1
|
Cin D, Soguksu P, Oren MM, Ozgulnar N, Agacfidan A, Mese S. The Anti-SARS-CoV-2 S-Protein IgG, Which Is Detected Using the Chemiluminescence Microparticle Immunoassay (CMIA) in Individuals Having Either a History of COVID-19 Vaccination and/or SARS-CoV-2 Infection, Showed a High-Titer Neutralizing Effect. Viruses 2024; 16:1409. [PMID: 39339885 PMCID: PMC11437471 DOI: 10.3390/v16091409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/07/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Neutralizing antibodies plays a primary role in protective immunity by preventing severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) from entering the cells. Therefore, characterization of antiviral immunity is important for protection against SARS-CoV-2. In this study, the neutralizing effect of the anti-SARS-CoV-2 S1 protein IgG, which was detected using the chemiluminescence microparticle immunoassay (CMIA)-based SARS-CoV-2 IgG II Quant (Abbott, Waukegan, IL, USA) test in SARS-CoV-2 infected and/or vaccinated individuals, was investigated with a surrogate virus neutralization test (sVNT). In total, 120 Seropositive individuals were included in this study. They were divided into two groups: Vaccinated (n = 60) and Vaccinated + Previously Infected (n = 60). A commercial sVNT, the ACE2-RBD Neutralization Test (Dia.Pro, Milan, Italy), was used to assess the neutralizing effect. The assay is performed in two steps: screening and titration. The screening showed positive results in all seropositive samples. Low titration in 1.7%, medium titration in 5%, and high titration in 93.3% of the Vaccinated group, and medium titration in 1.7% and high titration in 98.3% of the other group, as obtained from the ACE2-RBD titration test. A strong positive and significant correlation was found between the SARS-CoV-2 IgG II Quant test and the ACE2-RBD titration test at the 1/32 titration level for both groups (p < 0.001 for both). This study shows that the SARS-CoV-2 IgG detected using the CMIA method after SARS-CoV-2 infection and/or vaccination has a high neutralizing titration by using the sVNT. In line with these data, knowledge that seropositivity determined by CMIA also indicates a strong neutralizing effect contributes to countrywide planning for protecting the population.
Collapse
Affiliation(s)
- Dilan Cin
- Department of Medical Microbiology, Istanbul Medicine Faculty, Istanbul University, 34093 Istanbul, Turkey
- Institute of Health Sciences, Istanbul University, 34126 Istanbul, Turkey
| | - Pinar Soguksu
- Department of Medical Microbiology, Istanbul Medicine Faculty, Istanbul University, 34093 Istanbul, Turkey
| | - Meryem Merve Oren
- Department of Public Health, Istanbul Medicine Faculty, Istanbul University, 34093 Istanbul, Turkey
| | - Nuray Ozgulnar
- Department of Public Health, Istanbul Medicine Faculty, Istanbul University, 34093 Istanbul, Turkey
| | - Ali Agacfidan
- Department of Medical Microbiology, Istanbul Medicine Faculty, Istanbul University, 34093 Istanbul, Turkey
| | - Sevim Mese
- Department of Medical Microbiology, Istanbul Medicine Faculty, Istanbul University, 34093 Istanbul, Turkey
| |
Collapse
|
2
|
Calvo-Alvarez E, D'Alessandro S, Zanotta N, Basilico N, Parapini S, Signorini L, Perego F, Maina KK, Ferrante P, Modenese A, Pizzocri P, Ronsivalle A, Delbue S, Comar M. Multiplex array analysis of circulating cytokines and chemokines in COVID-19 patients during the first wave of the SARS-CoV-2 pandemic in Milan, Italy. BMC Immunol 2024; 25:49. [PMID: 39061002 PMCID: PMC11282750 DOI: 10.1186/s12865-024-00641-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND The systemic inflammatory syndrome called "cytokine storm" has been described in COVID-19 pathogenesis, contributing to disease severity. The analysis of cytokine and chemokine levels in the blood of 21 SARS-CoV-2 positive patients throughout the phases of the pandemic has been studied to understand immune response dysregulation and identify potential disease biomarkers for new treatments. The present work reports the cytokine and chemokine levels in sera from a small cohort of individuals primarily infected with SARS-CoV-2 during the first wave of the COVID-19 pandemic in Milan (Italy). RESULTS Among the 27 cytokines and chemokines investigated, a significant higher expression of Interleukin-9 (IL-9), IP-10 (CXCL10), MCP-1 (CCL2) and RANTES (CCL-5) in infected patients compared to uninfected subjects was observed. When the change in cytokine/chemokine levels was monitored over time, from the hospitalization day to discharge, only IL-6 and IP-10 showed a significant decrease. Consistent with these findings, a significant negative correlation was observed between IP-10 and anti-Spike IgG antibodies in infected individuals. In contrast, IL-17 was positively correlated with the production of IgG against SARS-CoV-2. CONCLUSIONS The cytokine storm and the modulation of cytokine levels by SARS-CoV-2 infection are hallmarks of COVID-19. The current global immunity profile largely stems from widespread vaccination campaigns and previous infection exposures. Consequently, the immunological features and dynamic cytokine profiles of non-vaccinated and primarily-infected subjects reported here provide novel insights into the inflammatory immune landscape in the context of SARS-CoV-2 infection, and offer valuable knowledge for addressing future viral infections and the development of novel treatments.
Collapse
Affiliation(s)
- Estefanía Calvo-Alvarez
- Department of Pharmacological and Biomedical Sciences, Università degli Studi di Milano, Via Carlo Pascal, 36, Milano, 20133, Italy
| | - Sarah D'Alessandro
- Department of Pharmacological and Biomedical Sciences, Università degli Studi di Milano, Via Carlo Pascal, 36, Milano, 20133, Italy.
| | - Nunzia Zanotta
- Department of Advanced Translational Microbiology, Institute for Maternal and Child Health-IRCCS Burlo Garofolo, Via dell'Istria, 65, Trieste, 34137, Italy
| | - Nicoletta Basilico
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Via Carlo Pascal, 36, Milano, 20133, Italy
| | - Silvia Parapini
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Carlo Pascal, 36, Milano, 20133, Italy
| | - Lucia Signorini
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Via Carlo Pascal, 36, Milano, 20133, Italy
| | - Federica Perego
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Via Carlo Pascal, 36, Milano, 20133, Italy
| | - Kevin Kamau Maina
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Via Carlo Pascal, 36, Milano, 20133, Italy
| | - Pasquale Ferrante
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Via Carlo Pascal, 36, Milano, 20133, Italy
| | | | | | | | - Serena Delbue
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Via Carlo Pascal, 36, Milano, 20133, Italy
| | - Manola Comar
- Department of Advanced Translational Microbiology, Institute for Maternal and Child Health-IRCCS Burlo Garofolo, Via dell'Istria, 65, Trieste, 34137, Italy
| |
Collapse
|
3
|
Li Y, Lu SM, Wang JL, Yao HP, Liang LG. Progress in SARS-CoV-2, diagnostic and clinical treatment of COVID-19. Heliyon 2024; 10:e33179. [PMID: 39021908 PMCID: PMC11253070 DOI: 10.1016/j.heliyon.2024.e33179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/13/2024] [Accepted: 06/15/2024] [Indexed: 07/20/2024] Open
Abstract
Background Corona Virus Disease 2019(COVID-19)is a global pandemic novel coronavirus infection disease caused by Severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2). Although rapid, large-scale testing plays an important role in patient management and slowing the spread of the disease. However, there has been no good and widely used drug treatment for infection and transmission of SARS-CoV-2. Key findings Therefore, this review updates the body of knowledge on viral structure, infection routes, detection methods, and clinical treatment, with the aim of responding to the large-section caused by SARS-CoV-2. This paper focuses on the structure of SARS-CoV-2 viral protease, RNA polymerase, serine protease and main proteinase-like protease as well as targeted antiviral drugs. Conclusion In vitro or clinical trials have been carried out to provide deeper thinking for the pathogenesis, clinical diagnosis, vaccine development and treatment of SARS-CoV-2.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Si-Ming Lu
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Key Laboratory of Clinical in Vitro Diagnostic Techniques, Hangzhou, China
- Institute of Laboratory Medicine, Zhejiang University, Hangzhou, China
| | - Jia-Long Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hang-Ping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Li-Guo Liang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Centre for Clinical Laboratory, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
4
|
Mallory M, Munt JE, Narowski TM, Castillo I, Cuadra E, Pisanic N, Fields P, Powers JM, Dickson A, Harris R, Wargowsky R, Moran S, Allabban A, Raphel K, McCaffrey TA, Brien JD, Heaney CD, Lafleur JE, Baric RS, Premkumar L. COVID-19 point-of-care tests can identify low-antibody individuals: In-depth immunoanalysis of boosting benefits in a healthy cohort. SCIENCE ADVANCES 2024; 10:eadi1379. [PMID: 38865463 PMCID: PMC11168476 DOI: 10.1126/sciadv.adi1379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/08/2024] [Indexed: 06/14/2024]
Abstract
The recommended COVID-19 booster vaccine uptake is low. At-home lateral flow assay (LFA) antigen tests are widely accepted for detecting infection during the pandemic. Here, we present the feasibility and potential benefits of using LFA-based antibody tests as a means for individuals to detect inadequate immunity and make informed decisions about COVID-19 booster immunization. In a health care provider cohort, we investigated the changes in the breadth and depth of humoral and T cell immune responses following mRNA vaccination and boosting in LFA-positive and LFA-negative antibody groups. We show that negative LFA antibody tests closely reflect the lack of functional humoral immunity observed in a battery of sophisticated immune assays, while positive results do not necessarily reflect adequate immunity. After booster vaccination, both groups gain depth and breadth of systemic antibodies against evolving SARS-CoV-2 and related viruses. Our findings show that LFA-based antibody tests can alert individuals about inadequate immunity against COVID-19, thereby increasing booster shots and promoting herd immunity.
Collapse
Affiliation(s)
- Michael Mallory
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
- Department of Epidemiology, UNC Chapel Hill School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jennifer E. Munt
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
- Department of Epidemiology, UNC Chapel Hill School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tara M. Narowski
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Izabella Castillo
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Edwing Cuadra
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Nora Pisanic
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | | - John M. Powers
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
- Department of Epidemiology, UNC Chapel Hill School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alexandria Dickson
- Department of Molecular Microbiology and Immunology, Saint Louis University, Saint Louis, MO, USA
| | - Rohan Harris
- Department Emergency Medicine, George Washington University School of Medicine, Washington, DC, USA
| | - Richard Wargowsky
- Department of Medicine, Division of Genomic Medicine, The George Washington University Medical Center, Washington, DC, USA
| | - Seamus Moran
- Department Emergency Medicine, George Washington University School of Medicine, Washington, DC, USA
| | - Ahmed Allabban
- Department Emergency Medicine, George Washington University School of Medicine, Washington, DC, USA
| | - Kristin Raphel
- Department Emergency Medicine, George Washington University School of Medicine, Washington, DC, USA
| | - Timothy A. McCaffrey
- Department of Medicine, Division of Genomic Medicine, The George Washington University Medical Center, Washington, DC, USA
| | - James D. Brien
- Department of Molecular Microbiology and Immunology, Saint Louis University, Saint Louis, MO, USA
| | - Christopher D. Heaney
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - John E. Lafleur
- Department Emergency Medicine, George Washington University School of Medicine, Washington, DC, USA
| | - Ralph S. Baric
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
- Department of Epidemiology, UNC Chapel Hill School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lakshmanane Premkumar
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| |
Collapse
|
5
|
Liang N, Mohamed H, Pung RF, Waite-Cusic J, Dallas DC. Optimized Ultraviolet-C Processing Inactivates Pathogenic and Spoilage-Associated Bacteria while Preserving Bioactive Proteins, Vitamins, and Lipids in Human Milk. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12198-12208. [PMID: 38752986 DOI: 10.1021/acs.jafc.4c02120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Holder pasteurization (HoP) enhances donor human milk microbiological safety but damages many bioactive milk proteins. Though ultraviolet-C irradiation (UV-C) can enhance safety while better preserving some milk proteins, it has not been optimized for dose or effect on a larger array of bioactive proteins. We determined the minimal UV-C parameters that provide >5-log reductions of relevant bacteria in human milk and how these treatments affect an array of bioactive proteins, vitamin E, and lipid oxidation. Treatment at 6000 and 12 000 J/L of UV-C resulted in >5-log reductions of all vegetative bacteria and bacterial spores, respectively. Both dosages improved retention of immunoglobulin A (IgA), IgG, IgM, lactoferrin, cathepsin D, and elastase and activities of bile-salt-stimulated lipase and lysozyme compared with HoP. These UV-C doses caused minor reductions in α-tocopherol but not γ-tocopherol and no increases in lipid oxidation products. UV-C treatment is a promising approach for donor human milk processing.
Collapse
Affiliation(s)
- Ningjian Liang
- Nutrition Program, College of Health, Oregon State University, Corvallis, Oregon 97331, United States
| | - Hussein Mohamed
- Department of Food Science and Technology, Oregon State University, Corvallis, Oregon 97331, United States
| | - Rachel F Pung
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, United States
| | - Joy Waite-Cusic
- Department of Food Science and Technology, Oregon State University, Corvallis, Oregon 97331, United States
| | - David C Dallas
- Nutrition Program, College of Health, Oregon State University, Corvallis, Oregon 97331, United States
- Department of Food Science and Technology, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|
6
|
Menghini GM, Thurnheer R, Kahlert CR, Kohler P, Grässli F, Stocker R, Battegay M, Vuichard-Gysin D. Impact of shift work and other work-related factors on anti-SARS-CoV-2 spike-protein serum concentrations in healthcare workers after primary mRNA vaccination - a retrospective cohort study. Swiss Med Wkly 2024; 154:3708. [PMID: 38639178 DOI: 10.57187/s.3708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND Knowing whether shift work negatively affects the immune system's response to COVID-19 vaccinations could be valuable for planning future vaccination campaigns for healthcare workers. We aimed to determine the impact of working late or night shifts on serum anti-SARS-CoV-2 spike protein immunoglobulin G (anti-S) antibody levels after primary SARS-CoV-2-mRNA vaccination. METHODS To obtain detailed information on shift work, we sent a separate online questionnaire to 1475 eligible healthcare workers who participated in a prospective longitudinal study conducted in 15 healthcare institutions in Switzerland. We asked all vaccinated healthcare workers with available anti-S antibody levels after vaccination to complete a brief online survey on their working schedules within one week before and after primary mRNA vaccination. We used multivariate regression to evaluate the association between work shifts around primary vaccination and anti-S antibody levels. We adjusted for confounders already known to influence vaccine efficacy (e.g. age, sex, immunosuppression, and obesity) and for variables significant at the 0.05 alpha level in the univariate analyses. RESULTS The survey response rate was 43% (n = 638). Ninety-eight responders were excluded due to unknown vaccination dates, different vaccines, or administration of the second dose shortly (within 14 days) after or before serologic follow-up. Of the 540 healthcare workers included in our analysis, 175 (32.4%) had worked at least one late or night shift within seven days before and/or after primary vaccination. In the univariate analyses, working late or night shifts was associated with a nonsignificant -15.1% decrease in serum anti-S antibody levels (p = 0.090). In the multivariate analysis, prior infection (197.2% increase; p <0.001) and immunisation with the mRNA-1273 vaccine (63.7% increase compared to the BNT162b2 vaccine; p <0.001) were the strongest independent factors associated with increased anti-S antibody levels. However, the impact of shift work remained statistically nonsignificant (-13.5%, p = 0.108). CONCLUSION Working late or night shifts shortly before or after mRNA vaccination against COVID-19 does not appear to significantly impact serum anti-S antibody levels. This result merits consideration since it supports flexible vaccination appointments for healthcare workers, including those working late or night shifts.
Collapse
Affiliation(s)
- Gianluca Mauro Menghini
- Department of Internal Medicine, Cantonal Hospital Muensterlingen, Muensterlingen, Switzerland
| | - Robert Thurnheer
- Department of Internal Medicine, Cantonal Hospital Muensterlingen, Muensterlingen, Switzerlandh
| | - Christian R Kahlert
- Division of Infectious Diseases and Hospital Epidemiology, Cantonal Hospital St Gallen, St Gallen, Switzerland
- Children's Hospital of Eastern Switzerland, Department of Infectious Diseases and Hospital Epidemiology, St Gallen, Switzerland
| | - Philipp Kohler
- Division of Infectious Diseases and Hospital Epidemiology, Cantonal Hospital St Gallen, St Gallen, Switzerland
| | - Fabian Grässli
- Division of Infectious Diseases and Hospital Epidemiology, Cantonal Hospital St Gallen, St Gallen, Switzerland
| | | | - Manuel Battegay
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| | - Danielle Vuichard-Gysin
- Department of Internal Medicine, Cantonal Hospital Muensterlingen, Muensterlingen, Switzerland
- Division of Infectious Diseases and Hospital Epidemiology, Thurgau Hospital Group, Muensterlingen and Frauenfeld, Switzerland
- Swiss National Center for Infection Prevention (Swissnoso), Bern, Switzerland
| |
Collapse
|
7
|
Aguilar R, López‐Vergès S, Quintana A, Morris J, Lopez L, Cooke A, Quiel D, Buitron N, Pérez Y, Lobo L, Ballesteros M, Pitti Y, Diaz Y, Saenz L, Franco D, Castillo D, Valdespino E, Blanco I, Romero E, Villarreal A, Cubilla‐Batista I. Experiences in the use of multiple doses of convalescent plasma in critically ill patients with COVID-19: An early phase 1 descriptive study. Health Sci Rep 2024; 7:e1949. [PMID: 38463033 PMCID: PMC10920941 DOI: 10.1002/hsr2.1949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/09/2024] [Accepted: 02/16/2024] [Indexed: 03/12/2024] Open
Abstract
Background At the beginning of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, transfusion of coronavirus disease 2019 (COVID-19) convalescent plasma (CCP) emerged as a potential therapeutic strategy to help patients severely afflicted by COVID-19. The efficacy of CCP has been controversial as it depends on many variables pertaining to the plasma donor and the patient with COVID-19, for example, time of convalescence or symptoms onset. This feasibility and descriptive study aimed to assess the safety of multiple doses of CCP in mechanically ventilated, intubated patients with respiratory failure due to COVID-19. Methods A cohort of 30 patients all experiencing severe respiratory failure and undergoing invasive mechanical ventilation in an intensive care unit, received up to five doses of 300-600 mL of CCP on alternate days (0, 2, 4, 6, and 8) until extubation, futility, or death. Results Nineteen patients received five doses, seven received four, and four received two or three doses. At 28-day follow-up mark, 57% of patients recovered and were sent home, and the long-term mortality rate was 27%. Ten severe adverse events reported in the study were unrelated to CCP transfusion. Independent of the number of transfused doses, most patients had detectable levels of total and neutralizing antibodies in plasma. Conclusion This study suggests that transfusion of multiple doses of CCP is safe. This strategy may represent a viable option for future studies, given the potential benefit of CCP transfusions during the early stages of infection in unvaccinated populations and in settings where monoclonal antibodies or antivirals are contraindicated or unavailable.
Collapse
Affiliation(s)
- Ricardo Aguilar
- Complejo Hospitalario Metropolitano Arnulfo Arias MadridCaja de Seguro SocialPanamaPanama
- Hospital Punta PacíficaPacífica SaludPanamaPanama
- Sociedad Panameña de HematologíaPanamaPanama
| | - Sandra López‐Vergès
- Gorgas Memorial Institute of Health StudiesPanamaPanama
- Sistema Nacional de InvestigaciónSNI, SENACYTPanamaPanama
| | - Anarellys Quintana
- Complejo Hospitalario Metropolitano Arnulfo Arias MadridCaja de Seguro SocialPanamaPanama
- Sociedad Panameña de HematologíaPanamaPanama
- Hospital Santo TomasPanamaPanama
| | - Johanna Morris
- Complejo Hospitalario Metropolitano Arnulfo Arias MadridCaja de Seguro SocialPanamaPanama
- Sociedad Panameña de HematologíaPanamaPanama
| | - Lineth Lopez
- Complejo Hospitalario Metropolitano Arnulfo Arias MadridCaja de Seguro SocialPanamaPanama
- Sociedad Panameña de HematologíaPanamaPanama
| | - Ana Cooke
- Complejo Hospitalario Metropolitano Arnulfo Arias MadridCaja de Seguro SocialPanamaPanama
- Sociedad Panameña de HematologíaPanamaPanama
| | - Dimas Quiel
- Complejo Hospitalario Metropolitano Arnulfo Arias MadridCaja de Seguro SocialPanamaPanama
- Sociedad Panameña de HematologíaPanamaPanama
| | - Natalie Buitron
- Hospital Punta PacíficaPacífica SaludPanamaPanama
- Sociedad Panameña de HematologíaPanamaPanama
| | - Yaseikiry Pérez
- Complejo Hospitalario Metropolitano Arnulfo Arias MadridCaja de Seguro SocialPanamaPanama
| | - Lesbia Lobo
- Complejo Hospitalario Metropolitano Arnulfo Arias MadridCaja de Seguro SocialPanamaPanama
| | | | - Yaneth Pitti
- Gorgas Memorial Institute of Health StudiesPanamaPanama
| | - Yamilka Diaz
- Gorgas Memorial Institute of Health StudiesPanamaPanama
| | - Lisseth Saenz
- Gorgas Memorial Institute of Health StudiesPanamaPanama
| | - Danilo Franco
- Gorgas Memorial Institute of Health StudiesPanamaPanama
| | | | | | - Isabel Blanco
- Centro de Investigación Médica Pacífica SaludPanamaPanama
| | | | - Alcibiades Villarreal
- Sistema Nacional de InvestigaciónSNI, SENACYTPanamaPanama
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT‐AIP)City of KnowledgePanamaPanama
| | - Idalina Cubilla‐Batista
- Sistema Nacional de InvestigaciónSNI, SENACYTPanamaPanama
- Centro de Investigación Médica Pacífica SaludPanamaPanama
- Hospital Rafael EstévezCaja de Seguro SocialAguadulcePanama
| |
Collapse
|
8
|
Martos G, Bedu M, Josephs RD, Westwood S, Wielgosz RI. Quantification of SARS-CoV-2 monoclonal IgG mass fraction by isotope dilution mass spectrometry. Anal Bioanal Chem 2024:10.1007/s00216-024-05205-z. [PMID: 38427100 DOI: 10.1007/s00216-024-05205-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 03/02/2024]
Abstract
The availability of serology assays to measure antibodies against the SARS coronavirus 2 (SARS-CoV-2) expanded rapidly during the Covid-19 pandemic. The interchangeable use of such assays to monitor disease progression and immune protection requires their standardization, for which suitably characterized monoclonal antibody materials can be useful. The methods, based on isotope dilution mass spectrometry, to value assign the mass fraction of such a material in solution within the context of an international interlaboratory comparison study (CCQM-P216) are described. The mass fraction in solution of a humanized IgG monoclonal antibody (mAb) against the SARS-CoV-2 Spike glycoprotein in the study sample has been value assigned through a combination of liquid chromatography, isotope dilution mass spectrometry (LC-ID-MS) methods and size exclusion chromatography with UV detection (SEC-UV). The former were developed for the quantification of amino acids and proteotypic peptides as surrogate analytes of the mAb while the latter was applied for the determination of the relative monomeric mass fraction. High-resolution mass spectrometry (hrMS) allowed the molecular weight evaluation and ruled out the presence of significant impurities. Method trueness was assessed using a subclass homologous IgG1 material value assigned by amino acid analysis. The assigned mass fraction of monomeric SARS-CoV-2 IgG in solution was 390 ± 16 mg/g. The associated expanded uncertainty originated mainly from acid hydrolysis variability and Trypsin/Lys-C digestion variability and efficiency.
Collapse
Affiliation(s)
- G Martos
- Bureau International Des Poids Et Mesures (BIPM), Sèvres, France.
| | - M Bedu
- Bureau International Des Poids Et Mesures (BIPM), Sèvres, France
| | - R D Josephs
- Bureau International Des Poids Et Mesures (BIPM), Sèvres, France
| | - S Westwood
- Bureau International Des Poids Et Mesures (BIPM), Sèvres, France
| | - R I Wielgosz
- Bureau International Des Poids Et Mesures (BIPM), Sèvres, France
| |
Collapse
|
9
|
Garay E, Whelan SPJ, DuBois RM, O’Rourke SM, Salgado-Escobar AE, Muñoz-Medina JE, Arias CF, López S. Immune response to SARS-CoV-2 variants after immunization with different vaccines in Mexico. Epidemiol Infect 2024; 152:e30. [PMID: 38312015 PMCID: PMC10894899 DOI: 10.1017/s0950268824000219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/11/2024] [Accepted: 01/24/2024] [Indexed: 02/06/2024] Open
Abstract
There is limited information on the antibody responses against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in subjects from developing countries with populations having a high incidence of co-morbidities. Here, we analysed the immunogenicity of homologous schemes using the ChAdOx1-S, Sputnik V, or BNT162b2 vaccines and the effect of a booster dose with ChAdOx1-S in middle-aged adults who were seropositive or seronegative to the SARS-CoV-2 spike protein before vaccination. The study was conducted post-vaccination with a follow-up of 4 months for antibody titre using enzyme-linked immunosorbent assay (ELISA) and pseudovirus (PV) neutralization assays (PNAs). All three vaccines elicited a superior IgG anti-receptor-binding domain (RBD) and neutralization response against the Alpha and Delta variants when administered to individuals with a previous infection by SARS-CoV-2. The booster dose spiked the neutralization activity among individuals with and without a prior SARS-CoV-2 infection. The ChAdOx1-S vaccine induced weaker antibody responses in infection-naive subjects. A follow-up of 4 months post-vaccination showed a drop in antibody titre, with about 20% of the infection-naive and 100% of SARS-CoV-2 pre-exposed participants with detectable neutralization capacity against Alpha pseudovirus (Alpha-PV) and Delta PV (Delta-PV). Our observations support the use of different vaccines in a country with high seroprevalence at the vaccination time.
Collapse
Affiliation(s)
- Erika Garay
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Sean P. J. Whelan
- Department of Molecular Microbiology, Washington University in St. Louis, Saint Louis, United States
- Department of Microbiology, Harvard Medical School, Boston, United States
| | - Rebecca M. DuBois
- Department of Biomolecular Engineering, University of California, Santa Cruz, United States
| | - Sara M. O’Rourke
- Department of Biomolecular Engineering, University of California, Santa Cruz, United States
| | - Angel Eduardo Salgado-Escobar
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - José Esteban Muñoz-Medina
- Coordinación de Calidad de Insumos y Laboratorios Especializados, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Carlos F. Arias
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Susana López
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| |
Collapse
|
10
|
Goggins E, Sharma B, Ma JZ, Gautam J, Bowman B. Humoral immunity trends in a hemodialysis cohort following SARS-CoV-2 mRNA booster: A cohort study. Health Sci Rep 2024; 7:e1858. [PMID: 38357484 PMCID: PMC10864730 DOI: 10.1002/hsr2.1858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/24/2023] [Accepted: 01/22/2024] [Indexed: 02/16/2024] Open
Abstract
Background and Aims Patients with end stage kidney disease on hemodialysis are vulnerable to SARS-CoV-2 infection. Current guidelines recommend boosters of SARS-CoV-2 mRNA-based vaccines. The long-term humoral response of hemodialysis patients infected with SARS-CoV-2 after receiving a booster of SARS-CoV-2 mRNA-based vaccines has been incompletely characterized. Here, we determined the long-term humoral response of hemodialysis patients to two and three doses of the Pfizer BioNTech (BNT162b2) mRNA SARS-CoV-2 vaccine and investigated the effect of postbooster SARS-CoV-2 infection on antibody levels over time. Methods Samples were collected on a monthly basis and tested for anti-SARS-CoV-2 antibodies against anti-spike S1 domain. Thirty-five hemodialysis patients were enrolled in the original study and 27 of these received a booster. Patients were followed up to 6 months after the first two doses and an additional 7 months after the third BNT162b2 dose. Results are presented as the internationally harmonized binding antibody units (BAU/mL). Results Antibody level significantly increased from prebooster to 2 weeks postbooster, with a median [25th, 75th percentile] rise from 52.72 [28.55, 184.7] to 6216 [3806, 11,730] BAU/mL in the total population. Of patients with a negative or borderline detectable antibody level 6 months after vaccination who received a third dose, 89% developed positive antibody levels 2 weeks postbooster. Postbooster antibody levels declined an average rate of 29% per month in infection-naïve patients. Antibody levels spiked in patients infected with SARS-CoV-2 after receiving a booster but declined rapidly. No patients infected postbooster required hospitalization. Conclusions A third dose of BNT162b2 restores antibody levels to high levels in dialysis patients but levels decline over time. A third dose did not necessarily prevent infection, but no patients suffered severe infection or required hospitalization. SARS-CoV-2 recovered patients appear to have a blunted rise in antibody levels after a third dose. Although patients infected with SARS-CoV-2 postbooster had an immediate spike in antibody levels, these declined over time.
Collapse
Affiliation(s)
- Eibhlin Goggins
- Division of NephrologyUniversity of Virginia School of MedicineCharlottesvilleVirginiaUSA
| | - Binu Sharma
- Division of NephrologyUniversity of Virginia School of MedicineCharlottesvilleVirginiaUSA
| | - Jennie Z. Ma
- Division of NephrologyUniversity of Virginia School of MedicineCharlottesvilleVirginiaUSA
- Public Health SciencesUniversity of Virginia School of MedicineCharlottesvilleVirginiaUSA
| | - Jitendra Gautam
- Division of NephrologyUniversity of Virginia School of MedicineCharlottesvilleVirginiaUSA
| | - Brendan Bowman
- Division of NephrologyUniversity of Virginia School of MedicineCharlottesvilleVirginiaUSA
| |
Collapse
|
11
|
Iwamoto N, Takamatsu Y, Asai Y, Tsuchiya K, Matsuda K, Oshiro Y, Inamura N, Terada M, Nemoto T, Kimura M, Saito S, Morioka S, Kenji M, Mitsuya H, Ohmagari N. High diagnostic accuracy of quantitative SARS-CoV-2 spike-binding-IgG assay and correlation with in vitro viral neutralizing activity. Heliyon 2024; 10:e24513. [PMID: 38304834 PMCID: PMC10831606 DOI: 10.1016/j.heliyon.2024.e24513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 02/03/2024] Open
Abstract
Background Antibody testing can easily evaluate the clinical status of patients, aid in the diagnosis of multisystem inflammatory syndrome, and monitor the immunity level in the population. However, the applicability of serological tests in detecting antibodies against the severe acute respiratory syndrome 2 (SARS-CoV-2) spike-binding protein remains limited. This study aimed to quantify both serum-derived neutralizing immunoglobulin-G (IgG) antibody activity and the amount of anti-SARS-CoV-2 Spike-IgG (S-IgG) in convalescent sera/plasmas and evaluate the direct correlation between the in vitro IgG-EC50 values and S-IgG values. Methods We evaluated the neutralizing activity of purified IgG (IgG-EC50), quantified S-IgG in the serum/plasma of consecutive COVID-19 convalescent individuals using a cell-based virus-neutralizing assay, and determined the correlation between IgG-EC50 and S-IgG. In addition, we evaluated rational cut-off values using the receiver operating characteristic (ROC) curve and calculated the sensitivity and specificity of the quantitative S-IgG assay for moderate and high IgG-EC50. Results A high correlation was observed between S-IgG and IgG-EC50 with a Spearman's ρ value of -0.748 (95 % confidence interval [CI]: -0.804-0.678). Using an IgG-EC50 of 50 μg/mL and 20 μg/mL as the cut-off values for moderate and high in vitro neutralizing activity, respectively, the Youden's index values of 287.5 binding antibody units (BAU)/mL and 454.1 BAU/mL determined from the ROC curve showed the highest diagnostic accuracy, with Kappa values of 0.884 (95 % CI: 0.823-0.946) and 0.920 (95 % CI: 0.681-0.979), respectively. Conclusions Quantitative S-IgG tests are a useful and convenient tool for estimating in vitro virus-neutralizing activity, with a high correlation with IgG-EC50 when the rational cut-off value is carefully determined.
Collapse
Affiliation(s)
- Noriko Iwamoto
- Department of Disease Control Center, Center Hospital of the National Center for Global Health and Medicine, Tokyo, Japan
| | - Yuki Takamatsu
- Refractory Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
| | - Yusuke Asai
- Department of Disease Control Center, Center Hospital of the National Center for Global Health and Medicine, Tokyo, Japan
| | - Kiyoto Tsuchiya
- AIDS Clinical Center, Center Hospital of the National Center for Global Health and Medicine, Tokyo, Japan
| | - Kouki Matsuda
- Refractory Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
- Division of Antiviral Therapy, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Japan
| | - Yusuke Oshiro
- Clinical Laboratory Department, Center Hospital of the National Center for Global Health and Medicine, Tokyo, Japan
| | - Natsumi Inamura
- Clinical Laboratory Department, Center Hospital of the National Center for Global Health and Medicine, Tokyo, Japan
| | - Mari Terada
- Department of Disease Control Center, Center Hospital of the National Center for Global Health and Medicine, Tokyo, Japan
- Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | - Takashi Nemoto
- Clinical Laboratory Department, Center Hospital of the National Center for Global Health and Medicine, Tokyo, Japan
| | - Moto Kimura
- Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | - Sho Saito
- Department of Disease Control Center, Center Hospital of the National Center for Global Health and Medicine, Tokyo, Japan
| | - Shinichiro Morioka
- Department of Disease Control Center, Center Hospital of the National Center for Global Health and Medicine, Tokyo, Japan
| | - Maeda Kenji
- Refractory Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
- Division of Antiviral Therapy, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Japan
| | - Hiroaki Mitsuya
- Refractory Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
- Experimental Retrovirology Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Department of Clinical Sciences, Kumamoto University School of Medicine, Kumamoto, Japan
| | - Norio Ohmagari
- Department of Disease Control Center, Center Hospital of the National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|
12
|
von Possel R, Menge B, Deschermeier C, Fritzsche C, Hemmer C, Geerdes-Fenge H, Loebermann M, Schulz A, Lattwein E, Steinhagen K, Tönnies R, Ahrendt R, Emmerich P. Performance Analysis of Serodiagnostic Tests to Characterize the Incline and Decline of the Individual Humoral Immune Response in COVID-19 Patients: Impact on Diagnostic Management. Viruses 2024; 16:91. [PMID: 38257792 PMCID: PMC10820597 DOI: 10.3390/v16010091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Serodiagnostic tests for antibody detection to estimate the immunoprotective status regarding SARS-CoV-2 support diagnostic management. This study aimed to investigate the performance of serological assays for COVID-19 and elaborate on test-specific characteristics. Sequential samples (n = 636) of four panels (acute COVID-19, convalescent COVID-19 (partly vaccinated post-infection), pre-pandemic, and cross-reactive) were tested for IgG by indirect immunofluorescence test (IIFT) and EUROIMMUN EUROLINE Anti-SARS-CoV-2 Profile (IgG). Neutralizing antibodies were determined by a virus neutralization test (VNT) and two surrogate neutralization tests (sVNT, GenScript cPass, and EUROIMMUN SARS-CoV-2 NeutraLISA). Analysis of the acute and convalescent panels revealed high positive (78.3% and 91.6%) and negative (91.6%) agreement between IIFT and Profile IgG. The sVNTs revealed differences in their positive (cPass: 89.4% and 97.0%, NeutraLISA: 71.5% and 72.1%) and negative agreement with VNT (cPass: 92.3% and 50.0%, NeutraLISA: 95.1% and 92.5%) at a diagnostic specificity of 100% for all tests. The cPass showed higher inhibition rates than NeutraLISA at VNT titers below 1:640. Cross-reactivities were only found by cPass (57.1%). Serodiagnostic tests, which showed substantial agreement and fast runtime, could provide alternatives for cell-based assays. The findings of this study suggest that careful interpretation of serodiagnostic results obtained at different times after SARS-CoV-2 antigen exposure is crucial to support decision-making in diagnostic management.
Collapse
Affiliation(s)
- Ronald von Possel
- Department for Virology, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
- Department of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, University of Rostock, 18057 Rostock, Germany
| | - Babett Menge
- Institute for Experimental Immunology, EUROIMMUN Medizinische Labordiagnostika AG, 23560 Lübeck, Germany
| | - Christina Deschermeier
- Diagnostics Development Laboratory, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
| | - Carlos Fritzsche
- Department of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, University of Rostock, 18057 Rostock, Germany
| | - Christoph Hemmer
- Department of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, University of Rostock, 18057 Rostock, Germany
| | - Hilte Geerdes-Fenge
- Department of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, University of Rostock, 18057 Rostock, Germany
| | - Micha Loebermann
- Department of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, University of Rostock, 18057 Rostock, Germany
| | - Anette Schulz
- Institute for Experimental Immunology, EUROIMMUN Medizinische Labordiagnostika AG, 23560 Lübeck, Germany
| | - Erik Lattwein
- Institute for Experimental Immunology, EUROIMMUN Medizinische Labordiagnostika AG, 23560 Lübeck, Germany
| | - Katja Steinhagen
- Institute for Experimental Immunology, EUROIMMUN Medizinische Labordiagnostika AG, 23560 Lübeck, Germany
| | | | | | - Petra Emmerich
- Department for Virology, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
- Department of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, University of Rostock, 18057 Rostock, Germany
| |
Collapse
|
13
|
Sulcebe G, Ylli A, Cenko F, Kurti-Prifti M, Shyti E, Dashi-Pasholli J, Lazri E, Seferi-Qendro I, Perry MJ. Trends in SARS-CoV-2 seroprevalence in Albania during the 2021-2022 pandemic year. New Microbes New Infect 2024; 56:101208. [PMID: 38143941 PMCID: PMC10746500 DOI: 10.1016/j.nmni.2023.101208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/08/2023] [Accepted: 11/27/2023] [Indexed: 12/26/2023] Open
Abstract
Background Monitoring SARS-CoV-2 seroprevalence dynamics during the COVID-19 pandemic is crucial for understanding population immunity and providing insights into public health policies. Limited data exist on this from Albania and other Eastern European countries. This study aimed to investigate SARS-CoV-2 seroprevalence in Albania, comparing August 2021 and August 2022 data from two representative samples of the general population. The objective was to understand the temporal dynamics of SARS-CoV-2 antibodies across age groups and assess the impacts of natural infection and vaccination on population immunity. Methods This longitudinal study was conducted in two consecutive cross-sectional assessments 12 months apart in Albania's urban all-ages population. IgG anti-Spike-1 and anti-Nucleoprotein SARS-CoV-2 antibodies were measured using ELISA, focusing on seropositivity rates and antibody levels. Methods The study encompassed 2143 and 2183 individuals in August 2021 and 2022, respectively, with the anti-S1-IgG seropositivity rate escalating from 70.9 % to 92.1 %. In 2021, seroprevalence ranged from 49.6 % (0-15 years) to 82 % (>60 years). By August 2022, it surpassed 90 % in most age groups, except 0-15 years (73.8 %). "Hybrid" immunity (COVID-19+ and Vaccine+) reached 56.6 % in 2022, or 2.8 times higher than in 2021, exhibiting the highest antibody levels compared to the only vaccinated or previously COVID-19-infected individuals. Conclusion This study highlights an overall 94 % seroprevalence in the Albanian population in August 2022 and robust "hybrid" immunity, suggesting substantial protective immunity against SARS-CoV-2. The lower immunity in the 0-15 age group underscores the necessity for youth-targeted vaccine campaigns. These findings provide valuable insights for shaping healthcare measures and vaccination policies.
Collapse
Affiliation(s)
- Genc Sulcebe
- Research Unit of Immunology, University of Medicine and University Hospital Center «Mother Teresa» Tirana, Albania
- Academy of Sciences of Albania, Albania
| | | | - Fabian Cenko
- Catholic University "Our Lady of Good Counsel" Tirana, Albania
| | | | | | | | - Erina Lazri
- University of Medicine of Tirana, Faculty of Medical Technical Sciences, Albania
| | | | | |
Collapse
|
14
|
Stern D, Meyer TC, Treindl F, Mages HW, Krüger M, Skiba M, Krüger JP, Zobel CM, Schreiner M, Grossegesse M, Rinner T, Peine C, Stoliaroff-Pépin A, Harder T, Hofmann N, Michel J, Nitsche A, Stahlberg S, Kneuer A, Sandoni A, Kubisch U, Schlaud M, Mankertz A, Schwarz T, Corman VM, Müller MA, Drosten C, de la Rosa K, Schaade L, Dorner MB, Dorner BG. A bead-based multiplex assay covering all coronaviruses pathogenic for humans for sensitive and specific surveillance of SARS-CoV-2 humoral immunity. Sci Rep 2023; 13:21846. [PMID: 38071261 PMCID: PMC10710470 DOI: 10.1038/s41598-023-48581-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Serological assays measuring antibodies against SARS-CoV-2 are key to describe the epidemiology, pathobiology or induction of immunity after infection or vaccination. Of those, multiplex assays targeting multiple antigens are especially helpful as closely related coronaviruses or other antigens can be analysed simultaneously from small sample volumes, hereby shedding light on patterns in the immune response that would otherwise remain undetected. We established a bead-based 17-plex assay detecting antibodies targeting antigens from all coronaviruses pathogenic for humans: SARS-CoV-2, SARS-CoV, MERS-CoV, HCoV strains 229E, OC43, HKU1, and NL63. The assay was validated against five commercial serological immunoassays, a commercial surrogate virus neutralisation test, and a virus neutralisation assay, all targeting SARS-CoV-2. It was found to be highly versatile as shown by antibody detection from both serum and dried blot spots and as shown in three case studies. First, we followed seroconversion for all four endemic HCoV strains and SARS-CoV-2 in an outbreak study in day-care centres for children. Second, we were able to link a more severe clinical course to a stronger IgG response with this 17-plex-assay, which was IgG1 and IgG3 dominated. Finally, our assay was able to discriminate recent from previous SARS-CoV-2 infections by calculating the IgG/IgM ratio on the N antigen targeting antibodies. In conclusion, due to the comprehensive method comparison, thorough validation, and the proven versatility, our multiplex assay is a valuable tool for studies on coronavirus serology.
Collapse
Affiliation(s)
- Daniel Stern
- Biological Toxins (ZBS 3), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353, Berlin, Germany.
| | - Tanja C Meyer
- Biological Toxins (ZBS 3), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353, Berlin, Germany
| | - Fridolin Treindl
- Biological Toxins (ZBS 3), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353, Berlin, Germany
| | - Hans Werner Mages
- Biological Toxins (ZBS 3), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353, Berlin, Germany
| | - Maren Krüger
- Biological Toxins (ZBS 3), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353, Berlin, Germany
| | - Martin Skiba
- Biological Toxins (ZBS 3), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353, Berlin, Germany
| | - Jan Philipp Krüger
- Department of Microbiology and Hospital Hygiene, Bundeswehr Hospital Berlin, Berlin, Germany
| | - Christian M Zobel
- Department of Internal Medicine, Bundeswehr Hospital Berlin, Berlin, Germany
| | | | - Marica Grossegesse
- Highly Pathogenic Viruses (ZBS 1), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353, Berlin, Germany
| | - Thomas Rinner
- Highly Pathogenic Viruses (ZBS 1), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353, Berlin, Germany
| | - Caroline Peine
- Immunization Unit (FG 33), Department for Infectious Disease Epidemiology, Robert Koch Institute, 13353, Berlin, Germany
| | - Anna Stoliaroff-Pépin
- Immunization Unit (FG 33), Department for Infectious Disease Epidemiology, Robert Koch Institute, 13353, Berlin, Germany
| | - Thomas Harder
- Immunization Unit (FG 33), Department for Infectious Disease Epidemiology, Robert Koch Institute, 13353, Berlin, Germany
| | - Natalie Hofmann
- Highly Pathogenic Viruses (ZBS 1), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353, Berlin, Germany
| | - Janine Michel
- Highly Pathogenic Viruses (ZBS 1), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353, Berlin, Germany
| | - Andreas Nitsche
- Highly Pathogenic Viruses (ZBS 1), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353, Berlin, Germany
| | - Silke Stahlberg
- Central Epidemiological Laboratory (FG 22), Department of Epidemiology and Health Monitoring, Robert Koch Institute, 12101, Berlin, Germany
| | - Antje Kneuer
- Central Epidemiological Laboratory (FG 22), Department of Epidemiology and Health Monitoring, Robert Koch Institute, 12101, Berlin, Germany
| | - Anna Sandoni
- Central Epidemiological Laboratory (FG 22), Department of Epidemiology and Health Monitoring, Robert Koch Institute, 12101, Berlin, Germany
| | - Ulrike Kubisch
- Central Epidemiological Laboratory (FG 22), Department of Epidemiology and Health Monitoring, Robert Koch Institute, 12101, Berlin, Germany
| | - Martin Schlaud
- Central Epidemiological Laboratory (FG 22), Department of Epidemiology and Health Monitoring, Robert Koch Institute, 12101, Berlin, Germany
| | - Annette Mankertz
- Measles, Mumps, Rubella, and Viruses Affecting Immunocompromised Patients (FG 12), Robert Koch Institute, 13353, Berlin, Germany
| | - Tatjana Schwarz
- Institute of Virology, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Victor M Corman
- Institute of Virology, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
- Corporate Member, Freie Universität Berlin, 10117, Berlin, Germany
- Corporate Member, Humboldt-Universität zu Berlin, 14195, Berlin, Germany
| | - Marcel A Müller
- Institute of Virology, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Christian Drosten
- Institute of Virology, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Kathrin de la Rosa
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany
- Berlin Institute of Health (BIH), Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Lars Schaade
- Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353, Berlin, Germany
| | - Martin B Dorner
- Biological Toxins (ZBS 3), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353, Berlin, Germany
| | - Brigitte G Dorner
- Biological Toxins (ZBS 3), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353, Berlin, Germany.
| |
Collapse
|
15
|
Berry AA, Tjaden AH, Renteria J, Friedman-Klabanoff D, Hinkelman AN, Gibbs MA, Ahmed A, Runyon MS, Schieffelin J, Santos RP, Oberhelman R, Bott M, Correa A, Edelstein SL, Uschner D, Wierzba TF. Persistence of antibody responses to COVID-19 vaccines among participants in the COVID-19 Community Research Partnership. Vaccine X 2023; 15:100371. [PMID: 37649617 PMCID: PMC10462856 DOI: 10.1016/j.jvacx.2023.100371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 09/01/2023] Open
Abstract
Introduction High levels of immunity to SARS-CoV-2 in the community correlate with protection from COVID-19 illness. Measuring COVID-19 antibody seroprevalence and persistence may elucidate the level and length of protection afforded by vaccination and infection within a population. Methods We measured the duration of detectable anti-spike antibodies following COVID-19 vaccination in a multistate, longitudinal cohort study of almost 13,000 adults who completed daily surveys and submitted monthly dried blood spots collected at home. Results Overall, anti-spike antibodies persisted up to 284 days of follow-up with seroreversion occurring in only 2.4% of the study population. In adjusted analyses, risk of seroreversion increased with age (adults aged 55-64: adjusted hazard ratio [aHR] 2.19 [95% confidence interval (CI): 1.22, 3.92] and adults aged > 65: aHR 3.59 [95% CI: 2.07, 6.20] compared to adults aged 18-39). Adults with diabetes had a higher risk of seroreversion versus nondiabetics (aHR 1.77 [95% CI: 1.29, 2.44]). Decreased risk of seroreversion was shown for non-Hispanic Black versus non-Hispanic White (aHR 0.32 [95% CI: 0.13, 0.79]); college degree earners versus no college degree (aHR 0.61 [95% CI: 0.46, 0.81]); and those who received Moderna mRNA-1273 vaccine versus Pfizer-BioNTech BNT162b2 (aHR 0.35 [95% CI: 0.26, 0.47]). An interaction between healthcare worker occupation and sex was detected, with seroreversion increased among male, non-healthcare workers. Conclusion We established that a remote, longitudinal, multi-site study can reliably detect antibody durability following COVID-19 vaccination. The survey platform and measurement of antibody response using at-home collection at convenient intervals allowed us to explore sociodemographic factors and comorbidities and identify predictors of antibody persistence, which has been demonstrated to correlate with protection against disease. Our findings may help inform public health interventions and policies to protect those at highest risk for severe illness and assist in determining the optimal timing of booster doses.Clinical trials registry: NCT04342884.
Collapse
Affiliation(s)
- Andrea A. Berry
- Department of Pediatrics, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ashley H. Tjaden
- The Biostatistics Center, Milken Institute School of Public Health, George Washington University, Rockville, MD, USA
| | - Jone Renteria
- The Biostatistics Center, Milken Institute School of Public Health, George Washington University, Rockville, MD, USA
| | - DeAnna Friedman-Klabanoff
- Department of Pediatrics, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Amy N. Hinkelman
- Jerry M. Wallace School of Osteopathic Medicine, Campbell University, Lillington, NC, USA
| | | | | | | | - John Schieffelin
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, LA, USA
| | | | - Richard Oberhelman
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, LA, USA
| | - Matthew Bott
- The Biostatistics Center, Milken Institute School of Public Health, George Washington University, Rockville, MD, USA
| | - Adolfo Correa
- University of Mississippi Medical Center, Jackson, MS, USA
| | - Sharon L. Edelstein
- The Biostatistics Center, Milken Institute School of Public Health, George Washington University, Rockville, MD, USA
| | - Diane Uschner
- The Biostatistics Center, Milken Institute School of Public Health, George Washington University, Rockville, MD, USA
| | - Thomas F. Wierzba
- Section on Infectious Diseases, Department of Internal Medicine, Wake Forest University School of Medicine, Winston Salem, NC, USA
| | | |
Collapse
|
16
|
Kenny G, O'Reilly S, Wrigley Kelly N, Negi R, Gaillard C, Alalwan D, Saini G, Alrawahneh T, Francois N, Angeliadis M, Garcia Leon AA, Tinago W, Feeney ER, Cotter AG, de Barra E, Yousif O, Horgan M, Doran P, Stemler J, Koehler P, Cox RJ, O'Shea D, Olesen OF, Landay A, Hogan AE, Lelievre JD, Gautier V, Cornely OA, Mallon PWG. Distinct receptor binding domain IgG thresholds predict protective host immunity across SARS-CoV-2 variants and time. Nat Commun 2023; 14:7015. [PMID: 37919289 PMCID: PMC10622572 DOI: 10.1038/s41467-023-42717-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/19/2023] [Indexed: 11/04/2023] Open
Abstract
SARS-CoV-2 neutralising antibodies provide protection against COVID-19. Evidence from early vaccine trials suggested binding antibody thresholds could serve as surrogate markers of neutralising capacity, but whether these thresholds predict sufficient neutralising capacity against variants of concern (VOCs), and whether this is impacted by vaccine or infection history remains unclear. Here we analyse individuals recovered from, vaccinated or with hybrid immunity against SARS-CoV-2. An NT50 ≥ 100 IU confers protection in vaccine trials, however, as VOC induce a reduction in NT50, we use NT50 ≥ 1000 IU as a cut off for WT NT50 that would retain neutralisation against VOC. In unvaccinated convalescent participants, a receptor binding domain (RBD) IgG of 456 BAU/mL predicts an NT50 against WT of 1000 IU with an accuracy of 80% (95%CI 73-86%). This threshold maintains accuracy in determining loss of protective immunity against VOC in two vaccinated cohorts. It predicts an NT50 < 100 IU against Beta with an accuracy of 80% (95%CI 67-89%) in 2 vaccine dose recipients. In booster vaccine recipients with a history of COVID-19 (hybrid immunity), accuracy is 87% (95%CI 77-94%) in determining an NT50 of <100 IU against BA.5. This analysis provides a discrete threshold that could be used in future clinical studies.
Collapse
Affiliation(s)
- Grace Kenny
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin 4, Ireland.
| | - Sophie O'Reilly
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin 4, Ireland
| | - Neil Wrigley Kelly
- St Vincent's University Hospital, Elm Park, Dublin 4, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co Kildare, Ireland
| | - Riya Negi
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin 4, Ireland
| | - Colette Gaillard
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin 4, Ireland
| | - Dana Alalwan
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin 4, Ireland
| | - Gurvin Saini
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin 4, Ireland
| | - Tamara Alrawahneh
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin 4, Ireland
| | - Nathan Francois
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin 4, Ireland
| | - Matthew Angeliadis
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin 4, Ireland
| | - Alejandro Abner Garcia Leon
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin 4, Ireland
| | - Willard Tinago
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin 4, Ireland
| | - Eoin R Feeney
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin 4, Ireland
- St Vincent's University Hospital, Elm Park, Dublin 4, Ireland
| | - Aoife G Cotter
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin 4, Ireland
- Department of Infectious Diseases, Mater Misericordiae University Hospital, Eccles St, Dublin 7, Ireland
| | - Eoghan de Barra
- Department of Infectious Diseases, Beaumont Hospital, Beaumont, Dublin 9, Ireland
- Department of International Health and Tropical Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Obada Yousif
- Endocrinology Department, Wexford General Hospital, Carricklawn, Wexford, Ireland
| | - Mary Horgan
- Department of Infectious Diseases, Cork University Hospital, Wilton, Co Cork, Ireland
| | - Peter Doran
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Jannik Stemler
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Internal Medicine and University of Cologne, Faculty of Medicine Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne Department Cologne, Cologne, Germany
| | - Philipp Koehler
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Internal Medicine and University of Cologne, Faculty of Medicine Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne Department Cologne, Cologne, Germany
| | - Rebecca Jane Cox
- Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Donal O'Shea
- St Vincent's University Hospital, Elm Park, Dublin 4, Ireland
| | - Ole F Olesen
- European Vaccine Initiative, Heidelberg, Germany
| | - Alan Landay
- Department of internal Medicine, Rush University, Chicago, IL, USA
| | - Andrew E Hogan
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co Kildare, Ireland
- National Children's Research Centre, Dublin 12, Ireland
| | | | - Virginie Gautier
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin 4, Ireland
| | - Oliver A Cornely
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Internal Medicine and University of Cologne, Faculty of Medicine Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne Department Cologne, Cologne, Germany
| | - Patrick W G Mallon
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin 4, Ireland
- St Vincent's University Hospital, Elm Park, Dublin 4, Ireland
| |
Collapse
|
17
|
Liu M, Zhao T, Mu Q, Zhang R, Liu C, Xu F, Liang L, Zhao L, Zhao S, Cai X, Wang M, Huang N, Feng T, Lei S, Yang G, Cui F. Immune-Boosting Effect of the COVID-19 Vaccine: Real-World Bidirectional Cohort Study. JMIR Public Health Surveill 2023; 9:e47272. [PMID: 37819703 PMCID: PMC10569382 DOI: 10.2196/47272] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/25/2023] [Accepted: 08/08/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND As the SARS-CoV-2 attenuates and antibodies from the COVID-19 vaccine decline, long-term attention should be paid to the durability of primary booster administration and the preventive effect of the second or multiple booster doses of the COVID-19 vaccine. OBJECTIVE This study aimed to explore the durability of primary booster administration and the preventive effect of second or multiple booster doses of the COVID-19 vaccine. METHODS We established a bidirectional cohort in Guizhou Province, China. Eligible participants who had received the primary booster dose were enrolled for blood sample collection and administration of the second booster dose. A retrospective cohort for the time of administration was constructed to evaluate antibody attenuation 6-12 months after the primary booster dose, while a prospective cohort on the vaccine effect of the second booster dose was constructed for 4 months after the second administration. RESULTS Between September 21, 2022, and January 30, 2023, a total of 327 participants were included in the final statistical analysis plan. The retrospective cohort revealed that approximately 6-12 months after receiving the primary booster, immunoglobulin G (IgG) slowly declined with time, while immunoglobulin A (IgA) remained almost constant. The prospective cohort showed that 28 days after receiving the second booster, the antibody levels were significantly improved. Higher levels of IgG and IgA were associated with better protection against COVID-19 infection for vaccine recipients. Regarding the protection of antibody levels against post-COVID-19 symptoms, the increase of the IgG had a protective effect on brain fog and sleep quality, while IgA had a protective effect on shortness of breath, brain fog, impaired coordination, and physical pain. CONCLUSIONS The IgG and IgA produced by the second booster dose of COVID-19 vaccines can protect against SARS-CoV-2 infection and may alleviate some post-COVID-19 symptoms. Further data and studies on secondary booster administration are required to confirm these conclusions.
Collapse
Affiliation(s)
- Ming Liu
- Guizhou Center for Disease Control and Prevention, Guiyang, China
| | - Tianshuo Zhao
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, China
- Vaccine Research Center, School of Public Health, Peking University, Beijing, China
- Center for Infectious Diseases and Policy Research & Global Health and Infectious Diseases Group, Peking University, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases, Peking University, Ministry of Education, Beijing, China
| | - Qiuyue Mu
- Guizhou Center for Disease Control and Prevention, Guiyang, China
| | - Ruizhi Zhang
- Guizhou Center for Disease Control and Prevention, Guiyang, China
| | - Chunting Liu
- Guizhou Center for Disease Control and Prevention, Guiyang, China
| | - Fei Xu
- Guizhou Center for Disease Control and Prevention, Guiyang, China
| | - Luxiang Liang
- Guizhou Center for Disease Control and Prevention, Guiyang, China
| | - Linglu Zhao
- Guizhou Center for Disease Control and Prevention, Guiyang, China
| | - Suye Zhao
- Guizhou Center for Disease Control and Prevention, Guiyang, China
| | - Xianming Cai
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, China
- Vaccine Research Center, School of Public Health, Peking University, Beijing, China
- Center for Infectious Diseases and Policy Research & Global Health and Infectious Diseases Group, Peking University, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases, Peking University, Ministry of Education, Beijing, China
| | - Mingting Wang
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, China
- Vaccine Research Center, School of Public Health, Peking University, Beijing, China
- Center for Infectious Diseases and Policy Research & Global Health and Infectious Diseases Group, Peking University, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases, Peking University, Ministry of Education, Beijing, China
| | - Ninghua Huang
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, China
- Vaccine Research Center, School of Public Health, Peking University, Beijing, China
- Center for Infectious Diseases and Policy Research & Global Health and Infectious Diseases Group, Peking University, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases, Peking University, Ministry of Education, Beijing, China
| | - Tian Feng
- Guizhou Center for Disease Control and Prevention, Guiyang, China
| | - Shiguang Lei
- Guizhou Center for Disease Control and Prevention, Guiyang, China
| | - Guanghong Yang
- Guizhou Center for Disease Control and Prevention, Guiyang, China
| | - Fuqiang Cui
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, China
- Vaccine Research Center, School of Public Health, Peking University, Beijing, China
- Center for Infectious Diseases and Policy Research & Global Health and Infectious Diseases Group, Peking University, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases, Peking University, Ministry of Education, Beijing, China
| |
Collapse
|
18
|
Monin MB, Baier LI, Gorny JG, Berger M, Zhou T, Mahn R, Sadeghlar F, Möhring C, Boesecke C, van Bremen K, Rockstroh JK, Strassburg CP, Eis-Hübinger AM, Schmid M, Gonzalez-Carmona MA. Deficient Immune Response following SARS-CoV-2 Vaccination in Patients with Hepatobiliary Carcinoma: A Forgotten, Vulnerable Group of Patients. Liver Cancer 2023; 12:339-355. [PMID: 37901199 PMCID: PMC10601882 DOI: 10.1159/000529608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/06/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction Data on immune response rates following vaccination for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in patients with hepatobiliary carcinoma (HBC) are rare. However, impaired immunogenicity must be expected due to the combination of chronic liver diseases (CLDs) with malignancy and anticancer treatment. Methods In this prospective, longitudinal study, 101 patients were included, of whom 59 were patients with HBC under anticancer treatment. A cohort of patients with a past medical history of gastrointestinal cancer, of whom 28.6% had HBC without detectable active tumor disease having been off therapy for at least 12 months, served as control. Levels of SARS-CoV-2 anti-spike IgG, surrogate neutralization antibodies (sNABs), and cellular immune responses were compared. In uni- and multivariable subgroup analyses, risk factors for impaired immunogenicity were regarded. Data on rates and clinical courses of SARS-CoV-2 infections were documented. Results In patients with HBC under active treatment, levels of SARS-CoV-2 anti-spike IgG were significantly lower (2.55 log10 BAU/mL; 95% CI: 2.33-2.76; p < 0.01) than in patients in follow-up care (3.02 log10 BAU/mL; 95% CI: 2.80-3.25) 4 weeks after two vaccinations. Antibody levels decreased over time, and differences between the groups diminished. However, titers of SARS-CoV-2 sNAB were for a longer time significantly lower in patients with HBC under treatment (64.19%; 95% CI: 55.90-72.48; p < 0.01) than in patients in follow-up care (84.13%; 95% CI: 76.95-91.31). Underlying CLD and/or liver cirrhosis Child-Pugh A or B (less than 8 points) did not seem to further impair immunogenicity. Conversely, chemotherapy and additional immunosuppression were found to significantly reduce antibody levels. After a third booster vaccination for SARS-CoV-2, levels of total and neutralization antibodies were equalized between the groups. Moreover, cellular response rates were balanced. Clinically, infection rates with SARS-CoV-2 were low, and no severe courses were observed. Conclusion Patients with active HBC showed significantly impaired immune response rates to basic vaccinations for SARS-CoV-2, especially under chemotherapy, independent of underlying cirrhotic or non-cirrhotic CLD. Although booster vaccinations balanced differences, waning immunity was observed over time and should be monitored for further recommendations. Our data help clinicians decide on individual additional booster vaccinations and/or passive immunization or antiviral treatment in patients with HBC getting infected with SARS-CoV-2.
Collapse
Affiliation(s)
- Malte B. Monin
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
- German Centre for Infection Research (DZIF), Partner-site Cologne-Bonn, Bonn, Germany
| | - Leona I. Baier
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | - Jens G. Gorny
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | - Moritz Berger
- Institute of Medical Biometry, Informatics and Epidemiology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Taotao Zhou
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | - Robert Mahn
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | - Farsaneh Sadeghlar
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | - Christian Möhring
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | - Christoph Boesecke
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
- German Centre for Infection Research (DZIF), Partner-site Cologne-Bonn, Bonn, Germany
| | - Kathrin van Bremen
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
- German Centre for Infection Research (DZIF), Partner-site Cologne-Bonn, Bonn, Germany
| | - Jürgen K. Rockstroh
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
- German Centre for Infection Research (DZIF), Partner-site Cologne-Bonn, Bonn, Germany
| | | | | | - Matthias Schmid
- Institute of Medical Biometry, Informatics and Epidemiology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | | |
Collapse
|
19
|
Seekircher L, Bánki Z, Kimpel J, Rössler A, Schäfer H, Falkensammer B, Bante D, Forer L, Schönherr S, Harthaller T, Sacher M, Ower C, Tschiderer L, Ulmer H, Krammer F, von Laer D, Borena W, Willeit P. Immune response after two doses of the BNT162b2 COVID-19 vaccine and risk of SARS-CoV-2 breakthrough infection in Tyrol, Austria: an open-label, observational phase 4 trial. THE LANCET. MICROBE 2023; 4:e612-e621. [PMID: 37354911 PMCID: PMC10284585 DOI: 10.1016/s2666-5247(23)00107-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 02/03/2023] [Accepted: 03/06/2023] [Indexed: 06/26/2023]
Abstract
BACKGROUND Correlates of protection could help to assess the extent to which a person is protected from SARS-CoV-2 infection after vaccination (so-called breakthrough infection). We aimed to clarify associations of antibody and T-cell responses after vaccination against COVID-19 with risk of a SARS-CoV-2 breakthrough infection and whether measurement of these responses enhances risk prediction. METHODS We did an open-label, phase 4 trial in two community centres in the Schwaz district of the Federal State of Tyrol, Austria, before the emergence of the omicron (B.1.1.529) variant of SARS-CoV-2. We included individuals (aged ≥16 years) a mean of 35 days (range 27-43) after they had received a second dose of the BNT162b2 (Pfizer-BioNTech) COVID-19 vaccine. We quantified associations between immunological parameters and breakthrough infection and assessed whether information on these parameters improves risk discrimination. The study is registered with the European Union Drug Regulating Authorities Clinical Trials Database, 2021-002030-16. FINDINGS 2760 individuals (1682 [60·9%] female, 1078 [39·1%] male, mean age 47·4 years [SD 14·5]) were enrolled into this study between May 15 and May 21, 2021, 712 (25·8%) of whom had a previous SARS-CoV-2 infection. Over a median follow-up of 5·9 months, 68 (2·5%) participants had a breakthrough infection. In models adjusted for age, sex, and previous infection, hazard ratios for breakthrough infection for having twice the immunological parameter level at baseline were 0·72 (95% CI 0·60-0·86) for anti-spike IgG, 0·80 (0·70-0·92) for neutralising antibodies in a surrogate virus neutralisation assay, 0·84 (0·58-1·21) for T-cell response after stimulation with a CD4 peptide pool, and 0·77 (0·54-1·08) for T-cell response after stimulation with a combined CD4 and CD8 peptide pool. For neutralising antibodies measured in a nested case-control sample using a pseudotyped virus neutralisation assay, the corresponding odds ratio was 0·78 (0·62-1·00). Among participants with previous infection, the corresponding hazard ratio was 0·73 (0·61-0·88) for anti-nucleocapsid Ig. Addition of anti-spike IgG information to a model containing information on age and sex improved the C-index by 0·085 (0·027-0·143). INTERPRETATION In contrast to T-cell response, higher levels of binding and neutralising antibodies were associated with a reduced risk of breakthrough SARS-CoV-2 infection. The assessment of anti-spike IgG enhances the prediction of incident breakthrough SARS-CoV-2 infection and could therefore be a suitable correlate of protection in practice. Our phase 4 trial measured both humoral and cellular immunity and had a 6-month follow-up period; however, the longer-term protection against emerging variants of SARS-CoV-2 remains unclear. FUNDING None.
Collapse
Affiliation(s)
- Lisa Seekircher
- Institute of Health Economics, Medical University of Innsbruck, Innsbruck, Austria
| | - Zoltán Bánki
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Janine Kimpel
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Annika Rössler
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Helena Schäfer
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - David Bante
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Lukas Forer
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Sebastian Schönherr
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Teresa Harthaller
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Magdalena Sacher
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Cornelia Ower
- Department of Surgery, University Hospital of Trauma Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Lena Tschiderer
- Institute of Health Economics, Medical University of Innsbruck, Innsbruck, Austria
| | - Hanno Ulmer
- Institute of Medical Statistics and Informatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Florian Krammer
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dorothee von Laer
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Wegene Borena
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria.
| | - Peter Willeit
- Institute of Health Economics, Medical University of Innsbruck, Innsbruck, Austria; Ignaz Semmelweis Institute, Interuniversity Institute for Infection Research, Vienna, Austria; Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
| |
Collapse
|
20
|
Fernandez Z, de Arruda Rodrigues R, Torres JM, Marcon GEB, de Castro Ferreira E, de Souza VF, Sarti EFB, Bertolli GF, Araujo D, Demarchi LHF, Lichs G, Zardin MU, Gonçalves CCM, Cuenca V, Favacho A, Guilhermino J, Dos Santos LR, de Araujo FR, Silva MR. Development and validity assessment of ELISA test with recombinant chimeric protein of SARS-CoV-2. J Immunol Methods 2023; 519:113489. [PMID: 37179011 PMCID: PMC10174469 DOI: 10.1016/j.jim.2023.113489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/07/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
Serological tests developed for COVID-19 diagnostic are based on antibodies specific for SARS-CoV-2 antigens. Most of the antigens consist of a fragment or a whole amino acid sequence of the nucleocapsid or spike proteins. We evaluated a chimeric recombinant protein as an antigen in an ELISA test, using the most conserved and hydrophilic portions of the S1-subunit of the S and Nucleocapsid (N) proteins. These proteins, individually, indicated a suitable sensitivity of 93.6 and 100% and a specificity of 94.5 and 91.3%, respectively. However, our study with the chimera containing S1 and N proteins of SARS-CoV-2 suggested that the recombinant protein could better balance both the sensitivity (95.7%) and the specificity (95.5%) of the serological assay when comparing with the ELISA test using the antigens N and S1, individually. Accordingly, the chimera showed a high area under the ROC curve of 0.98 (CI 95% 0.958-1). Thus, our chimeric approach could be used to assess the natural exposure against SARS-CoV-2 virus over time, however, other tests will be necessary to better understand the behaviour of the chimera in samples from people with different vaccination doses and/or infected with different variants of the virus.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Daniel Araujo
- Instituto Integrado de Saúde-Universidade Federal de Mato Grosso do Sul, Brazil
| | | | - Gislene Lichs
- Laboratório Central de Saúde do Mato Grosso do Sul, Brazil
| | | | | | - Valter Cuenca
- Programa de Pós-Graduação em Doenças Infecciosas e Parasitárias, Faculdade de Medicina (FAMED), Fundação Universidade Federal de Mato Grosso do Sul, Brazil
| | | | | | | | | | | |
Collapse
|
21
|
Ulakcsai Z, Szabo L, Szabo Z, Karaszi E, Szabo T, Fazekas L, Vereb A, Kovacs NF, Nemeth D, Kovacs E, Nemeth E, Nagy G, Vago H, Merkely B. T cell immune response predicts survival in severely ill COVID-19 patients requiring venovenous extracorporeal membrane oxygenation support. Front Immunol 2023; 14:1179620. [PMID: 37600824 PMCID: PMC10433181 DOI: 10.3389/fimmu.2023.1179620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 07/04/2023] [Indexed: 08/22/2023] Open
Abstract
Introduction There is a critical gap in understanding which SARS-CoV-2 patients would benefit most from venovenous extracorporeal membrane oxygenation (VV-ECMO) support. The potential role of a dysregulated immune response is still unclear in this patient population. Objectives To assess the potential predictive value of SARS-CoV-2 specific cellular and humoral immune responses for survival in critically ill COVID-19 patients requiring VV-ECMO. Methods We conducted a prospective single-center observational study of unvaccinated patients requiring VV-ECMO support treated at the intensive care unit of Semmelweis University Heart and Vascular Center between March and December 2021. Peripheral blood samples were collected to measure the humoral and cellular immune statuses of the patients at the VV-ECMO cannulation. Patients were followed until hospital discharge. Results Overall, 35 COVID-19 patients (63% men, median age 37 years) on VV-ECMO support were included in our study. The time from COVID-19 verification to ECMO support was a median (IQR) of 10 (7-14) days. Of the patients, 9 (26%) were discharged alive and 26 (74%) died during their hospital stay. Immune tests confirmed ongoing SARS-CoV-2 infection in all the patients, showing an increased humoral immune response. SARS-CoV-2-specific cellular immune response was significantly higher among survivors compared to the deceased patients. A higher probability of survival was observed in patients with markers indicating a higher T cell response detected by both QuantiFeron (QF) and flow cytometry (Flow) assays. (Flow S1 CD8+ ≥ 0.15%, Flow S1 CD4+ ≥ 0.02%, QF CD4 ≥ 0.07, QF whole genome ≥ 0.59). In univariate Cox proportional hazard regression analysis BMI, right ventricular (RV) failure, QF whole genome T cell level, and Flow S1 CD8+ T cell level were associated with mortality, and we found that an increased T cell response showed a significant negative association with mortality, independent of BMI and RV failure. Conclusion Evaluation of SARS-CoV-2 specific T cell response before the cannulation can aid the risk stratification and evaluation of seriously ill COVID-19 patients undergoing VV-ECMO support by predicting survival, potentially changing our clinical practice in the future.
Collapse
Affiliation(s)
| | - Liliana Szabo
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Zsofia Szabo
- Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary
| | - Eva Karaszi
- Pediatric Healthcare Center, Council of Budafok-Tétény, Budapest, Hungary
| | - Tamas Szabo
- Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary
| | - Levente Fazekas
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Alexandra Vereb
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | | | - Dora Nemeth
- Department of Rheumatology and Clinical Immunology, Semmelweis University, Budapest, Hungary
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Eniko Kovacs
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Endre Nemeth
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Gyorgy Nagy
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
- Department of Rheumatology and Clinical Immunology, Semmelweis University, Budapest, Hungary
- Hospital of the Hospitaller Order of Saint John of God, Budapest, Hungary
| | - Hajnalka Vago
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
- Department of Sports Medicine, Semmelweis University, Budapest, Hungary
| | - Bela Merkely
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
- Department of Sports Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
22
|
Ziganshina MM, Shilova NV, Khalturina EO, Dolgushina NV, V Borisevich S, Yarotskaya EL, Bovin NV, Sukhikh GT. Antibody-Dependent Enhancement with a Focus on SARS-CoV-2 and Anti-Glycan Antibodies. Viruses 2023; 15:1584. [PMID: 37515270 PMCID: PMC10384250 DOI: 10.3390/v15071584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Antibody-dependent enhancement (ADE) is a phenomenon where virus-specific antibodies paradoxically cause enhanced viral replication and/or excessive immune responses, leading to infection exacerbation, tissue damage, and multiple organ failure. ADE has been observed in many viral infections and is supposed to complicate the course of COVID-19. However, the evidence is insufficient. Since no specific laboratory markers have been described, the prediction and confirmation of ADE are very challenging. The only possible predictor is the presence of already existing (after previous infection) antibodies that can bind to viral epitopes and promote the disease enhancement. At the same time, the virus-specific antibodies are also a part of immune response against a pathogen. These opposite effects of antibodies make ADE research controversial. The assignment of immunoglobulins to ADE-associated or virus neutralizing is based on their affinity, avidity, and content in blood. However, these criteria are not clearly defined. Another debatable issue (rather terminological, but no less important) is that in most publications about ADE, all immunoglobulins produced by the immune system against pathogens are qualified as pre-existing antibodies, thus ignoring the conventional use of this term for natural antibodies produced without any stimulation by pathogens. Anti-glycan antibodies (AGA) make up a significant part of the natural immunoglobulins pool, and there is some evidence of their antiviral effect, particularly in COVID-19. AGA have been shown to be involved in ADE in bacterial infections, but their role in the development of ADE in viral infections has not been studied. This review focuses on pros and cons for AGA as an ADE trigger. We also present the results of our pilot studies, suggesting that AGAs, which bind to complex epitopes (glycan plus something else in tight proximity), may be involved in the development of the ADE phenomenon.
Collapse
Affiliation(s)
- Marina M Ziganshina
- National Medical Research Center for Obstetrics, Gynecology and Perinatology of the Ministry of Health of the Russian Federation, Oparina Street 4, 117997 Moscow, Russia
| | - Nadezhda V Shilova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology of the Ministry of Health of the Russian Federation, Oparina Street 4, 117997 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Eugenia O Khalturina
- National Medical Research Center for Obstetrics, Gynecology and Perinatology of the Ministry of Health of the Russian Federation, Oparina Street 4, 117997 Moscow, Russia
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119991 Moscow, Russia
| | - Natalya V Dolgushina
- National Medical Research Center for Obstetrics, Gynecology and Perinatology of the Ministry of Health of the Russian Federation, Oparina Street 4, 117997 Moscow, Russia
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119991 Moscow, Russia
| | | | - Ekaterina L Yarotskaya
- National Medical Research Center for Obstetrics, Gynecology and Perinatology of the Ministry of Health of the Russian Federation, Oparina Street 4, 117997 Moscow, Russia
| | - Nicolai V Bovin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Gennady T Sukhikh
- National Medical Research Center for Obstetrics, Gynecology and Perinatology of the Ministry of Health of the Russian Federation, Oparina Street 4, 117997 Moscow, Russia
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119991 Moscow, Russia
| |
Collapse
|
23
|
Rizzi M, Tonello S, Brinno C, Zecca E, Matino E, Cittone M, Rizzi E, Casciaro GF, D’Onghia D, Colangelo D, Minisini R, Bellan M, Castello LM, Chiocchetti A, Pirisi M, Rigamonti C, Lilleri D, Zavaglio F, Bergami F, Sola D, Sainaghi PP. SARS-CoV-2 infection risk is higher in vaccinated patients with inflammatory autoimmune diseases or liver transplantation treated with mycophenolate due to an impaired antiviral immune response: results of the extended follow up of the RIVALSA prospective cohort. Front Immunol 2023; 14:1185278. [PMID: 37545528 PMCID: PMC10398576 DOI: 10.3389/fimmu.2023.1185278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/07/2023] [Indexed: 08/08/2023] Open
Abstract
Background A relevant proportion of immunocompromised patients did not reach a detectable seroconversion after a full primary vaccination cycle against SARS-CoV-2. The effect of different immunosuppressants and the potential risks for SARS-CoV-2 infection in these subjects is largely unknown. Methods Patients from the Rivalsa prospective, observational cohort study with planned anti SARS-CoV-2 third dose mRNA vaccination between October and December 2021 were asked to participate to this follow-up study. Patients were asked about eventual confirmed positivity to SARS-CoV-2 infection within 6 months from the third dose and to undergo a blood draw to evaluate seroconversion status after the additional vaccine shot. Results 19 out of 114 patients taking part in the survey developed a confirmed SARS-CoV-2 infection; we identified mycophenolate treatment as an independent predictor of an increased risk of infection even after the third vaccine dose (OR: 5.20, 95% CI: 1.70-20.00, p=0.0053). This result is in agreement with the in vitro evidence that MMF impairs both B and T lymphocytes driven immune responses (reduction both in memory B cells producing anti-spike antibodies and in proliferating CD4+ and CD8+ T cells). Conclusions Immunocompromised patients need an additional vaccine administration to reach a detectable seroconversion, thus fostering a more personalized approach to their clinical management. Moreover, patients undergoing mycophenolate treatment show a specific increased infection risk, with respect to other immunosuppressants thus supporting a closer monitoring of their health status.
Collapse
Affiliation(s)
- Manuela Rizzi
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Stelvio Tonello
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
- CAAD, Center for Autoimmune and Allergic Diseases, and IRCAD (Interdisciplinary Research Center of Autoimmune Diseases), Università del Piemonte Orientale (UPO), Novara, Italy
| | - Cristiana Brinno
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Erika Zecca
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
- Department of Internal Medicine and COVID-19 Unit, AOU “Maggiore della Carità”, Novara, Italy
- Division of Emergency Medicine and COVID-19 sub-intensive unit, AOU “Maggiore della Carità”, Novara, Italy
| | - Erica Matino
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
- Department of Internal Medicine and COVID-19 Unit, AOU “Maggiore della Carità”, Novara, Italy
- Division of Emergency Medicine and COVID-19 sub-intensive unit, AOU “Maggiore della Carità”, Novara, Italy
| | - Micol Cittone
- Internal Medicine and Rheumatology Unit, AOU “Maggiore della Carità”, Novara, Italy
| | - Eleonora Rizzi
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
- Department of Internal Medicine and COVID-19 Unit, AOU “Maggiore della Carità”, Novara, Italy
- Division of Emergency Medicine and COVID-19 sub-intensive unit, AOU “Maggiore della Carità”, Novara, Italy
| | - Giuseppe Francesco Casciaro
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
- Department of Internal Medicine and COVID-19 Unit, AOU “Maggiore della Carità”, Novara, Italy
- Division of Emergency Medicine and COVID-19 sub-intensive unit, AOU “Maggiore della Carità”, Novara, Italy
| | - Davide D’Onghia
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Donato Colangelo
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Rosalba Minisini
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Mattia Bellan
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
- CAAD, Center for Autoimmune and Allergic Diseases, and IRCAD (Interdisciplinary Research Center of Autoimmune Diseases), Università del Piemonte Orientale (UPO), Novara, Italy
- Department of Internal Medicine and COVID-19 Unit, AOU “Maggiore della Carità”, Novara, Italy
- Division of Emergency Medicine and COVID-19 sub-intensive unit, AOU “Maggiore della Carità”, Novara, Italy
- Internal Medicine and Rheumatology Unit, AOU “Maggiore della Carità”, Novara, Italy
| | - Luigi Mario Castello
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
- Division of Internal Medicine, Azienda Ospedaliera “SS. Antonio e Biagio e Cesare Arrigo”, Alessandria, Italy
| | - Annalisa Chiocchetti
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
- CAAD, Center for Autoimmune and Allergic Diseases, and IRCAD (Interdisciplinary Research Center of Autoimmune Diseases), Università del Piemonte Orientale (UPO), Novara, Italy
| | - Mario Pirisi
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
- CAAD, Center for Autoimmune and Allergic Diseases, and IRCAD (Interdisciplinary Research Center of Autoimmune Diseases), Università del Piemonte Orientale (UPO), Novara, Italy
- Department of Internal Medicine and COVID-19 Unit, AOU “Maggiore della Carità”, Novara, Italy
- Division of Emergency Medicine and COVID-19 sub-intensive unit, AOU “Maggiore della Carità”, Novara, Italy
- Internal Medicine and Rheumatology Unit, AOU “Maggiore della Carità”, Novara, Italy
| | - Cristina Rigamonti
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
- Internal Medicine and Rheumatology Unit, AOU “Maggiore della Carità”, Novara, Italy
| | - Daniele Lilleri
- Unit of Microbiology and Virology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Federica Zavaglio
- Unit of Microbiology and Virology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Federica Bergami
- Unit of Microbiology and Virology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Daniele Sola
- Internal Medicine and Rheumatology Unit, AOU “Maggiore della Carità”, Novara, Italy
| | - Pier Paolo Sainaghi
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
- CAAD, Center for Autoimmune and Allergic Diseases, and IRCAD (Interdisciplinary Research Center of Autoimmune Diseases), Università del Piemonte Orientale (UPO), Novara, Italy
- Department of Internal Medicine and COVID-19 Unit, AOU “Maggiore della Carità”, Novara, Italy
- Division of Emergency Medicine and COVID-19 sub-intensive unit, AOU “Maggiore della Carità”, Novara, Italy
- Internal Medicine and Rheumatology Unit, AOU “Maggiore della Carità”, Novara, Italy
| |
Collapse
|
24
|
Cosan F, Demirel OU, Yalcin D, Sonkaya MM, Uluisik IE, Cecen O, Furuncuoglu Y, Celikmen DM, Kara O, Ceylan E, Avsar T. Comparison of anti-spike IgG, anti-spike IgA levels and neutralizing antibody activity induced by CoronaVac and BNT162b2 vaccines in patients with inflammatory rheumatic diseases receiving immunosuppressive therapy. BMC Rheumatol 2023; 7:20. [PMID: 37468956 DOI: 10.1186/s41927-023-00342-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 06/20/2023] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND The importance of COVID-19 vaccination for patients on immunosuppressive (IS) medication has increased due to the high risk of severe disease or mortality. Different vaccines have varying efficacy rates against symptomatic COVID-19, ranging from 46.8% to 95%. The objective of this study was to examine the differences in anti-Spike IgG, anti-Spike IgA, and neutralizing antibody (NAb) activity between the inactive CoronaVac vaccine and the mRNA-based BNT162b2 vaccine in IS patients. METHOD A total of 441 volunteers, including 104 IS patients, 263 healthy controls (HC), who received two doses of CoronaVac or BNT162b2, and 74 unvaccinated patients with a history of SARS-CoV-2 infection, were included in the study. Anti-spike IgG, IgA, and NAb activity were investigated. RESULTS Immunogenicity with BNT162b2 was higher than with CoronaVac, but in IS groups, it was lower than HC (CoronaVac-IS: 79.3%, CoronaVac-HC: 96.5%, p < 0.001; BNT162b2-IS: 91.3%, BNT162b2-HC: 100%, p = 0.005). With CoronaVac, anti-Spike IgG levels were significantly lower than BNT162b2 (CoronaVac-IS: 234.5AU/mL, CoronaVac-HC: 457.85AU/mL; BNT162b2-IS: 5311.2AU/mL, BNT162b2-HC: 8842.8AU/mL). NAb activity in the BNT162b2 group was significantly higher. NAb and anti-Spike IgG levels were found to be correlated. Among the IS group, a significantly lower response to the vaccines was observed when using rituximab. IgA levels were found to be lower with CoronaVac. CONCLUSIONS Although immunogenicity was lower in IS patients, an acceptable response was obtained with both vaccines, and significantly higher anti-Spike IgG, anti-Spike IgA, and NAb activity levels were obtained with BNT162b2.
Collapse
Affiliation(s)
- Fulya Cosan
- Faculty of Medicine, Department of Internal Medicine, Division of Rheumatology, Bahcesehir University, Istanbul, Turkey.
| | - Ozlem Unay Demirel
- Faculty of Medicine, Department of Medical Biochemistry, Bahcesehir University, Istanbul, Turkey
| | - Demet Yalcin
- Faculty of Medicine, Department of Medical Microbiology, and Infectious Diseases, Istinye University, Istanbul, Turkey
| | - Muhammed Mert Sonkaya
- Faculty of Medicine, Department of Internal Medicine, Bahcesehir University, Istanbul, Turkey
| | - Isilsu Ezgi Uluisik
- Faculty of Medicine, Department of Internal Medicine, Bahcesehir University, Istanbul, Turkey
| | - Olida Cecen
- Faculty of Medicine, Department of Internal Medicine, Bahcesehir University, Istanbul, Turkey
| | - Yavuz Furuncuoglu
- Faculty of Medicine, Department of Internal Medicine, Bahcesehir University, Istanbul, Turkey
| | - Deniz Maktav Celikmen
- Faculty of Medicine, Department of Internal Medicine, Bahcesehir University, Istanbul, Turkey
| | - Osman Kara
- Medical Park Goztepe Hospital, Department of Hematology, Bahcesehir University, Istanbul, Turkey
| | - Erkan Ceylan
- Medical Park Goztepe Hospital, Department of Chest Diseases, Bahcesehir University, Istanbul, Turkey
| | - Timucin Avsar
- Faculty of Medicine, Department of Medical Biology, Bahcesehir University, Istanbul, Turkey
| |
Collapse
|
25
|
Sendi P, Widmer N, Branca M, Thierstein M, Büchi AE, Güntensperger D, Blum MR, Baldan R, Tinguely C, Heg D, Theel ES, Berbari E, Tande AJ, Endimiani A, Gowland P, Niederhauser C. Do quantitative levels of antispike-IgG antibodies aid in predicting protection from SARS-CoV-2 infection? Results from a longitudinal study in a police cohort. J Med Virol 2023; 95:e28904. [PMID: 37386901 DOI: 10.1002/jmv.28904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/04/2023] [Accepted: 06/11/2023] [Indexed: 07/01/2023]
Abstract
In a COVID-19 sero-surveillance cohort study with predominantly healthy and vaccinated individuals, the objectives were (i) to investigate longitudinally the factors associated with the quantitative dynamics of antispike (anti-S1) IgG antibody levels, (ii) to evaluate whether the levels were associated with protection from SARS-CoV-2 infection, and (iii) to assess whether the association was different in the pre-Omicron compared with the Omicron period. The QuantiVac Euroimmun ELISA test was used to quantify anti-S1 IgG levels. The entire study period (16 months), the 11-month pre-Omicron period and the cross-sectional analysis before the Omicron surge included 3219, 2310, and 895 reactive serum samples from 949, 919, and 895 individuals, respectively. Mixed-effect linear, mixed-effect time-to-event, and logistic regression models were used to achieve the objectives. Age and time since infection or vaccination were the only factors associated with a decline of anti-S1 IgG levels. Higher antibody levels were significantly associated with protection from SARS-CoV-2 infection (0.89, 95% confidence interval [CI] 0.82-0.97), and the association was higher during the time period when Omicron was predominantly circulating compared with the ones when Alpha and Delta variants were predominant (adjusted hazard ratio for interaction 0.66, 95% CI 0.53-0.84). In a prediction model, it was estimated that >8000 BAU/mL anti-S1 IgG was required to reduce the risk of infection with Omicron variants by approximately 20%-30% for 90 days. Though, such high levels were only found in 1.9% of the samples before the Omicron surge, and they were not durable for 3 months. Anti-S1 IgG antibody levels are statistically associated with protection from SARS-CoV-2 infection. However, the prediction impact of the antibody level findings on infection protection is limited.
Collapse
Affiliation(s)
- Parham Sendi
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Nadja Widmer
- Interregional Blood Transfusion Swiss Red Cross, Bern, Switzerland
| | | | - Marc Thierstein
- Division Operations, Cantonal Police Bern, Bern, Switzerland
| | - Annina Elisabeth Büchi
- Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | | | - Manuel Raphael Blum
- Department of General Internal Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Institute of Primary Health Care (BIHAM), University of Bern, Bern, Switzerland
| | - Rossella Baldan
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | | | - Dik Heg
- CTU Bern, University of Bern, Bern, Switzerland
| | - Elitza S Theel
- Division of Clinical Microbiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Elie Berbari
- Division of Public Health, Infectious Diseases, and Occupational Medicine Mayo Clinic, Rochester, Minnesota, USA
| | - Aaron J Tande
- Division of Public Health, Infectious Diseases, and Occupational Medicine Mayo Clinic, Rochester, Minnesota, USA
| | - Andrea Endimiani
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Peter Gowland
- Interregional Blood Transfusion Swiss Red Cross, Bern, Switzerland
| | - Christoph Niederhauser
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
- Interregional Blood Transfusion Swiss Red Cross, Bern, Switzerland
| |
Collapse
|
26
|
Chandrasingh S, George CE, Inbaraj LR, Maddipati T. Antibody titres in fully vaccinated healthcare workers with and without breakthrough infection during the Delta and Omicron waves. J Family Med Prim Care 2023; 12:1298-1302. [PMID: 37649769 PMCID: PMC10465045 DOI: 10.4103/jfmpc.jfmpc_1809_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 02/15/2023] [Accepted: 02/22/2023] [Indexed: 09/01/2023] Open
Abstract
Introduction Assessment of antibody response to vaccination against SARS CoV2 has clinical, public health, and policy implications during the pandemic and in the context of future waves. Method In this repeated cross-sectional study, we estimated total binding antibody levels to the spike protein of the SARS CoV2 virus post two doses of Covishield vaccine among 133 health care workers (HCWs) (phase 1), followed by antibody levels among a subset (n = 61) of this group at 9 months after the second dose (phase 2). The time period of the first and second blood collection corresponds to Delta and Omicron waves, respectively. Results We report 100% seroconversion post 28 days of the second dose of the Covishield vaccine among infection naïve HCWs. In this study, 33% had a breakthrough infection in phase 1 and 24% reported a history of infection in phase 2. The antibody titres were higher in the breakthrough infection group compared to the infection naïve group during both Delta and Omicron waves. Conclusion This shows that there is a good seroconversion with two doses of vaccine, weaning of antibody with time, and a rise of antibody titre if infected with SARS CoV 2 subsequently.
Collapse
Affiliation(s)
| | - Carolin E. George
- Division of Community Health and Family Medicine, Bangalore Baptist Hospital, Bengaluru, Karnataka, India
| | - Leeberk R. Inbaraj
- Division of Community Health and Family Medicine, Bangalore Baptist Hospital, Bengaluru, Karnataka, India
- Presently, Scientist ‘E’ (Medical) ICMR-National Institute for Research in Tuberculosis, Chennai, Department of Health Research Ministry of Health and Family Welfare, Govt. of India
| | - Tatarao Maddipati
- Division of Community Health and Family Medicine, Bangalore Baptist Hospital, Bengaluru, Karnataka, India
| |
Collapse
|
27
|
Habermann E, Frommert LM, Ghannam K, Nguyen My L, Gieselmann L, Tober-Lau P, Klotsche J, Arumahandi de Silva AN, Ten Hagen A, Zernicke J, Kurth F, Sander LE, Klein F, Burmester GR, Biesen R, Albach FN. Performance of commercial SARS-CoV-2 wild-type and Omicron BA.1 antibody assays compared with pseudovirus neutralization tests. J Clin Virol 2023; 165:105518. [PMID: 37354690 DOI: 10.1016/j.jcv.2023.105518] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/12/2023] [Accepted: 06/05/2023] [Indexed: 06/26/2023]
Abstract
BACKGROUND Commercially available ELISA-based antibody tests are used to approximate vaccination success against SARS-CoV-2 in at-risk patients, but it is unclear whether they correlate with neutralization of the Omicron variant. METHODS 269 serum samples of a cohort of 44 non-immunosuppressed participants and 65 MTX-treated rheumatic patients taken before and after COVID-19 booster vaccinations were measured using COVID-19 antibody testing systems with wild-type and Omicron BA.1 antigens developed by three different manufacturers (surrogate virus neutralization test cPass, and binding antibody tests QuantiVac and SeraSpot), as well as with a pseudovirus neutralization test (pVNT). The pVNT was considered the gold standard for determining the presence and level of anti-SARS-CoV-2 antibodies. RESULTS All three wild-type ELISAs showed excellent test performance compared with wild-type neutralization in pVNT. However, out of 56 samples without Omicron BA.1 neutralization in pVNT, 71.4% showed positive results in at least one and 28.6% in all three wild-type ELISAs at the manufacturer-defined cut-offs. Omicron ELISAs showed either decreased specificity (57.1% and 55.4% for binding ELISAs) or sensitivity (51.2% in cPass) compared to Omicron neutralization in pVNT. The proportion of any false positive results among all samples decreased from 26.5% before to 3.2% after booster vaccination, however binding antibody test specificities remained below 70%. CONCLUSIONS We found a poorer test performance of new Omicron antibody test systems compared to wild-type tests in detecting neutralizing antibodies against the corresponding SARS-CoV-2 variants. Decisions for booster vaccination or passive immunization of at-risk patients should not be based solely on antibody test results.
Collapse
Affiliation(s)
- E Habermann
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - L M Frommert
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - K Ghannam
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - L Nguyen My
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - L Gieselmann
- Laboratory of Experimental Immunology, Institute of Virology, University Hospital Cologne, Cologne, Germany
| | - P Tober-Lau
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - J Klotsche
- German Rheumatism Research Center Berlin - a Leibniz Institute (DRFZ), Berlin, Germany
| | - A N Arumahandi de Silva
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - A Ten Hagen
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - J Zernicke
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - F Kurth
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - L E Sander
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - F Klein
- Laboratory of Experimental Immunology, Institute of Virology, University Hospital Cologne, Cologne, Germany
| | - G R Burmester
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - R Biesen
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - F N Albach
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
28
|
Ören MM, Canbaz S, Meşe S, Ağaçfidan A, Demir ÖS, Karaca E, Doğruyol AR, Otçu GH, Tükek T, Özgülnar N. Impact of Health Workers' Choice of COVID-19 Vaccine Booster on Immunization Levels in Istanbul, Turkey. Vaccines (Basel) 2023; 11:vaccines11050935. [PMID: 37243039 DOI: 10.3390/vaccines11050935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND There are limited data regarding short- and medium-term IgG antibody levels after the CoronaVac and BNT162b2 vaccines. This study aimed to investigate the antibody responses of health workers who initially received two doses of CoronaVac one month apart followed by a booster dose of either CoronaVac or BNT162b2, as well as determine whether either vaccine provided superior results. METHODS This research represents the second phase of a mixed-methods vaccine cohort study and was conducted between July 2021 and February 2022. The participants (n = 117) were interviewed in person and blood samples were collected before and at 1 and 6 months after the booster vaccination. RESULTS BNT162b2 was found to have greater immunogenic potential than CoronaVac (p < 0.001). Health workers without chronic disease exhibited statistically significant increases in antibody levels after both vaccines (p < 0.001), whereas only BNT162b2 caused a significant increase in antibody levels in participants with chronic disease (p < 0.001). Samples obtained before and at 1 and 6 months after the booster vaccination revealed no age- or sex-based differences in IgG-inducing potential for either vaccine (p > 0.05). Antibody levels were comparable in both vaccine groups before the booster regardless of COVID-19 history (p > 0.05); however, antibody levels were significantly higher after the BNT162b2 booster at 1 month (<0.001) and at 6 months, except among participants who had a positive history of COVID-19 infection (p < 0.001). CONCLUSIONS Our results suggest that even a single booster dose of BNT162b2 after initial vaccination with CoronaVac provides a protective advantage against COVID-19, especially for risk groups such as health workers and those with chronic diseases.
Collapse
Affiliation(s)
- Meryem Merve Ören
- Department of Public Health, Istanbul Faculty of Medicine, Istanbul University, Istanbul 34116, Turkey
| | - Sevgi Canbaz
- Department of Public Health, Istanbul Faculty of Medicine, Istanbul University, Istanbul 34116, Turkey
| | - Sevim Meşe
- Department of Medical Microbiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul 34116, Turkey
| | - Ali Ağaçfidan
- Department of Medical Microbiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul 34116, Turkey
| | - Ömer Serdil Demir
- Department of Public Health, Istanbul Faculty of Medicine, Istanbul University, Istanbul 34116, Turkey
| | - Esra Karaca
- Department of Public Health, Istanbul Faculty of Medicine, Istanbul University, Istanbul 34116, Turkey
| | - Ayşe Rumeysa Doğruyol
- Department of Public Health, Istanbul Faculty of Medicine, Istanbul University, Istanbul 34116, Turkey
| | - Gökçe Hazar Otçu
- Department of Public Health, Istanbul Faculty of Medicine, Istanbul University, Istanbul 34116, Turkey
| | - Tufan Tükek
- Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul 34116, Turkey
| | - Nuray Özgülnar
- Department of Public Health, Istanbul Faculty of Medicine, Istanbul University, Istanbul 34116, Turkey
| |
Collapse
|
29
|
Sayabovorn N, Phisalprapa P, Srivanichakorn W, Chaisathaphol T, Washirasaksiri C, Sitasuwan T, Tinmanee R, Kositamongkol C, Nimitpunya P, Mepramoon E, Ariyakunaphan P, Woradetsittichai D, Chayakulkeeree M, Phoompoung P, Mayurasakorn K, Sookrung N, Tungtrongchitr A, Wanitphakdeedecha R, Muangman S, Senawong S, Tangjittipokin W, Sanpawitayakul G, Nopmaneejumruslers C, Vamvanij V, Auesomwang C. Dynamics of Antibody Responses after Asymptomatic and Mild to Moderate SARS-CoV-2 Infections: Real-World Data in a Resource-Limited Country. Trop Med Infect Dis 2023; 8:tropicalmed8040185. [PMID: 37104311 PMCID: PMC10143231 DOI: 10.3390/tropicalmed8040185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
The dynamics of humoral immune responses of patients after SARS-CoV-2 infection is unclear. This study prospectively observed changes in anti-receptor binding domain immunoglobulin G (anti-RBD IgG) and neutralizing antibodies against the Wuhan and Delta strains at 1, 3, and 6 months postinfection between October 2021 and May 2022. Demographic data, clinical characteristics, baseline parameters, and blood samples of participants were collected. Of 5059 SARS-CoV-2 infected adult patients, only 600 underwent assessment at least once between 3 and 6 months after symptom onset. Patients were categorized as immunocompetent (n = 566), immunocompromised (n = 14), or reinfected (n = 20). A booster dose of a COVID-19 vaccine was strongly associated with maintained or increased COVID-19 antibody levels. The booster dose was also more strongly associated with antibody responses than the primary vaccination series. Among patients receiving a booster dose of a mRNA vaccine or a heterologous regimen, antibody levels remained steady or even increased for 3 to 6 months after symptom onset compared with inactivated or viral vector vaccines. There was a strong correlation between anti-RBD IgG and neutralizing antibodies against the Delta variant. This study is relevant to resource-limited countries for administering COVID-19 vaccines 3 to 6 months after infection.
Collapse
Affiliation(s)
- Naruemit Sayabovorn
- Division of Ambulatory Medicine, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Pochamana Phisalprapa
- Division of Ambulatory Medicine, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Weerachai Srivanichakorn
- Division of Ambulatory Medicine, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Thanet Chaisathaphol
- Division of Ambulatory Medicine, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Chaiwat Washirasaksiri
- Division of Ambulatory Medicine, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Tullaya Sitasuwan
- Division of Ambulatory Medicine, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Rungsima Tinmanee
- Division of Ambulatory Medicine, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Chayanis Kositamongkol
- Division of Ambulatory Medicine, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Pongpol Nimitpunya
- Division of Ambulatory Medicine, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Euarat Mepramoon
- Division of Ambulatory Medicine, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Pinyapat Ariyakunaphan
- Division of Ambulatory Medicine, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Diana Woradetsittichai
- Department of Nursing, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Methee Chayakulkeeree
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Pakpoom Phoompoung
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Korapat Mayurasakorn
- Siriraj Population Health and Nutrition Research Group, Department of Research Group and Research Network, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Nitat Sookrung
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Anchalee Tungtrongchitr
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Rungsima Wanitphakdeedecha
- Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Saipin Muangman
- Department of Anesthesiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Sansnee Senawong
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Watip Tangjittipokin
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Gornmigar Sanpawitayakul
- Division of Ambulatory Paediatrics, Department of Paediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Cherdchai Nopmaneejumruslers
- Division of Ambulatory Medicine, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Visit Vamvanij
- Department of Orthopaedic Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Chonticha Auesomwang
- Division of Ambulatory Medicine, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Correspondence: ; Tel.: +66-2-419-7190
| |
Collapse
|
30
|
Convalescent Plasma Treatment of Patients Previously Treated with B-Cell-Depleting Monoclonal Antibodies Suffering COVID-19 Is Associated with Reduced Re-Admission Rates. Viruses 2023; 15:v15030756. [PMID: 36992465 PMCID: PMC10059055 DOI: 10.3390/v15030756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/12/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023] Open
Abstract
Patients receiving treatment with B-cell-depleting monoclonal antibodies, such as anti-CD20 monoclonal antibodies, such as rituximab and obinutuzumab, either for hematological disease or another diagnosis, such as a rheumatological disease, are at an increased risk for medical complications and mortality from COVID-19. Since inconsistencies persist regarding the use of convalescent plasma (CP), especially in the vulnerable patient population that has received previous treatment with B-cell-depleting monoclonal antibodies, further studies should be performed in thisdirection. The aim of the present study was to describe the characteristics of patients with previous use of B-cell-depleting monoclonal antibodies and describe the potential beneficial effects of CP use in terms of mortality, ICU admission and disease relapse. In this retrospective cohort study, 39 patients with previous use of B-cell-depleting monoclonal antibodies hospitalized in the COVID-19 department of a tertiary hospital in Greece were recorded and evaluated. The mean age was 66.3 years and 51.3% were male. Regarding treatment for COVID-19, remdesivir was used in 89.7%, corticosteroids in 94.9% and CP in 53.8%. In-hospital mortality was 15.4%. Patients who died were more likely to need ICU admission and also had a trend towards a longer hospital stay, even though the last did not reach statistical significance. Patients treated with CP had a lower re-admission rate for COVID-19 after discharge. Further studies should be performed to identify the role of CP in patients with treatment with B-cell-depleting monoclonal antibodies suffering from COVID-19.
Collapse
|
31
|
Borkakoti R, Karikalan M, Nehul SK, Jogi HR, Sharma K, Nautiyal S, Mishra R, Mahajan S, Biswas SK, Nandi S, Chander V, Pawde A, Saikumar G, Singh KP, Sharma GK. A retrospective study showing a high rate of seropositivity against SARS-CoV-2 in wild felines in India. Arch Virol 2023; 168:109. [PMID: 36914777 PMCID: PMC10010641 DOI: 10.1007/s00705-023-05735-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 02/09/2023] [Indexed: 03/16/2023]
Abstract
We report a high rate of seropositivity against SARS-CoV-2 in wild felines in India. Seropositivity was determined by microneutralization and plaque reduction neutralization assays in captive Asiatic lions, leopards, and Bengal tigers. The rate of seropositivity was positively correlated with that of the incidence in humans, suggesting the occurrence of large spillover events.
Collapse
Affiliation(s)
- Richa Borkakoti
- CADRAD, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, Bareilly, 243122, India
| | - M Karikalan
- Center for Wildlife Conservation Management and Disease Surveillance, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, Bareilly, 243122, India
| | | | - Harsh Rajeshbhai Jogi
- CADRAD, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, Bareilly, 243122, India
| | - Kirtika Sharma
- Center for Wildlife Conservation Management and Disease Surveillance, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, Bareilly, 243122, India
| | - Sushmita Nautiyal
- CADRAD, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, Bareilly, 243122, India
| | - Ragini Mishra
- CADRAD, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, Bareilly, 243122, India
| | - Sonalika Mahajan
- Biological Standardization Division, ICAR-Indian Veterinary Research Institute, Izatnagar Bareilly, Izatnagar Uttar Pradesh, 243122, Uttar Pradesh, India
| | - Sanchay Kumar Biswas
- CADRAD, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, Bareilly, 243122, India
| | - Sukdeb Nandi
- CADRAD, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, Bareilly, 243122, India
| | - Vishal Chander
- Division of Virology, ICAR-Indian Veterinary Research Institute, Mukteshwar, 263138, Uttarakhand, India
- CADRAD, ICAR-Indian Veterinary Research Institute Izatnagar, Bareilly, 243122, Uttar Pradesh, India
| | - Abhijit Pawde
- Center for Wildlife Conservation Management and Disease Surveillance, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, Bareilly, 243122, India
| | - G Saikumar
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, Bareilly, 243122, India
| | - Karam Pal Singh
- CADRAD, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, Bareilly, 243122, India
| | - Gaurav Kumar Sharma
- CADRAD, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, Bareilly, 243122, India.
| |
Collapse
|
32
|
Ulinici M, Suljič A, Poggianella M, Milan Bonotto R, Resman Rus K, Paraschiv A, Bonetti AM, Todiras M, Corlateanu A, Groppa S, Ceban E, Petrovec M, Marcello A. Characterisation of the Antibody Response in Sinopharm (BBIBP-CorV) Recipients and COVID-19 Convalescent Sera from the Republic of Moldova. Vaccines (Basel) 2023; 11:vaccines11030637. [PMID: 36992221 DOI: 10.3390/vaccines11030637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/07/2023] [Accepted: 03/11/2023] [Indexed: 03/16/2023] Open
Abstract
The early availability of effective vaccines against SARS-CoV-2, the aetiologic cause of COVID-19, has been at the cornerstone of the global recovery from the pandemic. This study aimed to assess the antispike RBD IgG antibody titres and neutralisation potential of COVID-19 convalescent plasma and the sera of Moldovan adults vaccinated with the Sinopharm BBIBP-CorV vaccine. An IgG ELISA with recombinant SARS-CoV-2 spike RBD and two pseudovirus-based neutralisation assays have been developed to evaluate neutralising antibodies against SARS-CoV-2 in biosafety level 2 containment facilities. A significant moderate correlation was observed between IgG titres and the overall neutralising levels for each neutralisation assay (ρ = 0.64, p < 0.001; ρ = 0.52, p < 0.001). A separate analysis of convalescent and vaccinated individuals showed a higher correlation of neutralising and IgG titres in convalescent individuals (ρ = 0.68, p < 0.001, ρ = 0.45, p < 0.001) compared with vaccinated individuals (ρ = 0.58, p < 0.001; ρ = 0.53, p < 0.001). It can be concluded that individuals who recovered from infection developed higher levels of antispike RBD IgG antibodies. In comparison, the Sinopharm-vaccinated individuals produced higher levels of neutralising antibodies than convalescent plasma.
Collapse
Affiliation(s)
- Mariana Ulinici
- National Institute for Health and Medical Research, Faculty of Medicine, Nicolae Testemitanu State University of Medicine and Pharmacy, 2004 Chisinau, Moldova
- Alfa Diagnostica Laboratory, 2021 Chisinau, Moldova
| | - Alen Suljič
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Monica Poggianella
- Laboratory of Molecular Virology, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy
| | - Rafaela Milan Bonotto
- Laboratory of Molecular Virology, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy
| | - Katarina Resman Rus
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Angela Paraschiv
- National Institute for Health and Medical Research, Faculty of Medicine, Nicolae Testemitanu State University of Medicine and Pharmacy, 2004 Chisinau, Moldova
| | - Amedeo Marco Bonetti
- Laboratory of Molecular Virology, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy
| | - Mihail Todiras
- National Institute for Health and Medical Research, Faculty of Medicine, Nicolae Testemitanu State University of Medicine and Pharmacy, 2004 Chisinau, Moldova
| | - Alexandru Corlateanu
- National Institute for Health and Medical Research, Faculty of Medicine, Nicolae Testemitanu State University of Medicine and Pharmacy, 2004 Chisinau, Moldova
| | - Stanislav Groppa
- National Institute for Health and Medical Research, Faculty of Medicine, Nicolae Testemitanu State University of Medicine and Pharmacy, 2004 Chisinau, Moldova
| | - Emil Ceban
- National Institute for Health and Medical Research, Faculty of Medicine, Nicolae Testemitanu State University of Medicine and Pharmacy, 2004 Chisinau, Moldova
| | - Miroslav Petrovec
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Alessandro Marcello
- Laboratory of Molecular Virology, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy
| |
Collapse
|
33
|
Graninger M, Jani CM, Reuberger E, Prüger K, Gaspar P, Springer DN, Borsodi C, Weidner L, Rabady S, Puchhammer-Stöckl E, Jungbauer C, Höltl E, Aberle JH, Stiasny K, Weseslindtner L. Comprehensive Comparison of Seven SARS-CoV-2-Specific Surrogate Virus Neutralization and Anti-Spike IgG Antibody Assays Using a Live-Virus Neutralization Assay as a Reference. Microbiol Spectr 2023; 11:e0231422. [PMID: 36622205 PMCID: PMC9927416 DOI: 10.1128/spectrum.02314-22] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Neutralizing antibodies (nAbs) are considered a valuable marker for measuring humoral immunity against SARS-CoV-2. However, live-virus neutralization tests (NTs) require high-biosafety-level laboratories and are time-consuming. Therefore, surrogate virus neutralization tests (sVNTs) have been widely applied, but unlike most anti-spike (S) antibody assays, NTs and sVNTs are not harmonized, requiring further evaluation and comparative analyses. This study compared seven commercial sVNTs and anti-S-antibody assays with a live-virus NT as a reference, using a panel of 720 single and longitudinal serum samples from 666 convalescent patients after SARS-CoV-2 infection. The sensitivity of these assays for detecting antibodies ranged from 48 to 94% after PCR-confirmed infection and from 56% to 100% relative to positivity in the in-house live-virus NT. Furthermore, we performed receiver operating characteristic (ROC) curve analyses to determine which immunoassays were most suitable for assessing nAb titers exceeding a specific cutoff (NT titer, ≥80) and found that the NeutraLISA and the cPass assays reached the highest area under the curve (AUC), exceeding 0.91. In addition, when the assays were compared for their correlation with nAb kinetics over time in a set of longitudinal samples, the extent of the measured decrease of nAbs after infection varied widely among the evaluated immunoassays. Finally, in vaccinated convalescent patients, high titers of nAbs exceeded the upper limit of the evaluated assays' quantification ranges. Based on data from this study, we conclude that commercial immunoassays are acceptable substitutes for live-virus NTs, particularly when additional adapted cutoffs are employed to detect nAbs beyond a specific threshold titer. IMPORTANCE While the measurement of neutralizing antibodies is considered a valuable tool in assessing protection against SARS-CoV-2, neutralization tests employ live-virus isolates and cell culture, requiring advanced laboratory biosafety levels. Including a large sample panel (over 700 samples), this study provides adapted cutoff values calculated for seven commercial immunoassays (including four surrogate neutralization assays and a protein-based microarray) that robustly correlate with specific titers of neutralizing antibodies.
Collapse
Affiliation(s)
| | | | | | - Katja Prüger
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Philipp Gaspar
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | | | | | - Lisa Weidner
- Austrian Red Cross, Blood Service for Vienna, Lower Austria, and Burgenland, Vienna, Austria
| | - Susanne Rabady
- Karl Landsteiner University of Health Sciences, Department of General Health Studies, Division General and Family Medicine, Krems, Austria
| | | | - Christof Jungbauer
- Austrian Red Cross, Blood Service for Vienna, Lower Austria, and Burgenland, Vienna, Austria
| | - Eva Höltl
- Center for Public Health, Medical University of Vienna, Vienna, Austria
| | | | - Karin Stiasny
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
34
|
Humoral immunogenicity of COVID-19 vaccines in patients with coeliac disease and other noncoeliac enteropathies compared to healthy controls. Eur J Gastroenterol Hepatol 2023; 35:167-173. [PMID: 36574307 DOI: 10.1097/meg.0000000000002484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVES Data are lacking on the immunogenicity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines in patients affected by coeliac disease, Whipple's disease and other noncoeliac enteropathies (NCE), characterised by primary or drug-related immunosuppression. We aimed to assess humoral response to SARS-CoV-2 vaccination in these patients compared to controls. METHODS Between December 2021 and January 2022, IgG anti-SARS-CoV-2 spike protein antibodies were measured in serum samples of coeliac disease, Whipple's disease and NCE patients attending our gastroenterology outpatient clinic for follow-up, who had received their first SARS-CoV-2 vaccination dose 3-6-9 (±1) months prior. Humoral response was compared with healthy controls (vaccinated healthcare workers undergoing serological screening), matched for gender, age, and time from first vaccine dose at sample collection. RESULTS A total of 120 patients [107 coeliac disease; 10 Whipple's disease; 2 common-variable immunodeficiency (CVID); 1 idiopathic villous atrophy; 77 F, 42 ± 16 years] and 240 matched controls (154 F, 43 ± 14 years) were enrolled. At 3, 6 and 9 months, humoral response in coeliac patients was not impaired compared to controls. Inadequate humoral response to vaccination was significantly more common among Whipple's disease patients than controls ( P < 0.001). Patients on immunosuppressive therapy had markedly lower IgG anti-SARS-CoV-2 antibody titres (median 14 vs. 520 BAU/mL, P < 0.001). As expected, patients with CVID showed no humoral response to vaccination. CONCLUSIONS Humoral immunogenicity of SARS-CoV-2 vaccines was not reduced in coeliac disease patients compared to controls, although it was in Whipple's disease and CVID patients. Post-vaccination humoral response should be monitored in patients with Whipple's disease and chronic enteropathies on immunosuppressive therapy in order to schedule vaccine booster doses.
Collapse
|
35
|
Tsuchiya K, Maeda K, Matsuda K, Takamatsu Y, Kinoshita N, Kutsuna S, Hayashida T, Gatanaga H, Ohmagari N, Oka S, Mitsuya H. Neutralization activity of IgG antibody in COVID‑19‑convalescent plasma against SARS-CoV-2 variants. Sci Rep 2023; 13:1263. [PMID: 36690803 PMCID: PMC9869318 DOI: 10.1038/s41598-023-28591-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We evaluated the anti-SARS-CoV-2 antibody levels, anti-spike (S)-immunoglobulin G (IgG) and anti-nucleocapsid (N)-IgG, and the neutralization activity of IgG antibody in COVID‑19‑convalescent plasma against variants of SARS-CoV-2, alpha, beta, gamma, delta, kappa, omicron and R.1 strains. The study included 30 patients with clinically diagnosed COVID-19. The anti-S-IgG and anti-N-IgG levels ranged from 30.0 to 555.1 and from 10.1 to 752.6, respectively. The neutralization activity (50% inhibition concentration: IC50) for the wild-type Wuhan strain ranged from < 6.3 to 81.5 µg/ml. IgG antibodies were > 100 µg/ml in 18 of 30 (60%) subjects infected with the beta variant. The IC50 values for wild-type and beta variants correlated inversely with anti-S-IgG levels (p < 0.05), but no such correlation was noted with anti-N-IgG. IgG antibodies prevented infectivity and cytopathic effects of six different variants of concern in the cell-based assays of wild-type, alpha, gamma, delta, kappa and R.1 strains, but not that of the beta and omicron strains. IgG is considered the main neutralizing activity in the blood, although other factors may be important in other body tissues.
Collapse
Affiliation(s)
- Kiyoto Tsuchiya
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan.
| | - Kenji Maeda
- Department of Refractory Viral Infections, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
| | - Kouki Matsuda
- Department of Refractory Viral Infections, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
| | - Yuki Takamatsu
- Department of Refractory Viral Infections, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
| | - Noriko Kinoshita
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Satoshi Kutsuna
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Tsunefusa Hayashida
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Hiroyuki Gatanaga
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Norio Ohmagari
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Shinichi Oka
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Hiroaki Mitsuya
- Department of Refractory Viral Infections, National Center for Global Health and Medicine Research Institute, Tokyo, Japan.
- Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
- Department of Clinical Sciences, Kumamoto University Hospital, Kumamoto, Japan.
| |
Collapse
|
36
|
Cosgun Y, Emanet N, Kamiloglu AÖ, Grage-Griebenow E, Hohensee S, Saschenbrecker S, Steinhagen K, Korukluoglu G. Humoral Immune Response to CoronaVac in Turkish Adults. Vaccines (Basel) 2023; 11:vaccines11020216. [PMID: 36851093 PMCID: PMC9967599 DOI: 10.3390/vaccines11020216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 01/20/2023] Open
Abstract
While most approved vaccines are based on the viral spike protein or its immunogenic regions, inactivated whole-virion vaccines (e.g., CoronaVac) contain additional antigens that may enhance protection. This study analyzes short-term humoral responses against the SARS-CoV-2 spike (S1) and nucleocapsid (NCP) protein in 50 Turkish adults without previous SARS-CoV-2 infection after CoronaVac immunization. Samples were collected before vaccination (t0), 28-29 days after the first vaccine dose and prior to the second dose (t1), as well as 14-15 days after the second dose (t2). Anti-S1 IgG and IgA as well as anti-NCP IgG were quantified using ELISA. At t1, seroconversion rates for anti-S1 IgG, anti-S1 IgA and anti-NCP IgG were 30.0%, 28.0% and 4.0%, respectively, increasing significantly to 98.0%, 78.0% and 40.0% at t2. The anti-NCP IgG median (t2) was below the positivity cut-off, while anti-S1 IgG and IgA medians were positive. Anti-S1 IgG levels strongly correlated with anti-S1 IgA (rs = 0.767, p < 0.001) and anti-NCP IgG (rs = 0.683, p < 0.001). In conclusion, two CoronaVac doses induced significant increases in antibodies against S1 and NCP. Despite strong correlations between the antibody concentrations, the median levels and seroconversion rates of S1-specific responses exceed those of NCP-specific responses as early as two weeks after the second vaccine dose.
Collapse
Affiliation(s)
- Yasemin Cosgun
- National Arboviruses and Viral Zoonotic Diseases Laboratory, Microbiology Reference Laboratories Department, Public Health General Directorate of Turkey, Ankara 06100, Turkey
| | - Nergis Emanet
- Virology Unit, Department of Medical Microbiology, Faculty of Medicine, Hacettepe University, Ankara 06230, Turkey
| | | | - Evelin Grage-Griebenow
- Institute for Experimental Immunology, EUROIMMUN Medizinische Labordiagnostika AG, 23560 Lübeck, Germany
| | - Susann Hohensee
- Institute for Experimental Immunology, EUROIMMUN Medizinische Labordiagnostika AG, 23560 Lübeck, Germany
| | - Sandra Saschenbrecker
- Institute for Experimental Immunology, EUROIMMUN Medizinische Labordiagnostika AG, 23560 Lübeck, Germany
- Correspondence: ; Tel.: +49-451-3032-1617
| | - Katja Steinhagen
- Institute for Experimental Immunology, EUROIMMUN Medizinische Labordiagnostika AG, 23560 Lübeck, Germany
| | - Gulay Korukluoglu
- National Arboviruses and Viral Zoonotic Diseases Laboratory, Microbiology Reference Laboratories Department, Public Health General Directorate of Turkey, Ankara 06100, Turkey
| |
Collapse
|
37
|
Shimizu S, Sakamoto S, Yamada M, Funaki T, Fukuda A, Uchida H, Okada N, Nakao T, Kodama T, Komine R, Shoji K, Baba C, Suzuki Y, Nakagawa S, Ogimi C, Kasahara M. Successful pediatric liver transplantation case with a positive SARS-CoV-2 test at the time of transplant. Hepatol Res 2023. [PMID: 36654476 DOI: 10.1111/hepr.13881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/14/2022] [Accepted: 01/12/2023] [Indexed: 01/20/2023]
Abstract
AIM We report a successful liver transplantation (LT) in a child with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. CASE PRESENTATION A 3-year-old female patient with decompensated cirrhosis due to Alagille syndrome underwent a split LT with a left lateral segment graft. She had a history of SARS-CoV-2 infection 4 months before LT. She was exposed to SARS-CoV-2 after the decision for organ acceptance. We repeatedly confirmed the negative SARS-CoV-2 test by polymerase chain reaction (PCR) before LT. Liver transplantation was carried out in the negative pressure operational theater with full airborne, droplet, and contact precautions as the patient was considered to be within the incubation period of SARS-CoV-2. The SARS-CoV-2 PCR test became positive in the nasopharyngeal swab specimen at the operation. Remdesivir, the antiviral treatment, was held off due to potential hepatotoxicity and no exacerbation of COVID-19. She received tacrolimus and low-dose steroids per protocol. She remained SARS-CoV-2 positive on postoperative days (PODs) 1, 2, and 5. The presence of antibodies for SARS-CoV-2 at LT was confirmed later. On POD 53, she was discharged without any symptomatic infection. CONCLUSION This case demonstrated that a positive SARS-CoV-2 result was not an absolute contraindication for a life-saving LT. Liver transplantation could be safely performed in a pediatric patient with asymptomatic COVID-19 and S-immunoglobulin G antibodies for SARS-CoV-2.
Collapse
Affiliation(s)
- Seiichi Shimizu
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Seisuke Sakamoto
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Masaki Yamada
- Division of Infectious Diseases, National Center for Child Health and Development, Tokyo, Japan.,Department of Advanced Medicine for Viral Infections, National Center for Child Health and Development, Tokyo, Japan
| | - Takanori Funaki
- Division of Infectious Diseases, National Center for Child Health and Development, Tokyo, Japan
| | - Akinari Fukuda
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Hajime Uchida
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Noriki Okada
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Toshimasa Nakao
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Tasuku Kodama
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Ryuji Komine
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Kensuke Shoji
- Division of Infectious Diseases, National Center for Child Health and Development, Tokyo, Japan
| | - Chiaki Baba
- Department of Anesthesia and Intensive Care, National Center for Child Health and Development, Tokyo, Japan
| | - Yasuyuki Suzuki
- Department of Anesthesia and Intensive Care, National Center for Child Health and Development, Tokyo, Japan
| | - Satoshi Nakagawa
- Critical Care Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Chikara Ogimi
- Division of Infectious Diseases, National Center for Child Health and Development, Tokyo, Japan
| | - Mureo Kasahara
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| |
Collapse
|
38
|
Zhou Y, Qu J, Sun X, Yue Z, Liu Y, Zhao K, Yang F, Feng J, Pan X, Jin Y, Cheng Z, Yang L, Ha UH, Wu W, Li L, Bai F. Delivery of spike-RBD by bacterial type three secretion system for SARS-CoV-2 vaccine development. Front Immunol 2023; 14:1129705. [PMID: 36895557 PMCID: PMC9988893 DOI: 10.3389/fimmu.2023.1129705] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/07/2023] [Indexed: 02/23/2023] Open
Abstract
COVID-19 pandemic continues to spread throughout the world with an urgent demand for a safe and protective vaccine to effectuate herd protection and control the spread of SARS-CoV-2. Here, we report the development of a bacterial vector COVID-19 vaccine (aPA-RBD) that carries the gene for the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein. Live-attenuated strains of Pseudomonas aeruginosa (aPA) were constructed which express the recombinant RBD and effectively deliver RBD protein into various antigen presenting cells through bacterial type 3 secretion system (T3SS) in vitro. In mice, two-dose of intranasal aPA-RBD vaccinations elicited the development of RBD-specific serum IgG and IgM. Importantly, the sera from the immunized mice were able to neutralize host cell infections by SARS-CoV-2 pseudovirus as well as the authentic virus variants potently. T-cell responses of immunized mice were assessed by enzyme-linked immunospot (ELISPOT) and intracellular cytokine staining (ICS) assays. aPA-RBD vaccinations can elicit RBD-specific CD4+and CD8+T cell responses. T3SS-based RBD intracellular delivery heightens the efficiency of antigen presentation and enables the aPA-RBD vaccine to elicit CD8+T cell response. Thus, aPA vector has the potential as an inexpensive, readily manufactured, and respiratory tract vaccination route vaccine platform for other pathogens.
Collapse
Affiliation(s)
- Yuchen Zhou
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Jing Qu
- Department of Pathogen Biology, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Xiaomeng Sun
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Zhuo Yue
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Yingzi Liu
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen, China
| | - Keli Zhao
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen, China.,Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Fan Yang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Jie Feng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Xiaolei Pan
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Yongxin Jin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Zhihui Cheng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Liang Yang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Un-Hwan Ha
- Department of Biotechnology and Bioinformatics, Korea University, Sejong, Republic of Korea
| | - Weihui Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Liang Li
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Fang Bai
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
39
|
Petrović V, Vuković V, Patić A, Marković M, Ristić M. Immunogenicity of BNT162b2, BBIBP-CorV, Gam-COVID-Vac and ChAdOx1 nCoV-19 Vaccines Six Months after the Second Dose: A Longitudinal Prospective Study. Vaccines (Basel) 2022; 11:56. [PMID: 36679901 PMCID: PMC9865554 DOI: 10.3390/vaccines11010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/04/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Many available SARS-CoV-2 vaccines demonstrated good humoral response, but studies directly comparing their immunogenicity in the general population are lacking. We evaluated the medium−term kinetics of anti-S SARS-CoV-2 antibodies (Abs) at one and six months after the second dose of BNT162b2, BBIBP-CorV, and Gam-COVID-Vac. Immunogenicity at six months was directly compared between BNT162b2, BBIBP-CorV, Gam-COVID-Vac, and ChAdOx1 nCoV-19. Participants ≥ 20 years old from Novi Sad, Serbia, without prior SARS-CoV-2 infection, were included. Anti S1/S2 IgG antibodies were measured using quantitative LIAISON SARS-CoV-2 assay. A total of 368 participants were included: 231 (62.77%) had sera collected at two time points. Two doses of BNT162b2 were received by 37.50% of participants, followed by BBIBP-CorV (22.01%), Gam-COVID-Vac (21.47%), and ChAdOx1 nCoV-19 (19.02%). Mean Ab levels at the 28th day and 6 months were 216.55 (SD = 105.73) AU/mL and 75.68 (SD = 57.30) for BNT162b2, 194.38 (SD = 140.24) and 90.53 (SD = 111.30) for Gam-COVID-Vac, and 72.74 (SD = 80.04) and 24.43 (SD = 38.43) for BBIBP-CorV group (p < 0.01, between two time points across all three groups), with a significant difference between women and men (p < 0.01, for both sexes). At the sixth month post-vaccination, the highest mean Ab level was detected in Gam-COVID-Vac group (91.28 AU/mL, SD = 95.96), followed by BNT162b2 (85.25 AU/mL, SD = 60.02), ChAdOx1 nCoV-19 (64.22 AU/mL, SD = 65.30), and BBIBP-CorV (25.26 AU/mL, SD = 36.92) (p < 0.01). Anti-spike IgG persistence was demonstrated six months post-vaccination with a significant decline in Ab levels. These results suggest a lower protection against SARS-CoV-2 over time. Our findings support the introduction of additional (booster) doses.
Collapse
Affiliation(s)
- Vladimir Petrović
- Department of Epidemiology, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
- Institute of Public Health of Vojvodina, 21000 Novi Sad, Serbia
| | - Vladimir Vuković
- Department of Epidemiology, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
- Institute of Public Health of Vojvodina, 21000 Novi Sad, Serbia
| | - Aleksandra Patić
- Institute of Public Health of Vojvodina, 21000 Novi Sad, Serbia
- Department of Microbiology with Parasitology and Immunology, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Miloš Marković
- Department of Immunology, Faculty of Medicine, Institute of Microbiology and Immunology, University of Belgrade, 11000 Belgrade, Serbia
| | - Mioljub Ristić
- Department of Epidemiology, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
- Institute of Public Health of Vojvodina, 21000 Novi Sad, Serbia
| |
Collapse
|
40
|
Hosseini SSJ, Dudakova A, Kummer K, Zschüntzsch J. [SARS-CoV-2 antibody response to the second COVID-19 vaccination in neuromuscular disease patients under immune modulating treatment]. DER NERVENARZT 2022; 93:1219-1227. [PMID: 35997783 PMCID: PMC9395911 DOI: 10.1007/s00115-022-01363-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 06/23/2022] [Indexed: 12/04/2022]
Abstract
Successful vaccination (adequate elevation of anti-spike protein antibodies) is attributed with sufficient protection against a severe course of coronavirus disease 2019 (COVID-19). For patients with chronic inflammatory diseases (CID) and immunosuppression the success of vaccination is an ongoing scientific discourse. Therefore, we evaluated the antibody titer against the S1 antigen of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 2 weeks after complete immunization in patients with an underlying neuromuscular disease (NMD), who presented to our neurological day clinic and outpatient department for regular infusions of immunoglobulins. The data show that patients with chronic autoimmune NMD and simultaneous immunosuppressive or immune modulating treatment show an antibody response after vaccination with both mRNA and vector vaccines. In comparison to healthy subjects there is a comparable number of seroconversions due to the vaccination. A correlation between immunoglobulin dose and vaccination response could not be found; however, in contrast, there was a significant reduction of specific antibody synthesis, especially for the combination of mycophenolate mofetil (MMF) and prednisolone.
Collapse
Affiliation(s)
- S S Justus Hosseini
- Neuromuskuläres Zentrum Göttingen, Klinik für Neurologie, Universitätsmedizin Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Deutschland
| | - Anna Dudakova
- Institut für Medizinische Mikrobiologie und Virologie, Universitätsmedizin Göttingen, Göttingen, Deutschland
| | - Karsten Kummer
- Neuromuskuläres Zentrum Göttingen, Klinik für Neurologie, Universitätsmedizin Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Deutschland
| | - Jana Zschüntzsch
- Neuromuskuläres Zentrum Göttingen, Klinik für Neurologie, Universitätsmedizin Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Deutschland.
| |
Collapse
|
41
|
Liu WD, Wang JT, Chao TL, Ieong SM, Tsai YM, Kuo PH, Tsai MJ, Chen YJ, Li GC, Ho SY, Chen HH, Huang YS, Hung CC, Chen YC, Chang SY, Chang SC. Evolution of neutralizing antibodies and cross-activity against different variants of SARS-CoV-2 in patients recovering from COVID-19. J Formos Med Assoc 2022:S0929-6646(22)00436-3. [PMID: 36496300 PMCID: PMC9705194 DOI: 10.1016/j.jfma.2022.11.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Patients recovering from COVID-19 may need vaccination against SARS-CoV-2 because acquired immunity from primary infection may wane, given the emergence of new SARS-CoV-2 variants. Understanding the trends of anti-spike IgG and neutralizing antibody titers in patients recovering from COVID-19 may inform the decision made on the appropriate interval between recovery and vaccination. METHODS Participants aged 20 years or older and diagnosed with COVID-19 between January and December, 2020 were enrolled. Serum specimens were collected every three months from 10 days to 12 months after the onset of symptom for determinations of anti-spike IgG and neutralizing antibody titers against SARS-CoV-2 Wuhan strain with D614G mutation, alpha, gamma and delta variants. RESULTS Of 19 participants, we found a decreasing trend of geometric mean titers of anti-spike IgG from 560.9 to 217 and 92 BAU/mL after a 4-month and a 7-month follow-up, respectively. The anti-spike IgG titers declined more quickly in the ten participants with severe or critical disease than the nine participants with only mild to moderate disease between one month and seven months after SARS-CoV-2 infection (-8.49 vs - 2.34-fold, p < 0.001). The neutralizing activity of the convalescent serum specimens collected from participants recovering from wild-type SARS-CoV-2 infection against different variants was lower, especially against the delta variants (p < 0.01 for each variant with Wuhan strain as reference). CONCLUSION Acquired immunity from primary infection with SARS-CoV-2 waned within 4-7 months in COVID-19 patients, and neutralizing cross-activities against different SARS-CoV-2 variants were lower compared with those against wild-type strain.
Collapse
Affiliation(s)
- Wang-Da Liu
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan,Department of Medicine, National Taiwan University Cancer Center, Taipei, Taiwan
| | - Jann-Tay Wang
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan,Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan,Corresponding author. Department of Internal Medicine, National Taiwan University Hospital, 7 Chung-Shan South Rd., Taipei City 10002, Taiwan
| | - Tai-Ling Chao
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Si-Man Ieong
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ya-Min Tsai
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Po-Hsien Kuo
- Department of Internal Medicine, National Taiwan University Hospital Biomedical Park Hospital, Hsinchu, Taiwan
| | - Ming-Jui Tsai
- Department of Internal Medicine, National Taiwan University Hospital Yun-Lin Branch, Yun-Lin County, Taiwan
| | - Yi-Jie Chen
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Guei-Chi Li
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Shu-Yuan Ho
- Department of Laboratory Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hui-Hou Chen
- Department of Laboratory Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu-Shan Huang
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chien-Ching Hung
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan,Department of Internal Medicine, National Taiwan University Hospital Yun-Lin Branch, Yun-Lin County, Taiwan,Department of Tropical Medicine and Parasitology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yee-Chun Chen
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan,Center of Infection Control, National Taiwan University Hospital, Taipei, Taiwan
| | - Sui-Yuan Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan,Department of Laboratory Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan,Corresponding author. Department of Laboratory Medicine, National Taiwan University Hospital, 7 Chung-Shan South Rd., Taipei City 10002, Taiwan
| | - Shan-Chwen Chang
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan,School of Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
42
|
El-Ghitany EM, Hashish MH, Farghaly AG, Omran EA. Determining the SARS-CoV-2 Anti-Spike Cutoff Level Denoting Neutralizing Activity Using Two Commercial Kits. Vaccines (Basel) 2022; 10:1952. [PMID: 36423048 PMCID: PMC9699632 DOI: 10.3390/vaccines10111952] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/07/2022] [Accepted: 11/14/2022] [Indexed: 06/10/2024] Open
Abstract
BACKGROUND The viral neutralization assay is the gold standard to estimate the level of immunity against SARS-CoV-2. This study analyzes the correlation between the quantitative Anti-SARS-CoV-2 QuantiVac ELISA (IgG) and the NeutraLISA neutralization assay. METHODS 650 serum samples were tested for both SARS-CoV-2 anti-spike (anti-S) immunoglobulin G (IgG) and neutralizing antibodies (nAbs) using kits by EUROIMMUN, Germany. RESULTS There was a significant correlation between levels of anti-S and nAbs (Spearman's rho = 0.913). Among the positive samples for anti-S, 77.0% (n = 345) were positive for nAbs. There was a substantial agreement between anti-S and nAbs (Cohen's kappa coefficient = 0.658; agreement of 83.38%). Considering NeutraLISA as a gold standard, anti-S had a sensitivity of 98.57%, specificity of 65.66%, NPV of 97.5%, and PPV of 77.0%. When the anti-S titer was greater than 18.1 RU/mL (57.9 BAU/mL), nAbs were positive, with a sensitivity of 90.0% and specificity of 91%. CONCLUSIONS A titer of SARS-CoV-2 anti-S IgG can be correlated with levels of nAbs.
Collapse
Affiliation(s)
- Engy Mohamed El-Ghitany
- Department of Tropical Health, High Institute of Public Health, Alexandria University, Alexandria 21526, Egypt
| | - Mona H. Hashish
- Department of Microbiology, High Institute of Public Health, Alexandria University, Alexandria 21526, Egypt
| | - Azza Galal Farghaly
- Department of Tropical Health, High Institute of Public Health, Alexandria University, Alexandria 21526, Egypt
| | - Eman A. Omran
- Department of Microbiology, High Institute of Public Health, Alexandria University, Alexandria 21526, Egypt
| |
Collapse
|
43
|
Erber AC, Wagner A, Karachaliou M, Jeleff M, Kalafatis P, Kogevinas M, Pepłońska B, Santonja I, Schernhammer E, Stockinger H, Straif K, Wiedermann U, Waldhör T, Papantoniou K. The Association of Time of Day of ChAdOx1 nCoV-19 Vaccine Administration With SARS-CoV-2 Anti-Spike IgG Antibody Levels: An Exploratory Observational Study. J Biol Rhythms 2022; 38:98-108. [PMID: 36367167 PMCID: PMC9659693 DOI: 10.1177/07487304221132355] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Data from human and animal studies are highly suggestive of an influence of time of day of vaccine administration on host immune responses. In this population-based study, we aimed to investigate the effect of time of day of administration of a COVID-19 vector vaccine, ChAdOx1 nCoV-19 (AstraZeneca), on SARS-CoV-2 anti-spike S1 immunoglobulin (IgG) levels. Participants were 803 university employees who received their first vaccine dose in March 2021, had serology data at baseline and at 3 weeks, and were seronegative at baseline. Antibody levels were determined in binding antibody units (BAU/mL) using enzyme-linked immunosorbent assay (ELISA). Generalized additive models (GAM) and linear regression were used to evaluate the association of time of day of vaccination continuously and in hourly bins with antibody levels at 3 weeks. Participants had a mean age of 42 years (SD: 12; range: 21-74) and 60% were female. Time of day of vaccination was associated non-linearly ("reverse J-shape") with antibody levels. Morning vaccination was associated with the highest (9:00-10:00 h: mean 292.1 BAU/mL; SD: 262.1), early afternoon vaccination with the lowest (12:00-13:00 h: mean 217.3 BAU/mL; SD: 153.6), and late afternoon vaccination with intermediate (14:00-15:00 h: mean 280.7 BAU/mL; SD: 262.4) antibody levels. Antibody levels induced by 12:00-13:00 h vaccination (but not other time intervals) were significantly lower compared to 9:00-10:00 h vaccination after adjusting for potential confounders (beta coefficient = -75.8, 95% confidence interval [CI] = -131.3, -20.4). Our findings show that time of day of vaccination against SARS-CoV-2 has an impact on the magnitude of IgG antibody levels at 3 weeks. Whether this difference persists after booster vaccine doses and whether it influences the level of protection against COVID-19 needs further evaluation.
Collapse
Affiliation(s)
- Astrid C. Erber
- Department of Epidemiology, Center for
Public Health, Medical University of Vienna, Vienna, Austria,Nuffield Department of Medicine,
University of Oxford, Oxford, UK
| | - Angelika Wagner
- Department of Pathophysiology,
Infectiology, and Immunology, Institute of Specific Prophylaxis and Tropical
Medicine, Medical University of Vienna, Vienna, Austria
| | | | - Maren Jeleff
- Department of Social and Preventive
Medicine, Center for Public Health, Medical University of Vienna, Vienna,
Austria
| | - Polyxeni Kalafatis
- Department of Epidemiology, Center for
Public Health, Medical University of Vienna, Vienna, Austria
| | | | - Beata Pepłońska
- Nofer Institute of Occupational
Medicine, University of Łodz, Łodz, Poland
| | - Isabel Santonja
- Clinical Department of Virology, Center
for Virology, Medical University of Vienna, Vienna, Austria
| | - Eva Schernhammer
- Department of Epidemiology, Center for
Public Health, Medical University of Vienna, Vienna, Austria,Channing Division of Network Medicine,
Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School,
Boston, Massachusetts, USA,Department of Epidemiology, Harvard
T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Hannes Stockinger
- Institute for Hygiene and Applied
Immunology, Centre for Pathophysiology, Infectiology and Immunology, Medical
University of Vienna, Vienna, Austria
| | - Kurt Straif
- Barcelona Institute for Global Health
(ISGlobal), Barcelona, Spain,Boston College, Chestnut Hill,
Massachusetts, USA
| | - Ursula Wiedermann
- Department of Pathophysiology,
Infectiology, and Immunology, Institute of Specific Prophylaxis and Tropical
Medicine, Medical University of Vienna, Vienna, Austria
| | - Thomas Waldhör
- Department of Epidemiology, Center for
Public Health, Medical University of Vienna, Vienna, Austria
| | - Kyriaki Papantoniou
- Department of Epidemiology, Center for
Public Health, Medical University of Vienna, Vienna, Austria,Kyriaki Papantoniou,
Department of Epidemiology, Center for Public Health, Medical University of
Vienna, Kinderspitalgasse 15, Vienna 1090, Austria; e-mail:
| |
Collapse
|
44
|
Olmstead AD, Nikiforuk AM, Schwartz S, Márquez AC, Valadbeigy T, Flores E, Saran M, Goldfarb DM, Hayden A, Masud S, Russell SL, Prystajecky N, Jassem AN, Morshed M, Sekirov I. Characterizing Longitudinal Antibody Responses in Recovered Individuals Following COVID-19 Infection and Single-Dose Vaccination: A Prospective Cohort Study. Viruses 2022; 14:2416. [PMID: 36366515 PMCID: PMC9694471 DOI: 10.3390/v14112416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Investigating antibody titers in individuals who have been both naturally infected with SARS-CoV-2 and vaccinated can provide insight into antibody dynamics and correlates of protection over time. METHODS Human coronavirus (HCoV) IgG antibodies were measured longitudinally in a prospective cohort of qPCR-confirmed, COVID-19 recovered individuals (k = 57) in British Columbia pre- and post-vaccination. SARS-CoV-2 and endemic HCoV antibodies were measured in serum collected between Nov. 2020 and Sept. 2021 (n = 341). Primary analysis used a linear mixed-effects model to understand the effect of single dose vaccination on antibody concentrations adjusting for biological sex, age, time from infection and vaccination. Secondary analysis investigated the cumulative incidence of high SARS-CoV-2 anti-spike IgG seroreactivity equal to or greater than 5.5 log10 AU/mL up to 105 days post-vaccination. No re-infections were detected in vaccinated participants, post-vaccination by qPCR performed on self-collected nasopharyngeal specimens. RESULTS Bivariate analysis (complete data for 42 participants, 270 samples over 472 days) found SARS-CoV-2 spike and RBD antibodies increased 14-56 days post-vaccination (p < 0.001) and vaccination prevented waning (regression coefficient, B = 1.66 [95%CI: 1.45-3.46]); while decline of nucleocapsid antibodies over time was observed (regression coefficient, B = -0.24 [95%CI: -1.2-(-0.12)]). A positive association was found between COVID-19 vaccination and endemic human β-coronavirus IgG titer 14-56 days post vaccination (OC43, p = 0.02 & HKU1, p = 0.02). On average, SARS-CoV-2 anti-spike IgG concentration increased in participants who received one vaccine dose by 2.06 log10 AU/mL (95%CI: 1.45-3.46) adjusting for age, biological sex, and time since infection. Cumulative incidence of high SARS-CoV-2 spike antibodies (>5.5 log10 AU/mL) was 83% greater in vaccinated compared to unvaccinated individuals. CONCLUSIONS Our study confirms that vaccination post-SARS-CoV-2 infection provides multiple benefits, such as increasing anti-spike IgG titers and preventing decay up to 85 days post-vaccination.
Collapse
Affiliation(s)
- Andrea D. Olmstead
- Department of Pathology and Laboratory Medicine, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC V6T 1Z7, Canada
- British Columbia Centre for Disease Control Public Health Laboratory, Provincial Health Services Authority, 655 West 12th Ave, Vancouver, BC V5Z 4R4, Canada
| | - Aidan M. Nikiforuk
- British Columbia Centre for Disease Control Public Health Laboratory, Provincial Health Services Authority, 655 West 12th Ave, Vancouver, BC V5Z 4R4, Canada
- School of Population and Public Health, University of British Columbia, 2206 E Mall, Vancouver, BC V6T 1Z3, Canada
| | - Sydney Schwartz
- British Columbia Centre for Disease Control Public Health Laboratory, Provincial Health Services Authority, 655 West 12th Ave, Vancouver, BC V5Z 4R4, Canada
| | - Ana Citlali Márquez
- British Columbia Centre for Disease Control Public Health Laboratory, Provincial Health Services Authority, 655 West 12th Ave, Vancouver, BC V5Z 4R4, Canada
| | - Tahereh Valadbeigy
- British Columbia Centre for Disease Control Public Health Laboratory, Provincial Health Services Authority, 655 West 12th Ave, Vancouver, BC V5Z 4R4, Canada
| | - Eri Flores
- British Columbia Centre for Disease Control Public Health Laboratory, Provincial Health Services Authority, 655 West 12th Ave, Vancouver, BC V5Z 4R4, Canada
| | - Monika Saran
- Department of Pathology and Laboratory Medicine, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC V6T 1Z7, Canada
| | - David M. Goldfarb
- Department of Pathology and Laboratory Medicine, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC V6T 1Z7, Canada
- Department of Pathology and Laboratory Medicine, British Columbia Children’s and Women’s Hospital, 4500 Oak Street, Vancouver, BC V6H 3N1, Canada
| | - Althea Hayden
- Office of the Chief Medical Health Officer, Vancouver Coastal Health, Vancouver, BC V5Z 4C2, Canada
| | - Shazia Masud
- Department of Pathology and Laboratory Medicine, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC V6T 1Z7, Canada
- Department of Pathology and Laboratory Medicine, Surrey Memorial Hospital, Surrey, BC V3V 1Z2, Canada
| | - Shannon L. Russell
- Department of Pathology and Laboratory Medicine, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC V6T 1Z7, Canada
- British Columbia Centre for Disease Control Public Health Laboratory, Provincial Health Services Authority, 655 West 12th Ave, Vancouver, BC V5Z 4R4, Canada
| | - Natalie Prystajecky
- Department of Pathology and Laboratory Medicine, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC V6T 1Z7, Canada
- British Columbia Centre for Disease Control Public Health Laboratory, Provincial Health Services Authority, 655 West 12th Ave, Vancouver, BC V5Z 4R4, Canada
| | - Agatha N. Jassem
- Department of Pathology and Laboratory Medicine, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC V6T 1Z7, Canada
- British Columbia Centre for Disease Control Public Health Laboratory, Provincial Health Services Authority, 655 West 12th Ave, Vancouver, BC V5Z 4R4, Canada
| | - Muhammad Morshed
- Department of Pathology and Laboratory Medicine, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC V6T 1Z7, Canada
- British Columbia Centre for Disease Control Public Health Laboratory, Provincial Health Services Authority, 655 West 12th Ave, Vancouver, BC V5Z 4R4, Canada
| | - Inna Sekirov
- Department of Pathology and Laboratory Medicine, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC V6T 1Z7, Canada
- British Columbia Centre for Disease Control Public Health Laboratory, Provincial Health Services Authority, 655 West 12th Ave, Vancouver, BC V5Z 4R4, Canada
| |
Collapse
|
45
|
Correlation of SARS-CoV-2 Viral Neutralizing Antibody Titers with Anti-Spike Antibodies and ACE-2 Inhibition among Vaccinated Individuals. Microbiol Spectr 2022; 10:e0131522. [PMID: 36121252 PMCID: PMC9602390 DOI: 10.1128/spectrum.01315-22] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
SARS-CoV-2 anti-spike antibody concentrations and angiotensin converting enzyme-2 (ACE-2) inhibition have been used as surrogates to live viral neutralizing antibody titers; however, validity among vaccinated individuals is unclear. We tested the correlation of these measures among vaccinated participants, and examined subgroups based on duration since vaccination and vaccine dosing intervals. We analyzed 120 samples from two-dose mRNA vaccinees without previous COVID-19. We calculated Spearman correlation coefficients between wild-type viral neutralizing antibody titers and: anti-spike (total and IgG), anti-receptor-binding-domain (RBD), and anti-N-terminal-domain (NTD) antibodies; and ACE-2 binding by RBD. We performed three secondary analyses, dichotomizing samples by the first vaccination-to-blood collection interval, second vaccination-to-blood collection interval, and by the vaccine dosing interval (all groups divided by the median), and compared correlation coefficients (Fisher's Z test). Of 120 participants, 63 (53%) were women, 91 (76%) and 29 (24%) received BNT162b2 and mRNA-1273 vaccines, respectively. Overall, live viral neutralization was correlated with anti-spike total antibody (correlation coefficient = 0.80), anti-spike IgG (0.63), anti-RBD IgG (0.62), anti-NTD IgG (0.64), and RBD ACE2 binding (0.65). Samples with long (>158 days) first vaccination-to-blood collection and long (>71 days) second vaccination-to-blood collection intervals demonstrated higher correlation coefficients, compared with short groups. When comparing cases divided by short (≤39 days) versus long vaccine dosing intervals, only correlation with RBD-ACE-2 binding inhibition was higher in the long group. Among COVID-negative mRNA vaccinees, anti-spike antibody and ACE-2 inhibition concentrations are correlated with live viral neutralizing antibody titers. Correlation was stronger among samples collected at later durations from vaccination. IMPORTANCE Live viral neutralizing antibody titers are an accepted measure of immunity; however, testing procedures are labor-intensive. COVID-19 antibody and angiotensin converting enzyme-2 (ACE-2) levels have been used as surrogates to live viral neutralizing antibody titers; however, validity among vaccinated individuals is unclear. Using samples from 120 two-dose mRNA vaccinees without previous COVID-19, we found that live viral neutralization was correlated with COVID-19 antibody and ACE2 binding levels. When grouping samples by the time interval between vaccination and sample blood collection, samples collected over 158 days after the first vaccine and over 71 days from the second vaccine demonstrated stronger correlation between live viral neutralization titers and both antibody and ACE2 levels, in comparison to those collected earlier.
Collapse
|
46
|
Kim J, Chang E, Park SY, Lee DW, Kang CK, Choe PG, Kim NJ, Oh MD, Park WB, Lee KH, Im SA. Evaluation of Seropositivity After Standard Doses of Vaccination Against SARS-CoV-2 in Patients With Early Breast Cancer Receiving Adjuvant Treatment. Oncologist 2022; 27:e931-e937. [PMID: 36218350 PMCID: PMC9732225 DOI: 10.1093/oncolo/oyac196] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 08/09/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) pandemic affected millions of individuals, and patients with cancer are known to be more susceptible. Vaccines against SARS-CoV-2 have been developed and used for patients with cancer, but scarce data are available on their efficacy in patients under active anti-cancer therapies. MATERIALS AND METHODS In this study, we semi-quantitatively measured the titers of the immunoglobulin G against the anti-spike protein subunit 1 of SARS-CoV-2 after vaccination of patients with early breast cancer undergoing concurrent chemotherapy, endocrinal or targeted non-cytotoxic treatments, and no treatments. RESULTS Standard doses of COVID-19 vaccines provided sufficient immune responses in patients with early breast cancer, regardless of the type of anticancer therapies. However, the post-vaccination serum anti-spike antibody titers were significantly lower in the patients under cytotoxic chemotherapy. CONCLUSION Our study emphasizes the importance of the personalized risk stratification and consideration for booster doses in more vulnerable populations.
Collapse
Affiliation(s)
| | | | - Song Yi Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Dae-Won Lee
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Chang Kyung Kang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Pyoeng Gyun Choe
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Nam Joong Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Myoung-don Oh
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Wan Beom Park
- Wan Beom Park, MD, PhD, Department of Internal Medicine, Seoul National University Hospital, 101, Daehak-ro, Jongro-gu, Seoul 03080, Republic of Korea. Tel: +82 2 2072 3596; Email
| | - Kyung-Hun Lee
- Corresponding author: Kyung-Hun Lee, MD, PhD, Department of Internal Medicine, Seoul National University Hospital, 101, Daehak-ro, Jongro-gu, Seoul 03080, Republic of Korea. Tel: 82 2 2072 7207; Email
| | - Seock-Ah Im
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea,Cancer Research Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
47
|
Banjongjit A, Phirom S, Phannajit J, Jantarabenjakul W, Paitoonpong L, Kittanamongkolchai W, Wattanatorn S, Prasithsirikul W, Eiam-Ong S, Avihingsanon Y, Hansasuta P, Vanichanan J, Townamchai N. Benefits of Switching Mycophenolic Acid to Sirolimus on Serological Response after a SARS-CoV-2 Booster Dose among Kidney Transplant Recipients: A Pilot Study. Vaccines (Basel) 2022; 10:vaccines10101685. [PMID: 36298550 PMCID: PMC9609831 DOI: 10.3390/vaccines10101685] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/28/2022] [Accepted: 10/06/2022] [Indexed: 11/08/2022] Open
Abstract
Kidney transplant recipients (KTRs) have a suboptimal immune response to COVID-19 vaccination due to the effects of immunosuppression, mostly mycophenolic acid (MPA). This study investigated the benefits of switching from the standard immunosuppressive regimen (tacrolimus (TAC), MPA, and prednisolone) to a regimen of mammalian target of rapamycin inhibitor (mTORi), TAC and prednisolone two weeks pre- and two weeks post-BNT162b2 booster vaccination. A single-center, opened-label pilot study was conducted in KTRs, who received two doses of ChAdOx-1 and a single dose of BNT162b2. The participants were randomly assigned to continue the standard regimen (control group, n = 14) or switched to a sirolimus (an mTORi), TAC, and prednisolone (switching group, n = 14) regimen two weeks before and two weeks after receiving a booster dose of BNT162b2. The anti-SARS-CoV-2 S antibody level after vaccination in the switching group was significantly greater than the control group (4051.0 [IQR 3142.0-6466.0] BAU/mL vs. 2081.0 [IQR 1077.0-3960.0] BAU/mL, respectively; p = 0.01). One participant who was initially seronegative in the control group remained seronegative after the booster dose. These findings suggest humoral immune response benefits of switching the standard immunosuppressive regimen to the regimen of mTORi, TAC, and prednisolone in KTRs during vaccination.
Collapse
Affiliation(s)
- Athiphat Banjongjit
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok 10330, Thailand
| | - Supitchaya Phirom
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok 10330, Thailand
| | - Jeerath Phannajit
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok 10330, Thailand
- Division of Clinical Epidemiology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Watsamon Jantarabenjakul
- Thai Red Cross Emerging Infectious Diseases Clinical Center, King Chulalongkorn Memorial Hospital, Bangkok 10330, Thailand
- Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Leilani Paitoonpong
- Thai Red Cross Emerging Infectious Diseases Clinical Center, King Chulalongkorn Memorial Hospital, Bangkok 10330, Thailand
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wonngarm Kittanamongkolchai
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok 10330, Thailand
- Mahachakri Sirindhorn Clinical Research Center, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Renal Immunology and Renal Transplant Research Unit, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Salin Wattanatorn
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok 10330, Thailand
| | | | - Somchai Eiam-Ong
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok 10330, Thailand
| | - Yingyos Avihingsanon
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok 10330, Thailand
- Renal Immunology and Renal Transplant Research Unit, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pokrath Hansasuta
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok 10330, Thailand
| | - Jakapat Vanichanan
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Natavudh Townamchai
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok 10330, Thailand
- Renal Immunology and Renal Transplant Research Unit, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Excellence Center for Solid Organ Transplantation, King Chulalongkorn Memorial Hospital, Bangkok 10330, Thailand
- Correspondence:
| |
Collapse
|
48
|
Humoral and Cellular Immune Responses After a 3-dose Course of mRNA-1273 COVID-19 Vaccine in Kidney Transplant Recipients: A Prospective Cohort Study. Transplant Direct 2022; 8:e1389. [PMID: 36245998 PMCID: PMC9553402 DOI: 10.1097/txd.0000000000001389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/10/2022] [Indexed: 11/25/2022] Open
Abstract
In kidney transplant recipients, there is discordance between the development of cellular and humoral response after vaccination against SARS-CoV-2. We sought to determine the interplay between the 2 arms of adaptive immunity in a 3-dose course of mRNA-1273 100 μg vaccine.
Collapse
|
49
|
Collins E, Galipeau Y, Arnold C, Bosveld C, Heiskanen A, Keeshan A, Nakka K, Shir-Mohammadi K, St-Denis-Bissonnette F, Tamblyn L, Vranjkovic A, Wood LC, Booth R, Buchan CA, Crawley AM, Little J, McGuinty M, Saginur R, Langlois MA, Cooper CL. Cohort profile: Stop the Spread Ottawa (SSO) -a community-based prospective cohort study on antibody responses, antibody neutralisation efficiency and cellular immunity to SARS-CoV-2 infection and vaccination. BMJ Open 2022; 12:e062187. [PMID: 36691221 PMCID: PMC9461086 DOI: 10.1136/bmjopen-2022-062187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 08/16/2022] [Indexed: 01/27/2023] Open
Abstract
PURPOSE To investigate the robustness and longevity of SARS-CoV-2 immune responses conferred by natural infection and vaccination among priority populations such as immunocompromised individuals and people with post-acute sequelae of COVID-19 in a prospective cohort study (Stop the Spread Ottawa-SSO) in adults living in the Ottawa region. In this paper, we describe the study design, ongoing data collection and baseline characteristics of participants. PARTICIPANTS Since October 2020, participants who tested positive for COVID-19 (convalescents) or at high risk of exposure to the virus (under surveillance) have provided monthly blood and saliva samples over a 10-month period. As of 2 November 2021, 1026 adults had completed the baseline survey and 976 had attended baseline bloodwork. 300 participants will continue to provide bimonthly blood samples for 24 additional months (ie, total follow-up of 34 months). FINDINGS TO DATE The median age of the baseline sample was 44 (IQR 23, range: 18-79) and just over two-thirds (n=688; 67.1%) were female. 255 participants (24.9%) had a history of COVID-19 infection confirmed by PCR and/or serology. Over 600 participants (60.0%) work in high-risk occupations (eg, healthcare, teaching and transportation). 108 participants (10.5%) reported immunocompromising conditions or treatments at baseline (eg, cancer, HIV, other immune deficiency, and/or use of immunosuppressants). FUTURE PLANS SSO continues to yield rich research potential, given the collection of pre-vaccine baseline data and samples from the majority of participants, recruitment of diverse subgroups of interest, and a high level of participant retention and compliance with monthly sampling. The 24-month study extension will maximise opportunities to track SARS-CoV-2 immunity and vaccine efficacy, detect and characterise emerging variants, and compare subgroup humoral and cellular response robustness and persistence.
Collapse
Affiliation(s)
- Erin Collins
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Clinical Epidemiology, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Yannick Galipeau
- Department of Biochemistry, Microbiology & Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Corey Arnold
- Department of Biochemistry, Microbiology & Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Cameron Bosveld
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Aliisa Heiskanen
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Clinical Epidemiology, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Alexa Keeshan
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Clinical Epidemiology, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Kiran Nakka
- Department of Biochemistry, Microbiology & Immunology, University of Ottawa, Ottawa, Ontario, Canada
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Khatereh Shir-Mohammadi
- Department of Biochemistry, Microbiology & Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Laura Tamblyn
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Agatha Vranjkovic
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Leah C Wood
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Ronald Booth
- Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Immunology Section, Eastern Ontario Regional Laboratory Association (EORLA), Ottawa, Ontario, Canada
| | - C Arianne Buchan
- Division of Infectious Diseases, Department of Medicine, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Angela M Crawley
- Department of Biochemistry, Microbiology & Immunology, University of Ottawa, Ottawa, Ontario, Canada
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Coronavirus Variants Rapid Response Network (CoVaRR-Net), Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Infection, Immunity and Inflammation (CI3), University of Ottawa, Ottawa, Ontario, Canada
| | - Julian Little
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Clinical Epidemiology, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Coronavirus Variants Rapid Response Network (CoVaRR-Net), Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- The Knowledge Synthesis and Application Unit (KSAU), University of Ottawa, Ottawa, Ontario, Canada
| | - Michaeline McGuinty
- Division of Infectious Diseases, Department of Medicine, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Raphael Saginur
- Division of Infectious Diseases, Department of Medicine, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Ottawa Health Science Network Research Ethics Board (OHSN-REB), Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Marc-André Langlois
- Department of Biochemistry, Microbiology & Immunology, University of Ottawa, Ottawa, Ontario, Canada
- Coronavirus Variants Rapid Response Network (CoVaRR-Net), Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Infection, Immunity and Inflammation (CI3), University of Ottawa, Ottawa, Ontario, Canada
| | - Curtis L Cooper
- Clinical Epidemiology, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Division of Infectious Diseases, Department of Medicine, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Coronavirus Variants Rapid Response Network (CoVaRR-Net), Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Infection, Immunity and Inflammation (CI3), University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
50
|
Tukhvatulin AI, Gordeychuk IV, Dolzhikova IV, Dzharullaeva AS, Krasina ME, Bayurova EO, Grousova DM, Kovyrshina AV, Kondrashova AS, Avdoshina DV, Gulyaev SA, Gulyaeva TV, Moroz AV, Illarionova VV, Zorkov ID, Iliukhina AA, Shelkov AY, Botikov AG, Erokhova AS, Shcheblyakov DV, Esmagambetov IB, Zubkova OV, Tokarskaya EA, Savina DM, Vereveyko YR, Ungur AS, Naroditsky BS, Ishmukhametov AA, Logunov DY, Gintsburg AL. Immunogenicity and protectivity of intranasally delivered vector-based heterologous prime-boost COVID-19 vaccine Sputnik V in mice and non-human primates. Emerg Microbes Infect 2022; 11:2229-2247. [PMID: 36031930 PMCID: PMC9518644 DOI: 10.1080/22221751.2022.2119169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Amir I. Tukhvatulin
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology named after Honorary Academician N F Gamaleya” of the Ministry of Health of the Russian Federation, Moscow 123098, Russia
| | - Ilya V. Gordeychuk
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia
- Sechenov First Moscow State Medical University, Moscow 127994, Russia
| | - Inna V. Dolzhikova
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology named after Honorary Academician N F Gamaleya” of the Ministry of Health of the Russian Federation, Moscow 123098, Russia
| | - Alina S. Dzharullaeva
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology named after Honorary Academician N F Gamaleya” of the Ministry of Health of the Russian Federation, Moscow 123098, Russia
| | - Marina E. Krasina
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology named after Honorary Academician N F Gamaleya” of the Ministry of Health of the Russian Federation, Moscow 123098, Russia
| | - Ekaterina O. Bayurova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia
| | - Daria M. Grousova
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology named after Honorary Academician N F Gamaleya” of the Ministry of Health of the Russian Federation, Moscow 123098, Russia
| | - Anna V. Kovyrshina
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology named after Honorary Academician N F Gamaleya” of the Ministry of Health of the Russian Federation, Moscow 123098, Russia
| | - Alla S. Kondrashova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia
| | - Daria V. Avdoshina
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia
| | - Stanislav A. Gulyaev
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia
| | - Tatiana V. Gulyaeva
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia
| | - Andrey V. Moroz
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia
| | - Viktoria V. Illarionova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia
| | - Ilya D. Zorkov
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology named after Honorary Academician N F Gamaleya” of the Ministry of Health of the Russian Federation, Moscow 123098, Russia
| | - Anna A. Iliukhina
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology named after Honorary Academician N F Gamaleya” of the Ministry of Health of the Russian Federation, Moscow 123098, Russia
| | - Artem Y. Shelkov
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology named after Honorary Academician N F Gamaleya” of the Ministry of Health of the Russian Federation, Moscow 123098, Russia
| | - Andrei G. Botikov
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology named after Honorary Academician N F Gamaleya” of the Ministry of Health of the Russian Federation, Moscow 123098, Russia
| | - Alina S. Erokhova
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology named after Honorary Academician N F Gamaleya” of the Ministry of Health of the Russian Federation, Moscow 123098, Russia
| | - Dmitry V. Shcheblyakov
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology named after Honorary Academician N F Gamaleya” of the Ministry of Health of the Russian Federation, Moscow 123098, Russia
| | - Ilias B. Esmagambetov
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology named after Honorary Academician N F Gamaleya” of the Ministry of Health of the Russian Federation, Moscow 123098, Russia
| | - Olga V. Zubkova
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology named after Honorary Academician N F Gamaleya” of the Ministry of Health of the Russian Federation, Moscow 123098, Russia
| | - Elisaveta A. Tokarskaya
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology named after Honorary Academician N F Gamaleya” of the Ministry of Health of the Russian Federation, Moscow 123098, Russia
| | - Daria M. Savina
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology named after Honorary Academician N F Gamaleya” of the Ministry of Health of the Russian Federation, Moscow 123098, Russia
| | - Yulia R. Vereveyko
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology named after Honorary Academician N F Gamaleya” of the Ministry of Health of the Russian Federation, Moscow 123098, Russia
| | - Anastasiya S. Ungur
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology named after Honorary Academician N F Gamaleya” of the Ministry of Health of the Russian Federation, Moscow 123098, Russia
| | - Boris S. Naroditsky
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology named after Honorary Academician N F Gamaleya” of the Ministry of Health of the Russian Federation, Moscow 123098, Russia
| | - Aydar A. Ishmukhametov
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia
- Sechenov First Moscow State Medical University, Moscow 127994, Russia
| | - Denis Y. Logunov
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology named after Honorary Academician N F Gamaleya” of the Ministry of Health of the Russian Federation, Moscow 123098, Russia
- Sechenov First Moscow State Medical University, Moscow 127994, Russia
| | - Alexander L. Gintsburg
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology named after Honorary Academician N F Gamaleya” of the Ministry of Health of the Russian Federation, Moscow 123098, Russia
- Sechenov First Moscow State Medical University, Moscow 127994, Russia
| |
Collapse
|