1
|
Alkan Z, Karataş B, Sepil A. Evaluation of global warming effects on juvenile rainbow trout: focus on immunohistochemistry and osmoregulation. FISH PHYSIOLOGY AND BIOCHEMISTRY 2025; 51:15. [PMID: 39621246 DOI: 10.1007/s10695-024-01431-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 10/04/2024] [Indexed: 12/11/2024]
Abstract
The negative effects of global warming also directly affect aquatic populations. Consequences such as evaporation due to chronic temperature increase, increase in salinity, and increase in stock density per unit volume are potential stress factors. While creating the trial design, an attempt was made to simulate the effects of global warming, especially on species living in salty and brackish water biotopes. In this study, changes in the gills of rainbow trout (Oncorhynchus mykiss) acclimated to 0, 20, and 38 ‰ of saline in the laboratory were examined histologically and immunohistochemically and blood serum osmolarity. In addition, the water temperature was changed, and experiments were carried out at 16, 19, and 22 °C for each salinity group in parallel with the increase in salinity. However, to simulate the decrease in water volume and intensive stocking due to the potential impact of climate change, the study was carried out using 15 fishes in low-volume aquariums (45 L). Tap water that had been kept for at least 3 days was used in the aquariums. To protect the water quality, independent aquariums with sponge filters were used, and since the aim was to keep dissolved oxygen low, no ventilation system other than the sponge filter was used. In order to minimize the deterioration in water quality during the trial, a 15% water change was performed by performing a bottom flush every 4 days and water of the same temperature and salinity was added as much as the reduced volume. In addition, since increasing stock density due to temperature increase and water decrease will cause the amount of dissolved oxygen to decrease, pure oxygen was not entered into any tank throughout the experiment, and the concentration was requested to be at a low level (7 ± 0.13 mg/L) in all groups. The trials were terminated at the end of the 71st day. Increased serum osmolarity values were observed due to the increase in salinity, and the highest serum osmolarity value was measured at 644 mOsm/kg in the 38 ‰ salinity group. Differences between the groups were found to be statistically significant (p < 0.05). It was observed that the number of cells containing Na+/K+-ATPase increased depending on salinity. Also, the number of chloride cells reached the maximum level in the 38 ‰ salinity group. Due to increasing salt levels, an increase in mucus cells, limited onset hyperplasia, aneurysm, lamellar separation, and necrosis were observed in the gill tissue.
Collapse
Affiliation(s)
- Zehra Alkan
- Department of Biology, Faculty of Science, Van Yüzüncü Yıl University, 65080, Van, Turkey
| | - Boran Karataş
- Department of Basic Sciences, Faculty of Fisheries, Van Yüzüncü Yıl University, 65080, Van, Turkey
- Department of Aquaculture, Faculty of Fisheries, Van Yüzüncü Yıl University, 65080, Van, Turkey
| | - Ahmet Sepil
- Department of Basic Sciences, Faculty of Fisheries, Van Yüzüncü Yıl University, 65080, Van, Turkey.
| |
Collapse
|
2
|
Esbaugh AJ. Physiological responses of euryhaline marine fish to naturally-occurring hypersalinity. Comp Biochem Physiol A Mol Integr Physiol 2025; 299:111768. [PMID: 39454936 DOI: 10.1016/j.cbpa.2024.111768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024]
Abstract
Hypersaline habitats are generally defined as those with salinities in excess of 40 ppt. Well-known hypersaline regions (e.g. salt and soda lakes) have a well-earned reputation for being among the most inhospitable habitats in the world, and fish endemic to these areas have been the subject of much research related to extremophile physiology. Yet, marine coastal hypersalinity is both a common occurrence and a growing consideration in many marine coastal ecosystems, in part owing to human influence (e.g. evaporation, river diversion, desalination effluent). Importantly, any increase in salinity will elevate the osmoregulatory challenges experienced by a fish, which must be overcome by increasing the capacity to imbibe and absorb water and excrete ions. While great attention has been given to dynamic osmoregulatory processes with respect to freshwater to seawater transitions, and to the extreme hypersalinity tolerance that is associated with the adoption of an osmo-conforming strategy, relatively little focus has been placed on the physiological implications of moderate hypersalinity exposures (e.g. ≤ 60 ppt). Importantly, these exposures often represent the threshold of osmoregulatory performance owing to energetic constraints on ion excretion and efficiency limitations on water absorption. This review will explore the current state of knowledge with respect to hypersalinity exposure in euryhaline fishes, while placing a particular focus on the physiological constraints, plasticity and downstream implications of long-term exposure to moderate hypersalinity.
Collapse
Affiliation(s)
- Andrew J Esbaugh
- University of Texas at Austin, Department of Marine Science, 750 Channel View Drive, Port Aransas, TX 78373, USA.
| |
Collapse
|
3
|
Zimmer AM. Ammonia excretion by the fish gill: discoveries and ideas that shaped our current understanding. J Comp Physiol B 2024; 194:697-715. [PMID: 38849577 DOI: 10.1007/s00360-024-01561-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/06/2024] [Accepted: 05/15/2024] [Indexed: 06/09/2024]
Abstract
The fish gill serves many physiological functions, among which is the excretion of ammonia, the primary nitrogenous waste in most fishes. Although it is the end-product of nitrogen metabolism, ammonia serves many physiological functions including acting as an acid equivalent and as a counter-ion in mechanisms of ion regulation. Our current understanding of the mechanisms of ammonia excretion have been influenced by classic experimental work, clever mechanistic approaches, and modern molecular and genetic techniques. In this review, I will overview the history of the study of ammonia excretion by the gills of fishes, highlighting the important advancements that have shaped this field with a nearly 100-year history. The developmental and evolutionary implications of an ammonia and gill-dominated nitrogen regulation strategy in most fishes will also be discussed. Throughout the review, I point to areas in which more work is needed to push forward this field of research that continues to produce novel insights and discoveries that will undoubtedly shape our overall understanding of fish physiology.
Collapse
Affiliation(s)
- Alex M Zimmer
- Department of Biological Sciences, University of New Brunswick, 100 Tucker Park Road, Saint John, Saint John, New Brunswick, E2L 4L5, Canada.
| |
Collapse
|
4
|
Kovac A, Goss GG. Cellular mechanisms of ion and acid-base regulation in teleost gill ionocytes. J Comp Physiol B 2024; 194:645-662. [PMID: 38761226 DOI: 10.1007/s00360-024-01560-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/16/2024] [Accepted: 04/27/2024] [Indexed: 05/20/2024]
Abstract
The mechanism(s) of sodium, chloride and pH regulation in teleost fishes has been the subject of intense interest for researchers over the past 100 years. The primary organ responsible for ionoregulatory homeostasis is the gill, and more specifically, gill ionocytes. Building on the theoretical and experimental research of the past, recent advances in molecular and cellular techniques in the past two decades have allowed for substantial advances in our understanding of mechanisms involved. With an increased diversity of teleost species and environmental conditions being investigated, it has become apparent that there are multiple strategies and mechanisms employed to achieve ion and acid-base homeostasis. This review will cover the historical developments in our understanding of the teleost fish gill, highlight some of the recent advances and conflicting information in our understanding of ionocyte function, and serve to identify areas that require further investigation to improve our understanding of complex cellular and molecular machineries involved in iono- and acid-base regulation.
Collapse
Affiliation(s)
- Anthony Kovac
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Greg G Goss
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada.
| |
Collapse
|
5
|
Hu W, Cao Y, Liu Q, Yuan C, Hu Z. Effect of salinity on the physiological response and transcriptome of spotted seabass (Lateolabrax maculatus). MARINE POLLUTION BULLETIN 2024; 203:116432. [PMID: 38728954 DOI: 10.1016/j.marpolbul.2024.116432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/12/2024]
Abstract
Salinity fluctuations significantly impact the reproduction, growth, development, as well as physiological and metabolic activities of fish. To explore the osmoregulation mechanism of aquatic organisms acclimating to salinity stress, the physiological and transcriptomic characteristics of spotted seabass (Lateolabrax maculatus) in response to varying salinity gradients were investigated. In this study, different salinity stress exerted inhibitory effects on lipase activity, while the impact on amylase activity was not statistically significant. Notably, a moderate increase in salinity (24 psu) demonstrated the potential to enhance the efficient utilization of proteins by spotted seabass. Both Na+/K+-ATPase and malondialdehyde showed a fluctuating trend of increasing and then decreasing, peaking at 72 h. Transcriptomic analysis revealed that most differentially expressed genes were involved in energy metabolism, signal transduction, the immune response, and osmoregulation. These results will provide insights into the molecular mechanisms of salinity adaptation and contribute to sustainable development of the global aquaculture industry.
Collapse
Affiliation(s)
- Wenjing Hu
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, PR China.; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, PR China
| | - Yi Cao
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, PR China.; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, PR China
| | - Qigen Liu
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, PR China.; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, PR China
| | - Chen Yuan
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, PR China.; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, PR China
| | - Zhongjun Hu
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, PR China.; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, PR China..
| |
Collapse
|
6
|
Varga E, Prause HC, Riepl M, Hochmayr N, Berk D, Attakpah E, Kiss E, Medić N, Del Favero G, Larsen TO, Hansen PJ, Marko D. Cytotoxicity of Prymnesium parvum extracts and prymnesin analogs on epithelial fish gill cells RTgill-W1 and the human colon cell line HCEC-1CT. Arch Toxicol 2024; 98:999-1014. [PMID: 38212450 PMCID: PMC10861388 DOI: 10.1007/s00204-023-03663-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/07/2023] [Indexed: 01/13/2024]
Abstract
Harmful algal blooms kill fish populations worldwide, as exemplified by the haptophyte microalga Prymnesium parvum. The suspected causative agents are prymnesins, categorized as A-, B-, and C-types based on backbone carbon atoms. Impacts of P. parvum extracts and purified prymnesins were tested on the epithelial rainbow trout fish gill cell line RTgill-W1 and on the human colon epithelial cells HCEC-1CT. Cytotoxic potencies ranked A > C > B-type with concentrations spanning from low (A- and C-type) to middle (B-type) nM ranges. Although RTgill-W1 cells were about twofold more sensitive than HCEC-1CT, the cytotoxicity of prymnesins is not limited to fish gills. Both cell lines responded rapidly to prymnesins; with EC50 values for B-types in RTgill-W1 cells of 110 ± 11 nM and 41.5 ± 0.6 nM after incubations times of 3 and 24 h. Results of fluorescence imaging and measured lytic effects suggest plasma membrane interactions. Postulating an osmotic imbalance as mechanisms of toxicity, incubations with prymnesins in media lacking either Cl-, Na+, or Ca2+ were performed. Cl- removal reduced morphometric rearrangements observed in RTgill-W1 and cytotoxicity in HCEC-1CT cells. Ca2+-free medium in RTgill-W1 cells exacerbated effects on the cell nuclei. Prymnesin composition of different P. parvum strains showed that analog composition within one type scarcely influenced the cytotoxic potential, while analog type potentially dictate potency. Overall, A-type prymnesins were the most potent ones in both cell lines followed by the C-types, and lastly B-types. Disturbance of Ca2+ and Cl- ionoregulation may be integral to prymnesin toxicity.
Collapse
Affiliation(s)
- Elisabeth Varga
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 38-40, 1090, Vienna, Austria.
- Unit Food Hygiene and Technology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Veterinärplatz 1, 1210, Vienna, Austria.
| | - Hélène-Christine Prause
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 38-40, 1090, Vienna, Austria
- Vienna Doctoral School in Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 42, 1090, Vienna, Austria
| | - Matthias Riepl
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 38-40, 1090, Vienna, Austria
| | - Nadine Hochmayr
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 38-40, 1090, Vienna, Austria
| | - Deniz Berk
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 38-40, 1090, Vienna, Austria
| | - Eva Attakpah
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 38-40, 1090, Vienna, Austria
| | - Endre Kiss
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 38-40, 1090, Vienna, Austria
- Core Facility Multimodal Imaging, Faculty of Chemistry, University of Vienna, Währinger Str. 38-42, 1090, Vienna, Austria
| | - Nikola Medić
- Marine Biological Section, Department of Biology, University of Copenhagen, Strandpromenaden 5, 3000, Helsingør, Denmark
- Center for Bioresources, Division for Food and Production, Danish Technological Institute, Gregersensvej 8, 2630, Taastrup, Denmark
| | - Giorgia Del Favero
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 38-40, 1090, Vienna, Austria
- Core Facility Multimodal Imaging, Faculty of Chemistry, University of Vienna, Währinger Str. 38-42, 1090, Vienna, Austria
| | - Thomas Ostenfeld Larsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, 2800 Kgs, Lyngby, Denmark
| | - Per Juel Hansen
- Marine Biological Section, Department of Biology, University of Copenhagen, Strandpromenaden 5, 3000, Helsingør, Denmark
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 38-40, 1090, Vienna, Austria
| |
Collapse
|
7
|
Yeşilbudak B. An experiment on the glucose metabolite, serum electrolytes, and somatic characteristics of the Levantine Barbel Luciobarbus pectoralis (Heckel, 1843) under the effect of heavy metals. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 46:6. [PMID: 38097865 DOI: 10.1007/s10653-023-01814-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 11/01/2023] [Indexed: 12/18/2023]
Abstract
Levantine Barbel (Luciobarbus pectoralis) is a benthopelagic, subtropical native fish living in the inland waters of the Mediterranean region in Türkiye and Syria. Even though it is widely consumed locally, experimental observations on how heavy metals [zinc (Zn), copper (Cu), cadmium (Cd), and lead (Pb)] and their mixtures affect the fish are lacking. Several bioindicators of the fish exposed to heavy metals are the focus of the current investigation. Initially, Fulton condition factor (K) and hepato-somatic index (HSI) were utilized in the somatic characteristics of L. pectoralis. Then, changes in the level of glucose metabolite and electrolytes [sodium (Na+), potassium (K+), and chloride (Cl-)] of blood were determined by Architect C-800 auto-analyzer after exposure durations. The results of the experiments demonstrated that heavy metals can rapidly have a negative impact on the regulation of blood and somatic characteristics of fish. It was observed that the K index decreased in all metal groups at 24 and 96 h, while considerably increased in the 24-h effect of cadmium only (P ≤ 0.05). Along with that, in the 96-h effect of metals, Cu indicated the highest decrease in the HSI value (19.33%, P ≤ 0.05). In general, all heavy metal exposures caused the fish's glucose metabolite level to rise compared to the control (P ≤ 0.05). Furthermore, sublethal effects of metals at both durations caused considerable changes in blood electrolytes of the fish compared to control (P ≤ 0.05). Additionally, putative biomarkers in both durations had the greatest difference in toxic similarity under the Cu impact compared to the control, according to Hierarchical clustering and Euclidean distance metrics. Although the applied concentrations of Zn, Cu, Cd, and Pb and their mixture studied were generally within the limits of the various organizations and the surface water regulations, changes in ecophysiological and somatic indices were nonetheless seen in fish.
Collapse
Affiliation(s)
- Burcu Yeşilbudak
- Department of Biology, Faculty of Science and Letters, Çukurova University, Adana, 01330, Turkey.
| |
Collapse
|
8
|
Rodrigues K, Batista-Silva H, de Moura KRS, Van Der Kraak G, Silva FRMB. Dibutyl phthalate disrupts energy metabolism and morphology in the gills and induces hepatotoxicity in zebrafish. FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:883-893. [PMID: 37537493 DOI: 10.1007/s10695-023-01227-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 07/28/2023] [Indexed: 08/05/2023]
Abstract
This study investigated the acute effects of dibutyl phthalate (DBP) exposure on energy metabolism and gill histology in zebrafish (Danio rerio). The in vitro incubation of gill tissue with 10 μM DBP for 60 min altered tissue energy supply, as shown by decreased lactate content and lactate dehydrogenase (LDH) activity. Higher concentrations of DBP (100 μM and 1 mM) increased lactate content and LDH activity; however, they blocked glucose uptake, depleted the glycogen content in cellular stores, and induced injury to the gills, as measured by LDH release to the extracellular medium. In addition, in vivo exposure of fish to 1 pM DBP for 12 h induced liver damage by increasing alanine aminotransferase (ALT) and gamma-glutamyl transferase (GGT) activities. Gill histology indicated hyperemia, lamellar fusion, lamellar telangiectasis, and necrosis. Data indicate that acute exposure of zebrafish gills to the higher DBP concentrations studied induces anaerobic cellular activity and high lactate production, causing gill damage, diminishing cell viability, and incurring liver dysfunction.
Collapse
Affiliation(s)
- Keyla Rodrigues
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Rua João Pio Duarte Silva, 241, Córrego Grande, CEP, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Hemily Batista-Silva
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Rua João Pio Duarte Silva, 241, Córrego Grande, CEP, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Kieiv Resende Sousa de Moura
- Departamento de Ciências Morfológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Glen Van Der Kraak
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Fátima Regina Mena Barreto Silva
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Rua João Pio Duarte Silva, 241, Córrego Grande, CEP, Florianópolis, Santa Catarina, 88040-900, Brazil.
| |
Collapse
|
9
|
Haverinen J, Vornanen M. Dual effect of metals on branchial and renal Na,K-ATPase activity in thermally acclimated crucian carp (Carassius carassius) and rainbow trout (Oncorhynchus mykiss). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 254:106374. [PMID: 36542896 DOI: 10.1016/j.aquatox.2022.106374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 10/26/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Heavy metals are harmful to aquatic animals by disrupting their ionic balance. Here, we compare the effects of three metals, zinc (Zn), nickel (Ni) and manganese (Mn) on Na,K-ATPase activity in gills and kidneys in fish species with different ecophysiological characteristics. Crucian carp (Carassius carassius), a cold-dormant species, and rainbow trout (Oncorhynchus mykiss), a cold-active species, were acclimated to 2 °C and 18 °C, and branchial and renal Na,K-ATPase activities were measure in the presence of Zn, Ni and Mn. Under basal conditions, species-, tissues- and temperature-dependent differences appeared in Na,K-ATPase activity. Renal Na,K-ATPase activity was higher in trout than carp, and cold-acclimation increased Na,K-ATPase activity in both species. Cold-acclimation reduced branchial Na,K-ATPase activity in carp, but no acclimation effect was found in trout. In both species and tissues, Zn stimulated Na,K-ATPase in concentration-dependent manner at 0.1 to 3 μM. At 30 µM, Zn strongly inhibited both branchial and renal Na,K-ATPase in both species. Inhibition by Zn was stronger in trout than carp, but no differences existed between acclimation groups in either species. Ni (0.1-3.0 µM) stimulated renal Na,K-ATPase in crucian carp but not in rainbow trout. At 30 µM, Ni depressed the renal Na,K-ATPase of carp back to the control level. Mn had no statistically significant effect on Na,K-ATPase in either species. At low concentrations, Zn and Ni impose an energetic cost to fish by increasing ATP consumption in Na,K-ATPase activity. At higher concentrations, Zn, but not Ni and Mn, strongly inhibit renal and branchial Na,K-ATPase. Due to differences in baseline activity level and acclimation-induced changes in renal and branchial Na,K-ATPase, metal pollution may impair ion regulation of fish in species-specific manner and depending on season.
Collapse
Affiliation(s)
- Jaakko Haverinen
- University of Eastern Finland, Department of Environmental and Biological Sciences, P.O. Box 111, 80101, Joensuu.
| | - Matti Vornanen
- University of Eastern Finland, Department of Environmental and Biological Sciences, P.O. Box 111, 80101, Joensuu
| |
Collapse
|
10
|
Wei F, Liang J, Tian W, Yu L, Feng Z, Hua Q. Transcriptomic and proteomic analyses provide insights into the adaptive responses to the combined impact of salinity and alkalinity in Gymnocypris przewalskii. BIORESOUR BIOPROCESS 2022; 9:104. [PMID: 38647776 PMCID: PMC10992934 DOI: 10.1186/s40643-022-00589-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/01/2022] [Indexed: 11/10/2022] Open
Abstract
Gymnocypris przewalskii is the only high-land endemic teleost living in Qinghai Lake, the largest saline-alkaline lake in China. Its osmoregulatory physiology remains elusive due to a lack of precise identification of the response proteins. In the present study, DIA/SWATH was used to identify differentially expressed proteins (DEPs) under alkaline (pH = 10.1, carbonate buffer), saline (12‰, sodium chloride), and saline-alkaline [carbonate buffer (pH = 10.1) plus 11‰ sodium chloride] stresses. A total of 66,056 unique peptides representing 7,150 proteins and 230 DEPs [the false discovery rate (FDR) ≤ 0.05, fold change (FC) ≥ 1.5] were identified under different stresses. Comparative analyses of the proteome and transcriptome indicated that over 86% of DEPs did not show consistent trends with mRNA. In addition to consistent enrichment results under different stresses, the specific DEPs involved in saline-alkaline adaptation were primarily enriched in functions of homeostasis, hormone synthesis and reactions of defense response, complement activation and reproductive development. Meanwhile, a protein-protein interaction (PPI) network analysis of these specific DEPs indicated that the hub genes were ITGAX, MMP9, C3, F2, CD74, BTK, ANXA1, NCKAP1L, and CASP8. This study accurately isolated the genes that respond to stress, and the results could be helpful for understanding the physiological regulation mechanisms regarding salinity, alkalinity, and salinity-alkalinity interactions.
Collapse
Affiliation(s)
- Fulei Wei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, 251 Ningda Road, Xining, 810016, People's Republic of China
| | - Jian Liang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, 251 Ningda Road, Xining, 810016, People's Republic of China.
| | - Wengen Tian
- The Rescue and Rehabilitation Center of Naked Carps in Lake Qinghai, 83 Ningzhang Road, Xining, 810016, People's Republic of China
| | - Luxian Yu
- The Rescue and Rehabilitation Center of Naked Carps in Lake Qinghai, 83 Ningzhang Road, Xining, 810016, People's Republic of China
| | - Zhaohui Feng
- The Rescue and Rehabilitation Center of Naked Carps in Lake Qinghai, 83 Ningzhang Road, Xining, 810016, People's Republic of China
| | - Qiang Hua
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China.
| |
Collapse
|
11
|
Shwe A, Krasnov A, Visnovska T, Ramberg S, Østbye TKK, Andreassen R. Differential Expression of miRNAs and Their Predicted Target Genes Indicates That Gene Expression in Atlantic Salmon Gill Is Post-Transcriptionally Regulated by miRNAs in the Parr-Smolt Transformation and Adaptation to Sea Water. Int J Mol Sci 2022; 23:ijms23158831. [PMID: 35955964 PMCID: PMC9369087 DOI: 10.3390/ijms23158831] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 12/19/2022] Open
Abstract
Smoltification (parr-smolt transformation) is a complex developmental process consisting of developmental changes that lead to remodeling of the Atlantic salmon gill. Here, the expression changes of miRNAs and mRNAs were studied by small-RNA sequencing and microarray analysis, respectively, to identify miRNAs and their predicted targets associated with smoltification and subsequent sea water adaptation (SWA). In total, 18 guide miRNAs were identified as differentially expressed (gDE miRNAs). Hierarchical clustering analysis of expression changes divided these into one cluster of 13 gDE miRNAs with decreasing expression during smoltification and SWA that included the miRNA-146, miRNA-30 and miRNA-7132 families. Another smaller cluster that showed increasing expression consisted of miR-101a-3p, miR-193b-5p, miR-499a-5p, miR-727a-3p and miR-8159-5p. The gDE miRNAs were predicted to target 747 of the genes (DE mRNAs), showing expression changes in the microarray analysis. The predicted targets included genes encoding NKA-subunits, aquaporin-subunits, cystic fibrosis transmembrane conductance regulator and the solute carrier family. Furthermore, the predicted target genes were enriched in biological processes associated with smoltification and SWA (e.g., immune system, reactive oxygen species, stress response and extracellular matrix organization). Collectively, the results indicate that remodeling of the gill involves the post-transcriptional regulation of gene expression by the characterized gDE miRNAs.
Collapse
Affiliation(s)
- Alice Shwe
- Department of Life Science and Health, Faculty of Health Sciences, OsloMet-Oslo Metropolitan University, 0167 Oslo, Norway
| | - Aleksei Krasnov
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), 1430 Ås, Norway
| | - Tina Visnovska
- Bioinformatics Core Facility, Oslo University Hospital, 0372 Oslo, Norway
| | - Sigmund Ramberg
- Department of Life Science and Health, Faculty of Health Sciences, OsloMet-Oslo Metropolitan University, 0167 Oslo, Norway
| | - Tone-Kari K. Østbye
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), 1430 Ås, Norway
| | - Rune Andreassen
- Department of Life Science and Health, Faculty of Health Sciences, OsloMet-Oslo Metropolitan University, 0167 Oslo, Norway
- Correspondence:
| |
Collapse
|
12
|
Álvarez-Vergara F, Sanchez-Hernandez JC, Sabat P. Biochemical and osmoregulatory responses of the African clawed frog experimentally exposed to salt and pesticide. Comp Biochem Physiol C Toxicol Pharmacol 2022; 258:109367. [PMID: 35569782 DOI: 10.1016/j.cbpc.2022.109367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/03/2022] [Accepted: 05/08/2022] [Indexed: 11/03/2022]
Abstract
Salinization and pollution are two main environmental stressors leading deterioration to water quality and degradation of aquatic ecosystems. Amphibians are a highly sensitive group of vertebrates to environmental disturbance of aquatic ecosystems. However, studies on the combined effect of salinization and pollution on the physiology of amphibians are limited. In this study, we measured the standard metabolic rate (SMR) and biochemical parameters of adult males of the invasive frog Xenopus laevis after 45 days of exposure to contrasting salinity environments (400 and 150 mOsm NaCl) with either 1.0 μg/L of the organophosphate pesticide chlorpyrifos (CPF) or pesticide-free medium. Our results revealed a decrease in SMR of animals exposed to the pesticide and in the ability to concentrate the plasma in animals exposed simultaneously to both stressors. The lack of ability to increase plasma concentration in animals exposed to both salt water and CPF, suggests that osmoregulatory response is decreased by pesticide exposure. In addition, we found an increase of liver citrate synthase activity in response to salt stress. Likewise, the liver acetylcholinesterase (AChE) activity decreased by 50% in frogs exposed to salt water and CPF and 40% in those exposed only to CPF, which suggest an additive effect of salinity on inhibition of AChE. Finally, oxidative stress increased as shown by the higher lipid peroxidation and concentration of aqueous peroxides found in the group exposed to salt water and pesticide. Thus, our results revealed that X. laevis physiology is compromised by salinization and pesticide exposure to both environmental stressors join.
Collapse
Affiliation(s)
- Felipe Álvarez-Vergara
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile; Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile.
| | - Juan C Sanchez-Hernandez
- Laboratory of Ecotoxicology, Institute of Environmental Science (ICAM), University of Castilla-La Mancha, 45071 Toledo, Spain
| | - Pablo Sabat
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile; Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| |
Collapse
|
13
|
Velotta JP, McCormick SD, Whitehead A, Durso CS, Schultz ET. Repeated Genetic Targets of Natural Selection Underlying Adaptation of Fishes to Changing Salinity. Integr Comp Biol 2022; 62:357-375. [PMID: 35661215 DOI: 10.1093/icb/icac072] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/16/2022] [Accepted: 05/05/2022] [Indexed: 11/12/2022] Open
Abstract
Ecological transitions across salinity boundaries have led to some of the most important diversification events in the animal kingdom, especially among fishes. Adaptations accompanying such transitions include changes in morphology, diet, whole-organism performance, and osmoregulatory function, which may be particularly prominent since divergent salinity regimes make opposing demands on systems that maintain ion and water balance. Research in the last decade has focused on the genetic targets underlying such adaptations, most notably by comparing populations of species that are distributed across salinity boundaries. Here, we synthesize research on the targets of natural selection using whole-genome approaches, with a particular emphasis on the osmoregulatory system. Given the complex, integrated and polygenic nature of this system, we expected that signatures of natural selection would span numerous genes across functional levels of osmoregulation, especially salinity sensing, hormonal control, and cellular ion exchange mechanisms. We find support for this prediction: genes coding for V-type, Ca2+, and Na+/K+-ATPases, which are key cellular ion exchange enzymes, are especially common targets of selection in species from six orders of fishes. This indicates that while polygenic selection contributes to adaptation across salinity boundaries, changes in ATPase enzymes may be of particular importance in supporting such transitions.
Collapse
Affiliation(s)
- Jonathan P Velotta
- Department of Biological Sciences, University of Denver, Denver, CO 80210, USA
| | - Stephen D McCormick
- USGS, Eastern Ecological Science Center, Conte Anadromous Fish Research Center, Turners Falls, MA 01376, USA.,Department of Biology, University of Massachusetts, Amherst, MA, 01003USA
| | - Andrew Whitehead
- Department of Environmental Toxicology, University of California, Davis, Davis, CA 95616, USA
| | - Catherine S Durso
- Department of Computer Science, University of Denver, Denver, CO 80210, USA
| | - Eric T Schultz
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
14
|
Zhao H, Wang Q, Zhao H, Chen C. Transcriptome profiles revealed high- and low-salinity water altered gill homeostasis in half-smooth tongue sole (Cynoglossus semilaevis). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 42:100989. [PMID: 35421665 DOI: 10.1016/j.cbd.2022.100989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/27/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
Salinity is an important environmental factor that affects fish growth, development, and reproduction. As euryhaline fish, half-smooth tongue sole (Cynoglossus semilaevis) are a suitable species for deciphering the salinity adaptation mechanism of fish; however, the molecular mechanisms underlying low- and high-salinity responses remain unclear. In this study, RNA-seq was applied to characterize the genes and regulatory pathways involved in C. semilaevis gill responses to high- (32 ppt), low- (8 ppt), and control-salinity (24 ppt) water. Gills were rich in mitochondria-rich cells (MRCs) in high salinity. Compared with control, 2137 and 218 differentially expressed genes (DEGs) were identified in low and high salinity, respectively. The enriched functions of most DEGs were metabolism, ion transport, regulation of cell cycle, and immune response. The DEGs involved in oxidative phosphorylation, citrate cycle, and fatty acid metabolism were down-regulated in low salinity. For ion transport, high and low salinity significantly altered the expressions of prlr, ca12, and cftr. In cell cycle arrest and cellular repair, gadd45b, igfbp5, and igfbp2 were significantly upregulated in high and low salinity. For immune response, il10, il34, il12b, and crp increased in high and low salinity. Our findings suggested that alterations in material and energy metabolism, ions transport, cell cycle arrest, cellular repair, and immune response, are required to maintain C. semilaevis gill homeostasis under high and low salinity. This study provides insight into the divergence of C. semilaevis osmoregulation mechanisms acclimating to high and low salinity, which will serve as reference for the healthy culture of C. semilaevis.
Collapse
Affiliation(s)
- Huiyan Zhao
- Tianjin Key Laboratory of Aqua-Ecology and Aquaculture, Tianjin 300392, China; College of Fisheries, Tianjin Agricultural University, Tianjin 300392, China
| | - Qingkui Wang
- Tianjin Key Laboratory of Aqua-Ecology and Aquaculture, Tianjin 300392, China; College of Fisheries, Tianjin Agricultural University, Tianjin 300392, China.
| | - Honghao Zhao
- Tianjin Key Laboratory of Aqua-Ecology and Aquaculture, Tianjin 300392, China; College of Fisheries, Tianjin Agricultural University, Tianjin 300392, China
| | - Chengxun Chen
- Tianjin Key Laboratory of Aqua-Ecology and Aquaculture, Tianjin 300392, China; College of Fisheries, Tianjin Agricultural University, Tianjin 300392, China
| |
Collapse
|
15
|
Peter MCS, Gayathry R, Peter VS. Inducible Nitric Oxide Synthase/Nitric Oxide System as a Biomarker for Stress and Ease Response in Fish: Implication on Na+ Homeostasis During Hypoxia. Front Physiol 2022; 13:821300. [PMID: 35655956 PMCID: PMC9152262 DOI: 10.3389/fphys.2022.821300] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/06/2022] [Indexed: 11/22/2022] Open
Abstract
The cellular and organismal response to stressor-driven stimuli evokes stress response in vertebrates including fishes. Fishes have evolved varied patterns of stress response, including ionosmotic stress response, due to their sensitivity to both intrinsic and extrinsic stimuli. Fishes that experience hypoxia, a detrimental stressor that imposes systemic and cellular stress response, can evoke disturbed ion homeostasis. In addition, like other vertebrates, fishes have also developed mechanisms to recover from the impact of stress by way of shifting stress response into ease response that could reduce the magnitude of stress response with the aid of certain neuroendocrine signals. Nitric oxide (NO) has been identified as a potent molecule that attenuates the impact of ionosmotic stress response in fish, particularly during hypoxia stress. Limited information is, however, available on this important aspect of ion transport physiology that contributes to the mechanistic understanding of survival during environmental challenges. The present review, thus, discusses the role of NO in Na+ homeostasis in fish particularly in stressed conditions. Isoforms of nitric oxide synthase (NOS) are essential for the synthesis and availability of NO at the cellular level. The NOS/NO system, thus, appears as a unique molecular drive that performs both regulatory and integrative mechanisms of control within and across varied fish ionocytes. The activation of the inducible NOS (iNOS)/NO system during hypoxia stress and its action on the dynamics of Na+/K+-ATPase, an active Na+ transporter in fish ionocytes, reveal that the iNOS/NO system controls cellular and systemic Na+ transport in stressed fish. In addition, the higher sensitivity of iNOS to varied physical stressors in fishes and the ability of NO to lower the magnitude of ionosmotic stress in hypoxemic fish clearly put forth NO as an ease-promoting signal molecule in fishes. This further points to the signature role of the iNOS/NO system as a biomarker for stress and ease response in the cycle of adaptive response in fish.
Collapse
Affiliation(s)
- M. C. Subhash Peter
- Inter-University Centre for Evolutionary and Integrative Biology iCEIB, School of Life Science, University of Kerala, Kariavattom, Thiruvananthapuram, India
- Department of Zoology, University of Kerala, Kariavattom, Thiruvananthapuram, India
- *Correspondence: M. C. Subhash Peter,
| | - R. Gayathry
- Inter-University Centre for Evolutionary and Integrative Biology iCEIB, School of Life Science, University of Kerala, Kariavattom, Thiruvananthapuram, India
| | - Valsa S. Peter
- Inter-University Centre for Evolutionary and Integrative Biology iCEIB, School of Life Science, University of Kerala, Kariavattom, Thiruvananthapuram, India
| |
Collapse
|
16
|
Doyle D, Carney Almroth B, Sundell K, Simopoulou N, Sundh H. Transport and Barrier Functions in Rainbow Trout Trunk Skin Are Regulated by Environmental Salinity. Front Physiol 2022; 13:882973. [PMID: 35634157 PMCID: PMC9136037 DOI: 10.3389/fphys.2022.882973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/29/2022] [Indexed: 11/20/2022] Open
Abstract
The mechanisms underpinning ionic transport and barrier function have been relatively well characterised in amphibians and fish. In teleost fish, these processes have mostly been characterised in the gill and intestine. In contrast, these processes remain much less clear for the trunk skin of fish. In this study, we measured barrier function and active transport in the trunk skin of the rainbow trout, using the Ussing chamber technique. The effects of epithelial damage, skin region, salinity, and pharmacological inhibition were tested. Skin barrier function decreased significantly after the infliction of a superficial wound through the removal of scales. Wound healing was already underway after 3 h and, after 24 h, there was no significant difference in barrier function towards ions between the wounded and control skin. In relation to salinity, skin permeability decreased drastically following exposure to freshwater, and increased following exposure to seawater. Changes in epithelial permeability were accompanied by salinity-dependent changes in transepithelial potential and short-circuit current. The results of this study support the idea that barrier function in rainbow trout trunk skin is regulated by tight junctions that rapidly respond to changes in salinity. The changes in transepithelial permeability and short circuit current also suggest the presence of an active transport component. Immunostaining and selective inhibition suggest that one active transport component is an apical V-ATPase. However, further research is required to determine the exact role of this transporter in the context of the trunk skin.
Collapse
Affiliation(s)
- D Doyle
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - B Carney Almroth
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - K Sundell
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - N Simopoulou
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - H Sundh
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
17
|
Teng G, Huang W, Ji C, Chen Y, Shan X. Morphological changes and variations in Na+/K+-ATPase activity in the gills of juvenile large yellow croaker (Larimichthys crocea) at low salinity. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2020.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
18
|
Shahmohamadloo RS, Ortiz Almirall X, Simmons DBD, Poirier DG, Bhavsar SP, Sibley PK. Fish tissue accumulation and proteomic response to microcystins is species-dependent. CHEMOSPHERE 2022; 287:132028. [PMID: 34474382 DOI: 10.1016/j.chemosphere.2021.132028] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Cyanotoxins including microcystins are increasing globally, escalating health risks to humans and wildlife. Freshwater fish can accumulate and retain microcystins in tissues; however, uptake and depuration studies thus far have not exposed fish to microcystins in its intracellular state (i.e., cell-bound or conserved within cyanobacteria), which is a primary route of exposure in the field, nor have they investigated sublethal molecular-level effects in tissues, limiting our knowledge of proteins responsible for microcystin toxicity pathways in pre-to-postsenescent stages of a harmful algal bloom. We address these gaps with a 2-wk study (1 wk of 'uptake' exposure to intracellular microcystins (0-40 μg L-1) produced by Microcystis aeruginosa followed by 1 wk of 'depuration' in clean water) using Rainbow Trout (Oncorhynchus mykiss) and Lake Trout (Salvelinus namaycush). Liver and muscle samples were collected throughout uptake and depuration phases for targeted microcystin quantification and nontargeted proteomics. For both species, microcystins accumulated at a higher concentration in the liver than muscle, and activated cellular responses related to oxidative stress, apoptosis, DNA repair, and carcinogenicity. However, intraspecific proteomic effects between Rainbow Trout and Lake Trout differed, and interspecific accumulation and retention of microcystins in tissues within each species also differed. We demonstrate that fish do not respond the same to cyanobacterial toxicity within and among species despite being reared in the same environment and diet.
Collapse
Affiliation(s)
- René S Shahmohamadloo
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada; Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada.
| | - Xavier Ortiz Almirall
- Ministry of the Environment, Conservation and Parks, Toronto, Ontario, Canada; School of Environmental Studies, Queen's University, Kingston, Ontario, Canada
| | | | - David G Poirier
- Ministry of the Environment, Conservation and Parks, Toronto, Ontario, Canada
| | - Satyendra P Bhavsar
- Ministry of the Environment, Conservation and Parks, Toronto, Ontario, Canada; Department of Physical & Environmental Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Paul K Sibley
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
19
|
Valenzuela-Muñoz V, Gallardo-Escárate C, Benavente BP, Valenzuela-Miranda D, Núñez-Acuña G, Escobar-Sepulveda H, Váldes JA. Whole-Genome Transcript Expression Profiling Reveals Novel Insights into Transposon Genes and Non-Coding RNAs during Atlantic Salmon Seawater Adaptation. BIOLOGY 2021; 11:1. [PMID: 35052999 PMCID: PMC8772943 DOI: 10.3390/biology11010001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 12/11/2022]
Abstract
The growing amount of genome information and transcriptomes data available allows for a better understanding of biological processes. However, analysis of complex transcriptomic experimental designs involving different conditions, tissues, or times is relevant. This study proposes a novel approach to analyze complex data sets combining transcriptomes and miRNAs at the chromosome-level genome. Atlantic salmon smolts were transferred to seawater under two strategies: (i) fish group exposed to gradual salinity changes (GSC) and (ii) fish group exposed to a salinity shock (SS). Gills, intestine, and head kidney samples were used for total RNA extraction, followed by mRNA and small RNA illumina sequencing. Different expression patterns among the tissues and treatments were observed through a whole-genome transcriptomic approach. Chromosome regions highly expressed between experimental conditions included a great abundance of transposable elements. In addition, differential expression analysis showed a greater number of transcripts modulated in response to SS in gills and head kidney. miRNA expression analysis suggested a small number of miRNAs involved in the smoltification process. However, target analysis of these miRNAs showed a regulatory role in growth, stress response, and immunity. This study is the first to evidence the interplaying among mRNAs and miRNAs and the structural relationship at the genome level during Atlantic salmon smoltification.
Collapse
Affiliation(s)
- Valentina Valenzuela-Muñoz
- Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepcion 4030000, Chile; (C.G.-E.); (B.P.B.); (D.V.-M.); (G.N.-A.); (H.E.-S.); (J.A.V.)
- Laboratorio de Biotecnología Molecular, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370035, Chile
- Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, University of Concepción, Concepcion 4030000, Chile
| | - Cristian Gallardo-Escárate
- Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepcion 4030000, Chile; (C.G.-E.); (B.P.B.); (D.V.-M.); (G.N.-A.); (H.E.-S.); (J.A.V.)
- Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, University of Concepción, Concepcion 4030000, Chile
| | - Bárbara P. Benavente
- Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepcion 4030000, Chile; (C.G.-E.); (B.P.B.); (D.V.-M.); (G.N.-A.); (H.E.-S.); (J.A.V.)
- Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, University of Concepción, Concepcion 4030000, Chile
| | - Diego Valenzuela-Miranda
- Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepcion 4030000, Chile; (C.G.-E.); (B.P.B.); (D.V.-M.); (G.N.-A.); (H.E.-S.); (J.A.V.)
- Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, University of Concepción, Concepcion 4030000, Chile
| | - Gustavo Núñez-Acuña
- Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepcion 4030000, Chile; (C.G.-E.); (B.P.B.); (D.V.-M.); (G.N.-A.); (H.E.-S.); (J.A.V.)
- Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, University of Concepción, Concepcion 4030000, Chile
| | - Hugo Escobar-Sepulveda
- Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepcion 4030000, Chile; (C.G.-E.); (B.P.B.); (D.V.-M.); (G.N.-A.); (H.E.-S.); (J.A.V.)
- Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, University of Concepción, Concepcion 4030000, Chile
| | - Juan Antonio Váldes
- Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepcion 4030000, Chile; (C.G.-E.); (B.P.B.); (D.V.-M.); (G.N.-A.); (H.E.-S.); (J.A.V.)
- Laboratorio de Biotecnología Molecular, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370035, Chile
| |
Collapse
|
20
|
Aruna A, Wang TP, Cao JC, Lan DS, Nagarajan G, Chang CF. Differential Expression of Hypothalamic and Gill- crh System With Osmotic Stress in the Euryhaline Black Porgy, Acanthopagrus schlegelii. Front Physiol 2021; 12:768122. [PMID: 34858213 PMCID: PMC8632050 DOI: 10.3389/fphys.2021.768122] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/06/2021] [Indexed: 11/25/2022] Open
Abstract
The local gill production of corticotropin releasing hormone (crh) and crh-receptor (crhr) is hypothesized to play important roles during seawater (SW) and freshwater (FW) acclimation in euryhaline black porgy (Acanthopagrus schlegelii). The mRNA expression of crh, crhr, and Na +/K + -ATPase (a-nka) was examined in SW and FW diencephalon (Dien) and in the gills at different exposure time by Q-PCR analysis. The in situ hybridization results indicate that crh mRNA hybridization signals were more abundant in FW fish in the gigantocellular (PMgc) and parvocellular (PMpc) part of the magnocellular preoptic nucleus versus SW fish. The crh and crhr-expressing cells were located in basal cells of gill filament. Furthermore, in vitro dexamethasone (DEX) treatment could increase the crh-system in the gill. Increased transcripts of the crh-system in the gill via in vitro and in vivo CRH treatments suggest that CRH may regulate the system in a local manner. The a-Nka cells were localized in the filament and secondary lamellae mitochondria rich cells (MRCs) of FW fish at 8 h and 1 day. a-Nka cells were seen in both filament and lamellae in the FW but much less in SW fish indicating that gills play key roles in black porgy osmoregulation. Gill crh and crhr play important roles in the response to salinity stress.
Collapse
Affiliation(s)
- Adimoolam Aruna
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Tsan-Ping Wang
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Jyun-Cing Cao
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Dan-Suei Lan
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Ganesan Nagarajan
- Department of Basic Sciences, PYD, King Faisal University, Al Hofuf, Saudi Arabia
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| | - Ching-Fong Chang
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| |
Collapse
|
21
|
Lall SP, Kaushik SJ. Nutrition and Metabolism of Minerals in Fish. Animals (Basel) 2021; 11:ani11092711. [PMID: 34573676 PMCID: PMC8466162 DOI: 10.3390/ani11092711] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/06/2021] [Accepted: 09/13/2021] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Our aim is to introduce the mineral nutrition of fish and explain the complexity of determining requirements for these elements, which are absorbed and excreted by the fish into the surrounding water. To date, only the requirements for nine minerals have been investigated. The review is focused on the absorption and the dietary factors that reduce their absorption from feed ingredients of plant and animal origin. Some diseases, such as cataracts, anemia and bone deformity, have been linked to dietary deficiency of minerals. Abstract Aquatic animals have unique physiological mechanisms to absorb and retain minerals from their diets and water. Research and development in the area of mineral nutrition of farmed fish and crustaceans have been relatively slow and major gaps exist in the knowledge of trace element requirements, physiological functions and bioavailability from feed ingredients. Quantitative dietary requirements have been reported for three macroelements (calcium, phosphorus and magnesium) and six trace minerals (zinc, iron, copper, manganese, iodine and selenium) for selected fish species. Mineral deficiency signs in fish include reduced bone mineralization, anorexia, lens cataracts (zinc), skeletal deformities (phosphorus, magnesium, zinc), fin erosion (copper, zinc), nephrocalcinosis (magnesium deficiency, selenium toxicity), thyroid hyperplasia (iodine), muscular dystrophy (selenium) and hypochromic microcytic anemia (iron). An excessive intake of minerals from either diet or gill uptake causes toxicity and therefore a fine balance between mineral deficiency and toxicity is vital for aquatic organisms to maintain their homeostasis, either through increased absorption or excretion. Release of minerals from uneaten or undigested feed and from urinary excretion can cause eutrophication of natural waters, which requires additional consideration in feed formulation. The current knowledge in mineral nutrition of fish is briefly reviewed.
Collapse
Affiliation(s)
- Santosh P. Lall
- National Research Council of Canada, Halifax, NS B3H 3Z1, Canada
- Correspondence: (S.P.L.); (S.J.K.)
| | - Sadasivam J. Kaushik
- Retd. INRA, 64310 St Pée sur Nivelle, France
- Ecoaqua Institute, Universidad de Las Palmas de Gran Canaria, 35214 Las Palmas, Spain
- Correspondence: (S.P.L.); (S.J.K.)
| |
Collapse
|
22
|
Lim Y, Lee V, Blanco A, Kelly SP, Unniappan S. Ion-poor water and dietary salt deprivation upregulate the ghrelinergic system in the goldfish (Carassius auratus). JOURNAL OF FISH BIOLOGY 2021; 99:1100-1109. [PMID: 34080192 DOI: 10.1111/jfb.14814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
Because the ghrelinergic system in teleost fishes is broadly expressed in organs that regulate appetite as well as those that contribute to the regulation of salt and water balance, we hypothesized that manipulating salt and water balance in goldfish (Carassius auratus) would modulate the ghrelinergic system. Goldfish were acclimated to either freshwater (FW) or ion-poor FW (IPW) and were fed either a control diet containing 1% NaCl or low-salt diet containing 0.1% NaCl. Endpoints of salt and water balance, i.e., serum Na+ and Cl- levels, muscle moisture content and organ-specific Na+ -K+ -ATPase (NKA) activity, were examined in conjunction with brain, gill and gut mRNA abundance of preproghrelin and its receptor, growth hormone secretagogue receptor (ghs-r). Acclimation of fish to IPW reduced serum osmolality and Cl- levels and elevated kidney NKA activity, while FW fish fed a low NaCl diet exhibited a modest reduction in muscle moisture content but otherwise no apparent osmoregulatory disturbance. In contrast, a combined treatment of IPW acclimation and low dietary NaCl content reduced serum osmolality and Cl- levels, elevated muscle moisture content and increased gill, kidney and intestinal NKA activity. This intensified response to the combined effects of water and dietary ion deprivation is consistent with an increased effort to enhance ion acquisition. In association with these latter observations, a significant upregulation of preproghrelin mRNA expression in brain and gut was observed. A significant increase in ghs-r mRNAs was also observed in the gill of goldfish acclimated to IPW alone but a reduction in dietary NaCl content did not impact the ghrelinergic system of goldfish in FW. The results support the hypothesis that the ghrelinergic system is modulated in response to manipulated salt and water balance. Whether the central and peripheral ghrelinergic system contributes to ionic homeostasis in goldfish currently remains unclear and warrants further research.
Collapse
Affiliation(s)
- YouRee Lim
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Vivienne Lee
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Ayelen Blanco
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Scott P Kelly
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
23
|
Vargas-Chacoff L, Dann F, Paschke K, Oyarzún-Salazar R, Nualart D, Martínez D, Wilson JM, Guerreiro PM, Navarro JM. Freshening effect on the osmotic response of the Antarctic spiny plunderfish Harpagifer antarcticus. JOURNAL OF FISH BIOLOGY 2021; 98:1558-1571. [PMID: 33452810 DOI: 10.1111/jfb.14676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 01/05/2021] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
Global warming is having a significant impact around the world, modifying environmental conditions in many areas, including in zones that have been thermally stable for thousands of years, such as Antarctica. Stenothermal sedentary intertidal fish species may suffer due to warming, notably if this causes water freshening from increased freshwater inputs. Acute decreases in salinity, from 33 down to 5, were used to assess osmotic responses to environmental salinity fluctuations in Antarctic spiny plunderfish Harpagifer antarcticus, in particular to evaluate if H. antarcticus is able to cope with freshening and to describe osmoregulatory responses at different levels (haematological variables, muscle water content, gene expression, NKA activity). H. antarcticus were acclimated to a range of salinities (33 as control, 20, 15, 10 and 5) for 1 week. At 5, plasma osmolality and calcium concentration were both at their lowest, while plasma cortisol and percentage muscle water content were at their highest. At the same salinity, gill and intestine Na+ -K+ -ATPase (NKA) activities were at their lowest and highest, respectively. In kidney, NKA activity was highest at intermediate salinities (15 and 10). The salinity-dependent NKA mRNA expression patterns differed depending on the tissue. Marked changes were also observed in the expression of genes coding membrane proteins associated with ion and water transport, such as NKCC2, CFTR and AQP8, and in the expression of mRNA for the regulatory hormone prolactin (PRL) and its receptor (PRLr). Our results demonstrate that freshening causes osmotic imbalances in H. antarcticus, apparently due to reduced capacity of both transport and regulatory mechanisms of key organs to maintain homeostasis. This has implications for fish species that have evolved in stable environmental conditions in the Antarctic, now threatened by climate change.
Collapse
Affiliation(s)
- Luis Vargas-Chacoff
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
- Centro Fondap de Investigación de Altas Latitudes, Universidad Austral de Chile, Valdivia, Chile
| | - Francisco Dann
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
- Centro Fondap de Investigación de Altas Latitudes, Universidad Austral de Chile, Valdivia, Chile
| | - Kurt Paschke
- Centro Fondap de Investigación de Altas Latitudes, Universidad Austral de Chile, Valdivia, Chile
- Instituto de Acuicultura, Universidad Austral de Chile, Puerto Montt, Chile
| | - Ricardo Oyarzún-Salazar
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
- Centro Fondap de Investigación de Altas Latitudes, Universidad Austral de Chile, Valdivia, Chile
- Escuela de Graduados Programa de Doctorado en Ciencias de la Acuicultura, Universidad Austral de Chile, Puerto Montt, Chile
| | - Daniela Nualart
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
| | - Danixa Martínez
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
| | - Jonathan M Wilson
- Wilfrid Laurier University, Waterloo, Ontario, Canada
- Centro Interdisciplinar de Investigação Marinha e Ambiental, Matosinhos, Portugal
| | | | - Jorge M Navarro
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
- Centro Fondap de Investigación de Altas Latitudes, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
24
|
Sharker MR, Sukhan ZP, Sumi KR, Choi SK, Choi KS, Kho KH. Molecular Characterization of Carbonic Anhydrase II (CA II) and Its Potential Involvement in Regulating Shell Formation in the Pacific Abalone, Haliotis discus hannai. Front Mol Biosci 2021; 8:669235. [PMID: 34026840 PMCID: PMC8138131 DOI: 10.3389/fmolb.2021.669235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/14/2021] [Indexed: 12/31/2022] Open
Abstract
Carbonic anhydrases (CAs) are a family of metalloenzymes that can catalyze the reversible interconversion of CO2/HCO3–, ubiquitously present in both prokaryotes and eukaryotes. In the present study, a CA II (designated as HdhCA II) was sequenced and characterized from the mantle tissue of the Pacific abalone. The complete sequence of HdhCA II was 1,169 bp, encoding a polypeptide of 349 amino acids with a NH2-terminal signal peptide and a CA architectural domain. The predicted protein shared 98.57% and 68.59% sequence identities with CA II of Haliotis gigantea and Haliotis tuberculata, respectively. Two putative N-linked glycosylation motifs and two cysteine residues could potentially form intramolecular disulfide bond present in HdhCA II. The phylogenetic analysis indicated that HdhCA II was placed in a gastropod clade and robustly clustered with CA II of H. gigantea and H. tuberculata. The highest level of HdhCA II mRNA expression was detected in the shell forming mantle tissue. During ontogenesis, the mRNA of HdhCA II was detected in all stages, with larval shell formation stage showing the highest expression level. The in situ hybridization results detected the HdhCA II mRNA expression in the epithelial cells of the dorsal mantle pallial, an area known to express genes involved in the formation of a nacreous layer in the shell. This is the first report of HdhCA II in the Pacific abalone, and the results of this study indicate that this gene might play a role in the shell formation of abalone.
Collapse
Affiliation(s)
- Md Rajib Sharker
- Department of Fisheries Science, College of Fisheries and Ocean Sciences, Chonnam National University, Yeosu, South Korea.,Department of Fisheries Biology and Genetics, Faculty of Fisheries, Patuakhali Science and Technology University, Patuakhali, Bangladesh
| | - Zahid Parvez Sukhan
- Department of Fisheries Science, College of Fisheries and Ocean Sciences, Chonnam National University, Yeosu, South Korea
| | - Kanij Rukshana Sumi
- Department of Aquaculture, Faculty of Fisheries, Patuakhali Science and Technology University, Patuakhali, Bangladesh
| | - Sang Ki Choi
- Department of Biological Sciences, College of Life Industry and Science, Sunchon National University, Jeonnam, South Korea
| | - Kap Seong Choi
- Department of Food Science and Technology, Sunchon National University, Jeonnam, South Korea
| | - Kang Hee Kho
- Department of Fisheries Science, College of Fisheries and Ocean Sciences, Chonnam National University, Yeosu, South Korea
| |
Collapse
|
25
|
Takvam M, Wood CM, Kryvi H, Nilsen TO. Ion Transporters and Osmoregulation in the Kidney of Teleost Fishes as a Function of Salinity. Front Physiol 2021; 12:664588. [PMID: 33967835 PMCID: PMC8098666 DOI: 10.3389/fphys.2021.664588] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/24/2021] [Indexed: 12/13/2022] Open
Abstract
Euryhaline teleosts exhibit major changes in renal function as they move between freshwater (FW) and seawater (SW) environments, thus tolerating large fluctuations in salinity. In FW, the kidney excretes large volumes of water through high glomerular filtration rates (GFR) and low tubular reabsorption rates, while actively reabsorbing most ions at high rates. The excreted product has a high urine flow rate (UFR) with a dilute composition. In SW, GFR is greatly reduced, and the tubules reabsorb as much water as possible, while actively secreting divalent ions. The excreted product has a low UFR, and is almost isosmotic to the blood plasma, with Mg2+, SO42–, and Cl– as the major ionic components. Early studies at the organismal level have described these basic patterns, while in the last two decades, studies of regulation at the cell and molecular level have been implemented, though only in a few euryhaline groups (salmonids, eels, tilapias, and fugus). There have been few studies combining the two approaches. The aim of the review is to integrate known aspects of renal physiology (reabsorption and secretion) with more recent advances in molecular water and solute physiology (gene and protein function of transporters). The renal transporters addressed include the subunits of the Na+, K+- ATPase (NKA) enzyme, monovalent ion transporters for Na+, Cl–, and K+ (NKCC1, NKCC2, CLC-K, NCC, ROMK2), water transport pathways [aquaporins (AQP), claudins (CLDN)], and divalent ion transporters for SO42–, Mg2+, and Ca2+ (SLC26A6, SLC26A1, SLC13A1, SLC41A1, CNNM2, CNNM3, NCX1, NCX2, PMCA). For each transport category, we address the current understanding at the molecular level, try to synthesize it with classical knowledge of overall renal function, and highlight knowledge gaps. Future research on the kidney of euryhaline fishes should focus on integrating changes in kidney reabsorption and secretion of ions with changes in transporter function at the cellular and molecular level (gene and protein verification) in different regions of the nephrons. An increased focus on the kidney individually and its functional integration with the other osmoregulatory organs (gills, skin and intestine) in maintaining overall homeostasis will have applied relevance for aquaculture.
Collapse
Affiliation(s)
- Marius Takvam
- Department of Biological Sciences, University of Bergen, Bergen, Norway.,NORCE, Norwegian Research Centre, NORCE Environment, Bergen, Norway
| | - Chris M Wood
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Harald Kryvi
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Tom O Nilsen
- Department of Biological Sciences, University of Bergen, Bergen, Norway.,NORCE, Norwegian Research Centre, NORCE Environment, Bergen, Norway
| |
Collapse
|
26
|
Valenzuela-Muñoz V, Váldes JA, Gallardo-Escárate C. Transcriptome Profiling of Long Non-coding RNAs During the Atlantic Salmon Smoltification Process. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:308-320. [PMID: 33638736 DOI: 10.1007/s10126-021-10024-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
For salmon aquaculture, one of the most critical phase is the parr-smolt transformation. Studies around this process have mainly focused on physiological changes and the Na+/K+-ATPase activity during the osmoregulatory activity. However, understanding how the salmon genome regulates the parr-smolt transformation, specifically the molecular mechanisms involved, remains uncovered. This study aimed to explore the transcriptional modulation of long non-coding RNAs (lncRNAs), as key molecular regulators, during the freshwater (FW) to seawater (SW) transfer in Atlantic salmon. Transcriptome sequencing was performed from gill samples of Atlantic salmon adapted from FW to SW through gradual salinity changes from 0 to 30 PSU. The results showed that most transcripts differently modulated were downregulated in all salinity conditions. Relevant biological processes were associated with growth, collagen formation, immune response, metabolism, and heme transport. Notably, 2864 putative lncRNAs were identified in Atlantic salmon gills differently expressed during fish smoltification. The highest number of lncRNAs differently modulated was observed at 30 PSU. Correlation expression analysis suggests putative regulatory roles of lncRNAs with smoltification-related genes. Herein, co-localization of Na+/K+-ATPase, growth hormone receptor, and thyroid hormone receptor genes with lncRNAs differentially expressed suggest putative regulatory mechanisms in the Atlantic salmon genome. The lncRNAs can be used as novel biomarkers for the fish smoltification process. Here, the lncRNA_145326 and lncRNA_18762 are putatively related to the parr-smolt transfer in Atlantic salmon. This study is the first description of lncRNAs with putative regulatory roles in Atlantic salmon during the SW adaptation.
Collapse
Affiliation(s)
- Valentina Valenzuela-Muñoz
- Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepción, Chile.
- Laboratorio de Biotecnología Molecular, Universidad Andrés Bello, Facultad de Ciencias de la Vida, Santiago, Chile.
- Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, University of Concepción, Concepción, Chile.
| | - Juan Antonio Váldes
- Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepción, Chile
- Laboratorio de Biotecnología Molecular, Universidad Andrés Bello, Facultad de Ciencias de la Vida, Santiago, Chile
| | - Cristian Gallardo-Escárate
- Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepción, Chile
- Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, University of Concepción, Concepción, Chile
| |
Collapse
|
27
|
Zimmer AM, Goss GG, Glover CN. Reductionist approaches to the study of ionoregulation in fishes. Comp Biochem Physiol B Biochem Mol Biol 2021; 255:110597. [PMID: 33781928 DOI: 10.1016/j.cbpb.2021.110597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/15/2021] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
The mechanisms underlying ionoregulation in fishes have been studied for nearly a century, and reductionist methods have been applied at all levels of biological organization in this field of research. The complex nature of ionoregulatory systems in fishes makes them ideally suited to reductionist methods and our collective understanding has been dramatically shaped by their use. This review provides an overview of the broad suite of techniques used to elucidate ionoregulatory mechanisms in fishes, from the whole-animal level down to the gene, discussing some of the advantages and disadvantages of these methods. We provide a roadmap for understanding and appreciating the work that has formed the current models of organismal, endocrine, cellular, molecular, and genetic regulation of ion balance in fishes and highlight the contribution that reductionist techniques have made to some of the fundamental leaps forward in the field throughout its history.
Collapse
Affiliation(s)
- Alex M Zimmer
- Department of Biological Sciences, CW 405, Biological Sciences Bldg., University of Alberta, Edmonton, AB T6G 2E9, Canada.
| | - Greg G Goss
- Department of Biological Sciences, CW 405, Biological Sciences Bldg., University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Chris N Glover
- Department of Biological Sciences, CW 405, Biological Sciences Bldg., University of Alberta, Edmonton, AB T6G 2E9, Canada; Faculty of Science and Technology and Athabasca River Basin Research Institute, Athabasca University, Athabasca, AB T9S 3A3, Canada
| |
Collapse
|
28
|
Vargas-Chacoff L, Martínez D, Oyarzún-Salazar R, Paschke K, Navarro JM. The osmotic response capacity of the Antarctic fish Harpagifer antarcticus is insufficient to cope with projected temperature and salinity under climate change. J Therm Biol 2021; 96:102835. [PMID: 33627273 DOI: 10.1016/j.jtherbio.2021.102835] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/04/2020] [Accepted: 01/02/2021] [Indexed: 11/27/2022]
Abstract
Over the last decades, climate change has intensified. Temperatures have increased and seawater has become "fresher" in Antarctica, affecting fish such as Harpagifer antarcticus. Thus, this study aimed to evaluate changes in the osmoregulatory response of the Antarctic notothenioid fish Harpagifer antarcticus and evaluate how it will cope with the future climate change and environmental conditions in the Antarctic, and in the hypothetical case that its geographical distribution will be extended to the Magellanes region. The present study was undertaken to determine the interaction between temperature and salinity tolerance (2 °C and 33 psu as the control group, the experimental groups were 5, 8, and 11 °C and 28 and 23 psu) and their effect on the osmoregulatory status of H. antarcticus. We evaluated changes in gill-kidney-intestine NKA activity, gene expression of NKAα, NKCC, CFTR, Aquaporins 1 and 8 in the same tissues, muscle water percentage, and plasma osmolality to evaluate osmoregulatory responses. Plasma osmolality decreased with high temperature, also the gill-kidney-intestine NKA activity, gene expression of NKA α, NKCC, CFTR, Aquaporins 1, and 8 were modified by temperature and salinity. We demonstrated that H. antarcticus can not live in the Magallanes region, due to its incapacity to put up with temperatures over 5 °C and with over 8 °C being catastrophic.
Collapse
Affiliation(s)
- L Vargas-Chacoff
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Universidad Austral de Chile, Valdivia, Chile.
| | - D Martínez
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Universidad Austral de Chile, Valdivia, Chile
| | - R Oyarzún-Salazar
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Universidad Austral de Chile, Valdivia, Chile; Escuela de Graduados Programa de Doctorado en Ciencias de la Acuicultura, Universidad Austral de Chile, Puerto Montt, Chile
| | - K Paschke
- Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Universidad Austral de Chile, Valdivia, Chile; Instituto de Acuicultura, Universidad Austral de Chile, Puerto Montt, Chile
| | - J M Navarro
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
29
|
Verhille CE, Dabruzzi TF, Cocherell DE, Mahardja B, Feyrer F, Foin TC, Baerwald MR, Fangue NA. Inter-population differences in salinity tolerance of adult wild Sacramento splittail: osmoregulatory and metabolic responses to salinity. CONSERVATION PHYSIOLOGY 2020; 8:coaa098. [PMID: 33343901 PMCID: PMC7733400 DOI: 10.1093/conphys/coaa098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 07/16/2020] [Accepted: 10/26/2020] [Indexed: 06/12/2023]
Abstract
The Sacramento splittail (Pogonichthys macrolepidotus) is composed of two genetically distinct populations endemic to the San Francisco Estuary (SFE). The allopatric upstream spawning habitat of the Central Valley (CV) population connects with the sympatric rearing grounds via relatively low salinity waters, whereas the San Pablo (SP) population must pass through the relatively high-salinity Upper SFE to reach its allopatric downstream spawning habitat. We hypothesize that if migration through SFE salinities to SP spawning grounds is more challenging for adult CV than SP splittail, then salinity tolerance, osmoregulatory capacity, and metabolic responses to salinity will differ between populations. Osmoregulatory disturbances, assessed by measuring plasma osmolality and ions, muscle moisture and Na+-K+-ATPase activity after 168 to 336 h at 11‰ salinity, showed evidence for a more robust osmoregulatory capacity in adult SP relative to CV splittail. While both resting and maximum metabolic rates were elevated in SP splittail in response to increased salinity, CV splittail metabolic rates were unaffected by salinity. Further, the calculated difference between resting and maximum metabolic values, aerobic scope, did not differ significantly between populations. Therefore, improved osmoregulation came at a metabolic cost for SP splittail but was not associated with negative impacts on scope for aerobic metabolism. These results suggest that SP splittail may be physiologically adjusted to allow for migration through higher-salinity waters. The trends in interpopulation variation in osmoregulatory and metabolic responses to salinity exposures support our hypothesis of greater salinity-related challenges to adult CV than SP splittail migration and are consistent with our previous findings for juvenile splittail populations, further supporting our recommendation of population-specific management.
Collapse
Affiliation(s)
- Christine E Verhille
- Department of Wildlife, Fish, and Conservation Biology, University of California, 1 Shields Ave., Davis, CA 95616, USA
- Department of Ecology, Montana State University, 310 Lewis Hall ,Bozeman, MT 59717, USA
| | - Theresa F Dabruzzi
- Department of Wildlife, Fish, and Conservation Biology, University of California, 1 Shields Ave., Davis, CA 95616, USA
- Biology Department, Saint Anselm College, 100 Saint Anselm Drive, Manchester, NH 03102, USA
| | - Dennis E Cocherell
- Department of Wildlife, Fish, and Conservation Biology, University of California, 1 Shields Ave., Davis, CA 95616, USA
| | - Brian Mahardja
- United States Fish and Wildlife Service, Department of the Interior, Delta Juvenile Fish Monitoring Program, 850 South Guild Ave, Suite 105, Lodi, CA, USA
| | - Fred Feyrer
- California Water Science Center, U.S. Geological Survey, 6000 J St., Sacramento, CA 95819-6129, USA
| | - Theodore C Foin
- Department of Plant Sciences, University of California, 1 Shields Ave., Davis, CA 95616, USA
| | - Melinda R Baerwald
- Division of Environmental Services, California Department of Water Resources, 3500 Industrial Boulevard, West Sacramento, CA 95691, USA
| | - Nann A Fangue
- Department of Wildlife, Fish, and Conservation Biology, University of California, 1 Shields Ave., Davis, CA 95616, USA
| |
Collapse
|
30
|
Niu J, Hu XL, Ip JCH, Ma KY, Tang Y, Wang Y, Qin J, Qiu JW, Chan TF, Chu KH. Multi-omic approach provides insights into osmoregulation and osmoconformation of the crab Scylla paramamosain. Sci Rep 2020; 10:21771. [PMID: 33303836 PMCID: PMC7728780 DOI: 10.1038/s41598-020-78351-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/23/2020] [Indexed: 12/18/2022] Open
Abstract
Osmoregulation and osmoconformation are two mechanisms through which aquatic animals adapt to salinity fluctuations. The euryhaline crab Scylla paramamosain, being both an osmoconformer and osmoregulator, is an excellent model organism to investigate salinity adaptation mechanisms in brachyurans. In the present study, we used transcriptomic and proteomic approaches to investigate the response of S. paramamosain to salinity stress. Crabs were transferred from a salinity of 25 ppt to salinities of 5 ppt or 33 ppt for 6 h and 10 days. Data from both approaches revealed that exposure to 5 ppt resulted in upregulation of ion transport and energy metabolism associated genes. Notably, acclimation to low salinity was associated with early changes in gene expression for signal transduction and stress response. In contrast, exposure to 33 ppt resulted in upregulation of genes related to amino acid metabolism, and amino acid transport genes were upregulated only at the early stage of acclimation to this salinity. Our study reveals contrasting mechanisms underlying osmoregulation and osmoconformation within the salinity range of 5–33 ppt in the mud crab, and provides novel candidate genes for osmotic signal transduction, thereby providing insights on understanding the salinity adaptation mechanisms of brachyuran crabs.
Collapse
Affiliation(s)
- Jiaojiao Niu
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Xue Lei Hu
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Jack C H Ip
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong, China
| | - Ka Yan Ma
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Yuanyuan Tang
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Yaqin Wang
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Jing Qin
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jian-Wen Qiu
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong, China
| | - Ting Fung Chan
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Ka Hou Chu
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| |
Collapse
|
31
|
Ellingsen S, Narawane S, Fjose A, Verri T, Rønnestad I. Sequence analysis and spatiotemporal developmental distribution of the Cat-1-type transporter slc7a1a in zebrafish (Danio rerio). FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:2281-2298. [PMID: 32980952 PMCID: PMC7584565 DOI: 10.1007/s10695-020-00873-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Abstract
Cationic amino acid transporter 1 (Cat-1 alias Slc7a1) is a Na+-independent carrier system involved in transport and absorption of the cationic amino acids lysine, arginine, histidine, and ornithine and has also been shown to be indispensable in a large variety of biological processes. Starting from isolated full-length zebrafish (Danio rerio) cDNA for slc7a1a, we performed comparative and phylogenetic sequence analysis, investigated the conservation of the gene during vertebrate evolution, and defined tissue expression during zebrafish development. Whole mount in situ hybridization first detected slc7a1a transcripts in somites, eyes, and brain at 14 h post-fertilization (hpf) with additional expression in the distal nephron at 24 hpf and in branchial arches at 3 days post-fertilization (dpf), with significant increase by 5 dpf. Taken together, the expression analysis of the zebrafish Cat-1 system gene slc7a1a suggests a functional role(s) during the early development of the central nervous system, muscle, gills, and kidney. Graphical abstract.
Collapse
Affiliation(s)
- Ståle Ellingsen
- Department of Molecular Biology, University of Bergen, Postbox 7803, NO-5020, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Postbox 7803, NO-5020, Bergen, Norway
| | - Shailesh Narawane
- Department of Molecular Biology, University of Bergen, Postbox 7803, NO-5020, Bergen, Norway
| | - Anders Fjose
- Department of Molecular Biology, University of Bergen, Postbox 7803, NO-5020, Bergen, Norway
| | - Tiziano Verri
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Prov.le Lecce-Monteroni, I-73100, Lecce, Italy
| | - Ivar Rønnestad
- Department of Biological Sciences, University of Bergen, Postbox 7803, NO-5020, Bergen, Norway.
| |
Collapse
|
32
|
Gillio Meina E, Niyogi S, Liber K. Investigating the mechanism of vanadium toxicity in freshwater organisms. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 229:105648. [PMID: 33130451 DOI: 10.1016/j.aquatox.2020.105648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/01/2020] [Accepted: 09/23/2020] [Indexed: 06/11/2023]
Abstract
Vanadium (V) could present a risk for aquatic organisms from the Alberta oil sands region, if present in high concentrations. An industry pilot project has used petroleum coke (PC) as a sorbent to remove organic toxicants from oil sands process-affected water (OSPW), but it also caused V to leach from PC into the OSPW, reaching concentrations of up to 7 mg V/L (a level known to be toxic to aquatic organisms). Vanadium is a transition metal with several oxidation states, which could potentially elicit its toxicity through either ion imbalance or oxidative stress. This study investigated the effect of V on Daphnia magna and Oncorhynchus mykiss. Daphinds and O. mykiss were exposed to concentrations of V up to their respective calculated median lethal concentration (LC50): 3 mg V/L for D. magna and 7 mg V/L for O. mykiss. For both organisms, the influence of V on sodium flux and whole body sodium was evaluated. Its effect on whole body calcium and the oxidative stress responses in O. mykiss at the gill and liver levels was also studied. Results suggested that 3.1 mg V/L for D. magna and 6.8 mg V/L for O. mykiss caused an overall increase in sodium influx in both the daphnids and rainbow trout. However, concentrations of V ranging between 0.2 and 4 mg V/L for D. magna and 1.8 and 6 mg V/L for O. mykiss reduced whole body sodium in both organisms and whole body calcium in O. mykiss. Concentrations above 3.6 mg V/L caused significant lipid peroxidation in the gills and liver of rainbow trout, while 1.9 mg V/L produced a substantial decrease in the fish gill GSH:GSSG ratio, but no change in the ratio between these thiols in the liver. Concentrations of 6.62 mg V/L sharply increased catalase activity in the liver but not in the gills. Neither liver nor gill superoxide dismutase was altered by V. Overall, results suggest that both ion imbalance and oxidative stress are part of the mechanism of toxicity of V in D. magna and O. mykiss and that further research is warranted to fully elucidate the mechanism(s) of V toxicity in aquatic organisms.
Collapse
Affiliation(s)
- Esteban Gillio Meina
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, S7N 5B3, Canada
| | - Som Niyogi
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, S7N 5B3, Canada; Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK, S7N 5E2, Canada
| | - Karsten Liber
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, S7N 5B3, Canada.
| |
Collapse
|
33
|
Cadiz L, Jonz MG. A comparative perspective on lung and gill regeneration. ACTA ACUST UNITED AC 2020; 223:223/19/jeb226076. [PMID: 33037099 DOI: 10.1242/jeb.226076] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The ability to continuously grow and regenerate the gills throughout life is a remarkable property of fish and amphibians. Considering that gill regeneration was first described over one century ago, it is surprising that the underlying mechanisms of cell and tissue replacement in the gills remain poorly understood. By contrast, the mammalian lung is a largely quiescent organ in adults but is capable of facultative regeneration following injury. In the course of the past decade, it has been recognized that lungs contain a population of stem or progenitor cells with an extensive ability to restore tissue; however, despite recent advances in regenerative biology of the lung, the signaling pathways that underlie regeneration are poorly understood. In this Review, we discuss the common evolutionary and embryological origins shared by gills and mammalian lungs. These are evident in homologies in tissue structure, cell populations, cellular function and genetic pathways. An integration of the literature on gill and lung regeneration in vertebrates is presented using a comparative approach in order to outline the challenges that remain in these areas, and to highlight the importance of using aquatic vertebrates as model organisms. The study of gill regeneration in fish and amphibians, which have a high regenerative potential and for which genetic tools are widely available, represents a unique opportunity to uncover common signaling mechanisms that may be important for regeneration of respiratory organs in all vertebrates. This may lead to new advances in tissue repair following lung disease.
Collapse
Affiliation(s)
- Laura Cadiz
- Department of Biology, University of Ottawa, 30 Marie Curie Pvt., Ottawa, ON, Canada, K1N 6N5
| | - Michael G Jonz
- Department of Biology, University of Ottawa, 30 Marie Curie Pvt., Ottawa, ON, Canada, K1N 6N5
| |
Collapse
|
34
|
Parker JJ, Zimmer AM, Perry SF. Respirometry and cutaneous oxygen flux measurements reveal a negligible aerobic cost of ion regulation in larval zebrafish ( Danio rerio). J Exp Biol 2020; 223:jeb226753. [PMID: 32709624 DOI: 10.1242/jeb.226753] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 07/19/2020] [Indexed: 08/26/2023]
Abstract
Fishes living in fresh water counter the passive loss of salts by actively absorbing ions through specialized cells termed ionocytes. Ionocytes contain ATP-dependent transporters and are enriched with mitochondria; therefore ionic regulation is an energy-consuming process. The purpose of this study was to assess the aerobic costs of ion transport in larval zebrafish (Danio rerio). We hypothesized that changes in rates of Na+ uptake evoked by acidic or low Na+ rearing conditions would result in corresponding changes in whole-body oxygen consumption (ṀO2 ) and/or cutaneous oxygen flux (JO2 ), measured at the ionocyte-expressing yolk sac epithelium using the scanning micro-optrode technique (SMOT). Larvae at 4 days post-fertilization (dpf) that were reared under low pH (pH 4) conditions exhibited a higher rate of Na+ uptake compared with fish reared under control conditions (pH 7.6), yet they displayed a lower ṀO2 and no difference in cutaneous JO2 Despite a higher Na+ uptake capacity in larvae reared under low Na+ conditions, there were no differences in ṀO2 and JO2 at 4 dpf. Furthermore, although Na+ uptake was nearly abolished in 2 dpf larvae lacking ionocytes after morpholino knockdown of the ionocyte proliferation regulating transcription factor foxi3a, ṀO2 and JO2 were unaffected. Finally, laser ablation of ionocytes did not affect cutaneous JO2 Thus, we conclude that the aerobic costs of ion uptake by ionocytes in larval zebrafish, at least in the case of Na+, are below detection using whole-body respirometry or cutaneous SMOT scans, providing evidence that ion regulation in zebrafish larvae incurs a low aerobic cost.
Collapse
Affiliation(s)
- Julian J Parker
- Department of Biology, University of Ottawa, Ottawa, ON, Canada, K1N 6N5
| | - Alex M Zimmer
- Department of Biology, University of Ottawa, Ottawa, ON, Canada, K1N 6N5
| | - Steve F Perry
- Department of Biology, University of Ottawa, Ottawa, ON, Canada, K1N 6N5
| |
Collapse
|
35
|
Handayani KS, Irawan B, Soegianto A. Short-term mercury exposure in tilapia ( Oreochromis niloticus) at different salinities: impact on serum osmoregulation, hematological parameters, and Na +/K +-ATPase level. Heliyon 2020; 6:e04404. [PMID: 32685728 PMCID: PMC7358731 DOI: 10.1016/j.heliyon.2020.e04404] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 10/09/2019] [Accepted: 07/03/2020] [Indexed: 11/21/2022] Open
Abstract
The objectives of this study were to analyze and compare the effects of mercury (Hg) exposure on osmoregulation and hematological responses in East Java strain tilapia (Oreochromis niloticus). Fish were exposed to 0, 0.1, and 1 mg L-1 Hg at 0, 5, 10, and 15 g L-1 salinities, and serum osmolality (SO), ion level, hematological parameters, and sodium (Na+)/potassium (K+)-ATPase (NKA) levels in the gills and kidney were assessed after 96 h of exposure. SO significantly increased in fish exposed to Hg at 15 g L-1 salinity compared with those exposed at 0, 5, 10, and 15 g L-1 salinities, but SO did not significantly increase in fish exposed to Hg at 5 and 10 g L-1 salinities compared with those exposed at 0 g L-1 salinity. At 15 g L-1 salinity, the Na+ level was significantly different from that at 0, 5, and 10 g L-1 salinities. The chloride ion level significantly increased only at 15 g L-1 salinity. Furthermore, the K+ level was significantly different at 10 and 15 g L-1 salinities from that at 0 and 5 g L-1 salinities. Hematocrit and hemoglobin levels and red blood cell and white blood cell (WBC) counts were not significantly different among all salinities. At 15 g L-1 salinity, the NKA level in the gills was significantly different from that at 0 g L-1 salinity, but in the kidney, there was no difference among all salinities. These data provide useful information for future reference and aquaculture practices to reduce Hg effects on tilapia. In conclusion, higher salinity reduced the effect of Hg on the K+ level and WBC count in tilapia.
Collapse
Affiliation(s)
- Kiki Syaputri Handayani
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Jl Mulyorejo, Surabaya, Indonesia
| | - Bambang Irawan
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Jl Mulyorejo, Surabaya, Indonesia
| | - Agoes Soegianto
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Jl Mulyorejo, Surabaya, Indonesia
| |
Collapse
|
36
|
Sun Z, Lou F, Zhang Y, Song N. Gill Transcriptome Sequencing and De Novo Annotation of Acanthogobius ommaturus in Response to Salinity Stress. Genes (Basel) 2020; 11:genes11060631. [PMID: 32521805 PMCID: PMC7349121 DOI: 10.3390/genes11060631] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/23/2020] [Accepted: 06/04/2020] [Indexed: 01/17/2023] Open
Abstract
Acanthogobius ommaturus is a euryhaline fish widely distributed in coastal, bay and estuarine areas, showing a strong tolerance to salinity. In order to understand the mechanism of adaptation to salinity stress, RNA-seq was used to compare the transcriptome responses of Acanthogobius ommaturus to the changes of salinity. Four salinity gradients, 0 psu, 15 psu (control), 30 psu and 45 psu were set to conduct the experiment. In total, 131,225 unigenes were obtained from the gill tissue of A. ommaturus using the Illumina HiSeq 2000 platform (San Diego, USA). Compared with the gene expression profile of the control group, 572 differentially expressed genes (DEGs) were screened, with 150 at 0 psu, 170 at 30 psu, and 252 at 45 psu. Additionally, among these DEGs, Gene Ontology (GO) analysis indicated that binding, metabolic processes and cellular processes were significantly enriched. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis detected 3, 5 and 8 pathways related to signal transduction, metabolism, digestive and endocrine systems at 0 psu, 30 psu and 45 psu, respectively. Based on GO enrichment analysis and manual literature searches, the results of the present study indicated that A. ommaturus mainly responded to energy metabolism, ion transport and signal transduction to resist the damage caused by salinity stress. Eight DEGs were randomly selected for further validation by quantitative real-time PCR (qRT-PCR) and the results were consistent with the RNA-seq data.
Collapse
Affiliation(s)
| | | | | | - Na Song
- Correspondence: or ; Tel.: +86-532-820-31658
| |
Collapse
|
37
|
The NOS/NO system in an example of extreme adaptation: The African lungfish. J Therm Biol 2020; 90:102594. [PMID: 32479389 DOI: 10.1016/j.jtherbio.2020.102594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 03/21/2020] [Accepted: 04/07/2020] [Indexed: 12/30/2022]
Abstract
African dipnoi (lungfish) are aestivating fish and obligate air breathers that, throughout their complex life cycle, undergo remarkable morpho-functional organ readjustment from biochemical to morphological level. In the present review we summarize the changes of the NOS/NO (Nitric Oxide Synthase/Nitric Oxide) system occurring in lungs, gills, kidney, heart, and myotomal muscle of African lungfish of the genus Protopterus (P. dolloi and P. annectens), in relation to the switch from freshwater to aestivation, and vice-versa. In particular, the expression and localization patterns of NOS, and its protein partners Akt, Hsp-90 and HIF-1α, have been discussed, together with the apoptosis rate, evaluated by TUNEL technique. We hypothesize that all these molecular components are crucial in signalling transduction/integration networks induced by environmental challenges (temperature, dehydration, inactivity)experienced at the beginning, during, and at the end of the dry season.
Collapse
|
38
|
Kumar M, Varghese T, Sahu NP, Gupta G, Dasgupta S. Pseudobranch mimics gill in expressing Na +K +-ATPase 1 α-subunit and carbonic anhydrase in concert with H +-ATPase in adult hilsa (Tenualosa ilisha) during river migration. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:725-738. [PMID: 31848826 DOI: 10.1007/s10695-019-00746-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
In hilsa (Tenualosa ilisha), pseudobranch comprises a row of parallel filaments bear numerous leaf-like lamellae arranged on both sides throughout its length. The purpose of this study was to elucidate involvement of pseudobranchial Na+, K+-ATPase (NKA) 1 α-subunit, and carbonic anhydrase (CA) in concert with H+-ATPase (HAT) compared to their branchial counterparts in freshwater acclimation of hilsa during spawning migration from off-shore of the Bay of Bengal to the Bhagirathi-Hooghly zones of the Ganga river system in India. Adult hilsa fish were collected from seawater (SW), freshwater 1 (FW1), and freshwater 2 (FW2) locations, where the salinity level was 26-28‰, 1-5‰, and 0-0.04‰, respectively. Hilsa migrating through freshwater showed a consistent decrease in the plasma osmolality, sodium (Na+) and chloride (Cl-) ion levels indicates unstable ionic homeostasis. The mRNA expression and activity of NKA 1 α-subunit in pseudobranch as well as in true gills declined with the migration to upstream locations. The pseudobranchial CA activity almost mirrors its branchial counterpart most notably while hilsa entered the freshwater zone, in the upstream river suggesting its diverse role in hypo-osmotic regulatory acclimation. Nevertheless, the H+-ATPase activity of both the tissues increased with the freshwater entry and remained similar during up-river movement into the freshwater environment. The results confirm that the pseudobranchial NKA 1 α-subunit mRNA expression and activity mimic its branchial counterpart in the process of ionoregulatory acclimation during migration through salt barriers. Also, the increase in the activities of pseudobranchial and branchial CA in concert with H+-ATPase (HAT) during freshwater acclimation of hilsa suggests their critical involvement in ion uptake.
Collapse
Affiliation(s)
- Munish Kumar
- Fish Nutrition, Biochemistry and Physiology Division, ICAR- Central Institute of Fisheries Education, Versova, Mumbai, 400 061, India
| | - Tincy Varghese
- Fish Nutrition, Biochemistry and Physiology Division, ICAR- Central Institute of Fisheries Education, Versova, Mumbai, 400 061, India
| | - Narottam Prasad Sahu
- Fish Nutrition, Biochemistry and Physiology Division, ICAR- Central Institute of Fisheries Education, Versova, Mumbai, 400 061, India
| | - Gyandeep Gupta
- Fish Nutrition, Biochemistry and Physiology Division, ICAR- Central Institute of Fisheries Education, Versova, Mumbai, 400 061, India
| | - Subrata Dasgupta
- ICAR-Central Institute of Fisheries Education, 32 GN Block, Sector V, Salt Lake City, Kolkata, West Bengal, 700 091, India.
| |
Collapse
|
39
|
Fjelldal PG, Hansen TJ, Karlsen Ø. Effects of laboratory salmon louse infection on osmoregulation, growth and survival in Atlantic salmon. CONSERVATION PHYSIOLOGY 2020; 8:coaa023. [PMID: 32257215 PMCID: PMC7098368 DOI: 10.1093/conphys/coaa023] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/11/2020] [Accepted: 03/02/2020] [Indexed: 06/02/2023]
Abstract
Anadromous Atlantic salmon (Salmo salar) rely on long ocean migrations to build energy stores for maturation and spawning. In seawater, wild Atlantic salmon are threatened by high salmon lice (Lepeophtheirus salmonis) infestation levels resulting from intensive salmonid sea-cage aquaculture. Salmon lice infection can cause a stress response and an osmotic imbalance in the host. The lice infection intensity threshold values for these responses, however, remain to be identified in Atlantic salmon. In order to define this under laboratory conditions, individually tagged F1 wild origin Atlantic post-smolts (40 g) were infected with salmon lice copepodids or left as uninfected controls. Twenty-eight days post infection, infected post-smolts had a mean of 0.38 (range of 0.07-0.9) mobile lice g-1 fish weight. During this period, specific growth rates (SGRs) were lower in infected than control fish (0.4 vs 1.0% day-1). Higher plasma Na+, Cl- and osmolality in infected fish also indicate osmoregulatory impairment. SGR correlated negatively with plasma Na+, Cl-, osmolality and cortisol in the infected, but not in the control group. Infection intensity (lice g-1 fish) correlated positively with mortality rate and plasma Na+, Cl-, osmolality and cortisol and correlated negatively with SGR and condition factor. Calculated lice intensity threshold values for changes in plasma ions were 0.18 lice g-1 for plasma Cl-, and 0.22 lice g-1 for plasma Na+. Moribund infected fish occurred at infection intensities above 0.2 lice g-1, and these fish had extreme plasma Cl-, Na+, osmolality and cortisol levels. There was a positive correlation between plasma cortisol and plasma Na+, Cl- and osmolality in infected fish. This study provides vital information that can be used to define thresholds in the monitoring and conservation of wild Atlantic salmon populations affected by aquaculture-driven salmon lice infestations.
Collapse
Affiliation(s)
- Per Gunnar Fjelldal
- Reproduction and Developmental Biology, Institute of Marine Research (IMR), Matre Aquaculture Research Station, 5984 Matredal, Norway
| | - Tom J Hansen
- Reproduction and Developmental Biology, Institute of Marine Research (IMR), Matre Aquaculture Research Station, 5984 Matredal, Norway
| | - Ørjan Karlsen
- Reproduction and Developmental Biology, Institute of Marine Research (IMR), PO Box 1870, Nordnes, 5817 Bergen, Norway
| |
Collapse
|
40
|
Cardon PY, Roques O, Caron A, Rosabal M, Fortin C, Amyot M. Role of prey subcellular distribution on the bioaccumulation of yttrium (Y) in the rainbow trout. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 258:113804. [PMID: 31874439 DOI: 10.1016/j.envpol.2019.113804] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/01/2019] [Accepted: 12/10/2019] [Indexed: 06/10/2023]
Abstract
Our knowledge of the processes leading to the bioaccumulation of rare earth elements (REE) in aquatic biota is limited. As the contamination of freshwater ecosystems by anthropogenic REE have recently been reported, it becomes increasingly urgent to understand how these metals are transferred to freshwater organisms in order to develop appropriate guidelines. We exposed rainbow trout (Oncorhynchus mykiss) to an REE, yttrium (Y), to either a range of Y-contaminated prey (Daphnia magna) or a range of Y-contaminated water. For the feeding experiment, the relationship between the Y assimilation by O. mykiss and the Y subcellular fractionation in D. magna was evaluated. Assimilation efficiency of Y by O. mykiss was low, ranging from 0.8 to 3%. These values were close to the proportion of Y accumulated in D. magna cytosol, 0.6-2%, a theoretical trophically available fraction. Moreover, under our laboratory conditions, water appeared as a poor source of Y transfer to O. mykiss. Regardless of the source of contamination, a similar pattern of Y bioaccumulation among O. mykiss tissues was revealed: muscles < liver < gills < intestine. We conclude that the trophic transfer potential of Y is low and the evaluation of Y burden in prey cytosol appears to be a relevant predictor of Y assimilation by their consumers.
Collapse
Affiliation(s)
- Pierre-Yves Cardon
- GRIL, Université de Montréal (UdeM), Département de Sciences Biologiques, Complexe des Sciences, C.P. 6128, Succ. Centre-Ville, Montréal, Québec, H3C 3J7, Canada.
| | - Olivier Roques
- Université de La Rochelle, Faculté des Sciences et Technologies, Avenue Michel Crépeau, La Rochelle, 17042, France.
| | - Antoine Caron
- GRIL, Université de Montréal (UdeM), Département de Sciences Biologiques, Complexe des Sciences, C.P. 6128, Succ. Centre-Ville, Montréal, Québec, H3C 3J7, Canada.
| | - Maikel Rosabal
- GRIL, Université du Québec à Montréal (UQAM), Département des Sciences Biologiques, 141 avenue du Président-Kennedy, Montréal, Québec, H2X 1Y4, Canada.
| | - Claude Fortin
- Institut National de la Recherche Scientifique, Centre Eau Terre Environnement (INRS-ETE), 490 rue de la Couronne, Québec, Québec, G1K 9A9, Canada.
| | - Marc Amyot
- GRIL, Université de Montréal (UdeM), Département de Sciences Biologiques, Complexe des Sciences, C.P. 6128, Succ. Centre-Ville, Montréal, Québec, H3C 3J7, Canada.
| |
Collapse
|
41
|
Ma Q, Kuang J, Liu X, Li A, Feng W, Zhuang Z. Effects of osmotic stress on Na +/K +-ATPase, caspase 3/7 activity, and the expression profiling of sirt1, hsf1, and hsp70 in the roughskin sculpin (Trachidermus fasciatus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:135-144. [PMID: 31624991 DOI: 10.1007/s10695-019-00703-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 09/04/2019] [Indexed: 06/10/2023]
Abstract
Osmoregulation mechanism underlying acclimation of migratory fish to different salinities has been a classical research topic for decades. In this study, the roughskin sculpin (Trachidermus fasciatus) were subjected to two different acute osmotic treatments (one extreme acute and one acute treatment, i.e., E-acute and acute group). Comparisons of branchial enzyme activity, as well as the time-course expression profiling of sirt1, hsf1, and hsp70 were performed to reveal changes at the physiological and molecular levels. As a result, the branchial Na+/K+-ATPase activity was significantly inhibited and the caspase 3/7 relating to apoptosis was significantly induced in the E-acute group; no significant difference of branchial enzyme activity was detected in the acute group. These results suggested that T. fasciatus could keep stable physiological levels when experiencing the acute salinity change but not under extreme osmotic stress. Significant variations of sirt1, hsf1, and hsp70 expression were determined in the four target tissues (gill, intestine, kidney, and liver). Similar profiling was detected between the time-course expression of sirt1 and hsf1, suggesting their association in the osmoregulation process. Tissue-specific gene expression patterns in all the three target genes showed that each tissue possesses its own gene expression pattern in response to salinity changes. The overall different expression profiling of sirt1, hsf1, and hsp70 under the extreme acute and acute osmotic treatments might respectively represent the molecular regulation of stress response and acclimation. The findings make it possible to provide more reliable data to decipher the mechanism of osmoregulation in migratory fish.
Collapse
Affiliation(s)
- Qian Ma
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - JieHua Kuang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Xinfu Liu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Ang Li
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Wenrong Feng
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Zhimeng Zhuang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China.
| |
Collapse
|
42
|
In vitro characterisation of calcium influx across skin and gut epithelia of the Pacific hagfish, Eptatretus stoutii. J Comp Physiol B 2020; 190:149-160. [DOI: 10.1007/s00360-020-01262-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 11/30/2019] [Accepted: 01/09/2020] [Indexed: 01/20/2023]
|
43
|
Vargas-Chacoff L, Arjona FJ, Ruiz-Jarabo I, García-Lopez A, Flik G, Mancera JM. Water temperature affects osmoregulatory responses in gilthead sea bream (Sparus aurata L.). J Therm Biol 2020; 88:102526. [PMID: 32126001 DOI: 10.1016/j.jtherbio.2020.102526] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 01/16/2020] [Accepted: 01/19/2020] [Indexed: 11/26/2022]
Abstract
Sea bream (Sparus aurata Linneaus) was acclimated to three salinity concentrations, viz. 5 (LSW), 38 (SW) and 55psμ (HSW) and three water temperatures regimes (12, 19 and 26 °C) for five weeks. Osmoregulatory capacity parameters (plasma osmolality, sodium, chloride, cortisol, and branchial and renal Na+,K+-ATPase activities) were also assessed. Salinity and temperature affected all of the parameters tested. Our results indicate that environmental temperature modulates capacity in sea bream, independent of environmental salinity, and set points of plasma osmolality and ion concentrations depend on both ambient salinity and temperature. Acclimation to extreme salinity resulted in stress, indicated by elevated basal plasma cortisol levels. Response to salinity was affected by ambient temperature. A comparison between branchial and renal Na+,K+-ATPase activities appears instrumental in explaining salinity and temperature responses. Sea bream regulate branchial enzyme copy numbers (Vmax) in hyperosmotic media (SW and HSW) to deal with ambient temperature effects on activity; combinations of high temperatures and salinity may exceed the adaptive capacity of sea bream. Salinity compromises the branchial enzyme capacity (compared to basal activity at a set salinity) when temperature is elevated and the scope for temperature adaptation becomes smaller at increasing salinity. Renal Na+,K+-ATPase capacity appears fixed and activity appears to be determined by temperature.
Collapse
Affiliation(s)
- Luis Vargas-Chacoff
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Centro Fondap de Investigación de Altas Latitudes (Fondap IDEAL), Universidad Austral de Chile, Valdivia, Chile.
| | - Francisco J Arjona
- Departamento de Biología, Facultad de Ciencias Del Mar y Ambientales, Universidad de Cádiz, 11510, Puerto Real, Cádiz, Spain; Department of Animal Ecology and Physiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, the Netherlands
| | - Ignacio Ruiz-Jarabo
- Departamento de Biología, Facultad de Ciencias Del Mar y Ambientales, Universidad de Cádiz, 11510, Puerto Real, Cádiz, Spain
| | - Angel García-Lopez
- Instituto de Ciencias Marinas de Andalucía, Consejo Superior de Investigaciones Científicas, 11510, Puerto Real, Cádiz, Spain
| | - Gert Flik
- Department of Animal Ecology and Physiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, the Netherlands
| | - Juan M Mancera
- Departamento de Biología, Facultad de Ciencias Del Mar y Ambientales, Universidad de Cádiz, 11510, Puerto Real, Cádiz, Spain
| |
Collapse
|
44
|
Carter MJ, Flores M, Ramos-Jiliberto R. Geographical origin determines responses to salinity of Mediterranean caddisflies. PLoS One 2020; 15:e0220275. [PMID: 31929552 PMCID: PMC6957138 DOI: 10.1371/journal.pone.0220275] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 12/11/2019] [Indexed: 11/19/2022] Open
Abstract
Many freshwater ecosystems worldwide, and particularly Mediterranean ones, show increasing levels of salinity. These changes in water conditions could affect abundance and distribution of inhabiting species as well as the provision of ecosystem services. In this study we conduct laboratory experiments using the macroinvertebrate Smicridea annulicornis as a model organism. Our factorial experiments were designed to evaluate the effects of geographical origin of organisms and salinity levels on survival and behavioral responses of caddisflies. The experimental organisms were captured from rivers belonging to three hydrological basins along a 450 Km latitudinal gradient in the Mediterranean region of Chile. Animals were exposed to three conductivity levels, from 180 to 1400 μS/cm, close to the historical averages of the source rivers. We measured the behavioral responses to experimental stimuli and the survival time. Our results showed that geographical origin shaped the behavioral and survival responses to salinity. In particular, survival and activity decreased more strongly with increasing salinity in organisms coming from more dilute waters. This suggests local adaptation to be determinant for salinity responses in this benthic invertebrate species. In the current scenario of fast temporal and spatial changes in water levels and salt concentration, the conservation of geographic intra-specific variation of aquatic species is crucial for lowering the risk of salinity-driven biodiversity loss.
Collapse
Affiliation(s)
- Mauricio J. Carter
- Universidad Andrés Bello, Facultad de Ciencias de la Vida, Santiago, Chile
| | - Matías Flores
- Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Rodrigo Ramos-Jiliberto
- GEMA Center for Genomics, Ecology & Environment, Faculty of Interdisciplinary Studies, Universidad Mayor, Santiago, Chile
- * E-mail:
| |
Collapse
|
45
|
Havird JC, Meyer E, Fujita Y, Vaught RC, Henry RP, Santos SR. Disparate responses to salinity across species and organizational levels in anchialine shrimps. ACTA ACUST UNITED AC 2019; 222:jeb.211920. [PMID: 31727759 DOI: 10.1242/jeb.211920] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/05/2019] [Indexed: 01/22/2023]
Abstract
Environmentally induced plasticity in gene expression is one of the underlying mechanisms of adaptation to habitats with variable environments. For example, euryhaline crustaceans show predictable changes in the expression of ion-transporter genes during salinity transfers, although studies have typically been limited to specific genes, taxa and ecosystems of interest. Here, we investigated responses to salinity change at multiple organizational levels in five species of shrimp representing at least three independent invasions of the anchialine ecosystem, defined as habitats with marine and freshwater influences with spatial and temporal fluctuations in salinity. Although all five species were generally strong osmoregulators, salinity-induced changes in gill physiology and gene expression were highly species specific. While some species exhibited patterns similar to those of previously studied euryhaline crustaceans, instances of distinct and atypical patterns were recovered from closely related species. Species-specific patterns were found when examining: (1) numbers and identities of differentially expressed genes, (2) salinity-induced expression of genes predicted a priori to play a role in osmoregulation, and (3) salinity-induced expression of orthologs shared among all species. Notably, ion transport genes were unchanged in the atyid Halocaridina rubra while genes normally associated with vision and light perception were among those most highly upregulated. Potential reasons for species-specific patterns are discussed, including variation among anchialine habitats in salinity regimes and divergent evolution in anchialine taxa. Underexplored mechanisms of osmoregulation in crustaceans revealed here by the application of transcriptomic approaches to ecologically and taxonomically understudied systems are also explored.
Collapse
Affiliation(s)
- Justin C Havird
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA .,Department of Biological Sciences and Molette Laboratory for Climate Change and Environmental Studies, Auburn University, 101 Rouse Life Sciences Building, Auburn, AL 36849, USA
| | - Eli Meyer
- Department of Integrative Biology, Oregon State University, 3106 Cordley Hall, Corvallis, OR 97331, USA
| | - Yoshihisa Fujita
- Okinawa Prefectural University of Arts, 1-4, Shuri-Tonokura, Naha-shi, Okinawa 903-8602, Japan
| | - Rebecca C Vaught
- Department of Biological Sciences and Molette Laboratory for Climate Change and Environmental Studies, Auburn University, 101 Rouse Life Sciences Building, Auburn, AL 36849, USA.,School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Raymond P Henry
- Department of Biological Sciences and Molette Laboratory for Climate Change and Environmental Studies, Auburn University, 101 Rouse Life Sciences Building, Auburn, AL 36849, USA
| | - Scott R Santos
- Department of Biological Sciences and Molette Laboratory for Climate Change and Environmental Studies, Auburn University, 101 Rouse Life Sciences Building, Auburn, AL 36849, USA
| |
Collapse
|
46
|
Fjelldal PG, Hansen TJ, Karlsen Ø, Wright DW. Effects of laboratory salmon louse infection on Arctic char osmoregulation, growth and survival. CONSERVATION PHYSIOLOGY 2019; 7:coz072. [PMID: 31723431 PMCID: PMC6839430 DOI: 10.1093/conphys/coz072] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/13/2019] [Accepted: 08/19/2019] [Indexed: 06/02/2023]
Abstract
High salmon lice (Lepeophtheirus salmonis) infestation levels resulting from intensive salmonid sea-cage aquaculture can threaten populations of wild salmonid hosts. This includes anadromous Arctic char (Salvelinus alpinus), which rely on short migrations into more productive seawater environments to build energy stores for maturation, spawning and over-wintering in freshwater. Elevated salmon lice burdens may limit the benefits of migration by constraining osmoregulation, growth, survival and reproduction. To test for these effects, we simulated anadromous migration in tanks by transferring individually tagged Arctic char smolts (n = 352, averaging 133 g) to seawater where they were infected with salmon lice or left as uninfected controls for 1 month, and then transferring them back to freshwater for 2 months. After the seawater phase, infected post-smolts had a mean of 0.33 (range of 0.09-0.91) mobile lice g-1 fish weight. At this point, specific growth rates (SGRs) dropped in infected compared to control fish (0.1% vs. 1.6% day-1). Higher plasma Na+ and osmolality in infected fish also indicate osmoregulatory impairment. Throughout the study, mortality was 18.2% and 1.7% in infected and control groups, but sexual maturation was low and comparable between groups. Infection intensity correlated positively with mortality rate and plasma Cl-, and correlated negatively with SGR and condition factor (CF). CF dropped (ΔCF < 0) at intensities of >0.09 lice g-1 fish weight, and intensities of >0.3 causing zero or negative SGRs and increased mortality were particularly concerning. If infection intensities reach these levels in the wild, char could be impacted by growth restrictions and increased mortality rates, which potentially cause shorter migration durations, lowered reproductive success and possibly also selection against anadromy. This study provides vital information for conservation practitioners wanting to understand the physiologically derived burden salmon lice can have on Arctic char populations, and can be used to define thresholds in the monitoring and conservation of Arctic char populations affected by aquaculture-driven salmon lice infestations.
Collapse
Affiliation(s)
- P G Fjelldal
- Institute of Marine Research (IMR), Matre Aquaculture Research Station, 5984 Matredal, Norway
| | - T J Hansen
- Institute of Marine Research (IMR), Matre Aquaculture Research Station, 5984 Matredal, Norway
| | - Ø Karlsen
- Institute of Marine Research (IMR), PO Box 1870, Nordnes, 5817 Bergen, Norway
| | - D W Wright
- Department of Primary Industries, Narrandera Fisheries Centre, PO Box 182, Narrandera, New South Wales, Australia
| |
Collapse
|
47
|
Hu YC, Chu KF, Hwang LY, Lee TH. Cortisol regulation of Na +, K +-ATPase β1 subunit transcription via the pre-receptor 11β-hydroxysteroid dehydrogenase 1-like (11β-Hsd1L) in gills of hypothermal freshwater milkfish, Chanos chanos. J Steroid Biochem Mol Biol 2019; 192:105381. [PMID: 31128249 DOI: 10.1016/j.jsbmb.2019.105381] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 05/15/2019] [Accepted: 05/21/2019] [Indexed: 12/31/2022]
Abstract
Hypothermal stress changes the balance of osmoregulation by affecting Na+, K+-ATPase (Na-K-ATPase) activity or inducing modulation to epithelium permeability in fish. Meanwhile, cellular concentrations of cortisol can be modulated by the pre-receptor enzymes 11β-hydroxysteroid dehydrogenase 1 and 2 (11β-Hsd1 and 2). In fish, increasing levels of exogenous cortisol stimulate Na+ uptake via specific interaction with cortisol. This study investigated cortisol effects on expression of Na-K-ATPase subunit proteins and activity in gills of milkfish under hypothermal stress and revealed that the plasma cortisol contents as well as gill 11β-hsd1l and na-k-atpase β1 mRNA abundance were decreased in fresh water (FW) milkfish. Meanwhile, in the seawater (SW) milkfish, the plasma cortisol contents and gill 11β-hsd1l and na-k-atpase β1 mRNA abundance was increased under hypothermal stress. On the other hand, the abundance of 11β-hsd2 mRNA increased in both FW and SW. In addition, 11β-hsd1l expression increased in FW milkfish but decreased in SW milkfish after cortisol injection. Accordingly, the results that gill Na-K-ATPase activity of FW milkfish was affected by environmental temperatures as well as cortisol-dependent Na-K-ATPase β1-subunit levels might be due to increased expression of 11β-hsd1l that elevated intracellular cortisol contents. In hypothermal SW milkfish, decreasing abundance of Na-K-ATPase β1 protein due to reduced expression of 11β-hsd1l was found after cortisol injection. Thus, under hypothermal stress, 11β-HSD1L in FW milkfish gills was used to modulate cortisol and the following effects on increasing the transcription of Na-K-ATPase β1 protein.
Collapse
Affiliation(s)
- Yau-Chung Hu
- Department of Life Sciences, National Chung Hsing University, Taichung, 402, Taiwan; The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan
| | - Keng-Fu Chu
- Department of Life Sciences, National Chung Hsing University, Taichung, 402, Taiwan
| | - Lie-Yueh Hwang
- Taishi Station, Mariculture Research Center, Fisheries Research Institute, Council of Agriculture, Yulin, 636, Taiwan
| | - Tsung-Han Lee
- Department of Life Sciences, National Chung Hsing University, Taichung, 402, Taiwan; The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan.
| |
Collapse
|
48
|
Use of gene knockout to examine serotonergic control of ion uptake in zebrafish reveals the importance of controlling for genetic background: A cautionary tale. Comp Biochem Physiol A Mol Integr Physiol 2019; 238:110558. [PMID: 31446068 DOI: 10.1016/j.cbpa.2019.110558] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/25/2019] [Accepted: 08/20/2019] [Indexed: 12/13/2022]
Abstract
Freshwater (FW) fishes inhabit dilute environments and must actively absorb ions in order to counteract diffusive salt loss. Neuroendocrine control of ion uptake in FW fishes is an important feature of ion homeostasis and several important neuroendocrine factors have been identified. The role of serotonin (5-HT), however, has received less attention despite several studies pointing to a role for 5-HT in the control of ion balance. Here, we used a gene knockout approach to elucidate the role of 5-HT in regulating Na+ and Ca2+ uptake rates in larval zebrafish. Tryptophan hydroxylase (TPH) is the rate-limiting step in 5-HT synthesis and we therefore hypothesized that ion uptake rates would be altered in zebrafish larvae carrying knockout mutations in tph genes. We first examined the effect of tph1b knockout (KO) and found that tph1bKO larvae, obtained from Harvard University, had reduced rates of Na+ and Ca2+ uptake compared to wild-type (WT) larvae from our institution (uOttawa WT), lending support to our hypothesis. However, further experiments controlling for differences in genetic background demonstrated that WT larvae from Harvard University (Harvard WT) had lower ion uptake rates than those of uOttawa WT, and that ion uptake rate between Harvard WT and tph1bKO larvae were not significantly different. Therefore, our initial observation that tph1bKO larvae (Harvard source) had reduced ion uptake rates relative to uOttawa WT was a function of genetic background and not of knockout itself. These data provide a cautionary tale of the importance of controlling for genetic background in gene knockout experiments.
Collapse
|
49
|
Shrivastava J, Ndugwa M, Caneos W, De Boeck G. Physiological trade-offs, acid-base balance and ion-osmoregulatory plasticity in European sea bass (Dicentrarchus labrax) juveniles under complex scenarios of salinity variation, ocean acidification and high ammonia challenge. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 212:54-69. [PMID: 31075620 DOI: 10.1016/j.aquatox.2019.04.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 04/30/2019] [Accepted: 04/30/2019] [Indexed: 06/09/2023]
Abstract
In this era of global climate change, ocean acidification is becoming a serious threat to the marine ecosystem. Despite this, it remains almost unknown how fish will respond to the co-occurrence of ocean acidification with other conventional environmental perturbations typically salinity fluctuation and high ammonia threat. Therefore, the present work evaluated the interactive effects of elevated pCO2, salinity reduction and high environmental ammonia (HEA) on the ecophysiological performance of European sea bass (Dicentrarchus labrax). Fish were progressively acclimated to seawater (32 ppt), to brackish water (10 ppt) and to hyposaline water (2.5 ppt). Following acclimation to different salinities for at least two weeks, fish were exposed to CO2-induced water acidification representing present-day (control pCO2, 400 μatm, LoCO2) and future (high pCO2, 1000 μatm, HiCO2) sea-surface CO2 level for 3, 7 and 21 days. At the end of each exposure period, fish were challenged with HEA for 6 h (1.18 mM representing 50% of 96 h LC50). Results show that, in response to the individual HiCO2 exposure, fish within each salinity compensated for blood acidosis. Fish subjected to HiCO2 were able to maintain ammonia excretion rate (Jamm) within control levels, suggesting that HiCO2 exposure alone had no impact on Jamm at any of the salinities. For 32 and 10 ppt fish, up-regulated expression of Na+/K+-ATPase was evident in all exposure groups (HEA, HiCO2 and HEA/HiCO2 co-exposed), whereas Na+/K+/2Cl- co-transporter was up-regulated mainly in HiCO2 group. Plasma glucose and lactate content were augmented in all exposure conditions for all salinity regimes. During HEA and HEA/HiCO2, Jamm was inhibited at different time points for all salinities, which resulted in a significant build-up of ammonia in plasma and muscle. Branchial expressions of Rhesus glycoproteins (Rhcg isoforms and Rhbg) were upregulated in response to HiCO2 as well as HEA at 10 ppt, with a more moderate response in 32 ppt groups. Overall, our findings denote that the adverse effect of single exposures of ocean acidification or HEA is exacerbated when present together, and suggests that fish are more vulnerable to these environmental threats at low salinities.
Collapse
Affiliation(s)
- Jyotsna Shrivastava
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, BE-2020 Antwerp, Belgium.
| | - Moses Ndugwa
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, BE-2020 Antwerp, Belgium
| | - Warren Caneos
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, BE-2020 Antwerp, Belgium
| | - Gudrun De Boeck
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, BE-2020 Antwerp, Belgium
| |
Collapse
|
50
|
Skrzynska AK, Martínez-Rodríguez G, Gozdowska M, Kulczykowska E, Mancera JM, Martos-Sitcha JA. Aroclor 1254 inhibits vasotocinergic pathways related to osmoregulatory and stress functions in the gilthead sea bream (Sparus aurata, Linnaeus 1758). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 212:98-109. [PMID: 31082703 DOI: 10.1016/j.aquatox.2019.04.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 03/01/2019] [Accepted: 04/28/2019] [Indexed: 06/09/2023]
Abstract
The present study assesses the response of vasotocinergic system in the gilthead sea bream (Sparus aurata) after administering two doses of the polychlorinated biphenyl Aroclor 1254 (15 or 50 μg g-1 fresh body mass). Seven days post-administration, eight fish of each experimental group were sampled, and the remaining animals were challenged with a hyperosmotic stress by being transferred from seawater (36 ppt) to high salinity water (55 ppt) and being sampled 3 days post-transfer. Aroclor 1254 affected gene expression of avt, together with Avt concentrations in pituitary and plasma, inhibiting the stimulation observed in vasotocinergic system after hyperosmotic challenge. This was noted by the accumulation of Avt at hypophyseal level as well as by its undetectable values in plasma. Hyperosmotic transfer significantly changed branchial avtrv1a, avtrv2, atp1a and cftr mRNA expression levels in control fish, while in Aroclor 1254-treated fish they remained mostly unchanged. This desensitization also occurred for avtrs in hypothalamus, caudal kidney and liver. In addition, an enhancement in plasma cortisol concentration, together with the orchestration of several players of the Hypothalamic-Pituitary-Interrenal axis (crh, crhbp, trh, star), was also observed mostly at the highest dose used (50 μg g-1 body mass), affecting plasma and hepatic metabolites. Our results demonstrated that Aroclor 1254 compromises the hypoosmoregulatory function of vasotocinergic system in S. aurata, also inducing a concomitant stress response. In summary, this study demonstrates that Aroclor 1254 can be considered an important endocrine disruptor in relation with the correct arrangement of vasotocinergic, metabolic and stress pathways after their stimulation by transfer to hyperosmotic environments.
Collapse
Affiliation(s)
- Arleta Krystyna Skrzynska
- Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI-MAR), University of Cádiz, E-11519, Puerto Real, Cádiz, Spain
| | - Gonzalo Martínez-Rodríguez
- Institute of Marine Sciences of Andalusia, Spanish National Research Council (ICMAN-CSIC), E-11519, Puerto Real, Cádiz, Spain
| | - Magdalena Gozdowska
- Department of Genetics and Marine Biotechnology, Institute of Oceanology of Polish Academy of Sciences, 81-712, Sopot, Poland
| | - Ewa Kulczykowska
- Department of Genetics and Marine Biotechnology, Institute of Oceanology of Polish Academy of Sciences, 81-712, Sopot, Poland
| | - Juan Miguel Mancera
- Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI-MAR), University of Cádiz, E-11519, Puerto Real, Cádiz, Spain
| | - Juan Antonio Martos-Sitcha
- Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI-MAR), University of Cádiz, E-11519, Puerto Real, Cádiz, Spain.
| |
Collapse
|