1
|
Loera-Lopez AL, Lord MN, Noble EE. Astrocytes of the hippocampus and responses to periprandial neuroendocrine hormones. Physiol Behav 2025; 295:114913. [PMID: 40209869 DOI: 10.1016/j.physbeh.2025.114913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/15/2025] [Accepted: 04/08/2025] [Indexed: 04/12/2025]
Abstract
Astrocytes have risen as stars in the field of energy homeostasis and neurocognitive function, acting as a bridge of communication between the periphery and the brain, providing metabolic support, signaling via gliotransmitters, and altering synaptic communication. Dietary factors and energy state have a profound influence on hippocampal function, and the hippocampus is critical for appropriate behavioral responses associated with feeding and internal hunger cues (being in the fasted or full state), but how the hippocampus senses periprandial status and is impacted by diet is largely unknown. Periprandial hormones act within the hippocampus to modulate processes involved in hippocampal-dependent learning and memory function and astrocytes likely play an important role in modulating this signaling. In addition to periprandial hormones, astrocytes are positioned to respond to changes in circulating nutrients like glucose. Here, we review literature investigating how astrocytes mediate changes in hippocampal function, highlighting astrocyte location, morphology, and function in the context of integrating glucose metabolism, neuroendocrine hormone action, and/or cognitive function in the hippocampus. Specifically, we discuss research findings on the effects of insulin, ghrelin, leptin, and GLP-1 on glucose homeostasis, neural activity, astrocyte function, and behavior in the hippocampus. Because obesogenic diets impact neuroendocrine hormones, astrocytes, and cognitive function, we also discuss the effects of diet and diet-induced obesity on these parameters.
Collapse
Affiliation(s)
- Ana L Loera-Lopez
- Neuroscience Graduate Program, University of Georgia, Athens, GA, 30606, USA; Department of Nutritional Sciences, University of Georgia, Athens, GA, 30606, USA
| | - Magen N Lord
- Department of Nutritional Sciences, University of Georgia, Athens, GA, 30606, USA
| | - Emily E Noble
- Neuroscience Graduate Program, University of Georgia, Athens, GA, 30606, USA; Department of Nutritional Sciences, University of Georgia, Athens, GA, 30606, USA.
| |
Collapse
|
2
|
Li M, Liu T, Zhang Y, Yang M, Li Z, He J, Li J. Fructose-Driven glycolysis supports synaptic function in subterranean rodent - Gansu Zokor (Eospalax cansus). Neuroscience 2025; 568:139-153. [PMID: 39824341 DOI: 10.1016/j.neuroscience.2025.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/15/2024] [Accepted: 01/11/2025] [Indexed: 01/20/2025]
Abstract
Several studies indicate that fructose can be used as an energy source for subterranean rodents. However, how subterranean rodents utilize fructose metabolism with no apparent physiological drawbacks remains poorly understood. In the present study, we measured field excitatory postsynaptic potentials (fEPSPs) in hippocampal slices from Gansu zokor and SD rats hippocampi before and 60 min after replacement of 10 mM glucose in the artificial cerebrospinal fluid (ACSF) with 10 mM fructose (gassed with 95 % O2 and 5 % CO2). Subsequently, we performed transcriptome analysis on Gansu zokor brains incubated with ACSF containing 10 mM fructose and determined the contents of fructose, lactate, ATP, and UA. Whole brain RNA and proteins were extracted to detect the transcriptional levels of Glut5, Khk, Aldoc, and Cs and the translational levels of GLUT5, CS, NRF2, and c-FOS. The results showed that Gansu zokor brains exhibit higher levels of GLUT5 protein and Khk mRNA levels than SD rats to facilitate fructose uptake and metabolism, resulting in increased fructose, ATP, and lactate content in the brain during fructose incubation. Stable UA levels during fructose metabolism reduce the risk of oxidative stress and neuroinflammation, and activation of the Nrf2 pathway increases downstream antioxidant capacity, thereby reducing brain damage. Persistent fEPSP signaling suggests that fructose supports excitatory synaptic transmission in the CA1 region of the hippocampus of the Gansu zokor but leads to hippocampal dysfunction in SD rats. The unique insights about fructose metabolism in the brain of Gansu zokor obtained in our study will be useful for further studies on the evolution of subterranean rodents.
Collapse
Affiliation(s)
- Meng Li
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, China; National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, China; College of Life Science, Shaanxi Normal University, Xi'an, China
| | - Tianyi Liu
- College of Life Science, Shaanxi Normal University, Xi'an, China
| | - Yingying Zhang
- College of Life Science, Shaanxi Normal University, Xi'an, China
| | - Maohong Yang
- College of Life Science, Shaanxi Normal University, Xi'an, China
| | - Zhuohang Li
- College of Life Science, Shaanxi Normal University, Xi'an, China
| | - Jianping He
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, China; National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, China; College of Life Science, Shaanxi Normal University, Xi'an, China.
| | - Jingang Li
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, China; National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, China; College of Life Science, Shaanxi Normal University, Xi'an, China.
| |
Collapse
|
3
|
Yang X, Miao X, Schweiggart F, Großmann S, Rauss K, Hallschmid M, Born J, Lutz ND. The effect of fasting on human memory consolidation. Neurobiol Learn Mem 2025; 218:108034. [PMID: 39938634 DOI: 10.1016/j.nlm.2025.108034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/17/2024] [Accepted: 02/08/2025] [Indexed: 02/14/2025]
Abstract
The consolidation of long-term memory is thought to critically rely on sleep. However, first evidence from a study in Drosophila suggests that hunger, as another brain state, can benefit memory consolidation as well. Here, we report two human (within-subjects crossover) experiments examining the effects of fasting (versus satiated conditions) during a 10-hour post-encoding consolidation period on subsequent recall of declarative and procedural memories in healthy men. In Experiment 1, participants (n = 16), after an 18.5-hour fasting period, encoded 3 memory tasks (word paired associates, a visual version of the Deese-Roediger-McDermott task, finger tapping) and subsequently either continued to fast or received standardized meals. Recall was tested 48 h later in a satiated state. Experiment 2 (n = 16 participants) differed from Experiment 1 in that a What-Where-When episodic memory task replaced the Deese-Roediger-McDermott task and recall was tested only 24 h later in a fasted state. Compared with the satiated state, fasting enhanced cued recall of word paired associates (more correct and faster responses) and item recognition in the What-Where-When task. By contrast, fasting impaired recall of episodic context memory, i.e., spatial context in the Deese-Roediger-McDermott task, and temporal-spatial context in the What-Where-When task. Procedural memory (finger tapping) remained unaffected. This pattern suggests a differential effect of fasting selectively promoting consolidation of semantic-like representations in cortical networks whereas hippocampal representations of episodic context are weakened. We speculate that hunger strengthens cortical representations by suppressing hippocampal interference during wake consolidation. Yet, the underlying mechanism remains to be clarified.
Collapse
Affiliation(s)
- Xuefeng Yang
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany; Graduate School of Neural & Behavioural Science, International Max Planck Research School, Tübingen, Germany
| | - Xiu Miao
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany; Graduate School of Neural & Behavioural Science, International Max Planck Research School, Tübingen, Germany
| | - Franziska Schweiggart
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Sophia Großmann
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Karsten Rauss
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Manfred Hallschmid
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany; German Center for Diabetes Research (DZD), Tübingen, Germany; Institute for Diabetes Research & Metabolic Diseases of the Helmholtz Center Munich at the University Tübingen (IDM), Germany; German Center for Mental Health (DZPG), Tübingen, Germany
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany; German Center for Diabetes Research (DZD), Tübingen, Germany; Institute for Diabetes Research & Metabolic Diseases of the Helmholtz Center Munich at the University Tübingen (IDM), Germany; German Center for Mental Health (DZPG), Tübingen, Germany; Werner Reichert Center for Integrative Neuroscience, University of Tübingen, Tübingen, Germany.
| | - Nicolas D Lutz
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany; Institute of Medical Psychology, LMU Munich, Munich, Germany
| |
Collapse
|
4
|
Ceccarelli Ceccarelli D, Solerte SB. Unravelling Shared Pathways Linking Metabolic Syndrome, Mild Cognitive Impairment, Dementia, and Sarcopenia. Metabolites 2025; 15:159. [PMID: 40137124 PMCID: PMC11943464 DOI: 10.3390/metabo15030159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/22/2025] [Accepted: 02/24/2025] [Indexed: 03/27/2025] Open
Abstract
Background: Aging is characterized by shared cellular and molecular processes, and aging-related diseases might co-exist in a cluster of comorbidities, particularly in vulnerable individuals whose phenotype meets the criteria for frailty. Whilst the multidimensional definition of frailty is still controversial, there is an increasing understanding of the common pathways linking metabolic syndrome, cognitive decline, and sarcopenia, frequent conditions in frail elderly patients. Methods: We performed a systematic search in the electronic databases Cochrane Library and PubMed and included preclinical studies, cohort and observational studies, and trials. Discussion: Metabolic syndrome markers, such as insulin resistance and the triglyceride/HDL C ratio, correlate with early cognitive impairment. Insulin resistance is a cause of synaptic dysfunction and neurodegeneration. Conversely, fasting and fasting-mimicking agents promote neuronal resilience by enhancing mitochondrial efficiency, autophagy, and neurogenesis. Proteins acting as cellular metabolic sensors, such as SIRT1, play a pivotal role in aging, neuroprotection, and metabolic health. In AD, β-amyloid accumulation and hyperphosphorylated tau in neurofibrillary tangles can cause metabolic reprogramming in brain cells, shifting from oxidative phosphorylation to aerobic glycolysis, similar to the Warburg effect in cancer. The interrelation of metabolic syndrome, sarcopenia, and cognitive decline suggests that targeting these shared metabolic pathways could mitigate all the conditions. Pharmacological interventions, including GLP-1 receptor agonists, metformin, and SIRT 1 inducers, demonstrated neuroprotective effects in animals and some preliminary clinical models. Conclusions: These findings encourage further research on the prevention and treatment of neurodegenerative diseases as well as the drug-repurposing potential of molecules currently approved for diabetes, dyslipidemia, and metabolic syndrome.
Collapse
Affiliation(s)
| | - Sebastiano Bruno Solerte
- Geriatric and Diabetology Unit, Department of Internal Medicine, University of Pavia, Corso Strada Nuova 63, 27100 Pavia, Italy;
| |
Collapse
|
5
|
Ozer EA, Keskin A, Berrak YH, Cankara F, Can F, Gursoy-Ozdemir Y, Keskin O, Gursoy A, Yapici-Eser H. Shared interactions of six neurotropic viruses with 38 human proteins: a computational and literature-based exploration of viral interactions and hijacking of human proteins in neuropsychiatric disorders. DISCOVER MENTAL HEALTH 2025; 5:18. [PMID: 39987419 PMCID: PMC11846830 DOI: 10.1007/s44192-025-00128-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/09/2025] [Indexed: 02/24/2025]
Abstract
INTRODUCTION Viral infections may disrupt the structural and functional integrity of the nervous system, leading to acute conditions such as encephalitis, and neuropsychiatric conditions as mood disorders, schizophrenia, and neurodegenerative diseases. Investigating viral interactions of human proteins may reveal mechanisms underlying these effects and offer insights for therapeutic interventions. This study explores molecular interactions of virus and human proteins that may be related to neuropsychiatric disorders. METHODS Herpes Simplex Virus-1 (HSV-1), Cytomegalovirus (CMV), Epstein-Barr Virus (EBV), Influenza A virus (IAV) (H1N1, H5N1), and Human Immunodeficiency Virus (HIV1&2) were selected as key viruses. Protein structures for each virus were accessed from the Protein Data Bank and analyzed using the HMI-Pred web server to detect interface mimicry between viral and human proteins. The PANTHER classification system was used to categorize viral-human protein interactions based on function and cellular localization. RESULTS Energetically favorable viral-human protein interactions were identified for HSV-1 (467), CMV (514), EBV (495), H1N1 (3331), H5N1 (3533), and HIV 1&2 (62425). Besides immune and apoptosis-related pathways, key neurodegenerative pathways, including those associated with Parkinson's and Huntington's diseases, were frequently interacted. A total of 38 human proteins, including calmodulin 2, Ras-related botulinum toxin substrate 1 (Rac1), PDGF-β, and vimentin, were found to interact with all six viruses. CONCLUSION The study indicates a substantial number of energetically favorable interactions between human proteins and selected viral proteins, underscoring the complexity and breadth of viral strategies to hijack host cellular mechanisms. Further in vivo and in vitro validation is required to understand the implications of these interactions.
Collapse
Affiliation(s)
| | - Aleyna Keskin
- School of Medicine, Koç University, Istanbul, Turkey
| | | | - Fatma Cankara
- Graduate School of Sciences and Engineering, Computational Sciences and Engineering, Koç University, Istanbul, Turkey
| | - Fusun Can
- Department of Microbiology, School of Medicine, Koç University, Istanbul, Turkey
| | - Yasemin Gursoy-Ozdemir
- Department of Neurology, School of Medicine, Koç University, Istanbul, Turkey
- Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey
| | - Ozlem Keskin
- Department of Chemical and Biological Engineering, College of Engineering, Koç University, Istanbul, Turkey
| | - Attila Gursoy
- Department of Computer Science and Engineering, College of Engineering, Koç University, Istanbul, Turkey.
| | - Hale Yapici-Eser
- Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey.
- Department of Psychiatry, School of Medicine, Koç University, Istanbul, Turkey.
| |
Collapse
|
6
|
Higarza SG, De Antón-Cosío M, Zorzo C, Arias JL, Arias N. Effects of Metabolic Dysfunction-Associated Steatohepatitis in Alertness, Associative Learning, and Astrocyte Density. Brain Behav 2025; 15:e70222. [PMID: 39740785 DOI: 10.1002/brb3.70222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/27/2024] [Accepted: 12/07/2024] [Indexed: 01/02/2025] Open
Abstract
PURPOSE Metabolic dysfunction-associated steatohepatitis (MASH) is a prevalent disease caused by high fat and high cholesterol intake, which leads to systemic deterioration. The aim of this research is to conduct a psychobiological exploration of MASH in adult male rats. METHODS Subjects who were administered a high-fat and high-cholesterol diet for 14 weeks. Then, we assessed the acoustic startle response and alertness through the prepulse inhibition paradigm as well as the associative learning by the use of the passive avoidance test. Also, we explored the astrocyte density in the prefrontal cortex and hippocampus. RESULTS Our results showed that, whereas the MASH group did not display an impaired associative learning, a lower exploration rate was found in this group. Moreover, a reduced prepulse inhibition was found in these subjects in the case of the weaker and closer-to-the-stimulus prepulse, which indicates a mild alteration in this process. No differences were found in astrocyte density in the MASH group in comparison with controls. CONCLUSION MASH seems to be linked with cognitive dysfunction. Further research is needed to elucidate the pathway involved in this disease and its underlying mechanism, as well as the potential implication in human health.
Collapse
Affiliation(s)
- Sara G Higarza
- INEUROPA, Instituto de Neurociencias del Principado de Asturias, Oviedo, Spain
| | - Marina De Antón-Cosío
- Neuroscience Laboratory, Department of Psychology, University of Oviedo, Oviedo, Spain
| | - Candela Zorzo
- INEUROPA, Instituto de Neurociencias del Principado de Asturias, Oviedo, Spain
- Neuroscience Laboratory, Department of Psychology, University of Oviedo, Oviedo, Spain
- ISPA, Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - Jorge L Arias
- INEUROPA, Instituto de Neurociencias del Principado de Asturias, Oviedo, Spain
- Neuroscience Laboratory, Department of Psychology, University of Oviedo, Oviedo, Spain
- ISPA, Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - Natalia Arias
- INEUROPA, Instituto de Neurociencias del Principado de Asturias, Oviedo, Spain
- ISPA, Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
- BRABE Group, Department of Psychology, Faculty of Life and Natural Sciences, University of Nebrija, Madrid, Spain
| |
Collapse
|
7
|
Rarinca V, Hritcu LD, Burducea M, Plavan G, Lefter R, Burlui V, Romila L, Ciobică A, Todirascu-Ciornea E, Barbacariu CA. Assessing the Influence of Low Doses of Sucrose on Memory Deficits in Fish Exposed to Common Insecticide Based on Fipronil and Pyriproxyfen. Curr Issues Mol Biol 2024; 46:14168-14189. [PMID: 39727976 DOI: 10.3390/cimb46120848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/09/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024] Open
Abstract
Although pesticides have been a constant concern for decades, in the last ten years, public discussions and scientific research have emphasized their impact on human health and the environment, drawing increased attention to the problems associated with their use. The association of environmental stressors such as pesticides with a sugar-rich diet can contribute to the growing global metabolic disease epidemic through overlapping mechanisms of insulin resistance, inflammation, and metabolic dysregulation. The main aim of this study was to evaluate the behavioral effects of the exposure of Silver crucian carp (Carassius auratus gibelio) to a commercial insecticide formulation containing fipronil, pyriproxyfen, and other additives, as well as sucrose and their mixtures. The behavioral responses in the T-test showed significant abnormalities in the exploratory activity evocative of memory deficits and an increased degree of anxiety in the groups of fish treated with the insecticide formulation and the mixture of the insecticide with sucrose. Aggression, quantified in the mirror-biting test, as biting and the frequency of approaches to the mirror contact zone, was significantly decreased only in the insecticide and sucrose group. All three groups showed behavioral changes reflective of toxicity, but only the combination of the two stress factors, environmental (insecticide) and metabolic (sucrose intake), resulted in pronounced memory alterations.
Collapse
Affiliation(s)
- Viorica Rarinca
- Doctoral School of Geosciences, Faculty of Geography and Geology, "Alexandru Ioan Cuza" University of Iasi, No 20A, Carol I Avenue, 700505 Iasi, Romania
- Doctoral School of Biology, Faculty of Biology, "Alexandru Ioan Cuza" University of Iași, Carol I Avenue, 20A, 700505 Iasi, Romania
- Preclinical Department, Apollonia University, Pacurari Street 11, 700511 Iasi, Romania
| | - Luminita Diana Hritcu
- Department of Public Health, Faculty of Veterinary Medicine, Iasi University of Life Sciences, Mihail Sadoveanu Street, No. 3, 700490 Iasi, Romania
| | - Marian Burducea
- Research and Development Station for Aquaculture and Aquatic Ecology, "Alexandru Ioan Cuza" University, Carol I, 20A, 700505 Iasi, Romania
| | - Gabriel Plavan
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, No 20A, Carol I Avenue, 700505 Iasi, Romania
| | - Radu Lefter
- Center of Biomedical Research, Romanian Academy, No. 8, Carol I Avenue, 700506 Iasi, Romania
| | - Vasile Burlui
- Preclinical Department, Apollonia University, Pacurari Street 11, 700511 Iasi, Romania
| | - Laura Romila
- Preclinical Department, Apollonia University, Pacurari Street 11, 700511 Iasi, Romania
| | - Alin Ciobică
- Preclinical Department, Apollonia University, Pacurari Street 11, 700511 Iasi, Romania
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, No 20A, Carol I Avenue, 700505 Iasi, Romania
- Center of Biomedical Research, Romanian Academy, No. 8, Carol I Avenue, 700506 Iasi, Romania
- Academy of Romanian Scientists, No. 54, Independence Street, Sector 5, 050094 Bucharest, Romania
| | - Elena Todirascu-Ciornea
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, No 20A, Carol I Avenue, 700505 Iasi, Romania
| | - Cristian-Alin Barbacariu
- Research and Development Station for Aquaculture and Aquatic Ecology, "Alexandru Ioan Cuza" University, Carol I, 20A, 700505 Iasi, Romania
| |
Collapse
|
8
|
de Souza MA, de França Silva RC, da Silva Ponciano C, da Silva JYP, Alves MEF, Viera VB, de Menezes Santos Bertozzo CC, Guerra GC, de Souza Araújo DF, da Conceição MM, Barbosa MQ, de Castro Querino Dias C, Soares JKB. Macaiba palm pulp (Acrocomia intumescens Drude) improves memory and induces anxiolytic-like behavior in dyslipidemic rats. Metab Brain Dis 2024; 40:63. [PMID: 39671112 DOI: 10.1007/s11011-024-01496-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/29/2024] [Indexed: 12/14/2024]
Abstract
Macaiba pulp is a source of bioactive compounds. This study aimed to evaluate the effects of macaiba pulp on anxiety behavior, memory and brain oxidative stress in dyslipidemic rats. The animals were divided into four groups (n = 10): Control (CG), Macaíba (MG), Dyslipidemic (DG) and Dyslipidemic Macaiba (DMG). Animals from the DG and DMG were induced to dyslipidemia consuming a high fatty emulsion for 14 days before treatment with macaiba pulp. During treatment the MG and DMG received the macaiba pulp (1 g/kg body weight) for 28 days. The rats were evaluated with the open field (OFT) and elevated plus maze (EPM) tests to measure anxiety-like behavior; memory was evaluated using the object recognition test (ORT). After euthanasia, the fatty acid profile of the animals' brain tissue was measured and the levels of malondialdehyde (MDA) and total glutathione (GSH) were quantified. The data were evaluated using one-way ANOVA followed by the Tukey (p < 0.05) test. Both groups (MG and DMG) that consumed the macaiba pulp showed anxiolytic-like behavior for parameters of grooming, rearing and ambulation in the OFT test and time in the center and time and entries in the open arms in the EMP test; The MG and DMG groups increased exploration rate in the ORT. The DMG showed a reduction in MDA levels (p < 0.05); however, MG and DMG had decreased in GSH (p < 0.05). The results showed that macaiba pulp consumption induces anxiolytic-like behavior and reduces brain oxidative damage in dyslipidemic animals, and improves memory in healthy and dyslipidemic rats.
Collapse
|
9
|
Aladdin N, Ghareib SA. Vitamin D3 Exerts a Neuroprotective Effect in Metabolic Syndrome Rats: Role of BDNF/TRKB/Akt/GS3Kβ Pathway. J Biochem Mol Toxicol 2024; 38:e70082. [PMID: 39651608 DOI: 10.1002/jbt.70082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 10/25/2024] [Accepted: 11/20/2024] [Indexed: 12/11/2024]
Abstract
Metabolic syndrome (MetS) is usually associated with cognitive impairment, neuropathic pain, and reduced brain-derived neurotrophic factor (BDNF) levels. BDNF via tropomyosin receptor kinase B (TrkB) exerts neuroprotection by activating protein kinase B (Akt) to inhibit glycogen synthase kinase-3β (GSK3β). Although Vitamin D3 (VitD3) has demonstrated favorable metabolic and neuronal outcomes in MetS, the precise molecular mechanisms underlying its neuroprotective effects remain poorly elucidated. We aimed to test the hypothesis that VitD3 mitigates MetS-induced cognition deficits and neuropathic pain via modulating the BDNF/TRKB/Akt/GS3Kβ signaling pathway. MetS was induced in male rats by 10% fructose-supplemented water and 3% salt-enriched diet. After 6 weeks, normal and MetS rats received either vehicle or VitD3 (10 µg/kg/day) for an additional 6 weeks. Glycemic status, lipid profile, and behavioral changes were assessed. The advanced glycation end products (AGEs), and markers of inflammation (TNF-α and NF-κB), oxidative stress (malondialdehyde), and apoptosis (caspase3), as well as BDNF, TrkB, PI3K, Akt, GSK3β, phosphorylated tau, and amyloid beta (Aβ) were assessed in the cerebral cortex. MetS rats had deteriorated glycemic and lipid profiles, higher AGEs, reduced levels of BDNF, TrkB, PI3K, and active Akt, along with increased GSK3β levels, inflammation, oxidative stress, and apoptosis. These changes were associated with higher levels of cognitive impairment markers phosphorylated tau and Aβ, as well as behavioral changes indicative of cognitive impairment and neuropathic pain. VitD3 improved the cognitive and behavioral alterations, while mitigating the associated molecular derangements. Our results indicate that VitD3 may exert neuroprotective effects by modulating the BDNF/TrkB/PI3K/Akt/GSK3β signaling pathway.
Collapse
Affiliation(s)
- Noha Aladdin
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Salah A Ghareib
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| |
Collapse
|
10
|
Prabhu GS, Concessao PL. Triglycerides and metabolic syndrome: from basic to mechanism - A narrative review. Arch Physiol Biochem 2024:1-9. [PMID: 39540905 DOI: 10.1080/13813455.2024.2426496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/26/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
CONTENT The impact of triglyceride levels is important to understand the changes in metabolism and structure. With an increase in obesity and hyperlipidemia due to diet; cardiovascular and neuronal structural changes have been shown to be more distinct. OBJECTIVE This review aims to discuss the pathophysiology and mechanisms involved in increased levels of triglycerides leading to vascular impairment, metabolic syndrome and cognitive decline. METHODS The literature search was performed using the PubMed, Google scholar and Scopus databases, among which 180 articles were shortlisted based on key words, abstract, materials and methods and results. Among these 74 articles have been cited for the review. RESULTS AND DISCUSSION The review discusses the impact of hypertriglyceridemia on metabolism, triglyceride storage, and neurovascular integrity, highlighting mechanisms contributing to vascular dysfunction, metabolic syndrome, and cognitive deterioration. CONCLUSION Elevated triglyceride levels are a key factor in altering metabolic pathways and structural integrity in cardiovascular and neuronal systems. This review provides insights into the mechanisms underlying metabolic disorders caused by elevated triglyceride levels, It highlights the need for further studies to provide more supportive evidence and address existing limitations in understanding these changes.
Collapse
Affiliation(s)
- Gayathri S Prabhu
- Division of Anatomy, Department of Basic Medical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Preethi Lavina Concessao
- Division of Physiology, Department of Basic Medical Sciences, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
11
|
Naseroleslami M, Khakpai F, Jafari-Rastegar N, Hosseininia HS, Mousavi-Niri N. The modulatory effects of tyrosol and nano-tyrosol on anxiety-like behavior and emotional memory in streptozotocin-induced diabetic rats. Neuroreport 2024; 35:1011-1018. [PMID: 39324943 DOI: 10.1097/wnr.0000000000002061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
The effects of tyrosol and nano-tyrosol on the modulation of anxiety-like behavior and memory processes were evaluated in streptozotocin-induced diabetic rats. Male diabetic rats were orally treated with 1 ml of saline, nano-niosome, tyrosol, and nano-tyrosol (20 mg/dl) for 30 days. Anxiety-like behavior and memory process were evaluated by an elevated plus-maze (EPM) test-retest paradigm. The results showed that a single intraperitoneal (i.p.) administration of streptozotocin (50 mg/kg) raised blood glucose. While daily intragastric administration of tyrosol and nano-tyrosol reduced blood glucose. Induction of type II diabetes produced a distorted cellular arrangement whereas treatment with tyrosol and nano-tyrosol showed a typical cellular arrangement in the liver. Furthermore, induction of type II diabetes decreased %OAT (%open-arm time) but daily intragastric application of tyrosol (20 mg/dl) and nano-tyrosol (20 mg/dl) enhanced %OAT and %OAE (%open-arm entry) in the EPM when compared to the saline groups, showing anxiogenic- and anxiolytic-like effects, respectively. Also, induction of type II diabetes increased %OAT while daily intragastric administration of tyrosol (20 mg/dl) and nano-tyrosol (20 mg/dl) decreased %OAT and %OAE in the EPM in comparison to the saline groups, displaying impairment and improvement of emotional memory, respectively. Interestingly, nano-tyrosol exhibited the highest significant effect rather than tyrosol. Upon these results, we proposed the beneficial effects of tyrosol and nano-tyrosol on the modulation of anxiety-like behavior and memory processes in streptozotocin-induced diabetic rats.
Collapse
Affiliation(s)
- Maryam Naseroleslami
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology
| | | | - Nima Jafari-Rastegar
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology
- Faculty of Medicine, Herbal Pharmacology Research Center
| | - Haniyeh-Sadat Hosseininia
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology
- Faculty of Medicine, Herbal Pharmacology Research Center
| | - Neda Mousavi-Niri
- Department of Biotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
12
|
Ormiston K, Fitzgerald J, Andridge R, Lustberg MB, DeVries AC, Orchard TS. Low sucrose diets protect long-term memory and EPA & DHA enriched diets alter insulin resistance in a mouse model of chemotherapy. Nutr Res 2024; 131:39-53. [PMID: 39368285 PMCID: PMC11683824 DOI: 10.1016/j.nutres.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 10/07/2024]
Abstract
Chemotherapy-related cognitive impairment (CRCI) and affective symptoms negatively impact quality of life in breast cancer survivors. The aim of this study was to determine the efficacy of high eicosapentaenoic acid + docosahexaenoic acid (EPA+DHA) and low sucrose diets to alleviate these symptoms in a mouse model of chemotherapy. Potential mechanisms involving insulin resistance were explored. We hypothesized that diets enriched in EPA+DHA and low amounts of sucrose would protect against the impact of chemotherapy on measures of CRCI. Female C57Bl/6 mice were randomized to 1 of 4 diets (2% kcal eicosapentaenoic acid + docosahexaenoic acid [EPA+DHA]/high or low sucrose, low omega-3/high or low sucrose) for 6 weeks and treated with two injections of doxorubicin-based chemotherapy or vehicle during week 2 and 4. Behavioral tests were performed 7 days after second injection. Chemotherapy increased serum insulin and decreased body weight, locomotion and exploratory behavior (all p < .05). Low sucrose consumption resulted in better long-term memory regardless of chemotherapy or vehicle injection (p < .05). 2% EPA+DHA consumption lessened insulin resistance (p < .05); however, controlling for body weight attenuated this effect (p = .08). There were no significant differences by diet or injection on liver lipid content; however, liver lipid content was positively correlated with insulin resistance scores (p < .05). Low sucrose diets may protect long-term memory during chemotherapy. The effect of EPA+DHA on insulin resistance and affective side effects during chemotherapy requires further investigation.
Collapse
Affiliation(s)
- Kate Ormiston
- Divison of Medical Oncology, College of Medicine, The Ohio State University Medical Center, Columbus, Ohio, USA
| | - Julie Fitzgerald
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Rebecca Andridge
- Division of Biostatistics, College of Public Health, The Ohio State University, Columbus, Ohio, USA
| | - Maryam B Lustberg
- Division of Medical Oncology, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Anne Courtney DeVries
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - Tonya S Orchard
- Human Nutrition Program, Department of Human Sciences, College of Education and Human Ecology, The Ohio State University Columbus, Ohio, USA.
| |
Collapse
|
13
|
Soda T, Pasqua T, De Sarro G, Moccia F. Cognitive Impairment and Synaptic Dysfunction in Cardiovascular Disorders: The New Frontiers of the Heart-Brain Axis. Biomedicines 2024; 12:2387. [PMID: 39457698 PMCID: PMC11504205 DOI: 10.3390/biomedicines12102387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Within the central nervous system, synaptic plasticity, fundamental to processes like learning and memory, is largely driven by activity-dependent changes in synaptic strength. This plasticity often manifests as long-term potentiation (LTP) and long-term depression (LTD), which are bidirectional modulations of synaptic efficacy. Strong epidemiological and experimental evidence show that the heart-brain axis could be severely compromised by both neurological and cardiovascular disorders. Particularly, cardiovascular disorders, such as heart failure, hypertension, obesity, diabetes and insulin resistance, and arrhythmias, may lead to cognitive impairment, a condition known as cardiogenic dementia. Herein, we review the available knowledge on the synaptic and molecular mechanisms by which cardiogenic dementia may arise and describe how LTP and/or LTD induction and maintenance may be compromised in the CA1 region of the hippocampus by heart failure, metabolic syndrome, and arrhythmias. We also discuss the emerging evidence that endothelial dysfunction may contribute to directly altering hippocampal LTP by impairing the synaptically induced activation of the endothelial nitric oxide synthase. A better understanding of how CV disorders impact on the proper function of central synapses will shed novel light on the molecular underpinnings of cardiogenic dementia, thereby providing a new perspective for more specific pharmacological treatments.
Collapse
Affiliation(s)
- Teresa Soda
- Department of Health Sciences, University of Magna Graecia, 88100 Catanzaro, Italy; (T.P.); (G.D.S.)
| | - Teresa Pasqua
- Department of Health Sciences, University of Magna Graecia, 88100 Catanzaro, Italy; (T.P.); (G.D.S.)
| | - Giovambattista De Sarro
- Department of Health Sciences, University of Magna Graecia, 88100 Catanzaro, Italy; (T.P.); (G.D.S.)
| | - Francesco Moccia
- Department of Medicine and Health Sciences “V. Tiberio“, University of Molise, 86100 Campobasso, Italy;
| |
Collapse
|
14
|
Han Y, Meng X, Wang D. Association Between Triglyceride Glucose Index with Cognitive Impairment and Dementia in Adult Population: A Meta-Analysis. Horm Metab Res 2024; 56:737-748. [PMID: 38593823 DOI: 10.1055/a-2284-5667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
The current understanding of the correlation between insulin resistance (IR) and cognitive dysfunction is limited. Therefore, the objective of this systematic review and meta-analysis was to assess the association between the triglyceride glucose (TyG) index, a recently suggested indicator of IR, and cognitive impairment and dementia in the adult population. Observational studies pertinent to our research were identified through comprehensive searches of the PubMed, Embase, and Web of Science databases. To account for potential heterogeneity, the random-effects models were employed to aggregate the findings. This meta-analysis included ten observational studies involving 5602409 participants. Compared to those with the low TyG index, subjects with the high TyG index were significantly associated with the risk of cognitive impairment [risk ratio (RR): 1.39, 95% confidence interval (CI): 1.22 to 1.59, p<0.001; I2=45%) and dementia (RR: 1.30, 95% CI: 1.06 to 1.60, p=0.01; I2=50%). The association was consistent for Alzheimer's disease (RR: 1.35, 95% CI: 1.04 to 1.76, p=0.03; I2=54%) and vascular dementia (RR: 1.18, 95% CI: 1.13 to 1.24, p<0.001; I2=0%). Subgroup analyses showed that the association between TyG index with cognitive impairment and dementia were stronger in cross-sectional studies than that in cohort studies (p for subgroup difference=0.02), but not significantly modified by age, sex, or diabetic status of the participants. In conclusion, a high TyG index may be associated with higher risk of cognitive impartment and dementia in adult population.
Collapse
Affiliation(s)
- Yuqing Han
- Department of Psychiatry, The First People's Hospital of Xiaoshan District, Hangzhou, China
| | - Xu Meng
- Department of Psychiatry, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, China
| | - Dahui Wang
- Department of Endocrinology, The First People's Hospital of Xiaoshan District, Hangzhou, China
| |
Collapse
|
15
|
Zhang T, Song J, Shen Z, Yin K, Yang F, Yang H, Ma Z, Chen L, Lu Y, Xia Y. Associations between different coffee types, neurodegenerative diseases, and related mortality: findings from a large prospective cohort study. Am J Clin Nutr 2024; 120:918-926. [PMID: 39168304 DOI: 10.1016/j.ajcnut.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/07/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND Observational studies have suggested associations between amount of coffee consumption and decreased risk of neurodegenerative diseases. However, these studies do not consider differences among coffee types, including sweetened, unsweetened, caffeinated, and decaffeinated varieties. OBJECTIVES This study aims to identify associations between the consumption of various coffee types (sugar-sweetened, artificially sweetened, unsweetened, caffeinated, and decaffeinated) and risks of Alzheimer's disease and related dementias (ADRD) and Parkinson's disease (PD), along with related mortality. METHODS This prospective study included 204,847 participants (44.7% males) from the UK Biobank. Cox proportional hazards models were used to assess the associations of coffee type with neurodegenerative outcome. On the basis of coffee consumption, participants were divided into 5 groups: non-coffee consumers, >0-1 cup/d, ≥1-2 cups/d, ≥2-3 cups/d, and ≥3 cups/d. RESULTS Over a median follow-up of 9 y, the study documented 1696 cases of ADRD, 1093 cases of PD, and 419 neurodegenerative-related deaths. In the multivariate analysis, compared with non-coffee consumers, those with the highest intake of unsweetened and caffeinated coffee (≥3 cups/d) showed hazard ratios (95% confidence intervals) of 0.75 (0.62, 0.91) for ADRD, 0.71 (0.56, 0.91) for PD, and 0.67 (0.44, 1.01) for neurodegenerative-related death. However, no significant associations were noted in either decaffeinated or sugar/artificially sweetened coffee groups (P > 0.05). CONCLUSIONS Higher intake of caffeinated coffee, particularly the unsweetened variety, was associated with reduced risks of ADRD and PD. No such associations were observed for sugar-sweetened or artificially sweetened coffee.
Collapse
Affiliation(s)
- Tingjing Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Wannan Medical College, Wuhu, China; Institutes of Brain Science, Wannan Medical College, Wuhu, China
| | - Jiangen Song
- Department of Nutrition and Food Hygiene, School of Public Health, Wannan Medical College, Wuhu, China
| | - Zhenfei Shen
- Department of Clinical Nutrition, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Kewan Yin
- Department of Clinical Nutrition, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Feifei Yang
- Department of Clinical Nutrition, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Honghao Yang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shenyang, China
| | - Zheng Ma
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shenyang, China
| | - Liangkai Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanhui Lu
- School of Nursing, Peking University, Beijing, China.
| | - Yang Xia
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shenyang, China.
| |
Collapse
|
16
|
Llanquinao J, Jara C, Cortés-Díaz D, Kerr B, Tapia-Rojas C. Contrasting Effects of an Atherogenic Diet and High-Protein/Unsaturated Fatty Acids Diet on the Accelerated Aging Mouse Model SAMP8 Phenotype. Neurol Int 2024; 16:1066-1085. [PMID: 39452682 PMCID: PMC11510401 DOI: 10.3390/neurolint16050080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 09/10/2024] [Accepted: 09/19/2024] [Indexed: 10/26/2024] Open
Abstract
Background/Objectives: Aging has been extensively studied, with a growing interest in memory impairment by a neurobiological approach. Mitochondrial dysfunction is a hallmark of aging, contributing to the aging phenotype; therefore, mitochondrial interventions seem fundamental. The diet is a physiological approximation for modifying mitochondria, which could impact the age-related phenotype. Methods: We studied two diets with low-carbohydrate and high-fat compositions, differing in the amount of protein and the fat type disposable-the atherogenic diet Cocoa (high protein/high saturated fat/high cholesterol) and the South Beach diet (very high-protein/high-unsaturated fat)-on oxidative stress, mitochondrial state, and hippocampus-dependent memory in 3-month-old Senescence-Accelerated Mouse Model (SAMP8) seed over 3 months to determine their pro- or anti-aging effects. Results: Despite its bad reputation, the Cocoa diet reduces the reactive oxygen species (ROS) content without impacting the energy state and hippocampus-dependent spatial acuity. In contrast to the beneficial impact proposed for the South Beach diet, it induced a pro-aging phenotype, increasing oxidative damage and the levels of NR2B subunit of the NMDA, impairing energy and spatial acuity. Surprisingly, despite the negative changes observed with both diets, this led to subtle memory impairment, suggesting the activation of compensatory mechanisms preventing more severe cognitive decline. Conclusions: Our results demonstrated that diets usually considered good could be detrimental to the onset of aging. Also, probably due to the brain plasticity of non-aged animals, they compensate for the damage, preventing a more aggravated phenotype. Nevertheless, these silent changes could predispose or increase the risk of suffering pathologies at advanced age.
Collapse
Affiliation(s)
- Jesús Llanquinao
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia-Santiago 7510157, Chile; (J.L.); (C.J.); (D.C.-D.)
- Laboratory of Neuroendocrinology and Metabolism, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia-Santiago 7510157, Chile
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida (FCV), Avenida Del Valle Norte #725, Huechuraba, Santiago 8580702, Chile
| | - Claudia Jara
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia-Santiago 7510157, Chile; (J.L.); (C.J.); (D.C.-D.)
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida (FCV), Avenida Del Valle Norte #725, Huechuraba, Santiago 8580702, Chile
| | - Daniela Cortés-Díaz
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia-Santiago 7510157, Chile; (J.L.); (C.J.); (D.C.-D.)
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida (FCV), Avenida Del Valle Norte #725, Huechuraba, Santiago 8580702, Chile
| | - Bredford Kerr
- Laboratory of Neuroendocrinology and Metabolism, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia-Santiago 7510157, Chile
| | - Cheril Tapia-Rojas
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia-Santiago 7510157, Chile; (J.L.); (C.J.); (D.C.-D.)
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida (FCV), Avenida Del Valle Norte #725, Huechuraba, Santiago 8580702, Chile
| |
Collapse
|
17
|
Smith AM, Ray TJ, Hulitt AA, Vita SM, Warrington JP, Santos CDSE, Grayson BE. High-fat diet consumption negatively influences closed-head traumatic brain injury in a pediatric rodent model. Exp Neurol 2024; 379:114888. [PMID: 39009176 DOI: 10.1016/j.expneurol.2024.114888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/28/2024] [Accepted: 07/11/2024] [Indexed: 07/17/2024]
Abstract
Traumatic brain injury (TBI) is one of the most common causes of emergency room visits in children, and it is a leading cause of death in juveniles in the United States. Similarly, a high proportion of this population consumes diets that are high in saturated fats, and millions of children are overweight or obese. The goal of the present study was to assess the relationship between diet and TBI on cognitive and cerebrovascular outcomes in juvenile rats. In the current study, groups of juvenile male Long Evans rats were subjected to either mild TBI via the Closed-Head Injury Model of Engineered Rotational Acceleration (CHIMERA) or underwent sham procedures. The animals were provided with either a combination of high-fat diet and a mixture of high-fructose corn syrup (HFD/HFCS) or a standard chow diet (CH) for 9 days prior to injury. Prior to injury, the animals were trained on the Morris water maze for three consecutive days, and they underwent a post-injury trial on the day of the injury. Immediately after TBI, the animals' righting reflexes were tested. Four days post-injury, the animals were euthanized, and brain samples and blood plasma were collected for qRT-PCR, immunohistochemistry, and triglyceride assays. Additional subsets of animals were used to investigate cerebrovascular perfusion using Laser Speckle and perform immunohistochemistry for endothelial cell marker RECA. Following TBI, the righting reflex was significantly increased in TBI rats, irrespective of diet. The TBI worsened the rats' performance in the post-injury trial of the water maze at 3 h, p(injury) < 0.05, but not at 4 days post-injury. Reduced cerebrovascular blood flow using Laser Speckle was demonstrated in the cerebellum, p(injury) < 0.05, but not foci of the cerebral cortices or superior sagittal sinus. Immunoreactive staining for RECA in the cortex and corpus callosum was significantly reduced in HFD/HFCS TBI rats, p < 0.05. qRT-PCR showed significant increases in APOE, CREB1, FCGR2B, IL1B, and IL6, particularly in the hippocampus. The results from this study offer robust evidence that HFD/HFCS negatively influences TBI outcomes with respect to cognition and cerebrovascular perfusion of relevant brain regions in the juvenile rat.
Collapse
Affiliation(s)
- Allie M Smith
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS 39216, United States of America.
| | - Trenton J Ray
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS 39216, United States of America.
| | - Alicia A Hulitt
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS 39216, United States of America.
| | - Sydney M Vita
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA 70116, United States of America.
| | - Junie P Warrington
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS 39216, United States of America.
| | | | - Bernadette E Grayson
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS 39216, United States of America; Department of Anesthesiology, University of Mississippi Medical Center, Jackson, MS 39216, United States of America; Department of Population Health Science, University of Mississippi Medical Center, Jackson, MS 39216, United States of America.
| |
Collapse
|
18
|
Luo Y, Zhu J, Hu Z, Luo W, Du X, Hu H, Peng S. Progress in the Pathogenesis of Diabetic Encephalopathy: The Key Role of Neuroinflammation. Diabetes Metab Res Rev 2024; 40:e3841. [PMID: 39295168 DOI: 10.1002/dmrr.3841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/29/2024] [Accepted: 06/27/2024] [Indexed: 09/21/2024]
Abstract
Diabetic encephalopathy (DE) is a severe complication that occurs in the central nervous system (CNS) and leads to cognitive impairment. DE involves various pathophysiological processes, and its pathogenesis is still unclear. This review summarised current research on the pathogenesis of diabetic encephalopathy, which involves neuroinflammation, oxidative stress, iron homoeostasis, blood-brain barrier disruption, altered gut microbiota, insulin resistance, etc. Among these pathological mechanisms, neuroinflammation has been focused on. This paper summarises some of the molecular mechanisms involved in neuroinflammation, including the Mammalian Target of Rapamycin (mTOR), Lipocalin-2 (LCN-2), Pyroptosis, Advanced Glycosylation End Products (AGEs), and some common pro-inflammatory factors. In addition, we discuss recent advances in the study of potential therapeutic targets for the treatment of DE against neuroinflammation. The current research on the pathogenesis of DE is progressing slowly, and more research is needed in the future. Further study of neuroinflammation as a mechanism is conducive to the discovery of more effective treatments for DE in the future.
Collapse
Affiliation(s)
- Yifan Luo
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Clinical Medicine, The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Jinxi Zhu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Clinical Medicine, The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Ziyan Hu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Clinical Medicine, The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Wei Luo
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaohong Du
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Haijun Hu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shengliang Peng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
19
|
Liu X, Tao R, Guo F, Zhang L, Qu J, Li M, Wu X, Wang X, Zhu Y, Wen L, Wang J. Soybean oil induces neuroinflammatory response through brain-gut axis under high-fat diet. J Tradit Complement Med 2024; 14:522-533. [PMID: 39262663 PMCID: PMC11384091 DOI: 10.1016/j.jtcme.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 02/17/2024] [Accepted: 02/28/2024] [Indexed: 09/13/2024] Open
Abstract
Neuroinflammation is considered the principal pathogenic mechanism underlying neurodegenerative diseases, and the incidence of brain disorders is closely linked to dietary fat consumption and intestinal health. To investigate this relationship, 60 8-week-old C57BL/6J mice were subjected to a 20-week dietary intervention, wherein they were fed lard and soybean oil, each at 15% and 35% fat energy. At a dietary fat energy level of 35%, inflammation was observed in both the soybean oil and lard groups. Nevertheless, inflammation was more pronounced in the mice that were administered soybean oil. The process by which nerve cell structure is compromised, inflammatory factors are upregulated, brain antioxidant capacity is diminished, and the TLR4/MyD88/NF-κB p65 inflammatory pathway is activated resulting in damage to the brain-gut barrier. This, in turn, leads to a reduction in the abundance of Akkermansia and unclassified_f_Lachnospiraceae, as well as an increase in Dubosiella abundance, ultimately resulting in brain inflammation and damage. These results suggested that soybean oil induces more severe neuroinflammation compared to lard. Our study demonstrated that, at a dietary fat energy level of 35%, compared to soybean oil, lard could be the healthier option, the outcomes would help provide a reference basis for the selection of residents' daily dietary oil.
Collapse
Affiliation(s)
- Xiangyan Liu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Ran Tao
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Fangrui Guo
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Linyu Zhang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Jianyu Qu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Mengyao Li
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Xiaoran Wu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Xianglin Wang
- Changsha Lvye Biotechnology Co., Ltd., Changsha, 410100, China
| | - Yuanyuan Zhu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Lixin Wen
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Ji Wang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| |
Collapse
|
20
|
Chaklai A, Rhea EM, O'Niel A, Babin A, Weaver R, Pemberton S, Banks WA, Raber J. Effects of a high-fat diet on cognition and brain distribution of intranasal insulin in E3 and E4 male and female mice. Sci Rep 2024; 14:18641. [PMID: 39128931 PMCID: PMC11317510 DOI: 10.1038/s41598-024-62053-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/08/2024] [Indexed: 08/13/2024] Open
Abstract
There are genetic and environmental risk factors that contribute to the development of cognitive decline in Alzheimer's disease (AD). Some of these include the genetic predisposition of the apolipoprotein E4 genotype, consuming a high-fat diet (HFD), and the female sex. Brain insulin receptor resistance and deficiency have also been shown to be associated with AD and cognitive impairment. Intranasal (INL) insulin enhances cognition in AD, but the response varies due to genotype, diet, and sex. We investigated here the combination of these risk factors in a humanized mouse model, expressing E3 or E4, following a HFD in males and females on cognitive performance and the brain distribution of insulin following INL delivery. The HFD had a negative effect on survival in male mice only, requiring sex to be collapsed. We found many genotype, diet, and genotype x diet effects in anxiety-related tasks. We further found beneficial effects of INL insulin in our memory tests, with the most important findings showing a beneficial effect of INL insulin in mice on a HFD. We found insulin distribution throughout the brain after INL delivery was largely unaffected by diet and genotype, indicating these susceptible groups can still receive adequate levels of insulin following INL delivery. Our findings support the involvement of brain insulin signaling in cognition and highlight continuing efforts investigating mechanisms resulting from treatment with INL insulin.
Collapse
Affiliation(s)
- Ariel Chaklai
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Elizabeth M Rhea
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, 98108, USA
- Department of Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Abigail O'Niel
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Alice Babin
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, 98108, USA
| | - Riley Weaver
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, 98108, USA
| | - Sarah Pemberton
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, 98108, USA
| | - William A Banks
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, 98108, USA
- Department of Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239, USA.
- Division of Neuroscience, Departments of Neurology and Radiation Medicine, ONPRC, Oregon Health & Science University, Portland, OR, 97239, USA.
| |
Collapse
|
21
|
Cleland NRW, Bruce KD. Fatty acid sensing in the brain: The role of glial-neuronal metabolic crosstalk and horizontal lipid flux. Biochimie 2024; 223:166-178. [PMID: 35998849 DOI: 10.1016/j.biochi.2022.08.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/01/2022] [Accepted: 08/17/2022] [Indexed: 11/15/2022]
Abstract
The central control of energy homeostasis is a regulatory axis that involves the sensing of nutrients, signaling molecules, adipokines, and neuropeptides by neurons in the metabolic centers of the hypothalamus. However, non-neuronal glial cells are also abundant in the hypothalamus and recent findings have underscored the importance of the metabolic crosstalk and horizontal lipid flux between glia and neurons to the downstream regulation of systemic metabolism. New transgenic models and high-resolution analyses of glial phenotype and function have revealed that glia sit at the nexus between lipid metabolism and neural function, and may markedly impact the brain's response to dietary lipids or the supply of brain-derived lipids. Glia comprise the main cellular compartment involved in lipid synthesis, lipoprotein production, and lipid processing in the brain. In brief, tanycytes provide an interface between peripheral lipids and neurons, astrocytes produce lipoproteins that transport lipids to neurons and other glia, oligodendrocytes use brain-derived and dietary lipids to myelinate axons and influence neuronal function, while microglia can remove unwanted lipids in the brain and contribute to lipid re-utilization through cholesterol efflux. Here, we review recent findings regarding glial-lipid transport and highlight the specific molecular factors necessary for lipid processing in the brain, and how dysregulation of glial-neuronal metabolic crosstalk contributes to imbalanced energy homeostasis. Furthering our understanding of glial lipid metabolism will guide the design of future studies that target horizontal lipid processing in the brain to ameliorate the risk of developing obesity and metabolic disease.
Collapse
Affiliation(s)
- Nicholas R W Cleland
- Division of Endocrinology Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Kimberley D Bruce
- Division of Endocrinology Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
22
|
Gao X, Sun H, Wei Y, Niu J, Hao S, Sun H, Tang G, Qi C, Ge J. Protective effect of melatonin against metabolic disorders and neuropsychiatric injuries in type 2 diabetes mellitus mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 131:155805. [PMID: 38851097 DOI: 10.1016/j.phymed.2024.155805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/11/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is a metabolic disease characterized by hyperglycemia and progressive cognitive dysfunction, and our clinical investigation revealed that the plasma concentration of melatonin (Mlt) decreased and was closely related to cognition in T2DM patients. However, although many studies have suggested that Mlt has a certain protective effect on glucose and lipid metabolism disorders and neuropsychiatric injury, the underlying mechanism of Mlt against T2DM-related metabolic and cognitive impairments remains unclear. PURPOSE The aim of the present study was to investigate the therapeutic effect of Mlt on metabolic disorders and Alzheimer's disease (AD)-like neuropsychiatric injuries in T2DM mice and to explore the possible underlying molecular mechanism involved. METHODS A T2DM mouse model was established by a combination of a high-fat diet (HFD) and streptozotocin (STZ, 100 mg/kg, i.p.), and Mlt (5, 10 or 20 mg/kg) was intragastrically administered for six consecutive weeks. The serum levels of glycolipid metabolism indicators were measured, behavioral performance was tested, and the protein expression of key molecules involved in the regulation of synaptic plasticity, circadian rhythms, and neuroinflammation in the hippocampus was detected. Moreover, the fluorescence intensities of glial fibrillary acidic protein (GFAP), ionized calcium binding adapter molecule 1 (IBA-1), amyloid β-protein (Aβ) and phosphorylated Tau (p-Tau) in the hippocampus were also observed. RESULTS Treatment with Mlt not only improved T2DM-related metabolic disorders, as indicated by increased serum concentrations of fasting blood glucose (FBG), glycosylated hemoglobin (HbAlc), insulin (INS), total cholesterol (TC) and triglyceride (TG), improved glucose tolerance and liver and pancreas function but also alleviated AD-like neuropsychiatric injuries in a HFD/STZ-induced mouse model, as indicated by decreased immobility time in the tail suspension test (TST) and forced swimming test (FST), increased preference indices of novel objects or novel arms in the novel object recognition test (NOR) and Y-maze test (Y-maze), and improved platform positioning capability in the Morris water maze (MWM) test. Moreover, treatment with Mlt also improved the hyperactivation of astrocytes and microglia in the hippocampus of mice, accompanied by reduced expression of interleukin 1β (IL-1β), interleukin 6 (IL-6), tumor necrosis factor (TNF-α), Aβ, and p-Tau and increased expression of brain-derived neurotrophic factor (BDNF), Synapsin I, Synaptotagmin I, melatonin receptor 1B (MT1B), brain muscle arnt-like protein 1 (Bmal1), circadian locomotor output cycles kaput (Clock), period 2 (Per2), and cryptochrome 2 (Cry2). CONCLUSION Mlt alleviated T2DM-related metabolic disorders and AD-like neuropsychiatric injuries in a HFD/STZ-induced mouse model, possibly through a mechanism involving the regulation of glial activation and associated neuroinflammation and the balancing of synaptic plasticity and circadian rhythms in the hippocampus.
Collapse
Affiliation(s)
- Xinran Gao
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, PR China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, PR China; Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, PR China
| | - Huaizhi Sun
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, PR China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, PR China; Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, PR China
| | - Yadong Wei
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, PR China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, PR China; Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, PR China
| | - Jiachun Niu
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, PR China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, PR China; Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, PR China
| | - Shengwei Hao
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, PR China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, PR China; Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, PR China
| | - Huimin Sun
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, PR China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, PR China; Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, PR China
| | - Guozhang Tang
- School of 1st Clinic Medicine, Anhui Medical University, 81 Meishan Road, Hefei 230032, PR China
| | - Congcong Qi
- Department of Laboratory Animal Science, Fudan University, Shanghai, PR China.
| | - Jinfang Ge
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, PR China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, PR China; Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, PR China.
| |
Collapse
|
23
|
Bian X, Li M, Lou S. Resistance training boosts lactate transporters and synaptic proteins in insulin-resistance mice. Heliyon 2024; 10:e34425. [PMID: 39082040 PMCID: PMC11284409 DOI: 10.1016/j.heliyon.2024.e34425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 08/02/2024] Open
Abstract
Background This investigation delineates the influence of resistance training on the expression of synaptic plasticity-related proteins in the hippocampi of insulin-resistant mice and explores the underlying molecular mechanisms. Methods Six-week-old male C57BL/6 J mice were stratified into a control group and a high-fat diet group to induce insulin resistance over a 12-week period. Subsequently, the mice were further divided into sedentary and resistance training cohorts, with the latter engaging in a 12-week ladder-climbing regimen. Post-intervention, blood, and hippocampal specimens were harvested for analytical evaluation. Results In the insulin-resistant mice, elevated blood lactate levels were observed alongside diminished expression of synaptic plasticity-related proteins, monocarboxylate transporters (MCTs), and reduced phosphorylation of protein kinase B (Akt) and mechanistic target of rapamycin (mTOR). In contrast, the expression of eukaryotic translation initiation factor 4 E-binding protein 2 was significantly augmented. Resistance training mitigated insulin resistance, decreased blood lactate levels, and enhanced the expression and phosphorylation of mTOR, regulatory-associated protein of mTOR, MCTs, and synaptic plasticity-related proteins. Conclusions Resistance training mitigates insulin resistance and improves hippocampal synaptic plasticity by normalizing blood lactate levels and enhancing mTOR, MCTs, and synaptic plasticity-related proteins. It may also activate mTORC1 via the PI3K/Akt pathway, promote lactate utilization, and enhance synaptic plasticity proteins, potentially alleviating peripheral insulin resistance. Further research is needed to confirm these mechanisms.
Collapse
Affiliation(s)
- Xuepeng Bian
- Department of Rehabilitation, School of International Medical Technology, Shanghai Sanda University, Shanghai, China
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Mingming Li
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Shujie Lou
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
24
|
Zhang Y, Zhang P, Yin D. Association between a body shape index and cognitive impairment among us older adults from a cross-sectional survey of the NHANES 2011-2014. Lipids Health Dis 2024; 23:169. [PMID: 38840158 PMCID: PMC11151546 DOI: 10.1186/s12944-024-02165-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/26/2024] [Indexed: 06/07/2024] Open
Abstract
PURPOSE This study aimed to assess the relationship between A Body Shape Index (ABSI) and cognitive impairment among older adults in the United States. METHODS This cross-sectional study analyzed cognitive function in 2,752 individuals aged 60 and older using data from the 2011-2014 National Health and Nutrition Examination Survey (NHANES). Cognitive assessments were conducted using the Immediate Recall Test (IRT), Delayed Recall Test (DRT), Animal Fluency Test (AFT), and Digit Symbol Substitution Test (DSST). A Body Shape Index (ABSI) was calculated from waist circumference (WC), weight, and height. The relationship between ABSI and cognitive outcomes was examined through multifactorial linear regression, smooth curve fitting, and subgroup and interaction analyses. RESULTS With complete data, 2752 persons 60 and older participated in the study. After adjusting for covariables, these results showed statistically significant negative relationships between ABSI, IRT, and DSST scores. The negative correlation between DSST and ABSI is more substantial in males than females. There is less of a negative link between ABSI, AFT, and DSST among drinkers who consume 12 or more drinks annually compared to those who consume less. Furthermore, compared to individuals without high blood pressure(HBP), those who suffered HBP showed a more significant negative connection between ABSI and AFT. CONCLUSION Lower cognitive function was linked to higher ABSI.
Collapse
Affiliation(s)
- Yanwei Zhang
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peng Zhang
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dekun Yin
- Department of Anesthesiology, Funing People's Hospital of Jiangsu, Yancheng, Jiangsu province, China.
| |
Collapse
|
25
|
Hu J, Zhang S, Wu H, Wang L, Zhang Y, Gao H, Li M, Ren H, Xiao H, Guo K, Li W, Liu Q. 1-Methyltryptophan treatment ameliorates high-fat diet-induced depression in mice through reversing changes in perineuronal nets. Transl Psychiatry 2024; 14:228. [PMID: 38816357 PMCID: PMC11139877 DOI: 10.1038/s41398-024-02938-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 05/10/2024] [Accepted: 05/16/2024] [Indexed: 06/01/2024] Open
Abstract
Depression and obesity are prevalent disorders with significant public health implications. In this study, we used a high-fat diet (HFD)-induced obese mouse model to investigate the mechanism underlying HFD-induced depression-like behaviors. HFD-induced obese mice exhibited depression-like behaviors and a reduction in hippocampus volume, which were reversed by treatment with an indoleamine 2,3-dioxygenase (IDO) inhibitor 1-methyltryptophan (1-MT). Interestingly, no changes in IDO levels were observed post-1-MT treatment, suggesting that other mechanisms may be involved in the anti-depressive effect of 1-MT. We further conducted RNA sequencing analysis to clarify the potential underlying mechanism of the anti-depressive effect of 1-MT in HFD-induced depressive mice and found a significant enrichment of shared differential genes in the extracellular matrix (ECM) organization pathway between the 1-MT-treated and untreated HFD-induced depressive mice. Therefore, we hypothesized that changes in ECM play a crucial role in the anti-depressive effect of 1-MT. To this end, we investigated perineuronal nets (PNNs), which are ECM assemblies that preferentially ensheath parvalbumin (PV)-positive interneurons and are involved in many abnormalities. We found that HFD is associated with excessive accumulation of PV-positive neurons and upregulation of PNNs, affecting synaptic transmission in PV-positive neurons and leading to glutamate-gamma-aminobutyric acid imbalances in the hippocampus. The 1-MT effectively reversed these changes, highlighting a PNN-related mechanism by which 1-MT exerts its anti-depressive effect.
Collapse
Affiliation(s)
- Juntao Hu
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Shanshan Zhang
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Haoran Wu
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Leilei Wang
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yuwen Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Hongyang Gao
- Electron Microscopy Core Laboratory, School of Basic Medical Science, Fudan University, Shanghai, China
| | - Meihui Li
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Hong Ren
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Honglei Xiao
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Kun Guo
- Key Laboratory of Carcinogenesis and Cancer Invasion, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.
- Cancer Research Center, Institute of Biomedical Science, Fudan University, Shanghai, China.
| | - Wensheng Li
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
- Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai, Shanghai, China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China.
| | - Qiong Liu
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
- Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai, Shanghai, China.
| |
Collapse
|
26
|
Zong R, Zhang X, Dong X, Liu G, Zhang J, Gao Y, Zhang Z, Ma Y, Gao H, Gamper N. Genetic deletion of zinc transporter ZnT 3 induces progressive cognitive deficits in mice by impairing dendritic spine plasticity and glucose metabolism. Front Mol Neurosci 2024; 17:1375925. [PMID: 38807922 PMCID: PMC11130425 DOI: 10.3389/fnmol.2024.1375925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/22/2024] [Indexed: 05/30/2024] Open
Abstract
Zinc transporter 3 (ZnT3) is abundantly expressed in the brain, residing in synaptic vesicles, where it plays important roles in controlling the luminal zinc levels. In this study, we found that ZnT3 knockout in mice decreased zinc levels in the hippocampus and cortex, and was associated with progressive cognitive impairments, assessed at 2, 6, and 9-month of age. The results of Golgi-Cox staining demonstrated that ZnT3 deficiency was associated with an increase in dendritic complexity and a decrease in the density of mature dendritic spines, indicating potential synaptic plasticity deficit. Since ZnT3 deficiency was previously linked to glucose metabolism abnormalities, we tested the expression levels of genes related to insulin signaling pathway in the hippocampus and cortex. We found that the Expression of glucose transporters, GLUT3, GLUT4, and the insulin receptor in the whole tissue and synaptosome fraction of the hippocampus of the ZnT3 knockout mice were significantly reduced, as compared to wild-type controls. Expression of AKT (A serine/threonine protein kinase) and insulin-induced AKT phosphorylation was also reduced in the hippocampus of ZnT3 knockout mice. We hypothesize that the ZnT3 deficiency and reduced brain zinc levels may cause cognitive impairment by negatively affecting glycose metabolism via decreased expression of key components of insulin signaling, as well as via changes in synaptic plasticity. These finding may provide new therapeutic target for treatments of neurodegenerative disorders.
Collapse
Affiliation(s)
- Rui Zong
- Department of Pharmacology, Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiaoding Zhang
- Department of Pharmacology, Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiaohui Dong
- Department of Pharmacology, Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Guan Liu
- Department of Pharmacology, Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jieyao Zhang
- Department of Pharmacology, Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yiting Gao
- Department of Pharmacology, Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zhongyang Zhang
- Department of Pharmacology, Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yiming Ma
- Department of Pharmacology, Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Haixia Gao
- Department of Pharmacology, Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Nikita Gamper
- Department of Pharmacology, Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
27
|
Kula B, Antal B, Weistuch C, Gackière F, Barre A, Velado V, Hubbard JM, Kukley M, Mujica-Parodi LR, Smith NA. D-β-hydroxybutyrate stabilizes hippocampal CA3-CA1 circuit during acute insulin resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.23.554428. [PMID: 37662316 PMCID: PMC10473684 DOI: 10.1101/2023.08.23.554428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
The brain primarily relies on glycolysis for mitochondrial respiration but switches to alternative fuels such as ketone bodies (KBs) when less glucose is available. Neuronal KB uptake, which does not rely on glucose transporter 4 (GLUT4) or insulin, has shown promising clinical applicability in alleviating the neurological and cognitive effects of disorders with hypometabolic components. However, the specific mechanisms by which such interventions affect neuronal functions are poorly understood. In this study, we pharmacologically blocked GLUT4 to investigate the effects of exogenous KB D-β-hydroxybutyrate (D-βHb) on mouse brain metabolism during acute insulin resistance (AIR). We found that both AIR and D-βHb had distinct impacts across neuronal compartments: AIR decreased synaptic activity and long-term potentiation (LTP) and impaired axonal conduction, synchronization, and action potential (AP) properties, while D-βHb rescued neuronal functions associated with axonal conduction, synchronization, and LTP.
Collapse
Affiliation(s)
- Bartosz Kula
- Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester, School of Medicine and Dentistry, Rochester, USA
| | - Botond Antal
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Corey Weistuch
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Florian Gackière
- Neuroservices Alliance, Les Jardins de l’Entreprise, Quartier de le Confrérie, Le Puy Ste Réparade, France
| | - Alexander Barre
- Neuroservices Alliance, Les Jardins de l’Entreprise, Quartier de le Confrérie, Le Puy Ste Réparade, France
| | - Victor Velado
- Center for Neuroscience Research, Children’s National Research Institute, Children’s National Hospital, Washington D.C., USA
| | - Jeffrey M Hubbard
- Neuroservices Alliance, Les Jardins de l’Entreprise, Quartier de le Confrérie, Le Puy Ste Réparade, France
| | - Maria Kukley
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- Ikerbasque - Basque Foundation for Science, Bilbao, Spain
| | - Lilianne R Mujica-Parodi
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, USA
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, USA
| | - Nathan A Smith
- Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester, School of Medicine and Dentistry, Rochester, USA
- Center for Neuroscience Research, Children’s National Research Institute, Children’s National Hospital, Washington D.C., USA
- George Washington University School of Medicine and Health Sciences, Washington D.C., USA
| |
Collapse
|
28
|
Kula B, Antal B, Weistuch C, Gackière F, Barre A, Velado V, Hubbard JM, Kukley M, Mujica-Parodi LR, Smith NA. D-ꞵ-hydroxybutyrate stabilizes hippocampal CA3-CA1 circuit during acute insulin resistance. PNAS NEXUS 2024; 3:pgae196. [PMID: 38818236 PMCID: PMC11138115 DOI: 10.1093/pnasnexus/pgae196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/06/2024] [Indexed: 06/01/2024]
Abstract
The brain primarily relies on glycolysis for mitochondrial respiration but switches to alternative fuels such as ketone bodies (KBs) when less glucose is available. Neuronal KB uptake, which does not rely on glucose transporter 4 (GLUT4) or insulin, has shown promising clinical applicability in alleviating the neurological and cognitive effects of disorders with hypometabolic components. However, the specific mechanisms by which such interventions affect neuronal functions are poorly understood. In this study, we pharmacologically blocked GLUT4 to investigate the effects of exogenous KB D-ꞵ-hydroxybutyrate (D-ꞵHb) on mouse brain metabolism during acute insulin resistance (AIR). We found that both AIR and D-ꞵHb had distinct impacts across neuronal compartments: AIR decreased synaptic activity and long-term potentiation (LTP) and impaired axonal conduction, synchronization, and action potential properties, while D-ꞵHb rescued neuronal functions associated with axonal conduction, synchronization, and LTP.
Collapse
Affiliation(s)
- Bartosz Kula
- Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester, School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Botond Antal
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Corey Weistuch
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Florian Gackière
- Neuroservices Alliance, Les Jardins de l’Entreprise, Quartier de le Confrérie, 13610 Le Puy-Sainte-Réparade, France
| | - Alexander Barre
- Neuroservices Alliance, Les Jardins de l’Entreprise, Quartier de le Confrérie, 13610 Le Puy-Sainte-Réparade, France
| | - Victor Velado
- Center for Neuroscience Research, Children’s National Research Institute, Children’s National Hospital, Washington, DC 20012, USA
| | - Jeffrey M Hubbard
- Neuroservices Alliance, Les Jardins de l’Entreprise, Quartier de le Confrérie, 13610 Le Puy-Sainte-Réparade, France
| | - Maria Kukley
- Achucarro Basque Center for Neuroscience, 48940 Leioa, Bizkaia, Spain
- Ikerbasque—Basque Foundation for Science, 48009 Bilbao, Spain
| | - Lilianne R Mujica-Parodi
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Nathan A Smith
- Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester, School of Medicine and Dentistry, Rochester, NY 14642, USA
- Center for Neuroscience Research, Children’s National Research Institute, Children’s National Hospital, Washington, DC 20012, USA
- School of Medicine and Health Sciences, George Washington University, Washington, DC 20052, USA
| |
Collapse
|
29
|
Wu KLH, Liu WC, Wu CW, Fu MH, Huang HM, Tain YL, Liang CK, Hung CY, Chen IC, Hung PL, Lin YJ, Hirase H. Butyrate reduction and HDAC4 increase underlie maternal high fructose-induced metabolic dysfunction in hippocampal astrocytes in female rats. J Nutr Biochem 2024; 126:109571. [PMID: 38199310 DOI: 10.1016/j.jnutbio.2024.109571] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 01/12/2024]
Abstract
Maternal nutrient intake influences the health of the offspring via microenvironmental systems in digestion and absorption. Maternal high fructose diet (HFD) impairs hippocampus-dependent memory in adult female rat offspring. However, the underlying mechanisms remain largely unclear. Maternal HFD causes microbiota dysbiosis. In this study, we find that the plasma level of butyrate, a major metabolite of microbiota, is significantly decreased in the adult female maternal HFD offspring. In these rats, GPR43, a butyrate receptor was downregulated in the hippocampus. Moreover, the expressions of mitochondrial transcription factor A (TFAM), and peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α) were downregulated in the hippocampus. The decreases of these functional proteins were reversed by fructooligosaccharides (FOS, a probiotic) treatment in adulthood. Astrocytes are critical for energy metabolism in the brain. Primary astrocyte culture from female maternal HFD offspring indicated that GPR43 and the mitochondrial biogenesis were significantly suppressed, which was reversed by supplemental butyrate incubation. The oxygen consumption rate (OCR) was reduced in the HFD group and rescued by butyrate. Intriguingly, the nuclear histone deacetylase 4 (HDAC4) was enhanced in the HFD group, suggesting an inhibitory role of butyrate on histone deacetylase activity. Inhibition of HDAC4 effectively restored the OCR, bioenergetics, and biogenesis of mitochondria. Together, these results suggested that the impaired butyrate signaling by maternal HFD could underlie the reduced mitochondrial functions in the hippocampus via HDAC4-mediated epigenetic changes.
Collapse
Affiliation(s)
- Kay Li Hui Wu
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan ROC; Department of Senior Citizen Services, National Tainan Institute of Nursing, Tainan, Taiwan ROC.
| | - Wen-Chung Liu
- Plastic Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan ROC; Department of Surgery, School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan ROC; Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan ROC
| | - Chih-Wei Wu
- Plastic Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan ROC; Department of Counseling, National Chia-Yi University, Chia-Yi, Taiwan ROC
| | - Mu-Hui Fu
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Taiwan ROC; Chang Gung University, College of Medicine, Kaohsiung, Taiwan ROC
| | - Hsiu-Mei Huang
- Chang Gung University, College of Medicine, Kaohsiung, Taiwan ROC; Department of Ophthalmology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan ROC
| | - You-Lin Tain
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan ROC; Chang Gung University, College of Medicine, Kaohsiung, Taiwan ROC; Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital Kaohsiung, Taiwan ROC
| | - Chih-Kuang Liang
- Division of Neurology, Kaohsiung Veterans General Hospital, Kaohsiung, 813, Taiwan ROC
| | - Chun-Ying Hung
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan ROC
| | - I-Chun Chen
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan ROC
| | - Pi-Lien Hung
- Chang Gung University, College of Medicine, Kaohsiung, Taiwan ROC; Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital Kaohsiung, Taiwan ROC
| | - Yu-Ju Lin
- Chang Gung University, College of Medicine, Kaohsiung, Taiwan ROC; Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan ROC
| | - Hajime Hirase
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
30
|
Aslan C, Aslankoc R, Ozmen O, Sülük BN, Kavrık O, Gumral N. Protective effect of vitamin D on learning and memory impairment in rats induced by high fructose corn syrup. Behav Brain Res 2024; 459:114763. [PMID: 37977339 DOI: 10.1016/j.bbr.2023.114763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/06/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
In our study, we aimed to investigate the negative effects of the prefrontal cortex (PFC)-associated impairment of cholinergic activity on memory and learning caused by high fructose corn syrup (HFCS) and the protective role of vitamin D in adolescent rats. Twenty-four animals were divided into three groups as control, HFCS group (11 % HFCS-55 solution, ad libitum) and HFCS+ Vit D (42 μg/kg/day). Elevated Plus Maze (EPM), Forced Swim Test (FST), and Morris Water Maze (MWM, performed from day 23) tests were applied to all animals. Fluid intake consumption of the rats was measured daily, weight gain and blood glucose were measured weekly. After 31 days of treatment, the rats were sacrificed and PFC tissue was removed for biochemical, histopathological and immunohistochemical analyses. In HFCS group, fluid consumption, blood glucose, malondialdehyde (MDA) levels, degenerative neuron count and choline acetyltransferase (ChAT) expression were significantly increased; superoxide dismutase (SOD), catalase (CAT) enzyme activity and brain-derived neurotrophic factor (BDNF) expression were significantly decreased. In addition, the time spent in the enclosed arm in EPM was increased, the immobility time in FST was, and the time spent in the target quadrant in MWM was significantly decreased. Vitamin D treatment reversed all these parameters. In conclusion, HFCS caused an increase in the number of degenerative neurons in the PFC, disrupted cholinergic activity and negatively affected learning-memory functions. Vitamin D, decreased the number of degenerative neurons, increased cholinergic activity and positively affected learning and memory performance. BRIEF SYNOPSIS: In this study, prefrontal cortex damage was investigated in adolescent rats fed high fructose corn syrup. The effect of vitamin D on prefrontal cortex damage was evaluated.
Collapse
Affiliation(s)
- Cahide Aslan
- Suleyman Demirel University, Faculty of Medicine, Department of Physiology, Isparta, Turkey.
| | - Rahime Aslankoc
- Suleyman Demirel University, Faculty of Medicine, Department of Physiology, Isparta, Turkey
| | - Ozlem Ozmen
- Burdur Mehmet Akif Ersoy University Faculty of Veterinary, Department of Pathology, Burdur, Turkey
| | - Buse Nur Sülük
- Suleyman Demirel University, Faculty of Medicine, Department of Physiology, Isparta, Turkey
| | - Oguzhan Kavrık
- Suleyman Demirel University, Faculty of Medicine, Department of Physiology, Isparta, Turkey
| | - Nurhan Gumral
- Suleyman Demirel University, Faculty of Medicine, Department of Physiology, Isparta, Turkey
| |
Collapse
|
31
|
Mattson MP, Leak RK. The hormesis principle of neuroplasticity and neuroprotection. Cell Metab 2024; 36:315-337. [PMID: 38211591 DOI: 10.1016/j.cmet.2023.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/06/2023] [Accepted: 12/18/2023] [Indexed: 01/13/2024]
Abstract
Animals live in habitats fraught with a range of environmental challenges to their bodies and brains. Accordingly, cells and organ systems have evolved stress-responsive signaling pathways that enable them to not only withstand environmental challenges but also to prepare for future challenges and function more efficiently. These phylogenetically conserved processes are the foundation of the hormesis principle, in which single or repeated exposures to low levels of environmental challenges improve cellular and organismal fitness and raise the probability of survival. Hormetic principles have been most intensively studied in physical exercise but apply to numerous other challenges known to improve human health (e.g., intermittent fasting, cognitive stimulation, and dietary phytochemicals). Here we review the physiological mechanisms underlying hormesis-based neuroplasticity and neuroprotection. Approaching natural resilience from the lens of hormesis may reveal novel methods for optimizing brain function and lowering the burden of neurological disorders.
Collapse
Affiliation(s)
- Mark P Mattson
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Rehana K Leak
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| |
Collapse
|
32
|
Souza-Pereira A, Hernandez MDS, Guerra JMDS, Nieswald BH, Bianchini MC, Godinho DB, Nascimento AS, Puntel RL, Royes LFF, Rambo LM. Swimming training and caffeine supplementation protects against metabolic syndrome-induced nuclear factor-κB activation and cognitive deficits in rats. Nutr Res 2024; 122:19-32. [PMID: 38070463 DOI: 10.1016/j.nutres.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 11/04/2023] [Accepted: 11/05/2023] [Indexed: 03/08/2024]
Abstract
Metabolic syndrome (MS) is a disorder that increasingly affects the world population, mainly because of changes in lifestyle and dietary habits. In this regard, both physical exercise and caffeine are low-cost and easily accessible therapies that separately have shown positive effects against metabolic disorders. Therefore, we hypothesized that physical exercise combined with caffeine could have a synergistic effect in the treatment of MS, risk factors, and cognitive deficits. Animals were divided into 8 groups and received fructose (15% w/v) or vehicle for 10 weeks. Swimming training and caffeine (6 mg/kg) started 4 weeks after fructose administration. Trained animals presented decreased body weight and visceral fat mass and increased soleus weight compared with untrained fructose-treated animals. Caffeine supplementation also prevented the gain of visceral fat mass induced by fructose. Furthermore, both treatments reversed fructose-induced decrease in glucose clearance over time and fructose-induced increase in 4-hydroxynonenal and nuclear factor-κB immunoreactivity. Physical training also improved the lipidic profile in fructose-treated animals (high-density lipoprotein, low-density lipoprotein, and triglycerides), improved short-term, long-term, and localization memory, and reversed the fructose-induced deficit in short-term memory. Physical training also increased nuclear factor erythroid 2-related factor 2 immunoreactivity per se. Considering that physical training and caffeine reversed some of the damages induced by fructose it is plausible to consider these treatments as alternative, nonpharmacological, and low-cost therapies to help reduce MS-associated risk factors; however, combined treatments did not show additive effects as hypothesized.
Collapse
Affiliation(s)
- Adson Souza-Pereira
- Biochemistry Graduate Program, Federal University of Pampa, Uruguaiana, RS, Brazil
| | | | | | | | | | - Douglas Buchmann Godinho
- Department of Methods and Sportive Techniques, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | | | - Robson Luiz Puntel
- Biochemistry Graduate Program, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Luiz Fernando Freire Royes
- Department of Methods and Sportive Techniques, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Leonardo Magno Rambo
- Biochemistry Graduate Program, Federal University of Pampa, Uruguaiana, RS, Brazil.
| |
Collapse
|
33
|
Rossi C, Distaso M, Raggi F, Kusmic C, Faita F, Solini A. Lacking P2X7-receptors protects substantia nigra dopaminergic neurons and hippocampal-related cognitive performance from the deleterious effects of high-fat diet exposure in adult male mice. Front Nutr 2024; 11:1289750. [PMID: 38344021 PMCID: PMC10854005 DOI: 10.3389/fnut.2024.1289750] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/11/2024] [Indexed: 01/05/2025] Open
Abstract
BACKGROUND Dietary fat consumption, involved in the pathogenesis of insulin resistance and impaired glucose metabolism, is linked with decline in cognitive functions, dementia, and development of Parkinson's disease and Alzheimer's disease. Mature IL-1β, requiring the activation of the P2X7 receptor (P2X7R)-inflammasome complex, is an important mediator of neuroinflammation. The aim of the study was to test whether P2X7R activation might interfere with systemic and cerebral metabolic homeostasis. METHODS We treated WT and P2X7R KO mice with a high-fat diet (HFD) for 16 weeks, evaluating the effects on the Substantia Nigra and Hippocampus, target areas of damage in several forms of cognitive impairment. RESULTS HFD-treated WT and P2X7R KO mice showed a different brain mRNA profile of Insulin and Igf-1, with these genes and relative receptors, more expressed in KO mice. Unlike P2X7R KO mice, WT mice treated with HFD displayed a diameter reduction in dopaminergic neurons in the Substantia Nigra, accompanied by an increased IBA1 expression in this area; they also showed poor performances during Y-Maze and Morris Water Maze, tasks involving Hippocampus activity. Conversely, Parkin, whose reduction might promote neuronal cell death, was increased in the brain of P2X7R KO animals. CONCLUSION We report for the first time that HFD induces damage in dopaminergic neurons of the Substantia Nigra and a Hippocampus-related worse cognitive performance, both attenuated in the absence of P2X7R. The involved mechanisms might differ in the two brain areas, with a predominant role of inflammation in the Substantia Nigra and a metabolic derangement in the Hippocampus.
Collapse
Affiliation(s)
- Chiara Rossi
- Department of Surgical, Medical, Molecular and Critical Area Pathology University of Pisa, Pisa, Italy
| | - Mariarosaria Distaso
- Department of Surgical, Medical, Molecular and Critical Area Pathology University of Pisa, Pisa, Italy
| | - Francesco Raggi
- Department of Surgical, Medical, Molecular and Critical Area Pathology University of Pisa, Pisa, Italy
| | | | | | - Anna Solini
- Department of Surgical, Medical, Molecular and Critical Area Pathology University of Pisa, Pisa, Italy
| |
Collapse
|
34
|
Baer SB, Dorn AD, Osborne DM. Sex differences in response to obesity and caloric restriction on cognition and hippocampal measures of autophagic-lysosomal transcripts and signaling pathways. BMC Neurosci 2024; 25:1. [PMID: 38166559 PMCID: PMC10759648 DOI: 10.1186/s12868-023-00840-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 12/18/2023] [Indexed: 01/04/2024] Open
Abstract
BACKGROUND Obesity rates in the U.S. continue to increase, with nearly 50% of the population being either obese or morbidly obese. Obesity, along with female sex, are leading risk factors for sporadic Alzheimer's Disease (AD) necessitating the need to better understand how these variables impact cellular function independent of age or genetic mutations. Animal and clinical studies both indicate that autophagy-lysosomal pathway (ALP) dysfunction is among the earliest known cellular systems to become perturbed in AD, preceding cognitive decline, yet little is known about how obesity and sex affects these cellular functions in the hippocampus, a brain region uniquely susceptible to the negative effects of obesity. We hypothesized that obesity would negatively affect key markers of ALP in the hippocampus, effects would vary based on sex, and that caloric restriction would counteract obesity effects. METHODS Female and male mice were placed on an obesogenic diet for 10 months, at which point half were switched to caloric restriction for three months, followed by cognitive testing in the Morris watermaze. Hippocampus was analyzed by western blot and qPCR. RESULTS Cognitive function in female mice responded differently to caloric restriction based on whether they were on a normal or obesogenic diet; male cognition was only mildly affected by caloric restriction and not obesity. Significant male-specific changes occurred in cellular markers of autophagy, including obesity increasing pAkt, Slc38a9, and Atg12, while caloric restriction reduced pRPS6 and increased Atg7. In contrast females experienced changes due to diet/caloric restriction predominately in lysosomal markers including increased TFE3, FLCN, FNIP2, and pAMPK. CONCLUSIONS Results support that hippocampal ALP is a target of obesity and that sex shapes molecular responses, while providing insight into how dietary manipulations affect learning and memory based on sex.
Collapse
Affiliation(s)
- Sadie B Baer
- R.S. Dow Neurobiology, Legacy Research Institute, Portland, OR, USA
| | - Adrianah D Dorn
- R.S. Dow Neurobiology, Legacy Research Institute, Portland, OR, USA
| | | |
Collapse
|
35
|
Cifre M, Palou A, Oliver P. The Metabolically Obese, Normal-Weight Phenotype in Young Rats Is Associated with Cognitive Impairment and Partially Preventable with Leptin Intake during Lactation. Int J Mol Sci 2023; 25:228. [PMID: 38203399 PMCID: PMC10778589 DOI: 10.3390/ijms25010228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/05/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024] Open
Abstract
The intake of high-fat diets (HFDs) and obesity are linked to cognitive impairment. Here, we aimed to investigate whether an early metabolically obese, normal-weight (MONW) phenotype, induced with an HFD in young rats, also leads to cognitive dysfunction and to evaluate the potential cognitive benefits of neonatal intake of leptin. To achieve this, Wistar rats orally received physiological doses of leptin or its vehicle during lactation, followed by 11 weeks of pair-feeding with an HFD or control diet post-weaning. Working memory was assessed using a T-maze, and gene expression in the hippocampus and peripheral blood mononuclear cells (PBMCs) was assessed with real-time RT-qPCR to identify cognition biomarkers. Young MONW-like rats showed hippocampal gene expression changes and decreased working memory. Animals receiving leptin during lactation presented similar gene expression changes but preserved working memory despite HFD intake, partly due to improved insulin sensitivity. Notably, PBMC Syn1 expression appears as an accessible biomarker of cognitive health, reflecting both the detrimental effect of HFD intake at early ages despite the absence of obesity and the positive effects of neonatal leptin treatment on cognition. Thus, the MONW phenotype developed at a young age is linked to cognitive dysfunction, which is reflected at the transcriptomic level in PBMCs. Neonatal leptin intake can partly counteract this impaired cognition resulting from early HFD consumption.
Collapse
Affiliation(s)
- Margalida Cifre
- Nutrigenomics, Biomarkers and Risk Evaluation (NuBE) Group, University of the Balearic Islands (UIB), 07122 Palma, Spain (A.P.)
- CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Andreu Palou
- Nutrigenomics, Biomarkers and Risk Evaluation (NuBE) Group, University of the Balearic Islands (UIB), 07122 Palma, Spain (A.P.)
- CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
| | - Paula Oliver
- Nutrigenomics, Biomarkers and Risk Evaluation (NuBE) Group, University of the Balearic Islands (UIB), 07122 Palma, Spain (A.P.)
- CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
| |
Collapse
|
36
|
Galeano P, de Ceglia M, Mastrogiovanni M, Campanelli L, Medina-Vera D, Campolo N, Novack GV, Rosell-Valle C, Suárez J, Aicardo A, Campuzano K, Castaño EM, Do Carmo S, Cuello AC, Bartesaghi S, Radi R, Rodríguez de Fonseca F, Morelli L. The Effect of Fat Intake with Increased Omega-6-to-Omega-3 Polyunsaturated Fatty Acid Ratio in Animal Models of Early and Late Alzheimer's Disease-like Pathogenesis. Int J Mol Sci 2023; 24:17009. [PMID: 38069333 PMCID: PMC10707298 DOI: 10.3390/ijms242317009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023] Open
Abstract
This work aims to clarify the effect of dietary polyunsaturated fatty acid (PUFA) intake on the adult brain affected by amyloid pathology. McGill-R-Thy1-APP transgenic (Tg) rat and 5xFAD Tg mouse models that represent earlier or later disease stages were employed. The animals were exposed to a control diet (CD) or an HFD based on corn oil, from young (rats) or adult (mice) ages for 24 or 10 weeks, respectively. In rats and mice, the HFD impaired reference memory in wild-type (WT) animals but did not worsen it in Tg, did not cause obesity, and did not increase triglycerides or glucose levels. Conversely, the HFD promoted stronger microglial activation in Tg vs. WT rats but had no effect on cerebral amyloid deposition. IFN-γ, IL-1β, and IL-6 plasma levels were increased in Tg rats, regardless of diet, while CXCL1 chemokine levels were increased in HFD-fed mice, regardless of genotype. Hippocampal 3-nitrotyrosine levels tended to increase in HFD-fed Tg rats but not in mice. Overall, an HFD with an elevated omega-6-to-omega-3 ratio as compared to the CD (25:1 vs. 8.4:1) did not aggravate the outcome of AD regardless of the stage of amyloid pathology, suggesting that many neurobiological processes relevant to AD are not directly dependent on PUFA intake.
Collapse
Affiliation(s)
- Pablo Galeano
- Laboratory of Brain Aging and Neurodegeneration, Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435, Ciudad Autónoma de Buenos Aires C1405BWE, Argentina; (P.G.); (L.C.); (G.V.N.); (K.C.); (E.M.C.)
| | - Marialuisa de Ceglia
- Grupo de Neuropsicofarmacología, Unidad Clínica de Neurología, IBIMA y Plataforma BIONAND, Hospital Universitario Regional de Málaga, Av. Carlos Haya 82, 29010 Málaga, Spain; (M.d.C.); (D.M.-V.); (C.R.-V.)
| | - Mauricio Mastrogiovanni
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay; (M.M.); (N.C.); (A.A.); (S.B.); (R.R.)
- Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay
| | - Lorenzo Campanelli
- Laboratory of Brain Aging and Neurodegeneration, Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435, Ciudad Autónoma de Buenos Aires C1405BWE, Argentina; (P.G.); (L.C.); (G.V.N.); (K.C.); (E.M.C.)
| | - Dina Medina-Vera
- Grupo de Neuropsicofarmacología, Unidad Clínica de Neurología, IBIMA y Plataforma BIONAND, Hospital Universitario Regional de Málaga, Av. Carlos Haya 82, 29010 Málaga, Spain; (M.d.C.); (D.M.-V.); (C.R.-V.)
| | - Nicolás Campolo
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay; (M.M.); (N.C.); (A.A.); (S.B.); (R.R.)
- Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay
| | - Gisela V. Novack
- Laboratory of Brain Aging and Neurodegeneration, Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435, Ciudad Autónoma de Buenos Aires C1405BWE, Argentina; (P.G.); (L.C.); (G.V.N.); (K.C.); (E.M.C.)
| | - Cristina Rosell-Valle
- Grupo de Neuropsicofarmacología, Unidad Clínica de Neurología, IBIMA y Plataforma BIONAND, Hospital Universitario Regional de Málaga, Av. Carlos Haya 82, 29010 Málaga, Spain; (M.d.C.); (D.M.-V.); (C.R.-V.)
| | - Juan Suárez
- Instituto de Investigación Biomédica de Málaga (IBIMA), Departamento de Anatomía Humana, Medicina Legal e Historia de la Ciencia, Universidad de Málaga, Bulevar Louis Pasteur 32, 29071 Málaga, Spain;
| | - Adrián Aicardo
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay; (M.M.); (N.C.); (A.A.); (S.B.); (R.R.)
- Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay
- Departamento de Nutrición Clínica, Escuela de Nutrición, Universidad de la República, Av. Ricaldoni S/N, Montevideo 11600, Uruguay
| | - Karen Campuzano
- Laboratory of Brain Aging and Neurodegeneration, Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435, Ciudad Autónoma de Buenos Aires C1405BWE, Argentina; (P.G.); (L.C.); (G.V.N.); (K.C.); (E.M.C.)
| | - Eduardo M. Castaño
- Laboratory of Brain Aging and Neurodegeneration, Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435, Ciudad Autónoma de Buenos Aires C1405BWE, Argentina; (P.G.); (L.C.); (G.V.N.); (K.C.); (E.M.C.)
| | - Sonia Do Carmo
- Department of Pharmacology and Therapeutics, McGill University, McIntyre Medical Building 3655 Prom. Sir-William-Osler, Montreal, QC H3G 1Y6, Canada; (S.D.C.); (A.C.C.)
| | - A. Claudio Cuello
- Department of Pharmacology and Therapeutics, McGill University, McIntyre Medical Building 3655 Prom. Sir-William-Osler, Montreal, QC H3G 1Y6, Canada; (S.D.C.); (A.C.C.)
| | - Silvina Bartesaghi
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay; (M.M.); (N.C.); (A.A.); (S.B.); (R.R.)
- Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay
| | - Rafael Radi
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay; (M.M.); (N.C.); (A.A.); (S.B.); (R.R.)
- Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay
| | - Fernando Rodríguez de Fonseca
- Grupo de Neuropsicofarmacología, Unidad Clínica de Neurología, IBIMA y Plataforma BIONAND, Hospital Universitario Regional de Málaga, Av. Carlos Haya 82, 29010 Málaga, Spain; (M.d.C.); (D.M.-V.); (C.R.-V.)
| | - Laura Morelli
- Laboratory of Brain Aging and Neurodegeneration, Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435, Ciudad Autónoma de Buenos Aires C1405BWE, Argentina; (P.G.); (L.C.); (G.V.N.); (K.C.); (E.M.C.)
| |
Collapse
|
37
|
Wang X, Wu X, Wu H, Xiao H, Hao S, Wang B, Li C, Bleymehl K, Kauschke SG, Mack V, Ferger B, Klein H, Zheng R, Duan S, Wang H. Neural adaption in midbrain GABAergic cells contributes to high-fat diet-induced obesity. SCIENCE ADVANCES 2023; 9:eadh2884. [PMID: 37910621 PMCID: PMC10619925 DOI: 10.1126/sciadv.adh2884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 09/29/2023] [Indexed: 11/03/2023]
Abstract
Overeating disorders largely contribute to worldwide incidences of obesity. Available treatments are limited. Here, we discovered that long-term chemogenetic activation of ventrolateral periaqueductal gray (vlPAG) GABAergic cells rescue obesity of high-fat diet-induced obesity (DIO) mice. This was associated with the recovery of enhanced mIPSCs, decreased food intake, increased energy expenditure, and inguinal white adipose tissue (iWAT) browning. In vivo calcium imaging confirmed vlPAG GABAergic suppression for DIO mice, with corresponding reduction in intrinsic excitability. Single-nucleus RNA sequencing identified transcriptional expression changes in GABAergic cell subtypes in DIO mice, highlighting Cacna2d1 as of potential importance. Overexpressing CACNA2D1 in vlPAG GABAergic cells of DIO mice rescued enhanced mIPSCs and calcium response, reversed obesity, and therefore presented here as a potential target for obesity treatment.
Collapse
Affiliation(s)
- Xiaomeng Wang
- Department of Neurosurgery of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Key Laboratory for Biomedical Engineering of Education Ministry, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Nanhu Brain-computer Interface Institute, Hangzhou 311100, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain Machine Integration, Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiaotong Wu
- Department of Neurosurgery of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Key Laboratory for Biomedical Engineering of Education Ministry, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain Machine Integration, Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Hao Wu
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Zhejiang Laboratory for Systems and Precision Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang 310058, China
| | - Hanyang Xiao
- Department of Neurosurgery of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Key Laboratory for Biomedical Engineering of Education Ministry, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain Machine Integration, Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Sijia Hao
- Department of Neurosurgery of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Key Laboratory for Biomedical Engineering of Education Ministry, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain Machine Integration, Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Bingwei Wang
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing 100091, China
| | - Chen Li
- Department of Human Genetics and Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Katherin Bleymehl
- Department of CardioMetabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, 88397, Germany
| | - Stefan G. Kauschke
- Department of CardioMetabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, 88397, Germany
| | - Volker Mack
- Department of CardioMetabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, 88397, Germany
| | - Boris Ferger
- Department of CardioMetabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, 88397, Germany
| | - Holger Klein
- Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, 88397, Germany
| | - Ruimao Zheng
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing 100091, China
| | - Shumin Duan
- Department of Neurosurgery of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Key Laboratory for Biomedical Engineering of Education Ministry, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain Machine Integration, Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Hao Wang
- Department of Neurosurgery of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Key Laboratory for Biomedical Engineering of Education Ministry, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Nanhu Brain-computer Interface Institute, Hangzhou 311100, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain Machine Integration, Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Lingang Laboratory, Shanghai 200031, China
| |
Collapse
|
38
|
Naveed S, Sallinen T, Eloranta AM, Skog H, Jalkanen H, Brage S, Ekelund U, Pentikäinen H, Savonen K, Lakka TA, Haapala EA. Effects of 2-year dietary and physical activity intervention on cognition in children-a nonrandomized controlled trial. Scand J Med Sci Sports 2023; 33:2340-2350. [PMID: 37555467 DOI: 10.1111/sms.14464] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/10/2023]
Abstract
BACKGROUND AND OBJECTIVE We investigated the effects of a combined dietary and PA intervention on cognition in children and whether changes in diet quality, PA, sedentary behavior (SB), and sedentary time (ST) are associated with changes in cognition. METHODS We conducted a 2-year nonrandomized controlled trial in 504 children aged 6-9 years at baseline. The children were allocated to a combined dietary and PA intervention group (n = 237) or a control group (n = 160) without blinding. INTERVENTIONS The children and their parents allocated to the intervention group had six dietary counseling sessions of 30-45 min and six PA counseling sessions of 30-45 min during the 2-year intervention period. The children were also encouraged to participate in after-school exercise clubs. Cognition was assessed by the Raven's Colored Progressive Matrices. We assessed dietary factors by 4 days food records and computed the Baltic Sea Diet Score (BSDS) as a measure of diet quality. PA and ST were assessed by a combined heart rate and body movement monitor, types of PA and SB by a questionnaire. RESULTS The intervention had no effect on cognition. Increased BSDS and consumption of low-fat milk and decreased consumption of red meat and sausages were associated with improved cognition over 2 years. Increased organized sports, ST, and reading were positively, while unsupervised PA, computer use, and writing were negatively associated with cognition. CONCLUSION Combined dietary and PA intervention had no effect on cognition. Improved diet quality and increased organized sports and reading were associated with improved cognition.
Collapse
Affiliation(s)
- Sehrish Naveed
- Physiology, Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Taisa Sallinen
- Physiology, Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
- Clinical Nutrition, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
- University of Eastern Finland Library Kuopio, Kuopio, Finland
| | - Aino-Maija Eloranta
- Physiology, Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
- Clinical Nutrition, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Hannamari Skog
- Physiology, Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Henna Jalkanen
- Physiology, Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Soren Brage
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Box 285 Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, UK
| | - Ulf Ekelund
- Department of Sports Medicine, Norwegian School of Sport Sciences (NIH), Oslo, Norway
| | | | - Kai Savonen
- Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Timo A Lakka
- Physiology, Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
- Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Eero A Haapala
- Physiology, Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
39
|
Barutçu Ö, Süer C, Dursun N, Tufan E, Gülpınar EA, Tan B. Insulin-induced long-term potentiation in the dentate gyrus of hippocampal formation. Psychoneuroendocrinology 2023; 157:106343. [PMID: 37562098 DOI: 10.1016/j.psyneuen.2023.106343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/12/2023]
Abstract
The discovery that brain areas involving in learning and memory express receptors for insulin hormone, led to the idea that insulin signaling may have a role in regulating cognitive function. Although previous studies have shown a role for insulin in regulation of the threshold of plasticity induction, no study has addressed whether insulin can induce a chemical plasticity per se. Young-adult male rats that are fed with standard diets with or without carbohydrate syrup (sucrose or high-fructose corn syrups) were enrolled in this study. Extracellular field potentials were recorded from the dentate gyrus in response to perforant pathway stimulation at 0.033 Hz in anesthetized rats. The slope of field excitatory postsynaptic potentials (fEPSPs) and the amplitude of population spike (PS) were measured 15 min after a 60-min infusion of insulin (500 nM), NT157 (an IRS inhibitor, 6 μM), alone or together, or physiological saline. mRNA expressions of insulin signaling proteins were measured by rt-PCR in the whole hippocampus. We did not observe any appreciable change in the fEPSP slope and the PS amplitude before and after saline infusion. However, intra-hippocampal insulin application results in the induction of LTP of fEPSP and of PS in the dentate gyrus. Insulin infusion together with NT157 inhibited fEPSP-LTP, but not PS-LTP, and rats that are fed with carbohydrate syrup did not express synaptic LTP. In rats that additional carbohydrate syrup is not given, insulin-induced LTP was accompanied with an increase in PI3K-mRNA, AKT-mRNA, and GSK-3β-mRNA which was not observed when co-administered with NT157. The GSK-3β-mRNA and IRS1-mRNA levels were found to be lower in rats that received supplemental carbohydrate and that not express insulin-induced synaptic LTP, compared to the rats expressing synaptic LTP and fed by standard diet. The results obtained provide a mechanistic link between insulin and synaptic plasticity. We concluded that insulin not only functions as a modulator of synaptic plasticity but also acts as a chemical inducer of LTP.
Collapse
Affiliation(s)
- Özlem Barutçu
- University of Erciyes, Physiology department of Medical School, Türkiye; University of Erciyes, Institute of Health Science, Türkiye; Turkey, Council of Higher Education100/2000 PhD Scholarship Student, Türkiye
| | - Cem Süer
- University of Erciyes, Physiology department of Medical School, Türkiye; University of Erciyes, Institute of Health Science, Türkiye.
| | - Nurcan Dursun
- University of Erciyes, Physiology department of Medical School, Türkiye
| | - Esra Tufan
- University of Erciyes, Physiology department of Medical School, Türkiye; University of Erciyes, Institute of Health Science, Türkiye; Turkey, Council of Higher Education100/2000 PhD Scholarship Student, Türkiye
| | - Ezgi Aslan Gülpınar
- University of Erciyes, Physiology department of Medical School, Türkiye; University of Erciyes, Institute of Health Science, Türkiye; Turkey, Council of Higher Education100/2000 PhD Scholarship Student, Türkiye
| | - Burak Tan
- University of Erciyes, Physiology department of Medical School, Türkiye
| |
Collapse
|
40
|
Gao X, Sun H, Hao S, Sun H, Ge J. Melatonin protects HT-22 cells against palmitic acid-induced glucolipid metabolic dysfunction and cell injuries: Involved in the regulation of synaptic plasticity and circadian rhythms. Biochem Pharmacol 2023; 217:115846. [PMID: 37804870 DOI: 10.1016/j.bcp.2023.115846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/01/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Melatonin (MLT) is ahormonal substance reported with various pharmacological activities.Based on its effects of neuroprotection and metabolic regulation, the aim of the present study is to investigate its potential effect on palmitic acid (PA)-induced cell injuries and glucolipid metabolic dysfunction and explore the possible mechanism. Briefly, HT-22 cells were challenged with PA (0.1 mM, 24 h) and treated with MLT (10-6-10-8 mol/L). Cell proliferation, lipid accumulation and glucose consumption were detected. The protein expression of key molecular involved with the function of synaptic plasticity and circadian rhythms were measured via western blotting, and the expression of Map-2, MT1A, MT1B and Bmal1 were measured via immunofluorescence staining. The results showed that MLT could alleviate the neurotoxicity induced by PA, as indicated by the increased cell proliferation, enhanced fluorescence intensity of Map-2, and decreased lipid deposition and insulin resistance. Moreover, treatment of MLT could reverse the imbalanced expression of p-Akt, p-ERK, Synapsin I, Synaptotagmin I, BDNF, MT1B, Bmal1, and Clock in PA-induced HT-22 cells. These results suggested a remarkably neuroprotective effect of MLT against PA-induced cell injury and glucolipid metabolic dysfunction, the mechanism of which might be involved in the regulation of synaptic plasticity and circadian rhythms.
Collapse
Affiliation(s)
- Xinran Gao
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China; Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, China
| | - Huaizhi Sun
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China; Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, China
| | - Shengwei Hao
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China; Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, China
| | - Huimin Sun
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China; Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, China
| | - Jinfang Ge
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China; Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, China.
| |
Collapse
|
41
|
Maneechote C, Pintana H, Kerdphoo S, Janjek S, Chattipakorn N, Chattipakorn SC. Differential temporal therapies with pharmacologically targeted mitochondrial fission/fusion protect the brain against acute myocardial ischemia-reperfusion injury in prediabetic rats: The crosstalk between mitochondrial apoptosis and inflammation. Eur J Pharmacol 2023; 956:175939. [PMID: 37536625 DOI: 10.1016/j.ejphar.2023.175939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/08/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
An imbalance of brain mitochondrial dynamics, increases in brain inflammation and apoptosis, and increasing cognitive dysfunction, have been reported as being associated with prediabetes and myocardial ischemia-reperfusion (IR) injury. Since inhibiting mitochondrial fission with Mdivi-1 or promoting fusion with M1 had cardioprotective effects in myocardial IR injury and obesity, the neuroprotective roles of Mdivi-1 and M1 when administered at different time points of myocardial IR injury in obese prediabetes have never been determined. Ninety-six male Wistar rats were fed with either a normal (ND: n = 8) or a high-fat diet to induce prediabetes (HFD: n = 88) for 12 weeks. At week 13, all rats were subjected to left anterior descending coronary artery ligation for 30 min, followed by reperfusion for 120 min. HFD rats were randomly divided into 10 groups and assigned into either a pre-ischemic group treated with vehicle (HFV), pre-ischemic, during-ischemic, or onset of reperfusion groups treated with either Mdivi-1 (MDV), M1, or combined (COM). Heart function was examined invasively, with the heart being terminated to investigate myocardial infarction. Brains were collected to determine mitochondrial functions, inflammation, apoptosis, and pathological markers. Mdivi-1, M1, and COM treatment at different periods exerted cardioprotection against myocardial IR injury in HFD-fed rats by reducing infarct size and left ventricular dysfunction. All interventions also improved all brain pathologies against myocardial IR injury in prediabetic rats. These findings suggest that differential temporal modulation of mitochondrial dynamics may be appropriate regimens for preventing heart and brain complications after myocardial IR injury in obese prediabetes.
Collapse
Affiliation(s)
- Chayodom Maneechote
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Hiranya Pintana
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sasiwan Kerdphoo
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sornram Janjek
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
42
|
Zhang XL, Hollander CM, Khan MY, D'silva M, Ma H, Yang X, Bai R, Keeter CK, Galkina EV, Nadler JL, Stanton PK. Myeloid cell deficiency of the inflammatory transcription factor Stat4 protects long-term synaptic plasticity from the effects of a high-fat, high-cholesterol diet. Commun Biol 2023; 6:967. [PMID: 37783748 PMCID: PMC10545833 DOI: 10.1038/s42003-023-05304-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/30/2023] [Indexed: 10/04/2023] Open
Abstract
Neuroinflammation is associated with neurodegenerative diseases, including Alzheimer's and Parkinson's. The cytokine interleukin-12 activates signal transducer and activator of transcription 4 (Stat4), and consumption of a high-fat, high-cholesterol diet (HFD-C) and Stat4 activity are associated with inflammation, atherosclerosis, and a diabetic metabolic phenotype. In studies of in vitro hippocampal slices from control Stat4fl/flLdlr-/- mice fed a HFD-C diabetogenic diet, we show that Schaffer collateral-CA1 synapses exhibited larger reductions in activity-dependent, long-term potentiation (LTP) of synaptic transmission, compared to mice fed a standard diet. Glucose tolerance and insulin sensitivity shifts produced by HFD-C diet were reduced in Stat4ΔLysMLdlr-/- mice compared to Stat4fl/flLdlr-/- controls. Stat4ΔLysMLdlr-/- mice, which lack Stat4 under control of the LysMCre promoter, were resistant to HFD-C induced impairments in LTP. In contrast, Schaffer collateral-CA1 synapses in Stat4ΔLysMLdlr-/- mice fed the HFD-C diet showed larger LTP than control Stat4fl/flLdlr-/- mice. Expression of a number of neuroinflammatory and synaptic plasticity genes was reduced by HFD-C diet in control mice, and less affected by HFD-C diet in Stat4ΔLysMLdlr-/- mice. These data suggest that suppression of Stat4 activation may protect against effects of Western diet on cognition, type 2 diabetes, and reduce risk of Alzheimer's disease and other neurodegenerative disorders associated with neuroinflammation.
Collapse
Affiliation(s)
- Xiao-Lei Zhang
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, 10595, USA
| | - Callie M Hollander
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, 10595, USA
| | - Mohammad Yasir Khan
- Department of Pharmacology, New York Medical College, Valhalla, NY, 10595, USA
| | - Melinee D'silva
- Department of Pharmacology, New York Medical College, Valhalla, NY, 10595, USA
| | - Haoqin Ma
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, 10595, USA
| | - Xinyuan Yang
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, 10595, USA
| | - Robin Bai
- Department of Microbiology & Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, 23507, USA
| | - Coles K Keeter
- Department of Microbiology & Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, 23507, USA
| | - Elena V Galkina
- Department of Microbiology & Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, 23507, USA
- Center for Integrative Neuroscience and Inflammatory Diseases, Eastern Virginia Medical School, Norfolk, VA, 23507, USA
| | - Jerry L Nadler
- Department of Pharmacology, New York Medical College, Valhalla, NY, 10595, USA
- ACOS-Research VA Northern California Health Care System, Sacramento, CA, 95655, USA
| | - Patric K Stanton
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, 10595, USA.
| |
Collapse
|
43
|
Ly M, Yu GZ, Mian A, Cramer A, Meysami S, Merrill DA, Samara A, Eisenstein SA, Hershey T, Babulal GM, Lenze EJ, Morris JC, Benzinger TLS, Raji CA. Neuroinflammation: A Modifiable Pathway Linking Obesity, Alzheimer's disease, and Depression. Am J Geriatr Psychiatry 2023; 31:853-866. [PMID: 37365110 PMCID: PMC10528955 DOI: 10.1016/j.jagp.2023.06.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023]
Abstract
Obesity, depression and Alzheimer's disease (AD) are three major interrelated modern health conditions with complex relationships. Early-life depression may serve as a risk factor for AD, while late-life depression may be a prodrome of AD. Depression affects approximately 23% of obese individuals, and depression itself raises the risk of obesity by 37%. Mid-life obesity independently increases AD risk, while late-life obesity, particularly metabolically healthy obesity, may offer protection against AD pathology. Chronic inflammation serves as a key mechanism linking obesity, AD, and depression, encompassing systemic inflammation from metabolic disturbances, immune dysregulation through the gut microbiome, and direct interactions with amyloid pathology and neuroinflammation. In this review, we explore the biological mechanisms of neuroinflammation in relation to obesity, AD, and depression. We assess the efficacy of therapeutic interventions targeting neuroinflammation and discuss current and future radiological imaging initiatives for studying neuroinflammation. By comprehending the intricate interplay among depression, obesity, and AD, especially the role of neuroinflammation, we can advance our understanding and develop innovative strategies for prevention and treatment.
Collapse
Affiliation(s)
- Maria Ly
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO
| | - Gary Z Yu
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO
| | - Ali Mian
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO
| | | | - Somayeh Meysami
- Pacific Brain Health Center, Pacific Neuroscience Institute Foundation, Santa Monica, CA; Department of Translational Neurosciences, Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA
| | - David A Merrill
- Pacific Brain Health Center, Pacific Neuroscience Institute Foundation, Santa Monica, CA; Department of Translational Neurosciences, Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA
| | - Amjad Samara
- Department of Neurology, Washington University in St. Louis, St. Louis, MO
| | - Sarah A Eisenstein
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO; Department of Psychiatry, Washington University in St. Louis, St. Louis, MO
| | - Tamara Hershey
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO; Department of Psychological & Brain Sciences, Washington University School of Medicine, St. Louis, MO
| | - Ganesh M Babulal
- Department of Neurology, Washington University in St. Louis, St. Louis, MO; Institute of Public Health, Washington University in St. Louis, St. Louis, MO; Department of Psychology, Faculty of Humanities, University of Johannesburg, Johannesburg, South Africa; Department of Clinical Research and Leadership, The George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Eric J Lenze
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO
| | - John C Morris
- Department of Neurology, Washington University in St. Louis, St. Louis, MO
| | - Tammie L S Benzinger
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO; Department of Neurological Surgery, Washington University in St. Louis, St. Louis, MO
| | - Cyrus A Raji
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO; Department of Neurology, Washington University in St. Louis, St. Louis, MO.
| |
Collapse
|
44
|
Li LF, Gao Y, Xu Y, Su DJ, Yang Q, Liu A, Wang SY, Tang XL, Zhao J, Luo L, Yan T, Wu YM, Liu SB, Zhao MG, Yang L. Praeruptorin C alleviates cognitive impairment in type 2 diabetic mice through restoring PI3K/AKT/GSK3β pathway. Phytother Res 2023; 37:4838-4850. [PMID: 37458182 DOI: 10.1002/ptr.7949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 10/18/2023]
Abstract
Diabetic encephalopathy is a common consequence of diabetes mellitus that causes cognitive dysfunction and neuropsychiatric disorders. Praeruptorin C (Pra-C) from the traditional Chinese medicinal herb Peucedanum praeruptorum Dunn. is a potential antioxidant and neuroprotective agent. This study was conducted to investigate the molecular mechanisms underlying the effect of Pra-C on diabetic cognitive impairment. A novel object recognition test and the Morris water maze test were performed to assess the behavioral performance of mice. Electrophysiological recordings were made to monitor synaptic plasticity in the hippocampus. A protein-protein interaction network of putative Pra-C targets was constructed, and molecular docking simulations were performed to predict the potential mechanisms of the action of Pra-C. Protein expression levels were detected by western blotting. Pra-C administration significantly lowered body weight and fasting blood glucose levels and alleviated learning and memory deficits in type 2 diabetic mice. Network pharmacology and molecular docking results suggested that Pra-C affects the PI3K/AKT/GSK3β signaling pathway. Western blot analysis confirmed significant increases in phosphorylated PI3K, AKT, and GSK3β levels in vivo and in vitro upon Pra-C administration. Pra-C alleviated cognitive impairment in type 2 diabetic mice by activating PI3K/AKT/GSK3β pathway.
Collapse
Affiliation(s)
- Long-Fei Li
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Ying Gao
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Yuan Xu
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Dan-Jie Su
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Qi Yang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - An Liu
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Sai-Ying Wang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Xiu-Ling Tang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Jun Zhao
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Li Luo
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Tao Yan
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Yu-Mei Wu
- Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi'an, China
| | - Shui-Bing Liu
- Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi'an, China
| | - Ming-Gao Zhao
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Le Yang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| |
Collapse
|
45
|
Chen C, Lu Z, Wang X, Zhang J, Zhang D, Li S. Sugar-sweetened beverages consumption is associated with worse cognitive functions in older adults: from the national health and nutrition examination survey and food patterns equivalents database. Nutr Neurosci 2023; 26:1011-1018. [PMID: 36062834 DOI: 10.1080/1028415x.2022.2115242] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 08/15/2022] [Indexed: 10/14/2022]
Abstract
Objectives: This study aimed to investigate the association between sugar-sweetened beverages (SSB) consumption (including individual SSB) and cognitive function from the National Health and Nutrition Examination Survey (NHANES) and Food Patterns Equivalents Database (FPED) and whether it is age-dependent.Methods: Older adults aged 60 years old and over were included during the NHANES 2011-2014. SSB consumption was defined as the amount of added sugar obtained by connecting the NHANES and FPED. Cognitive function tests included the consortium to establish a registry for Alzheimer's disease test, Animal Fluency Test and Digit Symbol Substitution Test. We calculated z-score using the average of the total standardized scores on three cognitive tests to estimate the level of whole cognition. Multi-variable linear regression models and interaction analysis were conducted in this study.Results: For individual SSB types, increased carbonated soft drinks, sweetened tea, fruit drinks, energy drinks, and sport drinks were all significantly linked to declined cognitive function (P < 0.05), respectively. Nevertheless, interaction effects by age groups were not significant (P for interaction > 0.05).Discussion: SSB consumption (including individual SSB) was negatively associated with cognitive function, which was not age-dependent. Future studies may advance the knowledge in the field considering the association between SSB consumption and cognitive function.
Collapse
Affiliation(s)
- Chen Chen
- Department of Epidemiology and Health Statistics, School of Public Health, Qingdao University, Qingdao, People's Republic of China
| | - Zhonghai Lu
- Department of Epidemiology and Health Statistics, School of Public Health, Qingdao University, Qingdao, People's Republic of China
| | - Xueyan Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Qingdao University, Qingdao, People's Republic of China
| | - Jiesong Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Qingdao University, Qingdao, People's Republic of China
| | - Dongfeng Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Qingdao University, Qingdao, People's Republic of China
| | - Suyun Li
- Department of Epidemiology and Health Statistics, School of Public Health, Qingdao University, Qingdao, People's Republic of China
| |
Collapse
|
46
|
Gupta S, Jinka SKA, Khanal S, Bhavnani N, Almashhori F, Lallo J, Mathias A, Al-Rhayyel Y, Herman D, Holden JG, Fleming SM, Raman P. Cognitive dysfunction and increased phosphorylated tau are associated with reduced O-GlcNAc signaling in an aging mouse model of metabolic syndrome. J Neurosci Res 2023; 101:1324-1344. [PMID: 37031439 DOI: 10.1002/jnr.25196] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 12/15/2022] [Accepted: 03/21/2023] [Indexed: 04/10/2023]
Abstract
Metabolic syndrome (MetS), characterized by hyperglycemia, obesity, and hyperlipidemia, can increase the risk of developing late-onset dementia. Recent studies in patients and mouse models suggest a putative link between hyperphosphorylated tau, a component of Alzheimer's disease-related dementia (ADRD) pathology, and cerebral glucose hypometabolism. Impaired glucose metabolism reduces glucose flux through the hexosamine metabolic pathway triggering attenuated O-linked N-acetylglucosamine (O-GlcNAc) protein modification. The goal of the current study was to investigate the link between cognitive function, tau pathology, and O-GlcNAc signaling in an aging mouse model of MetS, agouti KKAy+/- . Male and female C57BL/6, non-agouti KKAy-/- , and agouti KKAy+/- mice were aged 12-18 months on standard chow diet. Body weight, blood glucose, total cholesterol, and triglyceride were measured to confirm the MetS phenotype. Cognition, sensorimotor function, and emotional reactivity were assessed for each genotype followed by plasma and brain tissue collection for biochemical and molecular analyses. Body weight, blood glucose, total cholesterol, and triglyceride levels were significantly elevated in agouti KKAy+/- mice versus C57BL/6 controls and non-agouti KKAy-/- . Behaviorally, agouti KKAy+/- revealed impairments in sensorimotor and cognitive function versus age-matched C57BL/6 and non-agouti KKAy-/- mice. Immunoblotting demonstrated increased phosphorylated tau accompanied with reduced O-GlcNAc protein expression in hippocampal-associated dorsal midbrain of female agouti KKAy+/- versus C57BL/6 control mice. Together, these data demonstrate that impaired cognitive function and AD-related pathology are associated with reduced O-GlcNAc signaling in aging MetS KKAy+/- mice. Overall, our study suggests that interaction of tau pathology with O-GlcNAc signaling may contribute to MetS-induced cognitive dysfunction in aging.
Collapse
Affiliation(s)
- Shreya Gupta
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
- Biomedical Sciences Graduate Program, Kent State University, Kent, Ohio, USA
| | - Sanjay K A Jinka
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Saugat Khanal
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
- Biomedical Sciences Graduate Program, Kent State University, Kent, Ohio, USA
| | - Neha Bhavnani
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
- Biomedical Sciences Graduate Program, Kent State University, Kent, Ohio, USA
| | - Fayez Almashhori
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
- Biomedical Sciences Graduate Program, Kent State University, Kent, Ohio, USA
| | - Jason Lallo
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Amy Mathias
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Yasmine Al-Rhayyel
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Danielle Herman
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - John G Holden
- Department of Psychology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Sheila M Fleming
- Biomedical Sciences Graduate Program, Kent State University, Kent, Ohio, USA
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Priya Raman
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
- Biomedical Sciences Graduate Program, Kent State University, Kent, Ohio, USA
| |
Collapse
|
47
|
Ramírez-Carreto RJ, Rodríguez-Cortés YM, Torres-Guerrero H, Chavarría A. Possible Implications of Obesity-Primed Microglia that Could Contribute to Stroke-Associated Damage. Cell Mol Neurobiol 2023; 43:2473-2490. [PMID: 36935429 PMCID: PMC10025068 DOI: 10.1007/s10571-023-01329-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 02/14/2023] [Indexed: 03/21/2023]
Abstract
Microglia, the resident macrophages of the central nervous system, are essential players during physiological and pathological processes. Although they participate in synaptic pruning and maintenance of neuronal circuits, microglia are mainly studied by their activity modulating inflammatory environment and adapting their phenotype and mechanisms to insults detected in the brain parenchyma. Changes in microglial phenotypes are reflected in their morphology, membrane markers, and secreted substances, stimulating neighbor glia and leading their responses to control stimuli. Understanding how microglia react in various microenvironments, such as chronic inflammation, made it possible to establish therapeutic windows and identify synergic interactions with acute damage events like stroke. Obesity is a low-grade chronic inflammatory state that gradually affects the central nervous system, promoting neuroinflammation development. Obese patients have the worst prognosis when they suffer a cerebral infarction due to basal neuroinflammation, then obesity-induced neuroinflammation could promote the priming of microglial cells and favor its neurotoxic response, potentially worsening patients' prognosis. This review discusses the main microglia findings in the obesity context during the course and resolution of cerebral infarction, involving the temporality of the phenotype changes and balance of pro- and anti-inflammatory responses, which is lost in the swollen brain of an obese subject. Obesity enhances proinflammatory responses during a stroke. Obesity-induced systemic inflammation promotes microglial M1 polarization and priming, which enhances stroke-associated damage, increasing M1 and decreasing M2 responses.
Collapse
Affiliation(s)
- Ricardo Jair Ramírez-Carreto
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Yesica María Rodríguez-Cortés
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Haydee Torres-Guerrero
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| | - Anahí Chavarría
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
48
|
Ignjatović Đ, Tovilović-Kovačević G, Mićić B, Tomić M, Djordjevic A, Macut D, Vojnović Milutinović D. Effects of early life overnutrition and hyperandrogenism on spatial learning and memory in a rat model of polycystic ovary syndrome. Horm Behav 2023; 153:105392. [PMID: 37295324 DOI: 10.1016/j.yhbeh.2023.105392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a complex disorder characterized by endocrine and metabolic abnormalities such as obesity and insulin resistance. PCOS is also associated with psychiatric disorders and cognitive impairment. The animal model of PCOS was induced by treating rats with 5α-dihydrotestosterone (5α-DHT) and additionally modified to induce adiposity by litter size reduction (LSR). Spatial learning and memory were assessed using the Barnes Maze test, and striatal markers of synaptic plasticity were analyzed. Striatal insulin signaling was estimated by the levels of insulin receptor substrate 1 (IRS1), its inhibitory phosphorylation at Ser307, and glycogen synthase kinase-3α/β (GSK3α/β) activity. Both LSR and DHT treatment significantly decreased striatal protein levels of IRS1, followed by increased GSK3α/β activity in small litters. Results of the behavioral study showed that LSR had a negative effect on learning rate and memory retention, whereas DHT treatment did not induce impairment in memory formation. While protein levels of synaptophysin, GAP43, and postsynaptic density protein 95 (PSD-95) were not altered by the treatments, DHT treatment induced an increase in phosphorylation of PSD-95 at Ser295 in both normal and small litters. This study revealed that LSR and DHT treatment suppressed insulin signaling by downregulating IRS1 in the striatum. However, DHT treatment did not have an adverse effect on learning and memory, probably due to compensatory elevation in pPSD-95-Ser295, which had a positive effect on synaptic strength. This implies that hyperandrogenemia in this setting does not represent a threat to spatial learning and memory, opposite to the effect of overnutrition-related adiposity.
Collapse
Affiliation(s)
- Đurđica Ignjatović
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd., 11000 Belgrade, Serbia.
| | - Gordana Tovilović-Kovačević
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd., 11000 Belgrade, Serbia.
| | - Bojana Mićić
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd., 11000 Belgrade, Serbia.
| | - Mirko Tomić
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd., 11000 Belgrade, Serbia.
| | - Ana Djordjevic
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd., 11000 Belgrade, Serbia.
| | - Djuro Macut
- Clinic of Endocrinology, Diabetes and Metabolic Diseases, University Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade, Dr Subotića 13, 11000 Belgrade, Serbia.
| | - Danijela Vojnović Milutinović
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd., 11000 Belgrade, Serbia.
| |
Collapse
|
49
|
Daniel JM, Lindsey SH, Mostany R, Schrader LA, Zsombok A. Cardiometabolic health, menopausal estrogen therapy and the brain: How effects of estrogens diverge in healthy and unhealthy preclinical models of aging. Front Neuroendocrinol 2023; 70:101068. [PMID: 37061205 PMCID: PMC10725785 DOI: 10.1016/j.yfrne.2023.101068] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/23/2023] [Accepted: 04/10/2023] [Indexed: 04/17/2023]
Abstract
Research in preclinical models indicates that estrogens are neuroprotective and positively impact cognitive aging. However, clinical data are equivocal as to the benefits of menopausal estrogen therapy to the brain and cognition. Pre-existing cardiometabolic disease may modulate mechanisms by which estrogens act, potentially reducing or reversing protections they provide against cognitive decline. In the current review we propose mechanisms by which cardiometabolic disease may alter estrogen effects, including both alterations in actions directly on brain memory systems and actions on cardiometabolic systems, which in turn impact brain memory systems. Consideration of mechanisms by which estrogen administration can exert differential effects dependent upon health phenotype is consistent with the move towards precision or personalized medicine, which aims to determine which treatment interventions will work for which individuals. Understanding effects of estrogens in both healthy and unhealthy models of aging is critical to optimizing the translational link between preclinical and clinical research.
Collapse
Affiliation(s)
- Jill M Daniel
- Department of Psychology and Brain Institute, Tulane University, New Orleans, LA, United States.
| | - Sarah H Lindsey
- Department of Pharmacology and Brain Institute, Tulane University, New Orleans, LA, United States
| | - Ricardo Mostany
- Department of Pharmacology and Brain Institute, Tulane University, New Orleans, LA, United States
| | - Laura A Schrader
- Department of Cell & Molecular Biology and Brain Institute, Tulane University, New Orleans, LA, United States
| | - Andrea Zsombok
- Department of Physiology and Brain Institute, Tulane University, New Orleans, LA, United States
| |
Collapse
|
50
|
Husain KH, Sarhan SF, AlKhalifa HKAA, Buhasan A, Moin ASM, Butler AE. Dementia in Diabetes: The Role of Hypoglycemia. Int J Mol Sci 2023; 24:9846. [PMID: 37372995 DOI: 10.3390/ijms24129846] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Hypoglycemia, a common consequence of diabetes treatment, is associated with severe morbidity and mortality and has become a major barrier to intensifying antidiabetic therapy. Severe hypoglycemia, defined as abnormally low blood glucose requiring the assistance of another person, is associated with seizures and comas, but even mild hypoglycemia can cause troubling symptoms such as anxiety, palpitations, and confusion. Dementia generally refers to the loss of memory, language, problem-solving, and other cognitive functions, which can interfere with daily life, and there is growing evidence that diabetes is associated with an increased risk of both vascular and non-vascular dementia. Neuroglycopenia resulting from a hypoglycemic episode in diabetic patients can lead to the degeneration of brain cells, with a resultant cognitive decline, leading to dementia. In light of new evidence, a deeper understating of the relationship between hypoglycemia and dementia can help to inform and guide preventative strategies. In this review, we discuss the epidemiology of dementia among patients with diabetes, and the emerging mechanisms thought to underlie the association between hypoglycemia and dementia. Furthermore, we discuss the risks of various pharmacological therapies, emerging therapies to combat hypoglycemia-induced dementia, as well as risk minimization strategies.
Collapse
Affiliation(s)
- Khaled Hameed Husain
- School of Medicine, Royal College of Surgeons in Ireland, Busaiteen, Adliya 15503, Bahrain
| | - Saud Faisal Sarhan
- School of Medicine, Royal College of Surgeons in Ireland, Busaiteen, Adliya 15503, Bahrain
| | | | - Asal Buhasan
- School of Medicine, Royal College of Surgeons in Ireland, Busaiteen, Adliya 15503, Bahrain
| | - Abu Saleh Md Moin
- Research Department, Royal College of Surgeons in Ireland, Busaiteen, Adliya 15503, Bahrain
| | - Alexandra E Butler
- Research Department, Royal College of Surgeons in Ireland, Busaiteen, Adliya 15503, Bahrain
| |
Collapse
|