1
|
Chen B, Chen X, Peng L, Liu S, Tang Y, Gao X. Metabolic network connectivity disturbances in Parkinson's disease: a novel imaging biomarker. Cereb Cortex 2024; 34:bhae355. [PMID: 39329355 DOI: 10.1093/cercor/bhae355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/20/2024] [Accepted: 08/14/2024] [Indexed: 09/28/2024] Open
Abstract
The diagnosis of Parkinson's Disease (PD) presents ongoing challenges. Advances in imaging techniques like 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) have highlighted metabolic alterations in PD, yet the dynamic network interactions within the metabolic connectome remain elusive. To this end, we examined a dataset comprising 49 PD patients and 49 healthy controls. By employing a personalized metabolic connectome approach, we assessed both within- and between-network connectivities using Standard Uptake Value (SUV) and Jensen-Shannon Divergence Similarity Estimation (JSSE). A random forest algorithm was utilized to pinpoint key neuroimaging features differentiating PD from healthy states. Specifically, the results revealed heightened internetwork connectivity in PD, specifically within the somatomotor (SMN) and frontoparietal (FPN) networks, persisting after multiple comparison corrections (P < 0.05, Bonferroni adjusted for 10% and 20% sparsity). This altered connectivity effectively distinguished PD patients from healthy individuals. Notably, this study utilizes 18F-FDG PET imaging to map individual metabolic networks, revealing enhanced connectivity in the SMN and FPN among PD patients. This enhanced connectivity may serve as a promising imaging biomarker, offering a valuable asset for early PD detection.
Collapse
Affiliation(s)
- Bei Chen
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, No. 172, Tongzipo Road, Changsha City, Hunan Province, Changsha 410008, China
| | - Xiran Chen
- College of Mathematics and Statistics, Chongqing Jiaotong University, Xuefu Road No. 66, Chongqing 400074, China
| | - Liling Peng
- Department of PET/MR, Shanghai Universal Medical Imaging Diagnostic Center, Guilin Road No. 406, Shanghai 200233 China
- Hubei Province Key Laboratory of Molecular Imaging, Jiefang Road No. 1277, Wuhan 430022 China
| | - Shiqi Liu
- College of Mathematics and Statistics, Chongqing Jiaotong University, Xuefu Road No. 66, Chongqing 400074, China
| | - Yongxiang Tang
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, No. 172, Tongzipo Road, Changsha City, Hunan Province, Changsha 410008, China
| | - Xin Gao
- Department of PET/MR, Shanghai Universal Medical Imaging Diagnostic Center, Guilin Road No. 406, Shanghai 200233 China
| |
Collapse
|
2
|
Clairis N, Barakat A, Brochard J, Xin L, Sandi C. A neurometabolic mechanism involving dmPFC/dACC lactate in physical effort-based decision-making. Mol Psychiatry 2024:10.1038/s41380-024-02726-y. [PMID: 39215184 DOI: 10.1038/s41380-024-02726-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Motivation levels vary across individuals, yet the underlying mechanisms driving these differences remain elusive. The dorsomedial prefrontal cortex/dorsal anterior cingulate cortex (dmPFC/dACC) and the anterior insula (aIns) play crucial roles in effort-based decision-making. Here, we investigate the influence of lactate, a key metabolite involved in energy metabolism and signaling, on decisions involving both physical and mental effort, as well as its effects on neural activation. Using proton magnetic resonance spectroscopy and functional MRI in 63 participants, we find that higher lactate levels in the dmPFC/dACC are associated with reduced motivation for physical effort, a relationship mediated by neural activity within this region. Additionally, plasma and dmPFC/dACC lactate levels correlate, suggesting a systemic influence on brain metabolism. Supported by path analysis, our results highlight lactate's role as a modulator of dmPFC/dACC activity, hinting at a neurometabolic mechanism that integrates both peripheral and central metabolic states with brain function in effort-based decision-making.
Collapse
Affiliation(s)
- Nicolas Clairis
- Laboratory of Behavioral Genetics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - Arthur Barakat
- Laboratory of Behavioral Genetics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Jules Brochard
- Transdisciplinary Research Areas, Life and Health, University of Bonn, Bonn, Germany
| | - Lijing Xin
- Center for Biomedical Imaging (CIBM), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Physics (IPHYS), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Carmen Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
3
|
Wang MY, Zhou Y, Li WL, Zhu LQ, Liu D. Friend or foe: Lactate in neurodegenerative diseases. Ageing Res Rev 2024; 101:102452. [PMID: 39127445 DOI: 10.1016/j.arr.2024.102452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
Lactate, a byproduct of glycolysis, was considered as a metabolic waste until identified by studies on the Warburg effect. Increasing evidence elucidates that lactate functions as energy fuel, signaling molecule, and donor for protein lactylation. Altered lactate utilization is a common metabolic feature of the onset and progression of neurodegenerative diseases, such as Alzheimer's disease, multiple sclerosis, amyotrophic lateral sclerosis, Parkinson's disease and Huntington's disease. This review offers an overview of lactate metabolism from the perspective of production, transportation and clearance, and the role of lactate in neurodegenerative progression, as well as a summary of protein lactylation and the signaling function of lactate in neurodegenerative diseases. Besides, this review delves into the dual roles of changed lactate metabolism during neurodegeneration and explores prospective therapeutic methods targeting lactate. We propose that elucidating the correlation between lactate and neurodegeneration is pivotal for exploring innovative therapeutic interventions for neurodegenerative diseases.
Collapse
Affiliation(s)
- Ming-Yu Wang
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yang Zhou
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Wen-Lian Li
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ling-Qiang Zhu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Dan Liu
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
4
|
Dienel GA, Schousboe A, McKenna MC, Rothman DL. A tribute to Leif Hertz: The historical context of his pioneering studies of the roles of astrocytes in brain energy metabolism, neurotransmission, cognitive functions, and pharmacology identifies important, unresolved topics for future studies. J Neurochem 2024; 168:461-495. [PMID: 36928655 DOI: 10.1111/jnc.15812] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
Leif Hertz, M.D., D.Sc. (honōris causā) (1930-2018), was one of the original and noteworthy participants in the International Conference on Brain Energy Metabolism (ICBEM) series since its inception in 1993. The biennial ICBEM conferences are organized by neuroscientists interested in energetics and metabolism underlying neural functions; they have had a high impact on conceptual and experimental advances in these fields and on promoting collaborative interactions among neuroscientists. Leif made major contributions to ICBEM discussions and understanding of metabolic and signaling characteristics of astrocytes and their roles in brain function. His studies ranged from uptake of K+ from extracellular fluid and its stimulation of astrocytic respiration, identification, and regulation of enzymes specifically or preferentially expressed in astrocytes in the glutamate-glutamine cycle of excitatory neurotransmission, a requirement for astrocytic glycogenolysis for fueling K+ uptake, involvement of glycogen in memory consolidation in the chick, and pharmacology of astrocytes. This tribute to Leif Hertz highlights his major discoveries, the high impact of his work on astrocyte-neuron interactions, and his unparalleled influence on understanding the cellular basis of brain energy metabolism. His work over six decades has helped integrate the roles of astrocytes into neurotransmission where oxidative and glycogenolytic metabolism during neurotransmitter glutamate turnover are key aspects of astrocytic energetics. Leif recognized that brain astrocytic metabolism is greatly underestimated unless the volume fraction of astrocytes is taken into account. Adjustment for pathway rates expressed per gram tissue for volume fraction indicates that astrocytes have much higher oxidative rates than neurons and astrocytic glycogen concentrations and glycogenolytic rates during sensory stimulation in vivo are similar to those in resting and exercising muscle, respectively. These novel insights are typical of Leif's astute contributions to the energy metabolism field, and his publications have identified unresolved topics that provide the neuroscience community with challenges and opportunities for future research.
Collapse
Affiliation(s)
- Gerald A Dienel
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205, USA
- Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, New Mexico, 87131, USA
| | - Arne Schousboe
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, 2100, Denmark
| | - Mary C McKenna
- Department of Pediatrics and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland, 21201, USA
| | - Douglas L Rothman
- Department of Radiology, Magnetic Resonance Research Center (MRRC), Yale University, New Haven, Connecticut, 06520, USA
| |
Collapse
|
5
|
Kann O. Lactate as a supplemental fuel for synaptic transmission and neuronal network oscillations: Potentials and limitations. J Neurochem 2024; 168:608-631. [PMID: 37309602 DOI: 10.1111/jnc.15867] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 06/14/2023]
Abstract
Lactate shuttled from the blood circulation, astrocytes, oligodendrocytes or even activated microglia (resident macrophages) to neurons has been hypothesized to represent a major source of pyruvate compared to what is normally produced endogenously by neuronal glucose metabolism. However, the role of lactate oxidation in fueling neuronal signaling associated with complex cortex function, such as perception, motor activity, and memory formation, is widely unclear. This issue has been experimentally addressed using electrophysiology in hippocampal slice preparations (ex vivo) that permit the induction of different neural network activation states by electrical stimulation, optogenetic tools or receptor ligand application. Collectively, these studies suggest that lactate in the absence of glucose (lactate only) impairs gamma (30-70 Hz) and theta-gamma oscillations, which feature high energy demand revealed by the cerebral metabolic rate of oxygen (CMRO2, set to 100%). The impairment comprises oscillation attenuation or moderate neural bursts (excitation-inhibition imbalance). The bursting is suppressed by elevating the glucose fraction in energy substrate supply. By contrast, lactate can retain certain electric stimulus-induced neural population responses and intermittent sharp wave-ripple activity that features lower energy expenditure (CMRO2 of about 65%). Lactate utilization increases the oxygen consumption by about 9% during sharp wave-ripples reflecting enhanced adenosine-5'-triphosphate (ATP) synthesis by oxidative phosphorylation in mitochondria. Moreover, lactate attenuates neurotransmission in glutamatergic pyramidal cells and fast-spiking, γ-aminobutyric acid (GABA)ergic interneurons by reducing neurotransmitter release from presynaptic terminals. By contrast, the generation and propagation of action potentials in the axon is regular. In conclusion, lactate is less effective than glucose and potentially detrimental during neural network rhythms featuring high energetic costs, likely through the lack of some obligatory ATP synthesis by aerobic glycolysis at excitatory and inhibitory synapses. High lactate/glucose ratios might contribute to central fatigue, cognitive impairment, and epileptic seizures partially seen, for instance, during exhaustive physical exercise, hypoglycemia and neuroinflammation.
Collapse
Affiliation(s)
- Oliver Kann
- Institute of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany
- Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
6
|
Trefz F, Frauendienst-Egger G, Dienel G, Cannet C, Schmidt-Mader B, Haas D, Blau N, Himmelreich N, Spraul M, Freisinger P, Dobrowolski S, Berg D, Pilotto A. Does hyperphenylalaninemia induce brain glucose hypometabolism? Cerebral spinal fluid findings in treated adult phenylketonuric patients. Mol Genet Metab 2024; 142:108464. [PMID: 38537426 DOI: 10.1016/j.ymgme.2024.108464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 05/08/2024]
Abstract
Despite numerous studies in human patients and animal models for phenylketonuria (PKU; OMIM#261600), the pathophysiology of PKU and the underlying causes of brain dysfunction and cognitive problems in PKU patients are not well understood. In this study, lumbar cerebral spinal fluid (CSF) was obtained immediately after blood sampling from early-treated adult PKU patients who had fasted overnight. Metabolite and amino acid concentrations in the CSF of PKU patients were compared with those of non-PKU controls. The CSF concentrations and CSF/plasma ratios for glucose and lactate were found to be below normal, similar to what has been reported for glucose transporter1 (GLUT1) deficiency patients who exhibit many of the same clinical symptoms as untreated PKU patients. CSF glucose and lactate levels were negatively correlated with CSF phenylalanine (Phe), while CSF glutamine and glutamate levels were positively correlated with CSF Phe levels. Plasma glucose levels were negatively correlated with plasma Phe concentrations in PKU subjects, which partly explains the reduced CSF glucose concentrations. Although brain glucose concentrations are unlikely to be low enough to impair brain glucose utilization, it is possible that the metabolism of Phe in the brain to produce phenyllactate, which can be transported across the blood-brain barrier to the blood, may consume glucose and/or lactate to generate the carbon backbone for glutamate. This glutamate is then converted to glutamine and carries the Phe-derived ammonia from the brain to the blood. While this mechanism remains to be tested, it may explain the correlations of CSF glutamine, glucose, and lactate concentrations with CSF Phe.
Collapse
Affiliation(s)
- Friedrich Trefz
- Heidelberg University, Medical Faculty of Heidelberg, Center for Child and Adolescent Medicine, Division of Child Neurology and Metabolic Medicine, Heidelberg, Germany.
| | | | - Gerald Dienel
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR, United States; Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM, United States
| | | | - Brigitte Schmidt-Mader
- Heidelberg University, Medical Faculty of Heidelberg, Center for Child and Adolescent Medicine, Division of Child Neurology and Metabolic Medicine, Heidelberg, Germany
| | - Dorothea Haas
- Heidelberg University, Medical Faculty of Heidelberg, Center for Child and Adolescent Medicine, Division of Child Neurology and Metabolic Medicine, Heidelberg, Germany
| | - Nenad Blau
- University Children's Hospital Zürich, Zürich, Switzerland
| | | | | | - Peter Freisinger
- Klinikum Reutlingen, Department of Pediatrics, Reutlingen, Germany
| | - Steven Dobrowolski
- Department of Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15224, United States
| | - Daniela Berg
- Department of Neurology, University Hospital of Schleswig-Holstein, Kiel, Germany
| | | |
Collapse
|
7
|
Bacq A, Depaulis A, Castagné V, Le Guern ME, Wirrell EC, Verleye M. An Update on Stiripentol Mechanisms of Action: A Narrative Review. Adv Ther 2024; 41:1351-1371. [PMID: 38443647 PMCID: PMC10960919 DOI: 10.1007/s12325-024-02813-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/02/2024] [Indexed: 03/07/2024]
Abstract
Stiripentol (Diacomit®) (STP) is an orally active antiseizure medication (ASM) indicated as adjunctive therapy, for the treatment of seizures associated with Dravet syndrome (DS), a severe form of childhood epilepsy, in conjunction with clobazam and, in some regions valproic acid. Since the discovery of STP, several mechanisms of action (MoA) have been described that may explain its specific effect on seizures associated with DS. STP is mainly considered as a potentiator of gamma-aminobutyric acid (GABA) neurotransmission: (i) via uptake blockade, (ii) inhibition of degradation, but also (iii) as a positive allosteric modulator of GABAA receptors, especially those containing α3 and δ subunits. Blockade of voltage-gated sodium and T-type calcium channels, which is classically associated with anticonvulsant and neuroprotective properties, has also been demonstrated for STP. Finally, several studies indicate that STP could regulate glucose energy metabolism and inhibit lactate dehydrogenase. STP is also an inhibitor of several cytochrome P450 enzymes involved in the metabolism of other ASMs, contributing to boost their anticonvulsant efficacy as add-on therapy. These different MoAs involved in treatment of DS and recent data suggest a potential for STP to treat other neurological or non-neurological diseases.
Collapse
Affiliation(s)
- Alexandre Bacq
- Biocodex Research and Development Center, Compiègne, France.
| | - Antoine Depaulis
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, Grenoble, France
| | | | | | - Elaine C Wirrell
- Divisions of Child and Adolescent Neurology and Epilepsy, Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Marc Verleye
- Biocodex Research and Development Center, Compiègne, France
| |
Collapse
|
8
|
Hackett EP, Chen J, Ingle L, Nemri SA, Barshikar S, da Cunha Pinho M, Plautz EJ, Bartnik-Olson BL, Park JM. Longitudinal assessment of mitochondrial dysfunction in acute traumatic brain injury using hyperpolarized [1- 13 C]pyruvate. Magn Reson Med 2023; 90:2432-2442. [PMID: 37427535 PMCID: PMC10543630 DOI: 10.1002/mrm.29794] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/11/2023]
Abstract
PURPOSE [13 C]Bicarbonate formation from hyperpolarized [1-13 C]pyruvate via pyruvate dehydrogenase, a key regulatory enzyme, represents the cerebral oxidation of pyruvate and the integrity of mitochondrial function. The present study is to characterize the chronology of cerebral mitochondrial metabolism during secondary injury associated with acute traumatic brain injury (TBI) by longitudinally monitoring [13 C]bicarbonate production from hyperpolarized [1-13 C]pyruvate in rodents. METHODS Male Wistar rats were randomly assigned to undergo a controlled-cortical impact (CCI, n = 31) or sham surgery (n = 22). Seventeen of the CCI and 9 of the sham rats longitudinally underwent a 1 H/13 C-integrated MR protocol that includes a bolus injection of hyperpolarized [1-13 C]pyruvate at 0 (2 h), 1, 2, 5, and 10 days post-surgery. Separate CCI and sham rats were used for histological validation and enzyme assays. RESULTS In addition to elevated lactate, we observed significantly reduced bicarbonate production in the injured site. Unlike the immediate appearance of hyperintensity on T2 -weighted MRI, the contrast of bicarbonate signals between the injured region and the contralateral brain peaked at 24 h post-injury, then fully recovered to the normal level at day 10. A subset of TBI rats demonstrated markedly increased bicarbonate in normal-appearing contralateral brain regions post-injury. CONCLUSION This study demonstrates that aberrant mitochondrial metabolism occurring in acute TBI can be monitored by detecting [13 C]bicarbonate production from hyperpolarized [1-13 C]pyruvate, suggesting that [13 C]bicarbonate is a sensitive in-vivo biomarker of the secondary injury processes.
Collapse
Affiliation(s)
- Edward P. Hackett
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas TX USA 75390
| | - Jun Chen
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas TX USA 75390
| | - Laura Ingle
- Department of Neurology and Neurotherapeutics, The University of Texas Southwestern Medical Center, Dallas TX USA 75390
| | - Sarah Al Nemri
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas TX USA 75390
| | - Surendra Barshikar
- Department of Physical Medicine and Rehabilitation, The University of Texas Southwestern Medical Center, Dallas TX USA 75390
| | - Marco da Cunha Pinho
- Department of Radiology, The University of Texas Southwestern Medical Center, Dallas TX USA 75390
| | - Erik J. Plautz
- Department of Neurology and Neurotherapeutics, The University of Texas Southwestern Medical Center, Dallas TX USA 75390
| | | | - Jae Mo Park
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas TX USA 75390
- Department of Radiology, The University of Texas Southwestern Medical Center, Dallas TX USA 75390
- Department of Biomedical Engineering, The University of Texas Southwestern Medical Center, Dallas TX USA 75390
| |
Collapse
|
9
|
Ehinger Y, Laguesse S, Phamluong K, Salvi A, Hoisington ZW, Soneja D, Sei YJ, Nakamura K, Ron D. Paradoxical mTORC1-Dependent microRNA-mediated Translation Repression in the Nucleus Accumbens of Mice Consuming Alcohol Attenuates Glycolysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.29.569312. [PMID: 38076984 PMCID: PMC10705386 DOI: 10.1101/2023.11.29.569312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
mTORC1 promotes protein translation, learning and memory, and neuroadaptations that underlie alcohol use and abuse. We report that activation of mTORC1 in the nucleus accumbens (NAc) of mice consuming alcohol promotes the translation of microRNA (miR) machinery components and the upregulation of microRNAs (miRs) expression including miR34a-5p. In parallel, we detected a paradoxical mTORC1-dependent repression of translation of transcripts including Aldolase A, an essential glycolytic enzyme. We found that miR34a-5p in the NAc targets Aldolase A for translation repression and promotes alcohol intake. Our data further suggest that glycolysis is inhibited in the NAc manifesting in an mTORC1-dependent attenuation of L-lactate, the end product of glycolysis. Finally, we show that systemic administration of L-lactate attenuates mouse excessive alcohol intake. Our data suggest that alcohol promotes paradoxical actions of mTORC1 on translation and glycolysis which in turn drive excessive alcohol use. Abstract Figure
Collapse
|
10
|
Alassaf M, Rajan A. Diet-induced glial insulin resistance impairs the clearance of neuronal debris in Drosophila brain. PLoS Biol 2023; 21:e3002359. [PMID: 37934726 PMCID: PMC10629620 DOI: 10.1371/journal.pbio.3002359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 10/03/2023] [Indexed: 11/09/2023] Open
Abstract
Obesity significantly increases the risk of developing neurodegenerative disorders, yet the precise mechanisms underlying this connection remain unclear. Defects in glial phagocytic function are a key feature of neurodegenerative disorders, as delayed clearance of neuronal debris can result in inflammation, neuronal death, and poor nervous system recovery. Mounting evidence indicates that glial function can affect feeding behavior, weight, and systemic metabolism, suggesting that diet may play a role in regulating glial function. While it is appreciated that glial cells are insulin sensitive, whether obesogenic diets can induce glial insulin resistance and thereby impair glial phagocytic function remains unknown. Here, using a Drosophila model, we show that a chronic obesogenic diet induces glial insulin resistance and impairs the clearance of neuronal debris. Specifically, obesogenic diet exposure down-regulates the basal and injury-induced expression of the glia-associated phagocytic receptor, Draper. Constitutive activation of systemic insulin release from Drosophila insulin-producing cells (IPCs) mimics the effect of diet-induced obesity on glial Draper expression. In contrast, genetically attenuating systemic insulin release from the IPCs rescues diet-induced glial insulin resistance and Draper expression. Significantly, we show that genetically stimulating phosphoinositide 3-kinase (Pi3k), a downstream effector of insulin receptor (IR) signaling, rescues high-sugar diet (HSD)-induced glial defects. Hence, we establish that obesogenic diets impair glial phagocytic function and delays the clearance of neuronal debris.
Collapse
Affiliation(s)
- Mroj Alassaf
- Basic Sciences Division, Fred Hutch, Seattle, Washington, United States of America
| | - Akhila Rajan
- Basic Sciences Division, Fred Hutch, Seattle, Washington, United States of America
| |
Collapse
|
11
|
Theriault JE, Shaffer C, Dienel GA, Sander CY, Hooker JM, Dickerson BC, Barrett LF, Quigley KS. A functional account of stimulation-based aerobic glycolysis and its role in interpreting BOLD signal intensity increases in neuroimaging experiments. Neurosci Biobehav Rev 2023; 153:105373. [PMID: 37634556 PMCID: PMC10591873 DOI: 10.1016/j.neubiorev.2023.105373] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/28/2023] [Accepted: 08/23/2023] [Indexed: 08/29/2023]
Abstract
In aerobic glycolysis, oxygen is abundant, and yet cells metabolize glucose without using it, decreasing their ATP per glucose yield by 15-fold. During task-based stimulation, aerobic glycolysis occurs in localized brain regions, presenting a puzzle: why produce ATP inefficiently when, all else being equal, evolution should favor the efficient use of metabolic resources? The answer is that all else is not equal. We propose that a tradeoff exists between efficient ATP production and the efficiency with which ATP is spent to transmit information. Aerobic glycolysis, despite yielding little ATP per glucose, may support neuronal signaling in thin (< 0.5 µm), information-efficient axons. We call this the efficiency tradeoff hypothesis. This tradeoff has potential implications for interpretations of task-related BOLD "activation" observed in fMRI. We hypothesize that BOLD "activation" may index local increases in aerobic glycolysis, which support signaling in thin axons carrying "bottom-up" information, or "prediction error"-i.e., the BIAPEM (BOLD increases approximate prediction error metabolism) hypothesis. Finally, we explore implications of our hypotheses for human brain evolution, social behavior, and mental disorders.
Collapse
Affiliation(s)
- Jordan E Theriault
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.
| | - Clare Shaffer
- Northeastern University, Department of Psychology, Boston, MA, USA
| | - Gerald A Dienel
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM, USA
| | - Christin Y Sander
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Jacob M Hooker
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Bradford C Dickerson
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA; Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Lisa Feldman Barrett
- Northeastern University, Department of Psychology, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Karen S Quigley
- Northeastern University, Department of Psychology, Boston, MA, USA; VA Bedford Healthcare System, Bedford, MA, USA
| |
Collapse
|
12
|
Raut S, Bhalerao A, Powers M, Gonzalez M, Mancuso S, Cucullo L. Hypometabolism, Alzheimer's Disease, and Possible Therapeutic Targets: An Overview. Cells 2023; 12:2019. [PMID: 37626828 PMCID: PMC10453773 DOI: 10.3390/cells12162019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/19/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023] Open
Abstract
The brain is a highly dynamic organ that requires a constant energy source to function normally. This energy is mostly supplied by glucose, a simple sugar that serves as the brain's principal fuel source. Glucose transport across the blood-brain barrier (BBB) is primarily controlled via sodium-independent facilitated glucose transport, such as by glucose transporter 1 (GLUT1) and 3 (GLUT3). However, other glucose transporters, including GLUT4 and the sodium-dependent transporters SGLT1 and SGLT6, have been reported in vitro and in vivo. When the BBB endothelial layer is crossed, neurons and astrocytes can absorb the glucose using their GLUT1 and GLUT3 transporters. Glucose then enters the glycolytic pathway and is metabolized into adenosine triphosphate (ATP), which supplies the energy to support cellular functions. The transport and metabolism of glucose in the brain are impacted by several medical conditions, which can cause neurological and neuropsychiatric symptoms. Alzheimer's disease (AD), Parkinson's disease (PD), epilepsy, traumatic brain injury (TBI), schizophrenia, etc., are a few of the most prevalent disorders, characterized by a decline in brain metabolism or hypometabolism early in the course of the disease. Indeed, AD is considered a metabolic disorder related to decreased brain glucose metabolism, involving brain insulin resistance and age-dependent mitochondrial dysfunction. Although the conventional view is that reduced cerebral metabolism is an effect of neuronal loss and consequent brain atrophy, a growing body of evidence points to the opposite, where hypometabolism is prodromal or at least precedes the onset of brain atrophy and the manifestation of clinical symptoms. The underlying processes responsible for these glucose transport and metabolic abnormalities are complicated and remain poorly understood. This review article provides a comprehensive overview of the current understanding of hypometabolism in AD and potential therapeutic targets.
Collapse
Affiliation(s)
- Snehal Raut
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA; (S.R.); (A.B.); (M.G.); (S.M.)
| | - Aditya Bhalerao
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA; (S.R.); (A.B.); (M.G.); (S.M.)
| | - Michael Powers
- Department of Biological and Biomedical Sciences, Oakland University, Rochester, MI 48309, USA;
| | - Minelly Gonzalez
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA; (S.R.); (A.B.); (M.G.); (S.M.)
| | - Salvatore Mancuso
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA; (S.R.); (A.B.); (M.G.); (S.M.)
| | - Luca Cucullo
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA; (S.R.); (A.B.); (M.G.); (S.M.)
| |
Collapse
|
13
|
Nash C, Powell K, Lynch DG, Hartings JA, Li C. Nonpharmacological modulation of cortical spreading depolarization. Life Sci 2023:121833. [PMID: 37302793 DOI: 10.1016/j.lfs.2023.121833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/01/2023] [Accepted: 06/03/2023] [Indexed: 06/13/2023]
Abstract
AIMS Cortical spreading depolarization (CSD) is a wave of pathologic neuronal dysfunction that spreads through cerebral gray matter, causing neurologic disturbance in migraine and promoting lesion development in acute brain injury. Pharmacologic interventions have been found to be effective in migraine with aura, but their efficacy in acutely injured brains may be limited. This necessitates the assessment of possible adjunctive treatments, such as nonpharmacologic methods. This review aims to summarize currently available nonpharmacological techniques for modulating CSDs, present their mechanisms of action, and provide insight and future directions for CSD treatment. MAIN METHODS A systematic literature review was performed, generating 22 articles across 3 decades. Relevant data is broken down according to method of treatment. KEY FINDINGS Both pharmacologic and nonpharmacologic interventions can mitigate the pathological impact of CSDs via shared molecular mechanisms, including modulating K+/Ca2+/Na+/Cl- ion channels and NMDA, GABAA, serotonin, and CGRP ligand-based receptors and decreasing microglial activation. Preclinical evidence suggests that nonpharmacologic interventions, including neuromodulation, physical exercise, therapeutic hypothermia, and lifestyle changes can also target unique mechanisms, such as increasing adrenergic tone and myelination and modulating membrane fluidity, which may lend broader modulatory effects. Collectively, these mechanisms increase the electrical initiation threshold, increase CSD latency, slow CSD velocity, and decrease CSD amplitude and duration. SIGNIFICANCE Given the harmful consequences of CSDs, limitations of current pharmacological interventions to inhibit CSDs in acutely injured brains, and translational potentials of nonpharmacologic interventions to modulate CSDs, further assessment of nonpharmacologic modalities and their mechanisms to mitigate CSD-related neurologic dysfunction is warranted.
Collapse
Affiliation(s)
- Christine Nash
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; Barnard College, New York, NY, USA
| | - Keren Powell
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Daniel G Lynch
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Jed A Hartings
- Department of Neurosurgery, University of Cincinnati, Cincinnati, OH, USA
| | - Chunyan Li
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA; Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
| |
Collapse
|
14
|
Béland-Millar A, Kirby A, Truong Y, Ouellette J, Yandiev S, Bouyakdan K, Pileggi C, Naz S, Yin M, Carrier M, Kotchetkov P, St-Pierre MK, Tremblay MÈ, Courchet J, Harper ME, Alquier T, Messier C, Shuhendler AJ, Lacoste B. 16p11.2 haploinsufficiency reduces mitochondrial biogenesis in brain endothelial cells and alters brain metabolism in adult mice. Cell Rep 2023; 42:112485. [PMID: 37149866 DOI: 10.1016/j.celrep.2023.112485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 02/20/2023] [Accepted: 04/22/2023] [Indexed: 05/09/2023] Open
Abstract
Neurovascular abnormalities in mouse models of 16p11.2 deletion autism syndrome are reminiscent of alterations reported in murine models of glucose transporter deficiency, including reduced brain angiogenesis and behavioral alterations. Yet, whether cerebrovascular alterations in 16p11.2df/+ mice affect brain metabolism is unknown. Here, we report that anesthetized 16p11.2df/+ mice display elevated brain glucose uptake, a phenomenon recapitulated in mice with endothelial-specific 16p11.2 haplodeficiency. Awake 16p11.2df/+ mice display attenuated relative fluctuations of extracellular brain glucose following systemic glucose administration. Targeted metabolomics on cerebral cortex extracts reveals enhanced metabolic responses to systemic glucose in 16p11.2df/+ mice that also display reduced mitochondria number in brain endothelial cells. This is not associated with changes in mitochondria fusion or fission proteins, but 16p11.2df/+ brain endothelial cells lack the splice variant NT-PGC-1α, suggesting defective mitochondrial biogenesis. We propose that altered brain metabolism in 16p11.2df/+ mice is compensatory to endothelial dysfunction, shedding light on previously unknown adaptative responses.
Collapse
Affiliation(s)
- Alexandria Béland-Millar
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada; School of Psychology, University of Ottawa, Ottawa, ON, Canada
| | - Alexia Kirby
- Faculty of Science, Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Yen Truong
- Faculty of Science, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Julie Ouellette
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada; Faculty of Medicine, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Sozerko Yandiev
- University Lyon 1, CNRS, INSERM, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyoGène, 69008 Lyon, France
| | - Khalil Bouyakdan
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Department of Medicine Université de Montréal, Montreal, QC, Canada
| | - Chantal Pileggi
- Faculty of Medicine, Department of Biochemistry Microbiology and Immunology, Ottawa, ON, Canada
| | - Shama Naz
- University of Ottawa Metabolomics Core Facility, Faculty of Medicine, Ottawa, ON, Canada
| | - Melissa Yin
- FUJIFILM VisualSonics, Inc, Toronto, ON, Canada
| | - Micaël Carrier
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Pavel Kotchetkov
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada; Faculty of Medicine, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | | | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Neurology and Neurosurgery Department, McGill University, Montreal, QC, Canada; Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
| | - Julien Courchet
- University Lyon 1, CNRS, INSERM, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyoGène, 69008 Lyon, France
| | - Mary-Ellen Harper
- Faculty of Medicine, Department of Biochemistry Microbiology and Immunology, Ottawa, ON, Canada
| | - Thierry Alquier
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Department of Medicine Université de Montréal, Montreal, QC, Canada
| | - Claude Messier
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
| | - Adam J Shuhendler
- Faculty of Science, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada; University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
| | - Baptiste Lacoste
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada; Faculty of Medicine, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada; University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada.
| |
Collapse
|
15
|
Hasel P, Aisenberg WH, Bennett FC, Liddelow SA. Molecular and metabolic heterogeneity of astrocytes and microglia. Cell Metab 2023; 35:555-570. [PMID: 36958329 DOI: 10.1016/j.cmet.2023.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/26/2023] [Accepted: 03/08/2023] [Indexed: 03/25/2023]
Abstract
Astrocytes and microglia are central players in a myriad of processes in the healthy and diseased brain, ranging from metabolism to immunity. The crosstalk between these two cell types contributes to pathology in many if not all neuroinflammatory and neurodegenerative diseases. Recent advancements in integrative multimodal sequencing techniques have begun to highlight how heterogeneous both cell types are and the importance of metabolism to their regulation. We discuss here the transcriptomic, metabolic, and functional heterogeneity of astrocytes and microglia and highlight their interaction in health and disease.
Collapse
Affiliation(s)
- Philip Hasel
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY 10016, USA.
| | - William H Aisenberg
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | - F Chris Bennett
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | - Shane A Liddelow
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY 10016, USA; Parekh Center for Interdisciplinary Neurology, NYU Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
16
|
Alassaf M, Rajan A. Diet-Induced Glial Insulin Resistance Impairs The Clearance Of Neuronal Debris. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.09.531940. [PMID: 36945507 PMCID: PMC10028983 DOI: 10.1101/2023.03.09.531940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Obesity significantly increases the risk of developing neurodegenerative disorders, yet the precise mechanisms underlying this connection remain unclear. Defects in glial phagocytic function are a key feature of neurodegenerative disorders, as delayed clearance of neuronal debris can result in inflammation, neuronal death, and poor nervous system recovery. Mounting evidence indicates that glial function can affect feeding behavior, weight, and systemic metabolism, suggesting that diet may play a role in regulating glial function. While it is appreciated that glial cells are insulin sensitive, whether obesogenic diets can induce glial insulin resistance and thereby impair glial phagocytic function remains unknown. Here, using a Drosophila model, we show that a chronic obesogenic diet induces glial insulin resistance and impairs the clearance of neuronal debris. Specifically, obesogenic diet exposure downregulates the basal and injury-induced expression of the glia-associated phagocytic receptor, Draper. Constitutive activation of systemic insulin release from Drosophila Insulin-producing cells (IPCs) mimics the effect of diet-induced obesity on glial draper expression. In contrast, genetically attenuating systemic insulin release from the IPCs rescues diet-induced glial insulin resistance and draper expression. Significantly, we show that genetically stimulating Phosphoinositide 3-kinase (PI3K), a downstream effector of Insulin receptor signaling, rescues HSD-induced glial defects. Hence, we establish that obesogenic diets impair glial phagocytic function and delays the clearance of neuronal debris.
Collapse
|
17
|
Expression of fructose-1,6-bisphosphatase 1 is associated with [ 18F]FDG uptake and prognosis in patients with mesial temporal lobe epilepsy. Eur Radiol 2023; 33:3396-3406. [PMID: 36692596 DOI: 10.1007/s00330-023-09422-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/09/2022] [Accepted: 01/02/2023] [Indexed: 01/25/2023]
Abstract
OBJECTIVES To determine whether fructose-1,6-bisphosphatase 1 (FBP1) expression is associated with [18F]FDG PET uptake and postsurgical outcomes in patients with mesial temporal lobe epilepsy (mTLE) and to investigate whether the molecular mechanism involving gamma-aminobutyric acid type A receptor (GABAAR), glucose transporter-3 (GLUT-3), and hexokinase-II (HK-II). METHODS Forty-three patients with mTLE underwent [18F]FDG PET/CT. Patients were divided into Ia (Engel class Ia) and non-Ia (Engel class Ib-IV) groups according to more than 1 year of follow-up after surgery. The maximum standard uptake value (SUVmax) and asymmetry index (AI) of hippocampus were measured. The relationship among the SUVmax, AI, prognosis, and FBP1 expression was analyzed. A lithium-pilocarpine acute mTLE rat model was subjected to [18F]FDG micro-PET/CT. Hippocampal SUVmax and FBP1, GABAAR, GLUT-3, and HK-II expression were analyzed. RESULTS SUVmax was higher in the Ia group than in the non-Ia group (7.31 ± 0.97 vs. 6.56 ± 0.96, p < 0.05) and FBP1 expression was lower in the Ia group (0.24 ± 0.03 vs. 0.27 ± 0.03, p < 0.01). FBP1 expression was negatively associated with SUVmax and AI (p < 0.01). In mTLE rats, the hippocampal FBP1 increased (0.26 ± 0.00 vs. 0.17 ± 0.00, p < 0.0001), and SUVmax, GLUT-3 and GABAAR levels decreased significantly (0.73 ± 0.12 vs. 1.46 ± 0.23, 0.20 ± 0.01 vs. 0.32 ± 0.05, 0.26 ± 0.02 vs. 0.35 ± 0.02, p < 0.05); no significant difference in HK-II levels was observed. In mTLE patients and rats, FBP1 negatively correlated with SUVmax and GLUT-3 and GABAAR levels (p < 0.05). CONCLUSION FBP1 expression was inversely associated with SUVmax in mTLE, which might inhibit [18F]FDG uptake by regulating GLUT-3 expression. High FBP1 expression was indicative of low GABAAR expression and poor prognosis. KEY POINTS • It is of paramount importance to explore the deep pathophysiological mechanisms underlying the pathogenesis of mesial temporal lobe epilepsy and find potential therapeutic targets. • [18F]FDG PET has demonstrated low metabolism in epileptic regions during the interictal period, and hypometabolism may be associated with prognosis, but the pathomechanism of this association remains uncertain. • Our results support the possibility that FBP1 might be simultaneously involved in the regulation of glucose metabolism levels and the excitability of neurons and suggest that targeting FBP1 may be a viable strategy in the diagnosis and treatment of mesial temporal lobe epilepsy.
Collapse
|
18
|
Abild Meyer C, De Dios Andres P, Brodszkij E, Westensee IN, Lyons J, Vaz SH, Städler B. Astrocytes in Paper Chips and Their Interaction with Hybrid Vesicles. Adv Biol (Weinh) 2023; 7:e2200209. [PMID: 36328791 DOI: 10.1002/adbi.202200209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/03/2022] [Indexed: 11/06/2022]
Abstract
The role of astrocytes in brain function has received increased attention lately due to their critical role in brain development and function under physiological and pathophysiological conditions. However, the biological evaluation of soft material nanoparticles in astrocytes remains unexplored. Here, the interaction of crosslinked hybrid vesicles (HVs) and either C8-D1A astrocytes or primary astrocytes cultured in polystyrene tissue culture or floatable paper-based chips is investigated. The amphiphilic block copolymer poly(cholesteryl methacrylate)-block-poly(2-carboxyethyl acrylate) (P1) and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine lipids are used for the assembly of HVs with crosslinked membranes. The assemblies show no short-term toxicity towards the C8-D1A astrocytes and the primary astrocytes, and both cell types internalize the HVs when cultured in 2D cell culture. Further, it is demonstrated that both the C8-D1A astrocytes and the primary astrocytes could mature in paper-based chips with preserved calcium signaling and glial fibrillary acidic protein expression. Last, it is confirmed that both types of astrocytes could internalize the HVs when cultured in paper-based chips. These findings lay out a fundamental understanding of the interaction between soft material nanoparticles and astrocytes, even when primary astrocytes are cultured in paper-based chips offering a 3D environment.
Collapse
Affiliation(s)
- Cathrine Abild Meyer
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000, Aarhus, Denmark
| | - Paula De Dios Andres
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000, Aarhus, Denmark
| | - Edit Brodszkij
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000, Aarhus, Denmark
| | - Isabella N Westensee
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000, Aarhus, Denmark
| | - Joseph Lyons
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000, Aarhus, Denmark
| | - Sandra H Vaz
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028, Lisboa, Portugal.,Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, 1649-028, Lisboa, Portugal
| | - Brigitte Städler
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000, Aarhus, Denmark
| |
Collapse
|
19
|
Consumption and Metabolism of Extracellular Pyruvate by Cultured Rat Brain Astrocytes. Neurochem Res 2022; 48:1438-1454. [PMID: 36495387 PMCID: PMC10066139 DOI: 10.1007/s11064-022-03831-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 12/14/2022]
Abstract
AbstractBrain astrocytes are considered as glycolytic cell type, but these cells also produce ATP via mitochondrial oxidative phosphorylation. Exposure of cultured primary astrocytes in a glucose-free medium to extracellular substrates that are known to be metabolised by mitochondrial pathways, including pyruvate, lactate, beta-hydroxybutyrate, alanine and acetate, revealed that among the substrates investigated extracellular pyruvate was most efficiently consumed by astrocytes. Extracellular pyruvate was consumed by the cells almost proportional to time over hours in a concentration-dependent manner with apparent Michaelis–Menten kinetics [Km = 0.6 ± 0.1 mM, Vmax = 5.1 ± 0.8 nmol/(min × mg protein)]. The astrocytic consumption of pyruvate was strongly impaired in the presence of the monocarboxylate transporter 1 (MCT1) inhibitor AR-C155858 or by application of a 10-times excess of the MCT1 substrates lactate or beta-hydroxybutyrate. Pyruvate consumption by viable astrocytes was inhibited in the presence of UK5099, an inhibitor of the mitochondrial pyruvate carrier, or after application of the respiratory chain inhibitor antimycin A. In contrast, the mitochondrial uncoupler BAM15 strongly accelerated cellular pyruvate consumption. Lactate and alanine accounted after 3 h of incubation with pyruvate for around 60% and 10%, respectively, of the pyruvate consumed by the cells. These results demonstrate that consumption of extracellular pyruvate by astrocytes involves uptake via MCT1 and that the velocity of pyruvate consumption is strongly modified by substances that affect the entry of pyruvate into mitochondria or the activity of mitochondrial respiration.
Collapse
|
20
|
Natarajaseenivasan K, Garcia A, Velusamy P, Shanmughapriya S, Langford D. Citrate shuttling in astrocytes is required for processing cocaine-induced neuron-derived excess peroxidated fatty acids. iScience 2022; 25:105407. [PMID: 36389000 PMCID: PMC9646946 DOI: 10.1016/j.isci.2022.105407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 08/25/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Disturbances in lipid metabolism in the CNS contribute to neurodegeneration and cognitive impairments. Through tight metabolic coupling, astrocytes provide energy to neurons by delivering lactate and cholesterol and by taking up and processing neuron-derived peroxidated fatty acids (pFA). Disruption of CNS lipid homeostasis is observed in people who use cocaine and in several neurodegenerative disorders, including HIV. The brain's main source of energy is aerobic glycolysis, but numerous studies report a switch to β-oxidation of FAs in response to cocaine. Unlike astrocytes, in response to cocaine, neurons cannot efficiently consume excess pFAs for energy. Accumulation of pFA in neurons induces autophagy and release of pFA. Astrocytes endocytose the pFA for oxidation as an energy source. Our data show that blocking mitochondrial/cytosolic citrate transport reduces the neurotrophic capacity of astrocytes, leading to decreased neuronal fitness.
Collapse
Affiliation(s)
- Kalimuthusamy Natarajaseenivasan
- Department of Neural Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
- Department of Microbiology, Bharathidasan University, Tiruchirapalli, India
| | - Alvaro Garcia
- Department of Neural Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Prema Velusamy
- Heart and Vascular Institute, Department of Medicine, Department of Cellular and Molecular Physiology, Pennsylvania State University, College of Medicine, Hershey, PA, USA
| | - Santhanam Shanmughapriya
- Heart and Vascular Institute, Department of Medicine, Department of Cellular and Molecular Physiology, Pennsylvania State University, College of Medicine, Hershey, PA, USA
| | - Dianne Langford
- Department of Neural Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| |
Collapse
|
21
|
Cruz E, Bessières B, Magistretti P, Alberini CM. Differential role of neuronal glucose and PFKFB3 in memory formation during development. Glia 2022; 70:2207-2231. [PMID: 35916383 PMCID: PMC9474594 DOI: 10.1002/glia.24248] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/21/2022] [Accepted: 07/05/2022] [Indexed: 11/06/2022]
Abstract
The consumption of glucose in the brain peaks during late childhood; yet, whether and how glucose metabolism is differentially regulated in the brain during childhood compared to adulthood remains to be understood. In particular, it remains to be determined how glucose metabolism is involved in behavioral activations such as learning. Here we show that, compared to adult, the juvenile rat hippocampus has significantly higher mRNA levels of several glucose metabolism enzymes belonging to all glucose metabolism pathways, as well as higher levels of the monocarboxylate transporters MCT1 and MCT4 and the glucose transporters endothelial-GLUT1 and GLUT3 proteins. Furthermore, relative to adults, long-term episodic memory formation in juvenile animals requires significantly higher rates of aerobic glycolysis and astrocytic-neuronal lactate coupling in the hippocampus. Only juvenile but not adult long-term memory formation recruits GLUT3, neuronal 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) and more efficiently engages glucose in the hippocampus. Hence, compared to adult, the juvenile hippocampus distinctively regulates glucose metabolism pathways, and formation of long-term memory in juveniles involves differential neuronal glucose metabolism mechanisms.
Collapse
Affiliation(s)
- Emmanuel Cruz
- Center for Neural Science, New York University, New York, New York 10003
| | - Benjamin Bessières
- Center for Neural Science, New York University, New York, New York 10003
| | - Pierre Magistretti
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Cristina M. Alberini
- Center for Neural Science, New York University, New York, New York 10003
- Lead contact: Cristina M. Alberini
| |
Collapse
|
22
|
Pappenhagen N, Yin E, Morgan AB, Kiehlbauch CC, Inman DM. Stretch stress propels glutamine dependency and glycolysis in optic nerve head astrocytes. Front Neurosci 2022; 16:957034. [PMID: 35992925 PMCID: PMC9389405 DOI: 10.3389/fnins.2022.957034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/12/2022] [Indexed: 11/21/2022] Open
Abstract
Glaucoma is an optic neuropathy that leads to irreversible blindness, the most common subtype of which is typified by a chronic increase in intraocular pressure that promotes a stretch injury to the optic nerve head. In rodents, the predominant glial cell in this region is the optic nerve head astrocyte that provides axons with metabolic support, likely by releasing lactate produced through astrocytic glycolysis. Our primary hypothesis is that stretching of the optic nerve head astrocytes alters their metabolic activity, thereby advancing glaucoma-associated degeneration by compromising the metabolic support that the astrocytes provide to the axons in the optic nerve head. Metabolic changes in optic nerve head astrocytes were investigated by subjecting them to 24 h of 12% biaxial stretch at 1 Hz then measuring the cells’ bioenergetics using a Seahorse XFe24 Analyzer. We observed significant glycolytic and respiratory activity differences between control and stretched cells, including greater extracellular acidification and lower ATP-linked respiration, yet higher maximal respiration and spare capacity in stretched optic nerve head astrocytes. We also determined that both control and stretched optic nerve head astrocytes displayed a dependency for glutamine over pyruvate or long-chain fatty acids for fuel. The increased use of glycolysis as indicated by the extracellular acidification rate, concomitant with a dependency on glutamine, suggests the need to replenish NAD + for continued glycolysis and provision of carbon for TCA cycle intermediates. Stretch alters optic nerve astrocyte bioenergetics to support an increased demand for internal and external energy.
Collapse
Affiliation(s)
- Nathaniel Pappenhagen
- Department of Pharmaceutical Sciences, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Eric Yin
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Autumn B. Morgan
- Department of Pharmaceutical Sciences, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Charles C. Kiehlbauch
- Department of Pharmaceutical Sciences, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Denise M. Inman
- Department of Pharmaceutical Sciences, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, United States
- *Correspondence: Denise M. Inman,
| |
Collapse
|
23
|
Sifat AE, Nozohouri S, Archie SR, Chowdhury EA, Abbruscato TJ. Brain Energy Metabolism in Ischemic Stroke: Effects of Smoking and Diabetes. Int J Mol Sci 2022; 23:ijms23158512. [PMID: 35955647 PMCID: PMC9369264 DOI: 10.3390/ijms23158512] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 02/06/2023] Open
Abstract
Proper regulation of energy metabolism in the brain is crucial for maintaining brain activity in physiological and different pathophysiological conditions. Ischemic stroke has a complex pathophysiology which includes perturbations in the brain energy metabolism processes which can contribute to worsening of brain injury and stroke outcome. Smoking and diabetes are common risk factors and comorbid conditions for ischemic stroke which have also been associated with disruptions in brain energy metabolism. Simultaneous presence of these conditions may further alter energy metabolism in the brain leading to a poor clinical prognosis after an ischemic stroke event. In this review, we discuss the possible effects of smoking and/or diabetes on brain glucose utilization and mitochondrial energy metabolism which, when present concurrently, may exacerbate energy metabolism in the ischemic brain. More research is needed to investigate brain glucose utilization and mitochondrial oxidative metabolism in ischemic stroke in the presence of smoking and/or diabetes, which would provide further insights on the pathophysiology of these comorbid conditions and facilitate the development of therapeutic interventions.
Collapse
|
24
|
Rudge JD. A New Hypothesis for Alzheimer's Disease: The Lipid Invasion Model. J Alzheimers Dis Rep 2022; 6:129-161. [PMID: 35530118 PMCID: PMC9028744 DOI: 10.3233/adr-210299] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/05/2022] [Indexed: 02/07/2023] Open
Abstract
This paper proposes a new hypothesis for Alzheimer's disease (AD)-the lipid invasion model. It argues that AD results from external influx of free fatty acids (FFAs) and lipid-rich lipoproteins into the brain, following disruption of the blood-brain barrier (BBB). The lipid invasion model explains how the influx of albumin-bound FFAs via a disrupted BBB induces bioenergetic changes and oxidative stress, stimulates microglia-driven neuroinflammation, and causes anterograde amnesia. It also explains how the influx of external lipoproteins, which are much larger and more lipid-rich, especially more cholesterol-rich, than those normally present in the brain, causes endosomal-lysosomal abnormalities and overproduction of the peptide amyloid-β (Aβ). This leads to the formation of amyloid plaques and neurofibrillary tangles, the most well-known hallmarks of AD. The lipid invasion model argues that a key role of the BBB is protecting the brain from external lipid access. It shows how the BBB can be damaged by excess Aβ, as well as by most other known risk factors for AD, including aging, apolipoprotein E4 (APOE4), and lifestyle factors such as hypertension, smoking, obesity, diabetes, chronic sleep deprivation, stress, and head injury. The lipid invasion model gives a new rationale for what we already know about AD, explaining its many associated risk factors and neuropathologies, including some that are less well-accounted for in other explanations of AD. It offers new insights and suggests new ways to prevent, detect, and treat this destructive disease and potentially other neurodegenerative diseases.
Collapse
Affiliation(s)
- Jonathan D’Arcy Rudge
- School of Biological Sciences, University of Reading, Reading, Berkshire, United Kingdom
| |
Collapse
|
25
|
Du H, Xu Y, Zhu L. Role of Semaphorins in Ischemic Stroke. Front Mol Neurosci 2022; 15:848506. [PMID: 35350431 PMCID: PMC8957939 DOI: 10.3389/fnmol.2022.848506] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/17/2022] [Indexed: 12/12/2022] Open
Abstract
Ischemic stroke is one of the major causes of neurological morbidity and mortality in the world. Although the management of ischemic stroke has been improved significantly, it still imposes a huge burden on the health and property. The integrity of the neurovascular unit (NVU) is closely related with the prognosis of ischemic stroke. Growing evidence has shown that semaphorins, a family of axon guidance cues, play a pivotal role in multiple pathophysiological processes in NVU after ischemia, such as regulating the immune system, angiogenesis, and neuroprotection. Modulating the NVU function via semaphorin signaling has a potential to develop a novel therapeutic strategy for ischemic stroke. We, therefore, review recent progresses on the role of semphorin family members in neurons, glial cells and vasculature after ischemic stroke.
Collapse
Affiliation(s)
- Huaping Du
- Department of Neurology, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, China
| | - Yuan Xu
- Department of Neurology, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, China
| | - Li Zhu
- Department of Neurology, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, China
- Suzhou Key Laboratory of Thrombosis and Vascular Biology, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Collaborative Innovation Center of Hematology of Jiangsu Province, National Clinical Research Center for Hematologic Diseases, Cyrus Tang Medical Institute, Soochow University, Suzhou, China
- *Correspondence: Li Zhu,
| |
Collapse
|
26
|
Takahashi S. Metabolic Contribution and Cerebral Blood Flow Regulation by Astrocytes in the Neurovascular Unit. Cells 2022; 11:cells11050813. [PMID: 35269435 PMCID: PMC8909328 DOI: 10.3390/cells11050813] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/17/2022] [Accepted: 02/24/2022] [Indexed: 12/10/2022] Open
Abstract
The neurovascular unit (NVU) is a conceptual framework that has been proposed to better explain the relationships between the neural cells and blood vessels in the human brain, focused mainly on the brain gray matter. The major components of the NVU are the neurons, astrocytes (astroglia), microvessels, pericytes, and microglia. In addition, we believe that oligodendrocytes should also be included as an indispensable component of the NVU in the white matter. Of all these components, astrocytes in particular have attracted the interest of researchers because of their unique anatomical location; these cells are interposed between the neurons and the microvessels of the brain. Their location suggests that astrocytes might regulate the cerebral blood flow (CBF) in response to neuronal activity, so as to ensure an adequate supply of glucose and oxygen to meet the metabolic demands of the neurons. In fact, the adult human brain, which accounts for only 2% of the entire body weight, consumes approximately 20–25% of the total amount of glucose and oxygen consumed by the whole body. The brain needs a continuous supply of these essential energy sources through the CBF, because there are practically no stores of glucose or oxygen in the brain; both acute and chronic cessation of CBF can adversely affect brain functions. In addition, another important putative function of the NVU is the elimination of heat and waste materials produced by neuronal activity. Recent evidence suggests that astrocytes play pivotal roles not only in supplying glucose, but also fatty acids and amino acids to neurons. Loss of astrocytic support can be expected to lead to malfunction of the NVU as a whole, which underlies numerous neurological disorders. In this review, we shall focus on historical and recent findings with regard to the metabolic contributions of astrocytes in the NVU.
Collapse
Affiliation(s)
- Shinichi Takahashi
- Department of Neurology and Stroke, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka-shi 350-1298, Japan; ; Tel.: +81-42-984-4111 (ext. 7412) or +81-3-3353-1211 (ext. 62613); Fax: +81-42-984-0664 or +81-3-3357-5445
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
27
|
Takahashi S, Mashima K. Neuroprotection and Disease Modification by Astrocytes and Microglia in Parkinson Disease. Antioxidants (Basel) 2022; 11:antiox11010170. [PMID: 35052674 PMCID: PMC8773262 DOI: 10.3390/antiox11010170] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/03/2022] [Accepted: 01/13/2022] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress and neuroinflammation are common bases for disease onset and progression in many neurodegenerative diseases. In Parkinson disease, which is characterized by the degeneration of dopaminergic neurons resulting in dopamine depletion, the pathogenesis differs between hereditary and solitary disease forms and is often unclear. In addition to the pathogenicity of alpha-synuclein as a pathological disease marker, the involvement of dopamine itself and its interactions with glial cells (astrocyte or microglia) have attracted attention. Pacemaking activity, which is a hallmark of dopaminergic neurons, is essential for the homeostatic maintenance of adequate dopamine concentrations in the synaptic cleft, but it imposes a burden on mitochondrial oxidative glucose metabolism, leading to reactive oxygen species production. Astrocytes provide endogenous neuroprotection to the brain by producing and releasing antioxidants in response to oxidative stress. Additionally, the protective function of astrocytes can be modified by microglia. Some types of microglia themselves are thought to exacerbate Parkinson disease by releasing pro-inflammatory factors (M1 microglia). Although these inflammatory microglia may further trigger the inflammatory conversion of astrocytes, microglia may induce astrocytic neuroprotective effects (A2 astrocytes) simultaneously. Interestingly, both astrocytes and microglia express dopamine receptors, which are upregulated in the presence of neuroinflammation. The anti-inflammatory effects of dopamine receptor stimulation are also attracting attention because the functions of astrocytes and microglia are greatly affected by both dopamine depletion and therapeutic dopamine replacement in Parkinson disease. In this review article, we will focus on the antioxidative and anti-inflammatory effects of astrocytes and their synergism with microglia and dopamine.
Collapse
Affiliation(s)
- Shinichi Takahashi
- Department of Neurology and Stroke, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka-shi 350-1298, Japan
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan;
- Correspondence: ; Tel.: +81-42-984-4111 (ext. 7412); Fax: +81-42-984-0664
| | - Kyoko Mashima
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan;
- Department of Neurology, Tokyo Saiseikai Central Hospital, 1-4-17 Mita, Minato-ku, Tokyo 108-0073, Japan
| |
Collapse
|
28
|
Béland-Millar A, Messier C. Voluntary Behavior and Training Conditions Modulate in vivo Extracellular Glucose and Lactate in the Mouse Primary Motor Cortex. Front Neurosci 2022; 15:732242. [PMID: 35058739 PMCID: PMC8764159 DOI: 10.3389/fnins.2021.732242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 11/10/2021] [Indexed: 11/13/2022] Open
Abstract
Learning or performing new behaviors requires significant neuronal signaling and is metabolically demanding. The metabolic cost of performing a behavior is mitigated by exposure and practice which result in diminished signaling and metabolic requirements. We examined the impact of novel and habituated wheel running, as well as effortful behaviors on the modulation of extracellular glucose and lactate using biosensors inserted in the primary motor cortex of mice. We found that motor behaviors produce increases in extracellular lactate and decreases in extracellular glucose in the primary motor cortex. These effects were modulated by experience, novelty and intensity of the behavior. The increase in extracellular lactate appears to be strongly associated with novelty of a behavior as well as the difficulty of performing a behavior. Our observations are consistent with the view that a main function of aerobic glycolysis is not to fuel the current neuronal activity but to sustain new bio-infrastructure as learning changes neural networks, chiefly through the shuttling of glucose derived carbons into the pentose phosphate pathway for the biosynthesis of nucleotides.
Collapse
Affiliation(s)
| | - Claude Messier
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
29
|
Costa YPD, Freitas-Júnior C, Lima-Júnior DD, Soares-Silva EL, Batista GR, Hayes L, Fortes LDS. Mental fatigue and ball sports: a narrative review focused on physical, technical, and tactical performance. MOTRIZ: REVISTA DE EDUCACAO FISICA 2022. [DOI: 10.1590/s1980-657420220004822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
30
|
Cheng S, Gu Z, Zhou L, Hao M, An H, Song K, Wu X, Zhang K, Zhao Z, Dong Y, Wen Y. Recent Progress in Intelligent Wearable Sensors for Health Monitoring and Wound Healing Based on Biofluids. Front Bioeng Biotechnol 2021; 9:765987. [PMID: 34790653 PMCID: PMC8591136 DOI: 10.3389/fbioe.2021.765987] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 10/12/2021] [Indexed: 01/04/2023] Open
Abstract
The intelligent wearable sensors promote the transformation of the health care from a traditional hospital-centered model to a personal portable device-centered model. There is an urgent need of real-time, multi-functional, and personalized monitoring of various biochemical target substances and signals based on the intelligent wearable sensors for health monitoring, especially wound healing. Under this background, this review article first reviews the outstanding progress in the development of intelligent, wearable sensors designed for continuous, real-time analysis, and monitoring of sweat, blood, interstitial fluid, tears, wound fluid, etc. Second, this paper reports the advanced status of intelligent wound monitoring sensors designed for wound diagnosis and treatment. The paper highlights some smart sensors to monitor target analytes in various wounds. Finally, this paper makes conservative recommendations regarding future development of intelligent wearable sensors.
Collapse
Affiliation(s)
- Siyang Cheng
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Zhen Gu
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Liping Zhou
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Mingda Hao
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Heng An
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Kaiyu Song
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Xiaochao Wu
- School of Material Science and Engineering, Zhengzhou University, Zhengzhou, China
| | - Kexin Zhang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Zeya Zhao
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | | | - Yongqiang Wen
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| |
Collapse
|
31
|
Galijašević M, Steiger R, Regodić M, Waibel M, Sommer PJD, Grams AE, Singewald N, Gizewski ER. Brain Energy Metabolism in Two States of Mind Measured by Phosphorous Magnetic Resonance Spectroscopy. Front Hum Neurosci 2021; 15:686433. [PMID: 34262442 PMCID: PMC8273761 DOI: 10.3389/fnhum.2021.686433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/01/2021] [Indexed: 12/12/2022] Open
Abstract
Introduction: Various functional neuroimaging studies help to better understand the changes in brain activity during meditation. The purpose of this study was to investigate how brain energy metabolism changes during focused attention meditation (FAM) state, measured by phosphorous magnetic resonance spectroscopy (31P-MRS). Methods:31P-MRS imaging was carried out in 27 participants after 7 weeks of FAM training. Metabolite ratios and the absolute values of metabolites were assessed after meditation training in two MRI measurements, by comparing effects in a FAM state with those in a distinct focused attention awake state during a backwards counting task. Results: The results showed decreased phosphocreatine/ATP (PCr/ATP), PCr/ inorganic phosphate (Pi), and intracellular pH values in the entire brain, but especially in basal ganglia, frontal lobes, and occipital lobes, and increased Pi/ATP ratio, cerebral Mg, and Pi absolute values were found in the same areas during FAM compared to the control focused attention awake state. Conclusions: Changes in the temporal areas and basal ganglia may be interpreted as a higher energetic state induced by meditation, whereas the frontal and occipital areas showed changes that may be related to a down-regulation in ATP turnover, energy state, and oxidative capacity.
Collapse
Affiliation(s)
- Malik Galijašević
- Department of Neuroradiology, Medical University of Innsbruck, Innsbruck, Austria.,Neuroimaging Research Core Facility, Medical University of Innsbruck, Innsbruck, Austria.,VASCAge-Research Centre on Vascular Ageing and Stroke, Innsbruck, Austria
| | - Ruth Steiger
- Department of Neuroradiology, Medical University of Innsbruck, Innsbruck, Austria.,Neuroimaging Research Core Facility, Medical University of Innsbruck, Innsbruck, Austria
| | - Milovan Regodić
- Department of Otorhinolaryngology, Medical University of Innsbruck, Innsbruck, Austria.,Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | | | - Patrick Julian David Sommer
- Department of Neuroradiology, Medical University of Innsbruck, Innsbruck, Austria.,Neuroimaging Research Core Facility, Medical University of Innsbruck, Innsbruck, Austria
| | - Astrid Ellen Grams
- Department of Neuroradiology, Medical University of Innsbruck, Innsbruck, Austria.,Neuroimaging Research Core Facility, Medical University of Innsbruck, Innsbruck, Austria
| | - Nicolas Singewald
- Department of Pharmacology and Toxicology, Institute of Pharmacy and CMBI, Leopold Franzens University, Innsbruck, Austria
| | - Elke Ruth Gizewski
- Department of Neuroradiology, Medical University of Innsbruck, Innsbruck, Austria.,Neuroimaging Research Core Facility, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
32
|
Lipid signature of neural tissues of marine and terrestrial mammals: consistency across species and habitats. J Comp Physiol B 2021; 191:815-829. [PMID: 33973058 DOI: 10.1007/s00360-021-01373-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/24/2021] [Accepted: 04/20/2021] [Indexed: 02/07/2023]
Abstract
Marine mammals are exposed to O2-limitation and increased N2 gas concentrations as they dive to exploit habitat and food resources. The lipid-rich tissues (blubber, acoustic, neural) are of particular concern as N2 is five times more soluble in lipid than in blood or muscle, creating body compartments that can become N2 saturated, possibly leading to gas emboli upon surfacing. We characterized lipids in the neural tissues of marine mammals to determine whether they have similar lipid profiles compared to terrestrial mammals. Lipid profiles (lipid content, lipid class composition, and fatty acid signatures) were determined in the neural tissues of 12 cetacean species with varying diving regimes, and compared to two species of terrestrial mammals. Neural tissue lipid profile was not significantly different in marine versus terrestrial mammals across tissue types. Within the marine species, average dive depth was not significantly associated with the lipid profile of cervical spinal cord. Across species, tissue type (brain, spinal cord, and spinal nerve) was a significant factor in lipid profile, largely due to the presence of storage lipids (triacylglycerol and wax ester/sterol ester) in spinal nerve tissue only. The stability of lipid signatures within the neural tissue types of terrestrial and marine species, which display markedly different dive behaviors, points to the consistent role of lipids in these tissues. These findings indicate that despite large differences in the level of N2 gas exposure by dive type in the species examined, the lipids of neural tissues likely do not have a neuroprotective role in marine mammals.
Collapse
|
33
|
Gizewski ER, Steiger R, Waibel M, Pereverzyev S, Sommer PJD, Siedentopf C, Grams AE, Lenhart L, Singewald N. Short-term meditation training influences brain energy metabolism: A pilot study on 31 P MR spectroscopy. Brain Behav 2021; 11:e01914. [PMID: 33300668 PMCID: PMC7821578 DOI: 10.1002/brb3.1914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 08/21/2020] [Accepted: 08/22/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Meditation is increasingly attracting interest among neuroimaging researchers for its relevance as a cognitive enhancement technique and several cross-sectional studies have indicated cerebral changes. This longitudinal study applied a distinct and standardized meditative technique with a group of volunteers in a short-term training program to analyze brain metabolic changes. METHODS The effect of 7 weeks of meditation exercises (focused attention meditation, FAM) was assessed on 27 healthy volunteers. Changes in cerebral energy metabolism were investigated using 31 P-MR spectroscopy. Metabolite ratios were compared before (T1) and after training (T2). Additional questionnaire assessments were included. RESULTS The participants performed FAM daily. Depression and anxiety scores revealed a lower level of state anxiety at T2 compared to T1. From T1 to T2, energy metabolism ratios showed the following differences: PCr/ATP increased right occipitally; Pi/ATP decreased bilaterally in the basal ganglia and temporal lobe on the right; PCr/Pi increased in occipital lobe bilaterally, in the basal ganglia and in the temporal lobe on the right side. The pH decreased temporal on the left side and frontal in the right side. The observed changes in the temporal areas and basal ganglia may be interpreted as a higher energetic state, whereas the frontal and occipital areas showed changes that may be related to a down-regulation in ATP turnover, energy state, and oxidative capacity. CONCLUSIONS The results of the current study indicate for the first time in a longitudinal study that even short-term training in FAM may have considerable effects on brain energy state with different local energy management in specific brain regions. Especially higher energetic state in basal ganglia may represent altered function in their central role in complex cerebral distributed networks including frontal and temporal areas. Further studies including different forms of relaxation techniques should be performed for more specific and reliable insights.
Collapse
Affiliation(s)
- Elke R Gizewski
- Department of Neuroradiology, Medical University Innsbruck, Innsbruck, Austria.,Neuroimaging Research Core Facility, Medical University Innsbruck, Innsbruck, Austria
| | - Ruth Steiger
- Department of Neuroradiology, Medical University Innsbruck, Innsbruck, Austria.,Neuroimaging Research Core Facility, Medical University Innsbruck, Innsbruck, Austria
| | | | - Sergiy Pereverzyev
- Department of Neuroradiology, Medical University Innsbruck, Innsbruck, Austria.,Neuroimaging Research Core Facility, Medical University Innsbruck, Innsbruck, Austria
| | - Patrick J D Sommer
- Department of Neuroradiology, Medical University Innsbruck, Innsbruck, Austria
| | - Christian Siedentopf
- Department of Neuroradiology, Medical University Innsbruck, Innsbruck, Austria.,Neuroimaging Research Core Facility, Medical University Innsbruck, Innsbruck, Austria
| | - Astrid E Grams
- Department of Neuroradiology, Medical University Innsbruck, Innsbruck, Austria.,Neuroimaging Research Core Facility, Medical University Innsbruck, Innsbruck, Austria
| | - Lukas Lenhart
- Department of Neuroradiology, Medical University Innsbruck, Innsbruck, Austria.,Neuroimaging Research Core Facility, Medical University Innsbruck, Innsbruck, Austria
| | - Nicolas Singewald
- Center for Molecular Biosciences Innsbruck (CMBI), Department of Pharmacology and Toxicology, Leopold Franzens University, Innsbruck, Austria
| |
Collapse
|
34
|
Powell CL, Davidson AR, Brown AM. Universal Glia to Neurone Lactate Transfer in the Nervous System: Physiological Functions and Pathological Consequences. BIOSENSORS-BASEL 2020; 10:bios10110183. [PMID: 33228235 PMCID: PMC7699491 DOI: 10.3390/bios10110183] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/13/2022]
Abstract
Whilst it is universally accepted that the energy support of the brain is glucose, the form in which the glucose is taken up by neurones is the topic of intense debate. In the last few decades, the concept of lactate shuttling between glial elements and neural elements has emerged in which the glial cells glycolytically metabolise glucose/glycogen to lactate, which is shuttled to the neural elements via the extracellular fluid. The process occurs during periods of compromised glucose availability where glycogen stored in astrocytes provides lactate to the neurones, and is an integral part of the formation of learning and memory where the energy intensive process of learning requires neuronal lactate uptake provided by astrocytes. More recently sleep, myelination and motor end plate integrity have been shown to involve lactate shuttling. The sequential aspect of lactate production in the astrocyte followed by transport to the neurones is vulnerable to interruption and it is reported that such disparate pathological conditions as Alzheimer's disease, amyotrophic lateral sclerosis, depression and schizophrenia show disrupted lactate signalling between glial cells and neurones.
Collapse
Affiliation(s)
- Carolyn L. Powell
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; (C.L.P.); (A.R.D.)
| | - Anna R. Davidson
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; (C.L.P.); (A.R.D.)
| | - Angus M. Brown
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; (C.L.P.); (A.R.D.)
- Department of Neurology, University of Washington, Seattle, WA 98105, USA
- Correspondence:
| |
Collapse
|
35
|
Reevaluation of Astrocyte-Neuron Energy Metabolism with Astrocyte Volume Fraction Correction: Impact on Cellular Glucose Oxidation Rates, Glutamate-Glutamine Cycle Energetics, Glycogen Levels and Utilization Rates vs. Exercising Muscle, and Na +/K + Pumping Rates. Neurochem Res 2020; 45:2607-2630. [PMID: 32948935 DOI: 10.1007/s11064-020-03125-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 12/22/2022]
Abstract
Accurate quantification of cellular contributions to rates of substrate utilization in resting, activated, and diseased brain is essential for interpretation of data from studies using [18F]fluorodeoxyglucose-positron-emission tomography (FDG-PET) and [13C]glucose/magnetic resonance spectroscopy (MRS). A generally-accepted dogma is that neurons have the highest energy demands of all brain cells, and calculated neuronal rates of glucose oxidation in awake, resting brain accounts for 70-80%, with astrocytes 20-30%. However, these proportions do not take cell type volume fractions into account. To evaluate the conclusion that neuron-astrocyte glucose oxidation rates are similar when adjusted for astrocytic volume fraction (Hertz, Magn Reson Imaging 2011; 29, 1319), the present study analyzed data from 31 studies. On average, astrocytes occupy 6.1, 9.6, and 15% of tissue volume in hippocampus, cerebral cortex, and cerebellum, respectively, and regional astrocytic metabolic rates are adjusted for volume fraction by multiplying by 17.6, 11.4, and 6.8, respectively. After adjustment, astrocytic glucose oxidation rates in resting awake rat brain are 4-10 fold higher than neuronal oxidation rates. Volume-fraction adjustment also increases brain glycogen concentrations and utilization rates to be similar to or exceed exercising muscle. Ion flux calculations to evaluate sodium/potassium homeostasis during neurotransmission are not correct if astrocyte-neuron volume fractions are assumed to be equal. High rates of glucose and glycogen utilization after adjustment for volume fraction indicate that astrocytic energy demands are much greater than recognized, with most of the ATP being used for functions other than glutamate processing in the glutamate-glutamine cycle, challenging the notion that astrocytes 'feed hungry neurons'.
Collapse
|
36
|
Kim JY, Barua S, Jeong YJ, Lee JE. Adiponectin: The Potential Regulator and Therapeutic Target of Obesity and Alzheimer's Disease. Int J Mol Sci 2020; 21:ijms21176419. [PMID: 32899357 PMCID: PMC7504582 DOI: 10.3390/ijms21176419] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/28/2020] [Accepted: 08/28/2020] [Indexed: 02/08/2023] Open
Abstract
Animal and human mechanistic studies have consistently shown an association between obesity and Alzheimer’s disease (AD). AD, a degenerative brain disease, is the most common cause of dementia and is characterized by the presence of extracellular amyloid beta (Aβ) plaques and intracellular neurofibrillary tangles disposition. Some studies have recently demonstrated that Aβ and tau cannot fully explain the pathophysiological development of AD and that metabolic disease factors, such as insulin, adiponectin, and antioxidants, are important for the sporadic onset of nongenetic AD. Obesity prevention and treatment can be an efficacious and safe approach to AD prevention. Adiponectin is a benign adipokine that sensitizes the insulin receptor signaling pathway and suppresses inflammation. It has been shown to be inversely correlated with adipose tissue dysfunction and may enhance the risk of AD because a range of neuroprotection adiponectin mechanisms is related to AD pathology alleviation. In this study, we summarize the recent progress that addresses the beneficial effects and potential mechanisms of adiponectin in AD. Furthermore, we review recent studies on the diverse medications of adiponectin that could possibly be related to AD treatment, with a focus on their association with adiponectin. A better understanding of the neuroprotection roles of adiponectin will help clarify the precise underlying mechanism of AD development and progression.
Collapse
Affiliation(s)
- Jong Youl Kim
- Department of Anatomy, Yonsei University College of Medicine, Seoul 120-752, Korea; (J.Y.K.); (S.B.); (Y.J.J.)
| | - Sumit Barua
- Department of Anatomy, Yonsei University College of Medicine, Seoul 120-752, Korea; (J.Y.K.); (S.B.); (Y.J.J.)
| | - Ye Jun Jeong
- Department of Anatomy, Yonsei University College of Medicine, Seoul 120-752, Korea; (J.Y.K.); (S.B.); (Y.J.J.)
| | - Jong Eun Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul 120-752, Korea; (J.Y.K.); (S.B.); (Y.J.J.)
- BK21 Plus Project for Medical Sciences, and Brain Research Institute, Yonsei University College of Medicine, Seoul 120-752, Korea
- Correspondence: ; Tel.: +82-2-2228-1646 (ext. 1659); Fax: +82-2-365-0700
| |
Collapse
|
37
|
Yu Y, Nassar J, Xu C, Min J, Yang Y, Dai A, Doshi R, Huang A, Song Y, Gehlhar R, Ames AD, Gao W. Biofuel-powered soft electronic skin with multiplexed and wireless sensing for human-machine interfaces. Sci Robot 2020; 5:eaaz7946. [PMID: 32607455 PMCID: PMC7326328 DOI: 10.1126/scirobotics.aaz7946] [Citation(s) in RCA: 229] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Existing electronic skin (e-skin) sensing platforms are equipped to monitor physical parameters using power from batteries or near-field communication. For e-skins to be applied in the next generation of robotics and medical devices, they must operate wirelessly and be self-powered. However, despite recent efforts to harvest energy from the human body, self-powered e-skin with the ability to perform biosensing with Bluetooth communication are limited because of lack of a continuous energy source and limited power efficiency. Here, we report a flexible and fully perspiration-powered integrated electronic skin (PPES) for multiplexed metabolic sensing in situ. The battery-free e-skin contains multimodal sensors and highly efficient lactate biofuel cells that use a unique integration of zero- to three-dimensional nanomaterials to achieve high power intensity and long-term stability. The PPES delivered a record-breaking power density of 3.5 milliwatt-centimeter-2 for biofuel cells in untreated human body fluids (human sweat) and displayed a very stable performance during a 60-hour continuous operation. It selectively monitored key metabolic analytes (e.g., urea, NH4 +, glucose, and pH) and the skin temperature during prolonged physical activities and wirelessly transmitted the data to the user interface using Bluetooth. The PPES was also able to monitor muscle contraction and work as a human-machine interface for human- prosthesis walking.
Collapse
Affiliation(s)
- You Yu
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Joanna Nassar
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Changhao Xu
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jihong Min
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Yiran Yang
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Adam Dai
- Department of Electrical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Rohan Doshi
- Department of Electrical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Adrian Huang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Yu Song
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Rachel Gehlhar
- Department of Mechanical and Civil Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Aaron D. Ames
- Department of Mechanical and Civil Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
38
|
Takahashi S. Metabolic compartmentalization between astroglia and neurons in physiological and pathophysiological conditions of the neurovascular unit. Neuropathology 2020; 40:121-137. [PMID: 32037635 PMCID: PMC7187297 DOI: 10.1111/neup.12639] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/09/2019] [Accepted: 12/09/2019] [Indexed: 12/17/2022]
Abstract
Astroglia or astrocytes, the most abundant cells in the brain, are interposed between neuronal synapses and microvasculature in the brain gray matter. They play a pivotal role in brain metabolism as well as in the regulation of cerebral blood flow, taking advantage of their unique anatomical location. In particular, the astroglial cellular metabolic compartment exerts supportive roles in dedicating neurons to the generation of action potentials and protects them against oxidative stress associated with their high energy consumption. An impairment of normal astroglial function, therefore, can lead to numerous neurological disorders including stroke, neurodegenerative diseases, and neuroimmunological diseases, in which metabolic derangements accelerate neuronal damage. The neurovascular unit (NVU), the major components of which include neurons, microvessels, and astroglia, is a conceptual framework that was originally used to better understand the pathophysiology of cerebral ischemia. At present, the NVU is a tool for understanding normal brain physiology as well as the pathophysiology of numerous neurological disorders. The metabolic responses of astroglia in the NVU can be either protective or deleterious. This review focuses on three major metabolic compartments: (i) glucose and lactate; (ii) fatty acid and ketone bodies; and (iii) D- and L-serine. Both the beneficial and the detrimental roles of compartmentalization between neurons and astroglia will be discussed. A better understanding of the astroglial metabolic response in the NVU is expected to lead to the development of novel therapeutic strategies for diverse neurological diseases.
Collapse
Affiliation(s)
- Shinichi Takahashi
- Department of Neurology and StrokeSaitama Medical University International Medical CenterSaitamaJapan
- Department of PhysiologyKeio University School of MedicineTokyoJapan
| |
Collapse
|
39
|
Lagos-Cabré R, Burgos-Bravo F, Avalos AM, Leyton L. Connexins in Astrocyte Migration. Front Pharmacol 2020; 10:1546. [PMID: 32009957 PMCID: PMC6974553 DOI: 10.3389/fphar.2019.01546] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/29/2019] [Indexed: 12/18/2022] Open
Abstract
Astrocytes have long been considered the supportive cells of the central nervous system, but during the last decades, they have gained much more attention because of their active participation in the modulation of neuronal function. For example, after brain damage, astrocytes become reactive and undergo characteristic morphological and molecular changes, such as hypertrophy and increase in the expression of glial fibrillary acidic protein (GFAP), in a process known as astrogliosis. After severe damage, astrocytes migrate to the lesion site and proliferate, which leads to the formation of a glial scar. At this scar-forming stage, astrocytes secrete many factors, such as extracellular matrix proteins, cytokines, growth factors and chondroitin sulfate proteoglycans, stop migrating, and the process is irreversible. Although reactive gliosis is a normal physiological response that can protect brain cells from further damage, it also has detrimental effects on neuronal survival, by creating a hostile and non-permissive environment for axonal repair. The transformation of astrocytes from reactive to scar-forming astrocytes highlights migration as a relevant regulator of glial scar formation, and further emphasizes the importance of efficient communication between astrocytes in order to orchestrate cell migration. The coordination between astrocytes occurs mainly through Connexin (Cx) channels, in the form of direct cell-cell contact (gap junctions, GJs) or contact between the extracellular matrix and the astrocytes (hemichannels, HCs). Reactive astrocytes increase the expression levels of several proteins involved in astrocyte migration, such as αvβ3 Integrin, Syndecan-4 proteoglycan, the purinergic receptor P2X7, Pannexin1, and Cx43 HCs. Evidence has indicated that Cx43 HCs play a role in regulating astrocyte migration through the release of small molecules to the extracellular space, which then activate receptors in the same or adjacent cells to continue the signaling cascades required for astrocyte migration. In this review, we describe the communication of astrocytes through Cxs, the role of Cxs in inflammation and astrocyte migration, and discuss the molecular mechanisms that regulate Cx43 HCs, which may provide a therapeutic window of opportunity to control astrogliosis and the progression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Raúl Lagos-Cabré
- Cellular Communication Laboratory, Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Center for Studies on Exercise, Metabolism and Cancer (CEMC), Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| | - Francesca Burgos-Bravo
- Cellular Communication Laboratory, Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Center for Studies on Exercise, Metabolism and Cancer (CEMC), Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| | - Ana María Avalos
- Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Lisette Leyton
- Cellular Communication Laboratory, Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Center for Studies on Exercise, Metabolism and Cancer (CEMC), Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| |
Collapse
|
40
|
Patsatzis DG, Tingas EA, Goussis DA, Sarathy SM. Computational singular perturbation analysis of brain lactate metabolism. PLoS One 2019; 14:e0226094. [PMID: 31846455 PMCID: PMC6917278 DOI: 10.1371/journal.pone.0226094] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 11/19/2019] [Indexed: 01/09/2023] Open
Abstract
Lactate in the brain is considered an important fuel and signalling molecule for neuronal activity, especially during neuronal activation. Whether lactate is shuttled from astrocytes to neurons or from neurons to astrocytes leads to the contradictory Astrocyte to Neuron Lactate Shuttle (ANLS) or Neuron to Astrocyte Lactate Shuttle (NALS) hypotheses, both of which are supported by extensive, but indirect, experimental evidence. This work explores the conditions favouring development of ANLS or NALS phenomenon on the basis of a model that can simulate both by employing the two parameter sets proposed by Simpson et al. (J Cereb. Blood Flow Metab., 27:1766, 2007) and Mangia et al. (J of Neurochemistry, 109:55, 2009). As most mathematical models governing brain metabolism processes, this model is multi-scale in character due to the wide range of time scales characterizing its dynamics. Therefore, we utilize the Computational Singular Perturbation (CSP) algorithm, which has been used extensively in multi-scale systems of reactive flows and biological systems, to identify components of the system that (i) generate the characteristic time scale and the fast/slow dynamics, (ii) participate to the expressions that approximate the surfaces of equilibria that develop in phase space and (iii) control the evolution of the process within the established surfaces of equilibria. It is shown that a decisive factor on whether the ANLS or NALS configuration will develop during neuronal activation is whether the lactate transport between astrocytes and interstitium contributes to the fast dynamics or not. When it does, lactate is mainly generated in astrocytes and the ANLS hypothesis is realised, while when it doesn't, lactate is mainly generated in neurons and the NALS hypothesis is realised. This scenario was tested in exercise conditions.
Collapse
Affiliation(s)
- Dimitris G. Patsatzis
- King Abdullah University of Science and Technology (KAUST), Clean Combustion Research Center (CCRC), Thuwal, Saudi Arabia
- Department of Mechanics, School of Applied Mathematics and Physical Sciences, National Technical University of Athens (NTUA), Athens, Greece
| | - Efstathios-Al. Tingas
- King Abdullah University of Science and Technology (KAUST), Clean Combustion Research Center (CCRC), Thuwal, Saudi Arabia
- Perth College, University of the Highlands and Islands, Crieff Rd, Perth PH1 2NX, United Kingdom
| | - Dimitris A. Goussis
- Department of Mechanical Engineering, Khalifa University of Science, Technology and Research (KUSTAR), Abu Dhabi, United Arab Emirates
| | - S. Mani Sarathy
- King Abdullah University of Science and Technology (KAUST), Clean Combustion Research Center (CCRC), Thuwal, Saudi Arabia
| |
Collapse
|
41
|
Gilbert‐Jaramillo J, Garcez P, James W, Molnár Z, Clarke K. The potential contribution of impaired brain glucose metabolism to congenital Zika syndrome. J Anat 2019; 235:468-480. [PMID: 30793304 PMCID: PMC6704275 DOI: 10.1111/joa.12959] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2019] [Indexed: 12/14/2022] Open
Abstract
The Zika virus (ZIKV) became a major worldwide public concern in 2015 due to the congenital syndrome which presents the highest risk during the first trimester of pregnancy and includes microcephaly and eye malformations. Several cellular, genetic and molecular studies have shown alterations in metabolic pathways, endoplasmic reticulum (ER) stress, immunity and dysregulation of RNA and energy metabolism both in vivo and in vitro. Here we summarise the main metabolic complications, with a particular focus on the possibility that brain energy metabolism is altered following ZIKV infection, contributing to developmental abnormalities. Brain energetic failure has been implicated in neurological conditions such as autism disorder and epilepsy, as well as in metabolic diseases with severe neurodevelopmental complications such as Glut-1 deficiency syndrome. Therefore, these energetic alterations are of wide-ranging interest as they might be directly implicated in congenital ZIKV syndrome. Data showing increased glycolysis during ZIKV infection, presumably required for viral replication, might support the idea that the virus can cause energetic stress in the developing brain cells. Consequences may include neuroinflammation, cell cycle dysregulation and cell death. Ketone bodies are non-glycolytic brain fuels that are produced during neonatal life, starvation or fasting, ingestion of high-fat low-carbohydrate diets, and following supplementation with ketone esters. We propose that dietary ketones might alter the course of the disease and could even provide some degree of prevention of ZIKV-associated abnormalities and potentially related neurological conditions characterised by brain glucose impairment.
Collapse
Affiliation(s)
| | - Patricia Garcez
- Institute of Biomedical SciencesFederal University of Rio de JaneiroRio de JaneiroBrazil
| | - William James
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| | - Zoltán Molnár
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Kieran Clarke
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| |
Collapse
|
42
|
Xu G, Wong M, Li Q, Park D, Cheng Z, Lebrilla CB. Unveiling the metabolic fate of monosaccharides in cell membranes with glycomic and glycoproteomic analyses. Chem Sci 2019; 10:6992-7002. [PMID: 31588266 PMCID: PMC6676465 DOI: 10.1039/c9sc01653h] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 06/10/2019] [Indexed: 12/12/2022] Open
Abstract
Cell membrane protein glycosylation is dependent on the metabolic state of the cell as well as exogenous nutrients available. Although the metabolism and interconversion of monosaccharides have been well-studied, their incorporation into cell surface glycans and their corresponding glycoproteins remains relatively unknown. In this study, we developed a method to investigate quantitatively the incorporation pathways of dietary saccharides into specific glycans and glycoproteins on the cell membrane by treating intestinal Caco-2 and hepatic KKU-M213 cells with 13C-labeled monosaccharides and characterizing the resulting cell surface glycans and glycopeptides by LC-MS/MS. Time-course studies using uniformly labeled glucose revealed that the rate of incorporation was both glycan-specific and protein-dependent. Comparative studies using different dietary saccharides and multiple cell lines revealed the variance of monosaccharide utilization and interconversion in different tissues and organisms. The robust isotope-labeling and glycan profiling methods can provide a useful tool for differentiating glycosylation pathways and enhance the understanding of how dietary sugar intake affects health.
Collapse
Affiliation(s)
- Gege Xu
- Department of Chemistry , University of California , One Shields Avenue Davis , Davis , CA 95616 , USA .
| | - Maurice Wong
- Department of Chemistry , University of California , One Shields Avenue Davis , Davis , CA 95616 , USA .
| | - Qiongyu Li
- Department of Chemistry , University of California , One Shields Avenue Davis , Davis , CA 95616 , USA .
| | - Dayoung Park
- Department of Chemistry , University of California , One Shields Avenue Davis , Davis , CA 95616 , USA .
| | - Zhi Cheng
- Department of Chemistry , University of California , One Shields Avenue Davis , Davis , CA 95616 , USA .
| | - Carlito B Lebrilla
- Department of Chemistry , University of California , One Shields Avenue Davis , Davis , CA 95616 , USA . .,Department of Biochemistry and Molecular Medicine , University of California , Davis , CA 95616 , USA.,Foods for Health Institute , University of California , Davis , CA 95616 , USA
| |
Collapse
|
43
|
3D-printed CuO nanoparticle–functionalized flow reactor enables online fluorometric monitoring of glucose. Mikrochim Acta 2019; 186:404. [DOI: 10.1007/s00604-019-3512-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 05/16/2019] [Indexed: 12/18/2022]
|
44
|
Crabbé M, Van der Perren A, Kounelis S, Lavreys T, Bormans G, Baekelandt V, Casteels C, Van Laere K. Temporal changes in neuroinflammation and brain glucose metabolism in a rat model of viral vector-induced α-synucleinopathy. Exp Neurol 2019; 320:112964. [PMID: 31136763 DOI: 10.1016/j.expneurol.2019.112964] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/09/2019] [Accepted: 05/22/2019] [Indexed: 02/04/2023]
Abstract
Rat models based on viral vector-mediated overexpression of α-synuclein are regarded as highly valuable models that closely mimic cardinal features of human Parkinson's disease (PD) such as L-DOPA-dependent motor impairment, dopaminergic neurodegeneration and α-synuclein inclusions. To date, the downstream effects of dopaminergic cell loss on brain glucose metabolism, including the neuroinflammation component, have not been phenotyped in detail for this model. Cerebral glucose metabolism was monitored throughout different stages of the disease using in vivo 2-[18F]-fluoro-2-deoxy-d-glucose ([18F]FDG) positron emission tomography (PET) and was combined with in vitro [18F]DPA-714 autoradiography to assess concomitant inflammation. Rats were unilaterally injected with recombinant adeno-associated viral vector serotype 2/7 (rAAV2/7) encoding either A53T α-synuclein or eGFP. Brain [18F]FDG microPET was performed at baseline, 1, 2, 3, 4, 6, and 9 weeks post-surgery, in combination with behavioral tests. As a second experiment, [18F]DPA-714 autoradiography was executed across the same timeline. Voxel-based analysis of relative [18F]FDG uptake showed a dynamic pattern of PD-related metabolic changes throughout the disease progression (weeks 2-9). Glucose hypermetabolism covering a large bilateral area reaching from the insular, motor- and somatosensory cortex to the striatum was observed at week 2. At week 4, hypermetabolism presented in a cluster covering the ipsilateral nigra-thalamic region, whereas hypometabolism was noted in the ipsilateral striatum at week 6. Elevated [18F]FDG uptake was seen in a cluster extending across the contralateral striatum, motor- and somatosensory cortex at week 9. Increased [18F]FDG in the region of the substantia nigra was associated with increased [18F]DPA-714 binding, and correlated significantly with motor symptoms. These findings point to disease-associated metabolic and neuroinflammatory changes taking place in the primary area of dopaminergic neurodegeneration but also closely interconnected motor and somatosensory brain regions.
Collapse
Affiliation(s)
- Melissa Crabbé
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, University Hospitals Leuven, Leuven, Belgium; MoSAIC - Molecular Small Animal Imaging Centre, KU Leuven, Leuven, Belgium.
| | - Anke Van der Perren
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, Leuven, Belgium; Leuven Viral Vector Core, KU Leuven, Leuven, Belgium
| | - Savannah Kounelis
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, University Hospitals Leuven, Leuven, Belgium; MoSAIC - Molecular Small Animal Imaging Centre, KU Leuven, Leuven, Belgium
| | - Thomas Lavreys
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, University Hospitals Leuven, Leuven, Belgium; MoSAIC - Molecular Small Animal Imaging Centre, KU Leuven, Leuven, Belgium
| | - Guy Bormans
- Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Veerle Baekelandt
- MoSAIC - Molecular Small Animal Imaging Centre, KU Leuven, Leuven, Belgium; Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, Leuven, Belgium; Leuven Viral Vector Core, KU Leuven, Leuven, Belgium
| | - Cindy Casteels
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, University Hospitals Leuven, Leuven, Belgium; MoSAIC - Molecular Small Animal Imaging Centre, KU Leuven, Leuven, Belgium
| | - Koen Van Laere
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, University Hospitals Leuven, Leuven, Belgium; MoSAIC - Molecular Small Animal Imaging Centre, KU Leuven, Leuven, Belgium
| |
Collapse
|
45
|
Abstract
Glucose is the long-established, obligatory fuel for brain that fulfills many critical functions, including ATP production, oxidative stress management, and synthesis of neurotransmitters, neuromodulators, and structural components. Neuronal glucose oxidation exceeds that in astrocytes, but both rates increase in direct proportion to excitatory neurotransmission; signaling and metabolism are closely coupled at the local level. Exact details of neuron-astrocyte glutamate-glutamine cycling remain to be established, and the specific roles of glucose and lactate in the cellular energetics of these processes are debated. Glycolysis is preferentially upregulated during brain activation even though oxygen availability is sufficient (aerobic glycolysis). Three major pathways, glycolysis, pentose phosphate shunt, and glycogen turnover, contribute to utilization of glucose in excess of oxygen, and adrenergic regulation of aerobic glycolysis draws attention to astrocytic metabolism, particularly glycogen turnover, which has a high impact on the oxygen-carbohydrate mismatch. Aerobic glycolysis is proposed to be predominant in young children and specific brain regions, but re-evaluation of data is necessary. Shuttling of glucose- and glycogen-derived lactate from astrocytes to neurons during activation, neurotransmission, and memory consolidation are controversial topics for which alternative mechanisms are proposed. Nutritional therapy and vagus nerve stimulation are translational bridges from metabolism to clinical treatment of diverse brain disorders.
Collapse
Affiliation(s)
- Gerald A Dienel
- Department of Neurology, University of Arkansas for Medical Sciences , Little Rock, Arkansas ; and Department of Cell Biology and Physiology, University of New Mexico , Albuquerque, New Mexico
| |
Collapse
|
46
|
Dienel GA. Does shuttling of glycogen-derived lactate from astrocytes to neurons take place during neurotransmission and memory consolidation? J Neurosci Res 2019; 97:863-882. [PMID: 30667077 DOI: 10.1002/jnr.24387] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/24/2018] [Accepted: 01/07/2019] [Indexed: 12/17/2022]
Abstract
Glycogen levels in resting brain and its utilization rates during brain activation are high, but the functions fulfilled by glycogenolysis in living brain are poorly understood. Studies in cultured astrocytes have identified glycogen as the preferred fuel to provide ATP for Na+ ,K+ -ATPase for the uptake of extracellular K+ and for Ca2+ -ATPase to pump Ca2+ into the endoplasmic reticulum. Studies in astrocyte-neuron co-cultures led to the suggestion that glycogen-derived lactate is shuttled to neurons as oxidative fuel to support glutamatergic neurotransmission. Furthermore, both knockout of brain glycogen synthase and inhibition of glycogenolysis prior to a memory-evoking event impair memory consolidation, and shuttling of glycogen-derived lactate as neuronal fuel was postulated to be required for memory. However, lactate shuttling has not been measured in any of these studies, and procedures to inhibit glycogenolysis and neuronal lactate uptake are not specific. Testable alternative mechanisms to explain the observed findings are proposed: (i) disruption of K+ and Ca2+ homeostasis, (ii) release of gliotransmitters, (iii) imposition of an energy crisis on astrocytes and neurons by inhibition of mitochondrial pyruvate transport by compounds used to block neuronal monocarboxylic acid transporters, and (iv) inhibition of astrocytic filopodial movements that secondarily interfere with glutamate and K+ uptake from the synaptic cleft. Evidence that most pyruvate/lactate derived from glycogen is not oxidized and does not accumulate suggests predominant glycolytic metabolism of glycogen to support astrocytic energy demands. Sparing of blood-borne glucose for use by neurons is a reasonable explanation for the requirement for glycogenolysis in neurotransmission and memory processing.
Collapse
Affiliation(s)
- Gerald A Dienel
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, Arkansas.,Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, New Mexico
| |
Collapse
|
47
|
Glycogenolysis in Cerebral Cortex During Sensory Stimulation, Acute Hypoglycemia, and Exercise: Impact on Astrocytic Energetics, Aerobic Glycolysis, and Astrocyte-Neuron Interactions. ADVANCES IN NEUROBIOLOGY 2019; 23:209-267. [DOI: 10.1007/978-3-030-27480-1_8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
48
|
Jiménez-Maldonado A, Rentería I, García-Suárez PC, Moncada-Jiménez J, Freire-Royes LF. The Impact of High-Intensity Interval Training on Brain Derived Neurotrophic Factor in Brain: A Mini-Review. Front Neurosci 2018; 12:839. [PMID: 30487731 PMCID: PMC6246624 DOI: 10.3389/fnins.2018.00839] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 10/29/2018] [Indexed: 12/16/2022] Open
Abstract
The brain-derived neurotrophic factor (BDNF) is a protein mainly synthetized in the neurons. Early evidence showed that BDNF participates in cognitive processes as measured at the hippocampus. This neurotrophin is as a reliable marker of brain function; moreover, recent studies have demonstrated that BDNF participates in physiological processes such as glucose homeostasis and lipid metabolism. The BDNF has been also studied using the exercise paradigm to determine its response to different exercise modalities; therefore, BDNF is considered a new member of the exercise-related molecules. The high-intensity interval training (HIIT) is an exercise protocol characterized by low work volume performed at a high intensity [i.e., ≥80% of maximal heart rate (HRmax)]. Recent evidence supports the contention that HIIT elicits higher fat oxidation in skeletal muscle than other forms of exercise. Similarly, HIIT is a good stimulus to increase maximal oxygen uptake (VO2max). Few studies have investigated the impact of HIIT on the BDNF response. The present work summarizes the effects of acute and long-term HIIT on BDNF.
Collapse
Affiliation(s)
| | - Iván Rentería
- Facultad de Deportes, Universidad Autónoma de Baja California, Ensenada, Mexico
| | | | - José Moncada-Jiménez
- Human Movement Sciences Research Center, University of Costa Rica, San José, Costa Rica
| | | |
Collapse
|
49
|
Schurr A. Glycolysis Paradigm Shift Dictates a Reevaluation of Glucose and Oxygen Metabolic Rates of Activated Neural Tissue. Front Neurosci 2018; 12:700. [PMID: 30364172 PMCID: PMC6192285 DOI: 10.3389/fnins.2018.00700] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/18/2018] [Indexed: 01/31/2023] Open
Abstract
In 1988 two seminal studies were published, both instigating controversy. One concluded that “the energy needs of activated neural tissue are minimal, being fulfilled via the glycolytic pathway alone,” a conclusion based on the observation that neural activation increased glucose consumption, which was not accompanied by a corresponding increase in oxygen consumption (Fox et al., 1988). The second demonstrated that neural tissue function can be supported exclusively by lactate as the energy substrate (Schurr et al., 1988). While both studies continue to have their supporters and detractors, the present review attempts to clarify the issues responsible for the persistence of the controversies they have provoked and offer a possible rationalization. The concept that lactate rather than pyruvate, is the glycolytic end-product, both aerobically and anaerobically, and thus the real mitochondrial oxidative substrate, has gained a greater acceptance over the years. The idea of glycolysis as the sole ATP supplier for neural activation (glucose → lactate + 2ATP) continues to be controversial. Lactate oxidative utilization by activated neural tissue could explain the mismatch between glucose and oxygen consumption and resolve the existing disagreements among users of imaging methods to measure the metabolic rates of the two energy metabolic substrates. The postulate that the energy necessary for active neural tissue is supplied by glycolysis alone stems from the original aerobic glycolysis paradigm. Accordingly, glucose consumption is accompanied by oxygen consumption at 1–6 ratio. Since Fox et al. (1988) observed only a minimal if non-existent oxygen consumption compared to glucose consumption, their conclusion make sense. Nevertheless, considering (a) the shift in the paradigm of glycolysis (glucose → lactate; lactate + O2 + mitochondria → pyruvate → TCA cycle → CO2 + H2O + 17ATP); (b) that one mole of lactate oxidation requires only 50% of the amount of oxygen necessary for the oxidation of one mole of glucose; and (c) that lactate, as a mitochondrial substrate, is over eight times more efficient at ATP production than glucose as a glycolytic substrate, suggest that future studies of cerebral metabolic rates of activated neural tissue should include along with the measurements of CMRO2 and CMRglucose the measurement of CMRlactate.
Collapse
Affiliation(s)
- Avital Schurr
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Louisville, Louisville, KY, United States
| |
Collapse
|
50
|
Matthews DC, Lerman H, Lukic A, Andrews RD, Mirelman A, Wernick MN, Giladi N, Strother SC, Evans KC, Cedarbaum JM, Even-Sapir E. FDG PET Parkinson's disease-related pattern as a biomarker for clinical trials in early stage disease. NEUROIMAGE-CLINICAL 2018; 20:572-579. [PMID: 30186761 PMCID: PMC6120603 DOI: 10.1016/j.nicl.2018.08.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/03/2018] [Accepted: 08/05/2018] [Indexed: 11/30/2022]
Abstract
Background The development of therapeutic interventions for Parkinson disease (PD) is challenged by disease complexity and subjectivity of symptom evaluation. A Parkinson's Disease Related Pattern (PDRP) of glucose metabolism via fluorodeoxyglucose positron emission tomography (FDG-PET) has been reported to correlate with motor symptom scores and may aid the detection of disease-modifying therapeutic effects. Objectives We sought to independently evaluate the potential utility of the PDRP as a biomarker for clinical trials of early-stage PD. Methods Two machine learning approaches (Scaled Subprofile Model (SSM) and NPAIRS with Canonical Variates Analysis) were performed on FDG-PET scans from 17 healthy controls (HC) and 23 PD patients. The approaches were compared regarding discrimination of HC from PD and relationship to motor symptoms. Results Both classifiers discriminated HC from PD (p < 0.01, p < 0.03), and classifier scores for age- and gender- matched HC and PD correlated with Hoehn & Yahr stage (R2 = 0.24, p < 0.015) and UPDRS (R2 = 0.23, p < 0.018). Metabolic patterns were highly similar, with hypometabolism in parieto-occipital and prefrontal regions and hypermetabolism in cerebellum, pons, thalamus, paracentral gyrus, and lentiform nucleus relative to whole brain, consistent with the PDRP. An additional classifier was developed using only PD subjects, resulting in scores that correlated with UPDRS (R2 = 0.25, p < 0.02) and Hoehn & Yahr stage (R2 = 0.16, p < 0.06). Conclusions Two independent analyses performed in a cohort of mild PD patients replicated key features of the PDRP, confirming that FDG-PET and multivariate classification can provide an objective, sensitive biomarker of disease stage with the potential to detect treatment effects on PD progression. The Parkinson's disease-related pattern (PDRP) of glucose metabolic effects is demonstrated in an independent cohort of early stage PD patients. The PDRP pattern of metabolic changes is robust to variations in image processing and choice of classification model. Age-related metabolic changes show partial overlap with the PDRP, suggesting that age-adjustment is an important consideration. The PDRP correlates with motor function as defined by Hoehn & Yahr stage and UPDRS score. An additional data driven metabolic classifier highlights pattern aspects associated with early stage motor decline.
Collapse
Affiliation(s)
| | - Hedva Lerman
- Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | | | - Anat Mirelman
- Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Miles N Wernick
- ADM Diagnostics Inc., USA; Medical Imaging Research Center, Illinois Institute of Technology, Chicago, IL, USA
| | - Nir Giladi
- Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Stephen C Strother
- ADM Diagnostics Inc., USA; Rotman Research Institute, Baycrest, Toronto, Ontario, CA, Canada
| | | | | | - Einat Even-Sapir
- Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|