1
|
Feola B, Flook EA, Seo DJ, Fox V, Oler J, Heckers S, Woodward ND, Blackford JU. Altered brain and physiological stress responses in early psychosis. Schizophr Res 2024; 271:112-119. [PMID: 39024959 DOI: 10.1016/j.schres.2024.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 07/05/2024] [Accepted: 07/07/2024] [Indexed: 07/20/2024]
Abstract
Stress is proposed to be a crucial factor in the onset and presentation of psychosis. The early stage of psychosis provides a window into how stress interacts with the emergence of psychosis. Yet, how people with early psychosis respond to stress remains unclear. The current study examined how stress responses (brain, physiological, self-report) differ in early psychosis. Forty participants (20 early psychosis [EP], 20 healthy controls [HC]) completed a stress task in the scanner that involved viewing stressful and neutral-relaxing images. Physiological responses (cortisol, heart rate) and self-report of stress were also assessed. Region of Interest analyses were conducted with brain regions previously shown to be activated during the stress task (amygdala, hippocampus, striatum, hypothalamus, prefrontal cortex [dorsolateral, ventrolateral, medial orbital]). Linear mixed models were used to test for effects of group (EP, HC) and emotion (stress, neutral-relaxing). HC had higher hippocampus activation to stress versus neutral-relaxing conditions while EP did not show a difference (group x emotion interaction, p = 0.04). There were also significant main effects of group with EP having higher amygdala activation (p = 0.01), ventrolateral prefrontal cortex activation (vlPFC, p = 0.03), self-report of stress (p = 0.01), and heart rate (p < 0.001). Our study found preliminary evidence that people with early psychosis showed heightened response to stressful and non-threatening situations, across multiple levels of stress responses. Our findings suggest a novel perspective on stress alterations in early psychosis and highlight the importance of considering both stressful and non-stressful situations.
Collapse
Affiliation(s)
- Brandee Feola
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, United States of America.
| | | | - Dongju J Seo
- Yale School of Medicine, United States of America
| | - Victoria Fox
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, United States of America
| | - Jesse Oler
- University of Miami School of Medicine, United States of America
| | - Stephan Heckers
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, United States of America
| | - Neil D Woodward
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, United States of America
| | | |
Collapse
|
2
|
Feola B, Moussa-Tooks AB, Sheffield JM, Heckers S, Woodward ND, Blackford JU. Threat Responses in Schizophrenia: A Negative Valence Systems Framework. Curr Psychiatry Rep 2024; 26:9-25. [PMID: 38183600 PMCID: PMC10962319 DOI: 10.1007/s11920-023-01479-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/05/2023] [Indexed: 01/08/2024]
Abstract
PURPOSE OF REVIEW Emotions are prominent in theories and accounts of schizophrenia but are largely understudied compared to cognition. Utilizing the Research Domain Criteria (RDoC) Negative Valence Systems framework, we review the current knowledge of emotions in schizophrenia. Given the pivotal role of threat responses in theories of schizophrenia and the substantial evidence of altered threat responses, we focus on three components of Negative Valence Systems tied to threat responses: responses to acute threat, responses to potential threat, and sustained threat. RECENT FINDINGS Individuals with schizophrenia show altered responses to neutral stimuli during acute threat, bed nucleus of the stria terminalis connectivity in response to potential threat, and threat responses associated with sustained threat. Our review concludes that Negative Valence Systems are altered in schizophrenia; however, the level and evidence of alterations vary across the types of threat responses. We suggest avenues for future research to further understand and intervene on threat responses in schizophrenia.
Collapse
Affiliation(s)
- Brandee Feola
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, 1601 23rd Avenue South, Nashville, TN, 37212, USA.
| | - Alexandra B Moussa-Tooks
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, 1601 23rd Avenue South, Nashville, TN, 37212, USA
- Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, IN, USA
| | - Julia M Sheffield
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, 1601 23rd Avenue South, Nashville, TN, 37212, USA
| | - Stephan Heckers
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, 1601 23rd Avenue South, Nashville, TN, 37212, USA
| | - Neil D Woodward
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, 1601 23rd Avenue South, Nashville, TN, 37212, USA
| | - Jennifer U Blackford
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
3
|
Karperien AL, Jelinek HF. Morphology and Fractal-Based Classifications of Neurons and Microglia in Two and Three Dimensions. ADVANCES IN NEUROBIOLOGY 2024; 36:149-172. [PMID: 38468031 DOI: 10.1007/978-3-031-47606-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Microglia and neurons live physically intertwined, intimately related structurally and functionally in a dynamic relationship in which microglia change continuously over a much shorter timescale than do neurons. Although microglia may unwind and depart from the neurons they attend under certain circumstances, in general, together both contribute to the fractal topology of the brain that defines its computational capabilities. Both neuronal and microglial morphologies are well-described using fractal analysis complementary to more traditional measures. For neurons, the fractal dimension has proved valuable for classifying dendritic branching and other neuronal features relevant to pathology and development. For microglia, fractal geometry has substantially contributed to classifying functional categories, where, in general, the more pathological the biological status, the lower the fractal dimension for individual cells, with some exceptions, including hyper-ramification. This chapter provides a review of the intimate relationships between neurons and microglia, by introducing 2D and 3D fractal analysis methodology and its applications in neuron-microglia function in health and disease.
Collapse
Affiliation(s)
- Audrey L Karperien
- School of Community Health, Charles Sturt University, Albury, NSW, Australia
| | - Herbert F Jelinek
- Department of Medical Sciences and Biotechnology Center, Khalifa University, Abu Dhabi, UAE
| |
Collapse
|
4
|
Di Ieva A. Fractals in Neuroanatomy and Basic Neurosciences: An Overview. ADVANCES IN NEUROBIOLOGY 2024; 36:141-147. [PMID: 38468030 DOI: 10.1007/978-3-031-47606-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
The introduction of fractal geometry to the neurosciences has been a major paradigm shift over the last decades as it has helped overcome approximations and limitations that occur when Euclidean and reductionist approaches are used to analyze neurons or the entire brain. Fractal geometry allows for quantitative analysis and description of the geometric complexity of the brain, from its single units to the neuronal networks.As illustrated in the second section of this book, fractal analysis provides a quantitative tool for the study of the morphology of brain cells (i.e., neurons and microglia) and its components (e.g., dendritic trees, synapses), as well as the brain structure itself (cortex, functional modules, neuronal networks). The self-similar logic which generates and shapes the different hierarchical systems of the brain and even some structures related to its "container," that is, the cranial sutures on the skull, is widely discussed in the following chapters, with a link between the applications of fractal analysis to the neuroanatomy and basic neurosciences to the clinical applications discussed in the third section.
Collapse
Affiliation(s)
- Antonio Di Ieva
- Computational NeuroSurgery (CNS) Lab & Macquarie Neurosurgery, Macquarie Medical School, Faculty of Medicine, Human and Health Sciences, Macquarie University, Sydney, NSW, Australia.
| |
Collapse
|
5
|
Bolívar-Baquero O, Troncoso J. Facial nerve axotomy induces morphological changes in hippocampal pyramidal neurons. J Comp Neurol 2023; 531:663-680. [PMID: 36629001 DOI: 10.1002/cne.25455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/01/2022] [Accepted: 12/20/2022] [Indexed: 01/12/2023]
Abstract
Facial nerve injury in rats have been widely used to study functional and structural changes that occur in the injured motoneurons and other central nervous system structures related with sensorimotor processing. A decrease in long-term potentiation of hippocampal CA3-to-CA1 commissural synapse has recently been reported related to this peripheral injury. Additionally, it has been found increased corticosterone plasmatic levels, impairment in spatial memory consolidation, and hippocampal microglial activation in animals with facial nerve axotomy. In this work, we analyzed the neuronal morphology of hippocampal CA1 and CA3 pyramidal neurons in animals with either reversible or irreversible facial nerve injury. For this purpose, brain tissues of injured animals sacrificed at different postlesion times, were stained with the Golgi-Cox method and compared with control brains. It was found that both reversible and irreversible facial nerve injury-induced significant decreases in dendritic tree complexity, dendritic length, branch points, and spine density of hippocampal neurons. However, such changes' timing varied according to hippocampal area (CA1 vs. CA3), dendritic area (apical vs. basal), and lesion type (reversible vs. irreversible). In general, the observed changes were transient when animals had the possibility of motor recovery (reversible injury), but perdurable if the recovery from the lesion was impeded (irreversible injury). CA1 apical and CA3 basal dendritic tree morphology were more sensible to irreversible injury. It is concluded that facial nerve injury induced significant changes in hippocampal CA1 and CA3 pyramidal neurons morphology, which could be related to LTP impairments and microglial activation in the hippocampal formation, previously described.
Collapse
Affiliation(s)
- Oscar Bolívar-Baquero
- Behavioral Neurophysiology Laboratory, Physiological Sciences Department, School of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Julieta Troncoso
- Behavioral Neurophysiology Laboratory, Physiological Sciences Department, School of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia.,Biology Department, School of Sciences, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
6
|
Ramnauth AD, Maynard KR, Kardian AS, Phan BN, Tippani M, Rajpurohit S, Hobbs JW, Cerceo Page S, Jaffe AE, Martinowich K. Induction of Bdnf from promoter I following electroconvulsive seizures contributes to structural plasticity in neurons of the piriform cortex. Brain Stimul 2022; 15:427-433. [PMID: 35183789 PMCID: PMC8957536 DOI: 10.1016/j.brs.2022.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 01/19/2022] [Accepted: 02/10/2022] [Indexed: 11/02/2022] Open
Abstract
BACKGROUND Electroconvulsive therapy (ECT) efficacy is hypothesized to depend on induction of molecular and cellular events that trigger neuronal plasticity. Investigating how electroconvulsive seizures (ECS) impact plasticity in animal models can help inform our understanding of basic mechanisms by which ECT relieves symptoms of depression. ECS-induced plasticity is associated with differential expression of unique isoforms encoding the neurotrophin, brain-derived neurotrophic factor (BDNF). HYPOTHESIS We hypothesized that cells expressing the Bdnf exon 1-containing isoform are important for ECS-induced structural plasticity in the piriform cortex, a highly epileptogenic region that is responsive to ECS. METHODS We selectively labeled Bdnf exon 1-expressing neurons in mouse piriform cortex using Cre recombinase dependent on GFP technology (CRE-DOG). We then quantified changes in dendrite morphology and density of Bdnf exon 1-expressing neurons. RESULTS Loss of promoter I-derived BDNF caused changes in spine density and morphology in Bdnf exon 1-expressing neurons following ECS. CONCLUSIONS Promoter I-derived Bdnf is required for ECS-induced dendritic structural plasticity in Bdnf exon 1-expressing neurons.
Collapse
Affiliation(s)
- Anthony D. Ramnauth
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland, USA,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kristen R. Maynard
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland, USA
| | - Alisha S. Kardian
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland, USA
| | - BaDoi N. Phan
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland, USA,Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA,Medical Scientist Training Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Madhavi Tippani
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland, USA
| | - Sumita Rajpurohit
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland, USA
| | - John W. Hobbs
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland, USA
| | - Stephanie Cerceo Page
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland, USA
| | - Andrew E. Jaffe
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland, USA,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Mental Health, Johns Hopkins University, Baltimore, MD, USA.,Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.,Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Keri Martinowich
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland, USA,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
7
|
Babicola L, Ventura R, D'Addario SL, Ielpo D, Andolina D, Di Segni M. Long term effects of early life stress on HPA circuit in rodent models. Mol Cell Endocrinol 2021; 521:111125. [PMID: 33333214 DOI: 10.1016/j.mce.2020.111125] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/23/2020] [Accepted: 12/10/2020] [Indexed: 01/06/2023]
Abstract
Adaptation to environmental challenges represents a critical process for survival, requiring the complex integration of information derived from both external cues and internal signals regarding current conditions and previous experiences. The Hypothalamic-pituitary-adrenal axis plays a central role in this process inducing the activation of a neuroendocrine signaling cascade that affects the delicate balance of activity and cross-talk between areas that are involved in sensorial, emotional, and cognitive processing such as the hippocampus, amygdala, Prefrontal Cortex, Ventral Tegmental Area, and dorsal raphe. Early life stress, especially early critical experiences with caregivers, influences the functional and structural organization of these areas, affects these processes in a long-lasting manner and may result in long-term maladaptive and psychopathological outcomes, depending on the complex interaction between genetic and environmental factors. This review summarizes the results of studies that have modeled this early postnatal stress in rodents during the first 2 postnatal weeks, focusing on the long-term effects on molecular and structural alteration in brain areas involved in Hypothalamic-pituitary-adrenal axis function. Moreover, a brief investigation of epigenetic mechanisms and specific genetic targets mediating the long-term effects of these early environmental manipulations and at the basis of differential neurobiological and behavioral effects during adulthood is provided.
Collapse
Affiliation(s)
- Lucy Babicola
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, 00184, Rome, Italy; IRCCS Fondazione Santa Lucia, Via Del Fosso di Fiorano, 64, 00143, Rome, Italy
| | - Rossella Ventura
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, 00184, Rome, Italy; IRCCS Fondazione Santa Lucia, Via Del Fosso di Fiorano, 64, 00143, Rome, Italy.
| | - Sebastian Luca D'Addario
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, 00184, Rome, Italy; IRCCS Fondazione Santa Lucia, Via Del Fosso di Fiorano, 64, 00143, Rome, Italy; Behavioral Neuroscience PhD Programme, Sapienza University, Piazzale Aldo Moro 5, 00184, Rome, Italy
| | - Donald Ielpo
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, 00184, Rome, Italy; IRCCS Fondazione Santa Lucia, Via Del Fosso di Fiorano, 64, 00143, Rome, Italy; Behavioral Neuroscience PhD Programme, Sapienza University, Piazzale Aldo Moro 5, 00184, Rome, Italy
| | - Diego Andolina
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, 00184, Rome, Italy; IRCCS Fondazione Santa Lucia, Via Del Fosso di Fiorano, 64, 00143, Rome, Italy
| | - Matteo Di Segni
- IRCCS Fondazione Santa Lucia, Via Del Fosso di Fiorano, 64, 00143, Rome, Italy.
| |
Collapse
|
8
|
Lee YJ, Kim HR, Lee CY, Hyun SA, Ko MY, Lee BS, Hwang DY, Ka M. 2-Phenylethylamine (PEA) Ameliorates Corticosterone-Induced Depression-Like Phenotype via the BDNF/TrkB/CREB Signaling Pathway. Int J Mol Sci 2020; 21:ijms21239103. [PMID: 33265983 PMCID: PMC7729630 DOI: 10.3390/ijms21239103] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 12/19/2022] Open
Abstract
Depression is a serious medical illness that is one of the most prevalent psychiatric disorders. Corticosterone (CORT) increases depression-like behavior, with some effects on anxiety-like behavior. 2-Phenethylamine (PEA) is a monoamine alkaloid that acts as a central nervous system stimulant in humans. Here, we show that PEA exerts antidepressant effects by modulating the Brain-derived neurotrophic factor (BDNF)/tropomyosin receptor kinase B (TrkB)/cAMP response element binding protein (CREB) signaling pathway in CORT-induced depression. To investigate the potential effects of PEA on CORT-induced depression, we first treated CORT (50 μM)-induced hippocampal neurons with 100 μM PEA for 24 h. We found that treatment with CORT altered dendritic spine architecture; however, treatment with PEA rescued dendritic spine formation via regulation of BDNF/TrkB/CREB signaling. Next, we used a mouse model of CORT-induced depression. Mice were treated with CORT (20 mg/kg) for 21 days, followed by assessments of a battery of depression-like behaviors. During the final four days of CORT exposure, the mice were treated with PEA (50 mg/kg). We found that CORT injection promoted depression-like behavior and significantly decreased BDNF and TrkB expression in the hippocampus. However, treatment with PEA significantly ameliorated the behavioral and biochemical changes induced by CORT. Our findings reveal that PEA exerts antidepressant effects by modulating the BDNF/TrkB/CREB signaling pathway in a mouse model of CORT-induced depression.
Collapse
Affiliation(s)
- Young-Ju Lee
- Pharmacology and Drug Abuse Group, Convergence Toxicology Research Division, Korea Institute of Toxicology, KRICT, Daejeon 34114, Korea; (Y.-J.L.); (H.R.K.); (C.Y.L.); (S.-A.H.); (M.Y.K.)
- Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Korea;
| | - Hye Ryeong Kim
- Pharmacology and Drug Abuse Group, Convergence Toxicology Research Division, Korea Institute of Toxicology, KRICT, Daejeon 34114, Korea; (Y.-J.L.); (H.R.K.); (C.Y.L.); (S.-A.H.); (M.Y.K.)
- Laboratory Animal Center, Korea Brain Research Institute, Daegu 61062, Korea
| | - Chang Youn Lee
- Pharmacology and Drug Abuse Group, Convergence Toxicology Research Division, Korea Institute of Toxicology, KRICT, Daejeon 34114, Korea; (Y.-J.L.); (H.R.K.); (C.Y.L.); (S.-A.H.); (M.Y.K.)
| | - Sung-Ae Hyun
- Pharmacology and Drug Abuse Group, Convergence Toxicology Research Division, Korea Institute of Toxicology, KRICT, Daejeon 34114, Korea; (Y.-J.L.); (H.R.K.); (C.Y.L.); (S.-A.H.); (M.Y.K.)
| | - Moon Yi Ko
- Pharmacology and Drug Abuse Group, Convergence Toxicology Research Division, Korea Institute of Toxicology, KRICT, Daejeon 34114, Korea; (Y.-J.L.); (H.R.K.); (C.Y.L.); (S.-A.H.); (M.Y.K.)
| | - Byoung-Seok Lee
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Korea;
| | - Dae Youn Hwang
- Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Korea;
| | - Minhan Ka
- Pharmacology and Drug Abuse Group, Convergence Toxicology Research Division, Korea Institute of Toxicology, KRICT, Daejeon 34114, Korea; (Y.-J.L.); (H.R.K.); (C.Y.L.); (S.-A.H.); (M.Y.K.)
- Correspondence: ; Tel.: +82-42-610-8095; Fax: +82-42-610-8252
| |
Collapse
|
9
|
Camargo A, Dalmagro AP, M. Rosa J, B. Zeni AL, P. Kaster M, Tasca CI, S. Rodrigues AL. Subthreshold doses of guanosine plus ketamine elicit antidepressant-like effect in a mouse model of depression induced by corticosterone: Role of GR/NF-κB/IDO-1 signaling. Neurochem Int 2020; 139:104797. [DOI: 10.1016/j.neuint.2020.104797] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/01/2020] [Accepted: 06/25/2020] [Indexed: 12/11/2022]
|
10
|
Zhao F, Tao W, Shang Z, Zhang W, Ruan J, Zhang C, Zhou L, Aiello H, Lai H, Qu R. Facilitating Granule Cell Survival and Maturation in Dentate Gyrus With Baicalin for Antidepressant Therapeutics. Front Pharmacol 2020; 11:556845. [PMID: 32982755 PMCID: PMC7493074 DOI: 10.3389/fphar.2020.556845] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/18/2020] [Indexed: 01/02/2023] Open
Abstract
Baicalin isolated from Scutellaria baicalensis possesses antidepressant abilities through its relation to hippocampal neurogenesis. Current research has found that baicalin can promote the proliferation of hippocampal granule cells, however, the detailed mechanism of baicalin on the survival and maturation of hippocampal granule cells has yet to be sufficiently explored. The purpose of this study was to evaluate whether baicalin could facilitate the survival and maturation of hippocampal granule cells, and to explore its potential mechanism. The chronic corticosterone (CORT)-induced mouse model of depression was used to assess antidepressant-like effects of baicalin and to illuminate possible molecular mechanisms by which baicalin affects hippocampal neurogenesis. The survival and maturation of granule cells were measured by immunohistochemistry, immunofluorescence and Golgi staining. The expression of Phosphatidylinositol 3-kinase (PI3K)/Protein kinase B (AKT)/glycogen synthase kinase-3β (GSK3β)/β-catenin pathway related proteins were measured by western blot analysis. PI3K inhibitor LY292002 and AKT inhibitor Perifosine were administered to HT-22 cells to explore the relationship between the PI3K/AKT/GSK3β/β-catenin pathway and baicalin. The results of the study illustrated that baicalin significantly decreased chronic CORT-induced depressive-like behaviors and reduced serum corticosterone levels. In addition, baicalin (administered at 60 mg/kg) reversed chronic CORT-induced lesions on hippocampal granule cells. Moreover, baicalin significantly increased the phosphorylation rate of PI3K, AKT, GSK3β, and total β-catenin. The study found that administration of LY292002/Perifosine counteracted the effects of baicalin in HT-22 cells. These results demonstrate that baicalin can alleviate chronic CORT-induced depressive-like behaviors through promoting survival and maturation of adult-born hippocampal granule cells and exhibiting protective effect on hippocampal neuron morphology. We propose the underlying mechanisms involve the activation of the PI3K/AKT/GSK3β/β-catenin pathway.
Collapse
Affiliation(s)
- Fan Zhao
- College of Chinese Medicine, College of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weiwei Tao
- College of Chinese Medicine, College of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhiyuan Shang
- College of Chinese Medicine, College of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weihua Zhang
- College of Chinese Medicine, College of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jie Ruan
- College of Chinese Medicine, College of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chenyiyu Zhang
- College of Chinese Medicine, College of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Liping Zhou
- College of Chinese Medicine, College of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | | | - Hezheng Lai
- Chinese Medicine Centre, Western Sydney University, Campbelltown, NSW, Australia.,NICM Health Research Institute, Western Sydney University, Westmead, NSW, Australia
| | - Rong Qu
- College of Chinese Medicine, College of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
11
|
Wang P, Liang Y, Chen K, Yau SY, Sun X, Cheng KKY, Xu A, So KF, Li A. Potential Involvement of Adiponectin Signaling in Regulating Physical Exercise-Elicited Hippocampal Neurogenesis and Dendritic Morphology in Stressed Mice. Front Cell Neurosci 2020; 14:189. [PMID: 32774242 PMCID: PMC7381385 DOI: 10.3389/fncel.2020.00189] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 05/29/2020] [Indexed: 12/12/2022] Open
Abstract
Adiponectin, a cytokine secreted by mature adipocytes, proves to be neuroprotective. We have previously reported that running triggers adiponectin up-regulation which subsequently promotes generation of hippocampal neurons and thereby alleviates depression-like behaviors in non-stressed mice. However, under the stressing condition, whether adiponectin could still exert antidepressant-like effects following exercise remained unexplored. In this study, by means of repeated corticosterone injections to mimic stress insult and voluntary wheel running as physical exercise intervention, we examined whether exercise-elicited antidepressive effects might involve adiponectin's regulation on hippocampal neurogenesis and dendritic plasticity in stressed mice. Here we show that repeated injections of corticosterone inhibited hippocampal neurogenesis and impaired dendritic morphology of neurons in the dentate gyrus of both wild-type and adiponectin-knockout mice comparably, which subsequently evoked depression-like behaviors. Voluntary wheel running attenuated corticosterone-suppressed neurogenesis and enhanced dendritic plasticity in the hippocampus, ultimately reducing depression-like behaviors in wild-type, but not adiponectin-knockout mice. We further demonstrate that such proneurogenic effects were potentially achieved through activation of the AMP-dependent kinase (AMPK) pathway. Our study provides the first evidence that adiponectin signaling is essential for physical exercise-triggered effects on stress-elicited depression by retaining the normal proliferation of neural progenitors and dendritic morphology of neurons in the hippocampal dentate gyrus, which may depend on activation of the AMPK pathway.
Collapse
Affiliation(s)
- Pingjie Wang
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Joint International Research Laboratory of CNS Regeneration Ministry of Education, Jinan University, Guangzhou, China
| | - Yiyao Liang
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Joint International Research Laboratory of CNS Regeneration Ministry of Education, Jinan University, Guangzhou, China
| | - Kai Chen
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Joint International Research Laboratory of CNS Regeneration Ministry of Education, Jinan University, Guangzhou, China
| | - Suk-Yu Yau
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Xin Sun
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Joint International Research Laboratory of CNS Regeneration Ministry of Education, Jinan University, Guangzhou, China
| | - Kenneth King-Yip Cheng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Aimin Xu
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong.,Department of Pharmacy and Pharmacology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong.,State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Pokfulam, Hong Kong
| | - Kwok-Fai So
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Joint International Research Laboratory of CNS Regeneration Ministry of Education, Jinan University, Guangzhou, China.,State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong.,Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Ang Li
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Joint International Research Laboratory of CNS Regeneration Ministry of Education, Jinan University, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| |
Collapse
|
12
|
Rogers LJ. Steroid hormones influence light-dependent development of visual projections to the forebrain (Commentary on Letzner et al., 2020). Eur J Neurosci 2020; 52:3572-3574. [PMID: 32510665 DOI: 10.1111/ejn.14851] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 05/27/2020] [Accepted: 05/31/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Lesley J Rogers
- School of Science and Technology, University of New England, Armidale, NSW, Australia
| |
Collapse
|
13
|
Short AK, Maras PM, Pham AL, Ivy AS, Baram TZ. Blocking CRH receptors in adults mitigates age-related memory impairments provoked by early-life adversity. Neuropsychopharmacology 2020; 45:515-523. [PMID: 31698409 PMCID: PMC6969076 DOI: 10.1038/s41386-019-0562-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/26/2019] [Accepted: 10/28/2019] [Indexed: 01/06/2023]
Abstract
In humans, early-life adversity is associated with impairments in learning and memory that may emerge later in life. In rodent models, early-life adversity directly impacts hippocampal neuron structure and connectivity with progressive deficits in long-term potentiation and spatial memory function. Previous work has demonstrated that augmented release and actions of the stress-activated neuropeptide, CRH, contribute to the deleterious effects of early-life adversity on hippocampal dendritic arborization, synapse number and memory-function. Early-life adversity increases hippocampal CRH expression, and blocking hippocampal CRH receptor type-1 (CRHR1) immediately following early-life adversity prevented the consequent memory and LTP defects. Here, we tested if blocking CRHR1 in young adults ameliorates early-life adversity-provoked memory deficits later in life. A weeklong course of a CRHR1 antagonist in 2-month-old male rats prevented early-life adversity-induced deficits in object recognition memory that emerged by 12 months of age. Surprisingly, whereas the intervention did not mitigate early-life adversity-induced spatial memory losses at 4 and 8 months, it restored hippocampus-dependent location memory in 12-month-old rats that experienced early-life adversity. Neither early-life adversity nor CRHR1 blockade in the adult influenced anxiety- or depression-related behaviors. Altogether, these findings suggest that cognitive deficits attributable to adversity during early-life-sensitive periods are at least partially amenable to interventions later in life.
Collapse
Affiliation(s)
- Annabel K Short
- Department of Anatomy and Neurobiology, University of California- Irvine, Irvine, CA, USA.
- Department of Pediatrics, University of California-Irvine, Irvine, CA, USA.
| | - Pamela M Maras
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - Aidan L Pham
- Department of Anatomy and Neurobiology, University of California- Irvine, Irvine, CA, USA
- Department of Pediatrics, University of California-Irvine, Irvine, CA, USA
| | - Autumn S Ivy
- Department of Anatomy and Neurobiology, University of California- Irvine, Irvine, CA, USA
- Department of Pediatrics, University of California-Irvine, Irvine, CA, USA
| | - Tallie Z Baram
- Department of Anatomy and Neurobiology, University of California- Irvine, Irvine, CA, USA
- Department of Pediatrics, University of California-Irvine, Irvine, CA, USA
- Department of Neurology, University of California-Irvine, Irvine, CA, USA
| |
Collapse
|
14
|
Blankenship SL, Botdorf M, Riggins T, Dougherty LR. Lasting effects of stress physiology on the brain: Cortisol reactivity during preschool predicts hippocampal functional connectivity at school age. Dev Cogn Neurosci 2019; 40:100736. [PMID: 31770714 PMCID: PMC6974891 DOI: 10.1016/j.dcn.2019.100736] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 09/10/2019] [Accepted: 11/12/2019] [Indexed: 11/19/2022] Open
Abstract
Prolonged exposure to glucocorticoid stress hormones, such as cortisol in humans, has been associated with structural and functional changes in the hippocampus. The majority of research demonstrating these associations in humans has been conducted in adult, clinical, or severely maltreated populations, with little research investigating these effects in young or more typically developing populations. The present study sought to address this gap by investigating longitudinal associations between preschool (3−5 years) and concurrent (5–9 years) cortisol reactivity to a laboratory stressor and hippocampal functional connectivity during a passive viewing fMRI scan. Results showed that, after controlling for concurrent cortisol reactivity, greater total cortisol release in response to a stressor during preschool predicted increased anterior and posterior hippocampal connectivity with the precuneus and cingulate gyrus at school-age. These findings are consistent with literature from adult and non-human investigations and suggest lasting impacts of early stress physiology on the brain.
Collapse
Affiliation(s)
- Sarah L Blankenship
- Department of Psychology, University of Maryland, College Park, MD, USA; Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD, USA
| | - Morgan Botdorf
- Department of Psychology, University of Maryland, College Park, MD, USA
| | - Tracy Riggins
- Department of Psychology, University of Maryland, College Park, MD, USA; Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD, USA
| | - Lea R Dougherty
- Department of Psychology, University of Maryland, College Park, MD, USA; Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD, USA.
| |
Collapse
|
15
|
Otsuka Y, Kakeda S, Sugimoto K, Katsuki A, Nguyen LH, Igata R, Watanabe K, Ueda I, Kishi T, Iwata N, Korogi Y, Yoshimura R. COMT polymorphism regulates the hippocampal subfield volumes in first-episode, drug-naive patients with major depressive disorder. Neuropsychiatr Dis Treat 2019; 15:1537-1545. [PMID: 31239688 PMCID: PMC6560253 DOI: 10.2147/ndt.s199598] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 04/29/2019] [Indexed: 12/11/2022] Open
Abstract
Purpose: Compared with healthy subjects (HS), patients with major depressive disorder (MDD) exhibit volume differences that affect the volume changes in several areas such as the limbic, cortical, subcortical, and white matter. Catechol-O-methyltransferase (COMT) is a methylation enzyme that catalyzes endogenous catecholamines. The Val158Met polymorphism of COMT has been reported to affect the dopamine (DA) levels, which plays an important role in psychiatric diseases. However, the relationships among both DA levels, COMT genotype, and brain morphology are complicated and controversial. In previous studies that investigated the hippocampal subfields, the greatest brain abnormalities in MDD patients were observed in Cornu Ammonis (CA)1 and the subiculum, followed by that in CA2-3. We have prospectively demonstrated the relationship between the single-nucleotide polymorphism of the Val158Met COMT gene (rs4680) and the hippocampal subfields in drug-naive MDD patients. Patients and methods: In this study, we compared 27 MDD patients and 42 HS who were divided into groups based on their COMT genotype. The effects of the diagnosis, genotype, and genotype-diagnosis interaction related to CA1 and the subiculum volumes, as well as the whole-brain cortical thickness, were evaluated by performing a FreeSurfer statistical analysis of high-resolution magnetic resonance imaging (MRI) findings. Results: The results revealed that there was a statistically significant interaction between the effects of diagnosis and genotype on the right subiculum (a component of the hippocampus). Conclusion: This Val158Met COMT polymorphism may influence the subiculum volume in drug-naive, first-episode MDD patients.
Collapse
Affiliation(s)
- Yuka Otsuka
- Department of Psychiatry, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Shingo Kakeda
- Department of Radiology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Koichiro Sugimoto
- Department of Radiology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Asuka Katsuki
- Department of Psychiatry, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Le Hoa Nguyen
- Department of Psychiatry, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Ryohei Igata
- Department of Psychiatry, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Keita Watanabe
- Department of Radiology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Issei Ueda
- Department of Radiology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Taro Kishi
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Japan
| | - Nakao Iwata
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Japan
| | - Yukunori Korogi
- Department of Radiology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Reiji Yoshimura
- Department of Psychiatry, University of Occupational and Environmental Health, Kitakyushu, Japan
| |
Collapse
|
16
|
Zhong X, Ning Y, Gu Y, Wu Z, Ouyang C, Liang W, Chen B, Peng Q, Mai N, Wu Y, Chen X, Huang X, Pan S. A reliable global cognitive decline and cortisol as an associated risk factor for patients with late-life depression in the short term: A 1-year prospective study. J Affect Disord 2018; 240:214-219. [PMID: 30081292 DOI: 10.1016/j.jad.2018.07.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 06/07/2018] [Accepted: 07/17/2018] [Indexed: 11/30/2022]
Abstract
BACKGROUND Late-life depression is a risk factor of dementia. It may increase the risk of reliable cognitive decline in the short term, and its associated risk factors remain unclear. Cortisol level may be one of the important predictors. OBJECTIVES To estimate whether patients with late-life depression are at an increased risk for reliable global cognitive declines in 1 year, and explore associated risk factors predicting cognitive declines. METHODS This prospective 1-year follow-up study involved 148 participants (67 with late-life depression and 81 normal elderly). Global cognitive function was assessed by the Mini-Mental State Examination (MMSE). The reliable global cognitive decline was defined by the reliable change index (RCI) of the MMSE. Factors related to cognitive function (e.g., age, gender, education, duration of depression and severity of depression) were obtained. Serum cortisol levels were measured at baseline. RESULTS At the 1-year follow-up assessment, 19 patients with late-life depression (28.4%) showed reliable global cognitive declines, a risk that was 6.4 times (95% CIs = 1.3-31.1, p = 0.021) higher than that of normal elderly. Elevated serum cortisol levels and older age were associated with the risk of cognitive decline that was 1.6- and 1.2-times higher (95% CIs = 1.07-2.5, p = 0.02, and 95% CIs = 1.04-1.4, p = 0.01 respectively). LIMITATIONS Serum cortisol levels were measured only in the morning. CONCLUSIONS Late-life depression is associated with a greatly increased risk of reliable cognitive decline in short term. Cortisol dysregulation may contribute to the pathology of cognitive decline.
Collapse
Affiliation(s)
- Xiaomei Zhong
- Department of Neurology, Nanfang Hospital, Southern Medical University/ The first School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China; Department of Neurology, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, Guangdong, China
| | - Yuping Ning
- Department of Neurology, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, Guangdong, China
| | - Yong Gu
- Department of Neurology, Nanfang Hospital, Southern Medical University/ The first School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhangying Wu
- Department of Neurology, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, Guangdong, China
| | - Cong Ouyang
- Department of Neurology, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, Guangdong, China
| | - Wanyuan Liang
- Department of Neurology, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, Guangdong, China
| | - Ben Chen
- Department of Neurology, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, Guangdong, China
| | - Qi Peng
- Department of Neurology, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, Guangdong, China
| | - Naikeng Mai
- Department of Neurology, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, Guangdong, China
| | - Yuejie Wu
- Department of Neurology, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, Guangdong, China
| | - Xinru Chen
- Department of Neurology, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, Guangdong, China
| | - Xingbing Huang
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, Guangdong, China
| | - Suyue Pan
- Department of Neurology, Nanfang Hospital, Southern Medical University/ The first School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
17
|
In Vivo and In Vitro Neuronal Plasticity Modulation by Epigenetic Regulators. J Mol Neurosci 2018; 65:301-311. [PMID: 29931501 DOI: 10.1007/s12031-018-1101-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 06/12/2018] [Indexed: 10/28/2022]
Abstract
Prenatal stress (PS) induces molecular changes that alter neural connectivity, increasing the risk for neuropsychiatric disorders. Here we analyzed -in the hippocampus of adult rats exposed to PS- the epigenetic signature mediating the PS-induced neuroplasticity changes. Furthermore, using cultured hippocampal neurons, we investigated the effects on neuroplasticity of an epigenetic modulator. PS induced significant modifications in the mRNA levels of stress-related transcription factor MEF2A, SUV39H1 histone methyltransferase, and TET1 hydroxylase, indicating that PS modifies gene expression through chromatin remodeling. In in vitro analysis, histone acetylation inhibition with apicidin increased filopodium density, suggesting that the external regulation of acetylation levels might modulate neuronal morphology. These results offer a way to enhance neural connectivity that could be considered to revert PS effects.
Collapse
|
18
|
Pytka K, Głuch-Lutwin M, Kotańska M, Waszkielewicz A, Kij A, Walczak M. Single Administration of HBK-15-a Triple 5-HT 1A, 5-HT 7, and 5-HT 3 Receptor Antagonist-Reverses Depressive-Like Behaviors in Mouse Model of Depression Induced by Corticosterone. Mol Neurobiol 2018; 55:3931-3945. [PMID: 28550529 PMCID: PMC5884906 DOI: 10.1007/s12035-017-0605-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 05/08/2017] [Indexed: 02/06/2023]
Abstract
Studies suggest that the blockade of 5-HT1A, 5-HT7, and 5-HT3 receptor may increase the speed of antidepressant response. 1-[(2,6-Dimethylphenoxy)ethoxyethyl]-4-(2-methoxyphenyl)piperazine hydrochloride (HBK-14) and 1-[(2-chloro-6-methylphenoxy)ethoxyethyl]-4-(2-methoxyphenyl)piperazine hydrochloride (HBK-15), dual 5-HT1A and 5-HT7 antagonists, showed significant antidepressant- and anxiolytic-like properties in our previous tests in rodents. In this study, we aimed to investigate their antidepressant potential using mouse model of corticosterone-induced depression. We chose sucrose preference test, forced swim test, and elevated plus maze to determine anhedonic-, antidepressant-, and anxiolytic-like activities. We also evaluated the influence of the active compound on brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) levels in the hippocampus. Moreover, for both compounds, we performed biofunctional (5-HT3 receptor) and pharmacokinetic studies. We found that HBK-14 and HBK-15 were potent 5-HT3 receptor antagonists. HBK-14 (2.5 mg/kg) and HBK-15 (1.25 mg/kg) after intravenous (i.v.) and intraperitoneal (i.p.) administration permeated the blood-brain barrier with brain/plasma ratio lower than 1. The bioavailability of studied compounds after i.p. administration was 15% for HBK-14 and 54% for HBK-15. Chronic administration of HBK-15 (1.25 mg/kg) and fluoxetine (10 mg/kg) protected corticosterone-treated mice from anhedonic-, depressive-, and anxiety-like behaviors, as well as decreases in BDNF and NGF levels in the hippocampus. HBK-14 (2.5 mg/kg) counteracted anxiety-like behaviors in corticosterone-treated mice. Single administration of HBK-15 (1.25 mg/kg) and ketamine (1 mg/kg) reversed depression-like behavior and regulated decreased BDNF level in the hippocampus in corticosterone-treated mice. Our results suggest that simultaneous blockade of serotonergic 5-HT1A, 5-HT7, and 5-HT3 receptors might accelerate antidepressant response.
Collapse
Affiliation(s)
- Karolina Pytka
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland.
| | - Monika Głuch-Lutwin
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland
| | - Magdalena Kotańska
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland
| | - Anna Waszkielewicz
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland
| | - Agnieszka Kij
- Chair and Department of Toxicology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland
- Jagiellonian Centre for Experimental Therapeutics, Bobrzyńskiego 14, 30-348, Krakow, Poland
| | - Maria Walczak
- Chair and Department of Toxicology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland
- Jagiellonian Centre for Experimental Therapeutics, Bobrzyńskiego 14, 30-348, Krakow, Poland
| |
Collapse
|
19
|
Maynard KR, Hobbs JW, Rajpurohit SK, Martinowich K. Electroconvulsive seizures influence dendritic spine morphology and BDNF expression in a neuroendocrine model of depression. Brain Stimul 2018; 11:856-859. [PMID: 29674117 DOI: 10.1016/j.brs.2018.04.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 03/30/2018] [Accepted: 04/03/2018] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Electroconvulsive therapy (ECT) is a rapid and effective treatment for major depressive disorder. Chronic stress-induced depression causes dendrite atrophy and deficiencies in brain-derived neurotrophic factor (BDNF), which are reversed by anti-depressant drugs. Electroconvulsive seizures (ECS), an animal model of ECT, robustly increase BDNF expression and stimulate dendritic outgrowth. OBJECTIVE The present study aims to understand cellular and molecular plasticity mechanisms contributing to the efficacy of ECS following chronic stress-induced depression. METHODS We quantify Bdnf transcript levels and dendritic spine density and morphology on cortical pyramidal neurons in mice exposed to vehicle or corticosterone and receiving either Sham or ECS treatment. RESULTS ECS rescues corticosterone-induced defects in spine morphology and elevates Bdnf exon 1 and exon 4-containing transcripts in cortex. CONCLUSIONS Dendritic spine remodeling and induction of activity-induced BDNF in the cortex represent important cellular and molecular plasticity mechanisms underlying the efficacy of ECS for treatment of chronic stress-induced depression.
Collapse
Affiliation(s)
- Kristen R Maynard
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, United States
| | - John W Hobbs
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, United States
| | - Sumita K Rajpurohit
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, United States
| | - Keri Martinowich
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, United States; Departments of Neuroscience, Psychiatry and Behavioral Sciences, Johns Hopkins Medical School, Baltimore, MD, 21205, United States.
| |
Collapse
|
20
|
Zalewska K, Pietrogrande G, Ong LK, Abdolhoseini M, Kluge M, Johnson SJ, Walker FR, Nilsson M. Sustained administration of corticosterone at stress-like levels after stroke suppressed glial reactivity at sites of thalamic secondary neurodegeneration. Brain Behav Immun 2018; 69:210-222. [PMID: 29162554 DOI: 10.1016/j.bbi.2017.11.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 11/07/2017] [Accepted: 11/17/2017] [Indexed: 01/05/2023] Open
Abstract
Secondary neurodegeneration (SND) is an insidious and progressive condition involving the death of neurons in regions of the brain that were connected to but undamaged by the initial stroke. Our group have published compelling evidence that exposure to psychological stress can significantly exacerbate the severity SND, a finding that has considerable clinical implications given that stroke-survivors often report experiencing high and unremitting levels of psychological stress. It may be possible to use one or more targeted pharmacological approaches to limit the negative effects of stress on the recovery process but in order to move forward with this approach the most critical stress signals have to be identified. Accordingly, in the current study we have directed our attention to examining the potential effects of corticosterone, delivered orally at stress-like levels. Our interest is to determine how similar the effects of corticosterone are to stress on repair and remodelling that is known to occur after stroke. The study involved 4 groups, sham and stroke, either administered corticosterone or normal drinking water. The functional impact was assessed using the cylinder task for paw asymmetry, grid walk for sensorimotor function, inverted grid for muscle strength and coordination and open field for anxiety-like behaviour. Biochemically and histologically, we considered disturbances in main cellular elements of the neurovascular unit, including microglia, astrocytes, neurons and blood vessels using both immunohistochemistry and western blotting. In short, we identified that corticosterone delivery after stroke results in significant suppression of key microglial and astroglial markers. No changes were observed on the vasculature and in neuronal specific markers. No changes were identified for sensorimotor function or anxiety-like behaviour. We did, however, observe a significant change in motor function as assessed using the inverted grid walk test. Collectively, these results suggest that pharmacologically targeting corticosterone levels in the future may be warranted but that such an approach is unlikely to limit all the negative effects associated with exposure to chronic stress.
Collapse
Affiliation(s)
- Katarzyna Zalewska
- School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Giovanni Pietrogrande
- School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Lin Kooi Ong
- School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia; NHMRC Centre of Research Excellence Stroke Rehabilitation and Brain Recovery, Australia
| | - Mahmoud Abdolhoseini
- School of Electrical Engineering and Computer Science, University of Newcastle, Callaghan, NSW, Australia
| | - Murielle Kluge
- School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Sarah J Johnson
- School of Electrical Engineering and Computer Science, University of Newcastle, Callaghan, NSW, Australia
| | - Frederick R Walker
- School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia; NHMRC Centre of Research Excellence Stroke Rehabilitation and Brain Recovery, Australia.
| | - Michael Nilsson
- School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia; NHMRC Centre of Research Excellence Stroke Rehabilitation and Brain Recovery, Australia
| |
Collapse
|
21
|
Sun Q, Jia N, Yang J, Chen G. Nrf2 Signaling Pathway Mediates the Antioxidative Effects of Taurine Against Corticosterone-Induced Cell Death in HUMAN SK-N-SH Cells. Neurochem Res 2017; 43:276-286. [DOI: 10.1007/s11064-017-2419-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 10/06/2017] [Accepted: 10/09/2017] [Indexed: 01/10/2023]
|
22
|
Cabrera-Pedraza VR, de Jesús Gómez-Villalobos M, de la Cruz F, Aguilar-Alonso P, Zamudio S, Flores G. Pregnancy improves cognitive deficit and neuronal morphology atrophy in the prefrontal cortex and hippocampus of aging spontaneously hypertensive rats. Synapse 2017; 71:e21991. [DOI: 10.1002/syn.21991] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 05/24/2017] [Accepted: 07/02/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Verónica R. Cabrera-Pedraza
- Instituto de Fisiología; Benemérita Universidad Autónoma de Puebla; Puebla Pue México
- Depto. de Fisiología; Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional; Cdmx México
| | | | - Fidel de la Cruz
- Depto. de Fisiología; Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional; Cdmx México
| | | | - Sergio Zamudio
- Depto. de Fisiología; Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional; Cdmx México
| | - Gonzalo Flores
- Instituto de Fisiología; Benemérita Universidad Autónoma de Puebla; Puebla Pue México
| |
Collapse
|
23
|
Tsiarli MA, Rudine A, Kendall N, Pratt MO, Krall R, Thiels E, DeFranco DB, Monaghan AP. Antenatal dexamethasone exposure differentially affects distinct cortical neural progenitor cells and triggers long-term changes in murine cerebral architecture and behavior. Transl Psychiatry 2017; 7:e1153. [PMID: 28608856 PMCID: PMC5537650 DOI: 10.1038/tp.2017.65] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 02/09/2017] [Accepted: 02/13/2017] [Indexed: 12/13/2022] Open
Abstract
Antenatal administration of synthetic glucocorticoids (sGC) is the standard of care for women at risk for preterm labor before 34 gestational weeks. Despite their widespread use, the type of sGC used and their dose or the dosing regimens are not standardized in the United States of America or worldwide. Several studies have identified neural deficits and the increased risk for cognitive and psychiatric disease later in life for children administered sGC prenatally. However, the precise molecular and cellular targets of GC action in the developing brain remain largely undefined. In this study, we demonstrate that a single dose of glucocorticoid during mid-gestation in mice leads to enhanced proliferation in select cerebral cortical neural stem/progenitor cell populations. These alterations are mediated by dose-dependent changes in the expression of cell cycle inhibitors and in genes that promote cell cycle re-entry. This leads to changes in neuronal number and density in the cerebral cortex at birth, coupled to long-term alterations in neurite complexity in the prefrontal cortex and hippocampus in adolescents, and changes in anxiety and depressive-like behaviors in adults.
Collapse
Affiliation(s)
- M A Tsiarli
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - A Rudine
- Division of Newborn Medicine, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
| | - N Kendall
- Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - M O Pratt
- Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - R Krall
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - E Thiels
- Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - D B DeFranco
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - A P Monaghan
- Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA,Department of Biomedical Sciences, University of Missouri Kansas City School of Medicine, Kansas City, MO, USA,Department of Biomedical Sciences, University of Missouri Kansas City School of Medicine, 2411 Holmes Street, Kansas City, MO 64108, USA. E-mail:
| |
Collapse
|
24
|
Watanabe R, Kakeda S, Watanabe K, Liu X, Katsuki A, Umeno-Nakano W, Hori H, Abe O, Yoshimura R, Korogi Y. Relationship between the hippocampal shape abnormality and serum cortisol levels in first-episode and drug-naïve major depressive disorder patients. Depress Anxiety 2017; 34:401-409. [PMID: 28129464 DOI: 10.1002/da.22604] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 10/29/2016] [Accepted: 12/28/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND We aimed to investigate the relationship between the hippocampal shape deformations and the serum cortisol levels in first-episode and drug-naïve major depression disorder (MDD) patients. METHODS Thirty first-episode and drug-naïve MDD patients and 40 healthy subjects were recruited. High-resolution T1-weighted imaging and morning blood samples for cortisol measurement were obtained from all MDD patients and healthy subjects. In the hippocampal shape analysis, we compared the hippocampal shape between MDD patients and healthy subjects and evaluated the linear correlation between hippocampal shape deformations and the serum cortisol levels in MDD patients and healthy subjects. RESULTS MDD patients showed significant inward deformations predominantly in the cornu ammonis (CA) 1 and subiculum in bilateral hippocampi compared to healthy subjects (false discovery rate (FDR) corrected, P < .05). Furthermore, in MDD patients, a significant linear correlation between inward deformations and high cortisol levels were found predominantly in the CA1 and subiculum, extending into the CA2-3 (FDR-corrected, P < .05), whereas no significant linear correlation was observed in healthy subjects. CONCLUSIONS The serum cortisol levels are therefore considered to be associated with hippocampal shape abnormalities in MDD.
Collapse
Affiliation(s)
- Rieko Watanabe
- Department of Radiology, University of Occupational and Environmental Health, Fukuoka, Japan
| | - Shingo Kakeda
- Department of Radiology, University of Occupational and Environmental Health, Fukuoka, Japan
| | - Keita Watanabe
- Department of Radiology, University of Occupational and Environmental Health, Fukuoka, Japan
| | - Xiaodan Liu
- Department of Radiology, University of Occupational and Environmental Health, Fukuoka, Japan.,Medical imaging center, 1st Affiliated Hospital of Jinan University, Guangzhou, China
| | - Asuka Katsuki
- Department of Psychiatry, University of Occupational and Environmental Health, Fukuoka, Japan
| | - Wakako Umeno-Nakano
- Department of Psychiatry, University of Occupational and Environmental Health, Fukuoka, Japan
| | - Hikaru Hori
- Department of Psychiatry, University of Occupational and Environmental Health, Fukuoka, Japan
| | - Osamu Abe
- Department of Radiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Reiji Yoshimura
- Department of Psychiatry, University of Occupational and Environmental Health, Fukuoka, Japan
| | - Yukunori Korogi
- Department of Radiology, University of Occupational and Environmental Health, Fukuoka, Japan
| |
Collapse
|
25
|
van Bodegom M, Homberg JR, Henckens MJAG. Modulation of the Hypothalamic-Pituitary-Adrenal Axis by Early Life Stress Exposure. Front Cell Neurosci 2017; 11:87. [PMID: 28469557 PMCID: PMC5395581 DOI: 10.3389/fncel.2017.00087] [Citation(s) in RCA: 325] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 03/13/2017] [Indexed: 12/20/2022] Open
Abstract
Exposure to stress during critical periods in development can have severe long-term consequences, increasing overall risk on psychopathology. One of the key stress response systems mediating these long-term effects of stress is the hypothalamic-pituitary-adrenal (HPA) axis; a cascade of central and peripheral events resulting in the release of corticosteroids from the adrenal glands. Activation of the HPA-axis affects brain functioning to ensure a proper behavioral response to the stressor, but stress-induced (mal)adaptation of the HPA-axis' functional maturation may provide a mechanistic basis for the altered stress susceptibility later in life. Development of the HPA-axis and the brain regions involved in its regulation starts prenatally and continues after birth, and is protected by several mechanisms preventing corticosteroid over-exposure to the maturing brain. Nevertheless, early life stress (ELS) exposure has been reported to have numerous consequences on HPA-axis function in adulthood, affecting both its basal and stress-induced activity. According to the match/mismatch theory, encountering ELS prepares an organism for similar ("matching") adversities during adulthood, while a mismatching environment results in an increased susceptibility to psychopathology, indicating that ELS can exert either beneficial or disadvantageous effects depending on the environmental context. Here, we review studies investigating the mechanistic underpinnings of the ELS-induced alterations in the structural and functional development of the HPA-axis and its key external regulators (amygdala, hippocampus, and prefrontal cortex). The effects of ELS appear highly dependent on the developmental time window affected, the sex of the offspring, and the developmental stage at which effects are assessed. Albeit by distinct mechanisms, ELS induced by prenatal stressors, maternal separation, or the limited nesting model inducing fragmented maternal care, typically results in HPA-axis hyper-reactivity in adulthood, as also found in major depression. This hyper-activity is related to increased corticotrophin-releasing hormone signaling and impaired glucocorticoid receptor-mediated negative feedback. In contrast, initial evidence for HPA-axis hypo-reactivity is observed for early social deprivation, potentially reflecting the abnormal HPA-axis function as observed in post-traumatic stress disorder, and future studies should investigate its neural/neuroendocrine foundation in further detail. Interestingly, experiencing additional (chronic) stress in adulthood seems to normalize these alterations in HPA-axis function, supporting the match/mismatch theory.
Collapse
Affiliation(s)
| | | | - Marloes J. A. G. Henckens
- Department of Cognitive Neuroscience, Centre for Neuroscience, Donders Institute for Brain, Cognition and BehaviourRadboudumc, Nijmegen, Netherlands
| |
Collapse
|
26
|
McIlwrick S, Pohl T, Chen A, Touma C. Late-Onset Cognitive Impairments after Early-Life Stress Are Shaped by Inherited Differences in Stress Reactivity. Front Cell Neurosci 2017; 11:9. [PMID: 28261058 PMCID: PMC5306385 DOI: 10.3389/fncel.2017.00009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 01/12/2017] [Indexed: 01/18/2023] Open
Abstract
Early-life stress (ELS) has been associated with lasting cognitive impairments and with an increased risk for affective disorders. A dysregulation of the hypothalamus-pituitary-adrenal (HPA) axis, the body’s main stress response system, is critically involved in mediating these long-term consequences of adverse early-life experience. It remains unclear to what extent an inherited predisposition for HPA axis sensitivity or resilience influences the relationship between ELS and cognitive impairments, and which neuroendocrine and molecular mechanisms may be involved. To investigate this, we exposed animals of the stress reactivity mouse model, consisting of three independent lines selectively bred for high (HR), intermediate (IR), or low (LR) HPA axis reactivity to a stressor, to ELS and assessed their cognitive performance, neuroendocrine function and hippocampal gene expression in early and in late adulthood. Our results show that HR animals that were exposed to ELS exhibited an HPA axis hyper-reactivity in early and late adulthood, associated with cognitive impairments in hippocampus-dependent tasks, as well as molecular changes in transcript levels involved in the regulation of HPA axis activity (Crh) and in neurotrophic action (Bdnf). In contrast, LR animals showed intact cognitive function across adulthood, with no change in stress reactivity. Intriguingly, LR animals that were exposed to ELS even showed significant signs of enhanced cognitive performance in late adulthood, which may be related to late-onset changes observed in the expression of Crh and Crhr1 in the dorsal hippocampus of these animals. Collectively, our findings demonstrate that the lasting consequences of ELS at the level of cognition differ as a function of inherited predispositions and suggest that an innate tendency for low stress reactivity may be protective against late-onset cognitive impairments after ELS.
Collapse
Affiliation(s)
- Silja McIlwrick
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry Munich, Germany
| | - Tobias Pohl
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry Munich, Germany
| | - Alon Chen
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of PsychiatryMunich, Germany; Department of Neurobiology, Weizmann Institute of ScienceRehovot, Israel
| | - Chadi Touma
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of PsychiatryMunich, Germany; Department of Behavioural Biology, University of OsnabrückOsnabrück, Germany
| |
Collapse
|
27
|
Vose LR, Stanton PK. Synaptic Plasticity, Metaplasticity and Depression. Curr Neuropharmacol 2017; 15:71-86. [PMID: 26830964 PMCID: PMC5327460 DOI: 10.2174/1570159x14666160202121111] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 08/13/2015] [Accepted: 01/30/2016] [Indexed: 01/30/2023] Open
Abstract
The development of a persistent depressive affective state has for some time been thought to result from persistent alterations in neurotransmitter-mediated synaptic transmission. While the identity of those transmitters has changed over the years, the literature has lacked mechanistic connections between the neurophysiological mechanisms they regulate, and how these mechanisms alter neuronal function, and, hence, affective homeostasis. This review will examine recent work that suggests that both long-term activity-dependent changes in synaptic strength (“plasticity”), and shifting set points for the ease of induction of future long-term changes (“metaplasticity”), may be critical to establishing and reversing a depressive behavioral state. Activity-dependent long-term synaptic plasticity involves both strengthening and weakening of synaptic connections associated with a dizzying array of neurochemical alterations that include synaptic insertion and removal of a number of subtypes of AMPA, NMDA and metabotropic glutamate receptors, changes in presynaptic glutamate release, and structural changes in dendritic spines. Cellular mechanisms of metaplasticity are far less well understood. Here, we will review the growing evidence that long-term synaptic changes in glutamatergic transmission, in brain regions that regulate mood, are key determinants of affective homeostasis and therapeutic targets with immense potential for drug development.
Collapse
Affiliation(s)
| | - Patric K Stanton
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, 10595, USA
| |
Collapse
|
28
|
Long-term effects of repeated maternal separation and ethanol intake on HPA axis responsiveness in adult rats. Brain Res 2017; 1657:193-201. [DOI: 10.1016/j.brainres.2016.11.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 11/10/2016] [Accepted: 11/30/2016] [Indexed: 01/23/2023]
|
29
|
Anderson RM, Glanz RM, Johnson SB, Miller MM, Romig-Martin SA, Radley JJ. Prolonged corticosterone exposure induces dendritic spine remodeling and attrition in the rat medial prefrontal cortex. J Comp Neurol 2016; 524:3729-3746. [PMID: 27113541 PMCID: PMC5063662 DOI: 10.1002/cne.24027] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 03/31/2016] [Accepted: 04/20/2016] [Indexed: 12/24/2022]
Abstract
The stress-responsive hypothalamo-pituitary-adrenal (HPA) axis plays a central role in promoting adaptations acutely, whereas adverse effects on physiology and behavior following chronic challenges may result from overactivity of this system. Elevations in glucocorticoids, the end-products of HPA activation, play roles in adaptive and maladaptive processes by targeting cognate receptors throughout neurons in limbic cortical networks to alter synaptic functioning. Because previous work has shown that chronic stress leads to functionally relevant regressive alterations in dendritic spine shape and number in pyramidal neurons in the medial prefrontal cortex (mPFC), this study examines the capacity of sustained increases in circulating corticosterone (B) alone to alter dendritic spine morphology and density in this region. Subcutaneous B pellets were implanted in rats to provide continuous exposure to levels approximating the circadian mean or peak of the steroid for 1, 2, or 3 weeks. Pyramidal neurons in the prelimbic area of the mPFC were selected for intracellular fluorescent dye filling, followed by high-resolution three-dimensional imaging and analysis of dendritic arborization and spine morphometry. Two or more weeks of B exposure decreased dendritic spine volume in the mPFC, whereas higher dose exposure of the steroid resulted in apical dendritic retraction and spine loss in the same cell population, with thin spine subtypes showing the greatest degree of attrition. Finally, these structural alterations were noted to persist following a 3-week washout period and corresponding restoration of circadian HPA rhythmicity. These studies suggest that prolonged disruptions in adrenocortical functioning may be sufficient to induce enduring regressive structural and functional alterations in the mPFC. J. Comp. Neurol. 524:3729-3746, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rachel M Anderson
- Department of Psychological and Brain Sciences and Program in Neuroscience, University of Iowa, Iowa City, Iowa, 52242
| | - Ryan M Glanz
- Department of Psychological and Brain Sciences and Program in Neuroscience, University of Iowa, Iowa City, Iowa, 52242
| | - Shane B Johnson
- Department of Psychological and Brain Sciences and Program in Neuroscience, University of Iowa, Iowa City, Iowa, 52242
| | - Mary M Miller
- Department of Psychological and Brain Sciences and Program in Neuroscience, University of Iowa, Iowa City, Iowa, 52242
| | - Sara A Romig-Martin
- Department of Psychological and Brain Sciences and Program in Neuroscience, University of Iowa, Iowa City, Iowa, 52242
| | - Jason J Radley
- Department of Psychological and Brain Sciences and Program in Neuroscience, University of Iowa, Iowa City, Iowa, 52242.
| |
Collapse
|
30
|
Schisandra chinensis produces the antidepressant-like effects in repeated corticosterone-induced mice via the BDNF/TrkB/CREB signaling pathway. Psychiatry Res 2016; 243:135-42. [PMID: 27387555 DOI: 10.1016/j.psychres.2016.06.037] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 05/16/2016] [Accepted: 06/23/2016] [Indexed: 01/08/2023]
Abstract
The present study aimed to examine the antidepressant-like effects and the possible mechanisms of Schisandra chinensis on depressive-like behavior induced by repeated corticosterone injections in mice. Here we evaluated the effect of an ethanol extract of the dried fruit of S. chinensis (EESC) on BDNF/TrkB/CREB signaling in the hippocampus and the prefrontal cortex. Three weeks of corticosterone injections in mice resulted in depressive-like behavior, as indicated by the significant decrease in sucrose consumption and increase the immobility time in the forced swim test, but without any influence on the locomotor activity. Further, there was a significant increase in serum corticosterone level and a significant downregulation of BDNF/TrkB/CREB signaling pathway in the hippocampus and prefrontal cortex in CORT-treated mice. Treatment of mice with EESC (600mg/kg) significantly ameliorated all the behavioral and biochemical changes induced by corticosterone. Moreover, pharmacological inhibition of BDNF signaling by K252a abolished entirely the antidepressant-like effect triggered by chronic EESC treatment. These results suggest that EESC produces an antidepressant-like effect in CORT-induced depression in mice, which is possibly mediated, at least in part, by rectifying the stress-based hypothalamic-pituitary-adrenal (HPA) axis dysfunction paradigm and upregulation of BDNF/TrkB/CREB signaling pathway.
Collapse
|
31
|
Herbert J, Lucassen PJ. Depression as a risk factor for Alzheimer's disease: Genes, steroids, cytokines and neurogenesis - What do we need to know? Front Neuroendocrinol 2016; 41:153-71. [PMID: 26746105 DOI: 10.1016/j.yfrne.2015.12.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/23/2015] [Accepted: 12/27/2015] [Indexed: 01/18/2023]
Abstract
Depression (MDD) is prodromal to, and a component of, Alzheimer's disease (AD): it may also be a trigger for incipient AD. MDD is not a unitary disorder, so there may be particular subtypes of early life MDD that pose independent high risks for later AD, though the identification of these subtypes is problematical. There may either be a common pathological event underlying both MDD and AD, or MDD may sensitize the brain to a second event ('hit') that precipitates AD. MDD may also accelerate brain ageing, including altered DNA methylation, increased cortisol but decreasing DHEA and thus the risk for AD. So far, genes predicting AD (e.g. APOEε4) are not risk factors for MDD, and those implicated in MDD (e.g. SLC6A4) are not risks for AD, so a common genetic predisposition looks unlikely. There is as yet no strong indication that an epigenetic event occurs during some forms of MDD that predisposes to later AD, though the evidence is limited. Glucocorticoids (GCs) are disturbed in some cases of MDD and in AD. GCs have marked degenerative actions on the hippocampus, a site of early β-amyloid deposition, and rare genetic variants of GC-regulating enzymes (e.g. 11β-HSD) predispose to AD. GCs also inhibit hippocampal neurogenesis and plasticity, and thus episodic memory, a core symptom of AD. Disordered GCs in MDD may inhibit neurogenesis, but the contribution of diminished neurogenesis to the onset or progression of AD is still debated. GCs and cytokines also reduce BDNF, implicated in both MDD and AD and hippocampal neurogenesis, reinforcing the notion that those cases of MDD with disordered GCs may be a risk for AD. Cytokines, including IL1β, IL6 and TNFα, are increased in the blood in some cases of MDD. They also reduce hippocampal neurogenesis, and increased cytokines are a known risk for later AD. Inflammatory changes occur in both MDD and AD (e.g. raised CRP, TNFα). Both cytokines and GCs can have pro-inflammatory actions in the brain. Inflammation (e.g. microglial activation) may be a common link, but this has not been systematically investigated. We lack substantial, rigorous and comprehensive follow-up studies to better identify possible subtypes of MDD that may represent a major predictor for later AD. This would enable specific interventions during critical episodes of these subtypes of MDD that should reduce this substantial risk.
Collapse
Affiliation(s)
- Joe Herbert
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, UK.
| | - Paul J Lucassen
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, The Netherlands
| |
Collapse
|
32
|
Chen Y, Baram TZ. Toward Understanding How Early-Life Stress Reprograms Cognitive and Emotional Brain Networks. Neuropsychopharmacology 2016; 41:197-206. [PMID: 26105143 PMCID: PMC4677123 DOI: 10.1038/npp.2015.181] [Citation(s) in RCA: 306] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/26/2015] [Accepted: 06/19/2015] [Indexed: 01/19/2023]
Abstract
Vulnerability to emotional disorders including depression derives from interactions between genes and environment, especially during sensitive developmental periods. Adverse early-life experiences provoke the release and modify the expression of several stress mediators and neurotransmitters within specific brain regions. The interaction of these mediators with developing neurons and neuronal networks may lead to long-lasting structural and functional alterations associated with cognitive and emotional consequences. Although a vast body of work has linked quantitative and qualitative aspects of stress to adolescent and adult outcomes, a number of questions are unclear. What distinguishes 'normal' from pathologic or toxic stress? How are the effects of stress transformed into structural and functional changes in individual neurons and neuronal networks? Which ones are affected? We review these questions in the context of established and emerging studies. We introduce a novel concept regarding the origin of toxic early-life stress, stating that it may derive from specific patterns of environmental signals, especially those derived from the mother or caretaker. Fragmented and unpredictable patterns of maternal care behaviors induce a profound chronic stress. The aberrant patterns and rhythms of early-life sensory input might also directly and adversely influence the maturation of cognitive and emotional brain circuits, in analogy to visual and auditory brain systems. Thus, unpredictable, stress-provoking early-life experiences may influence adolescent cognitive and emotional outcomes by disrupting the maturation of the underlying brain networks. Comprehensive approaches and multiple levels of analysis are required to probe the protean consequences of early-life adversity on the developing brain. These involve integrated human and animal-model studies, and approaches ranging from in vivo imaging to novel neuroanatomical, molecular, epigenomic, and computational methodologies. Because early-life adversity is a powerful determinant of subsequent vulnerabilities to emotional and cognitive pathologies, understanding the underlying processes will have profound implications for the world's current and future children.
Collapse
Affiliation(s)
- Yuncai Chen
- Department of Pediatrics, University of California, Irvine, CA, USA
| | - Tallie Z Baram
- Department of Pediatrics, University of California, Irvine, CA, USA
- Department of Anatomy/Neurobiology, University of California, Irvine, CA, USA
- Department of Neurology, University of California, Irvine, CA, USA
| |
Collapse
|
33
|
Pazini FL, Cunha MP, Rosa JM, Colla ARS, Lieberknecht V, Oliveira Á, Rodrigues ALS. Creatine, Similar to Ketamine, Counteracts Depressive-Like Behavior Induced by Corticosterone via PI3K/Akt/mTOR Pathway. Mol Neurobiol 2015; 53:6818-6834. [PMID: 26660117 DOI: 10.1007/s12035-015-9580-9] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 11/29/2015] [Indexed: 12/15/2022]
Abstract
Ketamine has emerged as a novel strategy to treat refractory depression, producing rapid remission, but elicits some side effects that limit its use. In an attempt to investigate a safer compound that may afford an antidepressant effect similar to ketamine, this study examined the effects of the ergogenic compound creatine in a model of depression, and the involvement of phosphatidylinositol-3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway in its effect. In order to induce a depressive-like behavior, mice were administered with corticosterone (20 mg/kg, per os (p.o.)) for 21 days. This treatment increased immobility time in the tail suspension test (TST), an effect abolished by a single administration of creatine (10 mg/kg, p.o.) or ketamine (1 mg/kg, i.p.), but not by fluoxetine (10 mg/kg, p.o., conventional antidepressant). Treatment of mice with wortmannin (PI3K inhibitor, 0.1 μg/site, intracerebroventricular (i.c.v.)) or rapamycin (mTOR inhibitor, 0.2 nmol/site, i.c.v.) abolished the anti-immobility effect of creatine and ketamine. None of the treatments affected locomotor activity of mice. The immunocontents of p-mTOR, p-p70S6 kinase (p70S6K), and postsynaptic density-95 protein (PSD95) were increased by creatine and ketamine in corticosterone or vehicle-treated mice. Moreover, corticosterone-treated mice presented a decreased hippocampal brain-derived neurotrophic factor (BDNF) level, an effect abolished by creatine or ketamine. Altogether, the results indicate that creatine shares with ketamine the ability to acutely reverse the corticosterone-induced depressive-like behavior by a mechanism dependent on PI3K/AKT/mTOR pathway, and modulation of the synaptic protein PSD95 as well as BDNF in the hippocampus, indicating the relevance of targeting these proteins for the management of depressive disorders. Moreover, we suggest that creatine should be further investigated as a possible fast-acting antidepressant.
Collapse
Affiliation(s)
- Francis L Pazini
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Mauricio P Cunha
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Julia M Rosa
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - André R S Colla
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Vicente Lieberknecht
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Ágatha Oliveira
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Ana Lúcia S Rodrigues
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Florianópolis, Santa Catarina, 88040-900, Brazil.
| |
Collapse
|
34
|
Chohan TW, Boucher AA, Spencer JR, Kassem MS, Hamdi AA, Karl T, Fok SY, Bennett MR, Arnold JC. Partial genetic deletion of neuregulin 1 modulates the effects of stress on sensorimotor gating, dendritic morphology, and HPA axis activity in adolescent mice. Schizophr Bull 2014; 40:1272-84. [PMID: 24442851 PMCID: PMC4193694 DOI: 10.1093/schbul/sbt193] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Stress has been linked to the pathogenesis of schizophrenia. Genetic variation in neuregulin 1 (NRG1) increases the risk of developing schizophrenia and may help predict which high-risk individuals will transition to psychosis. NRG1 also modulates sensorimotor gating, a schizophrenia endophenotype. We used an animal model to demonstrate that partial genetic deletion of Nrg1 interacts with stress to promote neurobehavioral deficits of relevance to schizophrenia. Nrg1 heterozygous (HET) mice displayed greater acute stress-induced anxiety-related behavior than wild-type (WT) mice. Repeated stress in adolescence disrupted the normal development of higher prepulse inhibition of startle selectively in Nrg1 HET mice but not in WT mice. Further, repeated stress increased dendritic spine density in pyramidal neurons of the medial prefrontal cortex (mPFC) selectively in Nrg1 HET mice. Partial genetic deletion of Nrg1 also modulated the adaptive response of the hypothalamic-pituitary-adrenal axis to repeated stress, with Nrg1 HET displaying a reduced repeated stress-induced level of plasma corticosterone than WT mice. Our results demonstrate that Nrg1 confers vulnerability to repeated stress-induced sensorimotor gating deficits, dendritic spine growth in the mPFC, and an abberant endocrine response in adolescence.
Collapse
Affiliation(s)
- Tariq W. Chohan
- The Brain and Mind Research Institute, University of Sydney, Sydney, NSW 2006, Australia;,Discipline of Pharmacology, School of Medical Science, University of Sydney, Sydney, NSW 2006, Australia
| | - Aurelie A. Boucher
- The Brain and Mind Research Institute, University of Sydney, Sydney, NSW 2006, Australia
| | - Jarrah R. Spencer
- The Brain and Mind Research Institute, University of Sydney, Sydney, NSW 2006, Australia;,Discipline of Pharmacology, School of Medical Science, University of Sydney, Sydney, NSW 2006, Australia
| | - Mustafa S. Kassem
- The Brain and Mind Research Institute, University of Sydney, Sydney, NSW 2006, Australia
| | - Areeg A. Hamdi
- Discipline of Pharmacology, School of Medical Science, University of Sydney, Sydney, NSW 2006, Australia
| | - Tim Karl
- Neuroscience Research Australia, Randwick, NSW 2031, Australia
| | - Sandra Y. Fok
- The Brain and Mind Research Institute, University of Sydney, Sydney, NSW 2006, Australia
| | - Maxwell R. Bennett
- The Brain and Mind Research Institute, University of Sydney, Sydney, NSW 2006, Australia
| | - Jonathon C. Arnold
- The Brain and Mind Research Institute, University of Sydney, Sydney, NSW 2006, Australia;,Discipline of Pharmacology, School of Medical Science, University of Sydney, Sydney, NSW 2006, Australia;,*To whom correspondence should be addressed; The Brain and Mind Research Institute, University of Sydney, 94-100 Mallett Street, Sydney, Australia; tel: +61-2-9351-0812, e-mail:
| |
Collapse
|
35
|
Chohan TW, Nguyen A, Todd SM, Bennett MR, Callaghan P, Arnold JC. Partial genetic deletion of neuregulin 1 and adolescent stress interact to alter NMDA receptor binding in the medial prefrontal cortex. Front Behav Neurosci 2014; 8:298. [PMID: 25324742 PMCID: PMC4179617 DOI: 10.3389/fnbeh.2014.00298] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Accepted: 08/13/2014] [Indexed: 02/02/2023] Open
Abstract
Schizophrenia is thought to arise due to a complex interaction between genetic and environmental factors during early neurodevelopment. We have recently shown that partial genetic deletion of the schizophrenia susceptibility gene neuregulin 1 (Nrg1) and adolescent stress interact to disturb sensorimotor gating, neuroendocrine activity and dendritic morphology in mice. Both stress and Nrg1 may have converging effects upon N-methyl-D-aspartate receptors (NMDARs) which are implicated in the pathogenesis of schizophrenia, sensorimotor gating and dendritic spine plasticity. Using an identical repeated restraint stress paradigm to our previous study, here we determined NMDAR binding across various brain regions in adolescent Nrg1 heterozygous (HET) and wild-type (WT) mice using [3H] MK-801 autoradiography. Repeated restraint stress increased NMDAR binding in the ventral part of the lateral septum (LSV) and the dentate gyrus (DG) of the hippocampus irrespective of genotype. Partial genetic deletion of Nrg1 interacted with adolescent stress to promote an altered pattern of NMDAR binding in the infralimbic (IL) subregion of the medial prefrontal cortex. In the IL, whilst stress tended to increase NMDAR binding in WT mice, it decreased binding in Nrg1 HET mice. However, in the DG, stress selectively increased the expression of NMDAR binding in Nrg1 HET mice but not WT mice. These results demonstrate a Nrg1-stress interaction during adolescence on NMDAR binding in the medial prefrontal cortex.
Collapse
Affiliation(s)
- Tariq W Chohan
- The Brain and Mind Research Institute, University of Sydney Sydney, NSW, Australia ; Discipline of Pharmacology, School of Medical Science, University of Sydney Sydney, NSW, Australia
| | - An Nguyen
- The Brain and Mind Research Institute, University of Sydney Sydney, NSW, Australia ; ANSTO LifeSciences, Australian Nuclear Science and Technology Organisation Sydney, NSW, Australia
| | - Stephanie M Todd
- The Brain and Mind Research Institute, University of Sydney Sydney, NSW, Australia ; Discipline of Pharmacology, School of Medical Science, University of Sydney Sydney, NSW, Australia
| | - Maxwell R Bennett
- The Brain and Mind Research Institute, University of Sydney Sydney, NSW, Australia
| | - Paul Callaghan
- The Brain and Mind Research Institute, University of Sydney Sydney, NSW, Australia ; ANSTO LifeSciences, Australian Nuclear Science and Technology Organisation Sydney, NSW, Australia
| | - Jonathon C Arnold
- The Brain and Mind Research Institute, University of Sydney Sydney, NSW, Australia ; Discipline of Pharmacology, School of Medical Science, University of Sydney Sydney, NSW, Australia
| |
Collapse
|
36
|
Nakatani Y, Tsuji M, Amano T, Miyagawa K, Miyagishi H, Saito A, Imai T, Takeda K, Ishii D, Takeda H. Neuroprotective effect of yokukansan against cytotoxicity induced by corticosterone on mouse hippocampal neurons. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2014; 21:1458-65. [PMID: 25022209 DOI: 10.1016/j.phymed.2014.06.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 04/17/2014] [Accepted: 06/09/2014] [Indexed: 05/26/2023]
Abstract
Yokukansan, a traditional Japanese herbal medicine, has been used for the management of neurodegenerative disorders and for the treatment of neurosis, insomnia, and behavioral and psychological symptoms of dementia. Recently, several studies have shown that yokukansan has a neuroprotective effect. The aim of this study was to examine the neuroprotective effect of yokukansan on hippocampal neurons from embryonic mouse brain against the effects of corticosterone, which is considered to be a stress hormone and to be cytotoxic toward neurons. The cell survival rates were measured by the WST-8 assay and LDH assay. Twenty-four hours after treatment with corticosterone, cell numbers were significantly decreased compared with the control or treatment with vehicle in a dose-dependent manner. When cells were treated with 30 μM corticosterone, the decrease in the number of cells was significantly recovered by treatment with yokukansan (100-1,000 μg/ml) in a dose-dependent manner. However, yokukansan did not suppress the decrease in cell numbers that was induced by treatment with 100 μM corticosterone. In the LDH assay, treatment with yokukansan at a high concentration (500-1,000 μg/ml) suppressed the LDH concentration induced by treatment with both 30 μM and 100 μM corticosterone compared to treatment with corticosterone alone, respectively. These results suggest that yokukansan protects against the cytotoxic effect of a low concentration of corticosterone on hippocampal neurons.
Collapse
Affiliation(s)
- Yoshihiko Nakatani
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan; Department of Pharmacotherapeutics, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan; Advanced Education and Research Center for Kampo Medicine, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan.
| | - Minoru Tsuji
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan; Advanced Education and Research Center for Kampo Medicine, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan
| | - Taku Amano
- Department of Pharmacotherapeutics, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan
| | - Kazuya Miyagawa
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan
| | - Hiroko Miyagishi
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan
| | - Atsumi Saito
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan
| | - Taro Imai
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan
| | - Kotaro Takeda
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan
| | - Daisuke Ishii
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan
| | - Hiroshi Takeda
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan; Advanced Education and Research Center for Kampo Medicine, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan
| |
Collapse
|
37
|
Jiang X, Xu J, Zou D, Yang L, Wang Y. Baicalin influences the dendritic morphology of newborn neurons in the hippocampus of chronically stressed rats. Neural Regen Res 2014; 8:496-505. [PMID: 25206692 PMCID: PMC4146053 DOI: 10.3969/j.issn.1673-5374.2013.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 01/15/2013] [Indexed: 11/18/2022] Open
Abstract
Chronic stress models, established in adult Sprague-Dawley rats through a 14-day subcutaneous injection of 40 mg/kg corticosterone, once per day, were given a daily oral feeding of 50 mg/kg baicalin. The study was an attempt to observe the effect of baicalin on neurogenesis in chronically stressed rats. Results showed that subcutaneous injection of corticosterone significantly decreased the total number of doublecortin-positive neurons in the hippocampus. The reduced cell number caused by corticosterone was mainly due to the decrease of class II doublecortin-positive neurons, but the class I doublecortin-positive neurons were unaffected. Baicalin treatment increased the number of both class I and class II doublecortin-positive neurons. In addition, doublecortin-positive neurons showed less complexity in dendritic morphology after corticosterone injection, and this change was totally reversed by baicalin treatment. These findings suggest that baicalin exhibits a beneficial effect on adult neurogenesis.
Collapse
Affiliation(s)
- Xinghua Jiang
- Department of Anesthesiology, the Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China
| | - Junmei Xu
- Department of Anesthesiology, the Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China
| | - Dingquan Zou
- Department of Anesthesiology, the Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China
| | - Lin Yang
- Department of Anesthesiology, the Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China
| | - Yaping Wang
- Department of Anesthesiology, the Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China
| |
Collapse
|
38
|
Preferential loss of dorsal-hippocampus synapses underlies memory impairments provoked by short, multimodal stress. Mol Psychiatry 2014; 19:811-22. [PMID: 24589888 PMCID: PMC4074447 DOI: 10.1038/mp.2014.12] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 12/21/2013] [Accepted: 01/06/2014] [Indexed: 02/06/2023]
Abstract
The cognitive effects of stress are profound, yet it is unknown if the consequences of concurrent multiple stresses on learning and memory differ from those of a single stress of equal intensity and duration. We compared the effects on hippocampus-dependent memory of concurrent, hours-long light, loud noise, jostling and restraint (multimodal stress) with those of restraint or of loud noise alone. We then examined if differences in memory impairment following these two stress types might derive from their differential impact on hippocampal synapses, distinguishing dorsal and ventral hippocampus. Mice exposed to hours-long restraint or loud noise were modestly or minimally impaired in novel object recognition, whereas similar-duration multimodal stress provoked severe deficits. Differences in memory were not explained by differences in plasma corticosterone levels or numbers of Fos-labeled neurons in stress-sensitive hypothalamic neurons. However, although synapses in hippocampal CA3 were impacted by both restraint and multimodal stress, multimodal stress alone reduced synapse numbers severely in dorsal CA1, a region crucial for hippocampus-dependent memory. Ventral CA1 synapses were not significantly affected by either stress modality. Probing the basis of the preferential loss of dorsal synapses after multimodal stress, we found differential patterns of neuronal activation by the two stress types. Cross-correlation matrices, reflecting functional connectivity among activated regions, demonstrated that multimodal stress reduced hippocampal correlations with septum and thalamus and increased correlations with amygdala and BST. Thus, despite similar effects on plasma corticosterone and on hypothalamic stress-sensitive cells, multimodal and restraint stress differ in their activation of brain networks and in their impact on hippocampal synapses. Both of these processes might contribute to amplified memory impairments following short, multimodal stress.
Collapse
|
39
|
Koe AS, Salzberg MR, Morris MJ, O'Brien TJ, Jones NC. Early life maternal separation stress augmentation of limbic epileptogenesis: the role of corticosterone and HPA axis programming. Psychoneuroendocrinology 2014; 42:124-33. [PMID: 24636509 DOI: 10.1016/j.psyneuen.2014.01.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 01/12/2014] [Accepted: 01/13/2014] [Indexed: 10/25/2022]
Abstract
Early life stress causes long-lasting effects on the limbic system that may be relevant to the development of mesial temporal lobe epilepsy (MTLE) and its associated psychopathology. Recent studies in rats suggest that maternal separation (MS), a model of early life stress, confers enduring vulnerability to amygdala kindling limbic epileptogenesis. However, the mechanisms underlying this remain unknown. Here, we tested whether hypothalamic-pituitary-adrenal (HPA) axis hyper-reactivity induced by MS - specifically the excessive secretion of corticosterone following a seizure - was involved in this vulnerability. In adult female rats subjected to MS from postnatal days 2-14, seizure-induced corticosterone responses were significantly augmented and prolonged for at least two hours post-seizure, compared to control early-handled (EH) rats. This was accompanied by reduced seizure threshold (p<0.05) and increased vulnerability to the kindling-induced progression of seizure duration (p<0.05) in MS rats. Pre-seizure treatment with the corticosterone synthesis inhibitor, metyrapone (MET) (50mg/kgsc) effectively blocked seizure-induced corticosterone responses. When delivered throughout kindling, MET treatment also reversed the MS-induced reduction in seizure threshold and the lengthened seizure duration back to levels of EH rats. These observations suggest that adverse early life environments induce a vulnerability to kindling epileptogenesis mediated by HPA axis hyper-reactivity, which could have relevance for the pathogenesis of MTLE.
Collapse
Affiliation(s)
- Amelia S Koe
- Department of Medicine, Royal Melbourne Hospital, Melbourne Brain Centre, University of Melbourne, Parkville, VIC, Australia
| | - Michael R Salzberg
- St Vincent's Mental Health Service, St Vincent's Hospital, Fitzroy, VIC, Australia; Department of Psychiatry, St Vincent's Hospital, University of Melbourne, Fitzroy, VIC, Australia
| | - Margaret J Morris
- Department of Pharmacology, University of New South Wales, Sydney, NSW, Australia
| | - Terence J O'Brien
- Department of Medicine, Royal Melbourne Hospital, Melbourne Brain Centre, University of Melbourne, Parkville, VIC, Australia; Department of Neurology, University of Melbourne, Parkville, VIC, Australia
| | - Nigel C Jones
- Department of Medicine, Royal Melbourne Hospital, Melbourne Brain Centre, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
40
|
Liao XM, Yang XD, Jia J, Li JT, Xie XM, Su YA, Schmidt MV, Si TM, Wang XD. Blockade of corticotropin-releasing hormone receptor 1 attenuates early-life stress-induced synaptic abnormalities in the neonatal hippocampus. Hippocampus 2014; 24:528-40. [DOI: 10.1002/hipo.22254] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 01/05/2014] [Accepted: 01/24/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Xue-Mei Liao
- Institute of Mental Health; Peking University; 100191 Beijing China
- Key Laboratory for Mental Health, Ministry of Health (Peking University); 100191 Beijing China
| | - Xiao-Dun Yang
- Institute of Mental Health; Peking University; 100191 Beijing China
- Key Laboratory for Mental Health, Ministry of Health (Peking University); 100191 Beijing China
| | - Jiao Jia
- Institute of Mental Health; Peking University; 100191 Beijing China
- Key Laboratory for Mental Health, Ministry of Health (Peking University); 100191 Beijing China
- Department of Mental Health; Dayi Hospital Affiliated to Shanxi Medical University; 030032 Taiyuan China
| | - Ji-Tao Li
- Institute of Mental Health; Peking University; 100191 Beijing China
- Key Laboratory for Mental Health, Ministry of Health (Peking University); 100191 Beijing China
| | - Xiao-Meng Xie
- Institute of Mental Health; Peking University; 100191 Beijing China
- Key Laboratory for Mental Health, Ministry of Health (Peking University); 100191 Beijing China
| | - Yun-Ai Su
- Institute of Mental Health; Peking University; 100191 Beijing China
- Key Laboratory for Mental Health, Ministry of Health (Peking University); 100191 Beijing China
| | - Mathias V. Schmidt
- Max Planck Institute of Psychiatry, RG Neurobiology of Stress; 80804 Munich Germany
| | - Tian-Mei Si
- Institute of Mental Health; Peking University; 100191 Beijing China
- Key Laboratory for Mental Health, Ministry of Health (Peking University); 100191 Beijing China
| | - Xiao-Dong Wang
- Institute of Mental Health; Peking University; 100191 Beijing China
- Key Laboratory for Mental Health, Ministry of Health (Peking University); 100191 Beijing China
- Department of Neurobiology; Key Laboratory of Medical Neurobiology of Ministry of Health of China; Zhejiang Province Key Laboratory of Neurobiology; Zhejiang University School of Medicine; 310058 Hangzhou China
| |
Collapse
|
41
|
Lucassen PJ, Pruessner J, Sousa N, Almeida OFX, Van Dam AM, Rajkowska G, Swaab DF, Czéh B. Neuropathology of stress. Acta Neuropathol 2014; 127:109-35. [PMID: 24318124 PMCID: PMC3889685 DOI: 10.1007/s00401-013-1223-5] [Citation(s) in RCA: 287] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 11/26/2013] [Indexed: 02/06/2023]
Abstract
Environmental challenges are part of daily life for any individual. In fact, stress appears to be increasingly present in our modern, and demanding, industrialized society. Virtually every aspect of our body and brain can be influenced by stress and although its effects are partly mediated by powerful corticosteroid hormones that target the nervous system, relatively little is known about when, and how, the effects of stress shift from being beneficial and protective to becoming deleterious. Decades of stress research have provided valuable insights into whether stress can directly induce dysfunction and/or pathological alterations, which elements of stress exposure are responsible, and which structural substrates are involved. Using a broad definition of pathology, we here review the "neuropathology of stress" and focus on structural consequences of stress exposure for different regions of the rodent, primate and human brain. We discuss cytoarchitectural, neuropathological and structural plasticity measures as well as more recent neuroimaging techniques that allow direct monitoring of the spatiotemporal effects of stress and the role of different CNS structures in the regulation of the hypothalamic-pituitary-adrenal axis in human brain. We focus on the hypothalamus, hippocampus, amygdala, nucleus accumbens, prefrontal and orbitofrontal cortex, key brain regions that not only modulate emotions and cognition but also the response to stress itself, and discuss disorders like depression, post-traumatic stress disorder, Cushing syndrome and dementia.
Collapse
Affiliation(s)
- Paul J. Lucassen
- SILS-Center for Neuroscience, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Jens Pruessner
- Department of Psychiatry, Douglas Institute, McGill University, Montreal, QC Canada
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | | | - Anne Marie Van Dam
- Department of Anatomy and Neurosciences, VU University Medical Center, Neuroscience Campus Amsterdam, Amsterdam, The Netherlands
| | - Grazyna Rajkowska
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS USA
| | - Dick F. Swaab
- Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Boldizsár Czéh
- Department of Laboratory Medicine, Faculty of Medicine, University of Pécs, Pécs, Hungary
- Szentágothai János Research Center, Neuroendocrinology Research Group, University of Pécs, Pécs, Hungary
| |
Collapse
|
42
|
Yoshiya M, Komatsuzaki Y, Hojo Y, Ikeda M, Mukai H, Hatanaka Y, Murakami G, Kawata M, Kimoto T, Kawato S. Corticosterone rapidly increases thorns of CA3 neurons via synaptic/extranuclear glucocorticoid receptor in rat hippocampus. Front Neural Circuits 2013; 7:191. [PMID: 24348341 PMCID: PMC3841935 DOI: 10.3389/fncir.2013.00191] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 11/11/2013] [Indexed: 11/13/2022] Open
Abstract
Modulation of synapses under acute stress is attracting much attention. Exposure to acute stress induces corticosterone (CORT) secretion from the adrenal cortex, resulting in rapid increase of CORT levels in plasma and the hippocampus. We tried to test whether rapid CORT effects involve activation of essential kinases as non-genomic processes. We demonstrated rapid effects (~1 h) of CORT on the density of thorns, by imaging Lucifer Yellow-injected neurons in adult male rat hippocampal slices. Thorns of thorny excrescences of CA3 hippocampal neurons are post-synaptic regions whose presynaptic partners are mossy fiber terminals. The application of CORT at 100, 500, and 1000 nM induced a rapid increase in the density of thorns in the stratum lucidum of CA3 pyramidal neurons. Co-administration of RU486, an antagonist of glucocorticoid receptor (GR), abolished the effect of CORT. Blocking a single kinase, including MAPK, PKA, or PKC, suppressed CORT-induced enhancement of thorn-genesis. On the other hand, GSK-3β was not involved in the signaling of thorn-genesis. Blocking AMPA receptors suppressed the CORT effect. Expression of CA3 synaptic/extranuclear GR was demonstrated by immunogold electron microscopic analysis. From these results, stress levels of CORT (100-1000 nM) might drive the rapid thorn-genesis via synaptic/extranuclear GR and multiple kinase pathways, although a role of nuclear GRs cannot be completely excluded.
Collapse
Affiliation(s)
- Miyuki Yoshiya
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo Tokyo, Japan ; Bioinformatics Project of Japan Science and Technology Agency, The University of Tokyo Tokyo, Japan
| | - Yoshimasa Komatsuzaki
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo Tokyo, Japan ; Department of Physics, College of Science and Technology, Nihon University Chiyoda, Tokyo, Japan
| | - Yasushi Hojo
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo Tokyo, Japan ; Bioinformatics Project of Japan Science and Technology Agency, The University of Tokyo Tokyo, Japan
| | - Muneki Ikeda
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo Tokyo, Japan
| | - Hideo Mukai
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo Tokyo, Japan ; Bioinformatics Project of Japan Science and Technology Agency, The University of Tokyo Tokyo, Japan
| | - Yusuke Hatanaka
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo Tokyo, Japan ; Bioinformatics Project of Japan Science and Technology Agency, The University of Tokyo Tokyo, Japan
| | - Gen Murakami
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo Tokyo, Japan ; Bioinformatics Project of Japan Science and Technology Agency, The University of Tokyo Tokyo, Japan
| | - Mitsuhiro Kawata
- Department of Anatomy and Neurobiology, Kyoto Prefectural University of Medicine Kamigyo, Kyoto, Japan
| | - Tetsuya Kimoto
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo Tokyo, Japan
| | - Suguru Kawato
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo Tokyo, Japan ; Bioinformatics Project of Japan Science and Technology Agency, The University of Tokyo Tokyo, Japan
| |
Collapse
|
43
|
Jeanneteau F, Chao MV. Are BDNF and glucocorticoid activities calibrated? Neuroscience 2013; 239:173-95. [PMID: 23022538 PMCID: PMC3581703 DOI: 10.1016/j.neuroscience.2012.09.017] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 09/04/2012] [Accepted: 09/06/2012] [Indexed: 12/22/2022]
Abstract
One hypothesis to account for the onset and severity of neurological disorders is the loss of trophic support. Indeed, changes in the levels and activities of brain-derived neurotrophic factor (BDNF) occur in numerous neurodegenerative and neuropsychiatric diseases. A deficit promotes vulnerability whereas a gain of function facilitates recovery by enhancing survival, synapse formation and synaptic plasticity. Implementation of 'BDNF therapies', however, faces numerous methodological and pharmacokinetic issues. Identifying BDNF mimetics that activate the BDNF receptor or downstream targets of BDNF signaling represent an alternative approach. One mechanism that shows great promise is to study the interplay of BDNF and glucocorticoid hormones, a major class of natural steroid secreted during stress reactions and in synchrony with circadian rhythms. While small amounts of glucocorticoids support normal brain function, excess stimulation by these steroid hormones precipitates stress-related affective disorders. To date, however, because of the paucity of knowledge of underlying cellular mechanisms, deleterious effects of glucocorticoids are not prevented following extreme stress. In the present review, we will discuss the complementary roles shared by BDNF and glucocorticoids in synaptic plasticity, and delineate possible signaling mechanisms mediating these effects.
Collapse
Affiliation(s)
- F Jeanneteau
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, NYU School of Medicine, New York, NY 10016, USA.
| | | |
Collapse
|
44
|
Ranade SC, Nawaz S, Chakrabarti A, Gressens P, Mani S. Spatial memory deficits in maternal iron deficiency paradigms are associated with altered glucocorticoid levels. Horm Behav 2013; 64:26-36. [PMID: 23631927 DOI: 10.1016/j.yhbeh.2013.04.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Revised: 04/10/2013] [Accepted: 04/11/2013] [Indexed: 11/22/2022]
Abstract
"The goal of this study was to examine the effect of maternal iron deficiency on the developing hippocampus in order to define a developmental window for this effect, and to see whether iron deficiency causes changes in glucocorticoid levels. The study was carried out using pre-natal, post-natal, and pre+post-natal iron deficiency paradigm. Iron deficient pregnant dams and their pups displayed elevated corticosterone which, in turn, differentially affected glucocorticoid receptor (GR) expression in the CA1 and the dentate gyrus. Brain Derived Neurotrophic Factor (BDNF) was reduced in the hippocampi of pups following elevated corticosterone levels. Reduced neurogenesis at P7 was seen in pups born to iron deficient mothers, and these pups had reduced numbers of hippocampal pyramidal and granule cells as adults. Hippocampal subdivision volumes also were altered. The structural and molecular defects in the pups were correlated with radial arm maze performance; reference memory function was especially affected. Pups from dams that were iron deficient throughout pregnancy and lactation displayed the complete spectrum of defects, while pups from dams that were iron deficient only during pregnancy or during lactation displayed subsets of defects. These findings show that maternal iron deficiency is associated with altered levels of corticosterone and GR expression, and with spatial memory deficits in their pups."
Collapse
Affiliation(s)
- Sayali C Ranade
- National Brain Research Centre, NH-8, Manesar, Haryana-122050, India.
| | | | | | | | | |
Collapse
|
45
|
Abstract
BACKGROUND Cortisol plays a multifaceted role in major depression disorder (MDD). Diurnal rhythms are disturbed, there is increased resistance to the feedback action of glucocorticoids, excess cortisol may induce MDD, basal levels may be higher and the post-awakening cortisol surge accentuated in those at risk for MDD. Does this suggest new avenues for studying MDD or its clinical management? METHOD The relevant literature was reviewed. RESULTS Cortisol contributes to genetic variants for the risk for MDD and the way that environmental events amplify risk. The corticoids' influence begins prenatally, but continues into adulthood. The impact of cortisol at each phase depends not only on its interaction with other factors, such as psychological traits and genetic variants, but also on events that have, or have not, occurred previously. CONCLUSIONS This review suggests that the time is now right for serious consideration of the role of cortisol in a clinical context. Estimates of cortisol levels and the shape of the diurnal rhythm might well guide the understanding of subtypes of MDD and yield additional indicators for optimal treatment. Patients with disturbed cortisol rhythms might benefit from restitution of those rhythms; they may be distinct from those with more generally elevated levels, who might benefit from cortisol blockade. Higher levels of cortisol are a risk for subsequent depression. Should manipulation of cortisol or its receptors be considered as a preventive measure for some of those at very high risk of future MDD, or to reduce other cortisol-related consequences such as long-term cognitive decline?
Collapse
Affiliation(s)
- J Herbert
- Cambridge Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, UK.
| |
Collapse
|
46
|
Zhang E, Yau SY, Lau BWM, Ma H, Lee TMC, Chang RCC, So KF. Synaptic Plasticity, But not Hippocampal Neurogenesis, Mediated the Counteractive Effect of Wolfberry on Depression in Rats. Cell Transplant 2012; 21:2635-49. [DOI: 10.3727/096368912x655181] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Depression is a life-threatening psychiatric disorder characterized with a long-term hypercortisolemia in depressed patients. Based on this clinical feature, hypercortisolemia was mimicked in experimental animals to understand the neuropathogy of depression and to explore new therapeutic strategies. Wolfberry, also known as Lycium barbarum, is a type of common fruit produced in mainland China. Accumulated evidence has shown that the extracts from Lycium barbarum (LBP) had a wide range of neuroprotective effects in various neurogenerative models. However, the antidepressant effect of LBP on depression and its mechanism has not yet been explored. In the present study, we investigated the effects of LBP on counteracting depression using an animal model injected with moderate dose (40 mg/kg) or severe dose (50 mg/kg) of corticosterone (CORT) treatments for 14 days. The results showed that CORT significantly increased immobility time and decreased hippocampal cell proliferation. LBP treatment significantly decreased the immobility time in forced swimming test, a test for the intensity of depressive behaviors, both in 40 and 50 mg/kg CORT stressed rats. Moreover, LBP treatment restored the reduced proliferation of neuroprogentior cells in the hippocampus in 40 mg/kg CORT stressed rats and the neuronal differentiation but not the proliferation in 50 mg/kg CORT stressed rats. After ablation of adult neurogenesis with Ara-c infusion, the beneficial effect of LBP treatment in reducing immobility time was not affected in 40 and 50 mg/kg CORT stressed rats. Golgi staining and Western blotting detection showed that LBP treatment restored the reduced spine density and the decreased level of PSD-95 in the hippocampus caused by 40 and 50 mg/kg CORT, respectively, indicating enhanced synaptic plasticity in the hippocampus. The data showed a novel effect of LBP on reducing depression-like behavior and its antidepressant effect may be mediated by enhanced synaptic plasticity, but not hippocampal neurogenesis.
Collapse
Affiliation(s)
- Endong Zhang
- Department of Anatomy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Suk Yu Yau
- Department of Anatomy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Benson Wui Man Lau
- Department of Anatomy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Henry Ma
- Department of Anatomy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Tatia M. C. Lee
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
- Laboratory of Neuropsychology, The University of Hong Kong, Hong Kong, China
| | - Raymond Chuen-Chung Chang
- Department of Anatomy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
- Research Centre of Heart, Brain, Hormone, and Healthy Aging, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kwok Fai So
- Department of Anatomy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
- Research Centre of Heart, Brain, Hormone, and Healthy Aging, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Joint Laboratory for Brain Function and Health (BFAH), Jinan University and The University of Hong Kong, Guangzhou, China
| |
Collapse
|
47
|
Girard S, Sébire H, Brochu ME, Briota S, Sarret P, Sébire G. Postnatal administration of IL-1Ra exerts neuroprotective effects following perinatal inflammation and/or hypoxic-ischemic injuries. Brain Behav Immun 2012; 26:1331-9. [PMID: 22982341 PMCID: PMC5023428 DOI: 10.1016/j.bbi.2012.09.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 09/01/2012] [Accepted: 09/03/2012] [Indexed: 02/07/2023] Open
Abstract
New therapeutic strategies are needed to protect neonates, especially premature newborns, against brain injury and associated neurobehavioral deficits. The role of pro-inflammatory cytokines, especially IL-1β, in the pathophysiological pathway leading to neonatal brain damage is increasingly recognized and represents an attractive therapeutic target. We investigated the therapeutic potential of postnatal systemic administration of the interleukin (IL)-1 receptor antagonist (IL-1Ra) in an animal model of perinatal brain injury using the insults most common to human neonates, i.e. prenatal exposure to inflammation and/or postnatal hypoxia-ischaemia (HI). We found that postnatal administration of IL-1Ra preserved motor function and exploratory behavior after either prenatal exposure to inflammatory agent lipopolysaccharide (LPS) or postnatal HI insult. The deleterious effect of combined prenatal LPS and postnatal HI on brain development was also alleviated by administration of IL-1Ra, as seen by the protected neural stem cell population, prevention of myelin loss in the internal capsule, decreased gliosis, and decreased neurobehavioral impairment. This study showed the distinct pattern of functional deficits induced by prenatal inflammation as compared to postnatal HI and the therapeutic potential of IL-1Ra administration against neonatal brain injury. Furthermore, our results highlight the potential for postnatal treatment of prenatal inflammatory stressors.
Collapse
Affiliation(s)
- Sylvie Girard
- Laboratoire de Neurologie Pédiatrique, Département de Pédiatrie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Hugues Sébire
- Laboratoire de Neurologie Pédiatrique, Département de Pédiatrie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Marie-Elsa Brochu
- Laboratoire de Neurologie Pédiatrique, Département de Pédiatrie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Sinziana Briota
- Laboratoire de Neurologie Pédiatrique, Département de Pédiatrie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Philippe Sarret
- Département de Physiologie et Biophysique, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Guillaume Sébire
- Laboratoire de Neurologie Pédiatrique, Département de Pédiatrie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
48
|
Dendritic morphology of hippocampal and amygdalar neurons in adolescent mice is resilient to genetic differences in stress reactivity. PLoS One 2012; 7:e38971. [PMID: 22701737 PMCID: PMC3373517 DOI: 10.1371/journal.pone.0038971] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 05/14/2012] [Indexed: 01/24/2023] Open
Abstract
Many studies have shown that chronic stress or corticosterone over-exposure in rodents leads to extensive dendritic remodeling, particularly of principal neurons in the CA3 hippocampal area and the basolateral amygdala. We here investigated to what extent genetic predisposition of mice to high versus low stress reactivity, achieved through selective breeding of CD-1 mice, is also associated with structural plasticity in Golgi-stained neurons. Earlier, it was shown that the highly stress reactive (HR) compared to the intermediate (IR) and low (LR) stress reactive mice line presents a phenotype, with respect to neuroendocrine parameters, sleep architecture, emotional behavior and cognition, that recapitulates some of the features observed in patients suffering from major depression. In late adolescent males of the HR, IR, and LR mouse lines, we observed no significant differences in total dendritic length, number of branch points and branch tips, summated tip order, number of primary dendrites or dendritic complexity of either CA3 pyramidal neurons (apical as well as basal dendrites) or principal neurons in the basolateral amygdala. Apical dendrites of CA1 pyramidal neurons were also unaffected by the differences in stress reactivity of the animals; marginally higher length and complexity of the basal dendrites were found in LR compared to IR but not HR mice. In the same CA1 pyramidal neurons, spine density of distal apical tertiary dendrites was significantly higher in LR compared to IR or HR animals. We tentatively conclude that the dendritic complexity of principal hippocampal and amygdala neurons is remarkably stable in the light of a genetic predisposition to high versus low stress reactivity, while spine density seems more plastic. The latter possibly contributes to the behavioral phenotype of LR versus HR animals.
Collapse
|
49
|
Sheng H, Xu Y, Chen Y, Zhang Y, Xu X, He C, Ni X. CRH-R1 and CRH-R2 differentially modulate dendritic outgrowth of hippocampal neurons. Endocrine 2012; 41:458-64. [PMID: 22249942 DOI: 10.1007/s12020-012-9603-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 01/05/2012] [Indexed: 01/15/2023]
Abstract
Corticotropin-releasing hormone (CRH) has been implicated to be involved in the development of dendrites in brain. In the present study, we examined the effect of CRH on dendrite outgrowth in primary cultured hippocampal neurons and defined the specific CRH receptor subtype involved. Treatment of neurons with increasing concentration of CRH resulted in an increase in the total dendritic branch length (TDBL) of neurons compared with untreated neurons over 2-4 days period of treatment. These effects can be reversed by the specific CRH-R1 antagonist antalarmin but not by the CRH-R2 antagonist astressin 2B. Treatment of neurons with urocortin II, the exclusive CRH-R2 agonist, significantly decreased TDBL of the cultured neurons. These effects can be reversed by the CRH-R2 antagonist astressin 2B. Our results suggest that CRH-R1 and CRH-R2 differentially modulate the dendritic growth of hippocampal neurons in culture.
Collapse
Affiliation(s)
- Hui Sheng
- Department of Physiology, Second Military Medical University, 800 Xiangyin Road, Shanghai, 200433, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
50
|
Komatsuzaki Y, Hatanaka Y, Murakami G, Mukai H, Hojo Y, Saito M, Kimoto T, Kawato S. Corticosterone induces rapid spinogenesis via synaptic glucocorticoid receptors and kinase networks in hippocampus. PLoS One 2012; 7:e34124. [PMID: 22509272 PMCID: PMC3324490 DOI: 10.1371/journal.pone.0034124] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 02/22/2012] [Indexed: 11/18/2022] Open
Abstract
Background Modulation of dendritic spines under acute stress is attracting much attention. Exposure to acute stress induces corticosterone (CORT) secretion from the adrenal cortex, resulting in rapid increase of CORT levels in plasma and the hippocampus. Methodology/Principal Findings Here we demonstrated the mechanisms of rapid effect (∼1 h) of CORT on the density and morphology of spines by imaging neurons in adult male rat hippocampal slices. The application of CORT at 100–1000 nM induced a rapid increase in the density of spines of CA1 pyramidal neurons. The density of small-head spines (0.2–0.4 µm) was increased even at low CORT levels (100–200 nM). The density of middle-head spines (0.4–0.5 µm) was increased at high CORT levels between 400–1000 nM. The density of large-head spines (0.5–1.0 µm) was increased only at 1000 nM CORT. Co-administration of RU486, an antagonist of glucocorticoid receptor (GR), abolished the effect of CORT. Blocking a single kinase, such as MAPK, PKA, PKC or PI3K, suppressed CORT-induced enhancement of spinogenesis. Blocking NMDA receptors suppressed the CORT effect. Conclusions/Significance These results imply that stress levels of CORT (100–1000 nM) drive the spinogenesis via synaptic GR and multiple kinase pathways.
Collapse
Affiliation(s)
- Yoshimasa Komatsuzaki
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
- Department of Physics, College of Science and Technology, Nihon University, Tokyo, Japan
| | - Yusuke Hatanaka
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Gen Murakami
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
- Bioinformatics Project of Japan Science and Technology Agency, The University of Tokyo, Tokyo, Japan
| | - Hideo Mukai
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
- Bioinformatics Project of Japan Science and Technology Agency, The University of Tokyo, Tokyo, Japan
| | - Yasushi Hojo
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
- Bioinformatics Project of Japan Science and Technology Agency, The University of Tokyo, Tokyo, Japan
| | - Minoru Saito
- Department of Correlative Study in Physics and Chemistry, Graduate School of Integrated Basic Sciences, Nihon University, Tokyo, Japan
| | - Tetsuya Kimoto
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Suguru Kawato
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
- Bioinformatics Project of Japan Science and Technology Agency, The University of Tokyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|