1
|
Vena W, Pigni S, Betella N, Navarra A, Mirani M, Mazziotti G, Lania AG, Bossi AC. COVID-19 vaccines and blood glucose control: Friend or foe? Hum Vaccin Immunother 2024; 20:2363068. [PMID: 38860457 PMCID: PMC11178329 DOI: 10.1080/21645515.2024.2363068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/30/2024] [Indexed: 06/12/2024] Open
Abstract
PURPOSE To overview the recent literature regarding the relationship between COVID-19 vaccines and glycemic control. METHODS Data were extracted from text and tables of all available articles published up to September 2023 in PubMed Database describing glucose homeostasis data in subjects exposed to COVID-19 vaccines, focusing on patients with diabetes mellitus (DM). RESULTS It is debated if the immune system impairment observed in diabetic patients makes them susceptible to lower efficacy of vaccines, but evidence suggests a possible improvement in immune response in those with good glycemic control. Despite their proven protective role lowering infection rates and disease severity, COVID-19 vaccines can result in diabetic ketoacidosis, new-onset diabetes, or episodes of hyper- or hypoglycemia. CONCLUSIONS Evidence with COVID-19 vaccines highlights the strong relationship existing between DM and immune system function. Clinicians should strive to achieve optimal glucose control before vaccination and promptly manage possible glucose homeostasis derangement following vaccine exposure.
Collapse
Affiliation(s)
- Walter Vena
- Department of Biomedical Sciences, Humanitas University, Milan, Pieve Emanuele, Italy
- Diabetes Center, Humanitas Gavazzeni Institute, Bergamo, Italy
| | - Stella Pigni
- Department of Biomedical Sciences, Humanitas University, Milan, Pieve Emanuele, Italy
- Endocrinology, Diabetology and Medical Andrology Unit, IRCCS Humanitas Research Hospital, Milan, Rozzano, Italy
| | | | | | - Marco Mirani
- Endocrinology, Diabetology and Medical Andrology Unit, IRCCS Humanitas Research Hospital, Milan, Rozzano, Italy
| | - Gherardo Mazziotti
- Department of Biomedical Sciences, Humanitas University, Milan, Pieve Emanuele, Italy
- Endocrinology, Diabetology and Medical Andrology Unit, IRCCS Humanitas Research Hospital, Milan, Rozzano, Italy
| | - Andrea G. Lania
- Department of Biomedical Sciences, Humanitas University, Milan, Pieve Emanuele, Italy
- Endocrinology, Diabetology and Medical Andrology Unit, IRCCS Humanitas Research Hospital, Milan, Rozzano, Italy
| | | |
Collapse
|
2
|
Song T, Cao F, Huang X, Wu S, Zhou Y, Ngai T, Xia Y, Ma G. Augmenting vaccine efficacy: Tailored immune strategy with alum-stabilized Pickering emulsion. Vaccine 2024; 42:126022. [PMID: 38876839 DOI: 10.1016/j.vaccine.2024.05.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND The achievement of optimal vaccine efficacy is contingent upon the collaborative interactions between T and B cells in adaptive immunity. Although multiple immunization strategies have been proposed, there is a notable scarcity of comprehensive investigations pertaining to enhance immune effects through immune strategy adjustments for individual vaccine. METHODS The hierarchically structured aluminum hydroxide microgel-stabilized Pickering emulsion (ASPE) was prepared by ultrasonic method. This study explored the influence of the immune strategy of ASPE to immune responses, including antigen exposure pattern, adjuvants and antigen dosage, and administration interval. RESULTS The findings revealed that external antigen adsorption facilitated increased exposure of antigen epitopes, leading to elevated IgG titers and secretion of cytokines such as interferon-gamma (IFN-γ) or interleukin-4 (IL-4). Additionally, even a low dose (1 μg/dose) of antigens of ASPE boosted sufficient neutralizing antibody levels and memory T cells compared to high-dose antigens, which consistent with the adjuvant dosage effect. Furthermore, maintaining a 4-week immunization interval yielded optimal levels of antigen-specific IgG titers in both short-term and long-term scenarios, as compared to intervals of 2, 3, and 5 weeks. A consistent trend was observed in the proliferation of memory B cells, reaching a superior level at the 4-week interval, which could enhance protection against viral re-infection. CONCLUSION Tailoring immunization strategies for specific vaccines has emerged as powerful driver in maximizing vaccine efficacy and eliciting robust immune responses, thereby presenting cutting-edge approaches to enhanced vaccination.
Collapse
Affiliation(s)
- Tiantian Song
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100081, PR China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Fengqiang Cao
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, College of Medicine, Linyi University, Linyi 276000, PR China
| | - Xiaonan Huang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100081, PR China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China; Sinovac Biotech Ltd., Beijing, PR China
| | - Sihua Wu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100081, PR China; Division of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1, Tenjin-cho, Kiryu 376-8515, Japan
| | - Yan Zhou
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100081, PR China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - To Ngai
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T. 999077, Hong Kong, China
| | - Yufei Xia
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100081, PR China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100081, PR China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
3
|
Cavalera S, Di Nardo F, Serra T, Testa V, Baggiani C, Rosati S, Colitti B, Brienza L, Colasanto I, Nogarol C, Cosseddu D, Guiotto C, Anfossi L. A semi-quantitative visual lateral flow immunoassay for SARS-CoV-2 antibody detection for the follow-up of immune response to vaccination or recovery. J Mater Chem B 2024; 12:2139-2149. [PMID: 38315042 DOI: 10.1039/d3tb02895j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
The lateral flow immunoassay (LFIA) technique is largely employed for the point-of-care detection of antibodies especially for revealing the immune response in serum. Visual LFIAs usually provide the qualitative yes/no detection of antibodies, while quantification requires some equipment, making the assay more expensive and complicated. To achieve visual semi-quantification, the alignment of several lines (made of the same antigen) along a LFIA strip has been proposed. The numbering of the reacting lines has been used to correlate with the quantity of some biomarkers in serum. Here, we designed the first semiquantitative LFIA for detecting antibodies and applied it to classify the immune response to SARS-CoV-2 raised by vaccination or natural infection. We used a recombinant spike receptor-binding domain (RBD) as the specific capture reagent to draw two test lines. The detection reagent was selected among three possible ligands that are able to bind to anti-spike human antibodies: the same RBD, staphylococcal protein A, and anti-human immunoglobulin G antibodies. The most convenient detector, adsorbed on gold nanoparticles, was chosen based on the highest correlation with an antibody titre of 171 human sera, measured by a reference serological method, and was the RBD (Spearman's rho = 0.84). Incorporated into the semiquantitative LFIA, it confirmed the ability to discriminate high- and low-titre samples and to classify them into two classes (Dunn's test, P < 0.05). The proposed approach enabled the semiquantification of the immune response to SARS-CoV-2 by the unaided eye observation, thus overcoming the requirement of costly and complicated equipment, and represents a general strategy for the development of semiquantitative serological LFIAs.
Collapse
Affiliation(s)
- Simone Cavalera
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, Turin, Italy.
| | - Fabio Di Nardo
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, Turin, Italy.
| | - Thea Serra
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, Turin, Italy.
| | - Valentina Testa
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, Turin, Italy.
| | - Claudio Baggiani
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, Turin, Italy.
| | - Sergio Rosati
- Department of Veterinary Science, University of Turin, Largo Braccini 2, Grugliasco (TO), Italy
| | - Barbara Colitti
- Department of Veterinary Science, University of Turin, Largo Braccini 2, Grugliasco (TO), Italy
| | - Ludovica Brienza
- Department of Veterinary Science, University of Turin, Largo Braccini 2, Grugliasco (TO), Italy
| | - Irene Colasanto
- Department of Veterinary Science, University of Turin, Largo Braccini 2, Grugliasco (TO), Italy
| | - Chiara Nogarol
- In3diagnostic srl, Largo Braccini 2, Grugliasco (TO), Italy
| | - Domenico Cosseddu
- A.O. Ordine Mauriziano, Ospedale Umberto I di Torino, Via Magellano 1, Turin, Italy
| | - Cristina Guiotto
- A.O. Ordine Mauriziano, Ospedale Umberto I di Torino, Via Magellano 1, Turin, Italy
| | - Laura Anfossi
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, Turin, Italy.
| |
Collapse
|
4
|
Liu Y, Ye Q. The Key Site Variation and Immune Challenges in SARS-CoV-2 Evolution. Vaccines (Basel) 2023; 11:1472. [PMID: 37766148 PMCID: PMC10537874 DOI: 10.3390/vaccines11091472] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a worldwide public health and economic threat, and virus variation amplifies the difficulty in epidemic prevention and control. The structure of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been studied extensively and is now well defined. The S protein is the most distinguishing feature in terms of infection and immunity, mediating virus entrance and inducing neutralizing antibodies. The S protein and its essential components are also the most promising target to develop vaccines and antibody-based drugs. Therefore, the key site mutation in the S gene is of high interest. Among them, RBD, NTD, and furin cleavage sites are the most mutable regions with the most mutation sites and the most serious consequences for SARS-CoV-2 biological characteristics, including infectivity, pathogenicity, natural immunity, vaccine efficacy, and antibody therapeutics. We are also aware that this outbreak may not be the last. Therefore, in this narrative review, we summarized viral variation and prevalence condition, discussed specific amino acid replacement and associated immune challenges and attempted to sum up some prevention and control strategies by reviewing the literature on previously published research about SARS-CoV-2 variation to assist in clarifying the mutation pathway and consequences of SARS-CoV-2 for developing countermeasures against such viruses as soon as possible.
Collapse
Affiliation(s)
| | - Qing Ye
- Department of ‘A’, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China;
| |
Collapse
|
5
|
Tay WC, Bewley A, Maul JT, Oon HH. Attitudes towards COVID Vaccine and Vaccine Hesitancy in Dermatology: A Narrative Review. Vaccines (Basel) 2023; 11:1365. [PMID: 37631933 PMCID: PMC10459048 DOI: 10.3390/vaccines11081365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/29/2023] Open
Abstract
Vaccine hesitancy has been a contentious issue even before the pandemic. The COVID-19 crisis has further amplified vaccine hesitancy, with worries about adverse effects, cultural and religious beliefs, and misinformation on social media. In dermatology, patients with pre-existing skin conditions may have specific concerns about the impact of the vaccine on their skin health. Factors such as cutaneous reactions, potential flares of underlying conditions, and fears of psoriasis worsening post-vaccination contribute to vaccine hesitancy. Healthcare professionals, including dermatologists, play a crucial role in addressing vaccine hesitancy by providing accurate information, addressing concerns, and understanding the psychological impact on patients. The concept of vaccine fatigue is also explored, noting the challenges in sustaining vaccine acceptance over time, especially with regards to booster vaccinations. Overcoming vaccine hesitancy requires trust-building, effective communication strategies, and collaboration between healthcare workers and non-healthcare individuals to combat misinformation. By recognizing and addressing psychological factors, dermatologists can increase vaccine acceptance and improve public health efforts.
Collapse
Affiliation(s)
- Woo Chiao Tay
- National Skin Centre, 1 Mandalay Road, Singapore 308205, Singapore
| | - Anthony Bewley
- Department of Dermatology, Barts Health NHS Trust, London E11 1NR, UK
- Queen Mary University, London E1 4NS, UK
| | - Julia-Tatjana Maul
- Department of Dermatology and Venereology, University Hospital of Zurich, 8091 Zurich, Switzerland
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
| | - Hazel H. Oon
- National Skin Centre, Skin Research Institute of Singapore, 1 Mandalay Road, Singapore 308205, Singapore
| |
Collapse
|
6
|
Huang LL, Hong WW, Hu WW, Guan XH, Jiang YH. Understanding factors affecting Chinese medical staff's fear of receiving the fourth dose of COVID-19 vaccine: A cross-sectional study in Taizhou. Hum Vaccin Immunother 2023; 19:2261201. [PMID: 37920885 PMCID: PMC10627059 DOI: 10.1080/21645515.2023.2261201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/18/2023] [Indexed: 11/04/2023] Open
Abstract
The study was conducted to assess medical staffs' fear of receiving the fourth dose of the Coronavirus disease 2019 (COVID-19) vaccine. From December 17, 2022, to January 31, 2023, an online survey was conducted to assess the fear among medical staffs regarding the administration of the fourth dose of the COVID-19 vaccine. The participants were exclusively drawn from a tertiary grade hospital in Taizhou. Out of the 1, 832 medical staffs invited to participate in the questionnaire, a total of 613 (33.5%) provided valid responses for subsequent analysis. Among them, 81 (13.8%) expressed fear of receiving the fourth dose of COVID-19. The fear was significantly influenced by these factors: the presence of serious food/drug allergic reactions (OR = 3.84, 95% CI: 1.40-10.52), received booster COVID-19 vaccine (OR = 0.20, 95% CI: 0.11-0.35), opinion on vaccination requirement (OR = 0.20, 95% CI: 0.11-0.35), viewpoint (OR = 0.23, 95% CI: 0.12-0.44) with scores ≥10, and positive attitude toward vaccination (OR = 0.21, 95% CI: 0.13-0.35). Our study revealed that a subset of medical staffs still harbor apprehension toward receiving the fourth dose of the new COVID-19 vaccine. Factors influencing this fear encompass allergic reactions, booster COVID-19 vaccine, as well as opinion, viewpoint, and attitude toward vaccination. Educating medical staffs on these factors may help mitigate their fear.
Collapse
Affiliation(s)
- Li-Li Huang
- Department of Emergency, Taizhou First People’s Hospital, Taizhou, Zhejiang, China
| | - Wei-Wen Hong
- Department of Anus & Intestine Surgery, Taizhou First People’s Hospital, Taizhou, Zhejiang, China
| | - Wei-Wei Hu
- Department of General Surgery, Taizhou First People’s Hospital, Taizhou, Zhejiang, China
| | - Xian-Hua Guan
- Intensive Care Unit, Taizhou First People’s Hospital, Huangyan, Zhejiang, China
| | - Yan-Hong Jiang
- Department of Outpatient, Taizhou First People’s Hospital, Taizhou, Zhejiang, China
| |
Collapse
|
7
|
Xu J, Lan X, Zhang L, Zhang X, Zhang J, Song M, Liu J. The effectiveness of the first dose COVID-19 booster vs. full vaccination to prevent SARS-CoV-2 infection and severe COVID-19 clinical event: a meta-analysis and systematic review of longitudinal studies. Front Public Health 2023; 11:1165611. [PMID: 37325336 PMCID: PMC10267329 DOI: 10.3389/fpubh.2023.1165611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/09/2023] [Indexed: 06/17/2023] Open
Abstract
Background The effectiveness of full Coronavirus Disease 2019 (COVID-19) vaccination against COVID-19 wanes over time. This study aimed to synthesize the clinical effectiveness of the first dose of COVID-19 booster by comparing it to the full vaccination. Methods Studies in PubMed, Web of Science, Embase, and clinical trials databases were searched from 1 January 2021 to 10 September 2022. Studies were eligible if they comprised general adult participants who were not ever or currently infected with SARS-CoV-2, did not have impaired immunity or immunosuppression, and did not have severe diseases. The seroconversion rate of antibodies to S and S subunits and antibody titers of SARS-CoV-2, frequency, phenotype of specific T and B cells, and clinical events involving confirmed infection, admission to the intensive care unit (ICU), and death were compared between the first booster dose of COVID-19 vaccination group and full vaccination group. The DerSimonian and Laird random effects models were used to estimate the pooled risk ratios (RRs) and corresponding 95% confidence intervals (CIs) for the outcomes of clinical interest. While a qualitative description was mainly used to compare the immunogenicity between the first booster dose of COVID-19 vaccination group and full vaccination group. Sensitivity analysis was used to deal with heterogenicity. Results Of the 10,173 records identified, 10 studies were included for analysis. The first dose COVID-19 booster vaccine could induce higher seroconversion rates of antibodies against various SAS-CoV-2 fragments, higher neutralization antibody titers against various SARS-CoV-2 variants, and robust cellular immune response compared to the full vaccination. The risk of SARS-CoV-2 infection, the risk of admission to the ICU, and the risk of death were all higher in the non-booster group than those in the booster group, with RRs of 9.45 (95% CI 3.22-27.79; total evaluated population 12,422,454 vs. 8,441,368; I2 = 100%), 14.75 (95% CI 4.07-53.46; total evaluated population 12,048,224 vs. 7,291,644; I2 = 91%), and 13.63 (95% CI 4.72-39.36; total evaluated population 12,385,960 vs. 8,297,037; I2 = 85%), respectively. Conclusion A homogenous or heterogeneous booster COVID-19 vaccination could elicit strong humoral and cellular immune responses to SARS-CoV-2. Furthermore, it could significantly reduce the risk of SARS-CoV-2 infection and severe COVID-19 clinical events on top of two doses. Future studies are needed to investigate the long-term clinical effectiveness of the first booster dose of the COVID-19 vaccine and compare the effectiveness between homogenous and heterogeneous booster COVID-19 vaccination. Systematic review registration https://inplasy.com/inplasy-2022-11-0114/, identifier: INPLASY2022110114.
Collapse
Affiliation(s)
- Junjie Xu
- Clinical Research Academy, Peking University Shenzhen Hospital, Peking University, Shenzhen, China
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China
| | - Xinquan Lan
- Clinical Research Academy, Peking University Shenzhen Hospital, Peking University, Shenzhen, China
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China
| | - Liangyuan Zhang
- Clinical Research Academy, Peking University Shenzhen Hospital, Peking University, Shenzhen, China
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China
| | - Xiangjun Zhang
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Jiaqi Zhang
- Clinical Research Academy, Peking University Shenzhen Hospital, Peking University, Shenzhen, China
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China
| | - Moxin Song
- Clinical Research Academy, Peking University Shenzhen Hospital, Peking University, Shenzhen, China
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China
| | - Jiaye Liu
- School of Public Health, Shenzhen University Medical School, Shenzhen, China
| |
Collapse
|
8
|
Liu KS, Yang YY, Hwang KL, Wu HJ. Investigating the Current Status of SARS-CoV-2 Antibodies in Hospital Staff. Pathogens 2023; 12:pathogens12050688. [PMID: 37242357 DOI: 10.3390/pathogens12050688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/26/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by SARS-CoV-2 had reported over 676 million cases by March 2023. The main aim of this study is to investigate whether the levels of anti-S and anti-N antibodies could precisely indicate the degree of protection against SARS-CoV-2 and affect the probability or time of contracting COVID-19. In this study, a serosurveillance study was conducted in healthcare workers (HCWs) at a regional hospital in Taiwan to evaluate their antibody levels based on infection and vaccination status. Of 245 HCWs enrolled, all have been vaccinated prior to infection. Of these, 85 participants were infected by SARS-CoV-2, while 160 participants were not infected at the time of blood sample collection. The level of anti-SARS-CoV-2 S antibody was significantly higher in the infected HCWs than in the non-infected participants (p < 0.001). It is worth noting that the mean duration between the administration of the last dose of the vaccine and the occurrence of SARS-CoV-2 infection was 5.61 ± 2.95 months. Our follow-up survey revealed that the non-infected group had significantly higher levels of antibodies compared to the infected group (all p < 0.001). In conclusion, this study suggests that the level of antibodies could serve as a reflection of the protective efficacy against SARS-CoV-2 infection. It has the implication for vaccine decision-making policies in the future.
Collapse
Affiliation(s)
- Keh-Sen Liu
- Division of Infectious Diseases, Department of Internal Medicine, Show Chwan Memorial Hospital, Changhua 500, Taiwan
| | - Yu-Ying Yang
- Department of Laboratory Medicine, Show Chwan Memorial Hospital, Changhua 500, Taiwan
| | - Kai-Lin Hwang
- Department of Health Business Administration, Hungkuang University, Taichung 433, Taiwan
| | - Hsing-Ju Wu
- Research Assistant Center, Show Chwan Memorial Hospital, Changhua 500, Taiwan
- Department of Medical Research, Chang Bing Show Chwan Memorial Hospital, Lukang Township, Changhua County 505, Taiwan
- Department of Nursing, Chung-Jen Junior College of Nursing, Health Sciences and Management, Da-Lin Township, Chiayi County 622, Taiwan
| |
Collapse
|
9
|
Stamm TA, Partheymüller J, Mosor E, Ritschl V, Kritzinger S, Alunno A, Eberl JM. Determinants of COVID-19 vaccine fatigue. Nat Med 2023; 29:1164-1171. [PMID: 36973410 DOI: 10.1038/s41591-023-02282-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 03/01/2023] [Indexed: 03/29/2023]
Abstract
There is growing concern that Coronavirus Disease 2019 (COVID-19) vaccine fatigue will be a major obstacle in maintaining immunity in the general population. In this study, we assessed vaccine acceptance in future scenarios in two conjoint experiments, investigating determinants such as new vaccines, communication, costs/incentives and legal rules. The experiments were embedded in an online survey (n = 6,357 participants) conducted in two European countries (Austria and Italy). Our results suggest that vaccination campaigns should be tailored to subgroups based on their vaccination status. Among the unvaccinated, campaign messages conveying community spirit had a positive effect (0.343, confidence interval (CI) 0.019-0.666), whereas offering positive incentives, such as a cash reward (0.722, CI 0.429-1.014) or voucher (0.670, CI 0.373-0.967), was pivotal to the decision-making of those vaccinated once or twice. Among the triple vaccinated, vaccination readiness increased when adapted vaccines were offered (0.279, CI 0.182-0.377), but costs (-0.795, CI -0.935 to -0.654) and medical dissensus (-0.161, CI -0.293 to -0.030) reduced their likelihood to get vaccinated. We conclude that failing to mobilize the triple vaccinated is likely to result in booster vaccination rates falling short of expectations. For long-term success, measures fostering institutional trust should be considered. These results provide guidance to those responsible for future COVID-19 vaccination campaigns.
Collapse
Affiliation(s)
- Tanja A Stamm
- Institute of Outcomes Research, Center for Medical Data Science, Medical University of Vienna, Vienna, Austria.
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Vienna, Austria.
| | | | - Erika Mosor
- Institute of Outcomes Research, Center for Medical Data Science, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Vienna, Austria
| | - Valentin Ritschl
- Institute of Outcomes Research, Center for Medical Data Science, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Vienna, Austria
| | | | - Alessia Alunno
- Department of Life, Health & Environmental Sciences, University of L'Aquila and Internal Medicine and Nephrology Division, ASL1 Avezzano-Sulmona-L'Aquila, San Salvatore Hospital, L'Aquila, Italy
| | | |
Collapse
|
10
|
Sonoyama T, Iwata S, Shinkai M, Iwata-Yoshikawa N, Shiwa-Sudo N, Hemmi T, Ainai A, Nagata N, Matsunaga N, Tada Y, Homma T, Omoto S, Yokokawa Shibata R, Igarashi K, Suzuki T, Hasegawa H, Ariyasu M. Results from a preclinical study in rodents and a Phase 1/2, randomized, double-blind, placebo-controlled, parallel-group study of COVID-19 vaccine S-268019-a in Japanese adults. Vaccine 2023; 41:1834-1847. [PMID: 36572603 PMCID: PMC9755034 DOI: 10.1016/j.vaccine.2022.12.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/08/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND In early 2020, developing vaccines was an urgent need for preventing COVID-19 from a contingency perspective. METHODS S-268019-a is a recombinant protein-based vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), comprising a modified recombinant spike protein antigen adjuvanted with agatolimod sodium, a Toll-like receptor-9 agonist. In the preclinical phase, it was administered intramuscularly twice at a 2-week interval in 7-week-old mice. Immunogenicity was assessed, and the mice were challenged intranasally with mouse-adapted SARS-CoV-2 at 2 and 8 weeks, respectively, after the second immunization. After confirming the preclinical effect, a Phase 1/2, randomized, parallel-group clinical study was conducted in healthy adults (aged 20-64 years). All participants received 2 intramuscular injections at various combinations of the antigen and the adjuvant (S-910823/agatolimod sodium, in μg: 12.5/250, 25/250, 50/250, 25/500, 50/500, 100/500, 10/500, 100/100, 200/1000) or placebo (saline) in an equivalent volume at a 3-week interval and were followed up until Day 50 in this interim analysis. RESULTS In the preclinical studies, S-268019-a was safe and elicited robust immunoglobulin G (IgG) and neutralizing antibody responses in mice. When challenged with SARS-CoV-2, all S-268019-a-treated mice survived and maintained weight until 10 days, whereas all placebo- or adjuvant-treated (without antigen) mice died within 6 days. In the Phase 1/2 trial, although S-268019-a was well tolerated in adult participants, was safe up to Day 50, and elicited robust anti-spike protein IgG antibodies, it did not elicit sufficient neutralizing antibody levels. CONCLUSIONS The S-268019-a vaccine was not sufficiently immunogenic in Japanese adults despite robust immunogenicity and efficacy in mice. Our results exemplify the innate challenges in translating preclinical data in animals to clinical trials, and highlight the need for continued research to overcome such barriers. (jRCT2051200092).
Collapse
Affiliation(s)
- Takuhiro Sonoyama
- Shionogi & Co., Ltd., Drug Development and Regulatory Science Division, 8F, Nissay Yodoyabashi East Bldg., 3-3-13, Imabashi, Chuo-ku, Osaka 541-0042, Japan
| | - Satoshi Iwata
- National Cancer Center Hospital, Department of Infectious Diseases, 5-1-1, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Masaharu Shinkai
- Department of Respiratory Medicine, Tokyo Shinagawa Hospital, 6-3-22, Higashioi, Shinagawa-ku, Tokyo 140-8522, Japan
| | - Naoko Iwata-Yoshikawa
- Department of Pathology, National Institute of Infectious Diseases, 4-7-1, Gakuen Musashimurayama-shi, Tokyo 208-0011, Japan
| | - Nozomi Shiwa-Sudo
- Department of Pathology, National Institute of Infectious Diseases, 4-7-1, Gakuen Musashimurayama-shi, Tokyo 208-0011, Japan
| | - Takuya Hemmi
- Department of Pathology, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Akira Ainai
- Department of Pathology, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Noriyo Nagata
- Department of Pathology, National Institute of Infectious Diseases, 4-7-1, Gakuen Musashimurayama-shi, Tokyo 208-0011, Japan
| | - Nobuaki Matsunaga
- AMR Clinical Reference Center, National Center for Global Health and Medicine, 1-21-1, Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Yukio Tada
- Shionogi & Co., Ltd., Drug Development and Regulatory Science Division, 8F, Nissay Yodoyabashi East Bldg., 3-3-13, Imabashi, Chuo-ku, Osaka 541-0042, Japan
| | - Tomoyuki Homma
- Shionogi & Co., Ltd., Pharmaceutical Research Division, 1-1, Futaba-cho, 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Shinya Omoto
- Shionogi & Co., Ltd., Pharmaceutical Research Division, 1-1, Futaba-cho, 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Risa Yokokawa Shibata
- Shionogi & Co., Ltd., Drug Development and Regulatory Science Division, 8F, Nissay Yodoyabashi East Bldg., 3-3-13, Imabashi, Chuo-ku, Osaka 541-0042, Japan
| | - Kenji Igarashi
- Shionogi & Co., Ltd., Drug Development and Regulatory Science Division, 8F, Nissay Yodoyabashi East Bldg., 3-3-13, Imabashi, Chuo-ku, Osaka 541-0042, Japan
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Hideki Hasegawa
- Research Center for Influenza and Respiratory Virus, National Institute of Infectious Diseases, 4-7-1, Gakuen, Musashimurayama-shi, Tokyo 208-0011, Japan
| | - Mari Ariyasu
- Shionogi & Co., Ltd., Drug Development and Regulatory Science Division, 8F, Nissay Yodoyabashi East Bldg., 3-3-13, Imabashi, Chuo-ku, Osaka 541-0042, Japan.
| |
Collapse
|
11
|
Kale A, Shelke V, Dagar N, Anders HJ, Gaikwad AB. How to use COVID-19 antiviral drugs in patients with chronic kidney disease. Front Pharmacol 2023; 14:1053814. [PMID: 36843922 PMCID: PMC9947246 DOI: 10.3389/fphar.2023.1053814] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/18/2023] [Indexed: 02/11/2023] Open
Abstract
Antiviral drugs such as Remdesivir (Veklury), Nirmatrelvir with Ritonavir (Paxlovid), Azvudine, and Molnupiravir (Lagevrio) can reduce the risk for severe and fatal Coronavirus Disease (COVID)-19. Although chronic kidney disease is a highly prevalent risk factor for severe and fatal COVID-19, most clinical trials with these drugs excluded patients with impaired kidney function. Advanced CKD is associated with a state of secondary immunodeficiency (SIDKD), which increases the susceptibility to severe COVID-19, COVID-19 complications, and the risk of hospitalization and mortality among COVID-19 patients. The risk to develop COVID-19 related acute kidney injury is higher in patients with precedent CKD. Selecting appropriate therapies for COVID-19 patients with impaired kidney function is a challenge for healthcare professionals. Here, we discuss the pharmacokinetics and pharmacodynamics of COVID-19-related antiviral drugs with a focus on their potential use and dosing in COVID-19 patients with different stages of CKD. Additionally, we describe the adverse effects and precautions to be taken into account when using these antivirals in COVID-19 patients with CKD. Lastly, we also discuss about the use of monoclonal antibodies in COVID-19 patients with kidney disease and related complications.
Collapse
Affiliation(s)
- Ajinath Kale
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, India
| | - Vishwadeep Shelke
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, India
| | - Neha Dagar
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, India
| | - Hans-Joachim Anders
- Division of Nephrology, Department of Internal Medicine IV, Hospital of the Ludwig Maximilians University Munich, Munich, Germany
| | - Anil Bhanudas Gaikwad
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, India
| |
Collapse
|
12
|
Huang X, Yu D. Assessment of Regional Health Resource Carrying Capacity and Security in Public Health Emergencies Based on the COVID-19 Outbreak. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2068. [PMID: 36767442 PMCID: PMC9916352 DOI: 10.3390/ijerph20032068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
The Omicron variant of COVID-19, which emerged at the end of 2021, has caused a new wave of infections around the world and is causing a new wave of the crisis due to the extreme variability of the pathogen. In response to public health emergencies such as SARS and COVID-19, the first task is to identify the vulnerabilities of regional health systems and perform a comprehensive assessment of the region's resilience. In this paper, we take the carrying capacity of medical resources as the focus; evaluate the medical, human, and financial resources of various regions; and construct an epidemic safety index based on the actual situation or future trend of the epidemic outbreak to evaluate and predict the risk level of each region in response to the epidemic. The study firstly evaluates the epidemic safety index for each province and city in China and 150 countries around the world, using the first wave of the COVID-19 epidemic in 2020 and the Omicron variant virus in 2022 as the background, respectively, and justifies the index through the actual performance in terms of epidemic prevention and control, based on which the epidemic safety index for 150 countries in the next year is predicted. The conclusions show that Europe, the Americas, and parts of Asia will face a significant risk of epidemic shocks in the coming period and that countries need to formulate policies in response to the actual situation of the epidemic.
Collapse
Affiliation(s)
- Xiaoran Huang
- School of Architecture and Art, North China University of Technology, Beijing 100144, China
- Centre for Design Innovation, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Demiao Yu
- School of Architecture and Art, North China University of Technology, Beijing 100144, China
| |
Collapse
|
13
|
Ye Q, Liu H, Mao J, Shu Q. Nonpharmaceutical interventions for COVID-19 disrupt the dynamic balance between influenza A virus and human immunity. J Med Virol 2023; 95:e28292. [PMID: 36367115 PMCID: PMC9877879 DOI: 10.1002/jmv.28292] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/25/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
During the COVID-19 epidemic, nonpharmaceutical interventions (NPIs) blocked the transmission route of respiratory diseases. This study aimed to investigate the impact of NPIs on the influenza A virus (IAV) outbreak. The present study enrolled all children with respiratory tract infections who came to the Children's Hospital of Zhejiang University between January 2019 and July 2022. A direct immunofluorescence assay kit detected IAV. Virus isolation and Sanger sequencing were performed. From June to July 2022, in Hangzhou, China, the positive rate of IAV infection in children has increased rapidly, reaching 30.41%, and children over 3 years old are the main infected population, accounting for 75% of the total number of infected children. Influenza A (H3N2) viruses are representative strains during this period. In this outbreak, H3N2 was isolated from a cluster of its own and is highly homologous with A/South_Dakota/22/2022 (2021-2022 Northern Hemisphere). Between isolated influenza A (H3N2) viruses and A/South_Dakota/22/2022, the nucleotide homology of the HA gene ranged from 97.3% to 97.5%; the amino acid homology was 97%-97.2%, and the genetic distance of nucleotides ranged from 0.05 to 0.052. Compared with A/South_Dakota/22/2022, the isolated H3N2 showed S156H, N159Y, I160T, D186S, S198P, I48T, S53D, and K171N mutations. There was no variation in 13 key amino acid sites associated with neuraminidase inhibitor resistance in NA protein. Long-term NPIs have significantly affected the evolution and transmission of the influenza virus and human immunity, breaking the dynamic balance between the IAV and human immunity.
Collapse
Affiliation(s)
- Qing Ye
- Department of Clinical Laboratory, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child HealthNational Children's Regional Medical CenterHangzhouChina
| | - Huihui Liu
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child HealthNational Children's Regional Medical CenterHangzhouChina
| | - Jianhua Mao
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child HealthNational Children's Regional Medical CenterHangzhouChina
| | - Qiang Shu
- Department of Thoracic & Cardiovascular Surgery, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child HealthNational Children's Regional Medical CenterHangzhouChina
| |
Collapse
|
14
|
Kaim A, Zeevy G, Saban M. COVID-19 Risk Compensation? Examining Vaccination Uptake among Recovered and Classification of Breakthrough Cases. Healthcare (Basel) 2022; 11:healthcare11010058. [PMID: 36611518 PMCID: PMC9819034 DOI: 10.3390/healthcare11010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
The study has two primary aims: the first is to examine the uptake of COVID-19 vaccination patterns among those previously infected, and the second is an evaluation of the period elapsed between the patient’s latest dose of the vaccine and the infection itself by demographic group. A retrospective study was conducted from 1 March 2020, to 31 May 2022, in Israel. The study found that among Israelis, vaccination uptake following infection is relatively low. When examining gender, one sees that the immunization rate among recovering females is higher than among men. Similarly, differences in uptake exist between age groups. When examining the interval between vaccine dose and infection according to age groups, the most significant breakthrough infection rate is among the ages of 20−59 (1−6 days—0.3%; 7−13 days—0.48%; two to three weeks—0.3%, p < 0.001). This study reveals potential reservoir groups of virus spread. Among previously infected, low vaccination uptake levels are observed (first dose—30−40%, second dose—16−27%, third dose—9% and fourth dose—2%, p < 0.001), despite findings that indicate surging reinfection rates. Among vaccinated, two critical groups (0−19; 20−59) exhibit highest levels of breakthrough cases varying per vaccine doses, with statistically significant findings (p < 0.001). These population groups may be subject to a false sense of security as a result of perceived acquired long-term immunity prompting low perceived risk of the virus and non-vigilance with protective behavior. The findings point to the possibility that individuals engage in more risky health behavior, per the Peltzman effect.
Collapse
Affiliation(s)
- Arielle Kaim
- Department of Emergency & Disaster Management, School of Public Health, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv-Yafo 6139001, Israel
- National Center for Trauma & Emergency Medicine Research, The Gertner Institute for Epidemiology & Health Policy Research, Sheba Medical Center, Tel-HaShomer, Ramat Gan 5266202, Israel
- Correspondence:
| | - Gal Zeevy
- The Information & Computerization Unit, The Gertner Institute for Epidemiology & Health Policy Research, Sheba Medical Center, Tel-HaShomer, Ramat Gan 5266202, Israel
| | - Mor Saban
- Health Technology Assessment and Policy Unit, The Gertner Institute for Epidemiology & Health Policy Research, Sheba Medical Center, Tel-HaShomer, Ramat Gan 5266202, Israel
- Nursing Department, School of Health Professions, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv-Yafo 6139001, Israel
| |
Collapse
|
15
|
Cvetkovic-Vega A, Urrunaga-Pastor D, Soto-Becerra P, Figueroa-Montes LE, Fernandez-Bolivar L, Alvizuri-Pastor S, Oyanguren-Miranda M, Neyra-Vera I, Carrillo-Ramos E, Sagástegui A, Contreras-Macazana R, Lecca-Rengifo D, Grande-Castro N, Apolaya-Segura M, Maguina JL. Post-vaccination seropositivity against SARS-CoV-2 in peruvian health workers vaccinated with BBIBP-CorV (Sinopharm). Travel Med Infect Dis 2022; 52:102514. [PMID: 36462747 PMCID: PMC9710108 DOI: 10.1016/j.tmaid.2022.102514] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/23/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
OBJECTIVE To estimate the prevalence of post-vaccination seropositivity against SARS-CoV-2 and identify its predictors in Peruvian Social Health Insurance (EsSalud) personnel in 2021. METHODS We conducted a cross-sectional study in a representative simple stratified sample of EsSalud workers. We evaluated IgG anti-SARS-CoV-2 antibodies response (seropositivity) by passive (previous infection) and active immunization (vaccination), and epidemiological and occupational variables obtained by direct interview and a data collection form. Descriptive and inferential statistics were used with correction of sample weights adjusted for non-response rate, and crude and adjusted odds ratio (OR) and geometric mean ratio (GMR) with their respective 95% confidence intervals (95%CI) were estimated. RESULTS We enrolled 1077 subjects. Seropositivity was 67.4% (95%CI: 63.4-71.1). Predictors of seropositivity were age (negative relation; p < 0.001), previous infection (aOR = 11.7; 95%CI: 7.81-17.5), working in COVID-19 area (aOR = 1.47; 95%CI: 1.02-2.11) and time since the second dose. In relation to antibody levels measured by geometric means, there was an association between male sex (aGMR = 0.77; 95%CI: 0.74-0.80), age (negative relation; p < 0.001), previous infection (aGMR = 13.1; 95%CI:4.99-34.40), non-face-to-face/licensed work modality (aGMR = 0.78; 95%CI: 0.73-0.84), being a nursing technician (aGMR = 1.30; 95%CI: 1.20-1.41), working in administrative areas (aGMR = 1.17; 95%CI: 1.10-1.25), diagnostic support (aGMR = 1.07; 95%CI: 1.01-1.15), critical care (aGMR = 0.85; 95%CI: 0.79-0.93), and in a COVID-19 area (aGMR = 1.30; 95%CI: 1.24-1.36) and time since receiving the second dose (negative relation; p < 0.001). CONCLUSIONS Seropositivity and antibody levels decrease as the time since receiving the second dose increases. Older age and no history of previous infection were associated with lower seropositivity and antibody values. These findings may be useful for sentinel antibody surveillance and the design of booster dose strategies.
Collapse
Affiliation(s)
| | - Diego Urrunaga-Pastor
- Instituto de Evaluación de Tecnologías en Salud e Investigación - IETSI, EsSalud, Lima, Peru; Facultad de Ciencias de la Salud, Universidad Científica del Sur, Lima, Peru
| | - Percy Soto-Becerra
- Instituto de Evaluación de Tecnologías en Salud e Investigación - IETSI, EsSalud, Lima, Peru; Universidad Continental, Huancayo, Peru
| | | | - Lizette Fernandez-Bolivar
- Departamento de Patología Clínica, Servicio de Inmunología y Bioquímica, Hospital Nacional Edgardo Rebagliati Martins, EsSalud, Lima, Peru
| | - Sergio Alvizuri-Pastor
- Unidad de Inmunología Especializada, Hospital Nacional Guillermo Almenara Irigoyen, EsSalud, Lima, Peru
| | - Martin Oyanguren-Miranda
- Unidad de Cuidados Intensivos, Hospital Nacional Edgardo Rebagliati Martins, EsSalud, Lima, Peru
| | - Ibeth Neyra-Vera
- Departamento de Patología Clínica, Servicio de Inmunología y Bioquímica, Hospital Nacional Edgardo Rebagliati Martins, EsSalud, Lima, Peru
| | - Elizabeth Carrillo-Ramos
- Departamento de Patología Clínica, Hospital Nacional Edgardo Rebagliati Martins, EsSalud, Lima, Peru
| | - Arturo Sagástegui
- Departamento de Patología Clínica, Hospital Nacional Edgardo Rebagliati Martins, EsSalud, Lima, Peru
| | - Roxana Contreras-Macazana
- Departamento de Patología Clínica, Servicio de Bioquímica e Inmunoquímica, Hospital Nacional Alberto Sabogal Sologuren, EsSalud, Lima, Peru
| | - Diana Lecca-Rengifo
- Subgerencia de Proyectos Especiales, Gerencia de Oferta Flexible, EsSalud, Lima, Peru
| | - Nikolai Grande-Castro
- Departamento de Patología Clínica, Unidad de Inmuno-diagnóstico, Hospital Nacional Guillermo Almenara Irigoyen, EsSalud, Lima, Peru
| | - Moises Apolaya-Segura
- Instituto de Evaluación de Tecnologías en Salud e Investigación - IETSI, EsSalud, Lima, Peru
| | - Jorge L Maguina
- Instituto de Evaluación de Tecnologías en Salud e Investigación - IETSI, EsSalud, Lima, Peru.
| |
Collapse
|
16
|
Huang LL, Tung TH, Jiang YH, Hu WW, Yang YP. Determinants of the willingness of medical staff to vaccinate their children with a booster dose of the COVID-19 vaccine in Taizhou, China. Hum Vaccin Immunother 2022; 18:2139098. [PMID: 36440977 PMCID: PMC9746360 DOI: 10.1080/21645515.2022.2139098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/04/2022] [Accepted: 10/17/2022] [Indexed: 11/29/2022] Open
Abstract
The study aimed to determine the willingness of medical staff to have their children vaccinated with a COVID-19 booster in Taizhou, China. From March 21 to April 19, 2022, an online questionnaire survey was conducted to assess the willingness of medical staff to vaccinate their children with a booster dose of the COVID-19 vaccine. Of the 1,252 medical staff in a tertiary grade hospital in Taizhou who were invited to answer the structured questionnaire, 514 (41.1%) samples had valid information for further data analysis. Four hundred thirty-seven medical staff (85.0%) were willing to have their children receive vaccine boosters. After adjustments for confounding factors, the opinion ('Do you think your child needs a booster vaccination against COVID-19?') (yes vs. no, OR = 6.91, 95% CI: 3.29-14.54), the viewpoint ('What are your thoughts the effectiveness of COVID-19 vaccine boosters for children?' (≥12 vs. <12, OR = 13.81, 95% CI: 4.03-), and the attitude ('Your attitude to whether your child is boosting the Covid-19 vaccine?') (yes vs. no, OR = 4.66, 95% CI: 2.30-9.44) were significantly associated with their willingness to have their children receive a COVID-19 vaccine booster. A moderate percentage of the respondents expressed willingness to have their children receive booster vaccines. The findings implied that factors affecting medical staffs' willingness to vaccinate their children with a COVID-19 vaccine booster included viewpoint, opinion, and attitudes.
Collapse
Affiliation(s)
- Li-Li Huang
- Department of Emergency, Taizhou First People’s Hospital, Taizhou, Zhejiang, China
| | - Tao-Hsin Tung
- Evidence-Based Medicine Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, Zhejiang, China
| | - Yan-Hong Jiang
- Department of Outpatient, Taizhou First People’s Hospital, Taizhou, Zhejiang, China
| | - Wei-Wei Hu
- Department of General Surgery, Taizhou First People’s Hospital, Taizhou, Zhejiang, China
| | - Yu-Pei Yang
- Department of Hematology, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, Zhejiang, China
| |
Collapse
|
17
|
Lazarus JV, Romero D, Kopka CJ, Karim SA, Abu-Raddad LJ, Almeida G, Baptista-Leite R, Barocas JA, Barreto ML, Bar-Yam Y, Bassat Q, Batista C, Bazilian M, Chiou ST, Del Rio C, Dore GJ, Gao GF, Gostin LO, Hellard M, Jimenez JL, Kang G, Lee N, Matičič M, McKee M, Nsanzimana S, Oliu-Barton M, Pradelski B, Pyzik O, Rabin K, Raina S, Rashid SF, Rathe M, Saenz R, Singh S, Trock-Hempler M, Villapol S, Yap P, Binagwaho A, Kamarulzaman A, El-Mohandes A. A multinational Delphi consensus to end the COVID-19 public health threat. Nature 2022; 611:332-345. [PMID: 36329272 PMCID: PMC9646517 DOI: 10.1038/s41586-022-05398-2] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022]
Abstract
Despite notable scientific and medical advances, broader political, socioeconomic and behavioural factors continue to undercut the response to the COVID-19 pandemic1,2. Here we convened, as part of this Delphi study, a diverse, multidisciplinary panel of 386 academic, health, non-governmental organization, government and other experts in COVID-19 response from 112 countries and territories to recommend specific actions to end this persistent global threat to public health. The panel developed a set of 41 consensus statements and 57 recommendations to governments, health systems, industry and other key stakeholders across six domains: communication; health systems; vaccination; prevention; treatment and care; and inequities. In the wake of nearly three years of fragmented global and national responses, it is instructive to note that three of the highest-ranked recommendations call for the adoption of whole-of-society and whole-of-government approaches1, while maintaining proven prevention measures using a vaccines-plus approach2 that employs a range of public health and financial support measures to complement vaccination. Other recommendations with at least 99% combined agreement advise governments and other stakeholders to improve communication, rebuild public trust and engage communities3 in the management of pandemic responses. The findings of the study, which have been further endorsed by 184 organizations globally, include points of unanimous agreement, as well as six recommendations with >5% disagreement, that provide health and social policy actions to address inadequacies in the pandemic response and help to bring this public health threat to an end.
Collapse
Affiliation(s)
- Jeffrey V Lazarus
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain.
- Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.
- City University of New York Graduate School of Public Health and Health Policy (CUNY SPH), New York City, NY, USA.
| | - Diana Romero
- City University of New York Graduate School of Public Health and Health Policy (CUNY SPH), New York City, NY, USA
| | | | - Salim Abdool Karim
- University of KwaZulu-Natal, Durban, South Africa
- Centre for the AIDS Program of Research in South Africa (CAPRISA), Durban, South Africa
| | - Laith J Abu-Raddad
- Weill Cornell Medicine, Cornell University, Ithaca, NY, USA
- Weill Cornell Medicine-Qatar, Cornell University, Qatar Foundation-Education City, Doha, Qatar
| | | | - Ricardo Baptista-Leite
- UNITE Global Parliamentarians Network, Lisbon, Portugal
- Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
- Institute of Health Sciences (CIIS), Catholic University of Portugal, Lisbon, Portugal
| | | | - Mauricio L Barreto
- Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
- University of Bahia, Salvador, Brazil
| | - Yaneer Bar-Yam
- New England Complex Systems Institute, Cambridge, MA, USA
| | - Quique Bassat
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Manhiça Health Research Center (CISM), Maputo, Mozambique
- Catalan Institute for Research and Advanced Studies (ICREA), Barcelona, Spain
- Pediatrics Department, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
- Biomedical Research Consortium in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Carolina Batista
- Doctors Without Borders (MSF), Geneva, Switzerland
- Baraka Impact Finance, Geneva, Switzerland
| | | | - Shu-Ti Chiou
- National Yang Ming Chiao Tung University, Taipei, Taiwan
| | | | - Gregory J Dore
- University of New South Wales (UNSW) Sydney, Sydney, New South Wales, Australia
| | - George F Gao
- Chinese Center for Disease Control and Prevention, Beijing, China
| | - Lawrence O Gostin
- The O'Neill Institute for National and Global Health Law, Georgetown University, Washington, DC, USA
| | | | - Jose L Jimenez
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, USA
- Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado Boulder, Boulder, CO, USA
| | | | | | - Mojca Matičič
- Clinic for Infectious Diseases and Febrile Illnesses, University Medical Centre, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Martin McKee
- The London School of Hygiene & Tropical Medicine, London, UK
| | | | | | - Bary Pradelski
- French National Centre for Scientific Research (CNRS), Grenoble, France
| | | | - Kenneth Rabin
- City University of New York Graduate School of Public Health and Health Policy (CUNY SPH), New York City, NY, USA
| | - Sunil Raina
- Dr. Rajendra Prasad Government Medical College, Himachal Pradesh, India
| | - Sabina Faiz Rashid
- James P. Grant School of Public Health, BRAC University, Dhaka, Bangladesh
| | | | - Rocio Saenz
- University of Costa Rica, San José, Costa Rica
| | - Sudhvir Singh
- Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | | | - Sonia Villapol
- Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, USA
| | - Peiling Yap
- International Digital Health & AI Research Collaborative (I-DAIR), Geneva, Switzerland
| | | | | | - Ayman El-Mohandes
- City University of New York Graduate School of Public Health and Health Policy (CUNY SPH), New York City, NY, USA
| |
Collapse
|
18
|
Comparison of Homologous and Heterologous Booster SARS-CoV-2 Vaccination in Autoimmune Rheumatic and Musculoskeletal Patients. Int J Mol Sci 2022; 23:ijms231911411. [PMID: 36232710 PMCID: PMC9569441 DOI: 10.3390/ijms231911411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/17/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Vaccination against SARS-CoV-2 to prevent COVID-19 is highly recommended for immunocompromised patients with autoimmune rheumatic and musculoskeletal diseases (aiRMDs). Little is known about the effect of booster vaccination or infection followed by previously completed two-dose vaccination in aiRMDs. We determined neutralizing anti-SARS-CoV-2 antibody levels and applied flow cytometric immunophenotyping to quantify the SARS-CoV-2 reactive B- and T-cell mediated immunity in aiRMDs receiving homologous or heterologous boosters or acquired infection following vaccination. Patients receiving a heterologous booster had a higher proportion of IgM+ SARS-CoV-2 S+ CD19+CD27+ peripheral memory B-cells in comparison to those who acquired infection. Biologic therapy decreased the number of S+CD19+; S+CD19+CD27+IgG+; and S+CD19+CD27+IgM+ B-cells. The response rate to a booster event in cellular immunity was the highest in the S-, M-, and N-reactive CD4+CD40L+ T-cell subset. Patients with a disease duration of more than 10 years had higher proportions of CD8+TNF-α+ and CD8+IFN-γ+ T-cells in comparison to patients who were diagnosed less than 10 years ago. We detected neutralizing antibodies, S+ reactive peripheral memory B-cells, and five S-, M-, and N-reactive T-cells subsets in our patient cohort showing the importance of booster events. Biologic therapy and <10 years disease duration may confound anti-SARS-CoV-2 specific immunity in aiRMDs.
Collapse
|
19
|
Kelly SL, Le Rutte EA, Richter M, Penny MA, Shattock AJ. COVID-19 Vaccine Booster Strategies in Light of Emerging Viral Variants: Frequency, Timing, and Target Groups. Infect Dis Ther 2022; 11:2045-2061. [PMID: 36094720 PMCID: PMC9464609 DOI: 10.1007/s40121-022-00683-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/01/2022] [Indexed: 01/06/2023] Open
Abstract
Background Vaccinations have reduced severe burden of COVID-19 and allowed for lifting of non-pharmaceutical interventions. However, with immunity waning alongside emergence of more transmissible variants of concern, vaccination strategies must be examined. Methods Here we apply a SARS-CoV-2 transmission model to identify preferred frequency, timing, and target groups for vaccine boosters to reduce public health burden and health systems risk. We estimated new infections and hospital admissions averted over 2 years through annual or biannual boosting of those eligible (those who received doses one and two) who are (1) most vulnerable (60+ or living with comorbidities) or (2) those 5+, at universal (98% of eligible) or lower coverage (85% of those 50+ or with comorbidities and 50% of 5–49 year olds) representing moderate vaccine fatigue and/or hesitancy. We simulated three emerging variant scenarios: (1) no new variants; (2) 25% more infectious and immune-evading Omicron-level severity variants emerge annually and become dominant; (3) emerge biannually. We further explored the impact of varying seasonality, variant immune-evading capacity, infectivity, severity, timing, and vaccine infection blocking assumptions. Results To reduce COVID-19-related hospitalisations over the next 2 years, boosters should be provided for all those eligible annually 3–4 months ahead of peak winter whether or not new variants of concern emerge. Only boosting those most vulnerable is unlikely to ensure reduced stress on health systems. Moreover, boosting all eligible better protects those most vulnerable than only boosting the vulnerable group. Conversely, while this strategy may not ensure reduced stress on health systems, as an indication of cost-effectiveness, per booster dose more hospitalisations could be averted through annual boosting of those most vulnerable versus all eligible, since those most vulnerable are more likely to seek hospital care once infected, whereas increasing to biannual boosting showed diminishing returns. Results were robust when key model parameters were varied. However, we found that the more frequently variants emerge, the less the effect boosters will have, regardless of whether administered annually or biannually. Conclusions Delivering well-timed annual COVID-19 vaccine boosters to all those eligible, prioritising those most vulnerable, can reduce infections and hospital admissions. Findings provide model-based evidence for decision-makers to plan for administering COVID-19 boosters ahead of winter 2022–2023 to help mitigate the health burden and health system stress. Supplementary Information The online version contains supplementary material available at 10.1007/s40121-022-00683-z.
Collapse
Affiliation(s)
- Sherrie L Kelly
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Epke A Le Rutte
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Maximilian Richter
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Melissa A Penny
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland.
- University of Basel, Basel, Switzerland.
| | - Andrew J Shattock
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
20
|
Zurac S, Vladan C, Dinca O, Constantin C, Neagu M. Immunogenicity evaluation after BNT162b2 booster vaccination in healthcare workers. Sci Rep 2022; 12:12716. [PMID: 35882871 PMCID: PMC9321272 DOI: 10.1038/s41598-022-16759-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/14/2022] [Indexed: 12/21/2022] Open
Abstract
Waning of the immune response upon vaccination in SARS-CoV-2 infection is an important subject of evaluation in this pandemic, mostly in healthcare workers (HCW) that are constantly in contact with infected samples and patients. Therefore, our study aimed to establish the specific humoral response of specific IgG and IgA antibodies upon vaccination, during the second year of pandemic and evaluating the booster shot with the same vaccine type. A group of 103 HCW with documented exposure to the virus were monitored for specific IgG and IgA levels prior to vaccination, after the first vaccination round, during the following 8 months and after the booster shot with the same vaccine type. After 8 months post-vaccination the humoral response in both IgG and IgA decreased, 2.4 times for IgG, and 2.7 times for IgA. Although the antibodies levels significantly decreased, no documented infection was registered in the group. After the booster shot, the entire group, displayed IgG increased levels, immediately after booster followed by the increase in specific IgA. IgG levels post-second round of vaccination are statistically higher compared to the first round, while IgA is restored at the same levels. Within the vaccination or booster routine for a multiple waves' pandemic that is generating new virus variants, populational immunity remains an important issue for future implementation of prevention/control measures.
Collapse
Affiliation(s)
- Sabina Zurac
- Faculty of Dental Medicine, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
- Department of Pathology, Colentina Clinical Hospital, Bucharest, Romania
| | - Cristian Vladan
- Faculty of Dental Medicine, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
- "Prof. Dr. Dan Theodorescu" Clinical Hospital for Oro-Maxillo-Facial Surgery, Bucharest, Romania
| | - Octavian Dinca
- Faculty of Dental Medicine, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
- "Prof. Dr. Dan Theodorescu" Clinical Hospital for Oro-Maxillo-Facial Surgery, Bucharest, Romania
| | - Carolina Constantin
- Department of Pathology, Colentina Clinical Hospital, Bucharest, Romania.
- Department of Immunology, Victor Babes National Institute of Pathology, Bucharest, Romania.
| | - Monica Neagu
- Department of Pathology, Colentina Clinical Hospital, Bucharest, Romania
- "Prof. Dr. Dan Theodorescu" Clinical Hospital for Oro-Maxillo-Facial Surgery, Bucharest, Romania
- Doctoral School, Faculty of Biology, University of Bucharest, Bucharest, Romania
| |
Collapse
|
21
|
Güven SC, Karakaş Ö, Atalar E, Konak HE, Akyüz Dağlı P, Kayacan Erdoğan E, Armağan B, Gök K, Doğan İ, Maraş Y, Erden A, Erten Ş, Küçükşahin O, Omma A. A single-center COVID-19 vaccine experience with CoronaVac and BNT162b2 in familial Mediterranean fever patients. Int J Rheum Dis 2022; 25:787-794. [PMID: 35642453 PMCID: PMC9347409 DOI: 10.1111/1756-185x.14349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/26/2022] [Accepted: 05/03/2022] [Indexed: 11/27/2022]
Abstract
AIM To determine frequency of adverse events and attacks related to vaccination in recipients of CoronaVac and BNT162b2 in familial Mediterranean fever (FMF) patients, and to search whether history of prior COVID-19 or a booster dose increases occurrence of adverse events/attacks. METHODS FMF patients were surveyed for administration of any COVID-19 vaccine and vaccine-related adverse events or FMF attacks. Demographic, clinical, vaccine-related data, history of COVID-19 infection before or after vaccination, adherence to FMF treatment during vaccination were collected. RESULTS A total of 161 vaccinated FMF patients were included. Ninety-three patients out of 161 had reported suffering from an adverse event/attack after a vaccine dose. There were 54.7% of BNT162b2 recipients who reported any adverse event after any vaccine dose in comparison to 29.9% of CoronaVac recipients (P < .001). There were 22.2% of BNT162b2 recipients who reported suffering from a FMF attack within 1 month after vaccination in comparison to 19.4% of CoronaVac recipients (P = .653). When patients with or without adverse event/attack were compared, no significant differences were observed in means of demographics, comorbid diseases, disease duration, total vaccine doses, or treatments adhered to for FMF. Rates of adverse events/attacks were similar between patients with and without prior COVID-19. In booster recipients, adverse events/attacks were most frequent after the booster dose. CONCLUSIONS A considerable number of FMF patients suffered from vaccine-related adverse events/attacks, particularly with BNT162b2. No serious events or mortalities due to vaccination were detected. Demographics, clinical characteristics and prior history of vaccination did not significantly affect these results. We observed an increased rate of adverse events/attacks with booster dose administration.
Collapse
Affiliation(s)
| | - Özlem Karakaş
- Ankara City Hospital, Clinic of Rheumatology, Ankara, Turkey
| | - Ebru Atalar
- Ankara City Hospital, Clinic of Rheumatology, Ankara, Turkey
| | | | | | | | - Berkan Armağan
- Ankara City Hospital, Clinic of Rheumatology, Ankara, Turkey
| | - Kevser Gök
- Ankara City Hospital, Clinic of Rheumatology, Ankara, Turkey
| | - İsmail Doğan
- Department of Internal Medicine, Division of Rheumatology, Yıldırım Beyazıt University Medical School, Ankara, Turkey
| | - Yüksel Maraş
- University of Health Sciences, Ankara City Hospital, Clinic of Rheumatology, Ankara, Turkey
| | - Abdulsamet Erden
- Department of Internal Medicine, Division of Rheumatology, Yıldırım Beyazıt University Medical School, Ankara, Turkey
| | - Şükran Erten
- Department of Internal Medicine, Division of Rheumatology, Yıldırım Beyazıt University Medical School, Ankara, Turkey
| | - Orhan Küçükşahin
- Department of Internal Medicine, Division of Rheumatology, Yıldırım Beyazıt University Medical School, Ankara, Turkey
| | - Ahmet Omma
- University of Health Sciences, Ankara City Hospital, Clinic of Rheumatology, Ankara, Turkey
| |
Collapse
|
22
|
Shao W. Accurate Interpretation of SARS-CoV-2 Antigen Detection by Immunochromatography. Front Med (Lausanne) 2022; 9:949554. [PMID: 35847813 PMCID: PMC9276965 DOI: 10.3389/fmed.2022.949554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/13/2022] [Indexed: 11/30/2022] Open
Abstract
SARS-CoV-2 is a serious infectious respiratory virus that can cause lung, heart, kidney, and liver damage and even cause death. Early diagnosis of SARS-CoV-2 infection is vital for epidemic prevention and control. At present, the gold standard of COVID-19 diagnosis is nucleic acid detection of SARS-CoV-2. However, the nucleic acid detection of SARS-CoV-2 requires high site requirements and technology requirements, and the detection is time-consuming and cannot fully meet clinical needs. Although SARS-CoV-2 antigen test results cannot be directly used to diagnose COVID-19, positive results can be used for the early triage and rapid management of suspected populations. However, due to the limitations of the methodology itself, the SARS-CoV-2 antigen test is prone to produce false-positive and false-negative results in the process of detection. It is urgent to develop a batch of SARS-CoV-2 antigen reagents based on new detection technology and detection principles to overcome the defects of existing technologies.
Collapse
Affiliation(s)
- Wenxia Shao
- Department of Clinical Laboratory, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
23
|
Ye Q, Shao W, Meng H. Performance and Application Evaluation of SARS-CoV-2 Antigen Assay. J Med Virol 2022; 94:3548-3553. [PMID: 35445404 PMCID: PMC9088371 DOI: 10.1002/jmv.27798] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 11/22/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) nucleic acid detection is the gold standard for the laboratory diagnosis of coronavirus disease 2019 (COVID‐19). However, this method has high requirements for practitioners' skills and testing sites, so it is not easy to popularize and promote the application in places other than large hospitals. In addition, the detection flux of SARS‐CoV‐2 nucleic acid is small, and the whole detection process takes much time, which cannot meet the actual needs of rapid screening in large quantities. The WHO conditionally approved a batch of SARS‐CoV‐2 antigen reagents for clinical application to alleviate this contradiction. SARS‐CoV‐2 antigen detection offers a trade‐off among clinical performance, speed and accessibility. With the gradual increase in clinical application, the accumulated clinical data show that the sensitivity and specificity of the SARS‐CoV‐2 antigen assay are over 80% and 97%, respectively, which can basically meet the requirements of the WHO. However, the sensitivity of the SARS‐CoV‐2 Antigen Assay among asymptomatic people in low prevalence areas of COVID‐19 cannot meet the standard, leading to a large number of missed diagnoses. In addition, the detection ability of SARS‐CoV‐2 antigen reagent for different SARS‐CoV‐2 mutant strains differs greatly, especially for those escaping the COVID‐19 vaccines. In terms of results interpretation, it is highly reliable to exclude SARS‐CoV‐2 infection based on the high negative predictive value of the SARS‐CoV‐2 antigen assay. However, in the low prevalence environment, the probability of false positives of the SARS‐CoV‐2 antigen assay is high, so the positive results need to be confirmed by the SARS‐CoV‐2 nucleic acid reagent. The SARS‐CoV‐2 antigen assay is only a supplement to SARS‐CoV‐2 nucleic acid detection and can never completely replace it. To date, SARS‐CoV‐2 nucleic acid detection continues to be the standard laboratory method for COVID‐19 diagnosis.
Collapse
Affiliation(s)
- Qing Ye
- Department of Clinical Laboratory, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, 310052, China
| | - Wenxia Shao
- Department of Clinical Laboratory, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hanyan Meng
- Department of Clinical Laboratory, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, 310052, China
| |
Collapse
|