1
|
Takahashi Y, Kambayashi A. Physiologically based in vitro - in vivo correlation of modified release oral formulations with non-linear intestinal absorption: A case study using mirabegron. Eur J Pharm Biopharm 2024; 204:114479. [PMID: 39233190 DOI: 10.1016/j.ejpb.2024.114479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
Establishing an in vitro - in vivo correlation (IVIVC) for oral modified release (MR) formulations would make it possible to substitute an in vitro dissolution test for human bioequivalence (BE) studies when changing the formulation or manufacturing methods. However, the number of IVIVC applications and approvals are reportedly low. One of the main reasons for failure to obtain IVIVCs using conventional methodologies may be the lack of consideration of the dissolution and absorption mechanisms of drugs in the physiological environment. In particular, it is difficult to obtain IVIVC using conventional methodologies for drugs with non-linear absorption processes. Therefore, the aim of the present study was to develop a physiologically based biopharmaceutics model (PBBM) that enables Level A IVIVCs for mirabegron MR formulations with non-linear absorption characteristics. Using human pharmacokinetic (PK) data for immediate-release formulations of mirabegron, the luminal drug concentration-dependent membrane permeation coefficient was calculated through curve fitting. The membrane permeation coefficient data were then applied to the human PK data of the MR formulations to estimate the in vivo dissolution rate by curve fitting. It was assumed that in vivo dissolution could be described using a zero-order rate equation. Furthermore, a Levy plot was generated using the estimated in vivo dissolution rate and the in vitro dissolution rate obtained from the literature. Finally, the dissolution rate of the MR formulations from the Levy plot was applied to the PBBM to predict the oral PK of the mirabegron MR formulations. This PB-IVIVC approach successfully generated linear Levy plots with slopes of almost 1.0 for MR formulations with different dose strengths and dissolution rates. The Cmax values of the MR formulations were accurately predicted using this approach, whereas the prediction errors for AUC exceeded the Level A IVIVC criteria. This can be attributed to the incomplete description of colonic absorption in the current PBBM.
Collapse
Affiliation(s)
- Yoshinori Takahashi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Atsushi Kambayashi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| |
Collapse
|
2
|
Ito K, Naoi M, Nishiyama K, Kudo T, Tsuda Y, MacLean C, Ishiguro N. Impact of P-glycoprotein on intracellular drug concentration in peripheral blood mononuclear cells and K562 cells. Drug Metab Pharmacokinet 2023; 49:100487. [PMID: 36724603 DOI: 10.1016/j.dmpk.2022.100487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 12/01/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
P-glycoprotein (P-gp) expression in lymphocytes is variable and 2-fold higher in rheumatoid arthritis (RA) patients with treatment resistance than in healthy subjects. To date the information on P-gp-mediated drug interaction in lymphocyte is limited. We analyzed the importance on P-gp in lymphocytes using peripheral blood mononuclear cells (PBMCs) together with K562, K562/Adr, and K562/Vin cells, which have various P-gp levels, as cell models, and dexamethasone, nintedanib and apafant as weak to good P-gp substrates. P-gp levels in K562, K562/Adr, and K562/Vin cells were 0.3-, 20-, and 106-fold of healthy PBMCs, respectively. While cell accumulation of apafant and nintedanib decreased in all cells with increasing P-gp levels, dexamethasone accumulation in K562/Adr was comparable to that in healthy PBMCs and K562 cells. Cell accumulations of substrates in cells with low P-gp expression were not significantly changed by the P-gp inhibitors at therapeutic concentrations. However, accumulation increased to 1.4-fold at highest in K562/Adr cells with higher P-gp expression than in PBMCs of the RA patients. These results suggest P-gp controls the cellular concentration of P-gp substrates in PBMCs or K562 cells but cellular concentration of a weak P-gp substrate would not be apparently affected even in cells with a sufficient P-gp expression.
Collapse
Affiliation(s)
- Kohei Ito
- Pharmacokinetics and Non-Clinical Safety Department, Nippon Boehringer Ingelheim Co., Ltd., Kobe, Japan
| | - Marina Naoi
- Pharmacokinetics and Non-Clinical Safety Department, Nippon Boehringer Ingelheim Co., Ltd., Kobe, Japan
| | - Kotaro Nishiyama
- Pharmacokinetics and Non-Clinical Safety Department, Nippon Boehringer Ingelheim Co., Ltd., Kobe, Japan
| | - Takashi Kudo
- Pharmacokinetics and Non-Clinical Safety Department, Nippon Boehringer Ingelheim Co., Ltd., Kobe, Japan
| | - Yasuhiro Tsuda
- Clinical Pharmacology Department, Nippon Boehringer Ingelheim Co., Ltd., Kobe, Japan
| | - Caroline MacLean
- Department of R&D Project Management and Development Strategies, Boehringer Ingelheim Pharma GmbH and Co. KG, Biberach, Germany
| | - Naoki Ishiguro
- Pharmacokinetics and Non-Clinical Safety Department, Nippon Boehringer Ingelheim Co., Ltd., Kobe, Japan.
| |
Collapse
|
3
|
Yoshitomo A, Asano S, Hozuki S, Tamemoto Y, Shibata Y, Hashimoto N, Takahashi K, Sasaki Y, Ozawa N, Kageyama M, Iijima T, Kazuki Y, Sato H, Hisaka A. Significance of Basal Membrane Permeability of Epithelial Cells in Predicting Intestinal Drug Absorption. Drug Metab Dispos 2023; 51:318-328. [PMID: 36810197 DOI: 10.1124/dmd.122.000907] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Drug absorption from the gastrointestinal tract is often restricted by efflux transport by P-glycoprotein (P-gp) and metabolism by CYP3A4. Both localize in the epithelial cells, and thus, their activities are directly affected by the intracellular drug concentration, which should be regulated by the ratio of permeability between apical (A) and basal (B) membranes. In this study, using Caco-2 cells with forced expression of CYP3A4, we assessed the transcellular permeation of A-to-B and B-to-A directions and the efflux from the preloaded cells to both sides of 12 representative P-gp or CYP3A4 substrate drugs and obtained the parameters for permeabilities, transport, metabolism, and unbound fraction in the enterocytes (fent) using simultaneous and dynamic model analysis. The membrane permeability ratios for B to A (RBA) and fent varied by 8.8-fold and by more than 3000-fold, respectively, among the drugs. The RBA values for digoxin, repaglinide, fexofenadine, and atorvastatin were greater than 1.0 (3.44, 2.39, 2.27, and 1.90, respectively) in the presence of a P-gp inhibitor, thus suggesting the potential involvement of transporters in the B membrane. The Michaelis constant for quinidine for P-gp transport was 0.077 µM for the intracellular unbound concentration. These parameters were used to predict overall intestinal availability (FAFG) by applying an intestinal pharmacokinetic model, advanced translocation model (ATOM), in which permeability of A and B membranes accounted separately. The model predicted changes in the absorption location for P-gp substrates according to its inhibition, and FAFG values of 10 of 12 drugs, including quinidine at varying doses, were explained appropriately. SIGNIFICANCE STATEMENT: Pharmacokinetics has improved predictability by identifying the molecular entities of metabolism and transport and by using mathematical models to appropriately describe drug concentrations at the locations where they act. However, analyses of intestinal absorption so far have not been able to accurately consider the concentrations in the epithelial cells where P-glycoprotein and CYP3A4 exert effects. In this study, the limitation was removed by measuring the apical and basal membrane permeability separately and then analyzing these values using new appropriate models.
Collapse
Affiliation(s)
- Aoi Yoshitomo
- Clinical Pharmacology and Pharmacometrics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan (A.Y., S.A., S.H., Y.T., N.H., K.T., H.S., A.H.); Toxicology & DMPK Research Department, Teijin Pharma Limited, Tokyo, Japan (S.A., Y.Sa., N.O., M.K., T.I.); Department of Regulatory Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan (Y.Sh.); and Chromosome Engineering Research Center (Y.K.) and Division of Genome and Cellular Functions, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine (Y.K.), Tottori University, Tottori, Japan
| | - Satoshi Asano
- Clinical Pharmacology and Pharmacometrics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan (A.Y., S.A., S.H., Y.T., N.H., K.T., H.S., A.H.); Toxicology & DMPK Research Department, Teijin Pharma Limited, Tokyo, Japan (S.A., Y.Sa., N.O., M.K., T.I.); Department of Regulatory Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan (Y.Sh.); and Chromosome Engineering Research Center (Y.K.) and Division of Genome and Cellular Functions, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine (Y.K.), Tottori University, Tottori, Japan
| | - Shizuka Hozuki
- Clinical Pharmacology and Pharmacometrics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan (A.Y., S.A., S.H., Y.T., N.H., K.T., H.S., A.H.); Toxicology & DMPK Research Department, Teijin Pharma Limited, Tokyo, Japan (S.A., Y.Sa., N.O., M.K., T.I.); Department of Regulatory Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan (Y.Sh.); and Chromosome Engineering Research Center (Y.K.) and Division of Genome and Cellular Functions, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine (Y.K.), Tottori University, Tottori, Japan
| | - Yuta Tamemoto
- Clinical Pharmacology and Pharmacometrics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan (A.Y., S.A., S.H., Y.T., N.H., K.T., H.S., A.H.); Toxicology & DMPK Research Department, Teijin Pharma Limited, Tokyo, Japan (S.A., Y.Sa., N.O., M.K., T.I.); Department of Regulatory Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan (Y.Sh.); and Chromosome Engineering Research Center (Y.K.) and Division of Genome and Cellular Functions, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine (Y.K.), Tottori University, Tottori, Japan
| | - Yukihiro Shibata
- Clinical Pharmacology and Pharmacometrics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan (A.Y., S.A., S.H., Y.T., N.H., K.T., H.S., A.H.); Toxicology & DMPK Research Department, Teijin Pharma Limited, Tokyo, Japan (S.A., Y.Sa., N.O., M.K., T.I.); Department of Regulatory Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan (Y.Sh.); and Chromosome Engineering Research Center (Y.K.) and Division of Genome and Cellular Functions, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine (Y.K.), Tottori University, Tottori, Japan
| | - Natsumi Hashimoto
- Clinical Pharmacology and Pharmacometrics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan (A.Y., S.A., S.H., Y.T., N.H., K.T., H.S., A.H.); Toxicology & DMPK Research Department, Teijin Pharma Limited, Tokyo, Japan (S.A., Y.Sa., N.O., M.K., T.I.); Department of Regulatory Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan (Y.Sh.); and Chromosome Engineering Research Center (Y.K.) and Division of Genome and Cellular Functions, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine (Y.K.), Tottori University, Tottori, Japan
| | - Keita Takahashi
- Clinical Pharmacology and Pharmacometrics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan (A.Y., S.A., S.H., Y.T., N.H., K.T., H.S., A.H.); Toxicology & DMPK Research Department, Teijin Pharma Limited, Tokyo, Japan (S.A., Y.Sa., N.O., M.K., T.I.); Department of Regulatory Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan (Y.Sh.); and Chromosome Engineering Research Center (Y.K.) and Division of Genome and Cellular Functions, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine (Y.K.), Tottori University, Tottori, Japan
| | - Yoko Sasaki
- Clinical Pharmacology and Pharmacometrics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan (A.Y., S.A., S.H., Y.T., N.H., K.T., H.S., A.H.); Toxicology & DMPK Research Department, Teijin Pharma Limited, Tokyo, Japan (S.A., Y.Sa., N.O., M.K., T.I.); Department of Regulatory Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan (Y.Sh.); and Chromosome Engineering Research Center (Y.K.) and Division of Genome and Cellular Functions, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine (Y.K.), Tottori University, Tottori, Japan
| | - Naoka Ozawa
- Clinical Pharmacology and Pharmacometrics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan (A.Y., S.A., S.H., Y.T., N.H., K.T., H.S., A.H.); Toxicology & DMPK Research Department, Teijin Pharma Limited, Tokyo, Japan (S.A., Y.Sa., N.O., M.K., T.I.); Department of Regulatory Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan (Y.Sh.); and Chromosome Engineering Research Center (Y.K.) and Division of Genome and Cellular Functions, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine (Y.K.), Tottori University, Tottori, Japan
| | - Michiharu Kageyama
- Clinical Pharmacology and Pharmacometrics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan (A.Y., S.A., S.H., Y.T., N.H., K.T., H.S., A.H.); Toxicology & DMPK Research Department, Teijin Pharma Limited, Tokyo, Japan (S.A., Y.Sa., N.O., M.K., T.I.); Department of Regulatory Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan (Y.Sh.); and Chromosome Engineering Research Center (Y.K.) and Division of Genome and Cellular Functions, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine (Y.K.), Tottori University, Tottori, Japan
| | - Takeshi Iijima
- Clinical Pharmacology and Pharmacometrics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan (A.Y., S.A., S.H., Y.T., N.H., K.T., H.S., A.H.); Toxicology & DMPK Research Department, Teijin Pharma Limited, Tokyo, Japan (S.A., Y.Sa., N.O., M.K., T.I.); Department of Regulatory Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan (Y.Sh.); and Chromosome Engineering Research Center (Y.K.) and Division of Genome and Cellular Functions, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine (Y.K.), Tottori University, Tottori, Japan
| | - Yasuhiro Kazuki
- Clinical Pharmacology and Pharmacometrics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan (A.Y., S.A., S.H., Y.T., N.H., K.T., H.S., A.H.); Toxicology & DMPK Research Department, Teijin Pharma Limited, Tokyo, Japan (S.A., Y.Sa., N.O., M.K., T.I.); Department of Regulatory Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan (Y.Sh.); and Chromosome Engineering Research Center (Y.K.) and Division of Genome and Cellular Functions, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine (Y.K.), Tottori University, Tottori, Japan
| | - Hiromi Sato
- Clinical Pharmacology and Pharmacometrics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan (A.Y., S.A., S.H., Y.T., N.H., K.T., H.S., A.H.); Toxicology & DMPK Research Department, Teijin Pharma Limited, Tokyo, Japan (S.A., Y.Sa., N.O., M.K., T.I.); Department of Regulatory Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan (Y.Sh.); and Chromosome Engineering Research Center (Y.K.) and Division of Genome and Cellular Functions, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine (Y.K.), Tottori University, Tottori, Japan
| | - Akihiro Hisaka
- Clinical Pharmacology and Pharmacometrics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan (A.Y., S.A., S.H., Y.T., N.H., K.T., H.S., A.H.); Toxicology & DMPK Research Department, Teijin Pharma Limited, Tokyo, Japan (S.A., Y.Sa., N.O., M.K., T.I.); Department of Regulatory Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan (Y.Sh.); and Chromosome Engineering Research Center (Y.K.) and Division of Genome and Cellular Functions, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine (Y.K.), Tottori University, Tottori, Japan
| |
Collapse
|
4
|
Kambayashi A, Shirasaka Y. Food effects on gastrointestinal physiology and drug absorption. Drug Metab Pharmacokinet 2023; 48:100488. [PMID: 36737277 DOI: 10.1016/j.dmpk.2022.100488] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/01/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
Food ingestion affects the oral absorption of many drugs in humans. In this review article, we summarize the physiological factors in the gastrointestinal (GI) tract that affect the in vivo performance of orally administered solid dosage forms in fasted and fed states in humans. In particular, we discuss the effects of food ingestion on fluid characteristics (pH, bile concentration, and volume) in the stomach and small intestine, GI transit of water and dosage forms, and microbiota. Additionally, case examples of food effects on GI physiology and subsequent changes in oral drug absorption are provided. Furthermore, the effects of food, especially fruit juices (e.g., grapefruit, orange, apple) and green tea, on transporter-mediated permeation and enzyme-catalyzed metabolism of drugs in intestinal epithelial cells are also summarized comprehensively.
Collapse
Affiliation(s)
- Atsushi Kambayashi
- Pharmaceutical Research and Technology Labs, Astellas Pharma Inc., 180 Ozumi, Yaizu, Shizuoka, 425-0072, Japan; School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Yoshiyuki Shirasaka
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan.
| |
Collapse
|
5
|
Bultum LE, Tolossa GB, Kim G, Kwon O, Lee D. In silico activity and ADMET profiling of phytochemicals from Ethiopian indigenous aloes using pharmacophore models. Sci Rep 2022; 12:22221. [PMID: 36564437 PMCID: PMC9789083 DOI: 10.1038/s41598-022-26446-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
In silico profiling is used in identification of active compounds and guide rational use of traditional medicines. Previous studies on Ethiopian indigenous aloes focused on documentation of phytochemical compositions and traditional uses. In this study, ADMET and drug-likeness properties of phytochemicals from Ethiopian indigenous aloes were evaluated, and pharmacophore-based profiling was done using Discovery Studio to predict therapeutic targets. The targets were examined using KEGG pathway, gene ontology and network analysis. Using random-walk with restart algorithm, network propagation was performed in CODA network to find diseases associated with the targets. As a result, 82 human targets were predicted and found to be involved in several molecular functions and biological processes. The targets also were linked to various cancers and diseases of immune system, metabolism, neurological system, musculoskeletal system, digestive system, hematologic, infectious, mouth and dental, and congenital disorder of metabolism. 207 KEGG pathways were enriched with the targets, and the main pathways were metabolism of steroid hormone biosynthesis, lipid and atherosclerosis, chemical carcinogenesis, and pathways in cancer. In conclusion, in silico target fishing and network analysis revealed therapeutic activities of the phytochemicals, demonstrating that Ethiopian indigenous aloes exhibit polypharmacology effects on numerous genes and signaling pathways linked to many diseases.
Collapse
Affiliation(s)
- Lemessa Etana Bultum
- grid.37172.300000 0001 2292 0500Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291Daehak-Ro, Daejeon, 34141 South Korea ,Bio-Synergy Research Center, 291Daehak-Ro, Daejeon, 34141 South Korea ,grid.255166.30000 0001 2218 7142Department of Applied Bioscience, Dong-A Universtiy, Busan 49315, South Korea
| | - Gemechu Bekele Tolossa
- Bio-Synergy Research Center, 291Daehak-Ro, Daejeon, 34141 South Korea ,grid.4367.60000 0001 2355 7002Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Gwangmin Kim
- grid.37172.300000 0001 2292 0500Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291Daehak-Ro, Daejeon, 34141 South Korea ,Bio-Synergy Research Center, 291Daehak-Ro, Daejeon, 34141 South Korea
| | - Ohhyeon Kwon
- grid.37172.300000 0001 2292 0500Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291Daehak-Ro, Daejeon, 34141 South Korea ,Bio-Synergy Research Center, 291Daehak-Ro, Daejeon, 34141 South Korea
| | - Doheon Lee
- grid.37172.300000 0001 2292 0500Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291Daehak-Ro, Daejeon, 34141 South Korea ,Bio-Synergy Research Center, 291Daehak-Ro, Daejeon, 34141 South Korea
| |
Collapse
|
6
|
Mazzari ALDA, Lacerda MG, Milton FA, Mulin Montechiari Machado JA, Sinoti SBP, Toullec AS, Rodrigues PM, Neves FDAR, Simeoni LA, Silveira D, Prieto JM. In vitro effects of European and Latin-American medicinal plants in CYP3A4 gene expression, glutathione levels, and P-glycoprotein activity. Front Pharmacol 2022; 13:826395. [PMID: 36278236 PMCID: PMC9579425 DOI: 10.3389/fphar.2022.826395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 08/31/2022] [Indexed: 11/18/2022] Open
Abstract
Many medicinal plants species from European -such as Artemisia absinthium, Equisetum arvense, Lamium album, Malva sylvestris, Morus nigra, Passiflora incarnata, Frangula purshiana, and Salix alba- as well as Latin American traditions -such as Libidibia ferrea, Bidens pilosa, Casearia sylvestris, Costus spicatus, Monteverdia ilicifolia, Persea americana, Schinus terebinthifolia, Solidago chilensis, Syzygium cumini, Handroanthus impetiginosus, and Vernonanthura phosphorica- are shortlisted by the Brazilian National Health System for future clinical use. However, they lack many data on their action upon some key ADME targets. In this study, we assess non-toxic concentrations (up to100 μg/ml) of their infusions for in vitro ability to modulate CYP3A4 mRNA gene expression and intracellular glutathione levels in HepG2 cells, as well as P-glycoprotein (P-gp) activity in vincristine-resistant Caco-2 cells (Caco-2 VCR). We further investigated the activation of human pregnane X receptor (hPXR) in transiently co-transfected HeLa cells and the inhibition of Gamma-glutamyl transferase (GGT) in HepG2 cells. Our results demonstrate L. ferrea, C. sylvestris, M. ilicifolia, P. americana, S. terebinthifolia, S. cumini, V. phosphorica, E. arvense, P. incarnata, F. purshiana, and S. alba can significantly increase CYP3A4 mRNA gene expression in HepG2 cells. Only F. purshiana shown to do so likely via hPXR activation. P-gp activity was affected by L. ferrea, F. purshiana, S. terebinthifolia, and S. cumini. Total intracellular glutathione levels were significantly depleted by exposure to all extracts except S. alba and S. cumini This was accompanied by a lower GGT activity in the case of C. spicatus, P. americana, S. alba, and S. terebinthifolia, whilst L. ferrea, P. incarnata and F. purshiana increased it. Surprisingly, S. cumini aqueous extract drastically decreased GGT activity (−48%, p < 0.01). In conclusion, this preclinical study shows that the administration of some of these herbal medicines causes in vitro disturbances to key drug metabolism mechanisms. We recommend active pharmacovigilance for Libidibia ferrea (Mart.) L. P. Queiroz, Frangula purshiana Cooper, Schinus terebinthifolia Raddi, and Salix alba L. which were able to alter all targets in our preclinical study.
Collapse
Affiliation(s)
| | | | - Flora Aparecida Milton
- Faculdade de Ciências da Saúde, Universidade de Brasília, Brasília, Brazil
- Instituto de Saúde de Nova Friburgo, Universidade Federal Fluminense, Niterói, Brazil
| | | | | | | | | | - Francisco de Assis Rocha Neves
- Faculdade de Ciências da Saúde, Universidade de Brasília, Brasília, Brazil
- *Correspondence: Francisco de Assis Rocha Neves, ; Dâmaris Silveira, ; Jose Maria Prieto,
| | | | - Dâmaris Silveira
- Faculdade de Ciências da Saúde, Universidade de Brasília, Brasília, Brazil
- *Correspondence: Francisco de Assis Rocha Neves, ; Dâmaris Silveira, ; Jose Maria Prieto,
| | - Jose Maria Prieto
- School of Pharmacy, University College London, London, United Kingdom
- Faculdade de Ciências da Saúde, Universidade de Brasília, Brasília, Brazil
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom
- *Correspondence: Francisco de Assis Rocha Neves, ; Dâmaris Silveira, ; Jose Maria Prieto,
| |
Collapse
|
7
|
Volpe DA, Joshi A, Arya V. Do differences in cell lines and methods used for calculation of IC 50 values influence categorisation of drugs as P-glycoprotein substrates and inhibitors? Xenobiotica 2022; 52:751-757. [PMID: 36218364 DOI: 10.1080/00498254.2022.2135040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In vitro bidirectional assays are employed to determine whether a drug is a substrate and/or inhibitor of P-glycoprotein (P-gp) transport. Differences between cell lines and calculation methods can lead to variations in the determination of efflux ratios (ER) and IC50 values used to classify a drug as a P-gp substrate and inhibitor, respectively.Information was collected from the literature on ER and IC50 values with digoxin as the probe substrate using different cell lines and inhibition calculation methods. Predictive performance was evaluated by comparing [Igut]/IC50 ratios versus reported in vivo results.For known P-gp substrates, 50% of the drugs had their highest ER value in MDCK-MDR1 cells while 81% had their lowest ER value in Caco-2 cells. For 30 drugs with inhibition data, lower mean IC50 values were often observed with the Caco-2 cells and calculations based on ER. Based on the cut-off criteria of [Igut]/IC50 ≥ 10, there were no significant differences in positive or negative predictive values based on either cell line or calculation method for the drugs.Within this limited dataset, differences between cell lines or IC50 calculation methods do not seem to impact the prediction of in vivo P-gp inhibitor classification.
Collapse
Affiliation(s)
- Donna A Volpe
- Office of Clinical Pharmacology, US Food and Drug Administration, Silver Spring, MD, USA
| | - Abhay Joshi
- Office of Clinical Pharmacology, US Food and Drug Administration, Silver Spring, MD, USA
| | | |
Collapse
|
8
|
Kadoguchi M, Arakawa H, Honda R, Hotta K, Shirasaka Y, Deguchi Y, Tamai I. Characterization of Aripiprazole Uptake Transporter in the Blood-Brain Barrier Model hCMEC/D3 Cells by Targeted siRNA Screening. Pharm Res 2022; 39:1549-1559. [PMID: 35314999 DOI: 10.1007/s11095-022-03223-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/03/2022] [Indexed: 12/12/2022]
Abstract
AIM Identification of blood-brain barrier (BBB) uptake transporters is a major challenge in the research and development of central nervous system (CNS) drugs. However, conventional methods that consider known drug uptake characteristics have failed at identifying the responsible transporter molecule. The present study aimed at identifying aripiprazole uptake transporters in BBB model hCMEC/D3 cells using a knockdown screening study targeting various transporters, including uncharacterized ones. METHODS We evaluated the effect of 214 types of siRNA targeting transporters on the uptake of aripiprazole, an atypical antipsychotic drug, in hCMEC/D3 cells. Aripiprazole uptake was determined using Xenopus oocytes expressing the candidate genes extracted from the siRNA screening assay. RESULTS The estimated unbound brain to plasma concentration ratio (Kp,uu,brain) of aripiprazole was estimated as 0.67 in wild-type mice and 1.94 in abcb1a/1b/abcg2 knockout mice, suggesting the involvement of both uptake and efflux transporters in BBB permeation. According to siRNA knockdown screening studies, organic cation/carnitine transporter 2 (OCTN2) and long-chain fatty acid transporter 1 (FATP1) were identified as candidate genes. The uptake of aripiprazole by hCMEC/D3 cells was decreased by OCTN2 inhibitors, but not by FATP1 inhibitors. A partially increased uptake of aripiprazole was observed in OCTN2-expressing Xenopus oocytes. Finally, to evaluate transporter-mediated BBB permeation of drugs, the reported and estimated Kp,uu,brain values were summarized. CONCLUSIONS A knockdown screening study in combination with Kp,uu,brain values showed that aripiprazole was a potential substrate of OCTN2. The technique described in this study can be applied to identifying novel BBB transporters for CNS drugs.
Collapse
Affiliation(s)
- Moeno Kadoguchi
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Hiroshi Arakawa
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Ryokichi Honda
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Kazuki Hotta
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Yoshiyuki Shirasaka
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Yoshiharu Deguchi
- Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi, Tokyo, 173-8605, Japan
| | - Ikumi Tamai
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan.
| |
Collapse
|
9
|
Konno S, Kobayashi K, Senda M, Funai Y, Seki Y, Tamai I, Schäkel L, Sakata K, Pillaiyar T, Taguchi A, Taniguchi A, Gütschow M, Müller CE, Takeuchi K, Hirohama M, Kawaguchi A, Kojima M, Senda T, Shirasaka Y, Kamitani W, Hayashi Y. 3CL Protease Inhibitors with an Electrophilic Arylketone Moiety as Anti-SARS-CoV-2 Agents. J Med Chem 2022; 65:2926-2939. [PMID: 34313428 PMCID: PMC8340582 DOI: 10.1021/acs.jmedchem.1c00665] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Indexed: 02/08/2023]
Abstract
The novel coronavirus, SARS-CoV-2, has been identified as the causative agent for the current coronavirus disease (COVID-19) pandemic. 3CL protease (3CLpro) plays a pivotal role in the processing of viral polyproteins. We report peptidomimetic compounds with a unique benzothiazolyl ketone as a warhead group, which display potent activity against SARS-CoV-2 3CLpro. The most potent inhibitor YH-53 can strongly block the SARS-CoV-2 replication. X-ray structural analysis revealed that YH-53 establishes multiple hydrogen bond interactions with backbone amino acids and a covalent bond with the active site of 3CLpro. Further results from computational and experimental studies, including an in vitro absorption, distribution, metabolism, and excretion profile, in vivo pharmacokinetics, and metabolic analysis of YH-53 suggest that it has a high potential as a lead candidate to compete with COVID-19.
Collapse
Affiliation(s)
- Sho Konno
- School of Pharmacy, Department of Medicinal Chemistry,
Tokyo University of Pharmacy and Life Sciences, Hachioji,
Tokyo, 192-0392, Japan
| | - Kiyotaka Kobayashi
- School of Pharmacy, Department of Medicinal Chemistry,
Tokyo University of Pharmacy and Life Sciences, Hachioji,
Tokyo, 192-0392, Japan
| | - Miki Senda
- Structural Biology Research Center, Institute of
Materials Structure Science, High Energy Accelerator Research Organization
(KEK), Tsukuba 305-0801, Japan
| | - Yuta Funai
- Faculty of Pharmacy, Institute of Medical,
Pharmaceutical and Health Sciences, Kanazawa University,
Kanazawa 920-1192, Japan
| | - Yuta Seki
- Faculty of Pharmacy, Institute of Medical,
Pharmaceutical and Health Sciences, Kanazawa University,
Kanazawa 920-1192, Japan
| | - Ikumi Tamai
- Faculty of Pharmacy, Institute of Medical,
Pharmaceutical and Health Sciences, Kanazawa University,
Kanazawa 920-1192, Japan
| | - Laura Schäkel
- Pharmaceutical Institute, Pharmaceutical &
Medicinal Chemistry, University of Bonn, Bonn 53121,
Germany
| | - Kyousuke Sakata
- School of Life Sciences, Tokyo University
of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392,
Japan
| | - Thanigaimalai Pillaiyar
- Pharmaceutical Institute, Pharmaceutical/Medicinal Chemistry,
University of Tübingen, Tübingen 72076,
Germany
| | - Akihiro Taguchi
- School of Pharmacy, Department of Medicinal Chemistry,
Tokyo University of Pharmacy and Life Sciences, Hachioji,
Tokyo, 192-0392, Japan
| | - Atsuhiko Taniguchi
- School of Pharmacy, Department of Medicinal Chemistry,
Tokyo University of Pharmacy and Life Sciences, Hachioji,
Tokyo, 192-0392, Japan
| | - Michael Gütschow
- Pharmaceutical Institute, Pharmaceutical &
Medicinal Chemistry, University of Bonn, Bonn 53121,
Germany
| | - Christa E. Müller
- Pharmaceutical Institute, Pharmaceutical &
Medicinal Chemistry, University of Bonn, Bonn 53121,
Germany
| | - Koh Takeuchi
- Cellular and Molecular Biotechnology Research
Institute, National Institute of Advanced Industrial Science and
Technology, Koto, Tokyo 135-0064, Japan
| | - Mikako Hirohama
- Faculty of Medicine, Transborder Medical Research
Center, University of Tsukuba, Tsukuba 305-8575,
Japan
| | - Atsushi Kawaguchi
- Faculty of Medicine, Transborder Medical Research
Center, University of Tsukuba, Tsukuba 305-8575,
Japan
| | - Masaki Kojima
- School of Life Sciences, Tokyo University
of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392,
Japan
| | - Toshiya Senda
- Structural Biology Research Center, Institute of
Materials Structure Science, High Energy Accelerator Research Organization
(KEK), Tsukuba 305-0801, Japan
| | - Yoshiyuki Shirasaka
- Faculty of Pharmacy, Institute of Medical,
Pharmaceutical and Health Sciences, Kanazawa University,
Kanazawa 920-1192, Japan
| | - Wataru Kamitani
- Department of Infectious Diseases and Host Defense,
Gunma University Graduate School of Medicine, Maebashi
371-8511, Japan
| | - Yoshio Hayashi
- School of Pharmacy, Department of Medicinal Chemistry,
Tokyo University of Pharmacy and Life Sciences, Hachioji,
Tokyo, 192-0392, Japan
| |
Collapse
|
10
|
Fujita A, Noguchi S, Hamada R, Inoue S, Shimada T, Katakura S, Maruyama T, Sai Y, Nishimura T, Tomi M. Limited Impact of Murine Placental MDR1 on Fetal Exposure of Certain Drugs Explained by Bypass Transfer Between Adjacent Syncytiotrophoblast Layers. Pharm Res 2022; 39:1645-1658. [PMID: 35083640 PMCID: PMC9246986 DOI: 10.1007/s11095-022-03165-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 01/03/2022] [Indexed: 11/30/2022]
Abstract
Purpose Multidrug resistance protein 1 (MDR1) is located at the interface between two syncytiotrophoblast layers in rodent placenta, and may influence fetal drug distribution. Here, we quantitatively compare the functional impact per single MDR1 molecule of MDR1 at the placental barrier and blood-brain barrier in mice. Methods MDR1A and MDR1B proteins were quantified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Paclitaxel or digoxin was continuously administered to pregnant Mdr1a−/−/Mdr1b−/− or wild-type mice, and the drug concentrations in the maternal and fetal plasma and maternal brain were quantified by LC-MS/MS. Results MDR1A and MDR1B proteins are expressed in the membrane of mouse placental labyrinth, and total MDR1 at the placental barrier amounts to about 30% of that at the blood-brain barrier. The fetal-to-maternal plasma concentration ratio of digoxin was only marginally affected in Mdr1a−/−/Mdr1b−/− mice, while that of paclitaxel showed a several-fold increase. No such difference between the two drugs was found in the maternal brain distribution. The impact per single MDR1 molecule on the fetal distribution of digoxin was calculated to be much lower than that on the brain distribution, but this was not the case for paclitaxel. Our pharmacokinetic model indicates that the impact of placental MDR1 is inversely correlated to the ratio of permeability through gap junctions connecting the two syncytiotrophoblast layers to passive diffusion permeability. Conclusion Our findings indicate that murine placental MDR1 has a minimal influence on the fetal concentration of certain substrates, such as digoxin, due to bypass transfer, probably via connexin26 gap junctions. Supplementary Information The online version contains supplementary material available at 10.1007/s11095-022-03165-6.
Collapse
Affiliation(s)
- Arimi Fujita
- Division of Pharmaceutics, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan.,Department of Clinical Pharmacokinetics, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, 920-8641, Japan.,Department of Hospital Pharmacy, University Hospital, Kanazawa University, Kanazawa, Ishikawa, 920-8641, Japan
| | - Saki Noguchi
- Division of Pharmaceutics, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Rika Hamada
- Division of Pharmaceutics, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Satoko Inoue
- Division of Pharmaceutics, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Tsutomu Shimada
- Department of Clinical Pharmacokinetics, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, 920-8641, Japan.,Department of Hospital Pharmacy, University Hospital, Kanazawa University, Kanazawa, Ishikawa, 920-8641, Japan
| | - Satomi Katakura
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Tetsuo Maruyama
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yoshimichi Sai
- Department of Clinical Pharmacokinetics, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, 920-8641, Japan.,Department of Hospital Pharmacy, University Hospital, Kanazawa University, Kanazawa, Ishikawa, 920-8641, Japan
| | - Tomohiro Nishimura
- Division of Pharmaceutics, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Masatoshi Tomi
- Division of Pharmaceutics, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan.
| |
Collapse
|
11
|
Ashmawy SM, Eltahan DA, Osman MA, Essa EA. Influence of Piperine and Omeprazole on The Regional Absorption of Daclatasvir from Rabbit Intestine. Biopharm Drug Dispos 2022; 43:33-44. [PMID: 34997607 DOI: 10.1002/bdd.2308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/14/2021] [Accepted: 01/02/2022] [Indexed: 11/11/2022]
Abstract
The study assessed the site dependent intestinal absorption of daclatasvir and investigated the effects of piperine and omeprazole on such absorption utilizing in situ rabbit intestinal perfusion technique. The intestinal absorption of daclatasvir was assessed in four segments: duodenum, jejunum, ileum, and colon. The effect of co-perfusion with omeprazole was monitored through the tested anatomical sites. The effect of piperine, a P-glycoprotein (P-gp) inhibitor on daclatasvir absorption from jejunum and ileum was tested. The results showed that daclatasvir was incompletely absorbed from the rabbit small and large intestine. The absorptive clearance per unit length (PeA/L) was site dependent and was ranked as colon > duodenum > jejunum > ileum. This rank is the opposite of the rank of P-gp intestinal content suggesting possible influence for P-gp. Co-perfusion with omeprazole increased PeA/L and this was evidenced also with reduced the L95% of daclatasvir from both small and large intestinal segments. Significant enhancement in daclatasvir absorption through jejunum and ileum was shown in presence of piperine. Daclatasvir showed site dependent intestinal absorption in a manner suggesting its affection by P-gp efflux. This effect was inhibited by piperine. Co-administration of daclatasvir with omeprazole can enhance intestinal absorption a phenomenon which requires extension to human pharmacokinetic investigation. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Shimaa M Ashmawy
- Department of Pharmaceutical Technology, College of Pharmacy, University of Tanta, Tanta, 31111, Egypt
| | - Dina A Eltahan
- Department of Pharmaceutical Technology, College of Pharmacy, University of Tanta, Tanta, 31111, Egypt
| | - Mohamed A Osman
- Department of Pharmaceutical Technology, College of Pharmacy, University of Tanta, Tanta, 31111, Egypt
| | - Ebtessam A Essa
- Department of Pharmaceutical Technology, College of Pharmacy, University of Tanta, Tanta, 31111, Egypt
| |
Collapse
|
12
|
Hashimoto Y, Michiba K, Maeda K, Kusuhara H. Quantitative prediction of pharmacokinetic properties of drugs in humans: Recent advance in in vitro models to predict the impact of efflux transporters in the small intestine and blood-brain barrier. J Pharmacol Sci 2021; 148:142-151. [PMID: 34924119 DOI: 10.1016/j.jphs.2021.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/17/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022] Open
Abstract
Efflux transport systems are essential to suppress the absorption of xenobiotics from the intestinal lumen and protect the critical tissues at the blood-tissue barriers, such as the blood-brain barrier. The function of drug efflux transport is dominated by various transporters. Accumulated clinical evidences have revealed that genetic variations of the transporters, together with coadministered drugs, affect the expression and/or function of transporters and subsequently the pharmacokinetics of substrate drugs. Thus, in the preclinical stage of drug development, quantitative prediction of the impact of efflux transporters as well as that of uptake transporters and metabolic enzymes on the pharmacokinetics of drugs in humans has been performed using various in vitro experimental tools. Various kinds of human-derived cell systems can be applied to the precise prediction of drug transport in humans. Mathematical modeling consisting of each intrinsic metabolic or transport process enables us to understand the disposition of drugs both at the organ level and at the level of the whole body by integrating a variety of experimental results into model parameters. This review focuses on the role of efflux transporters in the intestinal absorption and brain distribution of drugs, in addition to recent advances in predictive tools and methodologies.
Collapse
Affiliation(s)
- Yoshiki Hashimoto
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kazuyoshi Michiba
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kazuya Maeda
- Laboratory of Pharmaceutics, Kitasato University School of Pharmacy, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Hiroyuki Kusuhara
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
13
|
Gardouh AR, Srag El-Din ASG, Salem MSH, Moustafa Y, Gad S. Starch Nanoparticles for Enhancement of Oral Bioavailability of a Newly Synthesized Thienopyrimidine Derivative with Anti-Proliferative Activity Against Pancreatic Cancer. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:3071-3093. [PMID: 34305395 PMCID: PMC8292977 DOI: 10.2147/dddt.s321962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/08/2021] [Indexed: 01/02/2023]
Abstract
Purpose This research aimed to improve water solubility and oral bioavailability of a newly synthesized thienopyrimidine derivative (TPD) with anti-pancreatic cancer activity by loading on starch nanoparticles (SNPs). Methods TPD was synthesized, purified and its ADME behavior was predicted using Swiss ADME software. A UV spectroscopy method was developed and validated to measure TPD concentration at various dosage forms. SNPs loaded with TPD (SNPs-TPD) were prepared, characterized for particle size, polydispersity index, zeta potential, transmission electron microscopy, Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), entrapment efficiency, in-vitro release, and in-vivo animal study. Results The Swiss ADME results showed that TPD can be administered orally; however, it has low oral bioavailability (0.55) and poor water solubility. The significant regression coefficient of the calibration curve (r2 = 0.9995), the precision (%RSD < 0.5%) and the accuracy (99.46−101.72%) confirmed the efficacy of the developed UV method. SNPs-TPD had a spherical monodispersed (PDI= 0.12) shape, nanoparticle size (22.98 ± 4.23) and good stability (−21 ± 4.72 mV). Moreover, FT-IR and DSC revealed changes in the physicochemical structure of starch resulting in SNPs formation. The entrapment efficiency was 97% ± 0.45%, and the in-vitro release showed that the SNPs enhanced the solubility of the TPD. The in-vivo animal study and histopathology showed that SNPs enhanced the oral bioavailability of TPD against solid Ehrlich carcinoma. Conclusion SNPs-TPD were superior in drug solubility and oral bioavailability than those obtained from TPD suspension.
Collapse
Affiliation(s)
- Ahmed R Gardouh
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt.,Department of Pharmaceutical Sciences, Faculty of Pharmacy, Jadara University, Irbid, 21110, Jordan
| | - Ahmed S G Srag El-Din
- Department of Pharmaceutics, Faculty of Pharmacy, Delta University for Science & Technology, Gamasa City, Egypt
| | - Mohamed S H Salem
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt.,The Institute of Scientific and Industrial Research (ISIR), Osaka University, Ibaraki-shi, Osaka, 567-0047, Japan
| | - Yasser Moustafa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Badr University in Cairo, Badr City, Cairo, Egypt
| | - Shadeed Gad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
14
|
Abstract
From the viewpoint of drug discovery, it is an important issue to elucidate the drug permeability at the human central nervous system (CNS) barriers and the molecular mechanisms in the cells forming CNS barriers especially during CNS diseases. I introduced quantitative proteomics techniques into the blood-brain barrier (BBB) study, then quantitatively investigated the transport system at the human BBB and clarified the quantitative differences in protein expression levels and functions of transporters and receptors between animals and humans, or in vitro and in vivo. Based on the difference in the absolute expression level of transporters between in vitro and in vivo, I demonstrated that the drug efflux activity of P-glycoprotein (P-gp) at in vivo BBB can be accurately reconstructed from the in vitro system, not only in mouse models but also monkeys similar to humans and pathological conditions. Furthermore, I discovered Claudin-11 as another tight junction molecule expressed at the CNS barriers, and clarified that it contributes to the disruption of the CNS barriers in multiple sclerosis. Furthermore, it was also elucidated that the P-gp dysfunction causes excessive brain entry of glucocorticoid which causes a nerve damage in cerebral infarct, and it can be suppressed by targeting Abl/Src kinases. These suggest that targeting the tight junctions and transporters, which are important molecules at the CNS barriers, would potentially lead to the treatment of CNS diseases. In this review, I would like to introduce a new CNS barrier study opened by quantitative proteomics research.
Collapse
Affiliation(s)
- Yasuo Uchida
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University
| |
Collapse
|
15
|
Sasabe H, Koga T, Furukawa M, Matsunaga M, Sasahara K, Hashizume K, Oozone Y, Amunom I, Torii M, Umehara K, Kashiyama E, Takeuchi K. In vitro evaluations for pharmacokinetic drug-drug interactions of a novel serotonin-dopamine activity modulator, brexpiprazole. Xenobiotica 2021; 51:522-535. [PMID: 33663326 DOI: 10.1080/00498254.2021.1897898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Brexpiprazole, a serotonin-dopamine activity modulator, is indicated for the treatment of schizophrenia and also adjunctive therapy to antidepressants for the treatment of Major Depressive Disorder. To determine the drug-drug interaction risk for cytochrome P450, and SLC and ABC transporters, brexpiprazole and its metabolite, DM-3411 were assessed in this in vitro investigation.Brexpiprazole exhibited weak inhibitory effects (IC50 >13 μmol/L) on CYP2C9, CYP2C19, CYP2D6 and CYP3A4 activities, but had moderate inhibitor activity on CYP2B6 (IC50 8.19 μmol/L). The ratio of systemic unbound concentration (3.8 nmol/L) to the Ki value was sufficiently low. DM-3411 had comparable inhibitory potentials with brexpiprazole only for CYP2D6 and CYP3A4. The mRNA expressions of CYP1A2, CYP2B6 and CYP3A4 were not changed by the exposure of brexpiprazole to human hepatocytes.Brexpiprazole and DM-3411 exhibited weak or no inhibitory effects for hepatic and renal transporters (OATPs, OATs, OCTs, MATE1, and BSEP), except for MATE-2K (0.156 μmol/L of DM-3411), even for which the ratio to systemic unbound concentration (5.3 nmol/L) was sufficiently low.Brexpiprazole effected the functions of P-gp and BCRP with IC50 values of 6.31 and 1.16 μmol/L, respectively, however, the pharmacokinetic alteration was not observed in the clinical concomitant study on P-gp and BCRP substrates.These in vitro data suggest that brexpiprazole is unlikely to cause clinically relevant drug interactions resulting from the effects on CYPs or transporters mediating the absorption, metabolism, and/or disposition of co-administered drugs.
Collapse
Affiliation(s)
- Hiroyuki Sasabe
- Drug metabolism and Pharmacokinetics, Tokushima Research Institute, Otsuka Pharmaceutical Co Ltd., Tokushima, Japan
| | - Toshihisa Koga
- Drug metabolism and Pharmacokinetics, Tokushima Research Institute, Otsuka Pharmaceutical Co Ltd., Tokushima, Japan
| | - Masayuki Furukawa
- Drug metabolism and Pharmacokinetics, Tokushima Research Institute, Otsuka Pharmaceutical Co Ltd., Tokushima, Japan
| | - Masayuki Matsunaga
- Drug metabolism and Pharmacokinetics, Tokushima Research Institute, Otsuka Pharmaceutical Co Ltd., Tokushima, Japan
| | - Katsunori Sasahara
- Drug metabolism and Pharmacokinetics, Tokushima Research Institute, Otsuka Pharmaceutical Co Ltd., Tokushima, Japan
| | - Kenta Hashizume
- ADME & Tox. Research Institute, Sekisui Medical Co., Ltd., Naka-gun, Japan
| | - Yoshihiro Oozone
- ADME & Tox. Research Institute, Sekisui Medical Co., Ltd., Naka-gun, Japan
| | | | - Mikako Torii
- Kashima Laboratory, LSIM Safety Institute Corporation, Kamisu-shi, Japan
| | - Ken Umehara
- Drug metabolism and Pharmacokinetics, Tokushima Research Institute, Otsuka Pharmaceutical Co Ltd., Tokushima, Japan
| | - Eiji Kashiyama
- Drug metabolism and Pharmacokinetics, Tokushima Research Institute, Otsuka Pharmaceutical Co Ltd., Tokushima, Japan
| | - Kenji Takeuchi
- Drug metabolism and Pharmacokinetics, Tokushima Research Institute, Otsuka Pharmaceutical Co Ltd., Tokushima, Japan
| |
Collapse
|
16
|
Fuhr LM, Marok FZ, Hanke N, Selzer D, Lehr T. Pharmacokinetics of the CYP3A4 and CYP2B6 Inducer Carbamazepine and Its Drug-Drug Interaction Potential: A Physiologically Based Pharmacokinetic Modeling Approach. Pharmaceutics 2021; 13:270. [PMID: 33671323 PMCID: PMC7922031 DOI: 10.3390/pharmaceutics13020270] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 12/18/2022] Open
Abstract
The anticonvulsant carbamazepine is frequently used in the long-term therapy of epilepsy and is a known substrate and inducer of cytochrome P450 (CYP) 3A4 and CYP2B6. Carbamazepine induces the metabolism of various drugs (including its own); on the other hand, its metabolism can be affected by various CYP inhibitors and inducers. The aim of this work was to develop a physiologically based pharmacokinetic (PBPK) parent-metabolite model of carbamazepine and its metabolite carbamazepine-10,11-epoxide, including carbamazepine autoinduction, to be applied for drug-drug interaction (DDI) prediction. The model was developed in PK-Sim, using a total of 92 plasma concentration-time profiles (dosing range 50-800 mg), as well as fractions excreted unchanged in urine measurements. The carbamazepine model applies metabolism by CYP3A4 and CYP2C8 to produce carbamazepine-10,11-epoxide, metabolism by CYP2B6 and UDP-glucuronosyltransferase (UGT) 2B7 and glomerular filtration. The carbamazepine-10,11-epoxide model applies metabolism by epoxide hydroxylase 1 (EPHX1) and glomerular filtration. Good DDI performance was demonstrated by the prediction of carbamazepine DDIs with alprazolam, bupropion, erythromycin, efavirenz and simvastatin, where 14/15 DDI AUClast ratios and 11/15 DDI Cmax ratios were within the prediction success limits proposed by Guest et al. The thoroughly evaluated model will be freely available in the Open Systems Pharmacology model repository.
Collapse
Affiliation(s)
| | | | | | | | - Thorsten Lehr
- Clinical Pharmacy, Saarland University, 66123 Saarbrücken, Germany; (L.M.F.); (F.Z.M.); (N.H.); (D.S.)
| |
Collapse
|
17
|
Raza A, Miles JA, Sime FB, Ross BP, Roberts JA, Popat A, Kumeria T, Falconer JR. PLGA encapsulated γ-cyclodextrin-meropenem inclusion complex formulation for oral delivery. Int J Pharm 2021; 597:120280. [PMID: 33540004 DOI: 10.1016/j.ijpharm.2021.120280] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 12/25/2022]
Abstract
Meropenem (MER) is one of the last resort antibiotics used to treat resistant bacterial infections. However, the clinical effectiveness of MER is hindered due to chemical instability in aqueous solution and gastric pH, and short plasma half-life. Herein, a novel multi-material delivery system based on γ-cyclodextrin (γ-CD) and poly lactic-co-glycolic acid (PLGA) is demonstrated to overcome these challenges. MER showed a saturated solubility of 14 mg/100 mL in liquid CO2 and later it was loaded into γ-CD to form the inclusion complex using the liquid CO2 method. The γ-CD and MER inclusion complex (MER-γ-CD) was encapsulated into PLGA by the well-established double emulsion solvent evaporation method. The formation of the inclusion complex was confirmed using FTIR, XRD, DSC, SEM, and 1H NMR and docking study. Further, MER-γ-CD loaded PLGA nanoparticles (MER-γ-CD NPs) were characterized by SEM, DLS, and FTIR. The drug loading and entrapment efficiency for MER-γ-CD were 21.9 and 92. 2% w/w, respectively. However, drug loading and entrapment efficiency of MER-γ-CD NPs was significantly lower at up to 3.6 and 42.1% w/w, respectively. In vitro release study showed that 23.6 and 27.4% of active (non-degraded drug) and total drug (both degraded and non-degraded drug) were released from MER-γ-CD NPs in 8 h, respectively. The apparent permeability coefficient (Papp) (A to B) for MER, MER-γ-CD, and MER-γ-CD NPs were 2.63 × 10-6 cm/s, 2.81 × 10-6 cm/s, and 2.92 × 10-6 cm/s, respectively. For secretory transport, the Papp (B to A) were 1.47 × 10-6 cm/s, 1.53 × 10-6 cm/s, and 1.58 × 10-6 cm/s for MER, MER-γ-CD and MER-γ-CD NPs, respectively. Finally, the MER-γ-CD inclusion complex and MER-γ-CD NPs retained MER's antibacterial activities against Staphylococcus aureus and Pseudomonas aeruginosa. Overall, this work demonstrates the significance of MER-γ-CD NPs to protect MER from gastric pH with controlled drug release, while retaining MER's antibacterial activity.
Collapse
Affiliation(s)
- Aun Raza
- School of Pharmacy, The University of Queensland, Woolloongabba 4102, Australia; Centre for Translational Anti-infective Pharmacodynamics, School of Pharmacy, The University of Queensland, Woolloongabba 4102, QLD, Australia
| | - Jared A Miles
- School of Pharmacy, The University of Queensland, Woolloongabba 4102, Australia
| | - Fekade Bruck Sime
- School of Pharmacy, The University of Queensland, Woolloongabba 4102, Australia; Centre for Translational Anti-infective Pharmacodynamics, School of Pharmacy, The University of Queensland, Woolloongabba 4102, QLD, Australia
| | - Benjamin P Ross
- School of Pharmacy, The University of Queensland, Woolloongabba 4102, Australia
| | - Jason A Roberts
- School of Pharmacy, The University of Queensland, Woolloongabba 4102, Australia; Centre for Translational Anti-infective Pharmacodynamics, School of Pharmacy, The University of Queensland, Woolloongabba 4102, QLD, Australia; Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital, Brisbane 4029, QLD, Australia; Department of Pharmacy, Royal Brisbane and Women's Hospital, Brisbane 4029, QLD, Australia
| | - Amirali Popat
- School of Pharmacy, The University of Queensland, Woolloongabba 4102, Australia; Mucosal Diseases Group, Mater Research Institute - The University of Queensland, Translational Research Institute, 37 Kent St, Woolloongabba, QLD 4102, Australia.
| | - Tushar Kumeria
- School of Pharmacy, The University of Queensland, Woolloongabba 4102, Australia; School of Materials Science and Engineering, The University of New South Wales, Sydney NSW-2052, Australia.
| | - James R Falconer
- School of Pharmacy, The University of Queensland, Woolloongabba 4102, Australia.
| |
Collapse
|
18
|
Vasconcelos T, Prezotti F, Araújo F, Lopes C, Loureiro A, Marques S, Sarmento B. Third-generation solid dispersion combining Soluplus and poloxamer 407 enhances the oral bioavailability of resveratrol. Int J Pharm 2021; 595:120245. [DOI: 10.1016/j.ijpharm.2021.120245] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 01/17/2023]
|
19
|
Abstract
Accurate estimation of in vivo clearance in human is pivotal to determine the dose and dosing regimen for drug development. In vitro-in vivo extrapolation (IVIVE) has been performed to predict drug clearance using empirical and physiological scalars. Multiple in vitro systems and mathematical modeling techniques have been employed to estimate in vivo clearance. The models for predicting clearance have significantly improved and have evolved to become more complex by integrating multiple processes such as drug metabolism and transport as well as passive diffusion. This chapter covers the use of conventional as well as recently developed methods to predict metabolic and transporter-mediated clearance along with the advantages and disadvantages of using these methods and the associated experimental considerations. The general approaches to improve IVIVE by use of appropriate scalars, incorporation of extrahepatic metabolism and transport and application of physiologically based pharmacokinetic (PBPK) models with proteomics data are also discussed. The chapter also provides an overview of the advantages of using such dynamic mechanistic models over static models for clearance predictions to improve IVIVE.
Collapse
|
20
|
Raza A, Ngieng SC, Sime FB, Cabot PJ, Roberts JA, Popat A, Kumeria T, Falconer JR. Oral meropenem for superbugs: challenges and opportunities. Drug Discov Today 2020; 26:551-560. [PMID: 33197621 DOI: 10.1016/j.drudis.2020.11.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/10/2020] [Accepted: 11/05/2020] [Indexed: 12/18/2022]
Abstract
An increase in the number of multidrug-resistant microbial strains is the biggest threat to global health and is projected to cause >10 million deaths by 2055. The carbapenem family of antibacterial drugs are an important class of last-resort treatment of infections caused by drug-resistant bacteria and are only available as an injectable formulation. Given their instability within the gut and poor permeability across the gut wall, oral carbapenem formulations show poor bioavailability. Meropenem (MER), a carbapenem antibiotic, has broad-spectrum antibacterial activity, but suffers from the above-mentioned issues. In this review, we discuss strategies for improving the oral bioavailability of MER, such as inhibiting tubular secretion, prodrug formulations, and use of nanomedicine. We also highlight challenges and emerging approaches for the development of oral MER.
Collapse
Affiliation(s)
- Aun Raza
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia; Centre for Translational Anti-infective Pharmacodynamics, School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Shih Chen Ngieng
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Fekade Bruck Sime
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia; Centre for Translational Anti-infective Pharmacodynamics, School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Peter J Cabot
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Jason A Roberts
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia; Centre for Translational Anti-infective Pharmacodynamics, School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia; Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital, Brisbane, QLD 4102, Australia; Department of Pharmacy, Royal Brisbane and Women's Hospital, Brisbane, QLD 4102, Australia
| | - Amirali Popat
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia; Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia.
| | - Tushar Kumeria
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia; School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
| | - James R Falconer
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia.
| |
Collapse
|
21
|
Li N, Kulkarni P, Badrinarayanan A, Kefelegn A, Manoukian R, Li X, Prasad B, Karasu M, McCarty WJ, Knutson CG, Gupta A. P-glycoprotein Substrate Assessment in Drug Discovery: Application of Modeling to Bridge Differential Protein Expression Across In Vitro Tools. J Pharm Sci 2020; 110:325-337. [PMID: 32946896 DOI: 10.1016/j.xphs.2020.09.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/07/2020] [Accepted: 09/09/2020] [Indexed: 01/16/2023]
Abstract
P-glycoprotein (P-gp) efflux assay is an integral part of discovery screening, especially for drugs requiring brain penetration as P-gp efflux ratio (ER) inversely correlates with brain exposure. However, significant variability in P-gp ER generated across cell lines can lead to misclassification of a P-gp substrate and subsequently disconnect with brain exposure data. We hypothesized that the ER depends on P-gp protein expression level in the in vitro assay. Quantitative proteomics and immunofluorescence staining were utilized to characterize P-gp protein expression and localization in four recombinant cell lines, over-expressing human or mouse P-gp isoforms, followed by functional evaluation. Efflux data generated in each cell line was compared against available rodent brain distribution data. The results suggested that the cell line with highest P-gp expression (hMDCK-MDR1 sourced from NIH) led to greatest dynamic range for efflux; thus, proving to be the most sensitive model to predict brain penetration. Cell lines with lower P-gp expression exhibited the greatest tendency for compound-dependent in vitro efflux saturation leading to false negative results. Ultimately, P-gp kinetics were characterized using a compartmental model to generate system-independent parameters to resolve such discrepancy. This study highlights the need for careful choice of well characterized P-gp in vitro tools and utility of modeling techniques to enable appropriate interpretation of the data.
Collapse
Affiliation(s)
- Na Li
- Department of Pharmacokinetics and Drug Metabolism, Amgen Research, Amgen Inc, Cambridge, MA 02142, USA
| | - Priyanka Kulkarni
- Department of Pharmacokinetics and Drug Metabolism, Amgen Research, Amgen Inc, Cambridge, MA 02142, USA
| | - Akshay Badrinarayanan
- Department of Pharmacokinetics and Drug Metabolism, Amgen Research, Amgen Inc, Cambridge, MA 02142, USA
| | - Adey Kefelegn
- Department of Pharmacokinetics and Drug Metabolism, Amgen Research, Amgen Inc, Cambridge, MA 02142, USA
| | - Raffi Manoukian
- Department of Cytometry Sciences, Amgen Research, Amgen Inc, Cambridge, MA 02142, USA
| | - Xingwen Li
- Department of Pharmacokinetics and Drug Metabolism, Amgen Research, Amgen Inc, Cambridge, MA 02142, USA
| | - Bhagwat Prasad
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Matthew Karasu
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - William J McCarty
- Department of Pharmacokinetics and Drug Metabolism, Amgen Research, Amgen Inc, Cambridge, MA 02142, USA
| | - Charles G Knutson
- Department of Pharmacokinetics and Drug Metabolism, Amgen Research, Amgen Inc, Cambridge, MA 02142, USA
| | - Anshul Gupta
- Department of Pharmacokinetics and Drug Metabolism, Amgen Research, Amgen Inc, Cambridge, MA 02142, USA.
| |
Collapse
|
22
|
A Mechanistic, Enantioselective, Physiologically Based Pharmacokinetic Model of Verapamil and Norverapamil, Built and Evaluated for Drug-Drug Interaction Studies. Pharmaceutics 2020; 12:pharmaceutics12060556. [PMID: 32560124 PMCID: PMC7355632 DOI: 10.3390/pharmaceutics12060556] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 12/30/2022] Open
Abstract
The calcium channel blocker and antiarrhythmic agent verapamil is recommended by the FDA for drug–drug interaction (DDI) studies as a moderate clinical CYP3A4 index inhibitor and as a clinical Pgp inhibitor. The purpose of the presented work was to develop a mechanistic whole-body physiologically based pharmacokinetic (PBPK) model to investigate and predict DDIs with verapamil. The model was established in PK-Sim®, using 45 clinical studies (dosing range 0.1–250 mg), including literature as well as unpublished Boehringer Ingelheim data. The verapamil R- and S-enantiomers and their main metabolites R- and S-norverapamil are represented in the model. The processes implemented to describe the pharmacokinetics of verapamil and norverapamil include enantioselective plasma protein binding, enantioselective metabolism by CYP3A4, non-stereospecific Pgp transport, and passive glomerular filtration. To describe the auto-inhibitory and DDI potential, mechanism-based inactivation of CYP3A4 and non-competitive inhibition of Pgp by the verapamil and norverapamil enantiomers were incorporated based on in vitro literature. The resulting DDI performance was demonstrated by prediction of DDIs with midazolam, digoxin, rifampicin, and cimetidine, with 21/22 predicted DDI AUC ratios or Ctrough ratios within 1.5-fold of the observed values. The thoroughly built and qualified model will be freely available in the Open Systems Pharmacology model repository to support model-informed drug discovery and development.
Collapse
|
23
|
Shirasaka Y. [Quantitative Analysis of Gastrointestinal Physiology for Better Prediction of Oral Drug Absorption and Interaction]. YAKUGAKU ZASSHI 2020; 140:599-608. [PMID: 32378658 DOI: 10.1248/yakushi.19-00246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although oral drugs account for 80% of the world drug market, many difficulties arise in their development. The drug absorption profile after oral administration may be influenced by multiple factors, including dosing conditions and physiological state of the gastrointestinal (GI) tract. Variability in GI fluid volume may influence the absorption characteristics. Indeed, the contributions of passive diffusion, transporters, and metabolic enzymes depend on GI drug concentration, which is influenced by changes in GI fluid volume. However, this important variable has been neglected in many prediction methods for oral drug absorption and drug interactions, and for convenience it is often assumed that the GI water volume is fixed at a constant value. Major global regulatory agencies such as the U.S. Food and Drug Administration (FDA), European Medicines Agency (EMA), and Japanese Pharmaceuticals and Medical Devices Agency (PMDA) recommend using a constant fluid volume of 250 mL (the fluid volume of a glass of water) to estimate the theoretical GI concentration of drugs after oral administration. However, the actual volume of water in the GI tract is both time- and site-dependent as a result of water intake, absorption, secretion, and GI transit. This review article summarizes our data showing that luminal water volume is influenced by the osmolality of the applied solution, and illustrates how this effect may contribute to changes in GI drug concentration, resulting in altered drug absorption.
Collapse
|
24
|
Chen C, Zhou H, Guan C, Zhang H, Li Y, Jiang X, Dong Z, Tao Y, Du J, Wang S, Zhang T, Du N, Guo J, Wu Y, Song Z, Luan H, Wang Y, Du H, Zhang S, Li C, Chang H, Wang T. Applicability of free drug hypothesis to drugs with good membrane permeability that are not efflux transporter substrates: A microdialysis study in rats. Pharmacol Res Perspect 2020; 8:e00575. [PMID: 32266794 PMCID: PMC7138916 DOI: 10.1002/prp2.575] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/10/2020] [Accepted: 02/10/2020] [Indexed: 12/16/2022] Open
Abstract
In clinical pharmacology, the free drug hypothesis has been widely applied in the interpretation of the relationship between pharmacokinetics and pharmacodynamics (PK/PD). The free drug hypothesis assumes that the unbound drug concentration in blood is the same as that in the site of action at steady state. The objective of this study is to demonstrate whether the free drug hypothesis is universally applicable for all drugs. The unbound concentrations of the 18 compounds in blood and in brain interstitial fluids (ISF) at steady state following constant intravenous infusion were simultaneously monitored up to 6 hours via in vivo microdialysis technique. Based on the permeability and efflux ratio (ER), the test compounds can be divided into two classes. Class I includes the compounds with good membrane permeability that are not substrates of efflux transporters (eg, P-gp, BCRP, and MRPs), whereas Class II includes the compounds that are substrates of efflux transporters. The steady-state unbound drug concentrations in blood, brain, and CSF are quantitatively very similar for Class I compounds, whereas the steady-state unbound concentrations in the brain and CSF are significantly lower than those in blood for Class II compounds. These results strongly suggest that the free drug hypothesis is not universal for all drugs but is only applicable for drugs with good permeability that are not substrates of efflux transporters.
Collapse
Affiliation(s)
- Chun Chen
- Drug Metabolism and Pharmacokinetics (DMPK) DepartmentPharmaronBeijingChina
| | - Hongyu Zhou
- Drug Metabolism and Pharmacokinetics (DMPK) DepartmentPharmaronBeijingChina
| | - Chi Guan
- Drug Metabolism and Pharmacokinetics (DMPK) DepartmentPharmaronBeijingChina
| | - Huanhuan Zhang
- Drug Metabolism and Pharmacokinetics (DMPK) DepartmentPharmaronBeijingChina
| | - Yingying Li
- Drug Metabolism and Pharmacokinetics (DMPK) DepartmentPharmaronBeijingChina
| | - Xue Jiang
- Drug Metabolism and Pharmacokinetics (DMPK) DepartmentPharmaronBeijingChina
| | - Zheng Dong
- Drug Metabolism and Pharmacokinetics (DMPK) DepartmentPharmaronBeijingChina
| | - Yuanyuan Tao
- Drug Metabolism and Pharmacokinetics (DMPK) DepartmentPharmaronBeijingChina
| | - Juan Du
- Drug Metabolism and Pharmacokinetics (DMPK) DepartmentPharmaronBeijingChina
| | - Shuyao Wang
- Drug Metabolism and Pharmacokinetics (DMPK) DepartmentPharmaronBeijingChina
| | - Teng Zhang
- Drug Metabolism and Pharmacokinetics (DMPK) DepartmentPharmaronBeijingChina
| | - Na Du
- Drug Metabolism and Pharmacokinetics (DMPK) DepartmentPharmaronBeijingChina
| | - Junyang Guo
- Drug Metabolism and Pharmacokinetics (DMPK) DepartmentPharmaronBeijingChina
| | - Yaqiong Wu
- Drug Metabolism and Pharmacokinetics (DMPK) DepartmentPharmaronBeijingChina
| | - Zehai Song
- Drug Metabolism and Pharmacokinetics (DMPK) DepartmentPharmaronBeijingChina
| | - Haofei Luan
- Drug Metabolism and Pharmacokinetics (DMPK) DepartmentPharmaronBeijingChina
| | - Yu Wang
- Drug Metabolism and Pharmacokinetics (DMPK) DepartmentPharmaronBeijingChina
| | - Hongwen Du
- Drug Metabolism and Pharmacokinetics (DMPK) DepartmentPharmaronBeijingChina
| | - Shaofeng Zhang
- Drug Metabolism and Pharmacokinetics (DMPK) DepartmentPharmaronBeijingChina
| | - Chen Li
- Drug Metabolism and Pharmacokinetics (DMPK) DepartmentPharmaronBeijingChina
| | - Hang Chang
- Drug Metabolism and Pharmacokinetics (DMPK) DepartmentPharmaronBeijingChina
| | - Tao Wang
- Drug Metabolism and Pharmacokinetics (DMPK) DepartmentPharmaronBeijingChina
| |
Collapse
|
25
|
Quantitative analysis of the effect of controlled-release formulation on nonlinear gastrointestinal absorption of P-glycoprotein substrate talinolol using physiologically based pharmacokinetic absorption model. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
26
|
Multicomponent self nano emulsifying delivery systems of resveratrol with enhanced pharmacokinetics profile. Eur J Pharm Sci 2019; 137:105011. [PMID: 31330260 DOI: 10.1016/j.ejps.2019.105011] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 03/25/2019] [Accepted: 07/15/2019] [Indexed: 12/21/2022]
Abstract
Resveratrol is a drug with high potential for clinical application based on experimental models. Though, resveratrol translation to clinical use has not been successful yet due to its poor pharmacokinetics, related to poor solubility and fast metabolism. The use of drug delivery systems, namely self-emulsifying drug delivery systems (SEDDS), may be a viable strategy to overcome the poor in vivo performance of resveratrol. In this work, a rational development of two different ternary SEDDS was conducted. Experimental data showed that quantitative variations on SEDDS composition impacted dispersion and robustness to dilution of SEDDS, as well as loading capacity and droplet size. Formulations composed of Lauroglycol® 90/Labrasol®/Capryol® PGMC (12.5/75.0/12.5) (Lau/Lab/Cap) and Tween® 80/Transcutol®/Imwitor® 742 (33.3/33.3/33.3) (T80/Trans/Imw) featured improved performance and were selected for further studies. T80/Trans/Imw formulation yield faster emulsification and originated smaller droplet size, with lower cumulative percentile of 90% of particles (D90) (below 200 nm), as compared to the than Lau/Lab/Cap formulation. Higher resveratrol permeation rate was observed in Caco-2 cell monolayer permeability studies for both formulations as compared to the free drug. Reduction of the metabolization and/or efflux of resveratrol was also noticed in the case of SEDDs, as suggested by the increased recovery of total drug. Plasmatic drug concentrations in rats observed after oral gavage indicate that both formulations provided faster resveratrol absorption than free drug, resulting in shorter Tmax values (30 min vs. 2 h). No statistically significant differences were observed for AUC0-t values of both formulations and the free drug. Still, Cmax for the Lau/Lab/Cap SEDDs formulation was 2-fold higher than for the free drug. These findings suggest that SEDDS can increase resveratrol solubility and reduce its metabolization, resulting in an overall improvement of its oral pharmacokinetics profile.
Collapse
|
27
|
Rafiei P, Haddadi A. A robust systematic design: Optimization and preparation of polymeric nanoparticles of PLGA for docetaxel intravenous delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109950. [PMID: 31499976 DOI: 10.1016/j.msec.2019.109950] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 06/06/2019] [Accepted: 07/05/2019] [Indexed: 01/08/2023]
Abstract
Poly (lactide-co-glycolide) (PLGA) is a biocompatible, biodegradable, and non-toxic polymer used in a variety of biomedical and pharmaceutical applications. Polymeric nanoparticles prepared from PLGA have been extensively used as delivery vehicles of various chemotherapeutic agents. The variability of PLGA polymer and nanoparticle fabrication process potentially results in variability of particle characteristics. Nanoparticle characteristics determine nanoparticles' performance when used as drug delivery systems. Having control on nanoparticle's characteristics grants control over the fate of nanoparticles and the associated drug. Here, L16 Taguchi experimental design was used to evaluate the effect of polymer characteristics and fabrication variables on PLGA nanoparticles. The design was used to determine an optimized preparation condition for PLGA nanoparticles as an intravenous delivery system for docetaxel. An emulsification-solvent-evaporation method was used to fabricate nanoparticles. Docetaxel concentration, organic phase:aqueous phase ratio, polymer molecular weight, polymer terminus, lactide:glycolide ratio, and Poly(vinyl alcohol)(PVA) concentration were selected as main determinants. First two factors were evaluated at 4 levels and the rest at 2 levels. Particle-important characteristics including size, polydispersity index (PDI), surface charge (zeta potential), and docetaxel loading-efficiency were determined. Factors affecting nanoparticle characteristics were ranked according to level of effectiveness. Factors that affected nanoparticle properties with statistical significance were identified. Models to predict nanoparticle characteristics were built. An optimized fabrication method was identified and used to prepare PLGA nanoparticles for docetaxel delivery.
Collapse
Affiliation(s)
- Pedram Rafiei
- Division of Pharmacy, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatchewan, Saskatoon, Canada; Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
| | - Azita Haddadi
- Division of Pharmacy, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatchewan, Saskatoon, Canada.
| |
Collapse
|
28
|
Chiang PC, Nagapudi K, Liu J, Crawford JJ, Zbieg JR, Plise E, Deng Y. An Integrated Analysis of Solid Form Change Impact on Solubility and Permeability: Case Study of Oral Exposure in Rats of an RAR Related Orphan Receptor C Inhibitor. J Pharm Sci 2019; 108:2256-2263. [DOI: 10.1016/j.xphs.2019.01.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 01/29/2019] [Accepted: 01/31/2019] [Indexed: 11/15/2022]
|
29
|
Ohashi R, Watanabe R, Esaki T, Taniguchi T, Torimoto-Katori N, Watanabe T, Ogasawara Y, Takahashi T, Tsukimoto M, Mizuguchi K. Development of Simplified in Vitro P-Glycoprotein Substrate Assay and in Silico Prediction Models To Evaluate Transport Potential of P-Glycoprotein. Mol Pharm 2019; 16:1851-1863. [PMID: 30933526 DOI: 10.1021/acs.molpharmaceut.8b01143] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
For efficient drug discovery and screening, it is necessary to simplify P-glycoprotein (P-gp) substrate assays and to provide in silico models that predict the transport potential of P-gp. In this study, we developed a simplified in vitro screening method to evaluate P-gp substrates by unidirectional membrane transport in P-gp-overexpressing cells. The unidirectional flux ratio positively correlated with parameters of the conventional bidirectional P-gp substrate assay ( R2 = 0.941) and in vivo Kp,brain ratio (mdr1a/1b KO/WT) in mice ( R2 = 0.800). Our in vitro P-gp substrate assay had high reproducibility and required approximately half the labor of the conventional method. We also constructed regression models to predict the value of P-gp-mediated flux and three-class classification models to predict P-gp substrate potential (low-, medium-, and high-potential) using 2397 data entries with the largest data set collected under the same experimental conditions. Most compounds in the test set fell within two- and three-fold errors in the random forest regression model (71.3 and 88.5%, respectively). Furthermore, the random forest three-class classification model showed a high balanced accuracy of 0.821 and precision of 0.761 for the low-potential classes in the test set. We concluded that the simplified in vitro P-gp substrate assay was suitable for compound screening in the early stages of drug discovery and that the in silico regression model and three-class classification model using only chemical structure information could identify the transport potential of compounds including P-gp-mediated flux ratios. Our proposed method is expected to be a practical tool to optimize effective central nervous system (CNS) drugs, to avoid CNS side effects, and to improve intestinal absorption.
Collapse
Affiliation(s)
- Rikiya Ohashi
- Laboratory of Bioinformatics , National Institutes of Biomedical Innovation, Health and Nutrition , 7-6-8 Saito-Asagi , Ibaraki , Osaka 567-0085 , Japan
| | - Reiko Watanabe
- Laboratory of Bioinformatics , National Institutes of Biomedical Innovation, Health and Nutrition , 7-6-8 Saito-Asagi , Ibaraki , Osaka 567-0085 , Japan
| | - Tsuyoshi Esaki
- Laboratory of Bioinformatics , National Institutes of Biomedical Innovation, Health and Nutrition , 7-6-8 Saito-Asagi , Ibaraki , Osaka 567-0085 , Japan
| | | | | | | | | | | | | | - Kenji Mizuguchi
- Laboratory of Bioinformatics , National Institutes of Biomedical Innovation, Health and Nutrition , 7-6-8 Saito-Asagi , Ibaraki , Osaka 567-0085 , Japan
| |
Collapse
|
30
|
Ashmawy SM, El-Gizawy SA, El Maghraby GM, Osman MA. Regional difference in intestinal drug absorption as a measure for the potential effect of P-glycoprotein efflux transporters. J Pharm Pharmacol 2018; 71:362-370. [PMID: 30362574 DOI: 10.1111/jphp.13036] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 09/29/2018] [Indexed: 11/28/2022]
Abstract
OBJECTIVES The aim of this research was to assess regional difference in the intestinal absorption of ranitidine HCl as an indicator for the potential effect of P-glycoprotein (P-gp) efflux transporters. METHODS In situ rabbit intestinal perfusion was used to investigate absorption of ranitidine HCl, a substrate for P-gp efflux from duodenum, jejunum, ileum and colon. This was conducted both in the presence and absence of piperine as P-gp inhibitor. KEY FINDINGS Ranitidine HCl was incompletely absorbed from rabbit intestine. The length normalized absorptive clearance (PeA/L) of ranitidine HCl was ranked as colon > duodenum > jejunum > ileum. This is the reverse order of the magnitude of P-gp expression. Coperfusion of piperine with ranitidine HCl significantly increased the PeA/L of ranitidine HCl from jejunum and ileum with no significant change on the absorption from duodenum and colon. This was confirmed by significant reduction in the length required for complete ranitidine HCl absorption from jejunum and ileum in presence piperine. CONCLUSIONS The results indicate that P-gp transporters play a major role in determining regional difference in intestinal absorption of ranitidine HCl. Thus, the regional absorption of drugs may be taken as an indirect indication for the role of P-gp in intestinal absorption.
Collapse
Affiliation(s)
- Shimaa M Ashmawy
- Department of Pharmaceutical Technology, College of Pharmacy, University of Tanta, Tanta, Egypt
| | - Sanaa A El-Gizawy
- Department of Pharmaceutical Technology, College of Pharmacy, University of Tanta, Tanta, Egypt
| | - Gamal M El Maghraby
- Department of Pharmaceutical Technology, College of Pharmacy, University of Tanta, Tanta, Egypt
| | - Mohamed A Osman
- Department of Pharmaceutical Technology, College of Pharmacy, University of Tanta, Tanta, Egypt
| |
Collapse
|
31
|
Volpe DA, Qosa H. Challenges with the precise prediction of ABC-transporter interactions for improved drug discovery. Expert Opin Drug Discov 2018; 13:697-707. [PMID: 29943645 DOI: 10.1080/17460441.2018.1493454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Given that membrane efflux transporters can influence a drug's pharmacokinetics, efficacy and safety, identifying potential substrates and inhibitors of these transporters is a critical element in the drug discovery and development process. Additionally, it is important to predict the inhibition potential of new drugs to avoid clinically significant drug interactions. The goal of preclinical studies is to characterize a new drug as a substrate or inhibitor of efflux transporters. Areas covered: This article reviews preclinical systems that are routinely utilized to determine whether a new drug is substrate or inhibitor of efflux transporters including in silico models, in vitro membrane and cell assays, and animal models. Also included is an examination of studies comparing in vitro inhibition data to clinical drug interaction outcomes. Expert opinion: While a number of models are employed to classify a drug as an efflux substrate or inhibitor, there are challenges in predicting clinical drug interactions. Improvements could be made in these predictions through a tier approach to classify new drugs, validation of preclinical assays, and refinement of threshold criteria for clinical interaction studies.
Collapse
Affiliation(s)
- Donna A Volpe
- a Office of Clinical Pharmacology, Center for Drug Evaluation and Research , Food and Drug Administration , Silver Spring , MD , USA
| | - Hisham Qosa
- a Office of Clinical Pharmacology, Center for Drug Evaluation and Research , Food and Drug Administration , Silver Spring , MD , USA
| |
Collapse
|
32
|
The expected characteristics of an in vitro human Blood Brain Barrier model derived from cell lines, for studying how ABC transporters influence drug permeability. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
33
|
Onozato D, Yamashita M, Nakanishi A, Akagawa T, Kida Y, Ogawa I, Hashita T, Iwao T, Matsunaga T. Generation of Intestinal Organoids Suitable for Pharmacokinetic Studies from Human Induced Pluripotent Stem Cells. Drug Metab Dispos 2018; 46:1572-1580. [PMID: 29615438 DOI: 10.1124/dmd.118.080374] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/29/2018] [Indexed: 11/22/2022] Open
Abstract
Intestinal organoids morphologically resemble intestinal tissues and are expected to be used in both regenerative medicine and drug development studies, including pharmacokinetic studies. However, the pharmacokinetic properties of these organoids remain poorly characterized. In this study, we aimed to generate pharmacokinetically functional intestinal organoids from human induced pluripotent stem (iPS) cells. Human iPS cells were induced to differentiate into the midgut and then seeded on EZSPHERE plates (AGC Techno Glass Inc., Shizuoka, Japan) to generate uniform spheroids, and the floating spheroids were subsequently differentiated into intestinal organoids using small-molecule compounds. Exposure to the small-molecule compounds potently increased the expression of intestinal markers and pharmacokinetic-related genes in the organoids, and the organoids also included various intestinal cells such as enterocytes, intestinal stem cells, goblet cells, enteroendocrine cells, Paneth cells, smooth muscle cells, and fibroblasts. Moreover, microvilli and tight junctions were observed in the organoids. Furthermore, we detected not only the expression of drug transporters but also efflux transport activity through ABCB1/MDR1 and the induction of the drug-metabolizing enzyme CYP3A4 by ligands of nuclear receptors. Our results demonstrated the successful generation of pharmacokinetically functional intestinal organoids from human iPS cells. Thus, these intestinal organoids could be used as a pharmacokinetic evaluation system in drug development studies.
Collapse
Affiliation(s)
- Daichi Onozato
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences (D.O., M.Y., A.N., T.H., T.I., T.M.), and Educational Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences (T.A., Y.K., I.O., T.H., T.I., T.M.), Nagoya City University, Nagoya, Japan
| | - Misaki Yamashita
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences (D.O., M.Y., A.N., T.H., T.I., T.M.), and Educational Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences (T.A., Y.K., I.O., T.H., T.I., T.M.), Nagoya City University, Nagoya, Japan
| | - Anna Nakanishi
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences (D.O., M.Y., A.N., T.H., T.I., T.M.), and Educational Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences (T.A., Y.K., I.O., T.H., T.I., T.M.), Nagoya City University, Nagoya, Japan
| | - Takumi Akagawa
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences (D.O., M.Y., A.N., T.H., T.I., T.M.), and Educational Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences (T.A., Y.K., I.O., T.H., T.I., T.M.), Nagoya City University, Nagoya, Japan
| | - Yuriko Kida
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences (D.O., M.Y., A.N., T.H., T.I., T.M.), and Educational Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences (T.A., Y.K., I.O., T.H., T.I., T.M.), Nagoya City University, Nagoya, Japan
| | - Isamu Ogawa
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences (D.O., M.Y., A.N., T.H., T.I., T.M.), and Educational Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences (T.A., Y.K., I.O., T.H., T.I., T.M.), Nagoya City University, Nagoya, Japan
| | - Tadahiro Hashita
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences (D.O., M.Y., A.N., T.H., T.I., T.M.), and Educational Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences (T.A., Y.K., I.O., T.H., T.I., T.M.), Nagoya City University, Nagoya, Japan
| | - Takahiro Iwao
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences (D.O., M.Y., A.N., T.H., T.I., T.M.), and Educational Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences (T.A., Y.K., I.O., T.H., T.I., T.M.), Nagoya City University, Nagoya, Japan
| | - Tamihide Matsunaga
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences (D.O., M.Y., A.N., T.H., T.I., T.M.), and Educational Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences (T.A., Y.K., I.O., T.H., T.I., T.M.), Nagoya City University, Nagoya, Japan
| |
Collapse
|
34
|
Akazawa T, Uchida Y, Miyauchi E, Tachikawa M, Ohtsuki S, Terasaki T. High Expression of UGT1A1/1A6 in Monkey Small Intestine: Comparison of Protein Expression Levels of Cytochromes P450, UDP-Glucuronosyltransferases, and Transporters in Small Intestine of Cynomolgus Monkey and Human. Mol Pharm 2017; 15:127-140. [DOI: 10.1021/acs.molpharmaceut.7b00772] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Takanori Akazawa
- Division
of Membrane Transport and Drug Targeting, Graduate School
of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Yasuo Uchida
- Division
of Membrane Transport and Drug Targeting, Graduate School
of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Eisuke Miyauchi
- Division
of Membrane Transport and Drug Targeting, Graduate School
of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Masanori Tachikawa
- Division
of Membrane Transport and Drug Targeting, Graduate School
of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Sumio Ohtsuki
- Department
of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Tetsuya Terasaki
- Division
of Membrane Transport and Drug Targeting, Graduate School
of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
35
|
Ozgür B, Saaby L, Langthaler K, Brodin B. Characterization of the IPEC-J2 MDR1 (iP-gp) cell line as a tool for identification of P-gp substrates. Eur J Pharm Sci 2017; 112:112-121. [PMID: 29146563 DOI: 10.1016/j.ejps.2017.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/01/2017] [Accepted: 11/08/2017] [Indexed: 10/18/2022]
Abstract
Recently, we transfected the porcine intestinal cell line IPEC-J2, with human P-glycoprotein (P-gp, ABCB1). The resulting cell line, iP-gp, has a high expression of functional human P-gp in the apical membrane, and a low expression of nonhuman ATP-binding cassette (ABC) transporters. The aim of the present work was to investigate the usability of iP-gp cell line for determining transepithelial transport kinetics of the prototypical P-gp substrates digoxin and rhodamine 123. The cell line generated tight monolayers after 16days of culture, reflected by high transepithelial electrical resistance values (TEER>15,000Ω·cm2), immunocytochemistry and low fluxes of the paracellular flux marker [14C]-mannitol. Monolayer integrity was not affected the common solvents dimethyl sulfoxide (DMSO), methanol and ethanol in concentrations up to 2% (v/v). Transepithelial fluxes of [3H]-labeled digoxin and rhodamine 123 were measured at varying donor concentrations, and kinetic parameters were estimated. Km and Vmax of P-gp mediated basolateral-to-apical (B-A) flux of rhodamine 123 were estimated to 332±124μM and 111±16pmol·cm-2·min-1 (n=3, total N=6), respectively. Vmax and Km of digoxin B-A flux could not be estimated due to the low aqueous solubility of digoxin. The half maximal inhibitory concentrations (IC50) of the selective P-gp inhibitor, zosuquidar (LY-335979), were estimated to 0.05±0.01μM (n=3, total N=6) and 0.04±0.01μM (n=3, total N=6) in transport experiments with digoxin and rhodamine 123 as substrates, respectively. Bidirectional fluxes of digoxin and rhodamine 123 were measured in transfected Madin Darby canine kidney cells (MDCK II MDR1) and compared with the fluxes obtained with the iP-gp cell monolayers. Efflux ratios were highest in the iP-gp cells, due to a tighter paracellular pathway. In conclusion, both digoxin and rhodamine 123 could be used to obtain IC50 values of inhibition, Ki values were only possible to obtain using rhodamine 123. The observed tightness, robustness towards solvents and the high efflux ratios confirmed that the iP-gp cell line may serve as a useful screening tool for investigations of substrate-P-gp interactions and modulation of P-gp function.
Collapse
Affiliation(s)
- Burak Ozgür
- Section of Pharmaceutical Design and Drug Delivery, Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Lasse Saaby
- Section of Pharmaceutical Design and Drug Delivery, Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark; Bioneer-FARMA, Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | | | - Birger Brodin
- Section of Pharmaceutical Design and Drug Delivery, Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
36
|
Abstract
INTRODUCTION In pharmacotherapy, drugs are mostly taken orally to be absorbed systemically from the small intestine, and some drugs are known to have preferential absorption sites in the small intestine. It would therefore be valuable to know the absorption sites of orally administered drugs and the influencing factors. Areas covered:In this review, the author summarizes the reported absorption sites of orally administered drugs, as well as, influencing factors and experimental techniques. Information on the main absorption sites and influencing factors can help to develop ideal drug delivery systems and more effective pharmacotherapies. Expert opinion: Various factors including: the solubility, lipophilicity, luminal concentration, pKa value, transporter substrate specificity, transporter expression, luminal fluid pH, gastrointestinal transit time, and intestinal metabolism determine the site-dependent intestinal absorption. However, most of the dissolved fraction of orally administered drugs including substrates for ABC and SLC transporters, except for some weakly basic drugs with higher pKa values, are considered to be absorbed sequentially from the proximal small intestine. Securing the solubility and stability of drugs prior to reaching to the main absorption sites and appropriate delivery rates of drugs at absorption sites are important goals for achieving effective pharmacotherapy.
Collapse
Affiliation(s)
- Teruo Murakami
- a Laboratory of Biopharmaceutics and Pharmacokinetics, Faculty of Pharmaceutical Sciences , Hiroshima International University , Hiroshima , Japan
| |
Collapse
|
37
|
Osmolality of Orally Administered Solutions Influences Luminal Water Volume and Drug Absorption in Intestine. J Pharm Sci 2017; 106:2889-2894. [DOI: 10.1016/j.xphs.2017.04.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/14/2017] [Accepted: 04/17/2017] [Indexed: 12/14/2022]
|
38
|
A Critical View on In Vitro Analysis of P-glycoprotein (P-gp) Transport Kinetics. J Pharm Sci 2017; 106:2257-2264. [DOI: 10.1016/j.xphs.2017.04.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/12/2017] [Accepted: 04/12/2017] [Indexed: 01/11/2023]
|
39
|
Tarapcsák S, Szalóki G, Telbisz Á, Gyöngy Z, Matúz K, Csősz É, Nagy P, Holb IJ, Rühl R, Nagy L, Szabó G, Goda K. Interactions of retinoids with the ABC transporters P-glycoprotein and Breast Cancer Resistance Protein. Sci Rep 2017; 7:41376. [PMID: 28145501 PMCID: PMC5286421 DOI: 10.1038/srep41376] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 12/20/2016] [Indexed: 01/16/2023] Open
Abstract
Retinoids – derivatives of vitamin A – are important cell permeant signaling molecules that regulate gene expression through activation of nuclear receptors. P-glycoprotein (Pgp) and ABCG2 are plasma membrane efflux transporters affecting the tissue distribution of numerous structurally unrelated lipophilic compounds. In the present work we aimed to study the interaction of the above ABC transporters with retinoid derivatives. We have found that 13-cis-retinoic acid, retinol and retinyl-acetate inhibited the Pgp and ABCG2 mediated substrate transport as well as the substrate stimulated ATPase activity of these transporters. Interestingly, 9-cis-retinoic acid and ATRA (all-trans retinoic acid), both are stereoisomers of 13-cis-retinoic acid, did not have any effect on the transporters’ activity. Our fluorescence anisotropy measurements revealed that 13-cis-retinoic acid, retinol and retinyl-acetate selectively increase the viscosity and packing density of the membrane. Thus, the mixed-type inhibition of both transporters by retinol and ABCG2 by 13-cis-retinoic acid may be the collective result of direct interactions of these retinoids with the substrate binding site(s) and of indirect interactions mediated by their membrane rigidifying effects.
Collapse
Affiliation(s)
- Szabolcs Tarapcsák
- Department of Biophysics and Cell Biology, University of Debrecen, Debrecen, H-4002 Egyetem tér 1, P.O.B. 400, Hungary
| | - Gábor Szalóki
- Department of Biophysics and Cell Biology, University of Debrecen, Debrecen, H-4002 Egyetem tér 1, P.O.B. 400, Hungary
| | - Ágnes Telbisz
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, H-1117 Magyar tudósok körútja 2, P.O.B. 286, Hungary
| | - Zsuzsanna Gyöngy
- Department of Biophysics and Cell Biology, University of Debrecen, Debrecen, H-4002 Egyetem tér 1, P.O.B. 400, Hungary
| | - Krisztina Matúz
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, H-4002 Egyetem tér 1, P.O.B. 400, Hungary
| | - Éva Csősz
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, H-4002 Egyetem tér 1, P.O.B. 400, Hungary
| | - Péter Nagy
- Department of Biophysics and Cell Biology, University of Debrecen, Debrecen, H-4002 Egyetem tér 1, P.O.B. 400, Hungary
| | - Imre J Holb
- Institute of Horticulture, University of Debrecen, Debrecen, H-4015 Böszörményi út 138, P.O.B. 400, Hungary.,Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, H-1525 Hermann Ottó út 15, P.O.B. 525, Hungary
| | - Ralph Rühl
- MTA-DE, Public Health Research Group of the Hungarian Academy of Sciences, Faculty of Public Health, University of Debrecen, Debrecen, H-4028 Kassai út 26, P.O.B. 400, Hungary
| | - László Nagy
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, H-4002 Egyetem tér 1, P.O.B. 400, Hungary
| | - Gábor Szabó
- Department of Biophysics and Cell Biology, University of Debrecen, Debrecen, H-4002 Egyetem tér 1, P.O.B. 400, Hungary
| | - Katalin Goda
- Department of Biophysics and Cell Biology, University of Debrecen, Debrecen, H-4002 Egyetem tér 1, P.O.B. 400, Hungary
| |
Collapse
|
40
|
Carstens BB, Swedberg J, Berecki G, Adams DJ, Craik DJ, Clark RJ. Effects of linker sequence modifications on the structure, stability, and biological activity of a cyclic α-conotoxin. Biopolymers 2016; 106:864-875. [DOI: 10.1002/bip.22848] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 03/28/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Bodil B. Carstens
- Institute for Molecular Bioscience, the University of Queensland; Brisbane Queensland 4072 Australia
- School of Biomedical Sciences; the University of Queensland; Brisbane Queensland 4072 Australia
| | - Joakim Swedberg
- Institute for Molecular Bioscience, the University of Queensland; Brisbane Queensland 4072 Australia
| | - Géza Berecki
- Health Innovations Research Institute, RMIT University; Melbourne Victoria 3083 Australia
| | - David J. Adams
- Health Innovations Research Institute, RMIT University; Melbourne Victoria 3083 Australia
| | - David J. Craik
- Institute for Molecular Bioscience, the University of Queensland; Brisbane Queensland 4072 Australia
| | - Richard J. Clark
- School of Biomedical Sciences; the University of Queensland; Brisbane Queensland 4072 Australia
| |
Collapse
|
41
|
Bogorad MI, Searson PC. Real-time imaging and quantitative analysis of doxorubicin transport in a perfusable microvessel platform. Integr Biol (Camb) 2016; 8:976-84. [PMID: 27523481 PMCID: PMC5035133 DOI: 10.1039/c6ib00082g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Here we report on real-time imaging and quantitative analysis of solute transport in perfusable cylindrical microvessels formed from Madin-Darby canine kidney (MDCK) cells embedded in a collagen matrix. Fluorescence microscopy was used to image the kinetics of doxorubicin transport following injection. To assess the role of efflux pumps on transport, experiments were performed in microvessels formed from MDCK.2, MDCKII-w/t, and MDCKII-MDR1 cells. MDCKII-w/t and MDCKII-MDR1 showed significant doxorubicin accumulation in the cells, characteristic of the pharmacokinetics of doxorubicin. We present a model for doxorubicin transport that takes into account transport across the cell layer. These results demonstrate how real-time imaging of cell microvessels can be used to analyze the mechanisms of transport and distribution following systemic delivery.
Collapse
Affiliation(s)
- Max I Bogorad
- Institute for Nanobiotechnology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | | |
Collapse
|
42
|
Kodama N, Iwao T, Katano T, Ohta K, Yuasa H, Matsunaga T. Characteristic Analysis of Intestinal Transport in Enterocyte-Like Cells Differentiated from Human Induced Pluripotent Stem Cells. ACTA ACUST UNITED AC 2016; 44:0. [PMID: 27417181 DOI: 10.1124/dmd.116.069336] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 07/13/2016] [Indexed: 12/25/2022]
Abstract
We previously demonstrated that differentiated enterocytes from human induced pluripotent stem (iPS) cells exhibited drug-metabolizing activities and cytochrome P450 CYP3A4 inducibility. The aim of this study was to apply human iPS cell-derived enterocytes in pharmacokinetic studies by investigating the characteristics of drug transport into enterocyte-like cells. Human iPS cells cultured on feeder cells were differentiated into endodermal cells using activin A. These endodermal-like cells were then differentiated into intestinal stem cells by fibroblast growth factor 2. Finally, epidermal growth factor and small-molecule compounds induced the maturation of the intestinal stem cell-like cells. After differentiation, we performed transepithelial electrical resistance (TEER) measurements, immunofluorescence staining, and transport studies. TEER values increased in a time-dependent manner and reached approximately 100 Ω × cm(2) Efflux transport of Hoechst 33342, a substrate of breast cancer resistance protein (BCRP), was observed and inhibited by the BCRP inhibitor Ko143. The uptake of peptide transporter 1 substrate glycylsarcosine was also confirmed and suppressed when the temperature was lowered to 4°C. Using immunofluorescence staining, villin and Na(+)-K(+) ATPase were expressed. These results suggest that human iPS cell-derived enterocytes had loose tight junctions, polarity, as well as uptake and efflux transport functions. In addition, the rank order of apparent membrane permeability coefficient (Papp) values of these test compounds across the enterocyte-like cell membrane corresponded to the fraction absorbance (Fa) values. Therefore, differentiated enterocytes from human iPS cells may provide a useful comprehensive evaluation model of drug transport and metabolism in the small intestine.
Collapse
Affiliation(s)
- Nao Kodama
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan (N.K., T.I., T.M.), Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan (T.K., K.O., H.Y.)
| | - Takahiro Iwao
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan (N.K., T.I., T.M.), Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan (T.K., K.O., H.Y.)
| | - Takahiro Katano
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan (N.K., T.I., T.M.), Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan (T.K., K.O., H.Y.)
| | - Kinya Ohta
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan (N.K., T.I., T.M.), Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan (T.K., K.O., H.Y.)
| | - Hiroaki Yuasa
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan (N.K., T.I., T.M.), Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan (T.K., K.O., H.Y.)
| | - Tamihide Matsunaga
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan (N.K., T.I., T.M.), Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan (T.K., K.O., H.Y.)
| |
Collapse
|
43
|
Akazawa T, Uchida Y, Tachikawa M, Ohtsuki S, Terasaki T. Quantitative Targeted Absolute Proteomics of Transporters and Pharmacoproteomics-Based Reconstruction of P-Glycoprotein Function in Mouse Small Intestine. Mol Pharm 2016; 13:2443-56. [PMID: 27276518 DOI: 10.1021/acs.molpharmaceut.6b00196] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The purpose of this study was to investigate whether a pharmacokinetic model integrating in vitro mdr1a efflux activity (which we previously reported) with in vitro/in vivo differences in protein expression level can reconstruct intestinal mdr1a function. In situ intestinal permeability-surface area product ratio between wild-type and mdr1a/1b (-/-) mice is one of the parameters used to describe intestinal mdr1a function. The reconstructed ratios of six mdr1a substrates (dexamethasone, digoxin, loperamide, quinidine, verapamil, vinblastine) and one nonsubstrate (diazepam) were consistent with the observed values reported by Adachi et al. within 2.1-fold difference. Thus, intestinal mdr1a function can be reconstructed by our pharmacoproteomic modeling approach. Furthermore, we evaluated regional differences in protein expression levels of mouse intestinal transporters. Sixteen (mdr1a, mrp4, bcrp, abcg5, abcg8, glut1, 4f2hc, sglt1, lat2, pept1, mct1, slc22a18, ostβ, villin1, Na(+)/K(+)-ATPase, γ-gtp) out of 46 target molecules were detected by employing our established quantitative targeted absolute proteomics technique. The protein expression amounts of mdr1a and bcrp increased progressively from duodenum to ileum. Sglt1, lat2, and 4f2hc were highly expressed in jejunum and ileum. Mct1 and ostβ were highly expressed in ileum. The quantitative expression profiles established here should be helpful to understand and predict intestinal transporter functions.
Collapse
Affiliation(s)
- Takanori Akazawa
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University , 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Yasuo Uchida
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University , 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Masanori Tachikawa
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University , 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Sumio Ohtsuki
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University , 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Tetsuya Terasaki
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University , 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
44
|
Ho NF, Nielsen J, Peterson M, Burton PS. Quantitative and Mechanistic Assessment of Model Lipophilic Drugs in Micellar Solutions in the Transport Kinetics Across MDR1-MDCK Cell Monolayers. J Pharm Sci 2016; 105:904-914. [DOI: 10.1016/j.xphs.2015.11.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/05/2015] [Accepted: 11/11/2015] [Indexed: 10/22/2022]
|
45
|
Sakamoto A, Suzuki S, Matsumaru T, Yamamura N, Uchida Y, Tachikawa M, Terasaki T. Correlation of Organic Cation/Carnitine Transporter 1 and Multidrug Resistance-Associated Protein 1 Transport Activities With Protein Expression Levels in Primary Cultured Human Tracheal, Bronchial, and Alveolar Epithelial Cells. J Pharm Sci 2016; 105:876-883. [DOI: 10.1002/jps.24661] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 09/04/2015] [Accepted: 09/04/2015] [Indexed: 11/10/2022]
|
46
|
Huang L, Liu SL, Zheng JW, Li HY, Liu JS, Yang WD. P-glycoprotein and its inducible expression in three bivalve species after exposure to Prorocentrum lima. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 169:123-132. [PMID: 26539802 DOI: 10.1016/j.aquatox.2015.10.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 10/14/2015] [Accepted: 10/16/2015] [Indexed: 06/05/2023]
Abstract
P-glycoprotein (P-gp or ABCB1) belongs to the family of ATP-binding cassette (ABC) transporters responsible for multixenobiotic resistance (MXR) in aquatic organisms. To provide more information of P-gp in shellfish, in this study, complete cDNA of P-gp in three bivalve species including Ruditapes philippinarum, Scapharca subcrenata and Tegillarca granosa were cloned and its expressions in gill, digestive gland, adductor muscle and mantle of the three bivalves were detected after exposure to Prorocentrum lima, a toxogenic dinoflagellate. The complete sequences of R. philippinarum, S. subcrenata and T. granosa P-gp showed high homology with MDR/P-gp/ABCB proteins from other species, having a typical sequence organization as full transporters from the ABCB family. Phylogenetic analyses revealed that the amino acid sequences of P-gp from S. subcrenata and T. granosa had a closest relationship, forming an independent branch, then grouping into the other branch with Mytilus californianus, Mytilus galloprovincialis and Crassostrea gigas. However, P-gp sequences from R. philippinarum were more similar to the homologs from the more distantly related Aplysia californica than to homologs from S. subcrenata and T. granosa, suggesting that bivalves P-gp might have different paralogs. P-glycoprotein expressed in all detected tissues but there were large differences between them. After exposure to P. lima, the expression of P-gp changed in the four tissues in varying degrees within the same species and between different species, but the changes in mRNA and protein level were not always synchronous.
Collapse
Affiliation(s)
- Lu Huang
- College of Life Science and Technology, Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, Jinan University, Guangzhou 510632, China; Department of Pathology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Su-Li Liu
- College of Life Science and Technology, Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, Jinan University, Guangzhou 510632, China
| | - Jian-Wei Zheng
- College of Life Science and Technology, Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, Jinan University, Guangzhou 510632, China
| | - Hong-Ye Li
- College of Life Science and Technology, Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, Jinan University, Guangzhou 510632, China
| | - Jie-Sheng Liu
- College of Life Science and Technology, Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, Jinan University, Guangzhou 510632, China
| | - Wei-Dong Yang
- College of Life Science and Technology, Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
47
|
Ozeki K, Kato M, Sakurai Y, Ishigai M, Kudo T, Ito K. Evaluation of the appropriate time range for estimating the apparent permeability coefficient (Papp) in a transcellular transport study. Int J Pharm 2015; 495:963-71. [DOI: 10.1016/j.ijpharm.2015.09.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 09/16/2015] [Indexed: 11/30/2022]
|
48
|
Volpe DA. Transporter assays as useful in vitro tools in drug discovery and development. Expert Opin Drug Discov 2015; 11:91-103. [DOI: 10.1517/17460441.2016.1101064] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Donna A. Volpe
- Food and Drug Administration, Center for Drug Evaluation and Research, Silver Spring, MD, USA
| |
Collapse
|
49
|
Uchida Y, Ohtsuki S, Kamiie J, Ohmine K, Iwase R, Terasaki T. Quantitative targeted absolute proteomics for 28 human transporters in plasma membrane of Caco-2 cell monolayer cultured for 2, 3, and 4 weeks. Drug Metab Pharmacokinet 2015; 30:205-8. [DOI: 10.1016/j.dmpk.2014.11.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 08/29/2014] [Accepted: 08/31/2014] [Indexed: 01/26/2023]
|
50
|
Lozoya-Agullo I, Zur M, Wolk O, Beig A, González-Álvarez I, González-Álvarez M, Merino-Sanjuán M, Bermejo M, Dahan A. In-situ intestinal rat perfusions for human Fabs prediction and BCS permeability class determination: Investigation of the single-pass vs. the Doluisio experimental approaches. Int J Pharm 2015; 480:1-7. [PMID: 25595387 DOI: 10.1016/j.ijpharm.2015.01.014] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 01/07/2015] [Accepted: 01/10/2015] [Indexed: 02/02/2023]
Abstract
Intestinal drug permeability has been recognized as a critical determinant of the fraction dose absorbed, with direct influence on bioavailability, bioequivalence and biowaiver. The purpose of this research was to compare intestinal permeability values obtained by two different intestinal rat perfusion methods: the single-pass intestinal perfusion (SPIP) model and the Doluisio (closed-loop) rat perfusion method. A list of 15 model drugs with different permeability characteristics (low, moderate, and high, as well as passively and actively absorbed) was constructed. We assessed the rat intestinal permeability of these 15 model drugs in both SPIP and the Doluisio methods, and evaluated the correlation between them. We then evaluated the ability of each of these methods to predict the fraction dose absorbed (Fabs) in humans, and to assign the correct BCS permeability class membership. Excellent correlation was obtained between the two experimental methods (r(2)=0.93). An excellent correlation was also shown between literature Fabs values and the predictions made by both rat perfusion techniques. Similar BCS permeability class membership was designated by literature data and by both SPIP and Doluisio methods for all compounds. In conclusion, the SPIP model and the Doluisio (closed-loop) rat perfusion method are both equally useful for obtaining intestinal permeability values that can be used for Fabs prediction and BCS classification.
Collapse
Affiliation(s)
- Isabel Lozoya-Agullo
- Department of Engineering, Pharmacy Section, Miguel Hernandez University, Alicante, Spain; Department of Pharmacy and Pharmaceutical Technology, University of Valencia, Valencia, Spain
| | - Moran Zur
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Omri Wolk
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Avital Beig
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | - Marta González-Álvarez
- Department of Engineering, Pharmacy Section, Miguel Hernandez University, Alicante, Spain
| | - Matilde Merino-Sanjuán
- Department of Pharmacy and Pharmaceutical Technology, University of Valencia, Valencia, Spain; Molecular Recognition and Technological Development, Polytechnic University, University of Valencia, Valencia, Spain
| | - Marival Bermejo
- Department of Engineering, Pharmacy Section, Miguel Hernandez University, Alicante, Spain
| | - Arik Dahan
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|