1
|
Fiore NT, Hayes JP, Williams SI, Moalem-Taylor G. Interleukin-35 alleviates neuropathic pain and induces an anti-inflammatory shift in spinal microglia in nerve-injured male mice. Brain Behav Immun 2024; 122:287-300. [PMID: 39097202 DOI: 10.1016/j.bbi.2024.07.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 07/25/2024] [Accepted: 07/28/2024] [Indexed: 08/05/2024] Open
Abstract
Immune cells are critical in promoting neuroinflammation and neuropathic pain and in facilitating pain resolution, depending on their inflammatory and immunoregulatory cytokine response. Interleukin (IL)-35, secreted by regulatory immune cells, is a member of the IL-12 family with a potent immunosuppressive function. In this study, we investigated the effects of IL-35 on pain behaviors, spinal microglia phenotype following peripheral nerve injury, and in vitro microglial cultures in male and female mice. Intrathecal recombinant IL-35 treatment alleviated mechanical pain hypersensitivity prominently in male mice, with only a modest effect in female mice after sciatic nerve chronic constriction injury (CCI). IL-35 treatment resulted in sex-specific microglial changes following CCI, reducing inflammatory microglial markers and upregulating anti-inflammatory markers in male mice. Spatial transcriptomic analysis revealed that IL-35 suppressed microglial complement activation in the superficial dorsal horn in male mice after CCI. Moreover, in vitro studies showed that IL-35 treatment of cultured inflammatory microglia mitigated their hypertrophied morphology, increased their cell motility, and decreased their phagocytic activity, indicating a phenotypic shift towards homeostatic microglia. Further, IL-35 altered microglial cytokines/chemokines in vitro, suppressing the release of IL-9 and monocyte-chemoattractant protein-1 and increasing IL-10 in the supernatant of male microglial cultures. Our findings indicate that treatment with IL-35 modulates spinal microglia and alleviates neuropathic pain in male mice, suggesting IL-35 as a potential sex-specific targeted immunomodulatory treatment for neuropathic pain.
Collapse
Affiliation(s)
- Nathan T Fiore
- Translational Neuroscience Facility, Department of Physiology, School of Biomedical Sciences, University of New South Wales, UNSW Sydney, NSW, Australia
| | - Jessica P Hayes
- Translational Neuroscience Facility, Department of Physiology, School of Biomedical Sciences, University of New South Wales, UNSW Sydney, NSW, Australia
| | - Sarah I Williams
- Translational Neuroscience Facility, Department of Physiology, School of Biomedical Sciences, University of New South Wales, UNSW Sydney, NSW, Australia
| | - Gila Moalem-Taylor
- Translational Neuroscience Facility, Department of Physiology, School of Biomedical Sciences, University of New South Wales, UNSW Sydney, NSW, Australia.
| |
Collapse
|
2
|
Tsitsou-Kampeli A, Suzzi S, Schwartz M. The immune and metabolic milieu of the choroid plexus as a potential target in brain protection. Trends Neurosci 2024; 47:573-582. [PMID: 38945740 DOI: 10.1016/j.tins.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/09/2024] [Accepted: 05/22/2024] [Indexed: 07/02/2024]
Abstract
The brain's choroid plexus (CP), which operates as an anatomical and functional 'checkpoint', regulates the communication between brain and periphery and contributes to the maintenance of healthy brain homeostasis throughout life. Evidence from mouse models and humans reveals a link between loss of CP checkpoint properties and dysregulation of the CP immune milieu as a conserved feature across diverse neurological conditions. In particular, we suggest that an imbalance between different immune signals at the CP, including CD4+ T cell-derived cytokines, type-I interferon, and complement components, can perpetuate brain inflammation and cognitive deterioration in aging and neurodegeneration. Furthermore, we highlight the role of CP metabolism in controlling CP inflammation, and propose that targeting molecules that regulate CP metabolism could be effective in safeguarding brain function.
Collapse
Affiliation(s)
| | - Stefano Suzzi
- Weizmann Institute of Science, Department of Brain Sciences, Rehovot, Israel
| | - Michal Schwartz
- Weizmann Institute of Science, Department of Brain Sciences, Rehovot, Israel.
| |
Collapse
|
3
|
Maurya SK, Borgonovo JE, Biswal S, Martínez-Cerdeño V, Mishra R, Muñoz EM. Editorial: Trends in neuroimmunology: cross-talk between brain-resident and peripheral immune cells in both health and disease. Front Immunol 2024; 15:1442322. [PMID: 39026666 PMCID: PMC11256089 DOI: 10.3389/fimmu.2024.1442322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 06/11/2024] [Indexed: 07/20/2024] Open
Affiliation(s)
- Shashank K. Maurya
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India
| | - Janina E. Borgonovo
- Integrative Biology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Suryanarayan Biswal
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India
| | - Verónica Martínez-Cerdeño
- Department of Pathology and Laboratory Medicine, Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children of Northern California, and MIND Institute at the UC Davis Medical Center, University of California, Davis School of Medicine, Sacramento, CA, United States
| | - Rajnikant Mishra
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Estela M. Muñoz
- Institute of Histology and Embryology of Mendoza (IHEM), National University of Cuyo (UNCuyo), National Scientific and Technical Research Council (CONICET), Mendoza, Argentina
| |
Collapse
|
4
|
Gonçalves M, Rodrigues-Santos P, Januário C, Cosentino M, Pereira FC. Indoleamine 2,3-dioxygenase (IDO1) - Can dendritic cells and monocytes expressing this moonlight enzyme change the phase of Parkinson's Disease? Int Immunopharmacol 2024; 133:112062. [PMID: 38652967 DOI: 10.1016/j.intimp.2024.112062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/31/2024] [Accepted: 04/08/2024] [Indexed: 04/25/2024]
Abstract
Parkinson's Disease (PD) is the second most common neurodegenerative disease where central and peripheral immune dysfunctions have been pointed out as a critical component of susceptibility and progression of this disease. Dendritic cells (DCs) and monocytes are key players in promoting immune response regulation and can induce the enzyme indoleamine 2,3-dioxygenase 1 (IDO1) under pro-inflammatory environments. This enzyme with catalytic and signaling activity supports the axis IDO1-KYN-aryl hydrocarbon receptor (AhR), promoting disease-specific immunomodulatory effects. IDO1 is a rate-limiting enzyme of the kynurenine pathway (KP) that begins tryptophan (Trp) catabolism across this pathway. The immune functions of the pathway, which are extensively described in cancer, have been forgotten so far in neurodegenerative diseases, where a chronic inflammatory environment underlines the progression of the disease. Despite dysfunctions of KP have been described in PD, these are mainly associated with neurotoxic functions. With this review, we aim to focus on the immune properties of IDO1+DCs and IDO1+monocytes as a possible strategy to balance the pro-inflammatory profile described in PD. We also highlight the importance of exploring the role of dopaminergic therapeutics in IDO1 modulation to possibly optimize current PD therapeutic strategies.
Collapse
Affiliation(s)
- Milene Gonçalves
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, CIBB - Centre for Innovative Biomedicine and Biotechnology, Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal; University of Coimbra, Institute for Interdisciplinary Research, Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), Portugal
| | - Paulo Rodrigues-Santos
- Univ Coimbra, Institute of Immunology, Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, Center for Neuroscience and Cell Biology, Coimbra, Portugal
| | - Cristina Januário
- Univ Coimbra, CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, Coimbra, Portugal
| | - Marco Cosentino
- Univ Insubria, Center for Research in Medical Pharmacology, Varese, Italy
| | - Frederico C Pereira
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, CIBB - Centre for Innovative Biomedicine and Biotechnology, Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal.
| |
Collapse
|
5
|
Zhong Y, Stauss HJ. Targeted Therapy of Multiple Sclerosis: A Case for Antigen-Specific Tregs. Cells 2024; 13:797. [PMID: 38786021 PMCID: PMC11119434 DOI: 10.3390/cells13100797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/29/2024] [Accepted: 05/05/2024] [Indexed: 05/25/2024] Open
Abstract
Multiple sclerosis is an autoinflammatory condition that results in damage to myelinated neurons in affected patients. While disease-modifying treatments have been successful in slowing the progression of relapsing-remitting disease, most patients still progress to secondary progressive disease that is largely unresponsive to disease-modifying treatments. Similarly, there is currently no effective treatment for patients with primary progressive MS. Innate and adaptive immune cells in the CNS play a critical role in initiating an autoimmune attack and in maintaining the chronic inflammation that drives disease progression. In this review, we will focus on recent insights into the role of T cells with regulatory function in suppressing the progression of MS, and, more importantly, in promoting the remyelination and repair of MS lesions in the CNS. We will discuss the exciting potential to genetically reprogram regulatory T cells to achieve immune suppression and enhance repair locally at sites of tissue damage, while retaining a fully competent immune system outside the CNS. In the future, reprogramed regulatory T cells with defined specificity and function may provide life medicines that can persist in patients and achieve lasting disease suppression after one cycle of treatment.
Collapse
Affiliation(s)
| | - Hans J. Stauss
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, Royal Free Hospital, Rowland Hill Street, London NW3 2PP, UK;
| |
Collapse
|
6
|
Park SY, Cha N, Kim S, Chae S, Lee WJ, Jung H, Bae H. Blocking Microglial Proliferation by CSF-1R Inhibitor Does Not Alter the Neuroprotective Effects of Adoptive Regulatory T Cells in 3xTg Alzheimer's Disease Mice. Curr Issues Mol Biol 2024; 46:2871-2883. [PMID: 38666910 PMCID: PMC11049167 DOI: 10.3390/cimb46040180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease that causes cognitive impairment. Neuroinflammation induced by activated microglia exacerbates AD. Regulatory T cells (Tregs) play roles in limiting neuroinflammation by converting microglial polarization. Therefore, adoptive Treg therapy is considered an attractive option for neurodegenerative disorders. However, the mechanism underlying Treg therapy via microglial modulation is not fully understood. In this study, we sought to determine whether adoptively transferred Tregs were effective when microglia proliferation was inhibited by using GW2580, which is an inhibitor of CSF1R. We found that inhibition of microglial proliferation during Treg transfer did not alter the therapeutic effects of Tregs on cognitive deficits and the accumulation of Aβ and pTAU in 3xTg-AD mice. The expression of pro- and anti-inflammatory markers in the hippocampus of 3xTg mice showed that GW2580 did not affect the inhibition of neuroinflammation by Treg transfer. Additionally, adoptively transferred Tregs were commonly detected in the brain on day 7 after transfer and their levels decreased slowly over 100 days. Our findings suggest that adoptively transferred Tregs can survive longer than 100 days in the brain, suppressing microglial activation and thus alleviating AD pathology. The present study provides valuable evidence to support the prolonged efficacy of adoptive Treg therapy in AD.
Collapse
Affiliation(s)
- Seon-Young Park
- Department of Science in Korean Medicine, College of Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Nari Cha
- Department of Science in Korean Medicine, College of Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Soyoung Kim
- Department of Science in Korean Medicine, College of Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Songah Chae
- Department of Korean Medicine, College of Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Won-Jun Lee
- Department of Korean Medicine, College of Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyunjae Jung
- Department of Korean Medicine, College of Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyunsu Bae
- Department of Science in Korean Medicine, College of Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Korean Medicine, College of Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
7
|
Yang TT, Liu PJ, Sun QY, Wang ZY, Yuan GB, Fan ZX, Ma L, Lu JF, Yuan BY, Zou WL, Zhao LM, Li Q, Liu GZ. CD4 +CD25 + regulatory T cells ex vivo generated from autologous naïve CD4 + T cells suppress EAE progression. Sci Rep 2024; 14:6262. [PMID: 38491084 PMCID: PMC10943184 DOI: 10.1038/s41598-024-56739-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/11/2024] [Indexed: 03/18/2024] Open
Abstract
CD4+CD25+ regulatory T cells (Tregs) play an important role in maintaining immune homeostasis in multiple sclerosis (MS). Hence, we aimed to explore the therapeutic efficacy and safety of adoptive cell therapy (ACT) utilizing induced antigen-specific Tregs in an animal model of MS, that is, in an experimental autoimmune encephalomyelitis (EAE) model. B cells from EAE model that were activated with soluble CD40L were used as antigen-presenting cells (APCs) to induce the differentiation of antigen-specific Tregs from naïve CD4 precursors, and then, a stepwise isolation of CD4+CD25highCD127low Tregs was performed using a flow sorter. All EAE mice were divided into Treg-treated group (2 × 104 cells in 0.2 mL per mouse, n = 14) and sham-treated group (0.2 mL normal saline (NS), n = 20), which were observed daily for clinical assessment, and for abnormal appearance for 6 weeks. Afterward, histological analysis, immunofluorescence and real-time PCR were performed. Compared to sham-treated mice, Treg-treated mice exhibited a significant decrease in disease severity scores and reduced inflammatory infiltration and demyelination in the spinal cord. Additionally, Tregs-treated mice demonstrated higher CCN3 protein and mRNA levels than sham-treated mice. The results of this preclinical study further support the therapeutic potential of this ACT approach in the treatment of MS.
Collapse
Affiliation(s)
- Ting-Ting Yang
- Department of Neurology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Pen-Ju Liu
- Department of Neurology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Qing-Yu Sun
- Department of Anesthesiology, Chang Hai Hospital, Naval Military Medical University, Shanghai, China
| | - Ze-Yi Wang
- Department of Neurology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Guo-Bin Yuan
- Department of Neurology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Ze-Xin Fan
- Department of Neurology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Lin Ma
- Department of Neurology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jian-Feng Lu
- Department of Neurology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Bo-Yi Yuan
- Department of Neurology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Wen-Long Zou
- Department of Neurology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Li-Min Zhao
- Experimental Center, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Qian Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Guang-Zhi Liu
- Department of Neurology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
8
|
Graber DJ, Cook WJ, Sentman ML, Murad-Mabaera JM, Sentman CL. Human CD4+CD25+ T cells expressing a chimeric antigen receptor against aberrant superoxide dismutase 1 trigger antigen-specific immunomodulation. Cytotherapy 2024; 26:126-135. [PMID: 38043051 PMCID: PMC10872388 DOI: 10.1016/j.jcyt.2023.11.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/12/2023] [Accepted: 11/14/2023] [Indexed: 12/04/2023]
Abstract
BACKGROUND AIMS Amyotrophic lateral sclerosis (ALS) is a fatal disease associated with motor neuron degeneration, accumulation of aggregated misfolded proteins and neuroinflammation in motor regions of the central nervous system (CNS). Clinical trials using regulatory T cells (Tregs) are ongoing because of Tregs' immunomodulatory function, ability to traffic to the CNS, high numbers correlating with slower disease in ALS and disease-modifying activity in ALS mouse models. In the current study, a chimeric antigen receptor (CAR) was developed and characterized in human Tregs to enhance their immunomodulatory activity when in contact with an ALS protein aggregate. METHODS A CAR (DG05-28-3z) consisting of a human superoxide dismutase 1 (hSOD1)-binding single-chain variable fragment, CD28 hinge, transmembrane and co-stimulatory domain and CD3ζ signaling domain was created and expressed in human Tregs. Human Tregs were isolated by either magnetic enrichment for CD4+CD25hi cells (Enr-Tregs) or cell sorting for CD4+CD25hiCD127lo cells (FP-Tregs), transduced and expanded for 17 days. RESULTS The CAR bound preferentially to the ALS mutant G93A-hSOD1 protein relative to the wild-type hSOD1 protein. The CAR Tregs produced IL-10 when cultured with aggregated G93A-hSOD1 proteins or spinal cord explants from G93A-hSOD1 transgenic mice. Co-culturing DG05-28-3z CAR Tregs with human monocytes/macrophages inhibited production of tumor necrosis factor alpha and reactive oxygen species. Expanded FP-Tregs resulted in more robust Tregs compared with Enr-Tregs. FP-Tregs produced similar IL-10 and less interferon gamma, had lower Treg-specific demethylated region methylation and expressed higher FoxP3 and CD39. CONCLUSIONS Taken together, this study demonstrates that gene-modified Tregs can be developed to target an aggregated ALS-relevant protein to elicit CAR-mediated Treg effector functions and provides an approach for generating Treg therapies for ALS with the goal of enhanced disease site-specific immunomodulation.
Collapse
Affiliation(s)
- David J Graber
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA; Center for Synthetic Immunity, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - W James Cook
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA; Center for Synthetic Immunity, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Marie-Louise Sentman
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA; Center for Synthetic Immunity, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | | | - Charles L Sentman
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA; Center for Synthetic Immunity, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA.
| |
Collapse
|
9
|
Zhang C, Li Y, Yu Y, Li Z, Xu X, Talifu Z, Liu W, Yang D, Gao F, Wei S, Zhang L, Gong H, Peng R, Du L, Li J. Impact of inflammation and Treg cell regulation on neuropathic pain in spinal cord injury: mechanisms and therapeutic prospects. Front Immunol 2024; 15:1334828. [PMID: 38348031 PMCID: PMC10859493 DOI: 10.3389/fimmu.2024.1334828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/03/2024] [Indexed: 02/15/2024] Open
Abstract
Spinal cord injury is a severe neurological trauma that can frequently lead to neuropathic pain. During the initial stages following spinal cord injury, inflammation plays a critical role; however, excessive inflammation can exacerbate pain. Regulatory T cells (Treg cells) have a crucial function in regulating inflammation and alleviating neuropathic pain. Treg cells release suppressor cytokines and modulate the function of other immune cells to suppress the inflammatory response. Simultaneously, inflammation impedes Treg cell activity, further intensifying neuropathic pain. Therefore, suppressing the inflammatory response while enhancing Treg cell regulatory function may provide novel therapeutic avenues for treating neuropathic pain resulting from spinal cord injury. This review comprehensively describes the mechanisms underlying the inflammatory response and Treg cell regulation subsequent to spinal cord injury, with a specific focus on exploring the potential mechanisms through which Treg cells regulate neuropathic pain following spinal cord injury. The insights gained from this review aim to provide new concepts and a rationale for the therapeutic prospects and direction of cell therapy in spinal cord injury-related conditions.
Collapse
Affiliation(s)
- Chunjia Zhang
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Yan Li
- Institute of Rehabilitation medicine, China Rehabilitation Research Center, Beijing, China
| | - Yan Yu
- Institute of Rehabilitation medicine, China Rehabilitation Research Center, Beijing, China
| | - Zehui Li
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Xin Xu
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Zuliyaer Talifu
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Wubo Liu
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Degang Yang
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Feng Gao
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Song Wei
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Liang Zhang
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Han Gong
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Run Peng
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Liangjie Du
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Jianjun Li
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Institute of Rehabilitation medicine, China Rehabilitation Research Center, Beijing, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
10
|
Asamu MO, Oladipo OO, Abayomi OA, Adebayo AA. Alzheimer's disease: The role of T lymphocytes in neuroinflammation and neurodegeneration. Brain Res 2023; 1821:148589. [PMID: 37734576 DOI: 10.1016/j.brainres.2023.148589] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/03/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
Alzheimer's disease, the leading cause of progressive cognitive decline globally, has been reported to be enhanced by neuroinflammation. Brain-resident innate immune cells and adaptive immune cells work together to produce neuroinflammation. Studies over the past decade have established the neuroimmune axis present in Alzheimer's disease; the crosstalk between adaptive and innate immune cells within and outside the brain is crucial to the onset and progression of Alzheimer's disease. Although the role of the adaptive immune system in Alzheimer's disease is not fully understood, it has been hypothesized that the brain's immune homeostasis is significantly disrupted, which greatly contributes to neuroinflammation. Brain-infiltrating T cells possess proinflammatory phenotypes and activities that directly contribute to neuroinflammation. The pro-inflammatory activities of the adaptive immune system in Alzheimer's disease are characterized by the upregulation of effector T cell activities and the downregulation of regulatory T cell activities in the brain, blood, and cerebrospinal fluid. In this review, we discuss the major impact of T lymphocytes on the pathogenesis and progression of Alzheimer's disease. Understanding the role and mechanism of action of T cells in Alzheimer's disease would significantly contribute to the identification of novel biomarkers for diagnosing and monitoring the progression of the disease. This knowledge could also be crucial to the development of immunotherapies for Alzheimer's disease.
Collapse
Affiliation(s)
- Moses O Asamu
- Department of Anatomy, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria; College of Health Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Oladapo O Oladipo
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria; College of Health Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria.
| | - Oluseun A Abayomi
- College of Health Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria; Olabisi Onabanjo University Teaching Hospital (OOUTH), Sagamu, Ogun State, Nigeria
| | - Afeez A Adebayo
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria; College of Health Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| |
Collapse
|
11
|
Szepanowski RD, Haupeltshofer S, Vonhof SE, Frank B, Kleinschnitz C, Casas AI. Thromboinflammatory challenges in stroke pathophysiology. Semin Immunopathol 2023:10.1007/s00281-023-00994-4. [PMID: 37273022 DOI: 10.1007/s00281-023-00994-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/27/2023] [Indexed: 06/06/2023]
Abstract
Despite years of encouraging translational research, ischemic stroke still remains as one of the highest unmet medical needs nowadays, causing a tremendous burden to health care systems worldwide. Following an ischemic insult, a complex signaling pathway emerges leading to highly interconnected thrombotic as well as neuroinflammatory signatures, the so-called thromboinflammatory cascade. Here, we thoroughly review the cell-specific and time-dependent role of different immune cell types, i.e., neutrophils, macrophages, T and B cells, as key thromboinflammatory mediators modulating the neuroinflammatory response upon stroke. Similarly, the relevance of platelets and their tight crosstalk with a variety of immune cells highlights the relevance of this cell-cell interaction during microvascular dysfunction, neovascularization, and cellular adhesion. Ultimately, we provide an up-to-date overview of therapeutic approaches mechanistically targeting thromboinflammation currently under clinical translation, especially focusing on phase I to III clinical trials.
Collapse
Affiliation(s)
- R D Szepanowski
- Department of Neurology, University Hospital Essen, Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen, Germany
| | - S Haupeltshofer
- Department of Neurology, University Hospital Essen, Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen, Germany
| | - S E Vonhof
- Department of Neurology, University Hospital Essen, Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen, Germany
| | - B Frank
- Department of Neurology, University Hospital Essen, Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen, Germany
| | - C Kleinschnitz
- Department of Neurology, University Hospital Essen, Essen, Germany.
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen, Germany.
| | - A I Casas
- Department of Neurology, University Hospital Essen, Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen, Germany
- Department of Pharmacology and Personalised Medicine, Faculty of Health, Medicine, and Life Sciences, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
12
|
Wang YR, Cui WQ, Wu HY, Xu XD, Xu XQ. The role of T cells in acute ischemic stroke. Brain Res Bull 2023; 196:20-33. [PMID: 36906042 DOI: 10.1016/j.brainresbull.2023.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
Acute ischemic stroke (AIS) is associated with high rates of disability and mortality, exerting a substantial impact on overall survival and health-related quality of life. Treatment of AIS remains challenging given that the underlying pathologic mechanisms remain unclear. However, recent research has demonstrated that the immune system plays a key role in the development of AIS. Numerous studies have reported infiltration of T cells into ischemic brain tissue. While some types of T cells can promote the development of inflammatory responses and aggravate ischemic damage in patients with AIS, other T cells appear to exert neuroprotective effects via immunosuppression and other mechanisms. In this review, we discuss the recent findings regarding the infiltration of T cells into ischemic brain tissue, and the mechanisms governing how T cells can facilitate tissue injury or neuroprotection in AIS. Factors influencing the function of T cells, such as intestinal microflora and sex differences, are also discussed. We also explore the recent research on the effect of non-coding RNA on T cells after stroke, as well as the potential for specifically targeting T cells in the treatment of stroke patients.
Collapse
Affiliation(s)
- Yi-Ran Wang
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wen-Qiang Cui
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China; First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hong-Yun Wu
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China; First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiang-Dong Xu
- Experimental Center, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiang-Qing Xu
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China; First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
13
|
Abstract
Interactions between the immune and nervous systems are of central importance in neuropathic pain, a common and debilitating form of chronic pain caused by a lesion or disease affecting the somatosensory system. Our understanding of neuroimmune interactions in pain research has advanced considerably. Initially considered as passive bystanders, then as culprits in the pathogenesis of neuropathic pain, immune responses in the nervous system are now established to underpin not only the initiation and progression of pain but also its resolution. Indeed, immune cells and their mediators are well-established promoters of neuroinflammation at each level of the neural pain pathway that contributes to pain hypersensitivity. However, emerging evidence indicates that specific subtypes of immune cells (including antinociceptive macrophages, pain-resolving microglia and T regulatory cells) as well as immunoresolvent molecules and modulators of the gut microbiota-immune system axis can reduce the pain experience and contribute to the resolution of neuropathic pain. This Review provides an overview of the immune mechanisms responsible for the resolution of neuropathic pain, including those involved in innate, adaptive and meningeal immunity as well as interactions with the gut microbiome. Specialized pro-resolving mediators and therapeutic approaches that target these neuroimmune mechanisms are also discussed.
Collapse
|
14
|
Contaldi E, Magistrelli L, Comi C. Disease mechanisms as subtypes: Immune dysfunction in Parkinson's disease. HANDBOOK OF CLINICAL NEUROLOGY 2023; 193:67-93. [PMID: 36803824 DOI: 10.1016/b978-0-323-85555-6.00008-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
In recent years, the contraposition between inflammatory and neurodegenerative processes has been increasingly challenged. Inflammation has been emphasized as a key player in the onset and progression of Parkinson disease (PD) and other neurodegenerative disorders. The strongest indicators of the involvement of the immune system derived from evidence of microglial activation, profound imbalance in phenotype and composition of peripheral immune cells, and impaired humoral immune responses. Moreover, peripheral inflammatory mechanisms (e.g., involving the gut-brain axis) and immunogenetic factors are likely to be implicated. Even though several lines of preclinical and clinical studies are supporting and defining the complex relationship between the immune system and PD, the exact mechanisms are currently unknown. Similarly, the temporal and causal connections between innate and adaptive immune responses and neurodegeneration are unsettled, challenging our ambition to define an integrated and holistic model of the disease. Despite these difficulties, current evidence is providing the unique opportunity to develop immune-targeted approaches for PD, thus enriching our therapeutic armamentarium. This chapter aims to provide an extensive overview of past and present studies that explored the implication of the immune system in neurodegeneration, thus paving the road for the concept of disease modification in PD.
Collapse
Affiliation(s)
- Elena Contaldi
- Movement Disorders Centre, "Maggiore della Carità" University Hospital, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Luca Magistrelli
- Movement Disorders Centre, "Maggiore della Carità" University Hospital, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Cristoforo Comi
- Neurology Unit, S.Andrea Hospital, Department of Translational Medicine, University of Piemonte Orientale, Vercelli, Italy.
| |
Collapse
|
15
|
Immunotherapy as a Treatment for Stroke: Utilizing Regulatory T Cells. BRAIN HEMORRHAGES 2023. [DOI: 10.1016/j.hest.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
|
16
|
Casares N, Alfaro M, Cuadrado-Tejedor M, Lasarte-Cia A, Navarro F, Vivas I, Espelosin M, Cartas-Cejudo P, Fernández-Irigoyen J, Santamaría E, García-Osta A, Lasarte JJ. Improvement of cognitive function in wild-type and Alzheimer´s disease mouse models by the immunomodulatory properties of menthol inhalation or by depletion of T regulatory cells. Front Immunol 2023; 14:1130044. [PMID: 37187754 PMCID: PMC10175945 DOI: 10.3389/fimmu.2023.1130044] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
A complex network of interactions exists between the olfactory, immune and central nervous systems. In this work we intend to investigate this connection through the use of an immunostimulatory odorant like menthol, analyzing its impact on the immune system and the cognitive capacity in healthy and Alzheimer's Disease Mouse Models. We first found that repeated short exposures to menthol odor enhanced the immune response against ovalbumin immunization. Menthol inhalation also improved the cognitive capacity of immunocompetent mice but not in immunodeficient NSG mice, which exhibited very poor fear-conditioning. This improvement was associated with a downregulation of IL-1β and IL-6 mRNA in the brain´s prefrontal cortex, and it was impaired by anosmia induction with methimazole. Exposure to menthol for 6 months (1 week per month) prevented the cognitive impairment observed in the APP/PS1 mouse model of Alzheimer. Besides, this improvement was also observed by the depletion or inhibition of T regulatory cells. Treg depletion also improved the cognitive capacity of the APPNL-G-F/NL-G-F Alzheimer´s mouse model. In all cases, the improvement in learning capacity was associated with a downregulation of IL-1β mRNA. Blockade of the IL-1 receptor with anakinra resulted in a significant increase in cognitive capacity in healthy mice as well as in the APP/PS1 model of Alzheimer´s disease. These data suggest an association between the immunomodulatory capacity of smells and their impact on the cognitive functions of the animals, highlighting the potential of odors and immune modulators as therapeutic agents for CNS-related diseases.
Collapse
Affiliation(s)
- Noelia Casares
- Immunology and Immunotherapy Program, Center for Applied Medical Research (CIMA), University of Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- *Correspondence: Juan José Lasarte, ; Noelia Casares,
| | - María Alfaro
- Immunology and Immunotherapy Program, Center for Applied Medical Research (CIMA), University of Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Mar Cuadrado-Tejedor
- Gene Therapy for Neurological Disease Program, Center for Applied Medical Research (CIMA), University of Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain
| | - Aritz Lasarte-Cia
- Immunology and Immunotherapy Program, Center for Applied Medical Research (CIMA), University of Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Flor Navarro
- Immunology and Immunotherapy Program, Center for Applied Medical Research (CIMA), University of Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Isabel Vivas
- Department of Radiology, Clínica Universidad de Navarra, University of Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - María Espelosin
- Gene Therapy for Neurological Disease Program, Center for Applied Medical Research (CIMA), University of Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Paz Cartas-Cejudo
- Clinical Neuroproteomics Unit, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Joaquín Fernández-Irigoyen
- Clinical Neuroproteomics Unit, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Enrique Santamaría
- Clinical Neuroproteomics Unit, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Ana García-Osta
- Gene Therapy for Neurological Disease Program, Center for Applied Medical Research (CIMA), University of Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Juan José Lasarte
- Immunology and Immunotherapy Program, Center for Applied Medical Research (CIMA), University of Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- *Correspondence: Juan José Lasarte, ; Noelia Casares,
| |
Collapse
|
17
|
Princiotta Cariddi L, Mauri M, Cosentino M, Versino M, Marino F. Alzheimer's Disease: From Immune Homeostasis to Neuroinflammatory Condition. Int J Mol Sci 2022; 23:13008. [PMID: 36361799 PMCID: PMC9658357 DOI: 10.3390/ijms232113008] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 08/13/2023] Open
Abstract
Alzheimer's Disease is the most common cause in the world of progressive cognitive decline. Although many modifiable and non-modifiable risk factors have been proposed, in recent years, neuroinflammation has been hypothesized to be an important contributing factor of Alzheimer's Disease pathogenesis. Neuroinflammation can occur through the combined action of the Central Nervous System resident immune cells and adaptive peripheral immune system. In the past years, immunotherapies for neurodegenerative diseases have focused wrongly on targeting protein aggregates Aβ plaques and NFT treatment. The role of both innate and adaptive immune cells has not been fully clarified, but several data suggest that immune system dysregulation plays a key role in neuroinflammation. Recent studies have focused especially on the role of the adaptive immune system and have shown that inflammatory markers are characterized by increased CD4+ Teff cells' activities and reduced circulating CD4+ Treg cells. In this review, we discuss the key role of both innate and adaptive immune systems in the degeneration and regeneration mechanisms in the pathogenesis of Alzheimer's Disease, with a focus on how the crosstalk between these two systems is able to sustain brain homeostasis or shift it to a neurodegenerative condition.
Collapse
Affiliation(s)
- Lucia Princiotta Cariddi
- PhD Program in Clinical and Experimental Medicine and Medical Humanities, University of Insubria, 21100 Varese, Italy
- Neurology and Stroke Unit, ASST Sette Laghi Hospital, 21100 Varese, Italy
| | - Marco Mauri
- Neurology and Stroke Unit, ASST Sette Laghi Hospital, 21100 Varese, Italy
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Marco Cosentino
- Center of Research in Medical Pharmacology, University of Insubria, 21100 Varese, Italy
| | - Maurizio Versino
- Neurology and Stroke Unit, ASST Sette Laghi Hospital, 21100 Varese, Italy
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy
| | - Franca Marino
- Center of Research in Medical Pharmacology, University of Insubria, 21100 Varese, Italy
| |
Collapse
|
18
|
Taheri M, Roustapour S, Gholipour M, Hussen BM, Eslami S, Ghafouri-Fard S, Sayad A. Analysis of expression of regulatory T cell related lncRNAs in inflammatory demyelinating polyneuropathies. Int Immunopharmacol 2022; 112:109188. [PMID: 36041257 DOI: 10.1016/j.intimp.2022.109188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/05/2022]
Abstract
Long non-coding RNAs that regulate function of regulatory T cells can affect pathoetiology of autoimmune disorders, such as inflammatory demyelinating polyneuropathies. In the current case-control study, we compared expression of four of these lncRNAs, namely FLICR, NEST, RMRP and TH2-LCR between patients with inflammatory demyelinating polyneuropathies and healthy subjects. Expressions of RMRP, NEST and FLICR were higher in total patients compared with controls. However, there was no significant difference in their expressions between acute and chronic demyelinating polyneuropathies. In addition, interaction of gender and disease factors had significant effect on expression levels of RMRP and TH2-LCR genes in subgroups. RMRR was superior to other lncRNAs in terms of AUC, sensitivity and specificity values in total patients and both subgroups of patients. This lncRNA could separate total patients, female patients and male patients from corresponding controls with AUC values (±SD) of 0.9 ± 0.03, 0.86 ± 0.07 and 0.93 ± 0.03, respectively. FLICR ranked second in this regard, since it could separate total patients, female patients and male patients from corresponding controls with AUC values (±SD) of 0.81 ± 0.03, 0.72 ± 0.07 and 0.87 ± 0.04, respectively. Therefore, our study provides evidence for participation of regulatory T cells-related lncRNAs in the pathoetiology of inflammatory demyelinating polyneuropathies.
Collapse
Affiliation(s)
- Mohammad Taheri
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | | | - Mahdi Gholipour
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq; Center of Research and Strategic Studies, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | - Solat Eslami
- Department of Medical Biotechnology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran; Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Arezou Sayad
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
19
|
Cui J, Li H, Chen Z, Dong T, He X, Wei Y, Li Z, Duan J, Cao T, Chen Q, Ma D, Zhou Y, Wang B, Shi M, Zhang Q, Xiong L, Qin D. Thrombo-Inflammation and Immunological Response in Ischemic Stroke: Focusing on Platelet-Tregs Interaction. Front Cell Neurosci 2022; 16:955385. [PMID: 35846566 PMCID: PMC9278516 DOI: 10.3389/fncel.2022.955385] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 06/13/2022] [Indexed: 02/05/2023] Open
Abstract
Strokes are mainly caused by thromboembolic obstruction of a major cerebral artery. Major clinical manifestations include paralysis hemiplegia, aphasia, memory, and learning disorders. In the case of ischemic stroke (IS), hyperactive platelets contribute to advancing an acute thrombotic event progression. Therefore, the principal goal of treatment is to recanalize the occluded vessel and restore cerebral blood flow by thrombolysis or mechanical thrombectomy. However, antiplatelets or thrombolytic therapy may increase the risk of bleeding. Beyond the involvement in thrombosis, platelets also contribute to the inflammatory process induced by cerebral ischemia. Platelet-mediated thrombosis and inflammation in IS lie primarily in the interaction of platelet receptors with endothelial cells and immune cells, including T-cells, monocytes/macrophages, and neutrophils. Following revascularization, intervention with conventional antiplatelet medicines such as aspirin or clopidogrel does not substantially diminish infarct development, most likely due to the limited effects on the thrombo-inflammation process. Emerging evidence has shown that T cells, especially regulatory T cells (Tregs), maintain immune homeostasis and suppress immune responses, playing a critical immunomodulatory role in ischemia-reperfusion injury. Hence, considering the deleterious effects of inflammatory and immune responses, there is an urgent need for more targeted agents to limit the thrombotic-inflammatory activity of platelets and minimize the risk of a cerebral hemorrhage. This review highlights the involvement of platelets in neuroinflammation and the evolving role of Tregs and platelets in IS. In response to all issues, preclinical and clinical strategies should generate more viable therapeutics for preventing and managing IS with immunotherapy targeting platelets and Tregs.
Collapse
Affiliation(s)
- Jieqiong Cui
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Huayan Li
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Zongning Chen
- Department of General Medicine, Lijiang People’s Hospital, Lijiang, China
| | - Ting Dong
- Department of Laboratory Medicine, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Xiying He
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Yuanyuan Wei
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Zhengkun Li
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Jinfeng Duan
- School of Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Ting Cao
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Qian Chen
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Dongmei Ma
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Yang Zhou
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Bo Wang
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Mingqin Shi
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Qin Zhang
- Department of Laboratory Medicine, The First People’s Hospital of Yunnan Province, Kunming, China
- *Correspondence: Qin Zhang,
| | - Lei Xiong
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
- Lei Xiong,
| | - Dongdong Qin
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
- Dongdong Qin,
| |
Collapse
|
20
|
Exosomes derived from regulatory T cells attenuates MPP+-induced inflammatory response and oxidative stress in BV-2 cells by inhibiting the TLR4/NF-κB signaling. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-022-00258-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Rezaei Kahmini F, Shahgaldi S, Azimi M, Mansourabadi AH. Emerging therapeutic potential of regulatory T (Treg) cells for rheumatoid arthritis: New insights and challenges. Int Immunopharmacol 2022; 108:108858. [PMID: 35597122 DOI: 10.1016/j.intimp.2022.108858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/27/2022] [Accepted: 05/10/2022] [Indexed: 11/05/2022]
Abstract
Rheumatoid arthritis (RA) is an autoimmune-related disorder characterized by chronic inflammation. Although the etiopathogenesis of RA still remains to be clarified, it is supposed that the breakdown of immune self-tolerance may contribute to the development of RA. Thus, restoring of immune tolerance at the site of inflammation is the ultimate goal of RA treatment. Regulatory T cells (Treg cells) are the main suppressive cells that maintain tolerance and inhibit immunity against auto-antigen. Of note, recent studies demonstrated the efficacy of adoptive transfer of Treg cells in the modulation of the unwanted immune response, which makes them an ideal candidate to maintain immune homeostasis and restore antigen-specific tolerance in the case of RA and other autoimmune diseases. This review intends to submit recent finding of Treg cells-based therapies in RA with a focus on strategies applied to improve the therapeutic value of Treg cells to restore immune tolerance.
Collapse
Affiliation(s)
- Fatemeh Rezaei Kahmini
- Autoimmune Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Shahab Shahgaldi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maryam Azimi
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Mansourabadi
- Department of Immunology, School of medicine, Tehran University of Medical Sciences, Tehran, Iran; Immunogenetics Research Network (IgReN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
22
|
Gonzales MM, Garbarino VR, Pollet E, Palavicini JP, Kellogg DL, Kraig E, Orr ME. Biological aging processes underlying cognitive decline and neurodegenerative disease. J Clin Invest 2022; 132:e158453. [PMID: 35575089 PMCID: PMC9106343 DOI: 10.1172/jci158453] [Citation(s) in RCA: 102] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease and related dementias (ADRD) are among the top contributors to disability and mortality in later life. As with many chronic conditions, aging is the single most influential factor in the development of ADRD. Even among older adults who remain free of dementia throughout their lives, cognitive decline and neurodegenerative changes are appreciable with advancing age, suggesting shared pathophysiological mechanisms. In this Review, we provide an overview of changes in cognition, brain morphology, and neuropathological protein accumulation across the lifespan in humans, with complementary and mechanistic evidence from animal models. Next, we highlight selected aging processes that are differentially regulated in neurodegenerative disease, including aberrant autophagy, mitochondrial dysfunction, cellular senescence, epigenetic changes, cerebrovascular dysfunction, inflammation, and lipid dysregulation. We summarize research across clinical and translational studies to link biological aging processes to underlying ADRD pathogenesis. Targeting fundamental processes underlying biological aging may represent a yet relatively unexplored avenue to attenuate both age-related cognitive decline and ADRD. Collaboration across the fields of geroscience and neuroscience, coupled with the development of new translational animal models that more closely align with human disease processes, is necessary to advance novel therapeutic discovery in this realm.
Collapse
Affiliation(s)
- Mitzi M. Gonzales
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases
- Department of Neurology
| | | | - Erin Pollet
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases
| | - Juan P. Palavicini
- Barshop Institute for Longevity and Aging Studies, and
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Dean L. Kellogg
- Barshop Institute for Longevity and Aging Studies, and
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
- Geriatric Research and Education Center, South Texas Veterans Health Care System, San Antonio, Texas, USA
| | - Ellen Kraig
- Barshop Institute for Longevity and Aging Studies, and
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Miranda E. Orr
- Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
23
|
Mou Y, Du Y, Zhou L, Yue J, Hu X, Liu Y, Chen S, Lin X, Zhang G, Xiao H, Dong B. Gut Microbiota Interact With the Brain Through Systemic Chronic Inflammation: Implications on Neuroinflammation, Neurodegeneration, and Aging. Front Immunol 2022; 13:796288. [PMID: 35464431 PMCID: PMC9021448 DOI: 10.3389/fimmu.2022.796288] [Citation(s) in RCA: 128] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 02/22/2022] [Indexed: 02/05/2023] Open
Abstract
It has been noticed in recent years that the unfavorable effects of the gut microbiota could exhaust host vigor and life, yet knowledge and theory are just beginning to be established. Increasing documentation suggests that the microbiota-gut-brain axis not only impacts brain cognition and psychiatric symptoms but also precipitates neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). How the blood-brain barrier (BBB), a machinery protecting the central nervous system (CNS) from the systemic circulation, allows the risky factors derived from the gut to be translocated into the brain seems paradoxical. For the unique anatomical, histological, and immunological properties underpinning its permeable dynamics, the BBB has been regarded as a biomarker associated with neural pathogenesis. The BBB permeability of mice and rats caused by GM dysbiosis raises the question of how the GM and its metabolites change BBB permeability and causes the brain pathophysiology of neuroinflammation and neurodegeneration (NF&ND) and brain aging, a pivotal multidisciplinary field tightly associated with immune and chronic systemic inflammation. If not all, gut microbiota-induced systemic chronic inflammation (GM-SCI) mainly refers to excessive gut inflammation caused by gut mucosal immunity dysregulation, which is often influenced by dietary components and age, is produced at the interface of the intestinal barrier (IB) or exacerbated after IB disruption, initiates various common chronic diseases along its dispersal routes, and eventually impairs BBB integrity to cause NF&ND and brain aging. To illustrate the immune roles of the BBB in pathophysiology affected by inflammatory or "leaky" IB resulting from GM and their metabolites, we reviewed the selected publications, including the role of the BBB as the immune barrier, systemic chronic inflammation and inflammation influences on BBB permeability, NF&ND, and brain aging. To add depth to the bridging role of systemic chronic inflammation, a plausible mechanism indispensable for BBB corruption was highlighted; namely, BBB maintenance cues are affected by inflammatory cytokines, which may help to understand how GM and its metabolites play a major role in NF&ND and aging.
Collapse
Affiliation(s)
- Yi Mou
- Geroscience and Chronic Disease Department, The Eighth Municipal Hospital for the People, Chengdu, China
| | - Yu Du
- Department of Emergency and Critical Care Medicine, The Fourth West China Hospital, Sichuan University, Chengdu, China
| | - Lixing Zhou
- National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jirong Yue
- National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xianliang Hu
- Geroscience and Chronic Disease Department, The Eighth Municipal Hospital for the People, Chengdu, China
| | - Yixin Liu
- National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Sao Chen
- Geroscience and Chronic Disease Department, The Eighth Municipal Hospital for the People, Chengdu, China
| | - Xiufang Lin
- National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Gongchang Zhang
- National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Hengyi Xiao
- National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Birong Dong
- National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
24
|
Regulation of Th17/Treg Balance by 27-Hydroxycholesterol and 24S-Hydroxycholesterol Correlates with Learning and Memory Ability in Mice. Int J Mol Sci 2022; 23:ijms23084370. [PMID: 35457188 PMCID: PMC9028251 DOI: 10.3390/ijms23084370] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/07/2022] [Accepted: 04/07/2022] [Indexed: 02/07/2023] Open
Abstract
Dysregulation of cholesterol metabolism and its oxidative products-oxysterols-in the brain is known to be associated with neurodegenerative diseases. It is well-known that 27-hydroxycholesterol (27-OHC) and 24S-hydroxycholesterol (24S-OHC) are the main oxysterols contributing to the pathogenesis of Alzheimer's disease (AD). However, the molecular mechanism of how 27-OHC and 24S-OHC cause cognitive decline remains unclear. To verify whether 27-OHC and 24S-OHC affect learning and memory by regulating immune responses, C57BL/6J mice were subcutaneously injected with saline, 27-OHC, 24S-OHC, 27-OHC+24S-OHC for 21 days. The oxysterols level and expression level of related metabolic enzymes, as well as the immunomodulatory factors were measured. Our results indicated that 27-OHC-treated mice showed worse learning and memory ability and higher immune responses, but lower expression level of interleukin-10 (IL-10) and interferon (IFN-λ2) compared with saline-treated mice, while 24S-OHC mice performed better in the Morris water maze test than control mice. No obvious morphological lesion was observed in these 24S-OHC-treated mice. Moreover, the expression level of interleukin-17A (IL-17A), granulocyte-macrophage colony-stimulating factor (GM-CSF) and macrophage inflammatory protein 3α (MIP-3α) were significantly decreased after 24S-OHC treatment. Notably, compared with 27-OHC group, mice treated with 27-OHC+24S-OHC showed higher brain 24S-OHC level, accompanied by increased CYP46A1 expression level while decreased CYP7B1, retinoic acid-related orphan receptor gamma t (RORγt) and IL-17A expression level. In conclusion, our study indicated that 27-OHC is involved in regulating the expression of RORγt, disturbing Th17/Treg balance-related immune responses which may be associated with the learning and memory impairment in mice. In contrast, 24S-OHC is neuroprotective and attenuates the neurotoxicity of 27-OHC.
Collapse
|
25
|
Contaldi E, Magistrelli L, Comi C. T Lymphocytes in Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2022; 12:S65-S74. [PMID: 35253782 PMCID: PMC9535550 DOI: 10.3233/jpd-223152] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
T cells are key mediators of both humoral and cellular adaptive immune responses, and their role in Parkinson’s disease (PD) is being increasingly recognized. Several lines of evidence have highlighted how T cells are involved in both the central nervous system and the periphery, leading to a profound imbalance in the immune network in PD patients. This review discusses the involvement of T cells in both preclinical and clinical studies, their importance as feasible biomarkers of motor and non-motor progression of the disease, and recent therapeutic strategies addressing the modulation of T cell response.
Collapse
Affiliation(s)
- Elena Contaldi
- Department of Translational Medicine, Movement Disorders Centre, "Maggiore della Caritá" University Hospital, University of Piemonte Orientale, Novara, Italy.,Program in Medical Sciences and Biotechnology, University of Piemonte Orientale, Novara, Italy
| | - Luca Magistrelli
- Department of Translational Medicine, Movement Disorders Centre, "Maggiore della Caritá" University Hospital, University of Piemonte Orientale, Novara, Italy.,Program in Clinical and Experimental Medicine and Medical Humanities, University of Insubria, Varese, Italy
| | - Cristoforo Comi
- Department of Translational Medicine, Neurology Unit, S. Andrea Hospital, University of Piemonte Orientale, Vercelli, Italy
| |
Collapse
|
26
|
Garfias S, Tamaya Domínguez B, Toledo Rojas A, Arroyo M, Rodríguez U, Boll C, Sosa AL, Sciutto E, Adalid-Peralta L, Martinez López Y, Fragoso G, Fleury A. Peripheral blood lymphocyte phenotypes in Alzheimer and Parkinson's diseases. Neurologia 2022; 37:110-121. [PMID: 30871733 DOI: 10.1016/j.nrl.2018.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/02/2018] [Accepted: 10/16/2018] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION Neuroinflammation is involved in the pathophysiology of various neurological disorders, in particular Alzheimer disease (AD) and Parkinson's disease (PD). Alterations in the blood-brain barrier may allow peripheral blood lymphocytes to enter the central nervous system; these may participate in disease pathogenesis. OBJECTIVE To evaluate the peripheral blood lymphocyte profiles of patients with AD and PD and their association with the disease and its progression. METHODS The study included 20 patients with AD, 20 with PD, and a group of healthy individuals. Ten of the patients with AD and 12 of those with PD were evaluated a second time 17 to 27 months after the start of the study. Lymphocyte subpopulations and their activation status were determined by flow cytometry. All patients underwent neurological examinations using internationally validated scales. RESULTS Compared to healthy individuals, patients with AD and PD showed significantly higher levels of activated lymphocytes, lymphocytes susceptible to apoptosis, central memory T cells, and regulatory T and B cells. As the diseases progressed, there was a significant decrease in activated cells (CD4+ CD38+ and CD8+ CD38 + in PD and AD, CD4+ CD69+ and CD8+ CD69+ in PD), T cells susceptible to apoptosis, and some regulatory populations (CD19+ CD5+ IL10+ in PD and AD, CD19+ CD5+ IL10+ FoxP3+, CD4+ FoxP3+ CD25+ CD45RO+ in PD). In patients with AD, disease progression was associated with lower percentages of CD4+ CD38+ cells and higher percentages of effector CD4 cells at the beginning of the study. Significant differences were observed between both diseases. CONCLUSIONS This study provides evidence of changes in peripheral blood lymphocyte phenotypes associated with AD and PD and their severity. Considering effective blood-brain communication, our results open new avenues of research into immunomodulation therapies to treat these diseases.
Collapse
Affiliation(s)
- S Garfias
- Unidad de Neuroinflamación, Instituto de Investigaciones Biomédicas-Universidad Nacional Autónoma de México (UNAM)/Facultad de Medicina-UNAM/Instituto Nacional de Neurología y Neurocirugía, Ciudad de México, México
| | - B Tamaya Domínguez
- Unidad de Neuroinflamación, Instituto de Investigaciones Biomédicas-Universidad Nacional Autónoma de México (UNAM)/Facultad de Medicina-UNAM/Instituto Nacional de Neurología y Neurocirugía, Ciudad de México, México
| | - A Toledo Rojas
- Unidad de Neuroinflamación, Instituto de Investigaciones Biomédicas-Universidad Nacional Autónoma de México (UNAM)/Facultad de Medicina-UNAM/Instituto Nacional de Neurología y Neurocirugía, Ciudad de México, México
| | - M Arroyo
- Unidad de Neuroinflamación, Instituto de Investigaciones Biomédicas-Universidad Nacional Autónoma de México (UNAM)/Facultad de Medicina-UNAM/Instituto Nacional de Neurología y Neurocirugía, Ciudad de México, México
| | - U Rodríguez
- Clínica de Parkinson, Instituto Nacional de Neurología y Neurocirugía, Secretaría de Salud, Ciudad de México, México
| | - C Boll
- Clínica de Parkinson, Instituto Nacional de Neurología y Neurocirugía, Secretaría de Salud, Ciudad de México, México
| | - A L Sosa
- Clínica de Demencia, Instituto Nacional de Neurología y Neurocirugía, Secretaría de Salud, Ciudad de México, México
| | - E Sciutto
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, UNAM, Ciudad de México, México
| | - L Adalid-Peralta
- Unidad de Neuroinflamación, Instituto de Investigaciones Biomédicas-Universidad Nacional Autónoma de México (UNAM)/Facultad de Medicina-UNAM/Instituto Nacional de Neurología y Neurocirugía, Ciudad de México, México
| | - Y Martinez López
- Unidad de Neuroinflamación, Instituto de Investigaciones Biomédicas-Universidad Nacional Autónoma de México (UNAM)/Facultad de Medicina-UNAM/Instituto Nacional de Neurología y Neurocirugía, Ciudad de México, México
| | - G Fragoso
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, UNAM, Ciudad de México, México
| | - A Fleury
- Unidad de Neuroinflamación, Instituto de Investigaciones Biomédicas-Universidad Nacional Autónoma de México (UNAM)/Facultad de Medicina-UNAM/Instituto Nacional de Neurología y Neurocirugía, Ciudad de México, México.
| |
Collapse
|
27
|
Harkins AL, Kopec AL, Keeler AM. Regulatory T Cell Therapeutics for Neuroinflammatory Disorders. Crit Rev Immunol 2022; 42:1-27. [PMID: 37017285 PMCID: PMC11465901 DOI: 10.1615/critrevimmunol.2022045080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A delicate balance of immune regulation exists in the central nervous system (CNS) that is often dysreg-ulated in neurological diseases, making them complicated to treat. With altered immune surveillance in the diseased or injured CNS, signals that are beneficial in the homeostatic CNS can be disrupted and lead to neuroinflammation. Recent advances in niche immune cell subsets have provided insight into the complicated cross-talk between the nervous system and the immune system. Regulatory T cells (Tregs) are a subset of T cells that are capable of suppressing effector T-cell activation and regulating immune tolerance, and play an important role in neuroprotection. Tregs have been shown to be effective therapies in a variety of immune-related disorders including, graft-versus-host disease (GVHD), type 1 diabetes (T1D), and inflammatory bowel disease (IBD), as well as within the CNS. Recently, significant advancements in engineering T cells, such as chimeric antigen receptor (CAR) T cells, have led to several approved therapies suggesting the safety and efficacy for similar engineered Treg therapies. Further, as understanding of the immune system's role in neuroinflammation has progressed, Tregs have recently become a potential therapeutic in the neurology space. In this review, we discuss Tregs and their evolving role as therapies for neuroinflammatory related disorders.
Collapse
Affiliation(s)
- Ashley L. Harkins
- Graduate Program in Neuroscience, Morningside Graduate School of Biomedical Sciences
- Horae Gene Therapy Center
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA
| | | | - Allison M. Keeler
- Graduate Program in Neuroscience, Morningside Graduate School of Biomedical Sciences
- Horae Gene Therapy Center
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| |
Collapse
|
28
|
Yoshimura A, Ohyagi M, Ito M. T cells in the brain inflammation. Adv Immunol 2022; 157:29-58. [PMID: 37061287 DOI: 10.1016/bs.ai.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The immune system is deeply involved in autoimmune diseases of the central nervous system (CNS), such as multiple sclerosis, N-methyl-d-aspartate (NMDA) receptor encephalitis, and narcolepsy. Additionally, the immune system is involved in various brain diseases including cerebral infarction and neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). In particular, reports related to T cells are increasing. T cells may also play important roles in brain deterioration and dementia that occur with aging. Our understanding of the role of immune cells in the context of the brain has been greatly improved by the use of acute ischemic brain injury models. Additionally, similar neural damage and repair events are shown to occur in more chronic brain neurodegenerative brain diseases. In this review, we focus on the role of T cells, including CD4+ T cells, CD8+ T cells and regulatory T cells (Tregs) in cerebral infarction and neurodegenerative diseases.
Collapse
|
29
|
Abstract
Recent evidence shows that when ischemic stroke (IS) occurs, the BBB would be destructed, thereby promoting the immune cells to migrate into the brain, suggesting that the immune responses can play a vital role in the pathology of IS. As an essential subpopulation of immunosuppressive T cells, regulatory T (Treg) cells are involved in maintaining immune homeostasis and suppressing immune responses in the pathophysiological conditions of IS. During the past decades, the regulatory role of Treg cells has attracted the interest of numerous researchers. However, whether they are beneficial or detrimental to the outcomes of IS remains controversial. Moreover, Treg cells exert distinctive effects in the different stages of IS. Therefore, it is urgent to elucidate how Treg cells modulate the immune responses induced by IS. In this review, we describe how Treg cells fluctuate and play a role in the regulation of immune responses after IS in both experimental animals and humans, and summarize their biological functions and mechanisms in both CNS and periphery. We also discuss how Treg cells participate in poststroke inflammation and immunodepression and the potential of Treg cells as a novel therapeutic approach.
Collapse
|
30
|
Gryksa K, Neumann ID. Consequences of pandemic-associated social restrictions: Role of social support and the oxytocin system. Psychoneuroendocrinology 2022; 135:105601. [PMID: 34837776 PMCID: PMC8605825 DOI: 10.1016/j.psyneuen.2021.105601] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/17/2021] [Accepted: 11/17/2021] [Indexed: 12/15/2022]
Abstract
During pandemics, governments take drastic actions to prevent the spreading of the disease, as seen during the present COVID-19 crisis. Sanctions of lockdown, social distancing and quarantine urge people to exclusively work and teach at home and to restrict social contacts to a minimum; lonely people get into further isolation, while families` nerves are strained to the extreme. Overall, this results in a dramatic and chronic increase in the level of psychosocial stress over several months mainly caused by i) social isolation and ii) psychosocial stress associated with overcrowding, social tension in families, and domestic violence. Moreover, pandemic-associated social restrictions are accompanied by loss of an essential stress buffer and important parameter for general mental and physical health: social support. Chronic psychosocial stress and, in particular, social isolation and lack of social support affect not only mental health, but also the brain oxytocin system and the immune system. Hence, pandemic-associated social restrictions are expected to increase the risk of developing psychopathologies, such as depression, anxiety-related and posttraumatic stress disorders, on the one hand, but also to induce a general inflammatory state and to impair the course of infectious disorders on the other. Due to its pro-social and stress-buffering effects, resulting in an anti-inflammatory state in case of disease, the role of the neuropeptide oxytocin will be discussed and critically considered as an emerging treatment option in cases of pandemic-induced psychosocial stress, viral infection and during recovery. In this review, we aim to critically focus on possible short- and long-term consequences of social restrictions on mental health and the immune system, while discussion oxytocin as a possible treatment option.
Collapse
Affiliation(s)
- Katharina Gryksa
- Department of Behavioural and Molecular Neurobiology, University of Regensburg, Regensburg, Germany.
| | - Inga D Neumann
- Department of Behavioural and Molecular Neurobiology, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
31
|
Diverse functions and mechanisms of regulatory T cell in ischemic stroke. Exp Neurol 2021; 343:113782. [PMID: 34116055 DOI: 10.1016/j.expneurol.2021.113782] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 05/24/2021] [Accepted: 06/05/2021] [Indexed: 12/28/2022]
Abstract
The inflammatory and immune processes are key pathophysiological processes in the ischemic stroke, including leukocyte infiltration and destruction of the blood-brain-barrier (BBB), which further lead to increased post-ischemic inflammation. Regulatory T cells (Tregs) are a specific subset of T lymphocytes that play a pivotal role in suppressing the activation of immune system, maintaining immune homeostasis, and regulating inflammation induced by pathogens and environmental toxins. We would like to discuss the paradox function of Tregs in ischemic stroke. The accumulating data indicate that Tregs are involved in the immune regulation and self-tolerance after ischemic stroke, contributing the outcome of ischemic stroke. Tregs could resist immune response overactivation, and were supposed to be the endogenous regulatory factors to control the immune response of ischemic brain. Although, there are still some controversies and unresolved issues about the functions and mechanisms of Tregs in ischemic stroke. More and more attention has been paid to Tregs in the pathogenesis of ischemic stroke and it might be a potential therapeutic target in the future. In this review, we will summarize the recent findings on the specific functions and mechanisms of Tregs and discuss its potential therapeutic role in ischemic stroke.
Collapse
|
32
|
Jiang Q, Stone CR, Elkin K, Geng X, Ding Y. Immunosuppression and Neuroinflammation in Stroke Pathobiology. Exp Neurobiol 2021; 30:101-112. [PMID: 33972464 PMCID: PMC8118752 DOI: 10.5607/en20033] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 02/03/2021] [Accepted: 02/23/2021] [Indexed: 02/07/2023] Open
Abstract
Over the preceding decades, there have been substantial advances in our knowledge of the pathophysiology of stroke. One such advance has been an increased understanding of the multifarious crosstalk in which the nervous and immune systems engage in order to maintain homeostasis. By interrupting the immune-nervous nexus, it is thought that stroke induces change in both systems. Additionally, it has been found that both innate and adaptive immunosuppression play protective roles against the effects of stroke. The release of danger-/damage-associated molecular patterns (DAMPs) activates Toll-like receptors (TLRs), contributing to the harmful inflammatory effects of ischemia/reperfusion injury after stroke; the Tyro3, Axl, and MerTK (TAM)/Gas6 system, however, has been shown to suppress inflammation via downstream signaling molecules that inhibit TLR signaling. Anti-inflammatory cytokines have also been found to promote neuroprotection following stroke. Additionally, adaptive immunosuppression merits further consideration as a potential endogenous protective mechanism. In this review, we highlight recent studies regarding the effects and mechanism of immunosuppression on the pathophysiology of stroke, with the hope that a better understanding of the function of both of innate and adaptive immunity in this setting will facilitate the development of effective therapies for post-stroke inflammation.
Collapse
Affiliation(s)
- Qian Jiang
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing 101100, China.,Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing 101100, China
| | - Christopher R Stone
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit 48201, MI, USA
| | - Kenneth Elkin
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit 48201, MI, USA
| | - Xiaokun Geng
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing 101100, China.,Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing 101100, China.,Department of Neurosurgery, Wayne State University School of Medicine, Detroit 48201, MI, USA
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit 48201, MI, USA.,Department of Research & Development Center, John D. Dingell VA Medical Center, Detroit 48201, MI, USA
| |
Collapse
|
33
|
Maghrebi O, Hanachi M, Bahrini K, Kchaou M, Jeridi C, Belal S, Ben Sassi S, Barbouche MR, Souiai O, Belghith M. Differential Gene Expression Patterns in Blood and Cerebrospinal Fluid of Multiple Sclerosis and Neuro-Behçet Disease. Front Genet 2021; 12:638236. [PMID: 33719347 PMCID: PMC7954360 DOI: 10.3389/fgene.2021.638236] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 02/05/2021] [Indexed: 11/13/2022] Open
Abstract
Inflammatory demyelinating disorders of the central nervous system are debilitating conditions of the young adult, here we focus on multiple sclerosis (MS) and neuro-Behçet disease (NBD). MS is an autoimmune disorder of the central nervous system. NBD, a neurological manifestation of an idiopathic chronic relapsing multisystem inflammatory disease, the behçet disease. The diagnosis of MS and NBD relies on clinical symptoms, magnetic resonance imaging and laboratory tests. At first onset, clinical and imaging similarities between the two disorders may occur, making differential diagnosis challenging and delaying appropriate management. Aiming to identify additional discriminating biomarker patterns, we measured and compared gene expression of a broad panel of selected genes in blood and cerebrospinal fluid (CSF) cells of patients suffering from NBD, MS and non inflammatory neurological disorders (NIND). To reach this aim, bivariate and multivariate analysis were applied. The Principal Analysis Component (PCA) highlighted distinct profiles between NBD, MS, and controls. Transcription factors foxp3 in the blood along with IL-4, IL-10, and IL-17 expressions were the parameters that are the main contributor to the segregation between MS and NBD clustering. Moreover, parameters related to cellular activation and inflammatory cytokines within the CSF clearly differentiate between the two inflammatory diseases and the controls. We proceeded to ROC analysis in order to identify the most distinctive parameters between both inflammatory neurological disorders. The latter analysis suggested that IL-17, CD73 in the blood as well as IL-1β and IL-10 in the CSF were the most discriminating parameters between MS and NBD. We conclude that combined multi-dimensional analysis in blood and CSF suggests distinct mechanisms governing the pathophysiology of these two neuro-inflammatory disorders.
Collapse
Affiliation(s)
- Olfa Maghrebi
- Laboratory of Transmission, Control and Immunobiology of Infections, Institut Pasteur de Tunis, Tunis, Tunisia.,Faculty of Medicine, Tunis El Manar University, Tunis, Tunisia.,Tunis El Manar University, Tunis, Tunisia
| | - Mariem Hanachi
- Laboratory of Bioinformatics, Biomathematics and Biostatistics-LR16IPT09, Institut Pasteur de Tunis, Tunis, Tunisia.,Faculty of Science of Bizerte, University of Carthage, Jarzouna, Tunisia
| | - Khadija Bahrini
- Laboratory of Transmission, Control and Immunobiology of Infections, Institut Pasteur de Tunis, Tunis, Tunisia.,Tunis El Manar University, Tunis, Tunisia
| | - Mariem Kchaou
- Faculty of Medicine, Tunis El Manar University, Tunis, Tunisia.,Charles Nicolle Hospital, Tunis, Tunisia
| | - Cyrine Jeridi
- Faculty of Medicine, Tunis El Manar University, Tunis, Tunisia.,Department of Neurology, Mongi Ben Hmida National Institute of Neurology, Tunis, Tunisia
| | - Samir Belal
- Faculty of Medicine, Tunis El Manar University, Tunis, Tunisia.,Department of Neurology, Mongi Ben Hmida National Institute of Neurology, Tunis, Tunisia
| | - Samia Ben Sassi
- Faculty of Medicine, Tunis El Manar University, Tunis, Tunisia.,Department of Neurology, Mongi Ben Hmida National Institute of Neurology, Tunis, Tunisia
| | - Mohamed-Ridha Barbouche
- Laboratory of Transmission, Control and Immunobiology of Infections, Institut Pasteur de Tunis, Tunis, Tunisia.,Faculty of Medicine, Tunis El Manar University, Tunis, Tunisia
| | - Oussama Souiai
- Tunis El Manar University, Tunis, Tunisia.,Laboratory of Bioinformatics, Biomathematics and Biostatistics-LR16IPT09, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Meriam Belghith
- Laboratory of Transmission, Control and Immunobiology of Infections, Institut Pasteur de Tunis, Tunis, Tunisia.,Tunis El Manar University, Tunis, Tunisia
| |
Collapse
|
34
|
Zhang Y, Chen S, Li J, Dai W, Qian Y. Immune infiltrating cells in cholangiocarcinoma may become clinical diagnostic markers: based on bioinformatics analysis. World J Surg Oncol 2021; 19:59. [PMID: 33618734 PMCID: PMC7901112 DOI: 10.1186/s12957-021-02168-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 02/09/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Intrahepatic cholangiocarcinoma (ICC) is a malignant tumor originating from the secondary bile duct and its branch epithelium. Among primary liver tumors, the incidence of ICC is second only to hepatocellular carcinoma. Tumor microenvironment can regulate the occurrence and development of tumors. This study is dedicated to finding more markers that can diagnose ICC by finding the differential tumor microenvironment cells between ICC and normal tissues. METHODS We wanted to study the infiltration of immune cells between the cholangiocarcinoma of the same patient and its paired non-tumor tissues, to explore the difference of immune cells in the tumor microenvironment and adjacent non-tumor tissues in the same organism. So, we searched the relevant data of patients with ICC from the GEO database and found that the GSE45001 data set meets our research needs. CIBERSORT database is used to calculate immune cell composition. Finally, perform visual analysis and data statistics to find out the differentially expressed immune cells. RESULTS We found that the expression levels of dendritic cells activated, macrophages M2, and T cells regulatory (Tregs) in ICC were higher than normal tissues, and the expression levels of macrophages M1, monocytes, and T cells follicular helper in ICC were lower than normal tissues. CONCLUSION These 6 types of immune cells are expected to become molecular markers for clinical diagnosis of ICC.
Collapse
Affiliation(s)
- Yongwei Zhang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Sihan Chen
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jun Li
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wei Dai
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yeben Qian
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
35
|
Rossi B, Santos-Lima B, Terrabuio E, Zenaro E, Constantin G. Common Peripheral Immunity Mechanisms in Multiple Sclerosis and Alzheimer's Disease. Front Immunol 2021; 12:639369. [PMID: 33679799 PMCID: PMC7933037 DOI: 10.3389/fimmu.2021.639369] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/01/2021] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative diseases are closely related to inflammatory and autoimmune events, suggesting that the dysregulation of the immune system is a key pathological factor. Both multiple sclerosis (MS) and Alzheimer's disease (AD) are characterized by infiltrating immune cells, activated microglia, astrocyte proliferation, and neuronal damage. Moreover, MS and AD share a common pro-inflammatory signature, characterized by peripheral leukocyte activation and transmigration to the central nervous system (CNS). MS and AD are both characterized by the accumulation of activated neutrophils in the blood, leading to progressive impairment of the blood–brain barrier. Having migrated to the CNS during the early phases of MS and AD, neutrophils promote local inflammation that contributes to pathogenesis and clinical progression. The role of circulating T cells in MS is well-established, whereas the contribution of adaptive immunity to AD pathogenesis and progression is a more recent discovery. Even so, blocking the transmigration of T cells to the CNS can benefit both MS and AD patients, suggesting that common adaptive immunity mechanisms play a detrimental role in each disease. There is also growing evidence that regulatory T cells are beneficial during the initial stages of MS and AD, supporting the link between the modulatory immune compartments and these neurodegenerative disorders. The number of resting regulatory T cells declines in both diseases, indicating a common pathogenic mechanism involving the dysregulation of these cells, although their precise role in the control of neuroinflammation remains unclear. The modulation of leukocyte functions can benefit MS patients, so more insight into the role of peripheral immune cells may reveal new targets for pharmacological intervention in other neuroinflammatory and neurodegenerative diseases, including AD.
Collapse
Affiliation(s)
- Barbara Rossi
- Section of General Pathology, Department of Medicine, University of Verona, Verona, Italy
| | - Bruno Santos-Lima
- Section of General Pathology, Department of Medicine, University of Verona, Verona, Italy
| | - Eleonora Terrabuio
- Section of General Pathology, Department of Medicine, University of Verona, Verona, Italy
| | - Elena Zenaro
- Section of General Pathology, Department of Medicine, University of Verona, Verona, Italy
| | - Gabriela Constantin
- Section of General Pathology, Department of Medicine, University of Verona, Verona, Italy.,The Center for Biomedical Computing (CBMC), University of Verona, Verona, Italy
| |
Collapse
|
36
|
Deng B, Zhang W, Zhu Y, Li Y, Li D, Li B. FOXP3 + regulatory T cells and age-related diseases. FEBS J 2021; 289:319-335. [PMID: 33529458 DOI: 10.1111/febs.15743] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/29/2021] [Indexed: 12/17/2022]
Abstract
Regulatory T (Treg) cells are critical for the maintenance of immune homeostasis. Dysregulation of Treg cells has been implicated in the pathogenesis of autoimmunity and chronic inflammation, while aging is characterized by an accumulation of inflammatory markers in the peripheral blood, a phenomenon known as 'inflammaging'. The relationship between Treg cells and age-related diseases remains to be further studied. Increasing evidence revealed that Treg cells' dysfunction occurs in aged patients, suggesting that immune therapies targeting Treg cells may be a promising approach to treat diseases such as cancers and autoimmune diseases. Furthermore, drugs targeting Treg cells show encouraging results and contribute to CD8+ T-cell-mediated cytotoxic killing of tumor and infected cells. In general, a better understanding of Treg cell function may help us to develop new immune therapies against aging. In this review, we discuss potential therapeutic strategies to modify immune responses of relevance for aging to prevent and treat age-related diseases, as well as the challenges posed by the translation of novel immune therapies into clinical practice.
Collapse
Affiliation(s)
- Biaolong Deng
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, China.,Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, China
| | - Weiqi Zhang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, China.,Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, China
| | - Yicheng Zhu
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, China.,Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, China
| | - Yangyang Li
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, China.,Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, China
| | - Dan Li
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, China.,Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, China
| | - Bin Li
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, China.,Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, China
| |
Collapse
|
37
|
Royds J, Cassidy H, Conroy MJ, Dunne MR, Lysaght J, McCrory C. Examination and characterisation of the effect of amitriptyline therapy for chronic neuropathic pain on neuropeptide and proteomic constituents of human cerebrospinal fluid. Brain Behav Immun Health 2021; 10:100184. [PMID: 34589721 PMCID: PMC8474617 DOI: 10.1016/j.bbih.2020.100184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/11/2020] [Accepted: 12/03/2020] [Indexed: 12/25/2022] Open
Abstract
INTRODUCTION Amitriptyline is prescribed to reduce the intensity of chronic neuropathic pain. There is a paucity of validated in vivo evidence in humans regarding amitriptyline's mechanism of action. We examined the effect of amitriptyline therapy on cerebrospinal fluid (CSF) neuropeptides and proteome in patients with chronic neuropathic pain to identify potential mechanisms of action of amitriptyline. METHODS Patients with lumbar radicular neuropathic pain were selected for inclusion with clinical and radiological signs and a >50% reduction in pain in response to a selective nerve root block. Baseline (pre-treatment) and 8-week (post-treatment) pain scores with demographics were recorded. CSF samples were taken at baseline (pre-treatment) and 8 weeks after amitriptyline treatment (post-treatment). Proteome analysis was performed using mass spectrometry and secreted cytokines, chemokines and neurotrophins were measured by enzyme-linked immunosorbent assay (ELISA). RESULTS A total of 9/16 patients experienced a >30% reduction in pain after treatment with amitriptyline and GO analysis demonstrated that the greatest modulatory effect was on immune system processes. KEGG analysis also identified a reduction in PI3K-Akt and MAPK signalling pathways in responders but not in non-responders. There was also a significant decrease in the chemokine eotaxin-1 (p = 0.02) and a significant increase in the neurotrophin VEGF-A (p = 0.04) in responders. CONCLUSION The CSF secretome and proteome was modulated in responders to amitriptyline verifying many pre-clinical and in vitro models. The predominant features were immunomodulation with a reduction in pro-inflammatory pathways of neuronal-glia communications and evidence of a neurotrophic effect.
Collapse
Affiliation(s)
- Jonathan Royds
- Department of Pain Medicine, St. James Hospital, Dublin and School of Medicine, Trinity College Dublin, Ireland
| | - Hilary Cassidy
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Melissa J. Conroy
- Department of Surgery, Trinity Translational Medicine Institute, St. James’s Hospital and Trinity College Dublin, Dublin 8, Ireland
- Trinity St James’s Cancer Institute, St James’s Hospital Dublin, Dublin 8, Ireland
| | - Margaret R. Dunne
- Department of Surgery, Trinity Translational Medicine Institute, St. James’s Hospital and Trinity College Dublin, Dublin 8, Ireland
- Trinity St James’s Cancer Institute, St James’s Hospital Dublin, Dublin 8, Ireland
| | - Joanne Lysaght
- Department of Surgery, Trinity Translational Medicine Institute, St. James’s Hospital and Trinity College Dublin, Dublin 8, Ireland
- Trinity St James’s Cancer Institute, St James’s Hospital Dublin, Dublin 8, Ireland
| | - Connail McCrory
- Department of Pain Medicine, St. James Hospital, Dublin and School of Medicine, Trinity College Dublin, Ireland
| |
Collapse
|
38
|
Atif F, Yousuf S, Espinosa-Garcia C, Harris WAC, Stein DG. Post-ischemic stroke systemic inflammation: Immunomodulation by progesterone and vitamin D hormone. Neuropharmacology 2020; 181:108327. [PMID: 32950558 DOI: 10.1016/j.neuropharm.2020.108327] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 12/16/2022]
Abstract
Post-stroke systemic inflammation, due to the injury itself and exacerbated by in-hospital infections, can increase morbidity and mortality in stroke patients. In this study, we examined the immunomodulatory effects of progesterone (P4) alone and in combination with vitamin D hormone (VDH) on acute phase post-stroke peripheral immune dysfunction and functional/behavioral deficits. Adult rats underwent transient middle cerebral artery occlusion/reperfusion (tMCAO) and delayed systemic inflammation was induced by injections of lipopolysaccharide (LPS) beginning 24 h post-stroke. Animals were tested for behavioral outcomes and immune function at day 4 post-stroke. We also measured infarction volume and markers of neuronal inflammation (GFAP, IL-6) and apoptosis (cleaved caspase-3) in brain post-stroke. We observed the worst stroke outcomes in the stroke + systemic inflammation group compared to the stroke-alone group. Flow cytometric analysis of different subsets of immune cells in blood, spleen and thymus revealed peripheral immune dysfunction which was restored by both P4 and VDH monotherapy. P4 monotherapy reduced infarction volume, behavioral/functional deficits, peripheral immune dysfunction, neuronal inflammation, and apoptosis induced by post-stroke systemic inflammation. Combination treatment with P4+VDH improved outcomes better than monotherapy. Our findings can be taken to suggest that the current standard of care for stroke and post-stroke infection can be substantially improved by P4 and VDH combination therapy.
Collapse
Affiliation(s)
- Fahim Atif
- Brain Research Laboratory, Department of Emergency Medicine, USA.
| | - Seema Yousuf
- Brain Research Laboratory, Department of Emergency Medicine, USA
| | | | - Wayne A C Harris
- Emory Integrated Computing Core, School of Medicine, Emory University, Atlanta, GA, 30322,, USA
| | - Donald G Stein
- Brain Research Laboratory, Department of Emergency Medicine, USA
| |
Collapse
|
39
|
The contribution of thymic tolerance to central nervous system autoimmunity. Semin Immunopathol 2020; 43:135-157. [PMID: 33108502 PMCID: PMC7925481 DOI: 10.1007/s00281-020-00822-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/09/2020] [Indexed: 12/15/2022]
Abstract
Autoimmune diseases of the central nervous system (CNS) are associated with high levels of morbidity and economic cost. Research efforts have previously focused on the contribution of the peripheral adaptive and innate immune systems to CNS autoimmunity. However, a failure of thymic negative selection is a necessary step in CNS-reactive T cells escaping into the periphery. Even with defective thymic or peripheral tolerance, the development of CNS inflammation is rare. The reasons underlying this are currently poorly understood. In this review, we examine evidence implicating thymic selection in the pathogenesis of CNS autoimmunity. Animal models suggest that thymic negative selection is an important factor in determining susceptibility to and severity of CNS inflammation. There are indirect clinical data that suggest thymic function is also important in human CNS autoimmune diseases. Specifically, the association between thymoma and paraneoplastic encephalitis and changes in T cell receptor excision circles in multiple sclerosis implicate thymic tolerance in these diseases. We identify potential associations between CNS autoimmunity susceptibility factors and thymic tolerance. The therapeutic manipulation of thymopoiesis has the potential to open up new treatment modalities, but a better understanding of thymic tolerance in CNS autoimmunity is required before this can be realised.
Collapse
|
40
|
Bi Y, Lin X, Liang H, Yang D, Zhang X, Ke J, Xiao J, Chen Z, Chen W, Zhang X, Wang S, Liu CF. Human Adipose Tissue-Derived Mesenchymal Stem Cells in Parkinson's Disease: Inhibition of T Helper 17 Cell Differentiation and Regulation of Immune Balance Towards a Regulatory T Cell Phenotype. Clin Interv Aging 2020; 15:1383-1391. [PMID: 32884248 PMCID: PMC7434526 DOI: 10.2147/cia.s259762] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 07/28/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a neurodegenerative disorder displaying a typical neuroinflammation pathology that may result from an imbalance between regulatory T cells (Treg) and T helper 17 (Th17) cells. Human adipose tissue-derived mesenchymal stem cells (Ad-MSCs) exert immunomodulatory effects by inhibiting effector T cell responses and have been used to treat diverse immune disorders. We aimed to investigate the modulating effect of human Ad-MSCs on peripheral blood mononuclear cells (PBMCs) of patients with PD, focusing on differentiation into Th17 and Treg cells. METHODS We isolated human peripheral blood CD4+T cells and co-cultured them with Ad-MSCs at a ratio of 4:1 under either Th17 or Treg cell polarizing conditions for 4 days to detect the proportions of IL-17-producing CD4+T (Th17) and CD4+CD25+Foxp3+regulatory T (Treg) cells by flow cytometry. We also determined the mRNA expression levels of the retinoid-related orphan nuclear receptor (RORγt) transcription factor and those of interleukin-6 receptor (IL-6R), interleukin-23 receptor (IL-23R), leukemia inhibitory factor (LIF), and LIF receptor (LIFR) by quantitative reverse transcription PCR. We detected levels of cytokines in the supernatant (including LIF, IL-6, IL-23, IL-10, and TGF-β) using ELISA. RESULTS Our results showed that Ad-MSCs specifically inhibited the differentiation of PBMCs of patients with PD into IL-17-producing CD4+T cells by decreasing expressions of IL-6R, IL-23R, and RORγt (the key transcription factor for Th17 cells). Moreover, Ad-MSCs induced a functional CD4+CD25+Foxp3+T regulatory cell phenotype as evidenced by the secretion of IL-10. The levels of IL-6, IL-23, and TGF-β remained constant after co-culture under either the Th17 or the Treg cell polarizing condition. In addition, levels of LIF protein and its receptor mRNA were significantly increased under both polarizing conditions. CONCLUSION The present in vitro study found that Ad-MSCs from healthy participants were able to correct the imbalance between Th17 and Treg found in PBMCs of PD patients, which were correlated with an increase in LIF secretion and a decrease in expression of IL-6R, IL-23R, and RORγt. These findings should be confirmed by in vivo experiments.
Collapse
Affiliation(s)
- Yong Bi
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
- Department of Neurology, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, People’s Republic of China
- Institute of Neuroscience, Soochow University, Suzhou, People’s Republic of China
| | - Xiaobin Lin
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Huazheng Liang
- Department of Neurology, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Dehao Yang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Xiaowei Zhang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Jianming Ke
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Jingjing Xiao
- Department of Neurology, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Zhilin Chen
- Department of Neurology, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Weian Chen
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Xu Zhang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Shaoshi Wang
- Department of Neurology, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Chun-Feng Liu
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
- Institute of Neuroscience, Soochow University, Suzhou, People’s Republic of China
| |
Collapse
|
41
|
Davoli-Ferreira M, de Lima KA, Fonseca MM, Guimarães RM, Gomes FI, Cavallini MC, Quadros AU, Kusuda R, Cunha FQ, Alves-Filho JC, Cunha TM. Regulatory T cells counteract neuropathic pain through inhibition of the Th1 response at the site of peripheral nerve injury. Pain 2020; 161:1730-1743. [PMID: 32701834 DOI: 10.1097/j.pain.0000000000001879] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The inflammatory/immune response at the site of peripheral nerve injury participates in the pathophysiology of neuropathic pain. Nevertheless, little is known about the local regulatory mechanisms underlying peripheral nerve injury that counteracts the development of pain. Here, we investigated the contribution of regulatory T (Treg) cells to the development of neuropathic pain by using a partial sciatic nerve ligation model in mice. We showed that Treg cells infiltrate and proliferate in the site of peripheral nerve injury. Local Treg cells suppressed the development of neuropathic pain mainly through the inhibition of the CD4 Th1 response. Treg cells also indirectly reduced neuronal damage and neuroinflammation at the level of the sensory ganglia. Finally, we identified IL-10 signaling as an intrinsic mechanism by which Treg cells counteract neuropathic pain development. These results revealed Treg cells as important inhibitory modulators of the immune response at the site of peripheral nerve injury that restrains the development of neuropathic pain. In conclusion, the boosting of Treg cell function/activity might be explored as a possible interventional approach to reduce neuropathic pain development after peripheral nerve damage.
Collapse
Affiliation(s)
- Marcela Davoli-Ferreira
- Department of Pharmacology, Center for Research on Inflammatory Diseases (CRID), Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
- Graduate Program in Basic and Applied Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil. Dr. de Lima is now with the Department of Neuroscience, Center for Brain Immunology and Glia (BIG), University of Virginia, Charlottesville, VA, United States. Dr. Fonseca is now with the Department of Anesthesiology, Pain Mechanisms Laboratory, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Kalil A de Lima
- Department of Pharmacology, Center for Research on Inflammatory Diseases (CRID), Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
- Graduate Program in Basic and Applied Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil. Dr. de Lima is now with the Department of Neuroscience, Center for Brain Immunology and Glia (BIG), University of Virginia, Charlottesville, VA, United States. Dr. Fonseca is now with the Department of Anesthesiology, Pain Mechanisms Laboratory, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Miriam M Fonseca
- Department of Pharmacology, Center for Research on Inflammatory Diseases (CRID), Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Rafaela M Guimarães
- Department of Pharmacology, Center for Research on Inflammatory Diseases (CRID), Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Francisco I Gomes
- Department of Pharmacology, Center for Research on Inflammatory Diseases (CRID), Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Maria C Cavallini
- Department of Pharmacology, Center for Research on Inflammatory Diseases (CRID), Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
- Graduate Program in Basic and Applied Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil. Dr. de Lima is now with the Department of Neuroscience, Center for Brain Immunology and Glia (BIG), University of Virginia, Charlottesville, VA, United States. Dr. Fonseca is now with the Department of Anesthesiology, Pain Mechanisms Laboratory, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Andreza U Quadros
- Department of Pharmacology, Center for Research on Inflammatory Diseases (CRID), Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Ricardo Kusuda
- Department of Pharmacology, Center for Research on Inflammatory Diseases (CRID), Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Fernando Q Cunha
- Department of Pharmacology, Center for Research on Inflammatory Diseases (CRID), Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Jose C Alves-Filho
- Department of Pharmacology, Center for Research on Inflammatory Diseases (CRID), Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Thiago M Cunha
- Department of Pharmacology, Center for Research on Inflammatory Diseases (CRID), Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
42
|
Machhi J, Kevadiya BD, Muhammad IK, Herskovitz J, Olson KE, Mosley RL, Gendelman HE. Harnessing regulatory T cell neuroprotective activities for treatment of neurodegenerative disorders. Mol Neurodegener 2020; 15:32. [PMID: 32503641 PMCID: PMC7275301 DOI: 10.1186/s13024-020-00375-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/13/2020] [Indexed: 02/07/2023] Open
Abstract
Emerging evidence demonstrates that adaptive immunity influences the pathobiology of neurodegenerative disorders. Misfolded aggregated self-proteins can break immune tolerance leading to the induction of autoreactive effector T cells (Teffs) with associated decreases in anti-inflammatory neuroprotective regulatory T cells (Tregs). An imbalance between Teffs and Tregs leads to microglial activation, inflammation and neuronal injury. The cascade of such a disordered immunity includes the drainage of the aggregated protein antigens into cervical lymph nodes serving to amplify effector immune responses. Both preclinical and clinical studies demonstrate transformation of this altered immunity for therapeutic gain. We posit that the signs and symptoms of common neurodegenerative disorders such as Alzheimer's and Parkinson's diseases, amyotrophic lateral sclerosis, and stroke can be attenuated by boosting Treg activities.
Collapse
Affiliation(s)
- Jatin Machhi
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5880 USA
| | - Bhavesh D. Kevadiya
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5880 USA
- Department of Radiology, School of Medicine, Stanford University, Palo Alto, 94304 USA
| | - Ijaz Khan Muhammad
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5880 USA
- Department of Pharmacy, University of Swabi, Anbar Swabi, 23561 Pakistan
| | - Jonathan Herskovitz
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5880 USA
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-5880 USA
| | - Katherine E. Olson
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5880 USA
| | - R. Lee Mosley
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5880 USA
| | - Howard E. Gendelman
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5880 USA
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-5880 USA
| |
Collapse
|
43
|
Giovannelli I, Heath P, Shaw PJ, Kirby J. The involvement of regulatory T cells in amyotrophic lateral sclerosis and their therapeutic potential. Amyotroph Lateral Scler Frontotemporal Degener 2020; 21:435-444. [PMID: 32484719 DOI: 10.1080/21678421.2020.1752246] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neuroinflammation, meaning the establishment of a diffuse inflammatory condition in the CNS, is one of the main hallmarks of amyotrophic lateral sclerosis (ALS). Recently, a crucial role of regulatory T cells (Tregs) in this disease has been outlined. Tregs are a T cell subpopulation with immunomodulatory properties. In this review, we discuss the physiology of Tregs and their role in ALS disease onset and progression. Evidence has demonstrated that in ALS patients Tregs are dramatically and progressively reduced in number and are less effective in promoting immune suppression. In addition, Tregs levels correlate with the rate of disease progression and patient survival. For this reason, Tregs are now considered a promising therapeutic target for neuroprotection in ALS. In this review, the clinical impact of these cells will be discussed and an overview of the current clinical trials targeting Tregs is also provided.
Collapse
Affiliation(s)
- I Giovannelli
- Sheffield Institute of Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK
| | - P Heath
- Sheffield Institute of Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK
| | - P J Shaw
- Sheffield Institute of Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK
| | - J Kirby
- Sheffield Institute of Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK
| |
Collapse
|
44
|
Royds J, Conroy MJ, Dunne MR, Cassidy H, Matallanas D, Lysaght J, McCrory C. Examination and characterisation of burst spinal cord stimulation on cerebrospinal fluid cellular and protein constituents in patient responders with chronic neuropathic pain - A Pilot Study. J Neuroimmunol 2020; 344:577249. [PMID: 32361148 DOI: 10.1016/j.jneuroim.2020.577249] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/11/2020] [Accepted: 04/21/2020] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Patients with neuropathic pain have altered proteomic and neuropeptide constituents in cerebrospinal fluid (CSF) compared to controls. Tonic spinal cord stimulation (SCS) has demonstrated differential expression of neuropeptides in CSF before and after treatment suggesting potential mechanisms of action. Burst-SCS is an evidence-based paraesthesia free waveform utilised for neuropathic pain with a potentially different mechanistic action to tonic SCS. This study examines the dynamic biological changes of CSF at a cellular and proteome level after Burst-SCS. METHODS Patients with neuropathic pain selected for SCS had CSF sampled prior to implant of SCS and following 8 weeks of continuous Burst-SCS. Baseline and 8-week pain scores with demographics were recorded. T cell frequencies were analysed by flow cytometry, proteome analysis was performed using mass spectrometry and secreted cytokines, chemokines and neurotrophins were measured by enzyme-linked immunosorbent assay (ELISA). RESULTS 4 patients (2 females, 2 males) with a mean age of 51 years (+/-SEM 2.74, SD 5.48) achieved a reduction in pain of >50% following 8 weeks of Burst-SCS. Analysis of the CSF proteome indicated a significant alteration in protein expression most related to synapse assembly and immune regulators. There was significantly lower expression of the proteins: growth hormone A1 (PRL), somatostatin (SST), nucleobindin-2 (NUCB2), Calbindin (CALB1), acyl-CoA binding protein (DBI), proSAAS (PCSK1N), endothelin-3 (END3) and cholecystokinin (CCK) after Burst-SCS. The concentrations of secreted chemokines and cytokines and the frequencies of T cells were not significantly changed following Burst-SCS. CONCLUSION This study characterised the alteration in the CSF proteome in response to burst SCS in vivo. Functional analysis indicated that the alterations in the CSF proteome is predominately linked to synapse assembly and immune effectors. Individual protein analysis also suggests potential supraspinal mechanisms.
Collapse
Affiliation(s)
- Jonathan Royds
- Department of Pain Medicine, St. James Hospital, Dublin and School of Medicine, Trinity College Dublin, Ireland.
| | - Melissa J Conroy
- Department of Surgery, Trinity Translational Medicine Institute, St. James's Hospital and Trinity College Dublin, Dublin 8, Ireland
| | - Margaret R Dunne
- Department of Surgery, Trinity Translational Medicine Institute, St. James's Hospital and Trinity College Dublin, Dublin 8, Ireland
| | - Hilary Cassidy
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin 4, Ireland
| | - David Matallanas
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Joanne Lysaght
- Department of Surgery, Trinity Translational Medicine Institute, St. James's Hospital and Trinity College Dublin, Dublin 8, Ireland
| | - Connail McCrory
- Department of Pain Medicine, St. James Hospital, Dublin and School of Medicine, Trinity College Dublin, Ireland
| |
Collapse
|
45
|
Belova OV, Arefieva TI, Moskvina SN. [Immunological aspects of Parkinson's disease]. Zh Nevrol Psikhiatr Im S S Korsakova 2020; 120:110-119. [PMID: 32307420 DOI: 10.17116/jnevro2020120021110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The review summarizes information on immunological disorders in Parkinson's disease (PD). The data on neuroinflammation associated with degeneration of the medial substantia nigra cells are presented. It is pointed out that innate and adaptive immunity cells are involved in the process of neuroinflammation. The authors analyze the cytokine level in the brain, cerebrospinal fluid and peripheral blood as well as the relationship between neuroinflammation and neuron dysfunction and provide information on immunological disorders in people with PD and animal models of PD. Specific features of PD models and data on blood-brain barrier damage and evidence of autoimmune inflammation in PD are presented. Identification of PD preclinical markers, including cytokines, HLA-DR and HLA-DQ antigens, autoantibodies, etc, is discussed. Pre-symptomatic diagnosis of PD, prevention and treatment at the pre-symptomatic stage could lead to interruption or slowdown the neurons death.
Collapse
Affiliation(s)
- O V Belova
- NRC 'Kurchatov Institute', Moscow, Russia
| | - T I Arefieva
- NRC 'Kurchatov Institute', Moscow, Russia; National Medical Research Center for Cardiology, Moscow, Russia
| | | |
Collapse
|
46
|
Ito M, Komai K, Nakamura T, Srirat T, Yoshimura A. Tissue regulatory T cells and neural repair. Int Immunol 2020; 31:361-369. [PMID: 30893423 DOI: 10.1093/intimm/dxz031] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 03/19/2019] [Indexed: 12/18/2022] Open
Abstract
Inflammation and immune responses after tissue injury play pivotal roles in the pathology, resolution of inflammation, tissue recovery, fibrosis and remodeling. Regulatory T cells (Tregs) are the cells responsible for suppressing immune responses and can be activated in secondary lymphatic tissues, where they subsequently regulate effector T cell and dendritic cell activation. Recently, Tregs that reside in non-lymphoid tissues, called tissue Tregs, have been shown to exhibit tissue-specific functions that contribute to the maintenance of tissue homeostasis and repair. Unlike other tissue Tregs, the role of Tregs in the brain has not been well elucidated because the number of brain Tregs is very small under normal conditions. However, we found that Tregs accumulate in the brain at the chronic phase of ischemic brain injury and control astrogliosis through secretion of a cytokine, amphiregulin (Areg). Brain Tregs resemble other tissue Tregs in many ways but, unlike the other tissue Tregs, brain Tregs express neural-cell-specific genes such as the serotonin receptor (Htr7) and respond to serotonin. Administering serotonin or selective serotonin reuptake inhibitors (SSRIs) in an experimental mouse model of stroke increases the number of brain Tregs and ameliorates neurological symptoms. Knowledge of brain Tregs will contribute to the understanding of various types of neuroinflammation.
Collapse
Affiliation(s)
- Minako Ito
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Kyoko Komai
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Toshihiro Nakamura
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Tanakorn Srirat
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
47
|
Hu X, Mao C, Hu Z, Zhang Z, Zhang S, Yang Z, Fan Y, Fan L, Zheng H, Yang J, Liu Y, Yuan Y, Wang Y, Shi C, Xu Y. Association analysis of 15 GWAS-linked loci with Parkinson's disease in Chinese Han population. Neurosci Lett 2020; 725:134867. [PMID: 32165260 DOI: 10.1016/j.neulet.2020.134867] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/10/2020] [Accepted: 02/24/2020] [Indexed: 10/24/2022]
Abstract
Genetic factors play an important role in Parkinson's disease (PD) and vary from different races. A previous genome-wide association study (GWAS) identified 17 novel risk loci that were associated with PD in Caucasians. Several subsequent studies investigated the association between these loci and PD in Chinese populations. However, the results on the role of these variants for PD have been conflicting. To explore the relationship of 15 controversial loci with PD in the Chinese Han population, we performed a case-control study including 492 PD patients and 524 healthy controls. iMLDR technology was used to type 15 GWAS-linked loci of 1016 blood samples from all subjects. We found that rs34043159 (IL1R2) (dominant model after adjusted: p = 0.011, OR 95 % CI 0.577 (0.378-0.880)) and rs4073221 (SATB1) (allele model: p = 0.001, OR 95 % CI 0.542 (0.371-0.792); dominant model after adjusted: p = 0.049, OR 95 % CI 0.587 (0.345-0.998)) were associated with PD. After age onset and gender subgroup analysis, rs34043159 (IL1R2) (χ2 = 7.971, p = 0.019) and rs4073221 (SATB1) (χ2 = 12.673, p = 0.001) were associated with late-onset PD. rs34043159 (IL1R2) was associated with PD in females (χ2 = 7.227, p = 0.027) rather than males (χ2 = 1.100, p = 0.577). rs4073221 (SATB1) was associated with PD in both males (χ2 = 10.270, p = 0.005) and females (χ2 = 7.050, p = 0.022). Further studies are needed to explore the role of IL1R2 and SATB1 in the pathogenesis of PD.
Collapse
Affiliation(s)
- Xinchao Hu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China; The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Chengyuan Mao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Zhengwei Hu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China; The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Zhongxian Zhang
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450000, Henan, China; The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Shuo Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China; The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Zhihua Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China; The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Yu Fan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China; The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Liyuan Fan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China; The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Huimin Zheng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China; The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Jing Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Yutao Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Yanpeng Yuan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Yaohe Wang
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450000, Henan, China; The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Changhe Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China.
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China.
| |
Collapse
|
48
|
Yang Y, He Z, Xing Z, Zuo Z, Yuan L, Wu Y, Jiang M, Qi F, Yao Z. Influenza vaccination in early Alzheimer's disease rescues amyloidosis and ameliorates cognitive deficits in APP/PS1 mice by inhibiting regulatory T cells. J Neuroinflammation 2020; 17:65. [PMID: 32075657 PMCID: PMC7029575 DOI: 10.1186/s12974-020-01741-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 02/10/2020] [Indexed: 11/25/2022] Open
Abstract
Background Alzheimer’s disease (AD) is a neurodegenerative disorder strongly correlated with a dysfunctional immune system. Our previous results demonstrated that inactivated influenza vaccine (IIV) facilitates hippocampal neurogenesis and blocks lipopolysaccharide (LPS)-induced cognitive impairment. However, whether IIV improves cognitive deficits in an AD mouse model remains unclear. In addition, early interventions in AD have been encouraged in recent years. Here, we investigated whether IIV immunization at the preclinical stage of AD alters the brain pathology and cognitive deficits in an APP/ PS1 mouse model. Methods We assessed spatial learning and memory using Morris water maze (MWM). The brain β-amyloid (Aβ) plaque burden and activated microglia were investigated by immunohistochemistry. Furthermore, flow cytometry was utilized to analyze the proportions of Treg cells in the spleen. A cytokine antibody array was performed to measure the alteration of cytokines in the brain and peripheral immune system. Results Five IIV immunizations activated microglia, reduced the Aβ burden and improved the cognitive impairment. Simultaneously, the IIV-induced immune response broke peripheral immunosuppression by reducing Foxp3+ regulatory T cell (Treg) activities, whereas the restoration of Treg level in the periphery using all-trans retinoic acid (ATRA) blunted the protective effects of IIV on Aβ burden and cognitive functions. Interestingly, IIV immunization might increase proinflammatory and anti-inflammatory cytokine expression in the brain of APP/PS1 mice, enhanced microglial activation, and enhanced the clustering and phagocytosis of Aβ, thereby creating new homeostasis in the disordered immune microenvironment. Conclusions Altogether, our results suggest that early multiple IIV immunizations exert a beneficial immunomodulatory effect in APP/PS1 mice by breaking Treg-mediated systemic immune tolerance, maintaining the activation of microglia and removing of Aβ plaques, eventually improving cognitive deficits.
Collapse
Affiliation(s)
- Yunjie Yang
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-Sen University, #74, Zhongshan No. 2 Road, Guangzhou, 510080, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, #74, Zhongshan No. 2 Road, Guangzhou, 510080, China
| | - Zitian He
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-Sen University, #74, Zhongshan No. 2 Road, Guangzhou, 510080, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, #74, Zhongshan No. 2 Road, Guangzhou, 510080, China
| | - Zhiwei Xing
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-Sen University, #74, Zhongshan No. 2 Road, Guangzhou, 510080, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, #74, Zhongshan No. 2 Road, Guangzhou, 510080, China
| | - Zejie Zuo
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-Sen University, #74, Zhongshan No. 2 Road, Guangzhou, 510080, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, #74, Zhongshan No. 2 Road, Guangzhou, 510080, China
| | - Lifang Yuan
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-Sen University, #74, Zhongshan No. 2 Road, Guangzhou, 510080, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, #74, Zhongshan No. 2 Road, Guangzhou, 510080, China
| | - Yingying Wu
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-Sen University, #74, Zhongshan No. 2 Road, Guangzhou, 510080, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, #74, Zhongshan No. 2 Road, Guangzhou, 510080, China
| | - Mei Jiang
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-Sen University, #74, Zhongshan No. 2 Road, Guangzhou, 510080, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, #74, Zhongshan No. 2 Road, Guangzhou, 510080, China
| | - Fangfang Qi
- Teaching and Research Bureau of Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, China. .,Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-Sen University, #74, Zhongshan No. 2 Road, Guangzhou, 510080, China.
| | - Zhibin Yao
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-Sen University, #74, Zhongshan No. 2 Road, Guangzhou, 510080, China. .,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, #74, Zhongshan No. 2 Road, Guangzhou, 510080, China.
| |
Collapse
|
49
|
Royds J, Conroy MJ, Dunne MR, McCrory C, Lysaght J. An investigation into the modulation of T cell phenotypes by amitriptyline and nortriptyline. Eur Neuropsychopharmacol 2020; 31:131-144. [PMID: 31882254 DOI: 10.1016/j.euroneuro.2019.12.106] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/21/2019] [Accepted: 12/08/2019] [Indexed: 02/06/2023]
Abstract
Amitriptyline is prescribed for treating the symptoms of neuroinflammatory disorders including neuropathic pain and fibromyalgia. As amitriptyline has evidence of modulating the neuroimmune interface; the effects of amitriptyline treatment on T-cell phenotype and function were examined in vitro. Peripheral blood mononuclear cells(PBMCs) were isolated and treated with amitriptyline, nortriptyline and a combination of both drugs. Toxicity for T-cells was assessed by Annexin V/Propidium Iodide staining. Activation status and cytokine expression by T-cells post treatment was assessed by flow cytometry. The levels of secreted cytokines, chemokines and neurotrophins were measured by ELISA in the supernatants. There was no significant increase in T-cell death following 24 or 48 h compared to controls. There were significantly lower frequencies of CD8+ T-cells after treatment with amitriptyline, nortriptyline and a combination of both compared to a Vehicle Control(VC)(p<0.001). The frequencies of naive CD8+CD45RA+ cells were significantly lower after amitriptyline, nortriptyline and a combination of both (p<0001). The frequencies of CD27+CD4+(p<0.05) and CD27+CD8+(p<0.01) T-cells were also significantly lower following combination drug treatment. Significantly lower frequencies of IFN-γ-producing CD8+ T-cells were observed with all treatment combinations(p<0.05) and frequencies of IL-17-producing CD4+ and CD8+ T-cells were significantly lower following amitriptyline treatment (p<0.05). Frequencies of Natural Killer T-cells were significantly higher following treatment with nortriptyline (p<0.05). Significantly higher levels of IL-16 (p<0.001) and lower levels of TNF-β (p<0.05) were observed in supernatants. This data indicates that both amitriptyline and nortriptyline modulate the phenotype and function of T-cells and this may have clinical relevance in the pathologies of its off-label applications.
Collapse
Affiliation(s)
- Jonathan Royds
- Department of Pain Medicine, St James's Hospital, Dublin 8, Ireland.
| | - Melissa J Conroy
- Department of Surgery, Trinity Translational Medicine Institute, St. James's Hospital and Trinity College Dublin, Dublin 8, Ireland
| | - Margaret R Dunne
- Department of Surgery, Trinity Translational Medicine Institute, St. James's Hospital and Trinity College Dublin, Dublin 8, Ireland
| | - Connail McCrory
- Department of Pain Medicine, St James's Hospital, Dublin 8, Ireland
| | - Joanne Lysaght
- Department of Surgery, Trinity Translational Medicine Institute, St. James's Hospital and Trinity College Dublin, Dublin 8, Ireland
| |
Collapse
|
50
|
Chen C, Chencheng Z, Cuiying L, Xiaokun G. Plasmacytoid Dendritic Cells Protect Against Middle Cerebral Artery Occlusion Induced Brain Injury by Priming Regulatory T Cells. Front Cell Neurosci 2020; 14:8. [PMID: 32076400 PMCID: PMC7006436 DOI: 10.3389/fncel.2020.00008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 01/13/2020] [Indexed: 12/20/2022] Open
Abstract
Regulatory T cells (Tregs) play an anti-inflammatory effect to protect against ischemic stroke. Plasmacytoid dendritic cells (pDCs) can induce regulatory T cells tolerance in sterile-inflammation conditions. However, whether and how pDCs-mediated Tregs response play a part in the pathology of ischemic stroke remains unclear. In this study, we showed that pDCs were increased in the brain of middle cerebral artery occlusion (MCAO) mice. Depletion of pDCs with 120G8 exacerbated MCAO-induced brain injury, peripheral pro-inflammation response and decreased the systemic Tregs in mice. Furthermore, the data of mixed lymphocyte reaction (MLR) in vitro demonstrate that splenic pDCs from MCAO mice can significantly promote Tregs proliferation, accompanying with the increased expression of indoleamine 2,3-dioxygenase 1 (IDO1) on pDCs. Taken together, the findings here suggested that under the pathologic state of stroke, pDCs protect against MCAO-induced brain injury by priming Tregs, illustrating that pDCs represented as a therapeutic target for the prevention of ischemic brain injury.
Collapse
Affiliation(s)
- Chen Chen
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Zhang Chencheng
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Liu Cuiying
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Geng Xiaokun
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| |
Collapse
|