1
|
Suprunowicz M, Tomaszek N, Urbaniak A, Zackiewicz K, Modzelewski S, Waszkiewicz N. Between Dysbiosis, Maternal Immune Activation and Autism: Is There a Common Pathway? Nutrients 2024; 16:549. [PMID: 38398873 PMCID: PMC10891846 DOI: 10.3390/nu16040549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/05/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Autism spectrum disorder (ASD) is a neuropsychiatric condition characterized by impaired social interactions and repetitive stereotyped behaviors. Growing evidence highlights an important role of the gut-brain-microbiome axis in the pathogenesis of ASD. Research indicates an abnormal composition of the gut microbiome and the potential involvement of bacterial molecules in neuroinflammation and brain development disruptions. Concurrently, attention is directed towards the role of short-chain fatty acids (SCFAs) and impaired intestinal tightness. This comprehensive review emphasizes the potential impact of maternal gut microbiota changes on the development of autism in children, especially considering maternal immune activation (MIA). The following paper evaluates the impact of the birth route on the colonization of the child with bacteria in the first weeks of life. Furthermore, it explores the role of pro-inflammatory cytokines, such as IL-6 and IL-17a and mother's obesity as potentially environmental factors of ASD. The purpose of this review is to advance our understanding of ASD pathogenesis, while also searching for the positive implications of the latest therapies, such as probiotics, prebiotics or fecal microbiota transplantation, targeting the gut microbiota and reducing inflammation. This review aims to provide valuable insights that could instruct future studies and treatments for individuals affected by ASD.
Collapse
Affiliation(s)
| | | | | | | | - Stefan Modzelewski
- Department of Psychiatry, Medical University of Bialystok, pl. Wołodyjowskiego 2, 15-272 Białystok, Poland; (M.S.); (N.T.); (A.U.); (K.Z.); (N.W.)
| | | |
Collapse
|
2
|
Breach MR, Akouri HE, Costantine S, Dodson CM, McGovern N, Lenz KM. Prenatal allergic inflammation in rats confers sex-specific alterations to oxytocin and vasopressin innervation in social brain regions. Horm Behav 2024; 157:105427. [PMID: 37743114 PMCID: PMC10842952 DOI: 10.1016/j.yhbeh.2023.105427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/30/2023] [Accepted: 09/12/2023] [Indexed: 09/26/2023]
Abstract
Prenatal exposure to inflammation via maternal infection, allergy, or autoimmunity increases one's risk for developing neurodevelopmental and psychiatric disorders. Many of these disorders are associated with altered social behavior, yet the mechanisms underlying inflammation-induced social impairment remain unknown. We previously found that a rat model of acute allergic maternal immune activation (MIA) produced deficits like those found in MIA-linked disorders, including impairments in juvenile social play behavior. The neuropeptides oxytocin (OT) and arginine vasopressin (AVP) regulate social behavior, including juvenile social play, across mammalian species. OT and AVP are also implicated in neuropsychiatric disorders characterized by social impairment, making them good candidate regulators of social deficits after MIA. We profiled how acute prenatal exposure to allergic MIA changed OT and AVP innervation in several brain regions important for social behavior in juvenile male and female rat offspring. We also assessed whether MIA altered additional behavioral phenotypes related to sociality and anxiety. We found that allergic MIA increased OT and AVP fiber immunoreactivity in the medial amygdala and had sex-specific effects in the nucleus accumbens, bed nucleus of the stria terminalis, and lateral hypothalamic area. We also found that MIA reduced ultrasonic vocalizations in neonates and increased the stereotypical nature of self-grooming behavior. Overall, these findings suggest that there may be sex-specific mechanisms underlying MIA-induced behavioral impairment and underscore OT and AVP as ideal candidates for future mechanistic studies.
Collapse
Affiliation(s)
- Michaela R Breach
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Habib E Akouri
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Sophia Costantine
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| | - Claire M Dodson
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Nolan McGovern
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Kathryn M Lenz
- Department of Psychology, The Ohio State University, Columbus, OH, USA; Department of Neuroscience, The Ohio State University, Columbus, OH, USA; Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
3
|
You M, Li S, Yan S, Yao D, Wang T, Wang Y. Exposure to nonylphenol in early life causes behavioural deficits related with autism spectrum disorders in rats. ENVIRONMENT INTERNATIONAL 2023; 180:108228. [PMID: 37802007 DOI: 10.1016/j.envint.2023.108228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/31/2023] [Accepted: 09/20/2023] [Indexed: 10/08/2023]
Abstract
Early-life exposure to environmental endocrine disruptors (EDCs) is a potential risk factor for autism spectrum disorder (ASD). Exposure to nonylphenol (NP), a typical EDC, is known to cause some long-term behavioural abnormalities. Moreover, these abnormal behaviours are the most frequent psychiatric co-morbidities in ASD. However, the direct evidence for the link between NP exposure in early life and ASD-like behavioural phenotypes is still missing. In the present study, typical ASD-like behaviours induced by valproic acid treatment were considered as a positive behavioural control. We investigated impacts on social behaviours following early-life exposure to NP, and explored effects of this exposure on neuronal dendritic spines, mitochondria function, oxidative stress, and endoplasmic reticulum (ER) stress. Furthermore, primary cultured rat neurons were employed as in vitro model to evaluate changes in dendritic spine caused by exposure to NP, and oxidative stress and ER stress were specifically modulated to further explore their roles in these changes. Our results indicated rats exposed to NP in early life showed mild ASD-like behaviours. Moreover, we also found the activation of ER stress triggered by oxidative stress may contribute to dendritic spine decrease and synaptic dysfunction, which may underlie neurobehavioural abnormalities induced by early-life exposure to NP.
Collapse
Affiliation(s)
- Mingdan You
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China; School of Public Heath, Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
| | - Siyao Li
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China; Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, Liaoning, People's Republic of China
| | - Siyu Yan
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China; Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, Liaoning, People's Republic of China
| | - Dianqi Yao
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China; Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, Liaoning, People's Republic of China
| | - Tingyu Wang
- College of Medical Laboratory, Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Yi Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China; Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, Liaoning, People's Republic of China.
| |
Collapse
|
4
|
Cieślik M, Zawadzka A, Czapski GA, Wilkaniec A, Adamczyk A. Developmental Stage-Dependent Changes in Mitochondrial Function in the Brain of Offspring Following Prenatal Maternal Immune Activation. Int J Mol Sci 2023; 24:ijms24087243. [PMID: 37108406 PMCID: PMC10138707 DOI: 10.3390/ijms24087243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/01/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
Maternal immune activation (MIA) is an important risk factor for neurodevelopmental disorders such as autism. The aim of the current study was to investigate the development-dependent changes in the mitochondrial function of MIA-exposed offspring, which may contribute to autism-like deficits. MIA was evoked by the single intraperitoneal administration of lipopolysaccharide to pregnant rats at gestation day 9.5, and several aspects of mitochondrial function in fetuses and in the brains of seven-day-old pups and adolescent offspring were analyzed along with oxidative stress parameters measurement. It was found that MIA significantly increased the activity of NADPH oxidase (NOX), an enzyme generating reactive oxygen species (ROS) in the fetuses and in the brain of seven-day-old pups, but not in the adolescent offspring. Although a lower mitochondrial membrane potential accompanied by a decreased ATP level was already observed in the fetuses and in the brain of seven-day-old pups, persistent alterations of ROS, mitochondrial membrane depolarization, and lower ATP generation with concomitant electron transport chain complexes downregulation were observed only in the adolescent offspring. We suggest that ROS observed in infancy are most likely of a NOX activity origin, whereas in adolescence, ROS are produced by damaged mitochondria. The accumulation of dysfunctional mitochondria leads to the intense release of free radicals that trigger oxidative stress and neuroinflammation, resulting in an interlinked vicious cascade.
Collapse
Affiliation(s)
- Magdalena Cieślik
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, ul. Pawińskiego 5, 02-106 Warsaw, Poland
| | - Aleksandra Zawadzka
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, ul. Pawińskiego 5, 02-106 Warsaw, Poland
| | - Grzegorz A Czapski
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, ul. Pawińskiego 5, 02-106 Warsaw, Poland
| | - Anna Wilkaniec
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, ul. Pawińskiego 5, 02-106 Warsaw, Poland
| | - Agata Adamczyk
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, ul. Pawińskiego 5, 02-106 Warsaw, Poland
| |
Collapse
|
5
|
Maternal Immune Activation Induced by Prenatal Lipopolysaccharide Exposure Leads to Long-Lasting Autistic-like Social, Cognitive and Immune Alterations in Male Wistar Rats. Int J Mol Sci 2023; 24:ijms24043920. [PMID: 36835329 PMCID: PMC9968168 DOI: 10.3390/ijms24043920] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023] Open
Abstract
Several studies have supported the association between maternal immune activation (MIA) caused by exposure to pathogens or inflammation during critical periods of gestation and an increased susceptibility to the development of various psychiatric and neurological disorders, including autism and other neurodevelopmental disorders (NDDs), in the offspring. In the present work, we aimed to provide extensive characterization of the short- and long-term consequences of MIA in the offspring, both at the behavioral and immunological level. To this end, we exposed Wistar rat dams to Lipopolysaccharide and tested the infant, adolescent and adult offspring across several behavioral domains relevant to human psychopathological traits. Furthermore, we also measured plasmatic inflammatory markers both at adolescence and adulthood. Our results support the hypothesis of a deleterious impact of MIA on the neurobehavioral development of the offspring: we found deficits in the communicative, social and cognitive domains, together with stereotypic-like behaviors and an altered inflammatory profile at the systemic level. Although the precise mechanisms underlying the role of neuroinflammatory states in neurodevelopment need to be clarified, this study contributes to a better understanding of the impact of MIA on the risk of developing behavioral deficits and psychiatric illness in the offspring.
Collapse
|
6
|
Breach MR, Lenz KM. Sex Differences in Neurodevelopmental Disorders: A Key Role for the Immune System. Curr Top Behav Neurosci 2023; 62:165-206. [PMID: 35435643 PMCID: PMC10286778 DOI: 10.1007/7854_2022_308] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Sex differences are prominent defining features of neurodevelopmental disorders. Understanding the sex biases in these disorders can shed light on mechanisms leading to relative risk and resilience for the disorders, as well as more broadly advance our understanding of how sex differences may relate to brain development. The prevalence of neurodevelopmental disorders is increasing, and the two most common neurodevelopmental disorders, Autism Spectrum Disorder (ASD) and Attention-Deficit/Hyperactivity Disorder (ADHD) exhibit male-biases in prevalence rates and sex differences in symptomology. While the causes of neurodevelopmental disorders and their sex differences remain to be fully understood, increasing evidence suggests that the immune system plays a critical role in shaping development. In this chapter we discuss sex differences in prevalence and symptomology of ASD and ADHD, review sexual differentiation and immune regulation of neurodevelopment, and discuss findings from human and rodent studies of immune dysregulation and perinatal immune perturbation as they relate to potential mechanisms underlying neurodevelopmental disorders. This chapter will give an overview of how understanding sex differences in neuroimmune function in the context of neurodevelopmental disorders could lend insight into their etiologies and better treatment strategies.
Collapse
Affiliation(s)
- Michaela R Breach
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Kathryn M Lenz
- Department of Psychology, The Ohio State University, Columbus, OH, USA.
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA.
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
7
|
Chen J, Zhang ZZ, Luo BL, Yang QG, Ni MZ, Wu QT, Li Y, Li XW, Chen GH. Prenatal exposure to inflammation increases anxiety-like behaviors in F1 and F2 generations: possible links to decreased FABP7 in hippocampus. Front Behav Neurosci 2022; 16:973069. [PMID: 36299292 PMCID: PMC9588974 DOI: 10.3389/fnbeh.2022.973069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Anxiety disorder has a high prevalence, and the risk of anxiety increases with age. Prenatal inflammation during key developmental timepoints can result in long-term changes in anxiety phenotype, even over a lifetime and across generations. However, whether maternal inflammation exposure during late gestation has intergenerational transmission effects on age-related anxiety-like behaviors and the possible underlying mechanisms are largely unknown. Fatty acid binding protein 7 (FABP7) is critical in hippocampal neurogenesis and is closely related to neuropsychiatric diseases, including anxiety disorder. The current study investigated the effects of maternal (F0 generation) lipopolysaccharide administration (50 μg/kg, i.p.) during late gestation on anxiety-like behaviors and FABP7 expression in F1 and F2 offspring, as well as the potential sex-specificity of intergenerational effects. Anxiety-like behaviors were evaluated using open field (OF), elevated plus maze, and black–white alley (BWA) tests at 3 and 13 months of age. The protein and messenger RNA levels of FABP7 in the hippocampus were measured using Western blot and real-time quantitative polymerase chain reaction (PCR), respectively. Overall, gestational LPS exposure in the F0 generation increased anxiety levels and decreased FABP7 expression levels in the F1 generation, which carried over to the F2 generation, and the intergenerational effects were mainly transferred via the maternal lineage. Moreover, hippocampal FABP7 expression was significantly correlated with performance in the battery of anxiety tests. The present study suggested that prenatal inflammation could increase age-related anxiety-like behaviors both in F1 and F2 offspring, and these effects possibly link to the FABP7 expression.
Collapse
Affiliation(s)
- Jing Chen
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Zhe-Zhe Zhang
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Bao-Ling Luo
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Qi-Gang Yang
- Department of Neurology or Department of Critical Care, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ming-Zhu Ni
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Qi-Tao Wu
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Yun Li
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Xue-Wei Li
- Department of Neurology, The First Affiliated Hospital of Hengyang Medical School, University of South China, Hengyang, China
- *Correspondence: Gui-Hai Chen Xue-Wei Li
| | - Gui-Hai Chen
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Gui-Hai Chen Xue-Wei Li
| |
Collapse
|
8
|
Massrali A, Adhya D, Srivastava DP, Baron-Cohen S, Kotter MR. Virus-Induced Maternal Immune Activation as an Environmental Factor in the Etiology of Autism and Schizophrenia. Front Neurosci 2022; 16:834058. [PMID: 35495047 PMCID: PMC9039720 DOI: 10.3389/fnins.2022.834058] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 03/01/2022] [Indexed: 12/22/2022] Open
Abstract
Maternal immune activation (MIA) is mediated by activation of inflammatory pathways resulting in increased levels of cytokines and chemokines that cross the placental and blood-brain barriers altering fetal neural development. Maternal viral infection is one of the most well-known causes for immune activation in pregnant women. MIA and immune abnormalities are key players in the etiology of developmental conditions such as autism, schizophrenia, ADHD, and depression. Experimental evidence implicating MIA in with different effects in the offspring is complex. For decades, scientists have relied on either MIA models or human epidemiological data or a combination of both. MIA models are generated using infection/pathogenic agents to induce an immunological reaction in rodents and monitor the effects. Human epidemiological studies investigate a link between maternal infection and/or high levels of cytokines in pregnant mothers and the likelihood of developing conditions. In this review, we discuss the importance of understanding the relationship between virus-mediated MIA and neurodevelopmental conditions, focusing on autism and schizophrenia. We further discuss the different methods of studying MIA and their limitations and focus on the different factors contributing to MIA heterogeneity.
Collapse
Affiliation(s)
- Aïcha Massrali
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Dwaipayan Adhya
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Deepak P. Srivastava
- Department of Basic and Clinical Neuroscience, King’s College London, London, United Kingdom
| | - Simon Baron-Cohen
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Mark R. Kotter
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
9
|
Kirsten TB, Silva EP, Biondi TF, Rodrigues PS, Cardoso CV, Massironi SMG, Mori CMC, Bondan EF, Bernardi MM. Bate palmas mutant mice as a model of Kabuki syndrome: Higher susceptibility to infections and vocalization impairments? J Neurosci Res 2022; 100:1438-1451. [PMID: 35362120 DOI: 10.1002/jnr.25050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 02/11/2022] [Accepted: 03/19/2022] [Indexed: 11/11/2022]
Abstract
The recessive mutant mouse bate palmas (bapa) arose from N-ethyl-N-nitrosourea mutagenesis. Previous studies of our group revealed some behavioral impairments and a mutation in the lysine (K)-specific methyltransferase 2D (Kmt2d) gene. Because mutations in the KMT2D gene in humans are mainly responsible for Kabuki syndrome, this study was proposed to validate bapa mice as a model of Kabuki syndrome. Besides other symptoms, Kabuki syndrome is characterized by increased susceptibility to infections and speech impairments, usually diagnosed in the early childhood. Thus, juvenile male and female bapa mice were studied in different developmental stages (prepubertal period and puberty). To induce sickness behavior and to study infection susceptibility responses, lipopolysaccharide (LPS) was used. To study oral communication, ultrasonic vocalizations were evaluated. Behavioral (open-field test) and central (astrocytic glial fibrillary acidic protein [GFAP] and tyrosine hydroxylase [TH]) evaluations were also performed. Control and bapa female mice emitted 31-kHz ultrasounds on prepubertal period when exploring a novel environment, a frequency not yet described for mice, being defined as 31-kHz exploratory vocalizations. Males, LPS, and puberty inhibited these vocalizations. Bapa mice presented increased motor/exploratory behaviors on prepubertal period due to increased striatal TH expression, revealing striatal dopaminergic system hyperactivity. Combining open-field behavior and GFAP expression, bapa mice did not develop LPS tolerance, that is, they remained expressing signs of sickness behavior after LPS challenge, being more susceptible to infectious/inflammatory processes. It was concluded that bapa mice is a robust experimental model of Kabuki syndrome.
Collapse
Affiliation(s)
- Thiago B Kirsten
- Psychoneuroimmunology Laboratory, Program in Environmental and Experimental Pathology, Paulista University, São Paulo, Brazil
| | - Ericka P Silva
- Psychoneuroimmunology Laboratory, Program in Environmental and Experimental Pathology, Paulista University, São Paulo, Brazil
| | - Thalles F Biondi
- Psychoneuroimmunology Laboratory, Program in Environmental and Experimental Pathology, Paulista University, São Paulo, Brazil
| | - Paula S Rodrigues
- Psychoneuroimmunology Laboratory, Program in Environmental and Experimental Pathology, Paulista University, São Paulo, Brazil
| | - Carolina V Cardoso
- Psychoneuroimmunology Laboratory, Program in Environmental and Experimental Pathology, Paulista University, São Paulo, Brazil
| | - Silvia M G Massironi
- Department of Immunology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Claudia M C Mori
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Eduardo F Bondan
- Psychoneuroimmunology Laboratory, Program in Environmental and Experimental Pathology, Paulista University, São Paulo, Brazil
| | - Maria M Bernardi
- Psychoneuroimmunology Laboratory, Program in Environmental and Experimental Pathology, Paulista University, São Paulo, Brazil
| |
Collapse
|
10
|
Alsufiani HM, Alkhanbashi AS, Laswad NAB, Bakhadher KK, Alghamdi SA, Tayeb HO, Tarazi FI. Zinc deficiency and supplementation in autism spectrum disorder and Phelan-McDermid syndrome. J Neurosci Res 2022; 100:970-978. [PMID: 35114017 DOI: 10.1002/jnr.25019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 12/02/2021] [Accepted: 01/07/2022] [Indexed: 01/05/2023]
Abstract
Approximately 1 in 36 children are diagnosed with autism spectrum disorder (ASD). The disorder is four times more common in males than in females. Zinc deficiency and mutations in SHANK2 and SHANK3 (members of a family of excitatory postsynaptic scaffolding proteins) are all risk factors that may contribute to the pathophysiology of the disease. The presence of shankopathies (loss of one copy of the SHANK3 gene) can lead to the development of Phelan-McDermid syndrome (PMDS)-a rare genetic disorder characterized by developmental delay, intellectual disability, poor motor tone, and ASD-like symptoms. We reviewed the relationship between zinc, ASD, and PMDS as well as the effect of zinc supplementation in improving symptoms of ASD and PMDS based on 22 studies published within 6 years (2015-2020). Zinc deficiency (assessed by either dietary intake, blood, hair, or tooth matrix) was shown to be highly prevalent in ASD and PMDS patients as well as in preclinical models of ASD and PMDS. Zinc supplements improved the behavioral deficits in animal models of ASD and PMDS. Clinical trials are still needed to validate the beneficial therapeutic effects of zinc supplements in ASD and PMDS patients.
Collapse
Affiliation(s)
- Hadeil M Alsufiani
- Biochemistry Department, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Experimental Biochemistry Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Alaa S Alkhanbashi
- Biochemistry Department, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Norah A Bin Laswad
- Biochemistry Department, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khulood K Bakhadher
- Biochemistry Department, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shareefa A Alghamdi
- Biochemistry Department, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Haythum O Tayeb
- Division of Neurology, Department of Internal Medicine, The Neuroscience Research Unit, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Frank I Tarazi
- Department of Psychiatry and Neuroscience, Harvard Medical School and McLean Hospital, Belmont, Massachusetts, USA
| |
Collapse
|
11
|
Han VX, Jones HF, Patel S, Mohammad SS, Hofer MJ, Alshammery S, Maple-Brown E, Gold W, Brilot F, Dale RC. Emerging evidence of Toll-like receptors as a putative pathway linking maternal inflammation and neurodevelopmental disorders in human offspring: A systematic review. Brain Behav Immun 2022; 99:91-105. [PMID: 34562595 DOI: 10.1016/j.bbi.2021.09.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 08/21/2021] [Accepted: 09/18/2021] [Indexed: 02/07/2023] Open
Abstract
Inflammation is increasingly recognised to play a major role in gene-environment interactions in neurodevelopmental disorders (NDDs). The effects of aberrant immune responses to environmental stimuli in the mother and in the child can affect neuroimmune signalling that is central to brain development. Toll-like receptors (TLR) are the best known innate immune pattern and danger recognition sensors to various environmental threats. In animal models, maternal immune activation (MIA), secondary to inflammatory factors including maternal gestational infection, obesity, diabetes, and stress activate the TLR pathway in maternal blood, placenta, and fetal brain, which correlate with offspring neurobehavioral abnormalities. Given the central role of TLR activation in animal MIA models, we systematically reviewed the human evidence for TLR activation and response to stimulation across the maternal-fetal interface. Firstly, we included 59 TLR studies performed in peripheral blood of adults in general population (outside of pregnancy) with six chronic inflammatory factors which have epidemiological evidence for increased risk of offspring NDDs, namely, obesity, diabetes mellitus, depression, low socio-economic status, autoimmune diseases, and asthma. Secondly, eight TLR studies done in human pregnancies with chronic inflammatory factors, involving maternal blood, placenta, and cord blood, were reviewed. Lastly, ten TLR studies performed in peripheral blood of individuals with NDDs were included. Despite these studies, there were no studies which examined TLR function in both the pregnant mother and their offspring. Increased TLR2 and TLR4 mRNA and/or protein levels in peripheral blood were common in obesity, diabetes mellitus, depression, autoimmune thyroid disease, and rheumatoid arthritis. To a lesser degree, TLR 3, 7, 8, and 9 activation were found in peripheral blood of humans with autoimmune diseases and depression. In pregnancy, increased TLR4 mRNA levels were found in the peripheral blood of women with diabetes mellitus and systemic lupus erythematosus. Placental TLR activation was found in mothers with obesity or diabetes. Postnatally, dysregulated TLR response to stimulation was found in peripheral blood of individuals with NDDs. This systematic review found emerging evidence that TLR activation may represent a mechanistic link between maternal inflammation and offspring NDD, however the literature is incomplete and longitudinal outcome studies are lacking. Identification of pathogenic mechanisms in MIA could create preventive and therapeutic opportunities to mitigate NDD prevalence and severity.
Collapse
Affiliation(s)
- Velda X Han
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, Sydney, Australia; Khoo-Teck Puat-National University Children's Medical Institute, National University Health System, Singapore; School of Medical Sciences, The University of Sydney, Sydney, Australia
| | - Hannah F Jones
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, Sydney, Australia; Department of Neuroservices, Starship Children's Hospital, Auckland, New Zealand
| | - Shrujna Patel
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, Sydney, Australia; The Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Shekeeb S Mohammad
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, Sydney, Australia; The Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Markus J Hofer
- School of Life and Environmental Sciences and Charles Perkins Centre, The University of Sydney, Sydney, Australia; The Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | - Sarah Alshammery
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, Sydney, Australia; School of Medical Sciences, The University of Sydney, Sydney, Australia; Molecular Neurobiology Research Laboratory, Kids Research, Children's Hospital at Westmead, and The Children's Medical Research Institute, Westmead, New South Wales, Australia
| | - Emma Maple-Brown
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, Sydney, Australia; School of Medical Sciences, The University of Sydney, Sydney, Australia; Molecular Neurobiology Research Laboratory, Kids Research, Children's Hospital at Westmead, and The Children's Medical Research Institute, Westmead, New South Wales, Australia
| | - Wendy Gold
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, Sydney, Australia; The Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia; Molecular Neurobiology Research Laboratory, Kids Research, Children's Hospital at Westmead, and The Children's Medical Research Institute, Westmead, New South Wales, Australia
| | - Fabienne Brilot
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, Sydney, Australia; School of Medical Sciences, The University of Sydney, Sydney, Australia; The Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia; Molecular Neurobiology Research Laboratory, Kids Research, Children's Hospital at Westmead, and The Children's Medical Research Institute, Westmead, New South Wales, Australia
| | - Russell C Dale
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, Sydney, Australia; The Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia; The Brain and Mind Centre, The University of Sydney, Sydney, Australia.
| |
Collapse
|
12
|
The role of microbiota-gut-brain axis in neuropsychiatric and neurological disorders. Pharmacol Res 2021; 172:105840. [PMID: 34450312 DOI: 10.1016/j.phrs.2021.105840] [Citation(s) in RCA: 309] [Impact Index Per Article: 77.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/14/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022]
Abstract
Emerging evidence indicates that the gut microbiota play a crucial role in the bidirectional communication between the gut and the brain suggesting that the gut microbes may shape neural development, modulate neurotransmission and affect behavior, and thereby contribute to the pathogenesis and/or progression of many neurodevelopmental, neuropsychiatric, and neurological conditions. This review summarizes recent data on the role of microbiota-gut-brain axis in the pathophysiology of neuropsychiatric and neurological disorders including depression, anxiety, schizophrenia, autism spectrum disorders, Parkinson's disease, migraine, and epilepsy. Also, the involvement of microbiota in gut disorders co-existing with neuropsychiatric conditions is highlighted. We discuss data from both in vivo preclinical experiments and clinical reports including: (1) studies in germ-free animals, (2) studies exploring the gut microbiota composition in animal models of diseases or in humans, (3) studies evaluating the effects of probiotic, prebiotic or antibiotic treatment as well as (4) the effects of fecal microbiota transplantation.
Collapse
|
13
|
Vitor-Vieira F, Vilela FC, Giusti-Paiva A. Hyperactivation of the amygdala correlates with impaired social play behavior of prepubertal male rats in a maternal immune activation model. Behav Brain Res 2021; 414:113503. [PMID: 34331970 DOI: 10.1016/j.bbr.2021.113503] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/12/2021] [Accepted: 07/26/2021] [Indexed: 12/17/2022]
Abstract
Maternal infection during pregnancy is an environmental risk factor for neurodevelopmental dysfunction, such as autism spectrum disorder (ASD). This study investigated the effect of maternal immune activation (MIA) on the behavior profile of prepubertal offspring and whether MIA alters the neuronal activation pattern of brain areas related to social play behavior. Pregnant Wistar rats received 500 μg/kg of lipopolysaccharide or saline solution on gestational day 16. Their offspring were tested using behavioral tasks to capture some of the core and associated ASD-like symptoms. Neuronal activation, indexed via c-fos expression after social play behavior, was evaluated in several brain areas. MIA had a number of adverse effects on dams and reduced the number of successful births and litter size. MIA induced sex-specific autistic-like features by a reduction in ultrasonic vocalizations in response to separation from the mother and nest, reduction in discrimination between neutral odors and their nest odor, moderate effect in stereotypies in the hole-board test, impaired risk assessment phenotype, and reduction in social play behavior without changes in locomotor activity only in prepubertal male offspring. A decrease in social play behavior may be associated with a decrease in the number of c-fos-positive cells in the prefrontal cortex and striatum, but hyperactivation of the basolateral and basomedial amygdala. Prenatal immune challenge results in ASD-like symptoms such as impaired risk assessment behavior, communication, and social interactions in male prepubertal offspring. Impaired social play behavior is correlated with neuronal hyperactivation in the amygdala.
Collapse
Affiliation(s)
- Fernando Vitor-Vieira
- Department of Physiological Sciences, Institute of Biomedical Sciences, Federal University of Alfenas-MG, Alfenas, Brazil
| | - Fabiana C Vilela
- Department of Physiological Sciences, Institute of Biomedical Sciences, Federal University of Alfenas-MG, Alfenas, Brazil
| | - Alexandre Giusti-Paiva
- Department of Physiological Sciences, Institute of Biomedical Sciences, Federal University of Alfenas-MG, Alfenas, Brazil.
| |
Collapse
|
14
|
Woods RM, Lorusso JM, Potter HG, Neill JC, Glazier JD, Hager R. Maternal immune activation in rodent models: A systematic review of neurodevelopmental changes in gene expression and epigenetic modulation in the offspring brain. Neurosci Biobehav Rev 2021; 129:389-421. [PMID: 34280428 DOI: 10.1016/j.neubiorev.2021.07.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 05/11/2021] [Accepted: 07/11/2021] [Indexed: 01/06/2023]
Abstract
Maternal immune activation (mIA) during pregnancy is hypothesised to disrupt offspring neurodevelopment and predispose offspring to neurodevelopmental disorders such as schizophrenia. Rodent models of mIA have explored possible mechanisms underlying this paradigm and provide a vital tool for preclinical research. However, a comprehensive analysis of the molecular changes that occur in mIA-models is lacking, hindering identification of robust clinical targets. This systematic review assesses mIA-driven transcriptomic and epigenomic alterations in specific offspring brain regions. Across 118 studies, we focus on 88 candidate genes and show replicated changes in expression in critical functional areas, including elevated inflammatory markers, and reduced myelin and GABAergic signalling proteins. Further, disturbed epigenetic markers at nine of these genes support mIA-driven epigenetic modulation of transcription. Overall, our results demonstrate that current outcome measures have direct relevance for the hypothesised pathology of schizophrenia and emphasise the importance of mIA-models in contributing to the understanding of biological pathways impacted by mIA and the discovery of new drug targets.
Collapse
Affiliation(s)
- Rebecca M Woods
- Division of Evolution & Genomic Sciences, School of Biological Sciences, Manchester Academic Health Science Center, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, M13 9PT, United Kingdom.
| | - Jarred M Lorusso
- Division of Evolution & Genomic Sciences, School of Biological Sciences, Manchester Academic Health Science Center, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, M13 9PT, United Kingdom
| | - Harry G Potter
- Division of Evolution & Genomic Sciences, School of Biological Sciences, Manchester Academic Health Science Center, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, M13 9PT, United Kingdom
| | - Joanna C Neill
- Division of Pharmacy & Optometry, School of Health Sciences, Manchester Academic Health Science Center, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, M13 9PL, United Kingdom
| | - Jocelyn D Glazier
- Division of Evolution & Genomic Sciences, School of Biological Sciences, Manchester Academic Health Science Center, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, M13 9PT, United Kingdom
| | - Reinmar Hager
- Division of Evolution & Genomic Sciences, School of Biological Sciences, Manchester Academic Health Science Center, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, M13 9PT, United Kingdom
| |
Collapse
|
15
|
Breach MR, Dye CN, Joshi A, Platko S, Gilfarb RA, Krug AR, Franceschelli DV, Galan A, Dodson CM, Lenz KM. Maternal allergic inflammation in rats impacts the offspring perinatal neuroimmune milieu and the development of social play, locomotor behavior, and cognitive flexibility. Brain Behav Immun 2021; 95:269-286. [PMID: 33798637 PMCID: PMC8187275 DOI: 10.1016/j.bbi.2021.03.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 03/22/2021] [Accepted: 03/27/2021] [Indexed: 01/07/2023] Open
Abstract
Maternal systemic inflammation increases risk for neurodevelopmental disorders like autism, ADHD, and schizophrenia in offspring. Notably, these disorders are male-biased. Studies have implicated immune system dysfunction in the etiology of these disorders, and rodent models of maternal immune activation provide useful tools to examine mechanisms of sex-dependent effects on brain development, immunity, and behavior. Here, we employed an allergen-induced model of maternal inflammation in rats to characterize levels of mast cells and microglia in the perinatal period in male and female offspring, as well as social, emotional, and cognitive behaviors throughout the lifespan. Adult female rats were sensitized to ovalbumin (OVA), bred, and challenged intranasally on gestational day 15 of pregnancy with OVA or saline. Allergic inflammation upregulated microglia in the fetal brain, increased mast cell number in the hippocampus on the day of birth, and conferred region-, time- and sex- specific changes in microglia measures. Additionally, offspring of OVA-exposed mothers subsequently exhibited abnormal social behavior, hyperlocomotion, and reduced cognitive flexibility. These data demonstrate the long-term effects of maternal allergic challenge on offspring development and provide a basis for understanding neurodevelopmental disorders linked to maternal systemic inflammation in humans.
Collapse
Affiliation(s)
- Michaela R. Breach
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA,Neuroscience Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Courtney N. Dye
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA,Neuroscience Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Aarohi Joshi
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Steven Platko
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Rachel A. Gilfarb
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA,Neuroscience Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Annemarie R. Krug
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | | | - Anabel Galan
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Claire M. Dodson
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Kathryn M. Lenz
- Department of Psychology, The Ohio State University, Columbus, OH, USA,Department of Neuroscience, The Ohio State University, Columbus, OH, USA,Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
16
|
Lenell C, Broadfoot CK, Schaen-Heacock NE, Ciucci MR. Biological and Acoustic Sex Differences in Rat Ultrasonic Vocalization. Brain Sci 2021; 11:459. [PMID: 33916537 PMCID: PMC8067311 DOI: 10.3390/brainsci11040459] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/26/2021] [Accepted: 04/01/2021] [Indexed: 11/30/2022] Open
Abstract
The rat model is a useful tool for understanding peripheral and central mechanisms of laryngeal biology. Rats produce ultrasonic vocalizations (USVs) that have communicative intent and are altered by experimental conditions such as social environment, stress, diet, drugs, age, and neurological diseases, validating the rat model's utility for studying communication and related deficits. Sex differences are apparent in both the rat larynx and USV acoustics and are differentially affected by experimental conditions. Therefore, the purpose of this review paper is to highlight the known sex differences in rat USV production, acoustics, and laryngeal biology detailed in the literature across the lifespan.
Collapse
Affiliation(s)
- Charles Lenell
- Department of Surgery, University of Wisconsin Madison, Madison, WI 53792, USA; (C.L.); (C.K.B.); (N.E.S.-H.)
- Communicative Sciences and Disorders, New York University, New York, NY 10001, USA
| | - Courtney K. Broadfoot
- Department of Surgery, University of Wisconsin Madison, Madison, WI 53792, USA; (C.L.); (C.K.B.); (N.E.S.-H.)
- Department of Communication Sciences and Disorders, University of Wisconsin Madison, Madison, WI 53706, USA
| | - Nicole E. Schaen-Heacock
- Department of Surgery, University of Wisconsin Madison, Madison, WI 53792, USA; (C.L.); (C.K.B.); (N.E.S.-H.)
- Department of Communication Sciences and Disorders, University of Wisconsin Madison, Madison, WI 53706, USA
| | - Michelle R. Ciucci
- Department of Surgery, University of Wisconsin Madison, Madison, WI 53792, USA; (C.L.); (C.K.B.); (N.E.S.-H.)
- Department of Communication Sciences and Disorders, University of Wisconsin Madison, Madison, WI 53706, USA
| |
Collapse
|
17
|
Csatlosova K, Bogi E, Durisova B, Grinchii D, Paliokha R, Moravcikova L, Lacinova L, Jezova D, Dremencov E. Maternal immune activation in rats attenuates the excitability of monoamine-secreting neurons in adult offspring in a sex-specific way. Eur Neuropsychopharmacol 2021; 43:82-91. [PMID: 33341344 DOI: 10.1016/j.euroneuro.2020.12.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 10/22/2022]
Abstract
Higher risk of depression and schizophrenia in descendants of mothers experienced acute infection during the pregnancy has been reported. Since monoamines are fundamental in mentioned psychopathologies, it is possible that maternal immune activation leads to impaired functioning of serotonin (5-HT), noradrenaline, and dopamine neurons in offspring. To test this hypothesis, we examined the effect of maternal immune activation by lipopolysaccharide (LPS) in rats on the excitability of monoamine-secreting neurons in the offspring. LPS was administered during days 15-19 of the gestation in the rising doses of 20-80 µg/kg; control dams received vehicle. During days 53-63 postpartum, rats were anesthetized and electrodes were inserted into the dorsal raphe nucleus, locus coeruleus, and ventral tegmental area for in vivo excitability assessment of 5-HT, noradrenaline, and dopamine neurons. Maternal immune activation suppressed the firing rate of 5-HT neurons in both sexes and stimulated the firing rate of dopamine neurons in males. Decrease in the firing rate of 5-HT neurons was accompanied with an increase, and increase in the firing rate of dopamine neurons with a decrease, in the density of spontaneously active cells. Maternal immune activation also decreased the variability of interspike intervals in 5-HT and dopamine neurons. It is possible that the alteration of excitability of 5-HT and dopamine neurons by maternal immune activation is involved in the psychopathologies induced by infectious disease during the pregnancy. Stimulation of dopamine excitability in males might be a compensatory mechanism secondary to the maternal immune challenge-induced suppression of 5-HT neurons.
Collapse
Affiliation(s)
- Kristina Csatlosova
- Institute of Experimental Pharmacology and Toxicology, Center for Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Eszter Bogi
- Institute of Experimental Pharmacology and Toxicology, Center for Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Barbora Durisova
- Institute of Molecular Physiology and Genetics, Center for Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia
| | - Daniil Grinchii
- Institute of Molecular Physiology and Genetics, Center for Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia
| | - Ruslan Paliokha
- Institute of Molecular Physiology and Genetics, Center for Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia
| | - Lucia Moravcikova
- Institute of Molecular Physiology and Genetics, Center for Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia
| | - Lubica Lacinova
- Institute of Molecular Physiology and Genetics, Center for Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia
| | - Daniela Jezova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Eliyahu Dremencov
- Institute of Molecular Physiology and Genetics, Center for Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia.
| |
Collapse
|
18
|
Dual Profile of Environmental Enrichment and Autistic-Like Behaviors in the Maternal Separated Model in Rats. Int J Mol Sci 2021; 22:ijms22031173. [PMID: 33503967 PMCID: PMC7865216 DOI: 10.3390/ijms22031173] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Environmental Enrichment (EE) has been suggested as a possible therapeutic intervention for neurodevelopmental disorders such as autism. Although the benefits of this therapeutic method have been reported in some animal models and human studies, the unknown pathophysiology of autism as well as number of conflicting results, urge for further examination of the therapeutic potential of EE in autism. Therefore, the aim of this study was to examine the effects of environmental enrichment on autism-related behaviors which were induced in the maternal separation (MS) animal model. MATERIAL AND METHODS Maternally separated (post-natal day (PND) 1-14, 3h/day) and control male rats were at weaning (PND21) age equally divided into rats housed in enriched environment and normal environment. At adolescence (PND42-50), the four groups were behaviorally tested for direct social interaction, sociability, repetitive behaviors, anxiety behavior, and locomotion. Following completion of the behavioral tests, the blood and brain tissue samples were harvested in order to assess plasma level of brain derived neurotrophic factor (BDNF) and structural plasticity of brain using ELISA and stereological methods respectively. RESULTS We found that environmental enrichment reduced repetitive behaviors but failed to improve the impaired sociability and anxiety behaviors which were induced by maternal separation. Indeed, EE exacerbated anxiety and social behaviors deficits in association with increased plasma BDNF level, larger volume of the hippocampus and infra-limbic region and higher number of neurons in the infra-limbic area (p < 0.05). Conclusion: We conclude that environmental enrichment has a significant improvement effect on the repetitive behavior as one of the core autistic-like behaviors induced by maternal separation but has negative effect on the anxiety and social behaviors which might have been modulated by BDNF.
Collapse
|
19
|
Cieślik M, Gassowska-Dobrowolska M, Zawadzka A, Frontczak-Baniewicz M, Gewartowska M, Dominiak A, Czapski GA, Adamczyk A. The Synaptic Dysregulation in Adolescent Rats Exposed to Maternal Immune Activation. Front Mol Neurosci 2021; 13:555290. [PMID: 33519375 PMCID: PMC7840660 DOI: 10.3389/fnmol.2020.555290] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 11/27/2020] [Indexed: 12/18/2022] Open
Abstract
Maternal immune activation (MIA) is a risk factor for neurodevelopmental disorders in offspring, but the pathomechanism is largely unknown. The aim of our study was to analyse the molecular mechanisms contributing to synaptic alterations in hippocampi of adolescent rats exposed prenatally to MIA. MIA was evoked in pregnant female rats by i.p. administration of lipopolysaccharide at gestation day 9.5. Hippocampi of offspring (52-53-days-old rats) were analysed using transmission electron microscopy (TEM), qPCR and Western blotting. Moreover, mitochondrial membrane potential, activity of respiratory complexes, and changes in glutathione system were measured. It was found that MIA induced changes in hippocampi morphology, especially in the ultrastructure of synapses, including synaptic mitochondria, which were accompanied by impairment of mitochondrial electron transport chain and decreased mitochondrial membrane potential. These phenomena were in agreement with increased generation of reactive oxygen species, which was evidenced by a decreased reduced/oxidised glutathione ratio and an increased level of dichlorofluorescein (DCF) oxidation. Activation of cyclin-dependent kinase 5, and phosphorylation of glycogen synthase kinase 3β on Ser9 occurred, leading to its inhibition and, accordingly, to hypophosphorylation of microtubule associated protein tau (MAPT). Abnormal phosphorylation and dysfunction of MAPT, the manager of the neuronal cytoskeleton, harmonised with changes in synaptic proteins. In conclusion, this is the first study demonstrating widespread synaptic changes in hippocampi of adolescent offspring prenatally exposed to MIA.
Collapse
Affiliation(s)
- Magdalena Cieślik
- Department of Cellular Signalling, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | | | - Aleksandra Zawadzka
- Department of Cellular Signalling, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | | | - Magdalena Gewartowska
- Electron Microscopy Platform, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | - Agnieszka Dominiak
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Grzegorz A Czapski
- Department of Cellular Signalling, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | - Agata Adamczyk
- Department of Cellular Signalling, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
20
|
Healing autism spectrum disorder with cannabinoids: a neuroinflammatory story. Neurosci Biobehav Rev 2020; 121:128-143. [PMID: 33358985 DOI: 10.1016/j.neubiorev.2020.12.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/28/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder with a multifactorial etiology. Latest researches are raising the hypothesis of a link between the onset of the main behavioral symptoms of ASD and the chronic neuroinflammatory condition of the autistic brain; increasing evidence of this connection is shedding light on new possible players in the pathogenesis of ASD. The endocannabinoid system (ECS) has a key role in neurodevelopment as well as in normal inflammatory responses and it is not surprising that many preclinical and clinical studies account for alterations of the endocannabinoid signaling in ASD. These findings lay the foundation for a better understanding of the neurochemical mechanisms underlying ASD and for new therapeutic attempts aimed at exploiting the renowned anti-inflammatory properties of cannabinoids to treat pathologies encompassed in the autistic spectrum. This review discusses the current preclinical and clinical evidence supporting a key role of the ECS in the neuroinflammatory state that characterizes ASD, providing hints to identify new biomarkers in ASD and promising therapies for the future.
Collapse
|
21
|
Fitzgerald E, Hor K, Drake AJ. Maternal influences on fetal brain development: The role of nutrition, infection and stress, and the potential for intergenerational consequences. Early Hum Dev 2020; 150:105190. [PMID: 32948364 PMCID: PMC7481314 DOI: 10.1016/j.earlhumdev.2020.105190] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
An optimal early life environment is crucial for ensuring ideal neurodevelopmental outcomes. Brain development consists of a finely tuned series of spatially and temporally constrained events, which may be affected by exposure to a sub-optimal intra-uterine environment. Evidence suggests brain development may be particularly vulnerable to factors such as maternal nutrition, infection and stress during pregnancy. In this review, we discuss how maternal factors such as these can affect brain development and outcome in offspring, and we also identify evidence which suggests that the outcome can, in many cases, be stratified by socio-economic status (SES), with individuals in lower brackets typically having a worse outcome. We consider the relevant epidemiological evidence and draw parallels to mechanisms suggested by preclinical work where appropriate. We also discuss possible transgenerational effects of these maternal factors and the potential mechanisms involved. We conclude that modifiable factors such as maternal nutrition, infection and stress are important contributors to atypical brain development and that SES also likely has a key role.
Collapse
Affiliation(s)
- Eamon Fitzgerald
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Kahyee Hor
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Amanda J Drake
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.
| |
Collapse
|
22
|
Caruso A, Ricceri L, Scattoni ML. Ultrasonic vocalizations as a fundamental tool for early and adult behavioral phenotyping of Autism Spectrum Disorder rodent models. Neurosci Biobehav Rev 2020; 116:31-43. [DOI: 10.1016/j.neubiorev.2020.06.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 05/08/2020] [Accepted: 06/05/2020] [Indexed: 12/12/2022]
|
23
|
Maternal Immunity in Autism Spectrum Disorders: Questions of Causality, Validity, and Specificity. J Clin Med 2020; 9:jcm9082590. [PMID: 32785127 PMCID: PMC7464885 DOI: 10.3390/jcm9082590] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 02/07/2023] Open
Abstract
Autism spectrum disorders (ASD) are complex neurodevelopmental disorders with unknown heterogeneous aetiologies. Epidemiological studies have found an association between maternal infection and development of ASD in the offspring, and clinical findings reveal a state of immune dysregulation in the pre- and postnatal period of affected subjects. Maternal immune activation (MIA) has been proposed to mediate this association by altering fetal neurodevelopment and leading to autism. Although animal models have supported a causal link between MIA and development of ASD, their validity needs to be explored. Moreover, considering that only a small proportion of affected offspring develop autism, and that MIA has been implicated in related diseases such as schizophrenia, a key unsolved question is how disease specificity and phenotypic outcome are determined. Here, we have integrated preclinical and clinical evidence, including the use of animal models for establishing causality, to explore the role of maternal infections in ASD. A proposed priming/multi-hit model may offer insights into the clinical heterogeneity of ASD, its convergence with related disorders, and therapeutic strategies.
Collapse
|
24
|
Solmaz V, Tekatas A, Erdoğan MA, Erbaş O. Exenatide, a GLP-1 analog, has healing effects on LPS-induced autism model: Inflammation, oxidative stress, gliosis, cerebral GABA, and serotonin interactions. Int J Dev Neurosci 2020; 80:601-612. [PMID: 32745285 DOI: 10.1002/jdn.10056] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/19/2020] [Accepted: 07/27/2020] [Indexed: 01/07/2023] Open
Abstract
Previous studies have established anti-inflammatory, antioxidant, and neuroprotective effects of Exenatide in the central nervous system. Since these mechanisms are thought to have important roles in the pathophysiology of autism, we hypothesized that Exenatide may have healing effects in autism. We tested this hypothesis by examining the effects of Exenatide in an experimental autism model created by lipopolysaccharide (LPS) exposure in the womb, with behavioral tests, histopathological examinations, and biochemical measurements. The autism model was created by administration of LPS (i.p) to pregnant rats on the 10th day of their pregnancy at a dose of 100 µg/kg. On postnatal 21st day, a total of four groups were formed from offspring with regard to sex distribution and treatment. After a 45-day treatment, behavioral analysis tests were performed on rats. Subsequently, the rats were sacrificed and biochemical analysis [superoxide dismutase, tumor necrotizing factor alpha, nerve growth factor, 5-hydroxyindoleacetic acid, and glutamic acid decarboxylase-67] and histopathological analysis were performed. On the 10th day of the intrauterine period, LPS exposure was found to disrupt behavioral findings, increase inflammation and hippocampal gliosis, and decrease 5-HIAA, GAD-67, and NGF, especially in male rats. However, among the rats exposed to LPS in the intrauterine period, recipients of Exenatide demonstrated significant amelioration of findings. Exenatide therapy shows positive effects on behavioral disorders in an LPS-induced autism model. This agent probably exerts its effects by suppressing inflammation and oxidative stress and reducing hippocampal gliosis. In addition, Exenatide has also been shown to positively affect cerebral serotonergic and GABAergic effects.
Collapse
Affiliation(s)
- Volkan Solmaz
- Department of Neurology, Memorial Hizmet Hospital, İstanbul, Turkey
| | - Aslan Tekatas
- Department of Neurology, Medikent Hospital, Lüleburgaz, Tekirdağ, Turkey
| | - Mümin Alper Erdoğan
- Medical Faculty, Department of Physiology, Katip Celebi University, İzmir, Turkey
| | - Oytun Erbaş
- Medical Faculty, Department of Physiology, Demiroğlu Bilim University, İstanbul, Turkey
| |
Collapse
|
25
|
Potasiewicz A, Gzielo K, Popik P, Nikiforuk A. Effects of prenatal exposure to valproic acid or poly(I:C) on ultrasonic vocalizations in rat pups: The role of social cues. Physiol Behav 2020; 225:113113. [PMID: 32738314 DOI: 10.1016/j.physbeh.2020.113113] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/15/2020] [Accepted: 07/27/2020] [Indexed: 12/18/2022]
Abstract
Sociocommunicative deficits commonly observed in autism spectrum disorder (ASD) can be experimentally modeled using rodents' ultrasonic vocalizations (USVs). For example, USVs emitted by pups, separated from their mothers and nest, serve as a useful tool to identify autistic-like behaviors during the early period of development. Being sensitive to social context, these neonatal calls may help to reveal reduced social attachment or abnormal processing of social information. The aim of the present study was to characterize quantitative and structural changes in USVs emitted during isolation by male and female rat pups prenatally exposed to either valproic acid (VPA) or poly(I:C). To determine whether those pups differed from controls in sensitivity to social stimuli, isolation-induced USVs were recorded under two bedding conditions, i.e., novel bedding and soiled bedding from their home cages. Our results demonstrated early communication deficits in both models of autism. We reported a reduced number of USVs emitted by both VPA- and poly(I:C)-exposed males and females. Moreover, compared to the controls, VPA (but not poly(I:C)) pups emitted shorter calls with a higher peak frequency. While VPA offspring demonstrated fewer USVs on the "safe" bedding imbued with maternal/nest odors, this calming effect was not observed in poly(I:C) males, suggesting a more specific deficit in social communication. The present results demonstrate that qualitative along with quantitative analyses of neonatal vocalizations are a useful tool for assessing early sociocommunicative deficits in ASD models. Notably, more specific changes in USV emission may be detected when introducing social context.
Collapse
Affiliation(s)
- Agnieszka Potasiewicz
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Behavioral Neuroscience and Drug Development, 12 Smetna Street, 31-343 Kraków, Poland
| | - Kinga Gzielo
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Behavioral Neuroscience and Drug Development, 12 Smetna Street, 31-343 Kraków, Poland
| | - Piotr Popik
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Behavioral Neuroscience and Drug Development, 12 Smetna Street, 31-343 Kraków, Poland
| | - Agnieszka Nikiforuk
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Behavioral Neuroscience and Drug Development, 12 Smetna Street, 31-343 Kraków, Poland.
| |
Collapse
|
26
|
Oh D, Cheon KA. Alteration of Gut Microbiota in Autism Spectrum Disorder: An Overview. Soa Chongsonyon Chongsin Uihak 2020; 31:131-145. [PMID: 32665757 PMCID: PMC7350540 DOI: 10.5765/jkacap.190039] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/25/2020] [Accepted: 04/16/2020] [Indexed: 02/06/2023] Open
Abstract
The microbiota-gut-brain axis, which refers to the bidirectional communication pathway between gut bacteria and the central nervous system, has a profound effect on important brain processes, from the synthesis of neurotransmitters to the modulation of complex behaviors such as sociability and anxiety. Previous studies have revealed that the gut microbiota is potentially related to not only gastrointestinal disturbances, but also social impairment and repetitive behavior-core symptoms of autism spectrum disorder (ASD). Although studies have been conducted to characterize the microbial composition in patients with ASD, the results are heterogeneous. Nevertheless, it is clear that there is a difference in the composition of the gut microbiota between ASD and typically developed individuals, and animal studies have repeatedly suggested that the gut microbiota plays an important role in ASD pathophysiology. This possibility is supported by abnormalities in metabolites produced by the gut microbiota and the association between altered immune responses and the gut microbiota observed in ASD patients. Based on these findings, various attempts have been made to use the microbiota in ASD treatment. The results reported to date suggest that microbiota-based therapies may be effective for ASD, but largescale, well-designed studies are needed to confirm this.
Collapse
Affiliation(s)
- Donghun Oh
- Department of Psychiatry, Yonsei University College of Medicine, Seoul, Korea.,Division of Child and Adolescent Psychiatry, Severance Children's Hospital, Seoul, Korea.,Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Keun-Ah Cheon
- Department of Psychiatry, Yonsei University College of Medicine, Seoul, Korea.,Division of Child and Adolescent Psychiatry, Severance Children's Hospital, Seoul, Korea.,Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
27
|
Kim M, Chung SK, Yang JC, Park JI, Nam SH, Park TW. Development of the Korean Form of the Premonitory Urge for Tics Scale: A Reliability and Validity Study. Soa Chongsonyon Chongsin Uihak 2020; 31:146-153. [PMID: 32665758 PMCID: PMC7350545 DOI: 10.5765/jkacap.200013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 03/30/2020] [Accepted: 04/16/2020] [Indexed: 12/26/2022] Open
Abstract
Objectives This study aimed to evaluate the reliability and validity of the Korean Form of the Premonitory Urge for Tics Scale (K-PUTS). Methods Thirty-eight patients with Tourette's disorder who visited Jeonbuk National University Hospital were assessed with the K-PUTS. Together with the PUTS, the Yale Global Tic Severity Scale (YGTSS), the Children's Yale-Brown Obsessive Compulsive Scale (CY-BOCS), the attention-deficit/hyperactivity disorder (ADHD) rating scale (ARS), and the Adult ADHD Self-Report Scale (ASRS) were implemented to evaluate concurrent and discriminant validity. Results The internal consistency of items on the PUTS was high, with a Cronbach's α of 0.79. The test-retest reliability of the PUTS, which was administered at 2 weeks to 2 months intervals, showed high reliability with a Pearson correlation coefficient of 0.60. There was a significant positive correlation between the overall PUTS score and the YGTSS score, showing concurrent validity. There was no correlation between the PUTS, CY-BOCS, and ASRS scores, demonstrating the discriminant validity of the PUTS. Factor analysis for construct validity revealed three factors: "presumed functional relationship between the tic and the urge to tic," "the quality of the premonitory urge," and "just right phenomena." Conclusion The results of this study indicate that the K-PUTS is a reliable and valid scale for rating premonitory urge of tics.
Collapse
Affiliation(s)
- Mira Kim
- Department of Psychiatry, Jeonbuk National University Hospital, Jeonju, Korea
| | - Sang-Keun Chung
- Department of Psychiatry, Jeonbuk National University Hospital, Jeonju, Korea.,Department of Psychiatry, Jeonbuk National University Medical School, Jeonju, Korea
| | - Jong-Chul Yang
- Department of Psychiatry, Jeonbuk National University Hospital, Jeonju, Korea.,Department of Psychiatry, Jeonbuk National University Medical School, Jeonju, Korea
| | - Jong-Il Park
- Department of Psychiatry, Jeonbuk National University Hospital, Jeonju, Korea.,Department of Psychiatry, Jeonbuk National University Medical School, Jeonju, Korea
| | - Seok Hyun Nam
- Department of Psychiatry, Jeonbuk National University Hospital, Jeonju, Korea
| | - Tae Won Park
- Department of Psychiatry, Jeonbuk National University Hospital, Jeonju, Korea.,Department of Psychiatry, Jeonbuk National University Medical School, Jeonju, Korea
| |
Collapse
|
28
|
Cieślik M, Gąssowska-Dobrowolska M, Jęśko H, Czapski GA, Wilkaniec A, Zawadzka A, Dominiak A, Polowy R, Filipkowski RK, Boguszewski PM, Gewartowska M, Frontczak-Baniewicz M, Sun GY, Beversdorf DQ, Adamczyk A. Maternal Immune Activation Induces Neuroinflammation and Cortical Synaptic Deficits in the Adolescent Rat Offspring. Int J Mol Sci 2020; 21:E4097. [PMID: 32521803 PMCID: PMC7312084 DOI: 10.3390/ijms21114097] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 01/01/2023] Open
Abstract
Maternal immune activation (MIA), induced by infection during pregnancy, is an important risk factor for neuro-developmental disorders, such as autism. Abnormal maternal cytokine signaling may affect fetal brain development and contribute to neurobiological and behavioral changes in the offspring. Here, we examined the effect of lipopolysaccharide-induced MIA on neuro-inflammatory changes, as well as synaptic morphology and key synaptic protein level in cerebral cortex of adolescent male rat offspring. Adolescent MIA offspring showed elevated blood cytokine levels, microglial activation, increased pro-inflammatory cytokines expression and increased oxidative stress in the cerebral cortex. Moreover, pathological changes in synaptic ultrastructure of MIA offspring was detected, along with presynaptic protein deficits and down-regulation of postsynaptic scaffolding proteins. Consequently, ability to unveil MIA-induced long-term alterations in synapses structure and protein level may have consequences on postnatal behavioral changes, associated with, and predisposed to, the development of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Magdalena Cieślik
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland; (M.G.-D.); (H.J.); (G.A.C.); (A.W.); (A.Z.)
| | - Magdalena Gąssowska-Dobrowolska
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland; (M.G.-D.); (H.J.); (G.A.C.); (A.W.); (A.Z.)
| | - Henryk Jęśko
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland; (M.G.-D.); (H.J.); (G.A.C.); (A.W.); (A.Z.)
| | - Grzegorz A. Czapski
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland; (M.G.-D.); (H.J.); (G.A.C.); (A.W.); (A.Z.)
| | - Anna Wilkaniec
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland; (M.G.-D.); (H.J.); (G.A.C.); (A.W.); (A.Z.)
| | - Aleksandra Zawadzka
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland; (M.G.-D.); (H.J.); (G.A.C.); (A.W.); (A.Z.)
| | - Agnieszka Dominiak
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, Żwirki i Wigury 61, 02-097 Warsaw, Poland;
| | - Rafał Polowy
- Behavior and Metabolism Research Laboratory, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland; (R.P.); (R.K.F.)
| | - Robert K. Filipkowski
- Behavior and Metabolism Research Laboratory, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland; (R.P.); (R.K.F.)
| | - Paweł M. Boguszewski
- Laboratory of Animal Models, Neurobiology Center, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur 3, 02-093 Warsaw, Poland;
| | - Magdalena Gewartowska
- Electron Microscopy Platform, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland; (M.G.); (M.F.-B.)
| | - Małgorzata Frontczak-Baniewicz
- Electron Microscopy Platform, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland; (M.G.); (M.F.-B.)
| | - Grace Y. Sun
- Department of Biochemistry, University of Missouri, 117 Schweitzer Hall, Columbia, MO 65201, USA;
| | - David Q. Beversdorf
- Departments of Radiology, Neurology, and Psychological Sciences, William and Nancy Thompson Endowed Chair in Radiology, DC069.10, One Hospital Drive, University of Missouri, Columbia, MO 65211, USA;
| | - Agata Adamczyk
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland; (M.G.-D.); (H.J.); (G.A.C.); (A.W.); (A.Z.)
| |
Collapse
|
29
|
Mora S, Martín-González E, Flores P, Moreno M. Neuropsychiatric consequences of childhood group A streptococcal infection: A systematic review of preclinical models. Brain Behav Immun 2020; 86:53-62. [PMID: 30818033 DOI: 10.1016/j.bbi.2019.02.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 12/21/2018] [Accepted: 02/22/2019] [Indexed: 12/14/2022] Open
Abstract
In recent years, clinical studies have shown strong epidemiological evidence of an increased risk of developing neuropsychiatric disorders after childhood exposure to streptococcal infection, including the Pediatric Autoimmune Neuropsychiatric Disorders Associated with Streptococcal infection (PANDAS). New preclinical studies on group A streptococcus (GAS) exposure investigate how to disentangle the influences of immune activation to induce long-term neurobehavioral effects associated with neuropsychiatric disorders such as obsessive-compulsive disorder, schizophrenia or autism. The present systematic review collects neurobehavioral evidence regarding the use of GAS exposure in animal models to study the vulnerability to different neuropsychiatric disorders, improving our understanding of its possible causes and consequences, and compares its contribution with other preclinical models of immune activation in a variety of paradigms. Specifically, we reviewed the effects of postnatal GAS exposure, in comparison with post- and prenatal exposure to Lipopolysaccharide (LPS) and Polyinosinic:polycytidylic acid (Poly I:C), on the long-term effects concerning psychomotor, cognition and socioemotional outcomes in rodents. GAS exposure in animal models has revealed different behavioral alterations such as reduced locomotion and motor coordination, a deficit in sensorimotor gating, learning, working memory, altered social behavior, and increased anxiety and stereotyped behavior. Most of the results found are in accordance with other immune activation models -LPS and Poly I:C-, with some discrepancies. The systematic review of the literature supports the preclinical model of GAS exposure as a valid model for studying the neurobehavioral consequences of streptococcal infections. Future studies on streptococcal infection could contribute increasing our knowledge on preventive actions or treatments for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Santiago Mora
- Department of Psychology, University of Almería, Campus de Excelencia Internacional Agroalimentario CeiA3, Almería, Spain
| | - Elena Martín-González
- Department of Psychology, University of Almería, Campus de Excelencia Internacional Agroalimentario CeiA3, Almería, Spain
| | - Pilar Flores
- Department of Psychology, University of Almería, Campus de Excelencia Internacional Agroalimentario CeiA3, Almería, Spain
| | - Margarita Moreno
- Department of Psychology, University of Almería, Campus de Excelencia Internacional Agroalimentario CeiA3, Almería, Spain.
| |
Collapse
|
30
|
Yasumatsu K, Nagao JI, Arita-Morioka KI, Narita Y, Tasaki S, Toyoda K, Ito S, Kido H, Tanaka Y. Bacterial-induced maternal interleukin-17A pathway promotes autistic-like behaviors in mouse offspring. Exp Anim 2020; 69:250-260. [PMID: 32009087 PMCID: PMC7220715 DOI: 10.1538/expanim.19-0156] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Maternal immune activation (MIA) by an infection is considered to be an important
environmental factor of fetal brain development. Recent animal model on MIA induced by
polyinosinic:polycytidylic acid, a mimic of viral infection, demonstrates that maternal
IL-17A signaling is required for the development of autism spectrum disorder (ASD)-like
behaviors of offspring. However, there is little information on bacterial infection. In
this study, we aim to elucidate the influence of MIA induced by lipopolysaccharide (LPS)
to mimic a bacterial infection on fetal brain development. We demonstrated that
LPS-induced MIA promoted ASD-like behaviors in mouse offspring. We further found that LPS
exposure induced acute phase immune response: elevation of serum IL-17A levels in MIA
mothers, upregulation of Il17a mRNA expression and increase of
IL-17A-producing γδ T cells in the uterus, and upregulation of Il17ra
mRNA expression in the fetal brain. Blocking of IL-17A in LPS-induced MIA ameliorated
ASD-like behaviors in offspring. Our data suggest that bacterial-induced maternal IL-17A
pathway promotes ASD-like behaviors in offspring.
Collapse
Affiliation(s)
- Kanae Yasumatsu
- Section of Infection Biology, Department of Functional Bioscience, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan.,Section of Oral Implantology, Department of Oral Rehabilitation, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan
| | - Jun-Ichi Nagao
- Section of Infection Biology, Department of Functional Bioscience, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan.,Oral Medicine Research Center, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan
| | - Ken-Ichi Arita-Morioka
- Section of Infection Biology, Department of Functional Bioscience, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan.,Oral Medicine Research Center, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan
| | - Yuka Narita
- Section of Infection Biology, Department of Functional Bioscience, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan.,Oral Medicine Research Center, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan
| | - Sonoko Tasaki
- Section of Infection Biology, Department of Functional Bioscience, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan
| | - Keita Toyoda
- Section of Infection Biology, Department of Functional Bioscience, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan.,Section of Oral Implantology, Department of Oral Rehabilitation, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan
| | - Shoko Ito
- Section of Infection Biology, Department of Functional Bioscience, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan
| | - Hirofumi Kido
- Section of Oral Implantology, Department of Oral Rehabilitation, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan
| | - Yoshihiko Tanaka
- Section of Infection Biology, Department of Functional Bioscience, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan.,Oral Medicine Research Center, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan
| |
Collapse
|
31
|
Zhao X, Rondón-Ortiz AN, Lima EP, Puracchio M, Roderick RC, Kentner AC. Therapeutic efficacy of environmental enrichment on behavioral, endocrine, and synaptic alterations in an animal model of maternal immune activation. Brain Behav Immun Health 2020; 3. [PMID: 32368757 PMCID: PMC7197879 DOI: 10.1016/j.bbih.2020.100043] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Maternal immune activation (MIA) has been identified as a significant risk factor for several neurodevelopmental disorders. We have previously demonstrated that postpubertal environmental enrichment (EE) rescues and promotes resiliency against MIA in male rats. Importantly, EE protocols have demonstrated clinical relevancy in human rehabilitation settings. Applying some of the elements of these EE protocols (e.g. social, physical, cognitive stimulation) to animal models of health and disease allows for the exploration of the mechanisms that underlie their success. Here, using a MIA model, we further investigate the rehabilitative potential of complex environments with a focus on female animals. Additionally, we expand upon some of our previous work by exploring genetic markers of synaptic plasticity and stress throughout several brain regions of both sexes. In the current study, standard housed female Sprague-Dawley rats were challenged with either the inflammatory endotoxin lipopolysaccharide (LPS; 100 μg/kg) or saline (equivolume) on gestational day 15. On postnatal day 50, male and female offspring were randomized into one of three conditions that differed in terms of cage size, number of cage mates (social stimulation) and enrichment materials. Spatial discrimination ability and social behavior were assessed six weeks later. Similar to our previously published work in males, our results revealed that a single LPS injection during mid gestation disrupted spatial discrimination ability in female rats. Postpubertal EE rescued this disruption. On the endocrine level, EE dampened elevations in plasma corticosterone that followed MIA, which may mediate EE's rehabilitative effects in female offspring. Within the prefrontal cortex, hippocampus, amygdala, and hypothalamus, MIA and EE altered the mRNA expression of several genes associated with resiliency and synaptic plasticity in both sexes. Overall, our findings provide further evidence that EE may serve as a therapeutic intervention for MIA-induced behavioral and cognitive deficits. Moreover, we identify some sexually dimorphic molecular mechanisms that may underlie these impairments and their rescue.
Collapse
Affiliation(s)
- Xin Zhao
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston Massachusetts, United States 02115
| | - Alejandro N Rondón-Ortiz
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston Massachusetts, United States 02115
| | - Erika P Lima
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston Massachusetts, United States 02115
| | - Madeline Puracchio
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston Massachusetts, United States 02115
| | - Ryland C Roderick
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston Massachusetts, United States 02115
| | - Amanda C Kentner
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston Massachusetts, United States 02115
| |
Collapse
|
32
|
Watkins JM, von Chamier M, Brown MB, Reyes L, Hayward LF. Prenatal infection with Mycoplasma pulmonis in rats exaggerates the angiotensin II pressor response in adult offspring. Am J Physiol Regul Integr Comp Physiol 2019; 318:R338-R350. [PMID: 31850818 DOI: 10.1152/ajpregu.00194.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Exposure to different stressors in utero is linked to adult diseases such as obesity and hypertension. In this study, the impact of prenatal infection (PNI) on adult body weight and cardiovascular function was evaluated using a naturally occurring rodent pathogen, Mycoplasma pulmonis (MP). Pregnant Sprague-Dawley rats were infected with MP on gestational day 14 and gave birth naturally. Adult PNI offspring weighed more than controls, but resting mean arterial pressure (MAP) was unchanged. Subcutaneous injection of angiotensin II (10 μg/kg) elicited a rise in MAP that was greater in both male and female PNI offspring compared with controls (P < 0.03). The accompanying reflex bradycardia was similar to the controls, suggesting that PNI induced baroreflex dysfunction. Subcutaneous nicotine administration, a potent cardiorespiratory stimulus, also elicited a transient rise in MAP that was generally greater in the PNI group, but the change in MAP from baseline was only significant in the PNI females compared with controls (P < 0.03). Elevated body weight and cardiovascular reactivity in the PNI offspring was associated with an increase in the ratio of hypothalamic corticotrophin-releasing hormone receptors type 1 to type 2 gene expression in both sexes compared with controls. These findings support previous studies demonstrating that PNI induces alterations in cardiovascular function and body weight. Yet, unlike previous studies utilizing other models of PNI (e.g., endotoxin), MP PNI did not induce resting hypertension. Thus, our study provides a foundation for future studies evaluating the cardiovascular risks of offspring exposed to microbial challenges in utero.
Collapse
Affiliation(s)
- J M Watkins
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - M von Chamier
- Department of Infectious Disease and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - M B Brown
- Department of Infectious Disease and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - L Reyes
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - L F Hayward
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| |
Collapse
|
33
|
Meyer U. Neurodevelopmental Resilience and Susceptibility to Maternal Immune Activation. Trends Neurosci 2019; 42:793-806. [DOI: 10.1016/j.tins.2019.08.001] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/05/2019] [Accepted: 08/01/2019] [Indexed: 12/13/2022]
|
34
|
A cellular automaton model to find the risk of developing autism through gut-mediated effects. Comput Biol Med 2019; 110:207-217. [DOI: 10.1016/j.compbiomed.2019.05.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/17/2019] [Accepted: 05/17/2019] [Indexed: 12/20/2022]
|
35
|
Kirsten TB, Casarin RC, Bernardi MM, Felicio LF. Pioglitazone abolishes cognition impairments as well as BDNF and neurotensin disturbances in a rat model of autism. Biol Open 2019; 8:bio.041327. [PMID: 31036753 PMCID: PMC6550086 DOI: 10.1242/bio.041327] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We have shown that exposure of rats to lipopolysaccharide (LPS) during gestation induces autistic-like behaviors in juvenile offspring and pioglitazone post treatment corrects social and communication deficits. The first objective of the present study was to evaluate the cognition of the rats, because this is also a behavioral sphere committed in autism. Second, biomarkers related to pioglitazone pathways and autism were studied to try to understand their mechanisms. We used our rat model of autism and pioglitazone was administered daily to these young offspring. T-maze spontaneous alternations tests, plasma levels of brain-derived neurotrophic factor (BDNF), beta-endorphin, neurotensin, oxytocin, and substance P were all studied. Exposure of rats to LPS during gestation induced cognitive deficits in the young offspring, elevated BDNF levels and decreased neurotensin levels. Daily postnatal pioglitazone treatment abolished cognition impairments as well as BDNF and neurotensin disturbances. Together with our previous studies, we suggest pioglitazone as a candidate for the treatment of autism, because it improved the responses of the three most typical autistic-like behaviors. BDNF and neurotensin also appeared to be related to the autistic-like behaviors and should be considered for therapeutic purposes. Summary: Exposure of rats to lipopolysaccharide during gestation induced autistic-like behaviors in the juvenile offspring. Daily postnatal pioglitazone treatment abolished cognition impairments as well as brain-derived neurotrophic factor and neurotensin disturbances.
Collapse
Affiliation(s)
- Thiago B Kirsten
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, São Paulo 05508-270, Brazil .,Environmental and Experimental Pathology, Paulista University, São Paulo 04026-002, Brazil
| | - Renato C Casarin
- Graduate Program of Dentistry, Paulista University, São Paulo 04026-002, Brazil
| | - Maria M Bernardi
- Environmental and Experimental Pathology, Paulista University, São Paulo 04026-002, Brazil.,Graduate Program of Dentistry, Paulista University, São Paulo 04026-002, Brazil
| | - Luciano F Felicio
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, São Paulo 05508-270, Brazil
| |
Collapse
|
36
|
Parisi DP, Santos SAR, Cabral D, Queiroz-Hazarbassanov N, Flório JC, Bernardi MM, Kirsten TB. Therapeutical doses of ivermectin and its association with stress disrupt motor and social behaviors of juvenile rats and serotonergic and dopaminergic systems. Res Vet Sci 2019; 124:149-157. [PMID: 30901667 DOI: 10.1016/j.rvsc.2019.03.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 03/11/2019] [Accepted: 03/12/2019] [Indexed: 12/20/2022]
Abstract
Ivermectin is a human and veterinary antiparasitic drug which is one of the most widely used in the world. Studies from our group have revealed several behavioral and neurochemical impairments induced by therapeutic doses of ivermectin in adult rats. However, the effects on juveniles remain unknown. Ivermectin has been prescribed for juvenile humans, pets and farm animals, which still show remarkable development and postnatal maturation and may be more susceptible to drug interventions. Hence, we studied the behavioral and neurochemical effects of two therapeutical doses (0.2 and 1.0 mg/kg) of ivermectin in juvenile rats. As it is underestimated in prescriptions, the stress factor was also studied. Ivermectin 1.0 mg/kg induced hyperlocomotion in juvenile rats. Association of 1.0 mg/kg ivermectin with stress induced hypolocomotion in rats. Ivermectin 1.0 mg/kg whether or not associated with stress exacerbated socialization of rats. Ivermectin did not induce anxiety-like behavior neither affected corticosterone levels of juvenile rats. The motor/exploratory behavioral findings induced by association of ivermectin and stress seem to be triggered after the increase in the striatal serotonergic system activity. Association of ivermectin with stress increased striatal dopamine levels, which increased (excessive) social play behavior. Our results suggest a review of the prescribed dose of ivermectin for juvenile humans and pets. Moreover, the stress factor should be considered for ivermectin medical prescriptions, since it may exacerbate behavioral and neurochemical disturbances.
Collapse
Affiliation(s)
- Débora P Parisi
- Environmental and Experimental Pathology, Paulista University, Rua Dr. Bacelar, 1212, São Paulo, SP 04026-002, Brazil
| | - Satiro A R Santos
- Environmental and Experimental Pathology, Paulista University, Rua Dr. Bacelar, 1212, São Paulo, SP 04026-002, Brazil
| | - Danilo Cabral
- Environmental and Experimental Pathology, Paulista University, Rua Dr. Bacelar, 1212, São Paulo, SP 04026-002, Brazil
| | - Nicolle Queiroz-Hazarbassanov
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, São Paulo, SP 05508-270, Brazil
| | - Jorge C Flório
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, São Paulo, SP 05508-270, Brazil
| | - Maria M Bernardi
- Environmental and Experimental Pathology, Paulista University, Rua Dr. Bacelar, 1212, São Paulo, SP 04026-002, Brazil
| | - Thiago B Kirsten
- Environmental and Experimental Pathology, Paulista University, Rua Dr. Bacelar, 1212, São Paulo, SP 04026-002, Brazil.
| |
Collapse
|
37
|
Carter CJ. Autism genes and the leukocyte transcriptome in autistic toddlers relate to pathogen interactomes, infection and the immune system. A role for excess neurotrophic sAPPα and reduced antimicrobial Aβ. Neurochem Int 2019; 126:36-58. [PMID: 30862493 DOI: 10.1016/j.neuint.2019.03.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/22/2019] [Accepted: 03/06/2019] [Indexed: 12/20/2022]
Abstract
Prenatal and early childhood infections have been implicated in autism. Many autism susceptibility genes (206 Autworks genes) are localised in the immune system and are related to immune/infection pathways. They are enriched in the host/pathogen interactomes of 18 separate microbes (bacteria/viruses and fungi) and to the genes regulated by bacterial toxins, mycotoxins and Toll-like receptor ligands. This enrichment was also observed for misregulated genes from a microarray study of leukocytes from autistic toddlers. The upregulated genes from this leukocyte study also matched the expression profiles in response to numerous infectious agents from the Broad Institute molecular signatures database. They also matched genes related to sudden infant death syndrome and autism comorbid conditions (autoimmune disease, systemic lupus erythematosus, diabetes, epilepsy and cardiomyopathy) as well as to estrogen and thyrotropin responses and to those upregulated by different types of stressors including oxidative stress, hypoxia, endoplasmic reticulum stress, ultraviolet radiation or 2,4-dinitrofluorobenzene, a hapten used to develop allergic skin reactions in animal models. The oxidative/integrated stress response is also upregulated in the autism brain and may contribute to myelination problems. There was also a marked similarity between the expression signatures of autism and Alzheimer's disease, and 44 shared autism/Alzheimer's disease genes are almost exclusively expressed in the blood-brain barrier. However, in contrast to Alzheimer's disease, levels of the antimicrobial peptide beta-amyloid are decreased and the levels of the neurotrophic/myelinotrophic soluble APP alpha are increased in autism, together with an increased activity of α-secretase. sAPPα induces an increase in glutamatergic and a decrease in GABA-ergic synapses creating and excitatory/inhibitory imbalance that has also been observed in autism. A literature survey showed that multiple autism genes converge on APP processing and that many are able to increase sAPPalpha at the expense of beta-amyloid production. A genetically programmed tilt of this axis towards an overproduction of neurotrophic/gliotrophic sAPPalpha and underproduction of antimicrobial beta-amyloid may explain the brain overgrowth and myelination dysfunction, as well as the involvement of pathogens in autism.
Collapse
Affiliation(s)
- C J Carter
- PolygenicPathways, 41C Marina, Saint Leonard's on Sea, TN38 0BU, East Sussex, UK.
| |
Collapse
|
38
|
Shukla PK, Meena AS, Rao R, Rao R. Deletion of TLR-4 attenuates fetal alcohol exposure-induced gene expression and social interaction deficits. Alcohol 2018; 73:73-78. [PMID: 30312858 DOI: 10.1016/j.alcohol.2018.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 03/30/2018] [Accepted: 04/12/2018] [Indexed: 12/12/2022]
Abstract
Fetal alcohol spectrum disorders (FASD) are associated with social interaction behavior and gastrointestinal (GI) abnormalities. These abnormal behaviors and GI abnormalities overlap with autism spectrum disorder (ASD). We investigated the effect of fetal alcohol exposure (FAE) on social interaction deficits (hallmark of autism) in mice. Evidence indicates that exogenous lipopolysaccharide (LPS) administration during gestation induces autism-like behavior in the offspring. LPS regulates the expression of genes underlying differentiation, immune function, myelination, and synaptogenesis in fetal brain by the LPS receptor, TLR-4-dependent mechanism. In this study, we evaluated the role of TLR-4 in FAE-induced social behavior deficit. WT and TLR4-/- pregnant mice were fed Lieber-DeCarli liquid diet with or without ethanol. The control group was pair-fed with an isocaloric diet. Social behavior was tested in the adult offspring at postnatal day 60. Frontal cortex mRNA expression of autistic candidate genes (Ube3a, Gabrb3, Mecp2) and inflammatory cytokine genes (IL-1β, IL-6, TNF-α) were measured by RT-qPCR. Adult male offspring of ethanol-fed WT dams showed low birth weight compared to offspring of pair-fed WT dams. However, their body weights at adulthood were greater compared to the body weights of offspring of pair-fed WT dams. There were no body weight differences in offspring of TLR4-/- dams. Social interaction deficit was observed only in male offspring of ethanol-fed WT dams, but it was not observed in both male and female offspring of ethanol-fed TLR4-/- dams. Expressions of autism candidate genes, Gabrb3 and Ube3a, were elevated, while that of the Mecp2 gene was suppressed in the frontal cortex of male, but not female, offspring of ethanol-fed WT mice. The expressions of inflammatory cytokine genes, IL-1β, IL-6, and TNF-α, were also significantly increased in the frontal cortex of male, but not female, offspring of ethanol-fed dams. The changes in the expression of autistic and cytokine genes were unaffected in the offspring of ethanol-fed TLR4-/- dams. These data also indicate that TLR4 mediates FAE-induced changes in social interactions and gene expression in brain, suggesting that ethanol-induced LPS absorption from the maternal gut may be involved in gene expression changes in the fetal brain.
Collapse
Affiliation(s)
- Pradeep K Shukla
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Avtar S Meena
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Rupa Rao
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - RadhaKrishna Rao
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
39
|
Bonapersona V, Joëls M, Sarabdjitsingh RA. Effects of early life stress on biochemical indicators of the dopaminergic system: A 3 level meta-analysis of rodent studies. Neurosci Biobehav Rev 2018; 95:1-16. [PMID: 30201218 DOI: 10.1016/j.neubiorev.2018.09.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 09/03/2018] [Accepted: 09/05/2018] [Indexed: 12/31/2022]
Abstract
Adverse early life events are a well-established risk factor for the precipitation of behavioral disorders characterized by anomalies in the dopaminergic system, such as schizophrenia and addiction. The correlation between early life conditions and the dopaminergic system has been causally investigated in more than 90 rodent publications. Here, we tested the validity of the hypothesis that early life stress (ELS) alters dopamine signaling by performing an extensive 3-level mixed effect meta-analysis. We included several ELS models and biochemical indicators of the dopaminergic system in a variety of brain areas, for a total of 1009 comparisons. Contrary to our expectations, only a few comparisons displayed a significant effect. Specifically, the striatal area was the most vulnerable, displaying decreased dopamine precursor and increased metabolites after ELS. To make all data openly accessible, we created MaDEapp (https://osf.io/w25m4/), a tool to explore data of the meta-analysis with the intent to guide future (pre)clinical research and allow power calculations. All in all, ELS induces a few yet robust changes on biochemical indicators of the dopaminergic system.
Collapse
Affiliation(s)
- V Bonapersona
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center, Utrecht University, The Netherlands.
| | - M Joëls
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center, Utrecht University, The Netherlands; University Medical Center Groningen, University of Groningen, The Netherlands
| | - R A Sarabdjitsingh
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center, Utrecht University, The Netherlands
| |
Collapse
|
40
|
Zieminska E, Toczylowska B, Diamandakis D, Hilgier W, Filipkowski RK, Polowy R, Orzel J, Gorka M, Lazarewicz JW. Glutamate, Glutamine and GABA Levels in Rat Brain Measured Using MRS, HPLC and NMR Methods in Study of Two Models of Autism. Front Mol Neurosci 2018; 11:418. [PMID: 30505268 PMCID: PMC6250849 DOI: 10.3389/fnmol.2018.00418] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 10/26/2018] [Indexed: 11/13/2022] Open
Abstract
The disorders of the glutamatergic neurotransmission have been associated with pathogenesis of autism. In this study we evaluated the impact of the in vivo and ex vivo test methodology on measurements of levels of neurotransmitter amino acids in hippocampus of rats for valproic acid- (VPA) and thalidomide- (THAL) induced models of autism. The main goal was to compare the changes in concentrations of glutamate (Glu), glutamine (Gln) and GABA between both autistic groups and the control, measured in vivo and ex vivo in homogenates. The rat pups underwent three in vivo tests: ultrasonic vocalization (USV), magnetic resonance spectroscopy (MRS) and unilateral microdialysis of the hippocampus. Analyses of homogenates of rat hippocampus were performed using high-performance liquid chromatography (HPLC) and nuclear magnetic resonance (NMR) spectroscopy. For the statistical analysis, we performed univariate and multivariate tests. USV test, which is considered in rodents as an indicator of pathology similar to autism, showed decreased USV in VPA and THAL groups. In vivo MRS studies demonstrated increases of Glu content in male rat's hippocampus in VPA and THAL groups, while the microdialysis, which allows examination of the contents in the extracellular space, detected decreases in the basal level of Gln concentrations in VPA and THAL groups. Ex vivo HPLC studies showed that levels of Glu, Gln and GABA significantly increased in male rat's hippocampus in the VPA and THAL groups, while NMR studies showed increased levels of Gln and GABA in the VPA group. Collectively, these results are consistent with the hypothesis suggesting the role of the glutamatergic disturbances on the pathogenesis of autism. For all methods used, the values of measured changes were in the same direction. The orthogonal partial least square discriminant analysis confirmed that both animal models of autism tested here can be used to trace neurochemical changes in the brain.
Collapse
Affiliation(s)
- Elzbieta Zieminska
- Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Beata Toczylowska
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - Dominik Diamandakis
- Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Wojciech Hilgier
- Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | | | - Rafal Polowy
- Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Jaroslaw Orzel
- Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland.,Faculty of Electronics and Information Technology, Warsaw University of Technology, Warsaw, Poland
| | - Michal Gorka
- Faculty of Physics, University of Warsaw, Warsaw, Poland
| | | |
Collapse
|
41
|
Simola N, Granon S. Ultrasonic vocalizations as a tool in studying emotional states in rodent models of social behavior and brain disease. Neuropharmacology 2018; 159:107420. [PMID: 30445100 DOI: 10.1016/j.neuropharm.2018.11.008] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/05/2018] [Accepted: 11/08/2018] [Indexed: 02/06/2023]
Abstract
Rodents emit ultrasonic vocalizations (USVs) to communicate the presence of positive or negative emotional states and to coordinate social interactions. On this basis, USVs are increasingly being used as a behavioral readout in rodent studies of affect, motivation and social behavior. Notably, several investigations have demonstrated that rodents emit USVs when tested in experimental paradigms that are used in preclinical studies of psychiatric and neurological diseases. Moreover, it has been shown that calling behavior may be influenced by genetic and/or environmental factors (i.e., stress), early rearing conditions that have been implicated in brain disease, as well as psychoactive drugs. Hence, measuring USV emissions has emerged as a useful tool in studying the mechanisms that underlie the emotional disturbances featuring certain brain diseases, as well as in the development of suited pharmacological therapies. This review provides an overview of the behavioral significance of USV emissions and describes the contexts that promote calling behavior in rats and mice. Moreover, the review summarizes the current evidence concerning the use of USVs as a marker of affect in rat and mouse models of sociability, psychiatric diseases and neurological diseases, and discusses the strengths and current limitations of using USVs as a behavioral readout in rodent studies of emotional behavior. This article is part of the Special Issue entitled 'The neuropharmacology of social behavior: from bench to bedside'.
Collapse
Affiliation(s)
- Nicola Simola
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy.
| | - Sylvie Granon
- Neurobiology of Decision Making, Institute of Neuroscience Paris-Saclay, UMR9197, Université Paris-Sud, Centre National de la Recherche Scientifique, Orsay, France
| |
Collapse
|
42
|
Cezar LC, Kirsten TB, da Fonseca CCN, de Lima APN, Bernardi MM, Felicio LF. Zinc as a therapy in a rat model of autism prenatally induced by valproic acid. Prog Neuropsychopharmacol Biol Psychiatry 2018; 84:173-180. [PMID: 29481896 DOI: 10.1016/j.pnpbp.2018.02.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 02/05/2018] [Accepted: 02/17/2018] [Indexed: 01/18/2023]
Abstract
Autism is characterized by numerous behavioral impairments, such as in communication, socialization and cognition. Recent studies have suggested that valproic acid (VPA), an anti-epileptic drug with teratogenic activity, is related to autism. In rodents, VPA exposure during pregnancy induces autistic-like effects. Exposure to VPA may alter zinc metabolism resulting in a transient deficiency of zinc. Therefore, we selected zinc as a prenatal treatment to prevent VPA-induced impairments in a rat model of autism. Wistar female rats received either saline solution or VPA (400 mg/kg, i.p) on gestational day (GD) 12.5. To test the zinc supplementation effect, after 1 h of treatment with saline or VPA, a dose of zinc (2 mg/kg, s.c.) was injected. The offspring were tested for abnormal communication behaviors with an ultrasound vocalization task on postnatal day (PND) 11, repetitive behaviors and cognitive ability with a T-maze task on PND 29, and social interaction with a play behavior task on PND 30. Tyrosine hydroxylase protein (TH) expression was evaluated in the striatum. Prenatal VPA decreased ultrasonic vocalization, induced repetitive/restricted behaviors and cognitive inflexibility, impaired socialization, and reduced striatal TH levels compared with control group. Zinc treatment reduced VPA-induced autistic-like behaviors. However, we found no evidence of an effect of zinc on the VPA-induced reduction in TH expression. The persistence of low TH expression in the VPA-Zn group suggests that Zn-induced behavioral improvement in autistic rats may not depend on TH activity.
Collapse
Affiliation(s)
- Luana Carvalho Cezar
- University of São Paulo, School of Veterinary Medicine, Department of Pathology, Sao Paulo, Brazil.
| | - Thiago Berti Kirsten
- Paulista University, Environmental and Experimental Pathology, Sao Paulo, Brazil
| | | | | | | | - Luciano Freitas Felicio
- University of São Paulo, School of Veterinary Medicine, Department of Pathology, Sao Paulo, Brazil
| |
Collapse
|
43
|
Kirsten TB, Casarin RC, Bernardi MM, Felicio LF. Pioglitazone abolishes autistic-like behaviors via the IL-6 pathway. PLoS One 2018; 13:e0197060. [PMID: 29791472 PMCID: PMC5965820 DOI: 10.1371/journal.pone.0197060] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/25/2018] [Indexed: 01/09/2023] Open
Abstract
Autism is characterized by social deficits, communication abnormalities, and repetitive behaviors. The risk factors appear to include genetic and environmental conditions, such as prenatal infections and maternal dietary factors. Previous investigations by our group have demonstrated that prenatal exposure to lipopolysaccharide (LPS), which mimics infections by gram-negative bacteria, induces autistic-like behaviors. No effective treatment yet exists for autism. Therefore, we used our rat model to test a possible treatment for autism. We selected pioglitazone to block or ease the impairments induced by LPS because although this drug was designed as an anti-diabetic drug (it has an insulin effect), it also exerts anti-inflammatory effects. Juvenile offspring were treated daily with pioglitazone, and the main behaviors related to autism, namely, socialization (play behavior) and communication (50-kHz ultrasonic vocalizations), were studied. Biomarkers linked to autism and/or pioglitazone were also studied to attempt to understand the mechanisms involved, namely, IL-6, TNF-alpha, MCP-1, insulin, and leptin. Prenatal LPS exposure induced social deficits and communicational abnormalities in juvenile rat offspring as well as elevated plasma IL-6 levels. Daily postnatal pioglitazone treatment blocked the impairments found in terms of the time spent on social interaction, the number of vocalizations (i.e., autistic-like behaviors) and the elevated plasma IL-6 levels. Thus, pioglitazone appears to be a relevant candidate for the treatment of autism. The present findings may contribute to a better understanding and treatment of autism and associated diseases.
Collapse
Affiliation(s)
- Thiago Berti Kirsten
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
- Environmental and Experimental Pathology, Paulista University, São Paulo, Brazil
- * E-mail:
| | - Renato C. Casarin
- Graduate Program of Dentistry, Paulista University, São Paulo, Brazil
| | - Maria M. Bernardi
- Environmental and Experimental Pathology, Paulista University, São Paulo, Brazil
- Graduate Program of Dentistry, Paulista University, São Paulo, Brazil
| | - Luciano F. Felicio
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
44
|
Prenatal and early-life diesel exhaust exposure causes autism-like behavioral changes in mice. Part Fibre Toxicol 2018; 15:18. [PMID: 29678176 PMCID: PMC5910592 DOI: 10.1186/s12989-018-0254-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 04/09/2018] [Indexed: 01/27/2023] Open
Abstract
Background Escalating prevalence of autism spectrum disorders (ASD) in recent decades has triggered increasing efforts in understanding roles played by environmental risk factors as a way to address this widespread public health concern. Several epidemiological studies show associations between developmental exposure to traffic-related air pollution and increased ASD risk. In rodent models, a limited number of studies have shown that developmental exposure to ambient ultrafine particulates or diesel exhaust (DE) can result in behavioral phenotypes consistent with mild ASD. We performed a series of experiments to determine whether developmental DE exposure induces ASD-related behaviors in mice. Results C57Bl/6J mice were exposed from embryonic day 0 to postnatal day 21 to 250–300 μg/m3 DE or filtered air (FA) as control. Mice exposed developmentally to DE exhibited deficits in all three of the hallmark categories of ASD behavior: reduced social interaction in the reciprocal interaction and social preference tests, increased repetitive behavior in the T-maze and marble-burying test, and reduced or altered communication as assessed by measuring isolation-induced ultrasonic vocalizations and responses to social odors. Conclusions These findings demonstrate that exposure to traffic-related air pollution, in particular that associated with diesel-fuel combustion, can cause ASD-related behavioral changes in mice, and raise concern about air pollution as a contributor to the onset of ASD in humans. Electronic supplementary material The online version of this article (10.1186/s12989-018-0254-4) contains supplementary material, which is available to authorized users.
Collapse
|
45
|
Tan T, Wang W, Xu H, Huang Z, Wang YT, Dong Z. Low-Frequency rTMS Ameliorates Autistic-Like Behaviors in Rats Induced by Neonatal Isolation Through Regulating the Synaptic GABA Transmission. Front Cell Neurosci 2018. [PMID: 29541022 PMCID: PMC5835518 DOI: 10.3389/fncel.2018.00046] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Patients with autism spectrum disorder (ASD) display abnormalities in neuronal development, synaptic function and neural circuits. The imbalance of excitatory and inhibitory (E/I) synaptic transmission has been proposed to cause the main behavioral characteristics of ASD. Repetitive transcranial magnetic stimulation (rTMS) can directly or indirectly induce excitability and synaptic plasticity changes in the brain noninvasively. However, whether rTMS can ameliorate autistic-like behaviors in animal model via regulating the balance of E/I synaptic transmission is unknown. By using our recent reported animal model with autistic-like behaviors induced by neonatal isolation (postnatal days 1-9), we found that low-frequency rTMS (LF-rTMS, 1 Hz) treatment for 2 weeks effectively alleviated the acquired autistic-like symptoms, as reflected by an increase in social interaction and decrease in self-grooming, anxiety- and depressive-like behaviors in young adult rats compared to those in untreated animals. Furthermore, the amelioration in autistic-like behavior was accompanied by a restoration of the balance between E/I activity, especially at the level of synaptic transmission and receptors in synaptosomes. These findings indicated that LF-rTMS may alleviate the symptoms of ASD-like behaviors caused by neonatal isolation through regulating the synaptic GABA transmission, suggesting that LF-rTMS may be a potential therapeutic technique to treat ASD.
Collapse
Affiliation(s)
- Tao Tan
- Ministry of Education Key Laboratory of Child Development and Disorders and Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Wang
- Ministry of Education Key Laboratory of Child Development and Disorders and Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Haitao Xu
- Wuhan Yiruide Medical Equipment Co., Ltd., Wuhan, China
| | - Zhilin Huang
- Ministry of Education Key Laboratory of Child Development and Disorders and Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yu Tian Wang
- Ministry of Education Key Laboratory of Child Development and Disorders and Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Brain Research Center, The University of British Columbia, Vancouver, BC, Canada
| | - Zhifang Dong
- Ministry of Education Key Laboratory of Child Development and Disorders and Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
46
|
Needham BD, Tang W, Wu WL. Searching for the gut microbial contributing factors to social behavior in rodent models of autism spectrum disorder. Dev Neurobiol 2018; 78:474-499. [PMID: 29411548 DOI: 10.1002/dneu.22581] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/07/2017] [Accepted: 01/08/2018] [Indexed: 12/15/2022]
Abstract
Social impairment is one of the major symptoms in multiple psychiatric disorders, including autism spectrum disorder (ASD). Accumulated studies indicate a crucial role for the gut microbiota in social development, but these mechanisms remain unclear. This review focuses on two strategies adopted to elucidate the complicated relationship between gut bacteria and host social behavior. In a top-down approach, researchers have attempted to correlate behavioral abnormalities with altered gut microbial profiles in rodent models of ASD, including BTBR mice, maternal immune activation (MIA), maternal valproic acid (VPA) and maternal high-fat diet (MHFD) offspring. In a bottom-up approach, researchers use germ-free (GF) animals, antibiotics, probiotics or pathogens to manipulate the intestinal environment and ascertain effects on social behavior. The combination of both approaches will hopefully pinpoint specific bacterial communities that control host social behavior. Further discussion of how brain development and circuitry is impacted by depletion of gut microbiota is also included. The converging evidence strongly suggests that gut microbes affect host social behavior through the alteration of brain neural circuits. Investigation of intestinal microbiota and host social behavior will unveil any bidirectional communication between the gut and brain and provide alternative therapeutic targets for ASD. © 2018 Wiley Periodicals, Inc. Develop Neurobiol 78: 474-499, 2018.
Collapse
Affiliation(s)
- Brittany D Needham
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Boulevard, Pasadena, California
| | - Weiyi Tang
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Boulevard, Pasadena, California
| | - Wei-Li Wu
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Boulevard, Pasadena, California
| |
Collapse
|
47
|
Perinatal inflammation and adult psychopathology: From preclinical models to humans. Semin Cell Dev Biol 2017; 77:104-114. [PMID: 28890420 DOI: 10.1016/j.semcdb.2017.09.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 08/22/2017] [Accepted: 09/06/2017] [Indexed: 02/05/2023]
Abstract
Perinatal environment plays a crucial role in brain development and determines its function through life. Epidemiological studies and clinical reports link perinatal exposure to infection and/or immune activation to various psychiatric disorders. In addition, accumulating evidence from animal models shows that perinatal inflammation can affect various behaviors relevant to psychiatric disorders such as schizophrenia, autism, anxiety and depression. Remarkably, the effects on behavior and brain function do not always depend on the type of inflammatory stimulus or the perinatal age targeted, so diverse inflammatory events can have similar consequences on the brain. Moreover, other perinatal environmental factors that affect behavior (e.g. diet and stress) also elicit inflammatory responses. Understanding the interplay between perinatal environment and inflammation on brain development is required to identify the mechanisms through which perinatal inflammation affect brain function in the adult animal. Evidence for the role of the peripheral immune system and glia on perinatal programming of behavior is discussed in this review, along with recent evidence for the role of epigenetic mechanisms affecting gene expression in the brain.
Collapse
|
48
|
Dominiak A, Wilkaniec A, Jęśko H, Czapski GA, Lenkiewicz AM, Kurek E, Wroczyński P, Adamczyk A. Selol, an organic selenium donor, prevents lipopolysaccharide-induced oxidative stress and inflammatory reaction in the rat brain. Neurochem Int 2017; 108:66-77. [DOI: 10.1016/j.neuint.2017.02.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 02/17/2017] [Accepted: 02/22/2017] [Indexed: 12/21/2022]
|
49
|
Prenatal lipopolysaccharide induces hypothalamic dopaminergic hypoactivity and autistic-like behaviors: Repetitive self-grooming and stereotypies. Behav Brain Res 2017; 331:25-29. [PMID: 28526515 DOI: 10.1016/j.bbr.2017.05.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/02/2017] [Accepted: 05/04/2017] [Indexed: 12/17/2022]
Abstract
Previous investigations by our group have shown that prenatal exposure to lipopolysaccharide (LPS), which mimics infection by gram-negative bacteria, induces social, cognitive, and communication deficits. For a complete screening of autistic-like behaviors, the objective of this study was to evaluate if our rat model also induces restricted and repetitive stereotyped behaviors. Thus, we studied the self-grooming microstructure. We also studied the neurochemistry of hypothalamus and frontal cortex, which are brain areas related to autism to better understand central mechanisms involved in our model. Prenatal LPS exposure on gestational day 9.5 increased the head washing episodes (frequency and time), as well as the total self-grooming. However, body grooming, paw/leg licking, tail/genital grooming, and circling behavior/tail chasing did not vary significantly among the groups. Moreover, prenatal LPS induced dopaminergic hypoactivity (HVA metabolite and turnover) in the hypothalamus. Therefore, our rat model induced restricted and repetitive stereotyped behaviors and the other main symptoms of autism experimentally studied in rodent models and also found in patients. The hypothalamic dopaminergic impairments seem to be associated with the autistic-like behaviors.
Collapse
|
50
|
Chang YC, Cole TB, Costa LG. Behavioral Phenotyping for Autism Spectrum Disorders in Mice. CURRENT PROTOCOLS IN TOXICOLOGY 2017; 72:11.22.1-11.22.21. [PMID: 28463420 PMCID: PMC5494990 DOI: 10.1002/cptx.19] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Autism spectrum disorder (ASD) represents a heterogeneous group of disorders characterized by alterations in three behavioral symptom domains: Social interactions, verbal and nonverbal communication, and repetitive behaviors. Increasing prevalence of ASD in recent years suggests that exposure to environmental toxicants may be critical in modulating etiology of this disease. As clinical diagnosis of autism still relies on behavioral evaluation, it is important to be able to assess similar behavioral traits in animal models, to provide biological plausibility of associations between environmental exposures and ASD. Rodents naturally exhibit a large number of behaviors that can be linked to similar behaviors in human. In this unit, behavioral tests are described that are relevant to the domains affected in ASD. For the repetitive domain, the T-maze spontaneous alternation test and marble burying test are described. For the communication domain, neonatal ultrasonic vocalization and olfactory habituation test toward social and non-social odor are described. Finally, for the sociability domain, the three-chambered social preference test and the reciprocal interaction test are presented. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Yu-Chi Chang
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Toby B. Cole
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
- Center on Human Development and Disability, University of Washington, Seattle, Washington, USA
| | - Lucio G. Costa
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
- Department of Neuroscience, University of Parma Medical School, Parma, Italy
| |
Collapse
|