1
|
Zhang X, Tian L, Majumdar A, Scheller EL. Function and Regulation of Bone Marrow Adipose Tissue in Health and Disease: State of the Field and Clinical Considerations. Compr Physiol 2024; 14:5521-5579. [PMID: 39109972 PMCID: PMC11725182 DOI: 10.1002/cphy.c230016] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2025]
Abstract
Bone marrow adipose tissue (BMAT) is a metabolically and clinically relevant fat depot that exists within bone. Two subtypes of BMAT, regulated and constitutive, reside in hematopoietic-rich red marrow and fatty yellow marrow, respectively, and exhibit distinct characteristics compared to peripheral fat such as white and brown adipose tissues. Bone marrow adipocytes (BMAds) are evolutionally preserved in most vertebrates, start development after birth and expand throughout life, and originate from unique progenitor populations that control bone formation and hematopoiesis. Mature BMAds also interact closely with other cellular components of the bone marrow niche, serving as a nearby energy reservoir to support the skeletal system, a signaling hub that contributes to both local and systemic homeostasis, and a final fuel reserve for survival during starvation. Though BMAT and bone are often inversely correlated, more BMAT does not always mean less bone, and the prevention of BMAT expansion as a strategy to prevent bone loss remains questionable. BMAT adipogenesis and lipid metabolism are regulated by the nervous systems and a variety of circulating hormones. This contributes to the plasticity of BMAT, including BMAT expansion in common physiological or pathological conditions, and BMAT catabolism under certain extreme circumstances, which are often associated with malnutrition and/or systemic inflammation. Altogether, this article provides a comprehensive overview of the local and systemic functions of BMAT and discusses the regulation and plasticity of this unique adipose tissue depot in health and disease. © 2024 American Physiological Society. Compr Physiol 14:5521-5579, 2024.
Collapse
Affiliation(s)
- Xiao Zhang
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA
| | - Linda Tian
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA
| | - Anurag Majumdar
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, St. Louis, Missouri, USA
| | - Erica L. Scheller
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA
- Department of Cell Biology and Physiology, Washington University, St. Louis, Missouri, USA
| |
Collapse
|
2
|
Kim TY, Schafer AL. Bariatric surgery, vitamin D, and bone loss. FELDMAN AND PIKE'S VITAMIN D 2024:161-184. [DOI: 10.1016/b978-0-323-91338-6.00009-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
3
|
Tencerova M, Duque G, Beekman KM, Corsi A, Geurts J, Bisschop PH, Paccou J. The Impact of Interventional Weight Loss on Bone Marrow Adipose Tissue in People Living with Obesity and Its Connection to Bone Metabolism. Nutrients 2023; 15:4601. [PMID: 37960254 PMCID: PMC10650495 DOI: 10.3390/nu15214601] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
This review focuses on providing physicians with insights into the complex relationship between bone marrow adipose tissue (BMAT) and bone health, in the context of weight loss through caloric restriction or metabolic and bariatric surgery (MBS), in people living with obesity (PwO). We summarize the complex relationship between BMAT and bone health, provide an overview of noninvasive imaging techniques to quantify human BMAT, and discuss clinical studies measuring BMAT in PwO before and after weight loss. The relationship between BMAT and bone is subject to variations based on factors such as age, sex, menopausal status, skeletal sites, nutritional status, and metabolic conditions. The Bone Marrow Adiposity Society (BMAS) recommends standardizing imaging protocols to increase comparability across studies and sites, they have identified both water-fat imaging (WFI) and spectroscopy (1H-MRS) as accepted standards for in vivo quantification of BMAT. Clinical studies measuring BMAT in PwO are limited and have shown contradictory results. However, BMAT tends to be higher in patients with the highest visceral adiposity, and inverse associations between BMAT and bone mineral density (BMD) have been consistently found in PwO. Furthermore, BMAT levels tend to decrease after caloric restriction-induced weight loss. Although weight loss was associated with overall fat loss, a reduction in BMAT did not always follow the changes in fat volume in other tissues. The effects of MBS on BMAT are not consistent among the studies, which is at least partly related to the differences in the study population, skeletal site, and duration of the follow-up. Overall, gastric bypass appears to decrease BMAT, particularly in patients with diabetes and postmenopausal women, whereas sleeve gastrectomy appears to increase BMAT. More research is necessary to evaluate changes in BMAT and its connection to bone metabolism, either in PwO or in cases of weight loss through caloric restriction or MBS, to better understand the role of BMAT in this context and determine the local or systemic factors involved.
Collapse
Affiliation(s)
- Michaela Tencerova
- Molecular Physiology of Bone, Institute of Physiology of the Czech Academy of Sciences, 14220 Prague, Czech Republic;
| | - Gustavo Duque
- Department of Medicine, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada;
| | - Kerensa M. Beekman
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Alessandro Corsi
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy;
| | - Jeroen Geurts
- Rheumatology, Department of Musculoskeletal Medicine, Lausanne University Hospital, 1011 Lausanne, Switzerland;
| | - Peter H. Bisschop
- Department of Endocrinology, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Julien Paccou
- Department of Rheumatology, MABLab ULR 4490, CHU Lille, University Lille, 59000 Lille, France
| |
Collapse
|
4
|
Oh H, Yoon BH, Park JW, Jeon YJ, Yoo BN, Bak JK, Ha YC, Lee YK. The risk of osteoporotic fracture in gastric cancer survivors: total gastrectomy versus subtotal gastrectomy versus endoscopic treatment. Gastric Cancer 2023; 26:814-822. [PMID: 37209225 DOI: 10.1007/s10120-023-01397-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/04/2023] [Indexed: 05/22/2023]
Abstract
PURPOSES Previous studies have suggested that there is an increased risk of osteoporotic fracture in gastric cancer survivors. However, the data was not classified according to surgery type. This study investigated the cumulative incidence osteoporotic fracture (OF) in gastric cancer survivors according to treatment modality. METHODS A total of 85,124 gastric cancer survivors during 2008-2016 were included. The type of surgery was classified as total gastrectomy (TG, n = 14,428)/subtotal gastrectomy (SG, n = 52,572)/endoscopic mucosal dissection and endoscopic mucosal resection (ESD/EMR, n = 18,125). The site of osteoporotic fractures included the spine, hip, wrist, and humerus. We examined cumulative incidence using Kaplan-Meier survivor analysis and cox proportional hazards regression analysis to determine the risk factor of OF. RESULTS The incidence of OF per 100,000 patient year was 2.6, 2.1, 1.8 in TG, SG, ESD/EMR group. The cumulative incidence rate was 2.3% at 3 years, 4.0% at 5 years, and 5.8% at 7 years in gastrectomy group, and 1.8% at 3 years, 3.3% at 5 years in the SG group, and 4.9% at 7 years postoperatively in ESD/EMR group. TG increased the risk of OF compared to patients who underwent SG (HR 1.75, 95% confidence interval [CI] 1.57-1.94), and ESD/EMR (hazard ratio [HR] 2.23, 95% CI 2.14-2.32). CONCLUSION Gastric cancer survivors who underwent TG had an increased osteoporotic fracture risk than did SG or ESD/EMR in these patients. The amount of gastric resection and accompanying metabolic changes seemed to mediate such risk. Additional research is needed to establish an optimal strategy for each type of surgery.
Collapse
Affiliation(s)
- HyunJin Oh
- Division of Gastroenterology, Department of Internal Medicine, Center for Cancer Prevention and Detection, National Cancer Center, Goyang-si, Republic of Korea
| | - Byung-Ho Yoon
- Department of Orthopedic Surgery, Ewha Womans University College of Medicine, Seoul, Korea
| | - Jung-Wee Park
- Department of Orthopaedic Surgery, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Ye Jhin Jeon
- Department Statistics, Yonsei University, Seoul, Korea
| | - Bit-Na Yoo
- National Evidence-based Healthcare Collaborating Agency (NECA), Seoul, Korea
| | - Jean Kyung Bak
- National Evidence-based Healthcare Collaborating Agency (NECA), Seoul, Korea
| | - Yong-Chan Ha
- Department of Orthopaedic Surgery, Seoul Bumin Hospital, Seoul, Korea
| | - Young-Kyun Lee
- Department of Orthopaedic Surgery, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
5
|
Link TM, Schafer AL. Bariatric Surgery Negatively Impacts Bone Health in Adolescents. Radiology 2023; 307:e231260. [PMID: 37310249 PMCID: PMC10315515 DOI: 10.1148/radiol.231260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/14/2023]
Affiliation(s)
- Thomas M. Link
- From the Departments of Radiology and Biomedical Imaging (T.M.L.) and
Medicine and Epidemiology & Biostatistics (A.L.S.), University of
California San Francisco, 400 Parnassus Ave, San Francisco, CA 94143; and
Endocrine Research Unit, San Francisco Veterans Affairs Heath Care System, San
Francisco, Calif (A.L.S.)
| | - Anne L. Schafer
- From the Departments of Radiology and Biomedical Imaging (T.M.L.) and
Medicine and Epidemiology & Biostatistics (A.L.S.), University of
California San Francisco, 400 Parnassus Ave, San Francisco, CA 94143; and
Endocrine Research Unit, San Francisco Veterans Affairs Heath Care System, San
Francisco, Calif (A.L.S.)
| |
Collapse
|
6
|
Ofir N, Mizrakli Y, Greenshpan Y, Gepner Y, Sharabi O, Tsaban G, Zelicha H, Yaskolka Meir A, Ceglarek U, Stumvoll M, Blüher M, Chassidim Y, Rudich A, Reiner-Benaim A, Shai I, Shelef I, Gazit R. Vertebrae but not femur marrow fat transiently decreases in response to body weight loss in an 18-month randomized control trial. Bone 2023; 171:116727. [PMID: 36898571 DOI: 10.1016/j.bone.2023.116727] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/06/2023] [Accepted: 03/05/2023] [Indexed: 03/11/2023]
Abstract
BACKGROUND Increased levels of bone marrow adipose tissue (BMAT) are negatively associated with skeletal health and hematopoiesis. BMAT is known to increase with age; however, the effect of long-term weight loss on BMAT is still unknown. OBJECTIVE In this study, we examined BMAT response to lifestyle-induced weight loss in 138 participants (mean age 48 y; mean body mass index 31 kg/m2), who participated in the CENTRAL-MRI trial. METHODS Participants were randomized for dietary intervention of low-fat or low-carb, with or without physical activity. Magnetic resonance imaging (MRI) was used to quantify BMAT and other fat depots at baseline, six and eighteen months of intervention. Blood biomarkers were also measured at the same time points. RESULTS At baseline, the L3 vertebrae BMAT is positively associated with age, HDL cholesterol, HbA1c and adiponectin; but not with other fat depots or other metabolic markers tested. Following six months of dietary intervention, the L3 BMAT declined by an average of 3.1 %, followed by a return to baseline after eighteen months (p < 0.001 and p = 0.189 compared to baseline, respectively). The decrease of BMAT during the first six months was associated with a decrease in waist circumference, cholesterol, proximal-femur BMAT, and superficial subcutaneous adipose tissue (SAT), as well as with younger age. Nevertheless, BMAT changes did not correlate with changes in other fat depots. CONCLUSIONS We conclude that physiological weight loss can transiently reduce BMAT in adults, and this effect is more prominent in younger adults. Our findings suggest that BMAT storage and dynamics are largely independent of other fat depots or cardio-metabolic risk markers, highlighting its unique functions.
Collapse
Affiliation(s)
- Noa Ofir
- The Shraga Segal Department for Microbiology Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel; National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, Israel; Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| | - Yuval Mizrakli
- The Shraga Segal Department for Microbiology Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel; National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Yariv Greenshpan
- The Shraga Segal Department for Microbiology Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel; National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, Israel; Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| | - Yftach Gepner
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, Israel; Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Sylvan Adams Sports Institute, Tel-Aviv University, Tel-Aviv, Israel
| | - Omri Sharabi
- The Shraga Segal Department for Microbiology Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel; National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, Israel; Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| | - Gal Tsaban
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| | - Hila Zelicha
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| | - Anat Yaskolka Meir
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| | - Uta Ceglarek
- Institute of Laboratory Medicine, University of Leipzig Medical Center, Germany
| | | | | | | | - Assaf Rudich
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, Israel; Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| | - Anat Reiner-Benaim
- Department of Epidemiology, Biostatistics and Community Health Sciences, School of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Iris Shai
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| | - Ilan Shelef
- Soroka University Medical Center, Beer-Sheva, Israel
| | - Roi Gazit
- The Shraga Segal Department for Microbiology Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel; National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, Israel; Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, Israel.
| |
Collapse
|
7
|
Bermudez B, Ishii T, Wu YH, Carpenter RD, Sherk VD. Energy Balance and Bone Health: a Nutrient Availability Perspective. Curr Osteoporos Rep 2023; 21:77-84. [PMID: 36542294 DOI: 10.1007/s11914-022-00765-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/27/2022] [Indexed: 12/24/2022]
Abstract
PURPOSE OF REVIEW Obesity is highly prevalent and is associated with bone fragility and fracture. The changing nutrient availability to bone in obesity is an important facet of bone health. The goal of this article is to summarize current knowledge on the effects of carbohydrate and dietary fat availability on bone, particularly in the context of other tissues. RECENT FINDINGS The skeleton is a primary site for fatty acid and glucose uptake. The trafficking of carbohydrates and fats into tissues changes with weight loss and periods of weight gain. Exercise acutely influences nutrient uptake into bone and may affect nutrient partitioning to bone. Bone cells secrete hormones that signal to the brain and other tissues information about its energetic state, which may alter whole-body nutrient trafficking. There is a critical need for studies to address the changes that metabolic perturbations have on nutrient availability in bone.
Collapse
Affiliation(s)
- Beatriz Bermudez
- Department of Mechanical Engineering, University of Colorado Denver, Denver, CO, USA
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Toru Ishii
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Yuan-Haw Wu
- Department of Surgery, Johns Hopkins University, Baltimore, MD, USA
| | - R Dana Carpenter
- Department of Mechanical Engineering, University of Colorado Denver, Denver, CO, USA
| | - Vanessa D Sherk
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Division of Translational and Clinical Sciences, Center for Scientific Review, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
8
|
Xu L, Gong Y, Zhao Q, Blake GM, Li K, Zhang Y, Liu Q, Li C, Cheng X. Risk Factors Associated with Bone Marrow Adiposity Deposition in Postmenopausal Women in the CASH China Study. Diabetes Metab Syndr Obes 2023; 16:1167-1176. [PMID: 37139348 PMCID: PMC10149774 DOI: 10.2147/dmso.s401910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 04/16/2023] [Indexed: 05/05/2023] Open
Abstract
Purpose To investigated the factors that influence BMAC. Patients and Methods Quantitative computed tomography (QCT) and magnetic resonance imaging (MRI) were applied to measure abdominal fat areas, liver fat content, erector muscle fat content, and BMAC of the L2-4 vertebrae. Sex hormone, adipokine, and inflammatory factor levels were measured on the same day. Results Although age, erector muscle fat content, estradiol, testosterone, and adiponectin/leptin levels showed correlations with BMAC in the correlation analysis, the equations obtained from the whole population by multivariate analysis were unclear. Patients were stratified according to BMAC quartiles, and differences were found in vBMD, age, estradiol, testosterone, and erector muscle fat content among the four quartiles. Logistic analyses confirmed that age, estradiol/testosterone ratio, and TNF-α had independent effects on BMAC in all quartiles. In addition, height was related to higher BMAC quartiles, and glucose was related to lower BMAC quartiles. Conclusion Compared to other body fats, BMAC is a unique fat depot. Age, estradiol/testosterone ratio, and TNF-α are all key influencing factors related to BMAC in postmenopausal women. Furthermore, height and glucose levels were related to BMAC in the higher and lower BMAC quartiles, respectively.
Collapse
Affiliation(s)
- Li Xu
- Department of Radiology, Beijing Jishuitan Hospital, Beijing, People’s Republic of China
| | - Yanping Gong
- Department of Endocrinology, the Second Medical Center, the Chinese People’s Liberation Army General Hospital, National Clinical Research Center for Geriatric Disease, Beijing, 100853, People’s Republic of China
| | - Qian Zhao
- International Medical Center, Sichuan University West China Hospital, Chengdu, People’s Republic of China
| | - Glen M Blake
- Biomedical Engineering Department, King’s College London, London, UK
| | - Kai Li
- Department of Radiology, Beijing Jishuitan Hospital, Beijing, People’s Republic of China
| | - Yong Zhang
- Department of Radiology, Beijing Jishuitan Hospital, Beijing, People’s Republic of China
| | - Qianqian Liu
- Department of Endocrinology, the Second Medical Center, the Chinese People’s Liberation Army General Hospital, National Clinical Research Center for Geriatric Disease, Beijing, 100853, People’s Republic of China
| | - Chunlin Li
- Department of Endocrinology, the Second Medical Center, the Chinese People’s Liberation Army General Hospital, National Clinical Research Center for Geriatric Disease, Beijing, 100853, People’s Republic of China
- Chunlin Li, Department of Endocrinology, the Second Medical Center, the Chinese People’s Liberation Army General Hospital, National Clinical Research Center for Geriatric Disease, Beijing, 100853, People’s Republic of China, Email
| | - Xiaoguang Cheng
- Department of Radiology, Beijing Jishuitan Hospital, Beijing, People’s Republic of China
- Correspondence: Xiaoguang Cheng, Department of Radiology, Beijing Jishuitan Hospital, Beijing, 100035, People’s Republic of China, Email
| |
Collapse
|
9
|
Bone marrow adipose tissue composition and glycemic improvements after gastric bypass surgery. Bone Rep 2022; 17:101596. [PMID: 35734226 PMCID: PMC9207612 DOI: 10.1016/j.bonr.2022.101596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/03/2022] [Indexed: 11/20/2022] Open
Abstract
Fracture risk is increased in type 2 diabetes, which may in part be due to altered bone marrow adiposity. Cross sectional studies have reported that people with type 2 diabetes have lower unsaturated BMAT lipid levels than people without diabetes, although there are limited data on longitudinal changes. We hypothesized that Roux-en-Y gastric bypass (RYGB), which dramatically improves glycemic status, would have differential effects on BMAT composition, with increases in the unsaturated lipid index in people with diabetes. Given reports that axial BMAT is responsive to metabolic stimuli while appendicular BMAT is stable, we hypothesized that BMAT changes would occur at the spine but not the tibia. We enrolled 30 obese women, stratified by diabetes status, and used magnetic resonance spectroscopy to measure BMAT at the spine in all participants, and the tibia in a subset (n = 19). At baseline, BMAT parameters were similar between those with and without diabetes, except tibial marrow fat content was lower in women with diabetes (97.4 % ± 1.0 % versus 98.2 % ± 0.4 %, p = 0.04). Six months after surgery, both groups experienced similar weight loss of 27 kg ± 7 kg. At the spine, there was a significant interaction between diabetes status and changes in both marrow fat content and the unsaturated lipid index (p = 0.02, p < 0.01 for differences, respectively). Women with diabetes had a trend towards a decline in marrow fat content (-4.3 % ± 8.2 %, p = 0.09) and increase in the unsaturated lipid index (+1.1 % ± 1.5 %, p = 0.02). In contrast, BMAT parameters did not significantly change in women without diabetes. In all women, changes in the unsaturated lipid index inversely correlated with hemoglobin A1c changes (r = -0.47, p = 0.02). At the tibia, there was little BMAT change by diabetes status. Our results suggest that vertebral BMAT composition is responsive to changes in glycemic control after RYGB.
Collapse
|
10
|
Tolonen S, Juonala M, Fogelholm M, Pahkala K, Laaksonen M, Kähönen M, Sievänen H, Viikari J, Raitakari O. Dietary Saturated Fat and Bone Health in Young Adults: The Young Finns Cohort. Calcif Tissue Int 2022; 111:419-429. [PMID: 35896727 PMCID: PMC9474366 DOI: 10.1007/s00223-022-01008-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/06/2022] [Indexed: 11/15/2022]
Abstract
Previous studies suggest that saturated fat (SFA) intake may negatively impact on bone. However, few human studies on the topic exist. Women and men aged 31-46 years from the Cardiovascular Risk in Young Finns study attended the peripheral quantitative computed tomography and ultrasound bone measurements in 2008 (n = 1884-1953, ~ 56% women). In addition, fracture diagnoses in 1980-2018 were searched for the national health care registers and 431 participants had at least one fracture. Food consumption was gathered with the 48-h dietary recall interviews and food frequency questionnaire in 1980-2007. In the present study, radial, tibial, and calcaneal bone traits, and fractures were examined relative to the long-term intake of SFA. No consistent associations were seen between bone outcomes and SFA intake that would have replicated in both women and men. The only evidence for differential distributions was seen in cortical density and cortical-to-total area ratio at the radial shaft, and speed of sound at the calcaneus, which were 0.1-0.4% higher in women in the lowest tertile of SFA intake compared with the highest tertile. In addition, among men, the odds ratio (OR) of fractures was greater in the second (OR 1.86, 95% confidence interval (CI) 1.03-3.33) and third tertile of SFA intake (OR 2.45, 95% CI 1.38-4.36) compared with the lowest tertile, independently of many risk factors of osteoporosis. In this observational study, we found no robust evidence of the associations of dietary long-term SFA intake with bone outcomes. Therefore, additional studies are needed to confirm the association of dietary SFA with bone health in humans.
Collapse
Affiliation(s)
- S Tolonen
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland.
| | - M Juonala
- Department of Medicine, University of Turku and Turku University Hospital, Turku, Finland
- Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - M Fogelholm
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - K Pahkala
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
| | - M Laaksonen
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - M Kähönen
- Department of Clinical Physiology, Tampere University Hospital, Tampere, Finland
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - H Sievänen
- The UKK Institute for Health Promotion Research, Tampere, Finland
| | - J Viikari
- Department of Medicine, University of Turku and Turku University Hospital, Turku, Finland
| | - O Raitakari
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
| |
Collapse
|
11
|
Tompkins YH, Chen C, Sweeney KM, Kim M, Voy BH, Wilson JL, Kim WK. The effects of maternal fish oil supplementation rich in n-3 PUFA on offspring-broiler growth performance, body composition and bone microstructure. PLoS One 2022; 17:e0273025. [PMID: 35972954 PMCID: PMC9380956 DOI: 10.1371/journal.pone.0273025] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 08/01/2022] [Indexed: 11/18/2022] Open
Abstract
This study evaluated the effects of maternal fish oil supplementation rich in n-3 PUFA on the performance and bone health of offspring broilers at embryonic development stage and at market age. Ross 708 broiler breeder hens were fed standard diets containing either 2.3% soybean oil (SO) or fish oil (FO) for 28 days. Their fertilized eggs were collected and hatched. For a pre-hatch study, left tibia samples were collected at 18 days of incubation. For a post-hatch study, a total of 240 male chicks from each maternal treatment were randomly selected and assigned to 12 floor pens and provided with the same broiler diets. At 42 days of age, growth performance, body composition, bone microstructure, and expression of key bone marrow osteogenic and adipogenic genes were evaluated. One-way ANOVA was performed, and means were compared by student’s t-test. Maternal use of FO in breeder hen diet increased bone mineral content (p < 0.01), bone tissue volume (p < 0.05), and bone surface area (p < 0.05), but decreased total porosity volume (p < 0.01) during the embryonic development period. The FO group showed higher body weight gain and feed intake at the finisher stage than the SO group. Body composition analyses by dual-energy X-ray absorptiometry showed that the FO group had higher fat percentage and higher fat mass at day 1, but higher lean mass and total body mass at market age. The decreased expression of key adipogenic genes in the FO group suggested that prenatal FO supplementation in breeder hen diet suppressed adipogenesis in offspring bone marrow. Furthermore, no major differences were observed in expression of osteogenesis marker genes, microstructure change in trabecular bone, or bone mineral density. However, a significant higher close pores/open pores ratio suggested an improvement on bone health of the FO group. Thus, this study indicates that maternal fish oil diet rich in n-3 PUFA could have a favorable impact on fat mass and skeletal integrity in broiler offspring.
Collapse
Affiliation(s)
- Yuguo H. Tompkins
- Department of Poultry Science, University of Georgia, Athens, Georgia, United States of America
| | - Chongxiao Chen
- Department of Poultry Science, University of Georgia, Athens, Georgia, United States of America
| | - Kelly M. Sweeney
- Department of Poultry Science, University of Georgia, Athens, Georgia, United States of America
| | - Minjeong Kim
- Department of Animal Science, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Brynn H. Voy
- Department of Animal Science, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Jeanna L. Wilson
- Department of Poultry Science, University of Georgia, Athens, Georgia, United States of America
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
12
|
Shu JB, Kim TY. Bone marrow adiposity in diabetes and clinical interventions. Curr Opin Endocrinol Diabetes Obes 2022; 29:303-309. [PMID: 35776685 DOI: 10.1097/med.0000000000000741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW This study aims to review bone marrow adipose tissue (BMAT) changes in people with diabetes, contributing factors, and interventions. RECENT FINDINGS In type 1 diabetes (T1D), BMAT levels are similar to healthy controls, although few studies have been performed. In type 2 diabetes (T2D), both BMAT content and composition appear altered, and recent bone histomorphometry data suggests increased BMAT is both through adipocyte hyperplasia and hypertrophy. Position emission tomography scanning suggests BMAT is a major source of basal glucose uptake. BMAT is responsive to metabolic interventions. SUMMARY BMAT is a unique fat depot that is influenced by metabolic factors and proposed to negatively affect the skeleton. BMAT alterations are more consistently seen in T2D compared to T1D. Interventions such as thiazolidinedione treatment may increase BMAT, whereas metformin treatment, weight loss, and exercise may decrease BMAT. Further understanding of the role of BMAT will provide insight into the pathogenesis of diabetic bone disease and could lead to targeted preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Jessica B Shu
- University of California, San Francisco and the San Francisco VA Health Care System, San Francisco, California, USA
| | | |
Collapse
|
13
|
Tompkins YH, Teng P, Pazdro R, Kim WK. Long Bone Mineral Loss, Bone Microstructural Changes and Oxidative Stress After Eimeria Challenge in Broilers. Front Physiol 2022; 13:945740. [PMID: 35923236 PMCID: PMC9340159 DOI: 10.3389/fphys.2022.945740] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/14/2022] [Indexed: 11/24/2022] Open
Abstract
The objective of this study was to evaluate the impact of coccidiosis on bone quality and antioxidant status in the liver and bone marrow of broiler chickens. A total of 360 13-day old male broilers (Cobb 500) were randomly assigned to different groups (negative control, low, medium-low, medium-high, and highest dose groups) and orally gavaged with different concentrations of Eimeria oocysts solution. Broiler tibia and tibia bone marrow were collected at 6 days post-infection (6 dpi) for bone 3-D structural analyses and the gene expression related to osteogenesis, oxidative stress, and adipogenesis using micro-computed tomography (micro-CT) and real-time qPCR analysis, respectively. Metaphyseal bone mineral density and content were reduced in response to the increase of Eimeria challenge dose, and poor trabecular bone traits were observed in the high inoculation group. However, there were no significant structural changes in metaphyseal cortical bone. Medium-high Eimeria challenge dose significantly increased level of peroxisome proliferator-activated receptor gamma (PPARG, p < 0.05) and decreased levels of bone gamma-carboxyglutamate protein coding gene (BGLAP, p < 0.05) and fatty acid synthase coding gene (FASN, p < 0.05) in bone marrow. An increased mRNA level of superoxide dismutase type 1 (SOD1, p < 0.05) and heme oxygenase 1 (HMOX1, p < 0.05), and increased enzyme activity of superoxide dismutase (SOD, p < 0.05) were found in bone marrow of Eimeria challenged groups compared with that of non-infected control. Similarly, enzyme activity of SOD and the mRNA level of SOD1, HMOX1 and aflatoxin aldehyde reductase (AKE7A2) were increased in the liver of infected broilers (p < 0.05), whereas glutathione (GSH) content was lower in the medium-high challenge group (p < 0.05) compared with non-challenged control. Moreover, the mRNA expression of catalase (CAT) and nuclear factor kappa B1 (NFKB1) showed dose-depend response in the liver, where expression of CAT and NFKB1 was upregulated in the low challenge group but decreased with the higher Eimeria challenge dosage (p < 0.05). In conclusion, high challenge dose of Eimeria infection negatively affected the long bone development. The structural changes of tibia and decreased mineral content were mainly located at the trabecular bone of metaphyseal area. The change of redox and impaired antioxidant status following the Eimeria infection were observed in the liver and bone marrow of broilers.
Collapse
Affiliation(s)
- Y. H. Tompkins
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - P. Teng
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - R. Pazdro
- Department of Foods and Nutrition, University of Georgia, Athens, GA, United States
| | - W. K. Kim
- Department of Poultry Science, University of Georgia, Athens, GA, United States
- *Correspondence: W. K. Kim,
| |
Collapse
|
14
|
Flehr A, Källgård J, Alvén J, Lagerstrand K, Papalini E, Wheeler M, Vandenput L, Kahl F, Axelsson KF, Sundh D, Mysore RS, Lorentzon M. Development of a novel method to measure bone marrow fat fraction in older women using high-resolution peripheral quantitative computed tomography. Osteoporos Int 2022; 33:1545-1556. [PMID: 35113175 PMCID: PMC9187531 DOI: 10.1007/s00198-021-06224-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 10/26/2021] [Indexed: 11/24/2022]
Abstract
UNLABELLED Bone marrow adipose tissue (BMAT) has been implicated in a number of conditions associated with bone deterioration and osteoporosis. Several studies have found an inverse relationship between BMAT and bone mineral density (BMD), and higher levels of BMAT in those with prevalent fracture. Magnetic resonance imaging (MRI) is the gold standard for measuring BMAT, but its use is limited by high costs and low availability. We hypothesized that BMAT could also be accurately quantified using high-resolution peripheral quantitative computed tomography (HR-pQCT). METHODS In the present study, a novel method to quantify the tibia bone marrow fat fraction, defined by MRI, using HR-pQCT was developed. In total, 38 postmenopausal women (mean [standard deviation] age 75.9 [3.1] years) were included and measured at the same site at the distal (n = 38) and ultradistal (n = 18) tibia using both MRI and HR-pQCT. To adjust for partial volume effects, the HR-pQCT images underwent 0 to 10 layers of voxel peeling to remove voxels adjacent to the bone. Linear regression equations were then tested for different degrees of voxel peeling, using the MRI-derived fat fractions as the dependent variable and the HR-pQCT-derived radiodensity as the independent variables. RESULTS The most optimal HR-pQCT derived model, which applied a minimum of 4 layers of peeled voxel and with more than 1% remaining marrow volume, was able to explain 76% of the variation in the ultradistal tibia bone marrow fat fraction, measured with MRI (p < 0.001). CONCLUSION The novel HR-pQCT method, developed to estimate BMAT, was able to explain a substantial part of the variation in the bone marrow fat fraction and can be used in future studies investigating the role of BMAT in osteoporosis and fracture prediction.
Collapse
Affiliation(s)
- Alison Flehr
- Mary McKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
| | - Julius Källgård
- Sahlgrenska Osteoporosis Centre, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jennifer Alvén
- Dept. of Molecular and Clinical Medicine, Inst. of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Computer Vision and Medical Image Analysis, Dept. of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Kerstin Lagerstrand
- Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Radiation Physics, Institution of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Evin Papalini
- Sahlgrenska Osteoporosis Centre, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Michael Wheeler
- Mary McKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
| | - Liesbeth Vandenput
- Mary McKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
- Sahlgrenska Osteoporosis Centre, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Fredrik Kahl
- Department of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Kristian F Axelsson
- Sahlgrenska Osteoporosis Centre, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Primary Care, Skövde, Sweden
| | - Daniel Sundh
- Sahlgrenska Osteoporosis Centre, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Raghunath Shirish Mysore
- Sahlgrenska Osteoporosis Centre, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Mattias Lorentzon
- Mary McKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia.
- Sahlgrenska Osteoporosis Centre, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
- Region Västra Götaland, Geriatric Medicine, Sahlgrenska University Hospital, Mölndal, Sweden.
| |
Collapse
|
15
|
Pachón-Peña G, Bredella MA. Bone marrow adipose tissue in metabolic health. Trends Endocrinol Metab 2022; 33:401-408. [PMID: 35396163 PMCID: PMC9098665 DOI: 10.1016/j.tem.2022.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/25/2022] [Accepted: 03/10/2022] [Indexed: 10/18/2022]
Abstract
Recent studies have highlighted the role of bone marrow adipose tissue (BMAT) as a regulator of skeletal homeostasis and energy metabolism. While long considered an inert filler, occupying empty spaces from bone loss and reduced hematopoiesis, BMAT is now considered a secretory and metabolic organ that responds to nutritional challenges and secretes cytokines, which indirectly impact energy and bone metabolism. The recent advances in our understanding of the function of BMAT have been enabled by novel noninvasive imaging techniques, which allow longitudinal assessment of BMAT in vivo following interventions. This review will focus on the latest advances in our understanding of BMAT and its role in metabolic health. Imaging techniques to quantify the content and composition of BMAT will be discussed.
Collapse
Affiliation(s)
| | - Miriam A Bredella
- Division of Musculoskeletal Imaging and Intervention, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
16
|
Tian J, Chung HK, Moon JS, Nga HT, Lee HY, Kim JT, Chang JY, Kang SG, Ryu D, Che X, Choi J, Tsukasaki M, Sasako T, Lee S, Shong M, Yi H. Skeletal muscle mitoribosomal defects are linked to low bone mass caused by bone marrow inflammation in male mice. J Cachexia Sarcopenia Muscle 2022; 13:1785-1799. [PMID: 35306755 PMCID: PMC9178379 DOI: 10.1002/jcsm.12975] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 02/01/2022] [Accepted: 02/15/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Mitochondrial oxidative phosphorylation (OxPhos) is a critical regulator of skeletal muscle mass and function. Although muscle atrophy due to mitochondrial dysfunction is closely associated with bone loss, the biological characteristics of the relationship between muscle and bone remain obscure. We showed that muscle atrophy caused by skeletal muscle-specific CR6-interacting factor 1 knockout (MKO) modulates the bone marrow (BM) inflammatory response, leading to low bone mass. METHODS MKO mice with lower muscle OxPhos were fed a normal chow or high-fat diet and then evaluated for muscle mass and function, and bone mineral density. Immunophenotyping of BM immune cells was also performed. BM transcriptomic analysis was used to identify key factors regulating bone mass in MKO mice. To determine the effects of BM-derived CXCL12 (C-X-C motif chemokine ligand 12) on regulation of bone homeostasis, a variety of BM niche-resident cells were treated with recombinant CXCL12. Vastus lateralis muscle and BM immune cell samples from 14 patients with hip fracture were investigated to examine the association between muscle function and BM inflammation. RESULTS MKO mice exhibited significant reductions in both muscle mass and expression of OxPhos subunits but increased transcription of mitochondrial stress response-related genes in the extensor digitorum longus (P < 0.01). MKO mice showed a decline in grip strength and a higher drop rate in the wire hanging test (P < 0.01). Micro-computed tomography and von Kossa staining revealed that MKO mice developed a low mass phenotype in cortical and trabecular bone (P < 0.01). Transcriptomic analysis of the BM revealed that mitochondrial stress responses in skeletal muscles induce an inflammatory response and adipogenesis in the BM and that the CXCL12-CXCR4 (C-X-C chemokine receptor 4) axis is important for T-cell homing to the BM. Antagonism of CXCR4 attenuated BM inflammation and increased bone mass in MKO mice. In humans, patients with low body mass index (BMI = 17.2 ± 0.42 kg/m2 ) harboured a larger population of proinflammatory and cytotoxic senescent T-cells in the BMI (P < 0.05) and showed reduced expression of OxPhos subunits in the vastus lateralis, compared with controls with a normal BMI (23.7 ± 0.88 kg/m2 ) (P < 0.01). CONCLUSIONS Defects in muscle mitochondrial OxPhos promote BM inflammation in mice, leading to decreased bone mass. Muscle mitochondrial dysfunction is linked to BM inflammatory cytokine secretion via the CXCL12-CXCR4 signalling axis, which is critical for inducing low bone mass.
Collapse
Affiliation(s)
- Jingwen Tian
- Department of Medical ScienceChungnam National UniversityDaejeonKorea
- Laboratory of Endocrinology and Immune SystemChungnam National University School of MedicineDaejeonKorea
| | - Hyo Kyun Chung
- Research Center for Endocrine and Metabolic DiseasesChungnam National University School of MedicineDaejeonKorea
| | - Ji Sun Moon
- Laboratory of Endocrinology and Immune SystemChungnam National University School of MedicineDaejeonKorea
- Research Center for Endocrine and Metabolic DiseasesChungnam National University School of MedicineDaejeonKorea
| | - Ha Thi Nga
- Department of Medical ScienceChungnam National UniversityDaejeonKorea
- Laboratory of Endocrinology and Immune SystemChungnam National University School of MedicineDaejeonKorea
| | - Ho Yeop Lee
- Department of Medical ScienceChungnam National UniversityDaejeonKorea
- Laboratory of Endocrinology and Immune SystemChungnam National University School of MedicineDaejeonKorea
| | - Jung Tae Kim
- Department of Medical ScienceChungnam National UniversityDaejeonKorea
- Research Center for Endocrine and Metabolic DiseasesChungnam National University School of MedicineDaejeonKorea
| | - Joon Young Chang
- Department of Medical ScienceChungnam National UniversityDaejeonKorea
- Research Center for Endocrine and Metabolic DiseasesChungnam National University School of MedicineDaejeonKorea
| | - Seul Gi Kang
- Department of Medical ScienceChungnam National UniversityDaejeonKorea
- Research Center for Endocrine and Metabolic DiseasesChungnam National University School of MedicineDaejeonKorea
| | - Dongryeol Ryu
- Department of Molecular Cell BiologySungkyunkwan University School of MedicineSuwonKorea
- Samsung Biomedical Research InstituteSamsung Medical CenterSeoulKorea
| | - Xiangguo Che
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, BK21 Plus KNU Biomedical Convergence Program, School of MedicineKyungpook National UniversityDaeguKorea
- Department of Internal Medicine, Rheumatology and ImmunologyThe Affiliated Hospital of Yanbian UniversityYanjiChina
| | - Je‐Yong Choi
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, BK21 Plus KNU Biomedical Convergence Program, School of MedicineKyungpook National UniversityDaeguKorea
| | - Masayuki Tsukasaki
- Department of Immunology, Graduate School of Medicine and Faculty of MedicineThe University of TokyoTokyoJapan
| | - Takayoshi Sasako
- Department of Diabetes and Metabolic Diseases, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Sang‐Hee Lee
- Bio‐Electron Microscopy Research Center (104‐Dong)Korea Basic Science InstituteCheongjuKorea
| | - Minho Shong
- Department of Medical ScienceChungnam National UniversityDaejeonKorea
- Research Center for Endocrine and Metabolic DiseasesChungnam National University School of MedicineDaejeonKorea
| | - Hyon‐Seung Yi
- Department of Medical ScienceChungnam National UniversityDaejeonKorea
- Laboratory of Endocrinology and Immune SystemChungnam National University School of MedicineDaejeonKorea
- Research Center for Endocrine and Metabolic DiseasesChungnam National University School of MedicineDaejeonKorea
| |
Collapse
|
17
|
Paccou J, Caiazzo R, Lespessailles E, Cortet B. Bariatric Surgery and Osteoporosis. Calcif Tissue Int 2022; 110:576-591. [PMID: 33403429 DOI: 10.1007/s00223-020-00798-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/14/2020] [Indexed: 02/06/2023]
Abstract
It has been increasingly acknowledged that bariatric surgery adversely affects skeletal health. After bariatric surgery, the extent of high-turnover bone loss is much greater than what would be expected in the absence of a severe skeletal insult. Patients also experience a significant deterioration in bone microarchitecture and strength. There is now a growing body of evidence that suggests an association between bariatric surgery and higher fracture risk. Although the mechanisms underlying the high-turnover bone loss and increase in fracture risk after bariatric surgery are not fully understood, many factors seem to be involved. The usual suspects are nutritional factors and mechanical unloading, and the roles of gut hormones, adipokines, and bone marrow adiposity should be investigated further. Roux-en-Y gastric bypass (RYGB) was once the most commonly performed bariatric procedure worldwide, but sleeve gastrectomy (SG) has now become the predominant bariatric procedure. Accumulating evidence suggests that RYGB is associated with a greater reduction in BMD, a greater increase in markers of bone turnover, and a higher risk of fracture than SG. These findings should be taken into consideration in determining the most appropriate bariatric procedure for patients, especially those at higher fracture risk. Before and after all bariatric procedures, sufficient calcium, vitamin D and protein intake, and adequate physical activity, are needed to counteract negative impacts on bone. There are no studies to date that have evaluated the effect of osteoporosis treatment on high-turnover bone loss after bariatric surgery. However, in patients with a diagnosis of osteoporosis, anti-resorptive agents may be considered.
Collapse
Affiliation(s)
- Julien Paccou
- Department of Rheumatology, MABLaB ULR 4490, CHU Lille, Univ. Lille, 59000, Lille, France.
- Department of Rheumatology, MABLaB ULR 4490, CHU Lille, 2, Avenue Oscar Lambret, 59037, Lille, France.
| | - Robert Caiazzo
- Inserm, Endocrine and Metabolic Surgery, UMR 1190, CHU Lille, Univ. Lille, 59000, Lille, France
| | - Eric Lespessailles
- Department of Rheumatology, CHR Orléans, I3MTO EA 4708, Univ. Orléans, 45067, Orléans, France
| | - Bernard Cortet
- Department of Rheumatology, MABLaB ULR 4490, CHU Lille, Univ. Lille, 59000, Lille, France
| |
Collapse
|
18
|
Preservation of Fat-free Mass in the first year after Bariatric Surgery: A systematic review and meta-analysis of 122 studies and 10758 participants. Surg Obes Relat Dis 2022; 18:964-982. [DOI: 10.1016/j.soard.2022.02.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 02/07/2022] [Accepted: 02/21/2022] [Indexed: 02/07/2023]
|
19
|
Trends in insulin-like growth factor-1 levels after bariatric surgery: a systematic review and meta-analysis. Int J Obes (Lond) 2022; 46:891-900. [PMID: 35034953 DOI: 10.1038/s41366-021-01051-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 11/29/2021] [Accepted: 12/10/2021] [Indexed: 11/08/2022]
Abstract
According to studies, there are many inconsistencies in how IGF-1 levels change after bariatric surgery compared to before surgery, as well as its effects. These discrepancies can be attributed to various factors such as age, body mass index (BMI), and duration of intervention. Therefore, the aim of this study was to evaluate the level of insulin-like growth factor-1 (IGF-1) after bariatric surgery. A systematic review and meta-analysis based on the PRISMA guidelines was conducted from inception until 2021. From 1871 articles initially selected, 24 studies with 28 treatment arms met the eligible criteria and were included. Pooled findings from the random-effects model indicated that IGF-1 levels increased significantly [weighted mean difference (WMD) = 8.84 ng/ml; 95% confidence interval (CI) 0.30-17.39; p = 0.043] after bariatric surgery compared to before surgery. No significant heterogeneity was noted among the studies (Cochran Q test, p = 0.90, I2 = 0.0%). In subgroup analysis, bariatric surgery significantly increased IGF-1 levels at age <40 years but not at age ≤40 years. Bariatric surgery is capable of increasing the IGF-1 levels compared to the period prior to surgery but with a modest clinical magnitude.
Collapse
|
20
|
Otley MOC, Sinal CJ. Adipocyte-Cancer Cell Interactions in the Bone Microenvironment. Front Endocrinol (Lausanne) 2022; 13:903925. [PMID: 35903271 PMCID: PMC9314873 DOI: 10.3389/fendo.2022.903925] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/15/2022] [Indexed: 12/28/2022] Open
Abstract
When compared to adipocytes in other anatomical sites, the interaction of bone marrow resident adipocytes with the other cells in their microenvironment is less well understood. Bone marrow adipocytes originate from a resident, self-renewing population of multipotent bone marrow stromal cells which can also give rise to other lineages such as osteoblasts. The differentiation fate of these mesenchymal progenitors can be influenced to favour adipogenesis by several factors, including the administration of thiazolidinediones and increased age. Experimental data suggests that increases in bone marrow adipose tissue volume may make bone both more attractive to metastasis and conducive to cancer cell growth. Bone marrow adipocytes are known to secrete a variety of lipids, cytokines and bioactive signaling molecules known as adipokines, which have been implicated as mediators of the interaction between adipocytes and cancer cells. Recent studies have provided new insight into the impact of bone marrow adipose tissue volume expansion in regard to supporting and exacerbating the effects of bone metastasis from solid tumors, focusing on prostate, breast and lung cancer and blood cancers, focusing on multiple myeloma. In this mini-review, recent research developments pertaining to the role of factors which increase bone marrow adipose tissue volume, as well as the role of adipocyte secreted factors, in the progression of bone metastatic prostate and breast cancer are assessed. In particular, recent findings regarding the complex cross-talk between adipocytes and metastatic cells of both lung and prostate cancer are highlighted.
Collapse
|
21
|
Mele C, Caputo M, Ferrero A, Daffara T, Cavigiolo B, Spadaccini D, Nardone A, Prodam F, Aimaretti G, Marzullo P. Bone Response to Weight Loss Following Bariatric Surgery. Front Endocrinol (Lausanne) 2022; 13:921353. [PMID: 35873004 PMCID: PMC9301317 DOI: 10.3389/fendo.2022.921353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/23/2022] [Indexed: 11/28/2022] Open
Abstract
Obesity is a global health challenge that warrants effective treatments to avoid its multiple comorbidities. Bariatric surgery, a cornerstone treatment to control bodyweight excess and relieve the health-related burdens of obesity, can promote accelerated bone loss and affect skeletal strength, particularly after malabsorptive and mixed surgical procedures, and probably after restrictive surgeries. The increase in bone resorption markers occurs early and persist for up to 12 months or longer after bariatric surgery, while bone formation markers increase but to a lesser extent, suggesting a potential uncoupling process between resorption and formation. The skeletal response to bariatric surgery, as investigated by dual-energy X-ray absorptiometry (DXA), has shown significant loss in bone mineral density (BMD) at the hip with less consistent results for the lumbar spine. Supporting DXA studies, analyses by high-resolution peripheral quantitative computed tomography (HR-pQCT) showed lower cortical density and thickness, higher cortical porosity, and lower trabecular density and number for up to 5 years after bariatric surgery. These alterations translate into an increased risk of fall injury, which contributes to increase the fracture risk in patients who have been subjected to bariatric surgery procedures. As bone deterioration continues for years following bariatric surgery, the fracture risk does not seem to be dependent on acute weight loss but, rather, is a chronic condition with an increasing impact over time. Among the post-bariatric surgery mechanisms that have been claimed to act globally on bone health, there is evidence that micro- and macro-nutrient malabsorptive factors, mechanical unloading and changes in molecules partaking in the crosstalk between adipose tissue, bone and muscle may play a determining role. Given these circumstances, it is conceivable that bone health should be adequately investigated in candidates to bariatric surgery through bone-specific work-up and dedicated postsurgical follow-up. Specific protocols of nutrients supplementation, motor activity, structured rehabilitative programs and, when needed, targeted therapeutic strategies should be deemed as an integral part of post-bariatric surgery clinical support.
Collapse
Affiliation(s)
- Chiara Mele
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
- *Correspondence: Chiara Mele,
| | - Marina Caputo
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
- Division of Endocrinology, University Hospital “Maggiore della Carità”, Novara, Italy
| | - Alice Ferrero
- Division of Endocrinology, University Hospital “Maggiore della Carità”, Novara, Italy
| | - Tommaso Daffara
- Division of Endocrinology, University Hospital “Maggiore della Carità”, Novara, Italy
| | - Beatrice Cavigiolo
- Division of Endocrinology, University Hospital “Maggiore della Carità”, Novara, Italy
| | - Daniele Spadaccini
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Antonio Nardone
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
- Istituti Clinici Scientifici Maugeri IRCCS, Neurorehabilitation and Spinal Unit of Pavia Institute, Pavia, and Neurorehabilitation of Montescano Institute, Montescano, PV, Italy
| | - Flavia Prodam
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
- Division of Endocrinology, University Hospital “Maggiore della Carità”, Novara, Italy
| | - Gianluca Aimaretti
- Division of Endocrinology, University Hospital “Maggiore della Carità”, Novara, Italy
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Paolo Marzullo
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
- Istituto Auxologico Italiano, IRCCS, Laboratory of Metabolic Research, S. Giuseppe Hospital, Piancavallo, Italy
| |
Collapse
|
22
|
Ali D, Tencerova M, Figeac F, Kassem M, Jafari A. The pathophysiology of osteoporosis in obesity and type 2 diabetes in aging women and men: The mechanisms and roles of increased bone marrow adiposity. Front Endocrinol (Lausanne) 2022; 13:981487. [PMID: 36187112 PMCID: PMC9520254 DOI: 10.3389/fendo.2022.981487] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoporosis is defined as a systemic skeletal disease characterized by decreased bone mass and micro-architectural deterioration leading to increased fracture risk. Osteoporosis incidence increases with age in both post-menopausal women and aging men. Among other important contributing factors to bone fragility observed in osteoporosis, that also affect the elderly population, are metabolic disturbances observed in obesity and Type 2 Diabetes (T2D). These metabolic complications are associated with impaired bone homeostasis and a higher fracture risk. Expansion of the Bone Marrow Adipose Tissue (BMAT), at the expense of decreased bone formation, is thought to be one of the key pathogenic mechanisms underlying osteoporosis and bone fragility in obesity and T2D. Our review provides a summary of mechanisms behind increased Bone Marrow Adiposity (BMA) during aging and highlights the pre-clinical and clinical studies connecting obesity and T2D, to BMA and bone fragility in aging osteoporotic women and men.
Collapse
Affiliation(s)
- Dalia Ali
- Department of Molecular Endocrinology, KMEB, University of Southern Denmark and Odense University Hospital, Odense, Denmark
- *Correspondence: Dalia Ali, ; Abbas Jafari,
| | - Michaela Tencerova
- Laboratory of Molecular Physiology of Bone, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Florence Figeac
- Department of Molecular Endocrinology, KMEB, University of Southern Denmark and Odense University Hospital, Odense, Denmark
| | - Moustapha Kassem
- Department of Molecular Endocrinology, KMEB, University of Southern Denmark and Odense University Hospital, Odense, Denmark
| | - Abbas Jafari
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Dalia Ali, ; Abbas Jafari,
| |
Collapse
|
23
|
Paccou J, Tsourdi E, Meier C, Palermo A, Pepe J, Body JJ, Zillikens MC. Bariatric surgery and skeletal health: A narrative review and position statement for management by the European Calcified Tissue Society (ECTS). Bone 2022; 154:116236. [PMID: 34688942 DOI: 10.1016/j.bone.2021.116236] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/02/2021] [Accepted: 10/16/2021] [Indexed: 12/14/2022]
Abstract
CONTEXT Numerous studies have demonstrated detrimental skeletal consequences following bariatric surgery. METHODS A working group of the European Calcified Tissue Society (ECTS) performed an updated review of existing literature on changes of bone turnover markers (BTMs), bone mineral density (BMD), and fracture risk following bariatric surgery and provided advice on management based on expert opinion. LITERATURE REVIEW Based on observational studies, bariatric surgery is associated with a 21-44% higher risk of all fractures. Fracture risk is time-dependent and increases approximately 3 years after bariatric surgery. The bariatric procedures that have a malabsorptive component (including Roux-en-Y Gastric bypass (RYGB) and biliopancreatic diversion (BPD)) have clearly been associated with the highest risk of fracture. The extent of high-turnover bone loss suggests a severe skeletal insult. This is associated with diminished bone strength and compromised microarchitecture. RYGB was the most performed bariatric procedure worldwide until very recently, when sleeve gastrectomy (SG) became more prominent. There is growing evidence that RYGB is associated with greater reduction in BMD, greater increase in BTMs, and higher risk of fractures compared with SG but RCTs on optimal management are still lacking. EXPERT OPINION In all patients, it is mandatory to treat vitamin D deficiency, to achieve adequate daily calcium and protein intake and to promote physical activity before and following bariatric surgery. In post-menopausal women and men older than 50 years, osteoporosis treatment would be reasonable in the presence of any of the following criteria: i) history of recent fragility fracture after 40 years of age, ii) BMD T-score ≤ -2 at hip or spine, iii) FRAX score with femoral neck BMD exceeding 20% for the 10-year major osteoporotic fracture probability or exceeding 3% for hip fracture. Zoledronate as first choice should be preferred due to intolerance of oral formulations and malabsorption. Zoledronate should be used with caution due to hypocemia risk. It is recommended to ensure adequate 25-OH vitamin D level and calcium supplementation before administering zoledronate. CONCLUSIONS The bariatric procedures that have a malabsorptive component have been associated with the highest turnover bone loss and risk of fracture. There is a knowledge gap on osteoporosis treatment in patients undergoing bariatric surgery. More research is necessary to direct and support guidelines.
Collapse
Affiliation(s)
- Julien Paccou
- Univ. Lille, CHU Lille, MABLab ULR 4490, Department of Rheumatology, 59000 Lille, France.
| | - Elena Tsourdi
- Department of Medicine III, Technische Universität Dresden Medical Center, Dresden, Germany; Center for Healthy Aging, Technische Universität Dresden Medical Center, Dresden, Germany
| | - Christian Meier
- Division of Endocrinology, Diabetes and Metabolism, University Hospital and University of Basel, Switzerland
| | - Andrea Palermo
- Unit of Endocrinology and Diabetes, University Campus Bio-Medico, Rome, Italy
| | - Jessica Pepe
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, "Sapienza" University of Rome, Italy
| | - Jean-Jacques Body
- Department of Medicine, CHU Brugmann, Université Libre de Bruxelles, Brussels, Belgium
| | - M Carola Zillikens
- Bone Center Erasmus MC, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
24
|
Paccou J, Thuillier D, Courtalin M, Pigny P, Labreuche J, Cortet B, Pattou F. A comparison of changes in bone turnover markers after gastric bypass and sleeve gastrectomy, and their association with markers of interest. Surg Obes Relat Dis 2021; 18:373-383. [PMID: 34973928 DOI: 10.1016/j.soard.2021.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/23/2021] [Accepted: 12/01/2021] [Indexed: 01/27/2023]
Abstract
BACKGROUND It is still debated whether differences in bone turnover markers (BTMs) exist between the 2 most popular bariatric surgery procedures (Roux-en-Y gastric bypass [RYGB] and sleeve gastrectomy [SG]). OBJECTIVES To compare changes in BTMs after RYGB and SG, and to investigate their association with predefined markers of interest. SETTING University hospital, Lille, France. METHODS An ancillary investigation of a prospective cohort was conducted. SG patients with severe obesity ≥40 years were matched one-to-one to RYGB patients for age, sex, body mass index (BMI), and menopausal status. BTMs, as well as predefined markers of interest, were measured at baseline, 12, and 24 months after bariatric surgery. RESULTS Sixty-four patients (66% women) had a mean (standard deviation [SD]) age of 49.6 years (5.1) and a mean (SD) BMI of 45.0 kg/m2 (6.0). From baseline to 12 months, a significant increase in BTMs was observed in both groups (P < .001). Moreover, RYGB was associated with a greater increase in C-terminal telopeptide (β-CTX) and procollagen type 1 N-terminal propeptide (PINP) compared with SG (P < .0001). From 12 to 24 months, a significant decrease in BTMs was observed in both groups, but no significant differences were found between RYGB and SG. However, BTMs did not return to baseline levels. The changes in PINP and β-CTX at 12 months were independently associated with the type of surgical procedure, after adjusting for weight or each predefined marker of interest (all P < .0001). CONCLUSION RYGB was associated with a greater increase in BTMs than SG at 12 and 24 months.
Collapse
Affiliation(s)
- Julien Paccou
- Department of Rheumatology, University of Lille, Lille, France.
| | - Dorothée Thuillier
- Department of Endocrine and Metabolic Surgery, University of Lille, Lille, France
| | | | - Pascal Pigny
- Department of Cancer Heterogeneity, Plasticity and Resistance to Therapies (CANTHER), University of Lille, Lille, France
| | - Julien Labreuche
- METRICS: Évaluation des technologies de santé et des pratiques médicales, University of Lille, Lille, France
| | - Bernard Cortet
- Department of Rheumatology, University of Lille, Lille, France
| | - François Pattou
- Department of Endocrine and Metabolic Surgery, University of Lille, Lille, France
| |
Collapse
|
25
|
Beekman KM, Akkerman EM, Streekstra GJ, Veldhuis‐Vlug AG, Acherman Y, Gerdes VE, den Heijer M, Maas M, Bravenboer N, Bisschop PH. The Effect of Roux-en-Y Gastric Bypass on Bone Marrow Adipose Tissue and Bone Mineral Density in Postmenopausal, Nondiabetic Women. Obesity (Silver Spring) 2021; 29:1120-1127. [PMID: 33951317 PMCID: PMC8359834 DOI: 10.1002/oby.23171] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/07/2021] [Accepted: 03/03/2021] [Indexed: 12/22/2022]
Abstract
OBJECTIVES This study aimed to determine the effect of bariatric surgery-induced weight loss on bone marrow adipose tissue (BMAT) and bone mineral density (BMD) in postmenopausal, nondiabetic women. METHODS A total of 14 postmenopausal, nondiabetic women with obesity who were scheduled for laparoscopic Roux-en-Y gastric bypass surgery (RYGB) were included in this study. Vertebral bone marrow fat signal fraction was determined by quantitative chemical shift magnetic resonance imaging, and vertebral volumetric BMD (vBMD) was determined by quantitative computed tomography before surgery and 3 and 12 months after surgery. Data were analyzed by linear mixed model. RESULTS Body weight [mean (SD)] decreased after surgery from 108 (13) kg at baseline to 89 (12) kg at 3 months and 74 (11) kg at 12 months (P < 0.001). BMAT decreased after surgery from 51% (8%) at baseline to 50% (8%) at 3 months and 46% (7%) at 12 months (P = 0.004). vBMD decreased after surgery from 101 (26) mg/cm3 at baseline to 94 (28) mg/cm3 at 3 months (P = 0.003) and 94 (28) mg/cm3 at 12 months (P = 0.035). Changes in BMAT and vBMD were not correlated (ρ = -0.10 and P = 0.75). Calcium and vitamin D concentrations did not change after surgery. CONCLUSIONS RYGB decreases both BMAT (after 12 months) and vBMD (both after 3 months and 12 months) in postmenopausal, nondiabetic women. Changes in BMAT and vBMD were not correlated. These findings suggest that BMAT does not contribute to bone loss following RYGB.
Collapse
Affiliation(s)
- Kerensa M. Beekman
- Department of Radiology and Nuclear MedicineAmsterdam Movement SciencesAmsterdam University Medical CenterUniversity of AmsterdamAmsterdamthe Netherlands
- Department of EndocrinologyAmsterdam Movement SciencesAmsterdam University Medical CenterVrije University, AmsterdamAmsterdamthe Netherlands
| | - Erik M. Akkerman
- Department of Radiology and Nuclear MedicineAmsterdam Movement SciencesAmsterdam University Medical CenterUniversity of AmsterdamAmsterdamthe Netherlands
| | - Geert J. Streekstra
- Department of Radiology and Nuclear MedicineAmsterdam Movement SciencesAmsterdam University Medical CenterUniversity of AmsterdamAmsterdamthe Netherlands
- Department of Biomedical Engineering and PhysicsAmsterdam Movement SciencesAmsterdam University Medical CenterUniversity of AmsterdamAmsterdamthe Netherlands
| | - Annegreet G. Veldhuis‐Vlug
- Department of Internal MedicineJan van Goyen Medical Center/Onze Lieve Vrouwe GasthuisAmsterdamthe Netherlands
- Department of EndocrinologyLeiden University Medical CenterLeidenthe Netherlands
| | - Yair Acherman
- Department of SurgerySpaarne GasthuisHaarlemthe Netherlands
| | - Victor E. Gerdes
- Department of Vascular MedicineAmsterdam University Medical CenterUniversity of AmsterdamAmsterdamthe Netherlands
| | - Martin den Heijer
- Department of EndocrinologyAmsterdam Movement SciencesAmsterdam University Medical CenterVrije University, AmsterdamAmsterdamthe Netherlands
| | - Mario Maas
- Department of Radiology and Nuclear MedicineAmsterdam Movement SciencesAmsterdam University Medical CenterUniversity of AmsterdamAmsterdamthe Netherlands
| | - Nathalie Bravenboer
- Department of EndocrinologyLeiden University Medical CenterLeidenthe Netherlands
- Department of Clinical ChemistryResearch Laboratory Bone and Calcium MetabolismAmsterdam Movement SciencesAmsterdam University Medical CenterVrije University, AmsterdamAmsterdamthe Netherlands
| | - Peter H. Bisschop
- Department of EndocrinologyAmsterdam Movement SciencesAmsterdam University Medical CenterUniversity of AmsterdamAmsterdamthe Netherlands
| |
Collapse
|
26
|
Wu KC, Yu EW, Schafer AL. Skeletal health after bariatric surgery. MARCUS AND FELDMAN'S OSTEOPOROSIS 2021:1261-1280. [DOI: 10.1016/b978-0-12-813073-5.00051-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
27
|
Chen X, Zhang J, Zhou Z. Changes in Bone Mineral Density After Weight Loss Due to Metabolic Surgery or Lifestyle Intervention in Obese Patients. Obes Surg 2020; 31:1147-1157. [PMID: 33145717 DOI: 10.1007/s11695-020-05095-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE Metabolic surgery and lifestyle intervention are two common methods used to treat obesity, but the effects of weight loss on bone mineral density (BMD) remain controversial. Our aim was to evaluate changes in BMD of the total hip, femoral neck, and lumbar spine after weight loss caused by metabolic surgery or lifestyle intervention. MATERIALS AND METHODS We searched PubMed, Web of Science, and the Cochrane Library to identify relevant studies published before 5 August 2020. The primary outcomes, including the BMD of the total hip, femoral neck, and lumbar spine before and 12 months after metabolic surgery or lifestyle intervention, were extracted. RESULTS A total of 19 studies with 1095 participants with obesity were included. Among them, 603 participants with obesity accepted metabolic surgery, while 492 accepted lifestyle intervention. At 12 months after weight loss, the BMD of the total hip decreased significantly in obese patients (mean difference [MD] = 0.06 g/cm2; 95% confidence interval [CI] 0.03 to 0.08; I2 = 67%; P < 0.001), while the BMD of the lumbar spine did not significantly change (P > 0.05). In the subgroup analysis, the BMD of the femoral neck decreased significantly at 12 months in obese patients who underwent metabolic surgery (MD = 0.08 g/cm2; 95% CI 0.04 to 0.13; I2 = 84%; P < 0.001), while it did not significantly change in obese patients who underwent lifestyle treatment (P > 0.05). CONCLUSION Regardless of whether the patients underwent metabolic surgery or lifestyle treatment, the BMD of the total hip significantly decreased in obese patients after weight loss. Different methods used to lose weight may have different effects on the BMD of the femoral neck. Prospective studies, preferably randomized controlled trials (RCTs), are still required to investigate whether the effects of the two treatments on bone metabolism are truly different.
Collapse
Affiliation(s)
- Xi Chen
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Jingjing Zhang
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| |
Collapse
|
28
|
Bredella MA, Singhal V, Hazhir Karzar N, Animashaun A, Bose A, Stanford FC, Carmine B, Misra M. Effects of Sleeve Gastrectomy on Bone Marrow Adipose Tissue in Adolescents and Young Adults with Obesity. J Clin Endocrinol Metab 2020; 105:dgaa581. [PMID: 32827034 PMCID: PMC7494241 DOI: 10.1210/clinem/dgaa581] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 08/19/2020] [Indexed: 02/06/2023]
Abstract
CONTEXT Sleeve gastrectomy (SG), the most common metabolic and bariatric surgery in adolescents, is associated with bone loss. Marrow adipose tissue (MAT) is a dynamic endocrine organ that responds to changes in nutrition and might serve as a novel biomarker for bone health. Two types of MAT have been described, which differ in anatomic location-proximal regulated MAT vs distal constitutive MAT. OBJECTIVE To determine the effects of SG on volumetric bone mineral density (vBMD) and MAT in adolescents with obesity. We hypothesized that SG would lead to a decrease in vBMD and differential changes in MAT. DESIGN 12-month prospective study in 52 adolescents with moderate-to-severe obesity (38 female; mean age:17.5 ± 2.2 years; mean BMI 45.2 ± 7.0 kg/m2), comprising 26 subjects before and after SG and 26 nonsurgical controls. MAIN OUTCOME MEASURES Lumbar vBMD by quantitative computed tomography; MAT of the lumbar spine, femur and tibia by proton magnetic resonance spectroscopy; abdominal fat and thigh muscle by magnetic resonance imaging. RESULTS Adolescents lost 34.1 ± 13.1 kg after SG vs 0.3 ± 8.4 kg in the control group (P < 0.001). Lumbar vBMD decreased in the SG group (P = 0.04) and this change was associated with a reduction in weight and muscle area (P < 0.05) and an increase in lumbar MAT (P = 0.0002). MAT of the femur and tibia decreased after SG vs controls (P < 0.05); however, the differences were no longer significant after controlling for change in weight. CONCLUSION SG in adolescents decreased lumbar vBMD associated with an increase in lumbar MAT and decrease in extremity MAT. This demonstrates differential changes of regulated MAT in the lumbar spine and constitutive MAT in the distal skeleton in adolescents in response to SG.
Collapse
Affiliation(s)
- Miriam A Bredella
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Vibha Singhal
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Pediatric Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- MGH Weight Center, Boston, Massachusetts
| | - Nazanin Hazhir Karzar
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Abisayo Animashaun
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Amita Bose
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Fatima C Stanford
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- MGH Weight Center, Boston, Massachusetts
| | - Brian Carmine
- Department of Surgery, Boston University Medical Center, Boston, Massachusetts
| | - Madhusmita Misra
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Pediatric Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
29
|
Paccou J, Martignène N, Lespessailles E, Babykina E, Pattou F, Cortet B, Ficheur G. Gastric Bypass But Not Sleeve Gastrectomy Increases Risk of Major Osteoporotic Fracture: French Population-Based Cohort Study. J Bone Miner Res 2020; 35:1415-1423. [PMID: 32187759 DOI: 10.1002/jbmr.4012] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 02/14/2020] [Accepted: 03/10/2020] [Indexed: 12/29/2022]
Abstract
The objective of this work was to investigate the risk of major osteoporotic fracture (MOF; hip, proximal humerus, wrist and distal forearm, and clinical spine) in bariatric surgery patients versus matched controls. Bariatric surgery is associated with an increase in fracture risk. However, it remains unclear whether the same degree of fracture risk is associated with sleeve gastrectomy, which has recently surpassed gastric bypass. Records from the French National Inpatient database were used from 2008 to 2018. Bariatric surgery patients, aged 40 to 65 years, with BMI ≥40 kg/m2 , hospitalized between January 1, 2010 and December 31, 2014, were matched to one control (1:1) by age, sex, Charlson comorbidity index, year of inclusion, and class of obesity (40 to 49.9 kg/m2 versus ≥50 kg/m2 ). We performed a Cox regression analysis to assess the association between the risk of any MOF and, respectively, (i) bariatric surgery (yes/no) and (ii) type of surgical procedure (gastric bypass, gastric banding, vertical banded gastroplasty, and sleeve gastrectomy) versus no surgery. A total of 81,984 patients were included in the study (40,992 in the bariatric surgery group, and 40,992 matched controls). There were 585 MOFs in the surgical group (2.30 cases per 1000 patient-year [PY]) and 416 MOFs in the matched controls (1.93 cases per 1000 PY). The risk of MOF was significantly higher in the surgical group (hazard ratio [HR] 1.22; 95% CI, 1.08-1.39). We observed an increase in risk of MOF for gastric bypass only (HR 1.70; 95% CI, 1.46-1.98) compared with the matched controls. In patients aged 40 to 65 years, gastric bypass but not sleeve gastrectomy or the other procedures increased risk of major osteoporotic fractures. © 2020 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Julien Paccou
- Department of Rheumatology, University of Lille, University Hospital Center (CHU) of Lille, Marrow Adiposity and Bone Interactions (MABLab) (ULR 4490), Lille, France
| | - Niels Martignène
- Department of Public Health, University of Lille, University Hospital Center (CHU) of Lille, Epidemiology and Quality of Care (EA2694), Lille, France
| | - Eric Lespessailles
- Department of Rheumatology, University of Orléans, Regional Hospital Center (CHR) of Orléans, Multiscale Multimodal Imaging and Modeling of Bone and Joint Tissue (I3MTO) Laboratory (EA4708), Orléans, France
| | - Evgéniya Babykina
- Department of Public Health, University of Lille, University Hospital Center (CHU) of Lille, Epidemiology and Quality of Care (EA2694), Lille, France
| | - François Pattou
- INSERM, Endocrine and Metabolic Surgery, University of Lille, University Hospital Center (Lille University Hospital), Laboratory for Translational Research on Diabetes (UMR 1190), Lille, France
| | - Bernard Cortet
- Department of Rheumatology, University of Lille, University Hospital Center (CHU) of Lille, Marrow Adiposity and Bone Interactions (MABLab) (ULR 4490), Lille, France
| | - Grégoire Ficheur
- Department of Public Health, University of Lille, University Hospital Center (CHU) of Lille, Epidemiology and Quality of Care (EA2694), Lille, France
| |
Collapse
|
30
|
Aparisi Gómez MP, Ayuso Benavent C, Simoni P, Aparisi F, Guglielmi G, Bazzocchi A. Fat and bone: the multiperspective analysis of a close relationship. Quant Imaging Med Surg 2020; 10:1614-1635. [PMID: 32742956 DOI: 10.21037/qims.2020.01.11] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The study of bone has for many years been focused on the study of its mineralized component, and one of the main objects of study as radiology developed as a medical specialty. The assessment has until recently been almost limited to its role as principal component of the scaffolding of the human body. Bone is a very active tissue, in continuous cross-talk with other organs and systems, with functions that are endocrine and paracrine and that have an important involvement in metabolism, ageing and health in general. Bone is also the continent for the bone marrow, in the form of "yellow marrow" (mainly adipocytes) or "red marrow" (hematopoietic cells and adipocytes). Recently, numerous studies have focused on these adipocytes contained in the bone marrow, often referred to as marrow adipose tissue (MAT). Bone marrow adipocytes do not only work as storage tissue, but are also endocrine and paracrine cells, with the potential to contribute to local bone homeostasis and systemic metabolism. Many metabolic disorders (osteoporosis, obesity, diabetes) have a complex and still not well-established relationship with MAT. The development of imaging methods, in particular the development of cross-sectional imaging has helped us to understand how much more laid beyond our classical way to look at bone. The impact on the mineralized component of bone in some cases (e.g., osteoporosis) is well-established, and has been extensively analyzed and quantified through different radiological methods. The application of advanced magnetic resonance techniques has unlocked the possibility to access the detailed study, characterization and quantification of the bone marrow components in a non-invasive way. In this review, we will address what is the evidence on the physiological role of MAT in normal skeletal health (interaction with the other bone components), during the process of normal aging and in the context of some metabolic disorders, highlighting the role that imaging methods play in helping with quantification and diagnosis.
Collapse
Affiliation(s)
- Maria Pilar Aparisi Gómez
- Department of Radiology, Auckland City Hospital, Auckland, New Zealand.,Department of Radiology, Hospital Vithas Nueve de Octubre, Valencia, Spain
| | | | - Paolo Simoni
- Department of Radiology, "Reine Fabiola" Children's University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Francisco Aparisi
- Department of Radiology, Hospital Vithas Nueve de Octubre, Valencia, Spain
| | - Giuseppe Guglielmi
- Department of Radiology, University of Foggia, Foggia, Italy.,Department of Radiology, Hospital San Giovanni Rotondo, Foggia, Italy
| | - Alberto Bazzocchi
- Diagnostic and Interventional Radiology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
31
|
Al Saedi A, Chen L, Phu S, Vogrin S, Miao D, Ferland G, Gaudreau P, Duque G. Age-Related Increases in Marrow Fat Volumes have Regional Impacts on Bone Cell Numbers and Structure. Calcif Tissue Int 2020; 107:126-134. [PMID: 32356017 DOI: 10.1007/s00223-020-00700-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 04/21/2020] [Indexed: 01/08/2023]
Abstract
The increasing levels of bone marrow fat evident in aging and osteoporosis are associated with low bone mass and attributed to reduced osteoblastogenesis. Local lipotoxicity has been proposed as the primary mechanism driving this reduction in bone formation. However, no studies have examined the correlation between high levels of marrow fat volumes and changes in local cellularity. In this study, we hypothesize that areas of bone marrow with high fat volumes are associated with significant changes in cell number within a similar region of interest (ROI). Inbred albino Louvain (LOU) rats, originating from the Wistar strain, have been described as a model of healthy aging with the absence of obesity but expressing the typical features of age-related bone loss. We compared local changes in distal femur cellularity and structure in specific ROI of undecalcified bone sections from 4- and 20-month-old male and female LOU rats and Wistar controls. Our results confirmed that older LOU rats exhibited significantly higher fat volumes than Wistar rats (p < 0.001). These higher fat volume/total volume were associated with lower trabecular number (p < 0.05) and thickness (p < 0.05) and higher trabecular separation (p < 0.05). In addition, osteoblast and osteocyte numbers were reduced in the similar ROI containing high levels of adiposity, while osteoclast number was higher compared to control (p < 0.03). In summary, marrow ROIs with a high level of adiposity were associated with a lower bone mass and changes in cellularity explaining associated bone loss. Further studies assessing the levels of lipotoxicity in areas of high local marrow adiposity and identifying molecular actors involved in this phenomenon are still required.
Collapse
Affiliation(s)
- Ahmed Al Saedi
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, 176 Furlong Road, St. Albans, VIC, 3021, Australia
- Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, St. Albans, VIC, Australia
| | - Lulu Chen
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, 176 Furlong Road, St. Albans, VIC, 3021, Australia
- Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Steven Phu
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, 176 Furlong Road, St. Albans, VIC, 3021, Australia
- Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, St. Albans, VIC, Australia
| | - Sara Vogrin
- Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, St. Albans, VIC, Australia
| | - Dengshun Miao
- Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Guylaine Ferland
- Département de Nutrition, Faculté de médecine de l'université de Montréal (UdeM) and Centre de Recherche de L'Institut de Cardiologie de Montréal, Montréal, QC, Canada
| | - Pierrette Gaudreau
- Département de médecine, UdeM and Laboratoire de Neuroendocrinologie du Vieillissement, Centre de Recherche du Centre Hospitalier de l'université de Montreal (UdeM), 900 rue Saint-Denis, Pavillon R, Montréal, QC, Canada
| | - Gustavo Duque
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, 176 Furlong Road, St. Albans, VIC, 3021, Australia.
- Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, St. Albans, VIC, Australia.
| |
Collapse
|
32
|
Bone marrow fat: friend or foe in people with diabetes mellitus? Clin Sci (Lond) 2020; 134:1031-1048. [PMID: 32337536 DOI: 10.1042/cs20200220] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/15/2020] [Accepted: 04/20/2020] [Indexed: 12/22/2022]
Abstract
Global trends in the prevalence of overweight and obesity put the adipocyte in the focus of huge medical interest. This review highlights a new topic in adipose tissue biology, namely the emerging pathogenic role of fat accumulation in bone marrow (BM). Specifically, we summarize current knowledge about the origin and function of BM adipose tissue (BMAT), provide evidence for the association of excess BMAT with diabetes and related cardiovascular complications, and discuss potential therapeutic approaches to correct BMAT dysfunction. There is still a significant uncertainty about the origins and function of BMAT, although several subpopulations of stromal cells have been suggested to have an adipogenic propensity. BM adipocytes are higly plastic and have a distinctive capacity to secrete adipokines that exert local and endocrine functions. BM adiposity is abundant in elderly people and has therefore been interpreted as a component of the whole-body ageing process. BM senescence and BMAT accumulation has been also reported in patients and animal models with Type 2 diabetes, being more pronounced in those with ischaemic complications. Understanding the mechanisms responsible for excess and altered function of BMAT could lead to new treatments able to preserve whole-body homeostasis.
Collapse
|
33
|
Spurny M, Jiang Y, Sowah SA, Schübel R, Nonnenmacher T, Bertheau R, Kirsten R, Johnson T, Hillengass J, Schlett CL, von Stackelberg O, Ulrich CM, Kaaks R, Kauczor HU, Kühn T, Nattenmüller J. Changes in Bone Marrow Fat upon Dietary-Induced Weight Loss. Nutrients 2020; 12:nu12051509. [PMID: 32455947 PMCID: PMC7284630 DOI: 10.3390/nu12051509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/09/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Bone marrow fat is implicated in metabolism, bone health and haematological diseases. Thus, this study aims to analyse the impact of moderate weight loss on bone marrow fat content (BMFC) in obese, healthy individuals. Methods: Data of the HELENA-Trial (Healthy nutrition and energy restriction as cancer prevention strategies: a randomized controlled intervention trial), a randomized controlled trial (RCT) among 137 non-smoking, overweight or obese participants, were analysed to quantify the Magnetic Resonance Imaging (MRI)-derived BMFC at baseline, after a 12-week dietary intervention phase, and after a 50-week follow-up. The study cohort was classified into quartiles based on changes in body weight between baseline and week 12. Changes in BMFC in respect of weight loss were analysed by linear mixed models. Spearman’s coefficients were used to assess correlations between anthropometric parameters, blood biochemical markers, blood cells and BMFC. Results: Relative changes in BMFC from baseline to week 12 were 0.0 ± 0.2%, −3.2 ± 0.1%, −6.1 ± 0.2% and −11.5 ± 0.6% for Q1 to Q4. Across all four quartiles and for the two-group comparison, Q1 versus Q4, there was a significant difference (p < 0.05) for changes in BMFC. BMFC was not associated with blood cell counts and showed only weaker correlations (<0.3) with metabolic biomarkers. Conclusion: Weight loss is associated with a decrease of BMFC. However, BMFC showed no stronger associations with inflammatory and metabolic biomarkers.
Collapse
Affiliation(s)
- Manuela Spurny
- Heidelberg University Hospital, Diagnostic and Interventional Radiology, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany; (M.S.); (Y.J.); (R.S.); (T.N.); (R.B.); (O.v.S.); (H.-U.K.)
| | - Yixin Jiang
- Heidelberg University Hospital, Diagnostic and Interventional Radiology, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany; (M.S.); (Y.J.); (R.S.); (T.N.); (R.B.); (O.v.S.); (H.-U.K.)
| | - Solomon A. Sowah
- German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany; (S.A.S.); (R.K.); (T.J.); (R.K.); (T.K.)
| | - Ruth Schübel
- Heidelberg University Hospital, Diagnostic and Interventional Radiology, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany; (M.S.); (Y.J.); (R.S.); (T.N.); (R.B.); (O.v.S.); (H.-U.K.)
- German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany; (S.A.S.); (R.K.); (T.J.); (R.K.); (T.K.)
| | - Tobias Nonnenmacher
- Heidelberg University Hospital, Diagnostic and Interventional Radiology, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany; (M.S.); (Y.J.); (R.S.); (T.N.); (R.B.); (O.v.S.); (H.-U.K.)
| | - Robert Bertheau
- Heidelberg University Hospital, Diagnostic and Interventional Radiology, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany; (M.S.); (Y.J.); (R.S.); (T.N.); (R.B.); (O.v.S.); (H.-U.K.)
| | - Romy Kirsten
- German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany; (S.A.S.); (R.K.); (T.J.); (R.K.); (T.K.)
| | - Theron Johnson
- German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany; (S.A.S.); (R.K.); (T.J.); (R.K.); (T.K.)
| | - Jens Hillengass
- Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, New York 14263, USA;
| | - Christopher L. Schlett
- Department of Diagnostic and Interventional Radiology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, D-79106 Freiburg, Germany;
| | - Oyunbileg von Stackelberg
- Heidelberg University Hospital, Diagnostic and Interventional Radiology, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany; (M.S.); (Y.J.); (R.S.); (T.N.); (R.B.); (O.v.S.); (H.-U.K.)
| | - Cornelia M. Ulrich
- Huntsman Cancer Institute and Department of Population Health Sciences, University of Utah, 2000 Circle of Hope, Salt Lake City, UT 84112-5550, USA;
| | - Rudolf Kaaks
- German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany; (S.A.S.); (R.K.); (T.J.); (R.K.); (T.K.)
| | - Hans-Ulrich Kauczor
- Heidelberg University Hospital, Diagnostic and Interventional Radiology, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany; (M.S.); (Y.J.); (R.S.); (T.N.); (R.B.); (O.v.S.); (H.-U.K.)
| | - Tilman Kühn
- German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany; (S.A.S.); (R.K.); (T.J.); (R.K.); (T.K.)
| | - Johanna Nattenmüller
- Heidelberg University Hospital, Diagnostic and Interventional Radiology, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany; (M.S.); (Y.J.); (R.S.); (T.N.); (R.B.); (O.v.S.); (H.-U.K.)
- Correspondence: ; Tel.: +49-6221-5636462
| |
Collapse
|
34
|
Saad R, Habli D, El Sabbagh R, Chakhtoura M. Bone Health Following Bariatric Surgery: An Update. J Clin Densitom 2020; 23:165-181. [PMID: 31519474 DOI: 10.1016/j.jocd.2019.08.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 08/02/2019] [Accepted: 08/05/2019] [Indexed: 12/13/2022]
Abstract
Obesity rates are increasing rapidly, and bariatric surgery is currently the most effective tool for weight loss. Recently, bariatric surgery induced bone loss has gained attention. Such detrimental effect on bone is multifactorial and causes may include nutrient deficiencies, gut and gonadal hormonal changes, mechanical unloading, loss of lean mass, increased bone marrow fat, and increased risk of fall. This review describes the available evidence on bone loss and fracture risk following bariatric surgery and summarizes the guidelines on the topic. Increased bone resorption starts early postsurgery, and bone markers peak at 1-2 yr. Across studies, the drop in areal bone mineral density is inconsistent at the lumbar spine, while a 2%-5% drop at 6 mo and a 6%-10.5% at 9-12 mo are observed at the total hip. Conversely, studies using quantitative CT showed a 6%-7% decrease in volumetric bone mineral density at the lumbar spine at 6-12 mo postsurgery. These studies also report significant bone loss at the radius and tibia, in addition to alteration in bone microarchitecture. Fracture risk increases 2 yr after surgery, more so following malabsorptive procedures. Fractures were reported at axial, weight bearing sites and at appendicular sites. The available evidence is very heterogeneous, and mostly derived from studies on Roux-en-y gastric bypass in premenopausal women. Data on restrictive procedures is scarce. Our findings suggest that the early postoperative phase represents the "golden window" to intervene and promote bone health. More research is needed to determine the effect of different bariatric procedures on bone, to identify optimal interventions to prevent bone loss and to characterize high risk individuals who should be targeted.
Collapse
Affiliation(s)
- Randa Saad
- Calcium Metabolism and Osteoporosis Program, WHO Collaborating Center for Metabolic Bone Disorders, Division of Endocrinology and Metabolism, Department of Internal Medicine-American University of Beirut Medical Center, Beirut, Lebanon
| | - Dalal Habli
- Department of Internal Medicine - American University of Beirut Medical Center, Beirut, Lebanon
| | - Rawaa El Sabbagh
- Department of Internal Medicine - American University of Beirut Medical Center, Beirut, Lebanon
| | - Marlene Chakhtoura
- Calcium Metabolism and Osteoporosis Program, WHO Collaborating Center for Metabolic Bone Disorders, Division of Endocrinology and Metabolism, Department of Internal Medicine-American University of Beirut Medical Center, Beirut, Lebanon.
| |
Collapse
|
35
|
Woods GN, Ewing SK, Sigurdsson S, Kado DM, Eiriksdottir G, Gudnason V, Hue TF, Lang TF, Vittinghoff E, Harris TB, Rosen C, Xu K, Li X, Schwartz AV. Greater Bone Marrow Adiposity Predicts Bone Loss in Older Women. J Bone Miner Res 2020; 35:326-332. [PMID: 31618468 DOI: 10.1002/jbmr.3895] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 10/06/2019] [Accepted: 10/13/2019] [Indexed: 01/08/2023]
Abstract
Bone marrow adiposity (BMA) is associated with aging and osteoporosis, but whether BMA can predict bone loss and fractures remains unknown. Using data from the Age Gene/Environment Susceptibility (AGES)-Reykjavik study, we investigated the associations between 1 H-MRS-based measures of vertebral bone marrow adipose tissue (BMAT), annualized change in bone density/strength by quantitative computed tomography (QCT) and DXA, and secondarily, with incident clinical fractures and radiographic vertebral fractures among older adults. The associations between BMAT and annualized change in bone density/strength were evaluated using linear regression models, adjusted for age, body mass index (BMI), diabetes, estradiol, and testosterone. Cox proportional hazards models were used to evaluate the associations between baseline BMAT and incident clinical fractures, and logistic regression models for incident vertebral fractures. At baseline, mean ± SD age was 80.9 ± 4.2 and 82.6 ± 4.2 years in women (n = 148) and men (n = 150), respectively. Mean baseline BMAT was 55.4% ± 8.1% in women and 54.1% ± 8.2% in men. Incident clinical fractures occurred in 7.4% of women over 2.8 years and in 6.0% of men over 2.2 years. Incident vertebral fractures occurred in 12% of women over 3.3 years and in 17% of men over 2.7 years. Each 1 SD increase in baseline BMAT was associated with a 3.9 mg2 /cm4 /year greater loss of spine compressive strength index (p value = .003), a 0.9 mg/cm3 /year greater loss of spine trabecular BMD (p value = .02), and a 1.2 mg/cm3 /year greater loss of femoral neck trabecular BMD (p value = .02) in women. Among men, there were no associations between BMAT and changes in bone density/strength. There were no associations between BMAT and incident fractures in women or men. In conclusion, we found greater BMAT is associated with greater loss of trabecular bone at the spine and femoral neck, and greater loss of spine compressive strength, in older women. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Gina N Woods
- Department of Medicine, University of California, San Diego, CA, USA.,Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA
| | - Susan K Ewing
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | | | - Deborah M Kado
- Department of Medicine, University of California, San Diego, CA, USA.,Department of Family Medicine and Public Health, University of California, San Diego, CA, USA
| | | | - Vilmundur Gudnason
- Icelandic Heart Association Research Institute, Kopavogur, Iceland.,Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Trisha F Hue
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Thomas F Lang
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Eric Vittinghoff
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | | | - Clifford Rosen
- Maine Medical Center Research Institute, Scarborough, ME, USA
| | - Kaipin Xu
- Department of Biomedical Engineering, Program of Advanced Musculoskeletal Imaging (PAMI), Cleveland Clinic, Cleveland, OH, USA
| | - Xiaojuan Li
- Department of Biomedical Engineering, Program of Advanced Musculoskeletal Imaging (PAMI), Cleveland Clinic, Cleveland, OH, USA
| | - Ann V Schwartz
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| |
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW To provide an overview on recent technical development for quantifying marrow composition using magnetic resonance imaging (MRI) and spectroscopy (MRS) techniques, as well as a summary on recent findings of interrelationship between marrow adipose tissue (MAT) and skeletal health in the context of osteoporosis. RECENT FINDINGS There have been significant technical advances in reliable quantification of marrow composition using MR techniques. Cross-sectional studies have demonstrated a negative correlation between MAT and bone, with trabecular bone associating more strongly with MAT than cortical bone. However, longitudinal studies of MAT and bone are limited. MAT contents and composition have been associated with prevalent vertebral fracture. The evidence between MAT and clinical fracture is more limited, and, to date, no studies have reported on the relationship between MAT and incident fracture. Increasing evidence suggests a dynamic role of marrow fat in skeletal health. Reliable non-invasive quantification of marrow composition will facilitate developing novel treatment strategies for osteoporosis.
Collapse
Affiliation(s)
- Xiaojuan Li
- Department of Biomedical Engineering, Program of Advanced Musculoskeletal Imaging (PAMI), Cleveland Clinic, 9500 Euclid Avenue, ND20, Cleveland, OH, 44195, USA.
| | - Ann V Schwartz
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| |
Collapse
|
37
|
Sieron D, Drakopoulos D, Loebelenz LI, Schroeder C, Ebner L, Obmann VC, Huber AT, Christe A. Correlation between fat signal ratio on T1-weighted MRI in the lower vertebral bodies and age, comparing 1.5-T and 3-T scanners. Acta Radiol Open 2020; 9:2058460120901517. [PMID: 32166041 PMCID: PMC7055425 DOI: 10.1177/2058460120901517] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 12/30/2019] [Indexed: 11/28/2022] Open
Abstract
Background The hypothesis was that the fat-dependent T1 signal intensity in vertebral
bodies increases with age due to red-yellow marrow conversion. Purpose To analyze the increasing fatty conversion of red bone marrow with age. Material and Methods A continuous sample of 524 patients (age range 2–96 years) with normal lumbar
spine MRIs (T11–L5) was retrospectively selected in order to get a
representative sample from our 1.5-T and 3-T MRI units (Siemens, Erlangen,
Germany). Four radiologists read the images independently. Absolute T1
signal intensities were measured in the lower vertebral bodies and
standardized by dividing their value by the signal of the subcutaneous fat
on lumbar and sacral level. Results The standardized T1 signal correlated significantly with patients’ age at the
1.5-T unit, with the best correlation demonstrated by thoracic vertebra T11,
followed by lumbar vertebra L1, with correlation coefficients (R) of 0.64
(95% CI 0.53–0.72, P < 0.0001) and 0.49 (95% CI
0.38–0.59, P < 0.0001), respectively. For women and men,
the R values were similar in thoracic vertebra T11 at 0.62 (95% CI
0.49–0.72) and 0.64 (95% CI 0.44–0.77), respectively. The vertebral signal
correlated significantly better with age in the 1.5-T compared to the 3-T
unit on all vertebral levels: the best R value of the 3-T unit was only 0.20
(95% CI 0.09–0.30, P < 0.0001). Our study showed an
average increase of the relative T1 signal in T11 of 10% per decade. Conclusion T1 fat signal ratio increases with age in the vertebral bodies, which could
help estimating the age of a person. Best age correlation was found when
measuring T1 signal in T11, standardized by the sacral subcutaneous fat
signal and using a 1.5-T MRI.
Collapse
Affiliation(s)
- Dominik Sieron
- Department of Radiology, Division City and County Hospitals, INSELGROUP, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Dionysios Drakopoulos
- Department of Radiology, Division City and County Hospitals, INSELGROUP, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Laura I Loebelenz
- Department of Radiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Christophe Schroeder
- Department of Radiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Lukas Ebner
- Department of Radiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Verena C Obmann
- Department of Radiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Adrian T Huber
- Department of Radiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Andreas Christe
- Department of Radiology, Division City and County Hospitals, INSELGROUP, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of Radiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
38
|
Blom-Høgestøl IK, Mala T, Kristinsson JA, Brunborg C, Gulseth HL, Eriksen EF. Changes in bone quality after Roux-en-Y gastric bypass: A prospective cohort study in subjects with and without type 2 diabetes. Bone 2020; 130:115069. [PMID: 31593823 DOI: 10.1016/j.bone.2019.115069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/20/2019] [Accepted: 09/12/2019] [Indexed: 01/17/2023]
Abstract
BACKGROUND Obesity and type 2 diabetes (T2D) are associated with an increased risk of skeletal fractures despite a normal areal bone mineral density (aBMD) and low bone turnover, possibly due to reduced bone material strength. Roux-en-Y gastric bypass (RYGB) enables a substantial and persistent weight loss and resolution of obesity related comorbidities such as T2D. However, the procedure induces a decrease in aBMD and increased bone turnover and fracture rate. To our knowledge, changes in bone material strength after RYGB have not been explored. This study aimed to evaluate changes in factors influencing bone quality; bone material strength, aBMD and bone turnover markers, in a population with morbid obesity undergoing RYGB and whether these changes differed in participants with and without T2D. We also sought to assess factors associated with bone material strength and bone mineral density in obese subjects before and after RYGB. METHODS We examined 34 participants before and one year after RYGB, of whom 13 had T2D. Bone material strength index (BMSi) was evaluated by impact microindentation, aBMD and body composition by Dual energy X-ray absorptiometry, levels of bone turnover markers and calciotropic hormones were estimated from fasting serum samples. Participants with and without T2D were comparable before surgery, with the exception of glycosylated hemoglobin (HbA1c). RESULTS Preoperatively, BMSi was inversely associated with BMI, βunadjusted -1.1 (-1.9 to -0.28), R2=0.19, p=0.010, and this association remained significant after adjusting for age and gender. After RYGB the participants had lost a mean±SD of 33.9±10.9kg, 48.7±14.2 % of total body fat, increased physical activity, unchanged vitamin D levels, and all but one of the 13 participants with T2D were in diabetes remission. BMSi increased from 78.1±8.5 preoperatively to 82.0±6.4 one year after RYGB, corresponding to an increase of 4.0±9.8 in absolute units or 6.3±14.0 %, p=0.037. The increase was comparable in participants with and without T2D. In subjects with T2D, a larger decrease in HbA1c was associated with a larger increase in BMSi βunadjusted -9.2 (-16.5 to -1.9), R2=0.47, p=0.019. Bone turnover markers (CTX-1 and PINP) increased by 195.1±133.5 % and 109.5±70.6 %, respectively. aBMD decreased by 3.9±5.5 % in the lumbar spine, 8.2±4.6 % in the femoral neck, 11.6±4.9 % in total hip and 9.4±3.8 % in total body. CONCLUSION Our findings indicate that bone material strength improves despite an increase in bone turnover and a decrease in aBMD one year after RYGB. Trends were statistically comparable in participants with and without T2D. However, improved glucose control was associated with improved bone material strength in participants with T2D.
Collapse
Affiliation(s)
- I K Blom-Høgestøl
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - T Mala
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway; Department of Gastrointestinal Surgery and Paediatric Surgery, Oslo University, Norway
| | - J A Kristinsson
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway; Department of Gastrointestinal Surgery and Paediatric Surgery, Oslo University, Norway
| | - C Brunborg
- Oslo Centre for Biostatistics and Epidemiology, Research Support Services, Oslo University Hospital, Oslo, Norway
| | - H L Gulseth
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway; Department of Chronic Diseases and Ageing, Norwegian Institute of Public Health, Norway
| | - E F Eriksen
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW The goal of this review is to discuss the role of insulin signaling in bone marrow adipocyte formation, metabolic function, and its contribution to cellular senescence in relation to metabolic bone diseases. RECENT FINDINGS Insulin signaling is an evolutionally conserved signaling pathway that plays a critical role in the regulation of metabolism and longevity. Bone is an insulin-responsive organ that plays a role in whole body energy metabolism. Metabolic disturbances associated with obesity and type 2 diabetes increase a risk of fragility fractures along with increased bone marrow adiposity. In obesity, there is impaired insulin signaling in peripheral tissues leading to insulin resistance. However, insulin signaling is maintained in bone marrow microenvironment leading to hypermetabolic state of bone marrow stromal (skeletal) stem cells associated with accelerated senescence and accumulation of bone marrow adipocytes in obesity. This review summarizes current findings on insulin signaling in bone marrow adipocytes and bone marrow stromal (skeletal) stem cells and its importance for bone and fat metabolism. Moreover, it points out to the existence of differences between bone marrow and peripheral fat metabolism which may be relevant for developing therapeutic strategies for treatment of metabolic bone diseases.
Collapse
Affiliation(s)
- Michaela Tencerova
- Department of Molecular Endocrinology, KMEB, University of Southern Denmark and Odense University Hospital, 5000, Odense C, Denmark.
- Department of Molecular Physiology of Bone, Institute of Physiology, Czech Academy of Sciences, 142 20, Prague 4, Czech Republic.
| | - Meshail Okla
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Moustapha Kassem
- Department of Molecular Endocrinology, KMEB, University of Southern Denmark and Odense University Hospital, 5000, Odense C, Denmark
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Saudi Arabia
- Department of Cellular and Molecular Medicine, The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Panum Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW To review the available literature regarding a possible relationship between vitamin D and bone marrow adipose tissue (BMAT), and to identify future avenues of research that warrant attention. RECENT FINDINGS Results from in vivo animal and human studies all support the hypothesis that vitamin D can suppress BMAT expansion. This is achieved by antagonizing adipogenesis in bone marrow stromal cells, through inhibition of PPARγ2 activity and stimulation of pro-osteogenic Wnt signalling. However, our understanding of the functions of BMAT is still evolving, and studies on the role of vitamin D in modulating BMAT function are lacking. In addition, many diseases and chronic conditions are associated with low vitamin D status and low bone mineral density (BMD), but BMAT expansion has not been studied in these patient populations. Vitamin D suppresses BMAT expansion, but its role in modulating BMAT function is poorly understood.
Collapse
Affiliation(s)
- Hanel Sadie-Van Gijsen
- Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University Tygerberg Campus, Francie van Zijl Drive, PO Box 241, Parow, Cape Town, 8000, South Africa.
| |
Collapse
|
41
|
Blom-Høgestøl IK, Mala T, Kristinsson JA, Hauge EM, Brunborg C, Gulseth HL, Eriksen EF. Changes in Bone Marrow Adipose Tissue One Year After Roux-en-Y Gastric Bypass: A Prospective Cohort Study. J Bone Miner Res 2019; 34:1815-1823. [PMID: 31216081 DOI: 10.1002/jbmr.3814] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/28/2019] [Accepted: 06/04/2019] [Indexed: 12/18/2022]
Abstract
Bone marrow adipose tissue (BMAT) has been postulated to mediate skeletal fragility in type 2 diabetes (T2D) and obesity. Roux-en-Y gastric bypass (RYGB) induces a substantial weight loss and resolution of comorbidities. However, the procedure induces increased bone turnover and fracture rates. No previous study has evaluated biopsy-measured BMAT fraction preoperatively and after RYGB. In this study, we aimed to investigate BMAT fraction of the hip in participants with and without T2D preoperatively and 1 year after RYGB and explore factors associated with BMAT change. Patients with morbid obesity scheduled for RYGB were examined preoperatively and 1 year after RYGB. Forty-four participants were included and preoperative examinations were possible in 35. Of these, 33 (94%) met for follow-up, 2 were excluded, and BMAT estimation was not possible in 1. Eighteen (60%) of the participants were females and 11 (37%) had T2D. Preoperative BMAT fraction was positively associated with glycosylated hemoglobin and negatively associated with areal bone mineral density (aBMD). After RYGB, BMAT fraction decreased from 40.4 ± 1.7% to 35.6 ± 12.8%, p = 0.042, or with mean percent change of 10.7% of preoperative BMAT fraction. Change in BMAT fraction was positively associated with change in body mass index (BMI) and total body fat. In females, we observed a mean percent reduction of 22.4 ± 19.6%, whereas in males BMAT increased with a mean percent of 6.8 ± 37.5%, p = 0.009. For males, changes in estradiol were associated with BMAT change; this was not observed for females. In participants with and without T2D, the mean percent BMAT reduction was 5.8 ± 36.9% and 13.5 ± 28.0%, respectively, p = 0.52. We conclude that a high BMAT seems to be associated with lower aBMD and poorer glycemic control in obese subjects. After RYGB, we observed a significant decrease in BMAT. The reduction in BMAT did not differ between participants with and without T2D, but appeared sex specific. © 2019 The Authors. Journal of Bone and Mineral Research Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ingvild Kristine Blom-Høgestøl
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Tom Mala
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway.,Department of Gastrointestinal Surgery and Paediatric Surgery, Oslo University Hospital, Oslo, Norway
| | - Jon A Kristinsson
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway.,Department of Gastrointestinal Surgery and Paediatric Surgery, Oslo University Hospital, Oslo, Norway
| | - Ellen-Margrethe Hauge
- Department of Rheumatology, Aarhus University Hospital, and Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Cathrine Brunborg
- Oslo Centre for Biostatistics and Epidemiology, Research Support Services, Oslo University Hospital, Oslo, Norway
| | - Hanne Løvdal Gulseth
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway.,Department of Chronic Diseases and Ageing, Norwegian Institute of Public Health, Oslo, Norway
| | - Erik Fink Eriksen
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
42
|
Sebo ZL, Rendina-Ruedy E, Ables GP, Lindskog DM, Rodeheffer MS, Fazeli PK, Horowitz MC. Bone Marrow Adiposity: Basic and Clinical Implications. Endocr Rev 2019; 40:1187-1206. [PMID: 31127816 PMCID: PMC6686755 DOI: 10.1210/er.2018-00138] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 04/03/2019] [Indexed: 12/14/2022]
Abstract
The presence of adipocytes in mammalian bone marrow (BM) has been recognized histologically for decades, yet, until recently, these cells have received little attention from the research community. Advancements in mouse transgenics and imaging methods, particularly in the last 10 years, have permitted more detailed examinations of marrow adipocytes than ever before and yielded data that show these cells are critical regulators of the BM microenvironment and whole-body metabolism. Indeed, marrow adipocytes are anatomically and functionally separate from brown, beige, and classic white adipocytes. Thus, areas of BM space populated by adipocytes can be considered distinct fat depots and are collectively referred to as marrow adipose tissue (MAT) in this review. In the proceeding text, we focus on the developmental origin and physiologic functions of MAT. We also discuss the signals that cause the accumulation and loss of marrow adipocytes and the ability of these cells to regulate other cell lineages in the BM. Last, we consider roles for MAT in human physiology and disease.
Collapse
Affiliation(s)
- Zachary L Sebo
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut.,Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut
| | | | - Gene P Ables
- Orentreich Foundation for the Advancement of Science, Cold Spring, New York
| | - Dieter M Lindskog
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, Connecticut
| | - Matthew S Rodeheffer
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut.,Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut
| | - Pouneh K Fazeli
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, Massachusetts
| | - Mark C Horowitz
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
43
|
Papageorgiou M, Kerschan-Schindl K, Sathyapalan T, Pietschmann P. Is Weight Loss Harmful for Skeletal Health in Obese Older Adults? Gerontology 2019; 66:2-14. [DOI: 10.1159/000500779] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/06/2019] [Indexed: 11/19/2022] Open
|
44
|
Li Z, Hardij J, Evers SS, Hutch CR, Choi SM, Shao Y, Learman BS, Lewis KT, Schill RL, Mori H, Bagchi DP, Romanelli SM, Kim KS, Bowers E, Griffin C, Seeley RJ, Singer K, Sandoval DA, Rosen CJ, MacDougald OA. G-CSF partially mediates effects of sleeve gastrectomy on the bone marrow niche. J Clin Invest 2019; 129:2404-2416. [PMID: 31063988 PMCID: PMC6546463 DOI: 10.1172/jci126173] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 03/05/2019] [Indexed: 01/26/2023] Open
Abstract
Bariatric surgeries are integral to the management of obesity and its metabolic complications. However, these surgeries cause bone loss and increase fracture risk through poorly understood mechanisms. In a mouse model, vertical sleeve gastrectomy (VSG) caused trabecular and cortical bone loss that was independent of sex, body weight, and diet, and this loss was characterized by impaired osteoid mineralization and bone formation. VSG had a profound effect on the bone marrow niche, with rapid loss of marrow adipose tissue, and expansion of myeloid cellularity, leading to increased circulating neutrophils. Following VSG, circulating granulocyte-colony stimulating factor (G-CSF) was increased in mice, and was transiently elevated in a longitudinal study of humans. Elevation of G-CSF was found to recapitulate many effects of VSG on bone and the marrow niche. In addition to stimulatory effects of G-CSF on myelopoiesis, endogenous G-CSF suppressed development of marrow adipocytes and hindered accrual of peak cortical and trabecular bone. Effects of VSG on induction of neutrophils and depletion of marrow adiposity were reduced in mice deficient for G-CSF; however, bone mass was not influenced. Although not a primary mechanism for bone loss with VSG, G-CSF plays an intermediary role for effects of VSG on the bone marrow niche.
Collapse
Affiliation(s)
- Ziru Li
- Department of Molecular & Integrative Physiology
| | - Julie Hardij
- Department of Molecular & Integrative Physiology
| | | | | | | | | | | | | | | | | | | | | | | | - Emily Bowers
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Cameron Griffin
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | - Kanakadurga Singer
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | | | | |
Collapse
|
45
|
Wang J, Ma J, Yu H, Zhang P, Han J, Bao Y. Unacylated ghrelin is correlated with the decline of bone mineral density after Roux-en-Y gastric bypass in obese Chinese with type 2 diabetes. Surg Obes Relat Dis 2019; 15:1473-1480. [PMID: 31548003 DOI: 10.1016/j.soard.2019.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/07/2019] [Accepted: 04/06/2019] [Indexed: 01/26/2023]
Abstract
BACKGROUND Bariatric surgery is an effective and therapeutic way for different metabolic diseases. It has become a focus of attention about the effects and molecular mechanisms to bone metabolism. OBJECTIVE We aim to assess the changes of bone mineral density (BMD) among Chinese obese individuals with type 2 diabetes who have undergone Roux-en-Y gastric bypass surgery (RYGB). Two ghrelin gene products, namely unacylated ghrelin (UAG) and obestatin, were evaluated the roles in this pathologic process. SETTING University-affiliated hospital, China. METHODS Thirty patients who had received RYGB were enrolled in the study. Changes in anthropometric parameters, metabolic indexes, and serum UAG and obestatin were assessed preoperatively, 6, 12, and 24 months postoperatively. BMD at lumbar spine (LS), femoral neck (FN), and total hip (TH) were identified. RESULTS RYGB resulted in statistical reductions of BMD in 3 different skeletal parts. After the first 6 months, BMD began to reduce and maintained a declining trend until 24 months postoperatively. Comparing to baseline, the maximal reduction of BMD was as high as 10.28% in total hip. The plasma concentration of UAG increased after 6 months (51.61 ± 55.21 versus 71.95 ± 64.91 pg/mL; P < .01), as well as the serum obestatin level (1.65 ± 0.88 versus 1.71 ± 0.99 ng/mL; P > .05). Although there was a slight drop of both peptides in the first year, they were still above the baseline. Notably, in the second year, UAG and obestatin rose to their peak values, respectively (91.90 ± 77.11 pg/mL and 1.74 ± 1.09 ng/mL). There was a negative correlation between UAG and BMD in all sites. Multiple linear regression analysis showed that the UAG level was the independent parameter associated with BMD at baseline (FN: β = -.407, P = .012 and TH: β = -0.396, P = .030 respectively), as well as the changes of UAG that were independently related with reduction percentage of LS BMD after 24 months (β = - .379, P = .046). CONCLUSION The reduction of BMD in obese Chinese with type 2 diabetes was observed after RYGB. The pronounced increase of serum UAG acts as an independent risk factor for the decrease of BMD.
Collapse
Affiliation(s)
- Jiajia Wang
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jingyuan Ma
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China
| | - Haoyong Yu
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China
| | - Pin Zhang
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Junfeng Han
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China.
| | - Yuqian Bao
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China
| |
Collapse
|
46
|
Zhu L, Xu Z, Li G, Wang Y, Li X, Shi X, Lin H, Chang S. Marrow adiposity as an indicator for insulin resistance in postmenopausal women with newly diagnosed type 2 diabetes - an investigation by chemical shift-encoded water-fat MRI. Eur J Radiol 2019; 113:158-164. [PMID: 30927942 DOI: 10.1016/j.ejrad.2019.02.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/14/2019] [Accepted: 02/15/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Marrow fat accumulates in diabetic conditions but remains elusive. The published works on the relationships between marrow fat phenotypes and glucose homeostasis are controversial. PURPOSE To detect the association of insulin resistance with marrow adiposity in postmenopausal women with newly diagnosed type 2 diabetes (T2D) using chemical shift-encoded water-fat MRI. METHODS We measured vertebral proton density fat fraction (PDFF) by 3T-MRI in 75 newly diagnosed T2D and 20 nondiabetic postmenopausal women. Bone mineral density (BMD), whole body fat mass and lean mass were determined by dual-energy X-ray absorptiometry. Insulin sensitivity was estimated using the homeostasis model assessment of insulin resistance (HOMA-IR). RESULTS Lumbar spine PDFF was higher in women with T2D (65.9 ± 6.8%) than those without diabetes (59.5 ± 6.1%, P = 0.009). There was a consistent inverse association between the vertebral PDFF and BMD. PDFF had a positive association with glycated hemoglobin and HOMA-IR but not with fasting plasma glucose and insulin. PDFF was significantly increased, and BMD was decreased in a linear trend from the lowest (<1.90) to highest (≥2.77) HOMA-IR quartile. Multivariate linear regression analyses revealed a positive association between log-transformed HOMA-IR and PDFF after adjustment for multiple covariates (ß = 0.382, P < 0.001). The positive association of HOMA-IR with PDFF remained robust when total body lean mass and fat mass, BMD was entered into the multivariate regression model, respectively (ß = 0.293 and ß = 0.251, respectively; all P <0.05). CONCLUSIONS Elevated HOMA-IR was linked to higher marrow fat fraction in postmenopausal women with newly diagnosed T2D independently of body compositions.
Collapse
Affiliation(s)
- Lequn Zhu
- Department of Radiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Zheng Xu
- Xinzhuang Community Health Center, Shanghai 201199, China
| | - Guanwu Li
- Department of Radiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China.
| | - Ying Wang
- Department of Clinical Laboratory, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Xuefeng Li
- Department of Radiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Xiao Shi
- Department of Geriatrics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Haiyang Lin
- Department of Endocrinology, The Affiliated Wenling Hospital, Wenzhou medical University, Zhejiang 317500, China
| | - Shixin Chang
- Department of Radiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| |
Collapse
|
47
|
Song C, Zhu M, Zheng R, Hu Y, Li R, Zhu G, Chen L, Xiong F. Analysis of bone mass and its relationship with body composition in school-aged children and adolescents based on stage of puberty and site specificity: A retrospective case-control study. Medicine (Baltimore) 2019; 98:e14005. [PMID: 30813124 PMCID: PMC6408102 DOI: 10.1097/md.0000000000014005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The aim of this study was to better understand the relationship of bone mass with body composition based on different stages of puberty and to illuminate the contribution of site-specific fat mass and lean mass (FM and LM) compared with bone mass in school-aged children and adolescents in Chongqing, China.A total of 1179 healthy subjects of both sexes were recruited. Bone mineral content (BMC), bone mineral density (BMD), bone area, and both FM and LM were measured by dual-energy X-ray absorptiometry (DXA). The fat mass and lean mass indexes (FMI and LMI, respectively) were calculated as the FM (kg) and LM (kg) divided by the height in meters squared, respectively.Most of the bone mass indicators were significantly higher for postpubertal boys than for girls at the same stage (P < .001). The proportion of subjects with normal bone mass increased, while the proportion of subjects with osteopenia and osteoporosis decreased with increased body weight regardless of gender and puberty stage (P < .01). FM and LM were significantly positively related to bone mass regardless of gender and puberty stage (P < .0001). FMI and LMI were significantly positively related to bone mass in most conditions (P < .05 and P < .0001, respectively). Four components of the FM and LM were linearly and significantly associated with BMD and BMC for TB and TBHL. Among them, the head fat mass and head lean mass showed the greatest statistical contribution.In the process of assessing bone status, we recommend measuring fat and lean masses, including the fat and lean masses of the head.
Collapse
Affiliation(s)
- Cui Song
- Department of Endocrine and Genetic Metabolism Disease, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing
| | - Min Zhu
- Department of Endocrine and Genetic Metabolism Disease, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing
| | - Rongfei Zheng
- Endocrinology Departments, Shenzhen Children's Hospital, Shenzhen, P.R. China
| | - Yujuan Hu
- Department of Endocrine and Genetic Metabolism Disease, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing
| | - Rong Li
- Department of Endocrine and Genetic Metabolism Disease, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing
| | - Gaohui Zhu
- Department of Endocrine and Genetic Metabolism Disease, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing
| | - Long Chen
- Department of Endocrine and Genetic Metabolism Disease, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing
| | - Feng Xiong
- Department of Endocrine and Genetic Metabolism Disease, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing
| |
Collapse
|
48
|
Abstract
Bone strength is affected not only by bone mineral density (BMD) and bone microarchitecture but also its microenvironment. Recent studies have focused on the role of marrow adipose tissue (MAT) in the pathogenesis of bone loss. Osteoblasts and adipocytes arise from a common mesenchymal stem cell within bone marrow and many osteoporotic states, including aging, medication use, immobility, over - and undernutrition are associated with increased marrow adiposity. Advancements in imaging technology allow the non-invasive quantification of MAT. This article will review magnetic resonance imaging (MRI)- and computed tomography (CT)-based imaging technologies to assess the amount and composition of MAT. The techniques that will be discussed are anatomic T1-weighted MRI, water-fat imaging, proton MR spectroscopy, single energy CT and dual energy CT. Clinical applications of MRI and CT techniques to determine the role of MAT in patients with obesity, anorexia nervosa, and type 2 diabetes will be reviewed.
Collapse
Affiliation(s)
- Vibha Singhal
- Pediatric Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States
| | - Miriam A Bredella
- Department of Radiology, Musculoskeletal Imaging and Interventions, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States.
| |
Collapse
|
49
|
Paccou J, Penel G, Chauveau C, Cortet B, Hardouin P. Marrow adiposity and bone: Review of clinical implications. Bone 2019; 118:8-15. [PMID: 29477645 DOI: 10.1016/j.bone.2018.02.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 02/09/2018] [Accepted: 02/13/2018] [Indexed: 12/16/2022]
Abstract
There is growing interest in the relationship between bone marrow fat (BMF) and skeletal health. Progress in clinical studies of BMF and skeletal health has been greatly enhanced by recent technical advances in our ability to measure BMF non-invasively. Magnetic resonance imagery (MRI) with or without spectroscopy is currently the standard technique for evaluating BMF content and composition in humans. This review focuses on clinical studies of marrow fat and its relationship with bone. The amount of marrow fat is associated with bone mineral density (BMD). Several studies have reported a significant negative association between marrow fat content and BMD in both healthy and osteoporotic populations. There may also be a relationship between marrow fat and fracture (mostly vertebral fracture), but data are scarce and further studies are needed. Furthermore, a few studies suggest that a lower proportion of unsaturated lipids in vertebral BMF may be associated with reduced BMD and greater prevalence of fracture. Marrow fat might be influenced by metabolic diseases associated with bone loss and fractures, such as diabetes mellitus, obesity and anorexia nervosa. An intriguing aspect of bariatric (weight loss) surgery is that it induces bone loss and fractures, but with different impacts on marrow fat depending on diabetic status. In daily practice, the usefulness for clinicians of assessing marrow fat using MRI is still limited. However, the perspectives are exciting, particularly in terms of improving the diagnosis and management of osteoporosis. Further studies are needed to better understand the regulators involved in the marrow fat-bone relationship and the links between marrow fat, other fat depots and energy metabolism.
Collapse
Affiliation(s)
- Julien Paccou
- Université de Lille, Université Littoral Côte d'Opale, PMOI EA 4490 faculté de chirurgie dentaire, place de Verdun, 59000 Lille, France; Service de rhumatologie, CHRU, 59000 Lille, France.
| | - Guillaume Penel
- Université de Lille, Université Littoral Côte d'Opale, PMOI EA 4490 faculté de chirurgie dentaire, place de Verdun, 59000 Lille, France
| | - Christophe Chauveau
- Univ. Littoral Côte d'Opale, Univ. Lille, EA 4490, PMOI, Physiopathologie des Maladies Osseuses Inflammatoires, F-62300 Boulogne-sur-Mer, France
| | - Bernard Cortet
- Université de Lille, Université Littoral Côte d'Opale, PMOI EA 4490 faculté de chirurgie dentaire, place de Verdun, 59000 Lille, France; Service de rhumatologie, CHRU, 59000 Lille, France
| | - Pierre Hardouin
- Univ. Littoral Côte d'Opale, Univ. Lille, EA 4490, PMOI, Physiopathologie des Maladies Osseuses Inflammatoires, F-62300 Boulogne-sur-Mer, France
| |
Collapse
|
50
|
Axelsson KF, Werling M, Eliasson B, Szabo E, Näslund I, Wedel H, Lundh D, Lorentzon M. Fracture Risk After Gastric Bypass Surgery: A Retrospective Cohort Study. J Bone Miner Res 2018; 33:2122-2131. [PMID: 30011091 DOI: 10.1002/jbmr.3553] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/13/2018] [Accepted: 07/07/2018] [Indexed: 12/20/2022]
Abstract
Gastric bypass surgery constitutes the most common and effective bariatric surgery to treat obesity. Gastric bypass leads to bone loss, but fracture risk following surgery has been insufficiently studied. Furthermore, the association between gastric bypass and fracture risk has not been studied in patients with diabetes, which is a risk factor for fracture and affected by surgery. In this retrospective cohort study using Swedish national databases, 38,971 obese patients undergoing gastric bypass were identified, 7758 with diabetes and 31,213 without. An equal amount of well-balanced controls were identified through multivariable 1:1 propensity score matching. The risk of fracture and fall injury was investigated using Cox proportional hazards and flexible parameter models. Fracture risk according to weight loss and degree of calcium and vitamin D supplementation 1-year postsurgery was investigated. During a median follow-up time of 3.1 (interquartile range [IQR], 1.7 to 4.6) years, gastric bypass was associated with increased risk of any fracture, in patients with and without diabetes using a multivariable Cox model (hazard ratio [HR] 1.26; 95% CI, 1.05 to 1.53; and HR 1.32; 95% CI, 1.18 to 1.47; respectively). Using flexible parameter models, the fracture risk appeared to increase with time. The risk of fall injury without fracture was also increased after gastric bypass. Larger weight loss or poor calcium and vitamin D supplementation after surgery were not associated with increased fracture risk. In conclusion, gastric bypass surgery is associated with an increased fracture risk, which appears to be increasing with time and not associated with degree of weight loss or calcium and vitamin D supplementation following surgery. An increased risk of fall injury was seen after surgery, which could contribute to the increased fracture risk. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Kristian F Axelsson
- Department of Orthopaedic Surgery, Skaraborg Hospital, Skövde, Sweden.,Geriatric Medicine, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Malin Werling
- Department of Gastrosurgical Research & Education, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Björn Eliasson
- Department of Molecular and Clinical Medicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Eva Szabo
- Department of Surgery. Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Ingmar Näslund
- Department of Surgery. Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Hans Wedel
- Health Metrics, Sahlgrenska Academin, University of Gothenburg, Gothenburg, Sweden
| | - Dan Lundh
- School of Bioscience, University of Skövde, Skövde, Sweden
| | - Mattias Lorentzon
- Geriatric Medicine, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.,Geriatric Medicine, Sahlgrenska University Hospital, Mölndal, Sweden
| |
Collapse
|