | - Kristin Schirmer
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- EPF Lausanne, School of Architecture, Civil and Environmental Engineering, 1015 Lausanne, Switzerland
- ETH Zürich, Department of Environmental Systems Science, 8092 Zürich, Switzerland
| |
Collapse
|
10
|
Frøysa HG, Nepstad R, Meier S, Donald C, Sørhus E, Bockwoldt M, Carroll J, Vikebø FB. Mind the gap - Relevant design for laboratory oil exposure of fish as informed by a numerical impact assessment model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166951. [PMID: 37696403 DOI: 10.1016/j.scitotenv.2023.166951] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/30/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
Laboratory experiments provide knowledge of species-specific effects thresholds that are used to parameterize impact assessment models of oil contamination on marine ecosystems. Such experiments typically place individuals of species and life stages in tanks with different contaminant concentrations. Exposure concentrations are usually fixed, and the individuals experience a shock treatment being moved from clean water directly into contaminated water and then back to clean water. In this study, we use a coupled numerical model that simulates ocean currents and state, oil dispersal and fate, and early life stages of fish to quantify oil exposure histories, specifically addressing oil spill scenarios of high rates and long durations. By including uptake modelling we also investigate the potential of buffering transient high peaks in exposure. Our simulation results are the basis for a recommendation on the design of laboratory experiments to improve impact assessment model development and parameterization. We recommend an exposure profile with three main phases: i) a gradual increase in concentration, ii) a transient peak that is well above the subsequent level, and iii) a plateau of fixed concentration lasting ∼3 days. In addition, a fourth phase with a slow decrease may be added.
Collapse
Affiliation(s)
- Håvard G Frøysa
- Institute of Marine Research, PO Box 1870, Nordnes, 5817 Bergen, Norway.
| | - Raymond Nepstad
- SINTEF Ocean, PO Box 4762, Torgarden, 7465 Trondheim, Norway
| | - Sonnich Meier
- Institute of Marine Research, PO Box 1870, Nordnes, 5817 Bergen, Norway
| | - Carey Donald
- Institute of Marine Research, PO Box 1870, Nordnes, 5817 Bergen, Norway
| | - Elin Sørhus
- Institute of Marine Research, PO Box 1870, Nordnes, 5817 Bergen, Norway
| | - Mathias Bockwoldt
- Department of Geosciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - JoLynn Carroll
- Department of Geosciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway; Akvaplan-Niva, FRAM - High North Research Centre for Climate and the Environment, 9296 Tromsø, Norway
| | - Frode B Vikebø
- Institute of Marine Research, PO Box 1870, Nordnes, 5817 Bergen, Norway; Geophysical Institute, University of Bergen, PO Box 7830, 5020 Bergen, Norway
| |
Collapse
|
11
|
Moenning JL, Krause T, Lamp J, Maul R, Schenkel H, Fürst P, Pieper R, Numata J. Transfer of polychlorinated dibenzo- p-dioxins and dibenzofurans (PCDD/Fs) and polychlorinated biphenyls (PCBs) from oral exposure into cow's milk - part II: toxicokinetic predictive models for risk assessment. Nutr Res Rev 2023; 36:484-497. [PMID: 36345910 DOI: 10.1017/s0954422422000208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Understanding the transfer of polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) as well as polychlorinated biphenyls (PCBs) from oral exposure into cow's milk is not purely an experimental endeavour, as it has produced a large corpus of theoretical work. This work consists of a variety of predictive toxicokinetic models in the realms of health and environmental risk assessment and risk management. Their purpose is to provide mathematical predictive tools to organise and integrate knowledge on the absorption, distribution, metabolism and excretion processes. Toxicokinetic models are based on more than 50 years of transfer studies summarised in part I of this review series. Here in part II, several of these models are described and systematically classified with a focus on their applicability to risk analysis as well as their limitations. This part of the review highlights the opportunities and challenges along the way towards accurate, congener-specific predictive models applicable to changing animal breeds and husbandry conditions.
Collapse
Affiliation(s)
- Jan-Louis Moenning
- Department Safety in the Food Chain, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, Berlin10589, Germany
| | - Torsten Krause
- Department of Safety and Quality of Milk and Fish, Max Rubner-Institut, Hermann-Weigmann-Straße 1, Kiel24103, Germany
| | - Julika Lamp
- Department of Safety and Quality of Milk and Fish, Max Rubner-Institut, Hermann-Weigmann-Straße 1, Kiel24103, Germany
| | - Ronald Maul
- Department of Safety and Quality of Milk and Fish, Max Rubner-Institut, Hermann-Weigmann-Straße 1, Kiel24103, Germany
| | - Hans Schenkel
- Department of Animal Nutrition, University of Hohenheim, Emil-Wolff-Str. 10, Stuttgart70599, Germany
| | - Peter Fürst
- Chemical and Veterinary Analytical Institute Münsterland-Emscher-Lippe (CVUA-MEL), Joseph-König-Straße 40, Münster48147, Germany
| | - Robert Pieper
- Department Safety in the Food Chain, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, Berlin10589, Germany
| | - Jorge Numata
- Department Safety in the Food Chain, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, Berlin10589, Germany
| |
Collapse
|
12
|
Hansen BH, Altin D, Nordtug T. Do oil droplets and chemical dispersants contribute to uptake of oil compounds and toxicity of crude oil dispersions in cold-water copepods? JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023:1-18. [PMID: 37870159 DOI: 10.1080/15287394.2023.2271003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Accidental crude oil spills to the marine environment cause dispersion of oil into the water column through the actions of breaking waves, a process that can be facilitated using chemical dispersants. Oil dispersions contain dispersed micron-sized oil droplets and dissolved oil components, and the toxicity of oil dispersions has been assumed to be associated primarily with the latter. However, most hydrophobic, bioaccumulative and toxic crude oil components are retained within the droplets which may interact with marine filter-feeders. We here summarize the findings of 15 years of research using a unique methodology to generate controlled concentrations and droplet size distributions of dispersed crude oil to study effects on the filter-feeding cold-water copepod Calanus finmarchicus. We focus primarily on the contribution of chemical dispersants and micron-sized oil droplets to uptake and toxicity of oil compounds. Oil dispersion exposures cause PAH uptake and oil droplet accumulation on copepod body surfaces and inside their gastrointestinal tract, and exposures to high exposure (mg/L range) reduce feeding activity, causes reproductive impairments and mortality. These effects were slightly higher in the presence of chemical dispersants, possibly due to higher filtration of chemically dispersed droplets. For C. finmarchicus, dispersions containing oil droplets caused more severe toxic effects than filtered dispersions, thus, oil droplets contribute to the observed toxicity. The methodology for generating crude oil dispersion is a valuable tool to isolate impacts of crude oil microdroplets and can facilitate future research on oil dispersion toxicity and produce data to improve oil spill models.
Collapse
Affiliation(s)
| | - Dag Altin
- BioTrix, Trondheim, Norway
- Research Infrastructure SeaLab, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Trond Nordtug
- SINTEF Ocean, Climate and Environment, Trondheim, Norway
| |
Collapse
|
13
|
Evangelista PA, Lourenço FMDO, Chakma D, Shaha CK, Konate A, Pimpinato RF, Louvandini H, Tornisielo VL. Bioaccumulation and Depletion of the Antibiotic Sulfadiazine 14C in Lambari ( Astyanax bimaculatus). Animals (Basel) 2023; 13:2464. [PMID: 37570273 PMCID: PMC10417336 DOI: 10.3390/ani13152464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Antibiotics are present in the environment, primarily due to their release through wastewater treatment plants, agricultural practices, and improper disposal of unused medications. In the environment, these drugs can be bioaccumulated by organisms and transferred along the food chain. This is a problem when considering the consumption of fish meat. In the United States, legislation stipulates that the maximum residue limit for sulfadiazine (SDZ) should not exceed 100 μg kg-1. Lambari fishes have potential economic importance in aquaculture, as they are relatively easy to breed and can be raised in small-scale operations. Finally, studying the biology and ecology of lambari could provide valuable information about freshwater ecosystems and their inhabitants. The current work aimed to measure the bioaccumulation and depletion of the antibiotic SDZ 14C in lambari (Astyanax bimaculatus). For this purpose, the tests were divided into two stages; seven days of exposure and seven days of depletion, where one fish was randomly selected and sampled every day. In the exposure phase, the fish were fed the medicated feed three times a day at a concentration of 2.5 mg·g-1. The control fish were fed uncontaminated feed. For the depletion phase, the remaining lambari were transferred to clean tanks and fed uncontaminated feed three times a day. The fish samples were burned in the Oxidizer and the reading of radioactivity was performed in a liquid scintillation spectrometer. It is worth noting that on day 7 and day 14, the water in the aquariums was filtered through filter paper to collect the metabolic excrement. SDZ concentrations increased over the days and accumulation occurred in the fish, with day seven presenting the maximum accumulation value of 91.7 ng·g-1 due to feeding uptake. After the depletion phase on day 13, the value found was 0.83 ng·g-1. The bioconcentration factor calculated was 20 L·kg-1. After the bioaccumulation period, the concentrations of SDZ in the water and excreta were 4.5 µg·L-1 and 363.5 ng·g-1, respectively. In the depletion period, the concentrations in the water and excreta were 0.01 µg·L-1 and 5.96 ng·g-1, respectively. These results imply that there was little SDZ bioaccumulation in the fish, but that it was distributed in larger amounts in the water. This is due to the physicochemical properties of the molecule with the low Log P value. Regarding the maximum residue limit, the value was below the established value. This study contributes to understanding SDZ dynamics in an aquatic species native to Brazil.
Collapse
Affiliation(s)
| | | | - Darmin Chakma
- Bangladesh Atomic Energy Commission, Dhaka 1349, Bangladesh; (D.C.); (C.K.S.)
| | | | - Almamy Konate
- Institute for the Environment and Agriculture Research (INERA), National Centre for Scientific & Technological Research (CNRST), Ouagadougou 04 BP 8645, Burkina Faso
| | | | - Helder Louvandini
- Center for Nuclear Energy in Agriculture, University of Sao Paulo, Piracicaba 13416-000, Brazil (H.L.)
| | - Valdemar Luiz Tornisielo
- Center for Nuclear Energy in Agriculture, University of Sao Paulo, Piracicaba 13416-000, Brazil (H.L.)
| |
Collapse
|
14
|
Wang Q, Tian Y, Wang J, Li JY, He W, Craig NJ. Assessing pathways of heavy metal accumulation in aquaculture shrimp and their introductions into the pond environment based on a dynamic model and mass balance principle. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163164. [PMID: 37003319 DOI: 10.1016/j.scitotenv.2023.163164] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/26/2023] [Accepted: 03/26/2023] [Indexed: 06/01/2023]
Abstract
The impact of heavy metals (HMs) on the quality of aquaculture products has attracted worldwide attention. Since Litopenaeus vannamei is a popular aquaculture product among consumers worldwide, it is of great importance to guarantee its dietary safety. An in-situ monitoring program lasting for three months in a typical Litopenaeus vannamei farm found that Pb (100 %) and Cr (86 %) in the adult shrimp were higher than the safety guidelines. In the meantime, Cu (100 %), Cd (100 %) in the water and Cr (40 %) in the feed exceeded the corresponding thresholds. Therefore, quantification of different exposure pathways of shrimp and contamination origins in pond is valuable to improve the dietary safety of the shrimp. Based on Optimal Modeling for Ecotoxicological Applications (OMEGA), Cu was primarily from the ingestion of feed, accounting for 67 % of bioaccumulation, while Cd, Pb and Cr primarily entered shrimp through the adsorption from overlying water (53 % for Cd and 78 % for Pb) and porewater (66 % for Cr), respectively. The HMs in the pond water were further tracked based on a mass balance analysis. The main source of Cu in the aquaculture environment was feed, being responsible for 37 % of the total input. Pb, Cd and Cr were primarily from the inlet water with contributions of 84 %, 54 % and 52 %, respectively. In summary, the proportions of different exposure pathways and origins of HMs in pond-cultured shrimp and its living environment varied widely. To keep end-consumers eating healthily, species specific treatment is required. Feed should be regulated more for Cu. Aimed pretreatments for Pb and Cd in influent water are needed and an additional immobilization for Cr in sediment porewater should be investigated. After implementation of these treatments, the food quality improvement could be further quantified based on our prediction model.
Collapse
Affiliation(s)
- Qian Wang
- College of Marine Ecology and Environment, Shanghai Ocean University, Pudong, Shanghai, China
| | - Yaxiong Tian
- College of Marine Ecology and Environment, Shanghai Ocean University, Pudong, Shanghai, China
| | - Jian Wang
- Shanghai Radio Equipment Research Institute, Yangpu, Shanghai, China; Shanghai Shentian Industrial Co., Ltd., Yangpu, Shanghai, China
| | - Juan-Ying Li
- College of Marine Ecology and Environment, Shanghai Ocean University, Pudong, Shanghai, China; Shanghai Engineering Research Center of River and Lake Biochain Construction and Resource Utilization, Shanghai, China.
| | - Wenhui He
- College of Marine Ecology and Environment, Shanghai Ocean University, Pudong, Shanghai, China; Shanghai Engineering Research Center of River and Lake Biochain Construction and Resource Utilization, Shanghai, China
| | - Nicholas J Craig
- School of Biosciences, The University of Melbourne, Parkville 3010, Victoria, Australia
| |
Collapse
|
15
|
Denaro G, Curcio L, Borri A, D'Orsi L, De Gaetano A. A dynamic integrated model for mercury bioaccumulation in marine organisms. ECOL INFORM 2023. [DOI: 10.1016/j.ecoinf.2023.102056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
16
|
Lin W, Li Y, Xiao X, Fan F, Jiang J, Jiang R, Shen Y, Ouyang G. The effect of microplastics on the depuration of hydrophobic organic contaminants in Daphnia magna: A quantitative model analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162813. [PMID: 36940747 DOI: 10.1016/j.scitotenv.2023.162813] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/20/2023] [Accepted: 03/08/2023] [Indexed: 05/06/2023]
Abstract
Microplastics are emerging pollutants that can absorb large amounts of hydrophobic organic contaminants (HOCs). However, no biodynamic model has yet been proposed to estimate their effects on HOC depuration in aquatic organisms, where the HOC concentrations are time-varying. In this work, a microplastic-inclusive biodynamic model was developed to estimate the depuration of HOCs via ingestion of microplastics. Several key parameters of the model were redefined to determine the dynamic HOC concentrations. Through the parameterized model, the relative contributions of dermal and intestinal pathways can be distinguished. Moreover, the model was verified and the vector effect of microplastics was confirmed by studying the depuration of polychlorinated biphenyl (PCB) in Daphnia magna (D. magna) with different sizes of polystyrene (PS) microplastics. The results showed that microplastics contributed to the elimination kinetics of PCBs because of the fugacity gradient between the ingested microplastics and the biota lipids, especially for the less hydrophobic PCBs. The intestinal elimination pathway via microplastics would promote overall PCB elimination, contributing 37-41 % and 29-35 % to the total flux in the 100 nm and 2 μm polystyrene (PS) microplastic suspensions, respectively. Furthermore, the contribution of microplastic uptake to total HOC elimination increased with decreasing microplastic size in water, suggesting that microplastics may protect organisms from HOC risks. In conclusion, this work demonstrated that the proposed biodynamic model is capable of estimating the dynamic depuration of HOCs for aquatic organisms. The results can shed light on a better understanding of the vector effects of microplastics.
Collapse
Affiliation(s)
- Wei Lin
- Guangdong-Hong Kong Joint Laboratory for Water Security, Beijing Normal University, Zhuhai 519087, China; Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China; KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Yu Li
- Guangdong-Hong Kong Joint Laboratory for Water Security, Beijing Normal University, Zhuhai 519087, China; Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Xiaoying Xiao
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China; Shantou Power Supply Bureau of Guangdong Power Grid Co., Ltd., Shantou 515000, China
| | - Fuqiang Fan
- Guangdong-Hong Kong Joint Laboratory for Water Security, Beijing Normal University, Zhuhai 519087, China; Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Jiakun Jiang
- Center for Statistics and Data Science, Beijing Normal University, Zhuhai 519087, China
| | - Ruifen Jiang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China.
| | - Yong Shen
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Gangfeng Ouyang
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
17
|
Nepstad R, Kotzakoulakis K, Hansen BH, Nordam T, Carroll J. An impact-based environmental risk assessment model toolbox for offshore produced water discharges. MARINE POLLUTION BULLETIN 2023; 191:114979. [PMID: 37126994 DOI: 10.1016/j.marpolbul.2023.114979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/03/2023]
Abstract
We present a novel approach to environmental risk assessment of produced water discharges based on explicit impact and probability, using a combination of transport, fate and toxicokinetic-toxicodynamic models within a super-individual framework, with a probabilistic element obtained from ensemble simulations. Our approach is motivated by a need for location and species specific tools which also accounts for the dynamic nature of exposure and uptake of produced water components in the sea. Our approach is based on the well-established fate model DREAM, and accounts for time-variable exposure, considers body burden and effects for specific species and stressors, and assesses the probability of impact. Using a produced water discharge in the Barents Sea, with early life stages of spawning haddock, we demonstrate that it is possible to conduct a model-based risk assessment that highlights the effect of natural variations in environmental conditions. The benefits, limitations and potential for further improvements are discussed.
Collapse
Affiliation(s)
| | | | | | - Tor Nordam
- SINTEF Ocean, Trondheim, Norway; Department of Physics, NTNU, Trondheim, Norway
| | | |
Collapse
|
18
|
French-McCay DP, Parkerton TF, de Jourdan B. Bridging the lab to field divide: Advancing oil spill biological effects models requires revisiting aquatic toxicity testing. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 256:106389. [PMID: 36702035 DOI: 10.1016/j.aquatox.2022.106389] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 06/18/2023]
Abstract
Oil fate and exposure modeling addresses the complexities of oil composition, weathering, partitioning in the environment, and the distributions and behaviors of aquatic biota to estimate exposure histories, i.e., oil component concentrations and environmental conditions experienced over time. Several approaches with increasing levels of complexity (i.e., aquatic toxicity model tiers, corresponding to varying purposes and applications) have been and continue to be developed to predict adverse effects resulting from these exposures. At Tiers 1 and 2, toxicity-based screening thresholds for assumed representative oil component compositions are used to inform spill response and risk evaluations, requiring limited toxicity data, analytical oil characterizations, and computer resources. Concentration-response relationships are employed in Tier 3 to quantify effects of assumed oil component mixture compositions. Oil spill modeling capabilities presently allow predictions of spatial and temporal compositional changes during exposure, which support mixture-based modeling frameworks. Such approaches rely on summed effects of components using toxic units to enable more realistic analyses (Tier 4). This review provides guidance for toxicological studies to inform the development of, provide input to, and validate Tier 4 aquatic toxicity models for assessing oil spill effects on aquatic biota. Evaluation of organisms' exposure histories using a toxic unit model reflects the current state-of the-science and provides an improved approach for quantifying effects of oil constituents on aquatic organisms. Since the mixture compositions in toxicity tests are not representative of field exposures, modelers rely on studies using single compounds to build toxicity models accounting for the additive effects of dynamic mixture exposures that occur after spills. Single compound toxicity data are needed to quantify the influence of exposure duration and modifying environmental factors (e.g., temperature, light) on observed effects for advancing use of this framework. Well-characterized whole oil bioassay data should be used to validate and refine these models.
Collapse
Affiliation(s)
- Deborah P French-McCay
- RPS Ocean Science, 55 Village Square Drive, South Kingstown, Rhode Island 02879, United States.
| | - Thomas F Parkerton
- EnviSci Consulting, LLC, 5900 Balcones Dr, Suite 100, Austin, Texas 77433, United States
| | - Benjamin de Jourdan
- Huntsman Marine Science Centre, 1 Lower Campus Rd, St. Andrews, New Brunswick E5B 2L7, Canada
| |
Collapse
|
19
|
Redman AD, Parkerton TF, Letinski DJ, Sutherland CA, Butler JD, Di Toro DM. Modeling Time-Dependent Aquatic Toxicity of Hydrocarbons: Role of Organism Weight, Temperature, and Substance Hydrophobicity. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:3070-3083. [PMID: 36102847 PMCID: PMC9827832 DOI: 10.1002/etc.5476] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 06/20/2022] [Accepted: 09/06/2022] [Indexed: 06/09/2023]
Abstract
Oil spill exposures are highly dynamic and are not comparable to laboratory exposures used in standard toxicity tests. Toxicokinetic-toxicodynamic (TKTD) models allow translation of effects observed in the laboratory to the field. To improve TKTD model calibration, new and previously published data from 148 tests were analyzed to estimate rates characterizing the time course of toxicity for 10 fish and 42 invertebrate species across 37 hydrocarbons. A key parameter in the TKTD model is the first-order rate that incorporates passive elimination, biotransformation, and damage repair processes. The results indicated that temperature (4-26 °C), organism size (0.0001-10 g), and substance log octanol-water partition coefficient (2-6) had limited influence on this parameter, which exhibited a 5th to 95th percentile range of 0.2-2.5 day-1 (median 0.7 day-1 ). A species sensitivity distribution approach is proposed to quantify the variability of this parameter across taxa, with further studies needed for aliphatic hydrocarbons and plant species. Study findings allow existing oil spill models to be refined to improve effect predictions. Environ Toxicol Chem 2022;41:3070-3083. © 2022 ExxonMobil Biomedical Science Inc. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
| | | | | | | | | | - Dominic M. Di Toro
- Civil and Environmental EngineeringUniversity of DelawareNewarkDelawareUSA
| |
Collapse
|
20
|
Wang J, Nolte TM, Owen SF, Beaudouin R, Hendriks AJ, Ragas AM. A Generalized Physiologically Based Kinetic Model for Fish for Environmental Risk Assessment of Pharmaceuticals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6500-6510. [PMID: 35472258 PMCID: PMC9118555 DOI: 10.1021/acs.est.1c08068] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
An increasing number of pharmaceuticals found in the environment potentially impose adverse effects on organisms such as fish. Physiologically based kinetic (PBK) models are essential risk assessment tools, allowing a mechanistic approach to understanding chemical effects within organisms. However, fish PBK models have been restricted to a few species, limiting the overall applicability given the countless species. Moreover, many pharmaceuticals are ionizable, and fish PBK models accounting for ionization are rare. Here, we developed a generalized PBK model, estimating required parameters as functions of fish and chemical properties. We assessed the model performance for five pharmaceuticals (covering neutral and ionic structures). With biotransformation half-lives (HLs) from EPI Suite, 73 and 41% of the time-course estimations were within a 10-fold and a 3-fold difference from measurements, respectively. The performance improved using experimental biotransformation HLs (87 and 59%, respectively). Estimations for ionizable substances were more accurate than any of the existing species-specific PBK models. The present study is the first to develop a generalized fish PBK model focusing on mechanism-based parameterization and explicitly accounting for ionization. Our generalized model facilitates its application across chemicals and species, improving efficiency for environmental risk assessment and supporting an animal-free toxicity testing paradigm.
Collapse
Affiliation(s)
- Jiaqi Wang
- Department
of Environmental Science, Radboud Institute for Biological and Environmental
Sciences, Radboud University, Nijmegen 6500 GL, The Netherlands
| | - Tom M. Nolte
- Department
of Environmental Science, Radboud Institute for Biological and Environmental
Sciences, Radboud University, Nijmegen 6500 GL, The Netherlands
| | - Stewart F. Owen
- AstraZeneca,
Global Sustainability, Macclesfield, Cheshire SK10 2NA, United Kingdom
| | - Rémy Beaudouin
- Institut
national de l’environnement industriel et des risques (INERIS), Verneuil-en-Halatte 60550, France
| | - A. Jan Hendriks
- Department
of Environmental Science, Radboud Institute for Biological and Environmental
Sciences, Radboud University, Nijmegen 6500 GL, The Netherlands
| | - Ad M.J. Ragas
- Department
of Environmental Science, Radboud Institute for Biological and Environmental
Sciences, Radboud University, Nijmegen 6500 GL, The Netherlands
- Department
of Environmental Sciences, Faculty of Science, Open University, Heerlen 6419 AT, The Netherlands
| |
Collapse
|
21
|
Sun B, Zeng EY. Leaching of PBDEs from microplastics under simulated gut conditions: Chemical diffusion and bioaccumulation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118318. [PMID: 34648835 DOI: 10.1016/j.envpol.2021.118318] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 09/13/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
Considerable efforts on exposure assessment of microplastics (MPs) as an agent in transport of toxic contaminants have been performed in organisms. However, chemical diffusion of inherent hydrophobic organic contaminants from MPs under simulated gut conditions is poorly examined. The present study examined the transfer kinetics of polybrominated diphenyl ethers (PBDEs) from polystyrene (PS), acrylonitrile butadiene styrene (ABS), and polypropylene (PP) MPs under gut surfactants (sodium taurocholate) at two relevant body temperatures of marine organisms, and evaluated the importance of MP ingestion in bioaccumulation of PBDEs in lugworm by a biodynamic model. Diffusion coefficients of PBDEs range from 5.82 × 10-23 to 7.96 × 10-20 m2 s-1 in PS, 5.49 × 10-23 to 3.45 × 10-20 m2 s-1 in ABS, and 5.58 × 10-21 to 5.79 × 10-17 m2 s-1 in PP, with apparent activation energies in the range of 33-148 kJ mol-1. The biota-plastic accumulation factors of PBDEs leached from these plastics range from 1.44 × 10-8 to 7.15 × 10-5. Although ingestion of MPs with the common size (>0.5 mm) showed the negligible contribution to bioaccumulation of PBDEs in lugworm, their contribution in PBDEs transfer can be increased with gradual breakdown of MPs.
Collapse
Affiliation(s)
- Bingbing Sun
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Eddy Y Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China.
| |
Collapse
|
22
|
Nolte TM, Vink JPM, De Cooman W, van Zelm R, Elst R, Ryken E, Hendriks AJ. Ammonia and chromate interaction explains unresolved Hyalella azteca mortality in Flanders' sediment bioassays. CHEMOSPHERE 2021; 271:129446. [PMID: 33454661 DOI: 10.1016/j.chemosphere.2020.129446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
Agricultural, industrial and household chemicals are emitted in large rivers along populated areas, transported by water and deposited in sediments, posing (eco)toxicological risks. Sediments have received less attention than surface waters, likely because of the intrinsic complexity of interactions between sediment constituents complicating correct framing of exposures. Sadly, thorough assessment of the in situ behavior of sediment constituents in bioassays is often not practical. Alternatively, we related physicochemical properties of sediments from field testing to results from bioassays. The case study covers Flemish sediment (incl. Scheldt and Meuse) and mortality of Hyalella azteca, a sensitive bio-indicator. Though variable across Flanders' main water bodies, heavy metals and ammoniacal nitrogen dominate the observed toxicity according to toxic unit (TU) assessments. Depending on the water body we explain between 50 and 90% of the variance in the observed H. azteca mortality, substantially more than previous ecotoxicity studies. We attribute the remaining variance to potential incoherently documented biophysicochemical sediment properties and concentrations of non-target biocides, testing conditions/set-ups and/or species variabilities. We discuss the relative influence of heavy metals/metaloxides, nitrogen (e.g. fertilizer), polycyclic aromatics and organochlorides. We highlight both direct and indirect mortality mechanisms. We note potential synergetic mixture effects between ammoniacal nitrogen and chromium. Such synergy may be phenomenological of 'standard' aerobic bioassays, and prove a complementary method alongside the 'acid-volatile sulfide test' to more effectively link concentration to toxicity. Future study ought to include variation in biophysicochemical properties between sampling locations and batch bioassays. Our approach enables water managers to interpret their monitoring data by converting sediment concentrations to H. azteca mortality and prioritize substances that contribute most.
Collapse
Affiliation(s)
- Tom M Nolte
- Radboud University Nijmegen, Department of Environmental Science, Institute for Water and Wetland Research, 6500, GL, Nijmegen, the Netherlands.
| | - Jos P M Vink
- Deltares, Unit Soil and Subsurface Systems, PO-box 85467, 3508, AL, Utrecht, the Netherlands
| | - Ward De Cooman
- Flanders Environment Agency (VMM), Dr. De Moorstraat 24-26, B-9300, Aalst, Belgium
| | - Rosalie van Zelm
- Radboud University Nijmegen, Department of Environmental Science, Institute for Water and Wetland Research, 6500, GL, Nijmegen, the Netherlands
| | - Raf Elst
- Flanders Environment Agency (VMM), Dr. De Moorstraat 24-26, B-9300, Aalst, Belgium
| | - Els Ryken
- Flanders Environment Agency (VMM), Dr. De Moorstraat 24-26, B-9300, Aalst, Belgium
| | - A Jan Hendriks
- Radboud University Nijmegen, Department of Environmental Science, Institute for Water and Wetland Research, 6500, GL, Nijmegen, the Netherlands
| |
Collapse
|
23
|
Sun B, Liu J, Zhang YQ, Leungb KMY, Zeng EY. Leaching of polybrominated diphenyl ethers from microplastics in fish oil: Kinetics and bioaccumulation. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124726. [PMID: 33316664 DOI: 10.1016/j.jhazmat.2020.124726] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 11/13/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
Microplastics (MPs) contain high levels of polybrominated diphenyl ethers (PBDEs), which can leach to organism tissues upon ingestion, thereby leading to increased chemical exposure. However, leaching kinetics of inherent contaminants from ingested MPs are poorly studied. The present study characterized the leaching kinetics of PBDEs from sub-millimeter sized MPs in fish oil at relevant body temperatures for marine organisms and assessed exposure risk of MPs for cod fish by a biodynamic model. Diffusion coefficients (Dp) of PBDEs are in the ranges of 1.98 × 10-19-2.35 × 10-16 m2·s-1 in polystyrene, 1.89 × 10-20-2.07 × 10-18 m2·s-1 in acrylonitrile butadiene styrene, and 4.26 × 10-18-1.72 × 10-15 m2·s-1 in polypropylene. A linear function obtained between log Dp of BDE-209 and glass-transition temperature of MPs allows estimation of Dp of BDE-209 contained in other common types of MPs present in the gastrointestinal lipid. The biota-plastic accumulation factors of PBDEs for three plastics were in the range of 4.77 × 10-14-4.03 × 10-7. Although bioaccumulation of MPs-affiliated PBDEs is accelerated by oil in the gastrointestinal tract, the modeled steady-state concentrations of PBDEs in cod tissue lipid through ingestion of MPs under the most likely conditions were below the lower end of the global PBDE concentration, implicating that ingestion of MPs by organisms remains a negligible pathway in general.
Collapse
Affiliation(s)
- Bingbing Sun
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Jing Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Yu-Qi Zhang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Kenneth M Y Leungb
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Eddy Y Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China; Research Center of Low Carbon Economy for Guangzhou Region, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
24
|
Zebrafish early life stages as alternative model to study 'designer drugs': Concordance with mammals in response to opioids. Toxicol Appl Pharmacol 2021; 419:115483. [PMID: 33722667 DOI: 10.1016/j.taap.2021.115483] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 02/06/2023]
Abstract
The number of new psychoactive substances (NPS) on the illicit drug market increases fast, posing a need to urgently understand their toxicity and behavioural effects. However, with currently available rodent models, NPS assessment is limited to a few substances per year. Therefore, zebrafish (Danio rerio) embryos and larvae have been suggested as an alternative model that would require less time and resources to perform an initial assessment and could help to prioritize substances for subsequent evaluation in rodents. To validate this model, more information on the concordance of zebrafish larvae and mammalian responses to specific classes of NPS is needed. Here, we studied toxicity and behavioural effects of opioids in zebrafish early life stages. Synthetic opioids are a class of NPS that are often used in pain medication but also frequently abused, having caused multiple intoxications and fatalities recently. Our data shows that fentanyl derivatives were the most toxic among the tested opioids, with toxicity in the zebrafish embryo toxicity test decreasing in the following order: butyrfentanyl>3-methylfentanyl>fentanyl>tramadol> O-desmethyltramadol>morphine. Similar to rodents, tramadol as well as fentanyl and its derivatives led to hypoactive behaviour in zebrafish larvae, with 3-methylfentanyl being the most potent. Physico-chemical properties-based predictions of chemicals' uptake into zebrafish embryos and larvae correlated well with the effects observed. Further, the biotransformation pattern of butyrfentanyl in zebrafish larvae was reminiscent of that in humans. Comparison of toxicity and behavioural responses to opioids in zebrafish and rodents supports zebrafish as a suitable alternative model for rapidly testing synthetic opioids.
Collapse
|
25
|
Brinkmann M, Ouellet JD, Zennegg M, Buchinger S, Reifferscheid G, Hollert H. Combined sediment desorption and bioconcentration model to predict levels of dioxin-like chemicals in fish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:143891. [PMID: 33338786 DOI: 10.1016/j.scitotenv.2020.143891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
Flooding and other sediment disturbances can lead to increases in sediment resuspension. In this context, it is of central importance to understand the kinetics of release from these sediments and the uptake of pollutants, such as polychlorinated biphenyls (PCBs) and polychlorinated dioxins and furans (PCDD/Fs), into aquatic organisms. In the present study, we parameterized a sediment desorption model based on experimentally determined rapidly-desorbing fractions of dioxin-like chemicals (DLCs). We coupled this desorption model with a physiologically-based toxicokinetic model for rainbow trout. This combined model was used to predict DLC concentrations in the muscle of exposed fish. The performance of this model was evaluated using a previously published dataset on DLC uptake from sediment suspensions during simulated re-suspension events. Predictions generally differed less than 10-fold from measured values, and the model showed a good global coefficient of determination (R2) of 0.95. The root mean squared error (RMSE) for PCBs was 0.31 log units and 0.53 log units for PCDD/Fs. The results of our study demonstrate that the prediction of bioconcentration and related risk to fish resulting from sediment resuspension can be accurately predicted using coupled desorption and toxicokinetic models.
Collapse
Affiliation(s)
- Markus Brinkmann
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Canada; Toxicology Centre, University of Saskatchewan, Saskatoon, Canada; Global Institute for Water Security, University of Saskatchewan, Saskatoon, Canada.
| | - Jacob D Ouellet
- Goethe University Frankfurt, Department of Evolutionary Ecology and Environmental Toxicology, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany
| | - Markus Zennegg
- Swiss Federal Institute for Materials Science and Technology, Laboratory for Advanced Analytical Technologies, Dübendorf, Switzerland
| | - Sebastian Buchinger
- Federal Institute of Hydrology, Department G3: Biochemistry and Ecotoxicology, Koblenz, Germany
| | - Georg Reifferscheid
- Federal Institute of Hydrology, Department G3: Biochemistry and Ecotoxicology, Koblenz, Germany
| | - Henner Hollert
- Goethe University Frankfurt, Department of Evolutionary Ecology and Environmental Toxicology, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China; Key Laboratory of Yangtze Water Environment, Ministry of Education, Tongji University, Shanghai, China.
| |
Collapse
|
26
|
van den Berg SJP, Maltby L, Sinclair T, Liang R, van den Brink PJ. Cross-species extrapolation of chemical sensitivity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 753:141800. [PMID: 33207462 DOI: 10.1016/j.scitotenv.2020.141800] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
Ecosystems are usually populated by many species. Each of these species carries the potential to show a different sensitivity towards all of the numerous chemical compounds that can be present in their environment. Since experimentally testing all possible species-chemical combinations is impossible, the ecological risk assessment of chemicals largely depends on cross-species extrapolation approaches. This review overviews currently existing cross-species extrapolation methodologies, and discusses i) how species sensitivity could be described, ii) which predictors might be useful for explaining differences in species sensitivity, and iii) which statistical considerations are important. We argue that risk assessment can benefit most from modelling approaches when sensitivity is described based on ecologically relevant and robust effects. Additionally, specific attention should be paid to heterogeneity of the training data (e.g. exposure duration, pH, temperature), since this strongly influences the reliability of the resulting models. Regarding which predictors are useful for explaining differences in species sensitivity, we review interspecies-correlation, relatedness-based, traits-based, and genomic-based extrapolation methods, describing the amount of mechanistic information the predictors contain, the amount of input data the models require, and the extent to which the different methods provide protection for ecological entities. We develop a conceptual framework, incorporating the strengths of each of the methods described. Finally, the discussion of statistical considerations reveals that regardless of the method used, statistically significant models can be found, although the usefulness, applicability, and understanding of these models varies considerably. We therefore recommend publication of scientific code along with scientific studies to simultaneously clarify modelling choices and enable elaboration on existing work. In general, this review specifies the data requirements of different cross-species extrapolation methods, aiming to make regulators and publishers more aware that access to raw- and meta-data needs to be improved to make future cross-species extrapolation efforts successful, enabling their integration into the regulatory environment.
Collapse
Affiliation(s)
- Sanne J P van den Berg
- Aquatic Ecology and Water Quality Management group, Wageningen University and Research, P.O. box 47, 6700 AA Wageningen, the Netherlands; Research Unit of Environmental and Evolutionary Biology, Namur Institute of Complex Systems, Institute of Life, Earth, and the Environment, University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium.
| | - Lorraine Maltby
- Department of Animal and Plant Sciences, The University of Sheffield, Alfred Denny Building, Western Bank, S10 2TN Sheffield, United Kingdom
| | - Tom Sinclair
- Department of Animal and Plant Sciences, The University of Sheffield, Alfred Denny Building, Western Bank, S10 2TN Sheffield, United Kingdom
| | - Ruoyu Liang
- Department of Animal and Plant Sciences, The University of Sheffield, Alfred Denny Building, Western Bank, S10 2TN Sheffield, United Kingdom
| | - Paul J van den Brink
- Aquatic Ecology and Water Quality Management group, Wageningen University and Research, P.O. box 47, 6700 AA Wageningen, the Netherlands; Wageningen Environmental Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands
| |
Collapse
|
27
|
Nepstad R, Hansen BH, Skancke J. North sea produced water PAH exposure and uptake in early life stages of Atlantic Cod. MARINE ENVIRONMENTAL RESEARCH 2021; 163:105203. [PMID: 33160645 DOI: 10.1016/j.marenvres.2020.105203] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/23/2020] [Accepted: 10/24/2020] [Indexed: 06/11/2023]
Abstract
Produced water discharges from offshore oil and gas platforms represent a significant source of petroleum components such as polycyclic aromatic hydrocarbons (PAHs) released to the ocean. High molecular weight PAHs are persistent in the environment and have a potential for bioaccumulation, and the investigation of their fate and uptake pathways in marine life are relevant when assessing environmental risk of produced water discharges. To study the exposure and uptake of 2-5 ring PAHs in early life stages of Atlantic Cod in the North Sea, we run a coupled fate and individual-based numerical model that includes discharges from 26 platforms. We consider 26 different PAH components in produced water which biodegrade with primary degradation rates; intermediate degradation products are not included. Model simulations are run covering multiple years (2009-2012) to study annual exposure variability, while a one-day time slice of spawning products from the peak spawning season are followed. By covering multiple release points and large spatio-temporal scales, we show how individuals can be exposed to produced water from multiple regions in the North Sea. We find that a combination of oceanic fate processes and toxicokinetics lead to markedly different compositions in the predicted internal concentrations of PAHs compared to discharge concentrations; for instance, naphthalene makes up 30% of the total discharged PAHs, but contributes to at most 1% of internal concentrations. In all simulations we find the predicted total internal PAH concentration (26 components) to be below 1.2 nmol/g, a factor of 1000 less than concentrations commonly associated with acute narcotic effects.
Collapse
|
28
|
Broch OJ, Nepstad R, Ellingsen I, Bast R, Skeie GM, Carroll J. Simulating crude oil exposure, uptake and effects in North Atlantic Calanus finmarchicus populations. MARINE ENVIRONMENTAL RESEARCH 2020; 162:105184. [PMID: 33065519 DOI: 10.1016/j.marenvres.2020.105184] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 09/30/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
A simulation model framework (SYMBIOSES) that includes a 3-dimensional ocean physics and biology model and a model for transport and fate of oil was used to investigate the potential for bioaccumulation and lethal/sublethal effects of oil components in the copepod Calanus finmarchicus in the Lofoten-Vesterålen archipelago of Norway. The oil model is coupled with the biology model by way of a bioaccumulation model, from which mortality and reduction in reproduction are calculated via a total body burden (TBB). The simulation results indicate that copepod body burden levels are affected by the spill type (surface spill, subsea blowout) and the spill timing (spring, autumn). The effects of oil component bioaccumulation on the copepod population for all scenarios are small, though greatest in the subsea blowout scenarios. We attribute this to the limited spatial and temporal overlap between copepods and oil in the environment simulated by the model. The coupling of the processes of oil transport, bioaccumulation/excretion and the associated effects are discussed in the context of the model framework and with a view towards applications for Ecological Risk Assessment (ERA).
Collapse
Affiliation(s)
- Ole Jacob Broch
- SINTEF Ocean, Postboks 4762 Torgarden, 7465 Trondheim, Norway.
| | - Raymond Nepstad
- SINTEF Ocean, Postboks 4762 Torgarden, 7465 Trondheim, Norway
| | | | - Radovan Bast
- High Performance Computing Group, IT Department, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - Geir Morten Skeie
- Akvaplan-niva, FRAM - High North Research Centre for Climate and the Environment, 9296 Tromsø, Norway
| | - JoLynn Carroll
- Akvaplan-niva, FRAM - High North Research Centre for Climate and the Environment, 9296 Tromsø, Norway
| |
Collapse
|
29
|
Cunico LP, Sun M, Rui Y, Ghirmai S, Enekvist M, Lundegard S, Sandahl M, Turner C. Enhanced distribution kinetics in liquid-liquid extraction by CO2-expanded solvents. J Supercrit Fluids 2020. [DOI: 10.1016/j.supflu.2020.104874] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
Lin W, Jiang R, Xiao X, Wu J, Wei S, Liu Y, Muir DCG, Ouyang G. Joint effect of nanoplastics and humic acid on the uptake of PAHs for Daphnia magna: A model study. JOURNAL OF HAZARDOUS MATERIALS 2020; 391:122195. [PMID: 32044633 DOI: 10.1016/j.jhazmat.2020.122195] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/17/2020] [Accepted: 01/26/2020] [Indexed: 06/10/2023]
Abstract
Nanoplastics (NPs) are emerging pollutants which can adsorb large amounts of hydrophobic organic compounds (HOCs) and be ingested by aquatic organisms. NPs interact with dissolved organic matter (DOM) and result in significant impacts on the bioaccumulation of HOCs in the actual environment. For the first time, the joint effects of two complex matrices on the bioaccumulation of polycyclic aromatic hydrocarbons (PAHs) to Daphnia magna (D. magna) were studied by modeling calculation. The complex matrices, nano-sized polystyrene (PS) and/or humic acid (HA), were under environmentally realistic concentrations. A biodynamic model was modified and the uptake fluxes from all exposure pathways were quantified using the experimental data. A flux estimation showed that the bioaccumulation amounts at equilibrium were mostly dependent on dermal uptake (≥99.3 % of the total). The PS matrix would retard the intestinal uptake process in D. magna, especially for the less hydrophobic PAHs; while the HA or the HA-PS matrix would facilitate the mass transfer of PAHs from the matrix to lipids in the gut. Moreover, the biota matrix accumulation factor (BMAF) were calculated to verify the biodynamic model. This work is helpful to clarify the bioaccumulation effects of PAHs in complex environmental systems.
Collapse
Affiliation(s)
- Wei Lin
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Ruifen Jiang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China.
| | - Xiaoying Xiao
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jiayi Wu
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Songbo Wei
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yan Liu
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Derek C G Muir
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, Ontario, Canada
| | - Gangfeng Ouyang
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China; College of Chemistry & Molecular Engineering, Center of Advanced Analysis and Computational Science, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
31
|
Dalhoff K, Hansen AMB, Rasmussen JJ, Focks A, Strobel BW, Cedergreen N. Linking Morphology, Toxicokinetic, and Toxicodynamic Traits of Aquatic Invertebrates to Pyrethroid Sensitivity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:5687-5699. [PMID: 32227918 DOI: 10.1021/acs.est.0c00189] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Pyrethroid insecticides are known to be highly toxic to most aquatic nontarget organisms, but little is known about the mechanisms causing some species to be highly sensitive while others are hardly affected by the pyrethroids. The aim of the present study was to measure the sensitivity (EC50-values) of 10 aquatic invertebrates toward a 24 h pulse of the pyrethroid cypermethrin and subsequently test if the difference in sensitivity could be explained by measured morphological and physiological traits and modeled toxicokinetic (TK) and toxicodynamic (TD) parameters. Large differences were observed for the measured uptake and elimination kinetics, with bioconcentration factors (BCFs) ranging from 53 to 2337 at the end of the exposure. Similarly, large differences were observed for the TDs, and EC50-values after 168 h varied 120-fold. Modeling the whole organism cypermethrin concentrations indicated compartmentation into a sorbed fraction and two internal fractions: a bioavailable and non-bioavailable internal fraction. Strong correlations between surface/volume area and the TK parameters (sorption and uptake rate constants and the resulting BCF) were found, but none of the TK parameters correlated with sensitivity. The only parameter consistently correlating with sensitivity across all species was the killing rate constant of the GUTS-RED-SD model (the reduced general unified threshold models of survival assuming stochastic death), indicating that sensitivity toward cypermethrin is more related to the TD parameters than to TK parameters.
Collapse
Affiliation(s)
- Kristoffer Dalhoff
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Anna M B Hansen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Jes J Rasmussen
- Department of Bioscience-Stream and Wetland Ecology, Aarhus University, Vejlsøvej 25, 8600 Silkeborg, Denmark
| | - Andreas Focks
- Team Environmental Risk Assessment, Wageningen Environmental Research (Alterra), P.O. Box 47 6700 AA Wageningen, The Netherlands
| | - Bjarne W Strobel
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Nina Cedergreen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| |
Collapse
|
32
|
Hoondert RPJ, van den Brink NW, van den Heuvel-Greve MJ, Ragas AJ, Jan Hendriks A. Implications of Trophic Variability for Modeling Biomagnification of POPs in Marine Food Webs in the Svalbard Archipelago. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:4026-4035. [PMID: 32129610 PMCID: PMC7144221 DOI: 10.1021/acs.est.9b06666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/12/2020] [Accepted: 03/04/2020] [Indexed: 05/24/2023]
Abstract
The occurrence of persistent organic pollutants (POPs) in the Arctic has been of constant concern, as these chemicals cause reproductive effects and mortality in organisms. The Arctic acts as a chemical sink, which makes this system an interesting case for bioaccumulation studies. However, as conducting empirical studies for all Arctic species and POPs individually is unfeasible, in silico methods have been developed. Existing bioaccumulation models are predominately validated for temperate food chains, and do not account for a large variation in trophic levels. This study applies Monte Carlo simulations to account for variability in trophic ecology on Svalbard when predicting bioaccumulation of POPs using the optimal modeling for ecotoxicological applications (OMEGA) bioaccumulation model. Trophic magnification factors (TMFs) were calculated accordingly. Comparing our model results with monitored POP residues in biota revealed that, on average, all predictions fell within a factor 6 of the monitored POP residues in biota. Trophic variability did not affect model performance tremendously, with up to a 25% variability in performance metrics. To our knowledge, we were the first to include trophic variability in predicting biomagnification in Arctic ecosystems using a mechanistic biomagnification model. However, considerable amounts of data are required to quantify the implications of trophic variability on biomagnification of POPs in Arctic food webs.
Collapse
Affiliation(s)
- Renske P. J. Hoondert
- Department
of Environmental Science, Institute for Wetland
and Water Research, Faculty of Science, Radboud University, P.O. Box 9010, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Nico W. van den Brink
- Division
of Toxicology, Wageningen University, Box 8000, 6700 EA Wageningen, The Netherlands
| | | | - AdM. J. Ragas
- Department
of Environmental Science, Institute for Wetland
and Water Research, Faculty of Science, Radboud University, P.O. Box 9010, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
- Faculty
of Management, Science and Technology, Open
University, P.O. Box 2960, 6401 DL Heerlen, The Netherlands
| | - A. Jan Hendriks
- Department
of Environmental Science, Institute for Wetland
and Water Research, Faculty of Science, Radboud University, P.O. Box 9010, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
33
|
Influence of Selected Antidepressants on the Ciliated Protozoan Spirostomum ambiguum: Toxicity, Bioaccumulation, and Biotransformation Products. Molecules 2020; 25:molecules25071476. [PMID: 32218111 PMCID: PMC7180767 DOI: 10.3390/molecules25071476] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 01/27/2023] Open
Abstract
The present study aimed to evaluate the effect of the most common antidepressants on aquatic protozoa. Spirostomum ambiguum was used as the model protozoan. The biological activity of four antidepressants, namely fluoxetine, sertraline, paroxetine, and mianserin, toward S. ambiguum was evaluated. Sertraline was found to be the most toxic drug with EC50 values of 0.2 to 0.7 mg/L. The toxicity of the antidepressants depended on the pH of the medium and was the highest in alkaline conditions. Sertraline was also the most bioaccumulating compound tested, followed by mianserin. Slow depuration was observed after transferring the protozoa from the drug solutions to a fresh medium, which indicated possible lysosomotropism of the tested antidepressants in the protozoa. The biotransformation products were identified using a high-resolution mass spectrometer after two days of incubation of the protozoa with the tested antidepressants. Four to six potential biotransformation products were observed in the aqueous phase, while no metabolites were detected in the protozoan cells. Because of the low abundance of metabolites in the medium, their structure was not determined.
Collapse
|
34
|
Vilca FZ, Vilca OML, Silveira RF, Tornisielo VL. Uptake and depletion of the antibiotic sulfadiazine 14C in rainbow trout (Oncorhynchus mykiss). J Radioanal Nucl Chem 2020. [DOI: 10.1007/s10967-020-07026-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
35
|
Yen Le TT, García MR, Grabner D, Nachev M, Balsa-Canto E, Hendriks AJ, Zimmermann S, Sures B. Mechanistic simulation of bioconcentration kinetics of waterborne Cd, Ag, Pd, and Pt in the zebra mussel Dreissena polymorpha. CHEMOSPHERE 2020; 242:124967. [PMID: 31677506 DOI: 10.1016/j.chemosphere.2019.124967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/17/2019] [Accepted: 09/24/2019] [Indexed: 05/21/2023]
Abstract
Mechanistic models based on chemical properties of metals and body size have received substantial attention for their potential application to various metals and to different conditions without required calibration. This advantage has been demonstrated for a number of metals, such as Cd and Ag. However, the capacity of metal-specific chemical properties to explain variations in the accumulation for platinum-group elements (PGEs) has not been investigated yet, although emission of these metals is of increasing concern. Once being released, PGEs exist in the environment in mixtures with other metals. The present study attempted to model the accumulation of Pd and Pt in mixtures with Ag and Cd in the zebra mussel (Dreissena polymorpha) from the aqueous phase; and to investigate the potential application of mechanistic models to Pd and Pt. The present study showed statistically insignificant differences in metal accumulation among size groups in a narrow range of shell length (16-22 mm). Kinetic models could simulate well the accumulation of Cd, Ag, and Pt when metal-specific responses of zebra mussels are taken into consideration. These responses include enhanced immobilisation as a detoxifying mechanism and exchange between soft tissues and shells via the extrapallial fluid. Environmental conditions, e.g. the presence of abiotic ligands such as chloride, might also play an important role in metal accumulation. Significant relationships between the absorption efficiency and the covalent index indicate the potential application of mechanistic models based on this chemical property to Pt.
Collapse
Affiliation(s)
- T T Yen Le
- Department of Aquatic Ecology and Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, D-45141, Germany.
| | - Míriam R García
- Process Engineering Group, Spanish Council for Scientific Research, IIM-CSIC, Vigo, 36208, Spain
| | - Daniel Grabner
- Department of Aquatic Ecology and Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, D-45141, Germany
| | - Milen Nachev
- Department of Aquatic Ecology and Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, D-45141, Germany
| | - Eva Balsa-Canto
- Process Engineering Group, Spanish Council for Scientific Research, IIM-CSIC, Vigo, 36208, Spain
| | - A Jan Hendriks
- Department of Environmental Science, Faculty of Science, Radboud University Nijmegen, Nijmegen, 6525, HP, the Netherlands
| | - Sonja Zimmermann
- Department of Aquatic Ecology and Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, D-45141, Germany
| | - Bernd Sures
- Department of Aquatic Ecology and Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, D-45141, Germany
| |
Collapse
|
36
|
Gao Y, Xie Z, Feng J, Ma W, Zhu L. Different factors determined the toxicokinetics of organic chemicals and nanomaterials exposure to zebrafish (Danio Rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 186:109810. [PMID: 31629190 DOI: 10.1016/j.ecoenv.2019.109810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/28/2019] [Accepted: 10/11/2019] [Indexed: 06/10/2023]
Abstract
Little is known about how the chemical properties (molecular structure, such as the hydrophobic and hydrophilic end group for organic chemical, and particle size for nanomaterials (NMs)) quantitatively affect the toxicokinetics (TK) in organisms especially in short-term, single-species studies. A novel method based on a first-order one compartment TK model which described the monophasic uptake pattern and two-compartment TK model which adequately described the biphasic metabolism pattern was used to determine the bioconcentration and TK rate constants of organic compounds (n = 17) and nanomaterials (NMs, n = 7) in zebrafish. For both one and two compartment model, the uptake (kin) and elimination (kout) rate constants were fitted using a one- and two-compartment first-order kinetic model, and bioconcentration factors (BCF) and 95% depuration times (t95) for all tested chemicals were calculated, respectively. The results showed that there was significant difference in TK parameters kin, kout, and BCF between organic chemicals and nano metal oxides. For organic compounds, significant correlations were found between the kin and BCF and the octanol-water partition coefficient (Kow) and molecular mass. For nano metal oxides, there was a significant negative correlation between the kin or BCF and particle size, but a positive correlation between kin and Zeta potential of nanoparticles and also a significant positive correlation between kout and particle size or specific surface area. Those findings indicated that NMs particle size does matter in biological influx and efflux processes. Our results suggest that the TK process for organic compound and NMs are correlated by different chemical properties and highlight that the Kow, the absorption kin, metabolism k12 and k21, elimination rate kout, and all the parameters that enable the prediction and partitioning of chemicals need to be precisely determined in order to allow an effective TK modeling. It would therefore appear that the TK process of untested chemicals by a fish may be extrapolated from known chemical properties.
Collapse
Affiliation(s)
- Yongfei Gao
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Zhicheng Xie
- Tianjin Academy of Environmental Sciences, Tianjin, 300191, China
| | - Jianfeng Feng
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China.
| | - Weiqi Ma
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Lin Zhu
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| |
Collapse
|
37
|
Hilbers JP, Huijbregts MAJ, Schipper AM. Predicting reintroduction costs for wildlife populations under anthropogenic stress. J Appl Ecol 2019. [DOI: 10.1111/1365-2664.13523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jelle P. Hilbers
- Department of Environmental Science Institute for Wetland and Water Research Faculty of Science Radboud University Nijmegen Nijmegen The Netherlands
| | - Mark A. J. Huijbregts
- Department of Environmental Science Institute for Wetland and Water Research Faculty of Science Radboud University Nijmegen Nijmegen The Netherlands
| | - Aafke M. Schipper
- Department of Environmental Science Institute for Wetland and Water Research Faculty of Science Radboud University Nijmegen Nijmegen The Netherlands
| |
Collapse
|
38
|
Meng X, Wang X, Wang Y. Quantifying correlations of metal ionic characters with ecological soil screening levels (Eco-SSLs) of metals using QICAR models. CHEMOSPHERE 2019; 228:451-459. [PMID: 31051347 DOI: 10.1016/j.chemosphere.2019.04.183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 06/09/2023]
Abstract
Soil pollution by heavy metals is a major challenge for soil ecosystems; therefore, many countries have published thresholds or standards for protecting soil organisms based on toxicity testing. However, there have been few studies on the mechanism of metal toxicity on organisms in soils, especially relationships between metal's ionic properties and its toxicity. Herein, we selected environmental soil screening levels (Eco-SSLs), which are internationally recognized ecotoxicity values recommended by the United States Environmental Protection Agency (USEPA), and investigated relationships between Eco-SSLs and metal ionic characteristics. The results showed that several ionic characteristics were significantly correlated with Eco-SSL using a classification of metal ions according to hard and soft acids and bases. Electrochemical potential, atomic ionization potential, the first hydrolysis constant, the maximum complex stability constant, a polarization force parameter and covalent radius showed significant correlations with Eco-SSLs for borderline plus hard ions, while the soft index exhibited significant fitting for borderline plus soft ions, suggesting that ionic bonding and covalent bonding played important roles in metal toxicity on borderline plus hard ions and soft ions, respectively. Then, we chose characteristics that had the strongest correlations with Eco-SSLs, and developed quantitative ion character-activity relationship (QICAR) for soil organisms. The QICARs predicted Eco-SSLs for metals that were reasonably consistent with those recommended by USEPA, with differences between them generally <0.5 orders of magnitude. Overall, QICAR provide a basis for ecological risk assessment and could be useful to interpret relationships between metal's ionic properties and its toxicity.
Collapse
Affiliation(s)
- Xiaoqi Meng
- The Key Lab of Resource Environment and GIS, College of Resource Environment and Tourism, Capital Normal University, Beijing, 100048, China
| | - Xuedong Wang
- The Key Lab of Resource Environment and GIS, College of Resource Environment and Tourism, Capital Normal University, Beijing, 100048, China.
| | - Ying Wang
- School of Space and Environment, Beihang University, Beijing, 100191, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
39
|
Miller TH, Gallidabino MD, MacRae JI, Owen SF, Bury NR, Barron LP. Prediction of bioconcentration factors in fish and invertebrates using machine learning. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 648:80-89. [PMID: 30114591 PMCID: PMC6234108 DOI: 10.1016/j.scitotenv.2018.08.122] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/08/2018] [Accepted: 08/09/2018] [Indexed: 04/14/2023]
Abstract
The application of machine learning has recently gained interest from ecotoxicological fields for its ability to model and predict chemical and/or biological processes, such as the prediction of bioconcentration. However, comparison of different models and the prediction of bioconcentration in invertebrates has not been previously evaluated. A comparison of 24 linear and machine learning models is presented herein for the prediction of bioconcentration in fish and important factors that influenced accumulation identified. R2 and root mean square error (RMSE) for the test data (n = 110 cases) ranged from 0.23-0.73 and 0.34-1.20, respectively. Model performance was critically assessed with neural networks and tree-based learners showing the best performance. An optimised 4-layer multi-layer perceptron (14 descriptors) was selected for further testing. The model was applied for cross-species prediction of bioconcentration in a freshwater invertebrate, Gammarus pulex. The model for G. pulex showed good performance with R2 of 0.99 and 0.93 for the verification and test data, respectively. Important molecular descriptors determined to influence bioconcentration were molecular mass (MW), octanol-water distribution coefficient (logD), topological polar surface area (TPSA) and number of nitrogen atoms (nN) among others. Modelling of hazard criteria such as PBT, showed potential to replace the need for animal testing. However, the use of machine learning models in the regulatory context has been minimal to date and is critically discussed herein. The movement away from experimental estimations of accumulation to in silico modelling would enable rapid prioritisation of contaminants that may pose a risk to environmental health and the food chain.
Collapse
Affiliation(s)
- Thomas H Miller
- Department of Analytical, Environmental & Forensic Sciences, School of Population Health & Environmental Sciences, Faculty of Life Sciences and Medicine, King's College London, 150 Stamford Street, London SE1 9NH, UK.
| | - Matteo D Gallidabino
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK
| | - James I MacRae
- Metabolomics Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Stewart F Owen
- AstraZeneca, Global Environment, Alderley Park, Macclesfield, Cheshire SK10 4TF, UK
| | - Nicolas R Bury
- Division of Diabetes and Nutritional Sciences, Faculty of Life Sciences and Medicine, King's College London, Franklin Wilkins Building, 150 Stamford Street, London SE1 9NH, UK; Faculty of Science, Health and Technology, University of Suffolk, James Hehir Building, University Avenue, Ipswich, Suffolk IP3 0FS, UK
| | - Leon P Barron
- Department of Analytical, Environmental & Forensic Sciences, School of Population Health & Environmental Sciences, Faculty of Life Sciences and Medicine, King's College London, 150 Stamford Street, London SE1 9NH, UK.
| |
Collapse
|
40
|
Quinn CL, Armitage JM, Wania F, Arnot JA. Development and Evaluation of a Combined Bioenergetics and Organic Chemical Mass-Balance Bioaccumulation Model for Fish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:752-759. [PMID: 30540172 DOI: 10.1021/acs.est.8b04382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This study describes the development and evaluation of a new bioenergetically balanced bioaccumulation (3B) model for organic chemicals in fish. The 3B model is developed from a large database of routine metabolic (oxygen consumption) rates composed of a range of species, body mass, and temperatures. The chemical uptake and elimination rates of the 3B model are compared against those from three existing bioaccumulation models. A time-variant version of the 3B model is evaluated against measured concentrations of five polychlorinated biphenyls in different-size fish depurated over the course of a year, during which water temperature changed by 22 °C. The "generic" species 3B model predicts fish concentrations to within a factor of 3 of the measured data for the majority of observations ( n = 438) and outperforms a previously published "species-specific" bioenergetics model. Bioenergetics aspects of the 3B model are further evaluated by comparing predicted feeding rates and growth rates to measured rates obtained from diverse laboratory conditions ( n 572). While bioenergetics performance is acceptable, the 3B model seems to generally perform better when ingestion rates are calculated from growth rates rather than vice versa. For field applications, parametrization of the activity multiplier remains a key uncertainty underlying the bioenergetics calculations.
Collapse
Affiliation(s)
- Cristina L Quinn
- Department of Physical and Environmental Sciences , University of Toronto Scarborough , 1265 Military Trail , Toronto , Ontario , Canada , M1C 1A4
| | - James M Armitage
- Department of Physical and Environmental Sciences , University of Toronto Scarborough , 1265 Military Trail , Toronto , Ontario , Canada , M1C 1A4
- AES Armitage Environmental Sciences, Inc. , 391 North River Road , Vanier , Ontario , Canada , K1L 8C3
| | - Frank Wania
- Department of Physical and Environmental Sciences , University of Toronto Scarborough , 1265 Military Trail , Toronto , Ontario , Canada , M1C 1A4
| | - Jon A Arnot
- Department of Physical and Environmental Sciences , University of Toronto Scarborough , 1265 Military Trail , Toronto , Ontario , Canada , M1C 1A4
- ARC Arnot Research and Consulting Inc. , 36 Sproat Avenue , Toronto , Ontario , Canada , M4M 1W4
| |
Collapse
|
41
|
Radomyski A, Lei K, Giubilato E, Critto A, Lin C, Marcomini A. Bioaccumulation of trace metals in aquatic food web. A case study, Liaodong Bay, NE China. MARINE POLLUTION BULLETIN 2018; 137:555-565. [PMID: 30503468 DOI: 10.1016/j.marpolbul.2018.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/01/2018] [Accepted: 11/02/2018] [Indexed: 06/09/2023]
Abstract
The recently developed modelling tool MERLIN-Expo was applied to support the exposure assessment of an aquatic food web to trace metals in a coastal environment. The exposure scenario, built on the data from Daliao River estuary in the Liaodong Bay (Bohai Sea, China), affected by long-term and large-scale industrial activities as well as rapid urbanization in Liao River watershed, represents an interesting case-study for ecological exposure modelling due to the availability of local data on metal concentrations in water and sediment. The bioaccumulation of selected trace metals in aquatic organisms was modelled and compared with field data from local aquatic organisms. Both model results and experimental data demonstrated that As, Cd, Cu, Ni, Pb and Zn, out of examined metals, were accumulated most abundantly by invertebrates and less by higher trophic level species. The body parts of the sampled animals with the highest measured concentration of metals were predominantly muscles, intestine and liver and fish skin in the case of Cr. The Morris and extended Fourier Analysis (EFAST) were used to account for variability in selected parameters of the bioaccumulation model. Food assimilation efficiency and slopes and intercepts of two sub-models for calculating metal specific BCFs (BCFmetal-exposure concentration) and fish weight (Weightfish-Lengthfish) were identified as the most influential parameters on ecological exposure to selected metals.
Collapse
Affiliation(s)
- Artur Radomyski
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari Venice, Via Torino 155, Mestre, 30172 Venice, Italy
| | - Kai Lei
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, 100875 Beijing, People's Republic of China
| | - Elisa Giubilato
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari Venice, Via Torino 155, Mestre, 30172 Venice, Italy
| | - Andrea Critto
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari Venice, Via Torino 155, Mestre, 30172 Venice, Italy.
| | - Chunye Lin
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, 100875 Beijing, People's Republic of China.
| | - Antonio Marcomini
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari Venice, Via Torino 155, Mestre, 30172 Venice, Italy
| |
Collapse
|
42
|
Øverjordet IB, Nepstad R, Hansen BH, Jager T, Farkas J, Altin D, Brönner U, Nordtug T. Toxicokinetics of Crude Oil Components in Arctic Copepods. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:9899-9907. [PMID: 29897747 DOI: 10.1021/acs.est.8b01812] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The risk of accidental oil spills in the Arctic is on the rise due to increased shipping and oil exploration activities, making it essential to calibrate parameters for risk assessment of oil spills to Arctic conditions. The toxicokinetics of crude oil components were assessed by exposing one lipid-poor (CIII) and one lipid-rich (CV) stage of the Arctic copepod Calanus hyperboreus to crude oil WSF (water-soluble fraction). Water concentrations and total body residues (BR), as well as lipid volume fractions, were measured at regular intervals during exposure and recovery. Bioconcentration factors (BCFs) and elimination rates ( ke) for 26 petrogenic oil components were estimated from one-compartment models fitted to the BR data. Our parameters were compared to estimations made by the OMEGA bioaccumulation model, which uses the octanol-water partitioning coefficient ( KOW) in QSAR (quantitative structure-activity relationship) predictions. Our parameters for the lipid-poor CIIIs generally agreed with the OMEGA predictions, while neither the BCFs nor the kes for the lipid-rich CVs fitted within the realistic range of the OMEGA parameters. Both the uptake and elimination rates for the CVs were in general half an order of magnitude lower than the OMEGA predictions, showing an overestimation of these parameters by the OMEGA model.
Collapse
|
43
|
Diepens NJ, Koelmans AA. Accumulation of Plastic Debris and Associated Contaminants in Aquatic Food Webs. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:8510-8520. [PMID: 29925231 PMCID: PMC6150694 DOI: 10.1021/acs.est.8b02515] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 06/20/2018] [Indexed: 05/19/2023]
Abstract
We present a generic theoretical model (MICROWEB) that simulates the transfer of microplastics and hydrophobic organic chemicals (HOC) in food webs. We implemented the model for an Arctic case comprised of nine species including Atlantic cod and polar bear as top predator. We used the model to examine the effect of plastic ingestion on trophic transfer of microplastics and persistent HOCs (PCBs) and metabolizable HOCs (PAHs), spanning a wide range of hydrophobicities. In a scenario where HOCs in plastic and water are in equilibrium, PCBs biomagnify less when more microplastic is ingested, because PCBs biomagnify less well from ingested plastic than from regular food. In contrast, PAHs biomagnify more when more microplastic is ingested, because plastic reduces the fraction of PAHs available for metabolization. We also explore nonequilibrium scenarios representative of additives that are leaching out, as well as sorbing HOCs, quantitatively showing how the above trends are strengthened and weakened, respectively. The observed patterns were not very sensitive to modifications in the structure of the food web. The model can be used as a tool to assess prospective risks of exposure to microplastics and complex HOC mixtures for any food web, including those with relevance for human health.
Collapse
Affiliation(s)
- Noël J. Diepens
- Aquatic
Ecology and Water Quality Management Group, Department of Environmental
Sciences, Wageningen University, P.O. Box 47, 6700 AA Wageningen, The Netherlands
- Phone: +31 317 489701. E-mail:
| | - Albert A. Koelmans
- Aquatic
Ecology and Water Quality Management Group, Department of Environmental
Sciences, Wageningen University, P.O. Box 47, 6700 AA Wageningen, The Netherlands
- Wageningen Marine
Research, P.O. Box 68, 1970 AB IJmuiden, The Netherlands
| |
Collapse
|
44
|
Giulivo M, Suciu NA, Eljarrat E, Gatti M, Capri E, Barcelo D. Ecological and human exposure assessment to PBDEs in Adige River. ENVIRONMENTAL RESEARCH 2018; 164:229-240. [PMID: 29501833 DOI: 10.1016/j.envres.2018.02.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 01/12/2018] [Accepted: 02/15/2018] [Indexed: 06/08/2023]
Abstract
The interest for environmental issues and the concern resulting from the potential exposure to contaminants were the starting point to develop methodologies in order to evaluate the consequences that those might have over both the environment and human health. Considering the feature of POPs, including PBDEs, such as bioaccumulation, biomagnification, long-range transport and adverse effects even long time after exposure, risk assessment of POPs requires specific approaches and tools. In this particular context, the MERLIN-Expo tool was used to assess the aquatic environmental exposure of Adige River to PBDEs and the accumulation of PBDEs in humans through the consumption of possible contaminated local aquatic food. The aquatic food web models provided as output of the deterministic simulation the time trend of concentrations for twenty years of BDE-47 and total PBDEs, expressed using the physico-chemical properties of BDE-47, in aquatic organisms of the food web of Adige River. For BDE-47, the highest accumulated concentrations were detected for two benthic species: Thymallus thymallus and Squalius cephalus whereas the lowest concentrations were obtained for the pelagic specie Salmo trutta marmoratus. The trend obtained for the total PBDEs, calculated using the physico-chemical properties of BDE-47, follows the one of BDE-47. For human exposure, different BDE-47 and total PBDEs concentration trends between children, adolescent, adults and elderly were observed, probably correlated with the human intake of fish products in the daily diet and the ability to metabolize these contaminants. In detail, for the adolescents, adults and elderly a continuous accumulation of the target contaminants during the simulation's years was observed, whereas for children a plateau at the end of the simulation period was perceived.
Collapse
Affiliation(s)
- Monica Giulivo
- Dipartment for Sustainable Food Process, Università Cattolica del Sacro Cuore di Piacenza, Via Emilia Parmense 84, 29100 Piacenza, Italy
| | - Nicoleta Alina Suciu
- Dipartment for Sustainable Food Process, Università Cattolica del Sacro Cuore di Piacenza, Via Emilia Parmense 84, 29100 Piacenza, Italy
| | - Ethel Eljarrat
- Water and Soil Quality Research Group, Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Marina Gatti
- Dipartment for Sustainable Food Process, Università Cattolica del Sacro Cuore di Piacenza, Via Emilia Parmense 84, 29100 Piacenza, Italy
| | - Ettore Capri
- Dipartment for Sustainable Food Process, Università Cattolica del Sacro Cuore di Piacenza, Via Emilia Parmense 84, 29100 Piacenza, Italy
| | - Damia Barcelo
- Water and Soil Quality Research Group, Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain; Catalan Institute for Water Research (ICRA), H(2)O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101, 17003 Girona, Spain
| |
Collapse
|
45
|
Baas J, Augustine S, Marques GM, Dorne JL. Dynamic energy budget models in ecological risk assessment: From principles to applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 628-629:249-260. [PMID: 29438934 DOI: 10.1016/j.scitotenv.2018.02.058] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 02/05/2018] [Accepted: 02/05/2018] [Indexed: 06/08/2023]
Abstract
In ecological risk assessment of chemicals, hazard identification and hazard characterisation are most often based on ecotoxicological tests and expressed as summary statistics such as No Observed Effect Concentrations or Lethal Concentration values and No Effect Concentrations. Considerable research is currently ongoing to further improve methodologies to take into account toxico kinetic aspects in toxicological assessments, extrapolations of toxic effects observed on individuals to population effects and combined effects of multiple chemicals effects. In this context, the principles of the Dynamic Energy Budget (DEB), namely the conserved allocation of energy to different life-supporting processes in a wide variety of different species, have been applied successfully to the development of a number of DEB models. DEB models allow the incorporation of effects on growth, reproduction and survival within one consistent framework. This review aims to discuss the principles of the DEB theory together with available DEB models, databases available and applications in ecological risk assessment of chemicals for a wide range of species and taxa. Future perspectives are also discussed with particular emphasis on ongoing research efforts to develop DEB models as open source tools to further support the research and regulatory community to integrate quantitative biology in ecotoxicological risk assessment.
Collapse
Affiliation(s)
- Jan Baas
- Centre for Ecology and Hydrology, MacLean Building Benson Lane, Wallingford, Oxfordshire, UK.
| | - Starrlight Augustine
- Akvaplan-niva, Fram - High North Research Centre for Climate and the Environment, 9296 Tromsø, Norway
| | | | - Jean-Lou Dorne
- European Food Safety Authority (EFSA), Scientific Committee and emerging Risks Unit, Parma, Italy
| |
Collapse
|
46
|
Chen CC, Kuo DTF. Bioconcentration model for non-ionic, polar, and ionizable organic compounds in amphipod. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:1378-1386. [PMID: 29315781 DOI: 10.1002/etc.4081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/20/2017] [Accepted: 01/07/2018] [Indexed: 06/07/2023]
Abstract
The present study presents a bioconcentration model for non-ionic, polar, and ionizable organic compounds in amphipod based on first-order kinetics. Uptake rate constant k1 is modeled as logk1=10.81logKOW + 0.15 (root mean square error [RMSE] = 0.52). Biotransformation rate constant kM is estimated using an existing polyparameter linear free energy relationship model. Respiratory elimination k2 is calculated as modeled k1 over theoretical biota-water partition coefficient Kbiow considering the contributions of lipid, protein, carbohydrate, and water. With negligible contributions of growth and egestion over a typical amphipod bioconcentration experiment, the bioconcentration factor (BCF) is modeled as k1 /(kM + k2 ) (RMSE = 0.68). The proposed model performs well for non-ionic organic compounds (log KOW range = 3.3-7.62) within 1 log-unit error margin. Approximately 12% of the BCFs are underpredicted for polar and ionizable compounds. However, >50% of the estimated k2 values are found to exceed the total depuration rate constants. Analyses suggest that these excessive k2 values and underpredicted BCFs reflect underestimation in Kbiow , which may be improved by incorporating exoskeleton as a relevant partitioning component and refining the membrane-water partitioning model. The immediate needs to build up high-quality experimental kM values, explore the sorptive role of exoskeleton, and investigate the prevalence of k2 overestimation in other bioconcentration models are also identified. The resulting BCF model can support, within its limitations, the ecotoxicological and risk assessment of emerging polar and ionizable organic contaminants in aquatic environments and advance the science of invertebrate bioaccumulation. Environ Toxicol Chem 2018;37:1378-1386. © 2018 SETAC.
Collapse
Affiliation(s)
- Ciara Chun Chen
- Department of Architecture and Civil Engineering, City University of Hong Kong, Kowloon, Hong Kong
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Dave Ta Fu Kuo
- Department of Architecture and Civil Engineering, City University of Hong Kong, Kowloon, Hong Kong
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
47
|
Kirla KT, Groh KJ, Poetzsch M, Banote RK, Stadnicka-Michalak J, Eggen RIL, Schirmer K, Kraemer T. Importance of Toxicokinetics to Assess the Utility of Zebrafish Larvae as Model for Psychoactive Drug Screening Using Meta-Chlorophenylpiperazine (mCPP) as Example. Front Pharmacol 2018; 9:414. [PMID: 29755353 PMCID: PMC5932571 DOI: 10.3389/fphar.2018.00414] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 04/10/2018] [Indexed: 01/05/2023] Open
Abstract
The number of new psychoactive substances (NPS) increases rapidly, harming society and fuelling the need for alternative testing strategies. These should allow the ever-increasing number of drugs to be tested more effectively for their toxicity and psychoactive effects. One proposed strategy is to complement rodent models with zebrafish (Danio rerio) larvae. Yet, our understanding of the toxicokinetics in this model, owing to the waterborne drug exposure and the distinct physiology of the fish, is incomplete. We here explore the toxicokinetics and behavioral effects of an NPS, meta-chlorophenylpiperazine (mCPP), in zebrafish larvae. Uptake kinetics of mCPP, supported by toxicokinetic modeling, strongly suggested the existence of active transport processes. Internal distribution showed a dominant accumulation in the eye, implying that in zebrafish, like in mammals, melanin could serve as a binding site for basic drugs. We confirmed this by demonstrating significantly lower drug accumulation in two types of hypo-pigmented fish. Comparison of the elimination kinetics between mCPP and previously characterized cocaine demonstrated that drug affinities to melanin in zebrafish vary depending on the structure of the test compound. As expected from mCPP-elicited responses in rodents and humans, zebrafish larvae displayed hypoactive behavior. However, significant differences were seen between zebrafish and rodents with regard to the concentration-dependency of the behavioral response and the comparability of tissue levels, corroborating the need to consider the organism-internal distribution of the chemical to allow appropriate dose modeling while evaluating effects and concordance between zebrafish and mammals. Our results highlight commonalities and differences of mammalian versus the fish model in need of further exploration.
Collapse
Affiliation(s)
- Krishna Tulasi Kirla
- Department of Forensic Pharmacology and Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland.,Department of Environmental Toxicology, Swiss Federal Institute of Aquatic Science and Technology, Eawag, Dübendorf, Switzerland
| | - Ksenia J Groh
- Department of Environmental Toxicology, Swiss Federal Institute of Aquatic Science and Technology, Eawag, Dübendorf, Switzerland.,Food Packaging Forum Foundation, Zurich, Switzerland
| | - Michael Poetzsch
- Department of Forensic Pharmacology and Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Rakesh Kumar Banote
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Julita Stadnicka-Michalak
- Department of Environmental Toxicology, Swiss Federal Institute of Aquatic Science and Technology, Eawag, Dübendorf, Switzerland.,Civil and Environmental Engineering, School of Architecture, EPFL, Lausanne, Switzerland
| | - Rik I L Eggen
- Department of Environmental Toxicology, Swiss Federal Institute of Aquatic Science and Technology, Eawag, Dübendorf, Switzerland.,Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Zurich, Switzerland
| | - Kristin Schirmer
- Department of Environmental Toxicology, Swiss Federal Institute of Aquatic Science and Technology, Eawag, Dübendorf, Switzerland.,Civil and Environmental Engineering, School of Architecture, EPFL, Lausanne, Switzerland.,Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Zurich, Switzerland
| | - Thomas Kraemer
- Department of Forensic Pharmacology and Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
48
|
Arnot JA, Pawlowski S, Champ S. A weight-of-evidence approach for the bioaccumulation assessment of triclosan in aquatic species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 618:1506-1518. [PMID: 29029804 DOI: 10.1016/j.scitotenv.2017.09.322] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 09/29/2017] [Accepted: 09/29/2017] [Indexed: 06/07/2023]
Abstract
The bioaccumulation assessment of chemicals is challenging because of various metrics and criteria, multiple lines of evidence and underlying uncertainty in the data. Measured in vivo laboratory and field bioaccumulation data are generally considered preferable; however, quantitative structure-activity relationships (QSARs), mass balance models and in vitro data can also be considered. This case study critically evaluates in vivo, in vitro and in silico data and provides new data for the bioaccumulation assessment of triclosan (TCS). The review focusses on measured fish bioconcentration factors (BCFs) because this is the most commonly used regulatory metric. Reported measured fish BCFs range from about 20 to 8700L/kg-ww spanning a range of possible bioaccumulation assessment outcomes, i.e. from "not bioaccumulative" to "very bioaccumulative". Estimated biotransformation rate constants for fish obtained from in vivo, in vitro and in silico methods show general consensus fostering confidence in the selection of plausible values to confront uncertainty in the measured fish BCF tests. Other measurements (lines of evidence) from various species are also collected and reviewed. The estimated biotransformation rate constants and selected chemical property data are used to parameterize bioaccumulation models for aquatic species. Collectively the available lines of evidence are presented using a weight of evidence approach for assessing the bioaccumulation of TCS in aquatic species. Acceptable quality measured data and model predictions for TCS BCFs and bioaccumulation factors are lower than 2000L/kg. Biomagnification factors are <1 (kg/kg). The general consistency in the acceptable quality data is largely explained by the relatively efficient rates of TCS biotransformation in a range of species including measurements of significant in vitro activity of phase II conjugation reactions. The review demonstrates the value of combining models and measurements and, when necessary, applying multiple lines of evidence for chemical assessment.
Collapse
Affiliation(s)
- Jon A Arnot
- ARC Arnot Research and Consulting Inc., 36 Sproat Avenue, Toronto, ON M4M 1W4, Canada; Department of Physical and Environmental Sciences, University of Toronto at Scarborough, 1265 Military Trail, Toronto, ON M1C1A4, Canada; Department of Pharmacology and Toxicology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| | | | - Samantha Champ
- BASF SE, Carl-Bosch Str. 38, 67056 Ludwigshafen, Germany
| |
Collapse
|
49
|
Arnot JA, Mackay D. The influence of chemical degradation during dietary exposures to fish on biomagnification factors and bioaccumulation factors. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2018; 20:86-97. [PMID: 29300412 DOI: 10.1039/c7em00539c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The chemical dietary absorption efficiency (ED) quantifies the amount of chemical absorbed by an organism relative to the amount of chemical an organism is exposed to following ingestion. In particular, ED can influence the extent of bioaccumulation and biomagnification for hydrophobic chemicals. A new ED model is developed to quantify chemical process rates in the gastrointestinal tract (GIT). The new model is calibrated with critically evaluated measured ED values (n = 250) for 80 hydrophobic persistent chemicals. The new ED model is subsequently used to estimate chemical reaction rate constants (kR) assumed to occur in the lumen of the GIT from experimental dietary exposure tests (n = 255) for 165 chemicals. The new kR estimates are corroborated with kR estimates for the same chemicals from the same data derived previously by other methods. The roles of kR and the biotransformation rate constant (kB) on biomagnification factors (BMFs) determined under laboratory test conditions and on BMFs and bioaccumulation factors (BAFs) in the environment are examined with the new model. In this regard, differences in lab and field BMFs are highlighted. Recommendations to address uncertainty in ED and kR data are provided.
Collapse
Affiliation(s)
- Jon A Arnot
- ARC Arnot Research and Consulting, 36 Sproat Ave., Toronto, ON M4M 1W4, Canada.
| | | |
Collapse
|
50
|
Radomyski A, Giubilato E, Suciu NA, Critto A, Ciffroy P. Modelling Bioaccumulation in Aquatic Organisms and in Mammals. MODELLING THE FATE OF CHEMICALS IN THE ENVIRONMENT AND THE HUMAN BODY 2018. [DOI: 10.1007/978-3-319-59502-3_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|