1
|
Zhou R, Wen Y, Huo W, Kong C, Yang G, Liu H, Zhang C, Mu Y, Huang D, Li J. Eco-friendly chitosan microspheres as a novel one-step sorbent for the rapid purification and determination of pesticides and veterinary drug multi-residues in aquatic products with HPLC-MS/MS. Food Chem 2025; 462:140860. [PMID: 39213964 DOI: 10.1016/j.foodchem.2024.140860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/09/2024] [Accepted: 08/11/2024] [Indexed: 09/04/2024]
Abstract
A modified QuEChERS method was developed to determine multi-class pesticide and veterinary residues in aquatic products. Chitosan microspheres were conveniently synthesized and utilized as the cleanup adsorbent in the QuEChERS procedure, showcasing rapid filtration one-step pretreatment ability for the determination of drug multi-residues in aquatic products. Compared to conventional synthetic sorbents, chitosan microspheres not only have good purification performance, but also have renewable and degradable properties. This novel sorbent worked well in the simultaneous determination of 95 pesticides and veterinary drug residues in aquatic products after being combined with an improved one-step vortex oscillating cleanup method. We achieved recoveries ranging from 64.0% to 115.9% for target drugs in shrimp and fish matrix. The limits of detection and quantification were 0.5-1.0 and 1.0-2.0 μg kg-1, respectively. Notably, hydrocortisone was detected with considerable frequency and concentration in the tested samples, underscoring the necessity for stringent monitoring of this compound in aquatic products.
Collapse
Affiliation(s)
- Ruidong Zhou
- Chinese Academy of Fishery Sciences, Beijing 100141, PR China; Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of agriculture and rural affairs, Beijing 100141, PR China
| | - Yupeng Wen
- Chinese Academy of Fishery Sciences, Beijing 100141, PR China; Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of agriculture and rural affairs, Beijing 100141, PR China
| | - Wendi Huo
- Chinese Academy of Fishery Sciences, Beijing 100141, PR China; Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of agriculture and rural affairs, Beijing 100141, PR China
| | - Cong Kong
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of agriculture and rural affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Guangxin Yang
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of agriculture and rural affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Huan Liu
- Chinese Academy of Fishery Sciences, Beijing 100141, PR China; Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of agriculture and rural affairs, Beijing 100141, PR China
| | - Chaoying Zhang
- Chinese Academy of Fishery Sciences, Beijing 100141, PR China; Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of agriculture and rural affairs, Beijing 100141, PR China
| | - Yingchun Mu
- Chinese Academy of Fishery Sciences, Beijing 100141, PR China; Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of agriculture and rural affairs, Beijing 100141, PR China
| | - Dongmei Huang
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of agriculture and rural affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Jincheng Li
- Chinese Academy of Fishery Sciences, Beijing 100141, PR China; Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of agriculture and rural affairs, Beijing 100141, PR China.
| |
Collapse
|
2
|
Lemos AC, Borba VSD, Cerqueira MBR, Pereira AM, Scaglioni PT, Badiale-Furlong E. White and wholewheat bread consumption and the risk of exposure to acrylamide and 5-hydroxymethylfurfural. Food Chem 2024; 460:140662. [PMID: 39111036 DOI: 10.1016/j.foodchem.2024.140662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 09/06/2024]
Abstract
This study used a green validated method to evaluate the risk of exposure of individuals of different ages to acrylamide (AA) and 5-hydroxymethylfurfural (5-HMF) by consuming white and wholewheat bread. Recoveries of AA and 5-HMF were 100.7% and 100.1%, respectively, while uncertainty was 2.3% and 6.2%. Levels of AA ranged from 617.22 to 3151.8 μg/kg while levels of 5-HMF ranged from 180.5 to 648.2 μg/kg. Female adolescents were almost 2-fold exposed to AA when they consumed 100% wholewheat bread (2.93 μg/kg bw/day) by comparison with white bread (1.72 μg/kg bw/day). Estimated daily exposure to AA was 1.5-fold higher than international recommendations. These findings raise concern for health risks associated with exposure to processing contaminant as the result of bread consumption, especially made from whole grains. Since development of those compounds is inevitable during breadmaking, it is crucial to standardize processing conditions and recipes to mitigate it.
Collapse
Affiliation(s)
- Andressa Cunha Lemos
- Sensory Analysis and Quality Control Laboratory, College of Chemistry and Food, Federal University of Rio Grande - FURG, Avenue Itália km 8, Campus Carreiros, Rio Grande, RS 96203-900, Brazil..
| | - Verônica Simões de Borba
- Organic Compounds and Metals Analysis Laboratory, College of Chemistry and Food, Federal University of Rio Grande - FURG, Avenue Itália km 8, Campus Carreiros, Rio Grande, RS 96203-900, Brazil
| | - Maristela Barnes Rodrigues Cerqueira
- Mycotoxin and Food Science Laboratory, College of Chemistry and Food, Federal University of Rio Grande - FURG, Avenue Itália km 8, Campus Carreiros, Rio Grande, RS 96203-900, Brazil
| | - Aline Massia Pereira
- Institute of Natural Resources, Federal University of Itajubá, Avenue BPS, 1303, Pinheirinho, Itajubá, RS 37500-903, Brazil; Food Technology Laboratory, College of Chemistry and Food, Federal University of Rio Grande - FURG, Avenue Itália km 8, Campus Carreiros, Rio Grande, RS 96203-900, Brazil
| | - Priscila Tessmer Scaglioni
- Food Technology Laboratory, College of Chemistry and Food, Federal University of Rio Grande - FURG, Avenue Itália km 8, Campus Carreiros, Rio Grande, RS 96203-900, Brazil
| | - Eliana Badiale-Furlong
- Mycotoxin and Food Science Laboratory, College of Chemistry and Food, Federal University of Rio Grande - FURG, Avenue Itália km 8, Campus Carreiros, Rio Grande, RS 96203-900, Brazil
| |
Collapse
|
3
|
Arimboor R, Gopalan V, M SC, Bhaskaranpillai RA. Development and validation of extraction and clean-up procedures for UPLC-MS/MS analysis of aflatoxins in spices. Mycotoxin Res 2024; 40:559-568. [PMID: 38990417 DOI: 10.1007/s12550-024-00546-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 06/29/2024] [Accepted: 07/03/2024] [Indexed: 07/12/2024]
Abstract
UPLC-MS/MS analytical conditions for the analysis of aflatoxins in spices were optimized and validated in this study. Liquid-liquid partition-based protocols for the cleaning up of extracts using common organic solvents such as acetonitrile, hexane, and ethyl acetate were developed and validated. The developed liquid-liquid partition methods were compared with immuno-affinity column and QuEChERS clean-up methods for the UPLC-MS/MS analysis of aflatoxins in 8 spices. The reduction of lipophilic components using the partition with hexane is particularly useful in spices like red pepper that have higher levels of fatty acids, carotenoids, sterols, triterpenoids, etc. The subsequent partitioning with ethyl acetate considerably reduced the matrix interference from the polar components and increased the sensitivity. The cleaning up of spice extracts using liquid-liquid partition techniques resulted in limits of quantification (LOQ) of 2-5 µgL-1 in UPLC-MS/MS analysis. Trueness, repeatability, and reproducibility of the methods were in acceptable ranges. The accuracy of the developed methods was further verified by analyzing aflatoxins in naturally incurred samples of spices and comparing the results with those obtained from the immuno-affinity column cleanup-HPLC-FD method.
Collapse
Affiliation(s)
- Ranjith Arimboor
- Spices Board Quality Evaluation Laboratory, SIPCOT, Gummidipoondi, Chennai, 601201, India.
| | - Venugopal Gopalan
- Spices Board Quality Evaluation Laboratory, SIPCOT, Gummidipoondi, Chennai, 601201, India
| | - Srilatha C M
- Spices Board Quality Evaluation Laboratory, Suganda Bhavan, Palarivattom, Cochin, 682025, India
| | | |
Collapse
|
4
|
Zou PC, Zhang Y, Bian Y, Du RZ, Qian M, Feng XS, Du C, Zhang XY. Triazoles in the environment: An update on sample pretreatment and analysis methods. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117156. [PMID: 39383824 DOI: 10.1016/j.ecoenv.2024.117156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/08/2024] [Accepted: 10/03/2024] [Indexed: 10/11/2024]
Abstract
Triazoles, due to their high bactericidal performance, have been widely used in the agricultural, clinical, and chemical industry. However, triazoles have been proven to cause endocrine-toxic and organ impairment in humans as a potentially toxic substance. Besides, because of the improper use and difficulty of degradation, triazoles pesticide residues left in the environment could pose a threat to the environment. Therefore, the rapid, reliable, accurate, and high-sensitivity triazoles analysis methods are significantly essential to effectively monitor their presence in various samples and safeguard human health. This review aims to summarize and update the progress of the pretreatment and analytical methods of triazole fungicides in environmental samples from 2012 to 2024. Common pretreatment methods used to extract and purify targets include simple steps (e.g., protein precipitation and coated blade spray), liquid-liquid extraction, solid-phase extraction, and various microextraction methods such as liquid-phase microextraction and solid-phase microextraction, among others. Detection methods mainly include liquid chromatography-mass spectrometry, gas chromatography-mass spectrometry, supercritical fluid chromatography, sensing methods, and capillary electrophoresis. In addition, we elaborate and compare the advantages and disadvantages of different pretreatment and analytical methods, and their development prospects are discussed.
Collapse
Affiliation(s)
- Pei-Chen Zou
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Yu Bian
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Rong-Zhu Du
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Min Qian
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Cheng Du
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Xin-Yuan Zhang
- School of Forensic Medicine, China Medical University, Shenyang 110122, China.
| |
Collapse
|
5
|
Cervantes-Díaz A, Mateo-Miranda M, Torrado-Cubero NH, Alonso-Prados JL, Sandín-España P. Stereoisomeric separation of the chiral herbicide profoxydim and residue method development in rice by QuEChERS and LC-MS/MS. Food Chem 2024; 443:138536. [PMID: 38277930 DOI: 10.1016/j.foodchem.2024.138536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/21/2023] [Accepted: 01/20/2024] [Indexed: 01/28/2024]
Abstract
A method for the simultaneous determination of the four stereoisomers of the chiral herbicide profoxydim in rice and husk was developed using the QuEChERS method and LC-tandem mass spectrometry. Four polysaccharide-based chiral stationary phase columns were evaluated. All four stereoisomers were successfully separated on a Chiracel OJ-3R column. The effects of mobile phase, modifiers, mobile phase flow rate and temperature on the separation were also investigated. Different QuEChERS methods were compared for the development of an optimized sample preparation procedure. The method, following SANTE guidelines, showed excellent linearity (R2 ≥ 0.99), the LODs were below 4.0 µg kg-1, and the LOQs did not exceed 12.5 µg kg-1. The overall average recoveries at three levels (12.5, 25.0 and 250 µg kg-1) ranged from 76.77 % to 106.53 %, with RSD values less than 7 %. The method is demonstrated to be convenient and reliable for the routine monitoring of profoxydim stereoisomers in rice and husk.
Collapse
Affiliation(s)
- A Cervantes-Díaz
- Plant Protection Products Unit / Plant Protection Department, National Institute for Agricultural and Food Research and Technology INIA-CSIC, Ctra. La Coruña, Km. 7.5, 28040 Madrid, Spain
| | - M Mateo-Miranda
- Plant Protection Products Unit / Plant Protection Department, National Institute for Agricultural and Food Research and Technology INIA-CSIC, Ctra. La Coruña, Km. 7.5, 28040 Madrid, Spain
| | - N H Torrado-Cubero
- Plant Protection Products Unit / Plant Protection Department, National Institute for Agricultural and Food Research and Technology INIA-CSIC, Ctra. La Coruña, Km. 7.5, 28040 Madrid, Spain
| | - J L Alonso-Prados
- Plant Protection Products Unit / Plant Protection Department, National Institute for Agricultural and Food Research and Technology INIA-CSIC, Ctra. La Coruña, Km. 7.5, 28040 Madrid, Spain
| | - P Sandín-España
- Plant Protection Products Unit / Plant Protection Department, National Institute for Agricultural and Food Research and Technology INIA-CSIC, Ctra. La Coruña, Km. 7.5, 28040 Madrid, Spain.
| |
Collapse
|
6
|
Yun DY, Bae JY, Kang YJ, Lim CU, Jang GH, Eom MO, Choe WJ. Simultaneous Analysis of 272 Pesticides in Agricultural Products by the QuEChERS Method and Gas Chromatography with Tandem Mass Spectrometry. Molecules 2024; 29:2114. [PMID: 38731605 PMCID: PMC11085925 DOI: 10.3390/molecules29092114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
The aim of this study is to develop a rapid and accurate method for simultaneous analysis of multi-residue pesticides and conduct pesticide monitoring in agricultural products produced by the production and distribution stage in Korea. The representative agricultural products were selected as brown rice, soybean, potato, mandarin, and green pepper and developed using gas chromatography with tandem mass (GC-MS/MS) for the analysis of 272 pesticide residues. The experimental samples were extracted by the QuEChERS-EN method and then cleaned up by using d-SPE, including MgSO4 and primary secondary amine (PSA) sorbents. The established method was validated in accordance with Codex CAC-GL/40, and the limit of quantitation (LOQ) was determined to be 0.01 mg/kg. A total of 243 pesticides satisfied the guidelines in five samples at three levels with values of 60 to 120% (recovery) and ≤45% (coefficient of variation, CV). The remaining 29 pesticides did not satisfy the guidelines, and these pesticides are expected to be used as a screening method for the routine inspection of agricultural products. As a result of analyzing 223 agricultural products in South Korea by applying the simultaneous analysis method, none of the detected levels in the samples exceeded the standard values based on maximum residue limits (MRLs). The developed method in this study will be used to inspect residual pesticides in agricultural products, and it is anticipated to contribute to the distribution of safe agricultural products to consumers.
Collapse
Affiliation(s)
- Da-Young Yun
- Pesticides and Veterinary Drug Residues Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea; (D.-Y.Y.); (J.-Y.B.); (G.-H.J.); (M.-O.E.)
| | - Ji-Yeon Bae
- Pesticides and Veterinary Drug Residues Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea; (D.-Y.Y.); (J.-Y.B.); (G.-H.J.); (M.-O.E.)
| | - Yoon-Jung Kang
- Center for Food and Drug Analysis, Busan Regional Office of Food and Drug Safety, Busan 47537, Republic of Korea;
| | - Chae-Uk Lim
- Safety Analysis Division, Experiment Research Institute, National Agricultural Products Quality Management Service, Kimcheon 39660, Republic of Korea;
| | - Gui-Hyun Jang
- Pesticides and Veterinary Drug Residues Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea; (D.-Y.Y.); (J.-Y.B.); (G.-H.J.); (M.-O.E.)
| | - Mi-Ok Eom
- Pesticides and Veterinary Drug Residues Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea; (D.-Y.Y.); (J.-Y.B.); (G.-H.J.); (M.-O.E.)
| | - Won-Jo Choe
- Pesticides and Veterinary Drug Residues Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea; (D.-Y.Y.); (J.-Y.B.); (G.-H.J.); (M.-O.E.)
| |
Collapse
|
7
|
Torabi E, Talebi K, Pourbabaee AA, Homayoonzadeh M, Ghamari MJ, Ebrahimi S, Faridy N. Optimizing the QuEChERS method for efficient monitoring of fipronil, thiobencarb, and cartap residues in paddy soils with varying properties. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:125. [PMID: 38195960 DOI: 10.1007/s10661-023-12279-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/29/2023] [Indexed: 01/11/2024]
Abstract
This study aims to optimize the QuEChERS methodology for extracting three pesticides (fipronil, thiobencarb, and cartap) from two paddy soils with distinct characteristics. Various modifications were explored to enhance extraction efficiency, employing acetonitrile (MeCN) or ethyl acetate (EtOAc) for extraction and primary-secondary amine (PSA) and graphitized carbon black (GCB) for the clean-up. Assessment criteria included accuracy, precision, linearity, detection limits, uncertainty, and matrix effects. Results revealed that the clayey soil with lower organic carbon (OC) content (1.26%) and 100% moisture yielded the highest pesticide recoveries (113.72%, 115.73%, and 116.41% for FIP, THIO, and CART, respectively). In contrast, the silty clayey soil with higher OC content (2.91%) and 20% water content exhibited poor recoveries (< 60%). FIP and CART demonstrated better recoveries with MeCN, while THIO performed better with EtOAc under specific moisture conditions. Clean-up sorbents significantly reduced FIP and CART recoveries, with THIO recoveries less affected. Acidifying with HCl substantially improved CART recovery. EtOAc introduced a moderate to strong matrix effect for FIP and THIO, while MeCN in soils with 100% moisture resulted in a strong matrix effect for CART. The study highlighted the substantial impact of extraction conditions, pesticide properties, and soil conditions on the outcomes of the QuEChERS method. A comprehensive understanding of these interplays was deemed crucial for accurately quantifying pesticide residues in agricultural soils.
Collapse
Affiliation(s)
- Ehssan Torabi
- Department of Plant Protection, Faculty of Agriculture, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| | - Khalil Talebi
- Department of Plant Protection, Faculty of Agriculture, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Ahmad Ali Pourbabaee
- Department of Soil Science, Faculty of Agriculture, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Mohammad Homayoonzadeh
- Department of Plant Protection, Faculty of Agriculture, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Mohamad Javad Ghamari
- Department of Plant Protection, Faculty of Agriculture, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Seyedali Ebrahimi
- Department of Plant Protection, Faculty of Agriculture, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Nastaran Faridy
- Department of Plant Protection, Faculty of Agriculture, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| |
Collapse
|
8
|
Xie T, Huang J, Wu J, Zhang Q. Evaluation of supercritical fluid chromatography coupled to tandem mass spectrometry for the analysis of pesticide residues in grain. J Sep Sci 2024; 47:e2300623. [PMID: 38066396 DOI: 10.1002/jssc.202300623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/17/2023] [Accepted: 11/24/2023] [Indexed: 01/19/2024]
Abstract
A supercritical fluid chromatography-tandem mass spectrometry (SFC-MS/MS) technique was developed for the rapid and simultaneous detection of nine pesticides (carbendazim, isoprocarb, paclobutrazol, isoprothiolane, flusilazole, quinalphos, piperonylbutoxide, propargite, and bioresmethrin) in rice, wheat, and maize. The cereal samples were extracted with a solution of 0.5% acetic acid in acetonitrile and purified using quick, easy, cheap, effective, rugged, and safe method. The samples were characterized using multi-reaction monitoring and quantified with the external standard method. Excellent linearities (R2 > 0.9991) and limits of quantification (0.4-40.0 μg/kg) were established for all nine pesticides. Satisfactory pesticide recovery rates (62.2%-107.4%) were obtained at three standard concentrations (50, 100, and 200 μg/kg), with relative standard deviations in the range of 2.1%-14.3%. The results confirmed that the proposed method was suitable for the routine detection of these pesticides in grain samples. Compared with high-performance liquid chromatography-MS/MS, the overall test run time and the amount of solvent required were reduced by 66% and 90%, respectively, when SFC-MS/MS was applied. Therefore, the use of SFC-MS/MS permits a shorter run time and affords greater analytical efficiency, such that it is both economical and environmentally sustainable.
Collapse
Affiliation(s)
- Tingting Xie
- Institute of Grain and Oil Quality Supervision and Test of Fujian Province, Fuzhou, China
| | - Jianli Huang
- Institute of Grain and Oil Quality Supervision and Test of Fujian Province, Fuzhou, China
| | - Jiaqi Wu
- College of Jinshan, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qingling Zhang
- Institute of Grain and Oil Quality Supervision and Test of Fujian Province, Fuzhou, China
| |
Collapse
|
9
|
Mahato S, Naik RH, Bheemanna M, Pallavi MS, Hurali S, Rao SN, Naik MN, Paramsivam M. Determination of chlorantraniliprole 18.5% SC in the paddy ecosystem and its risk assessment. Sci Rep 2023; 13:5464. [PMID: 37015957 PMCID: PMC10073179 DOI: 10.1038/s41598-023-32422-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 03/27/2023] [Indexed: 04/06/2023] Open
Abstract
Chlorantraniliprole belongsto theanthranilic diamide group is widely used against broad range of lepidopteron pests in a variety of vegetable and rice pests includingyellow rice stem borer and leaf folder. Supervised field trials were conducted duringRabi (2018-2019) and Kharif (2019) to evaluate the dissipation pattern and risk assessment of chlorantraniliprole 18.5% SC in paddy ecosystem following foliar application at 30 and 60 g a.i. ha-1 in two different cropping seasons.Modified QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) technique was used for the extraction of CAP residues with acetonitrile and determined by LC-MS/MS (ESI +).The limit of quantification (LOQ) was 0.01 µg g-1 for paddy leaf, straw, husk, and brown rice, respectively and 0.005 µg g-1 for soil. The average recoveries obtained were 84.30-88.92% from paddy leaf, 94.25-97.81% from straw, 90.21-93.38% from husk, 93.57-96.40% from brown rice and 89.93-91.14% from soil. The residues in paddy leaf dissipated within 35-40 days with a half-life of 4.33-5.07 days in Rabi and 3.92-4.86 days in Kharif at 30 and 60 g a.i. ha-1, respectively. The residues in soil dissipated within 15-21 days with a half-life of 14.44-15.75 days in Rabi and 13.33-14.44 days in Kharif at respective doses. At harvest chlorantraniliprole residues were not detected in straw, husk, and brown rice. The dietary risk of paddy leaf (green fodder) for cattle was found safe for consumption as the hazard index is less than one. Soil ecological risk assessment was found to be less than one (RQ < 0.1) for earthworms (Eisenia foetida) and arthropods (Aphidiusrhopalosiphi). The presentmethod could be useful inthe analysis ofchlorantraniliproleresidues in different cereals and vegetable crop ecosystems and application at recommended dose is safe for the final produce at harvest.
Collapse
Affiliation(s)
- Saraswati Mahato
- Pesticide Residue and Food Quality Analysis Laboratory, University of Agricultural Sciences, Raichur, Karnataka, 584 104, India
| | - R Harischandra Naik
- Pesticide Residue and Food Quality Analysis Laboratory, University of Agricultural Sciences, Raichur, Karnataka, 584 104, India.
- College of Horticulture, Bangalore, University of Horticultural Sciences, Bagalkot, India.
| | - M Bheemanna
- Pesticide Residue and Food Quality Analysis Laboratory, University of Agricultural Sciences, Raichur, Karnataka, 584 104, India
| | - M S Pallavi
- Pesticide Residue and Food Quality Analysis Laboratory, University of Agricultural Sciences, Raichur, Karnataka, 584 104, India
| | - Sujay Hurali
- Pesticide Residue and Food Quality Analysis Laboratory, University of Agricultural Sciences, Raichur, Karnataka, 584 104, India
| | - Saroja Narsing Rao
- Pesticide Residue and Food Quality Analysis Laboratory, University of Agricultural Sciences, Raichur, Karnataka, 584 104, India
| | - M Nagaraj Naik
- Pesticide Residue and Food Quality Analysis Laboratory, University of Agricultural Sciences, Raichur, Karnataka, 584 104, India
| | - M Paramsivam
- Pesticide Toxicology Laboratory, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India
| |
Collapse
|
10
|
Multiresidue Determination of Pesticides in Potato Tuber, Peel, and Pulp by QuEChERS and UHPLC-MS/MS. FOOD ANAL METHOD 2023. [DOI: 10.1007/s12161-023-02471-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
11
|
Li H, Hu S, Sun F, Sun Q, Wang N, Li B, Zou N, Lin J, Mu W, Pang X. Residual analysis of QoI fungicides in multiple (six) types of aquatic organisms by UPLC-MS/MS under acutely toxic conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:12075-12084. [PMID: 36104645 DOI: 10.1007/s11356-022-22972-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
In view of the significance of food safety and the possible relationship between residual enrichment and acute toxicity for pesticides in different aquatic organisms, it is essential to establish a sensitive and reliable determination method for pesticides in different aquatic organisms to analyze the enrichment levels. Quinone outside inhibitor fungicides (QoIs) are lipophilic fungicides that pose environmental threats to aquatic organisms. Previous research has mainly focused on QoI residues in aquatic organisms under chronic toxicity, whereas less is known about how pesticide residues differ among aquatic organism under acutely toxic conditions. In the present study, the residues of QoIs in aquatic organisms (Danio rerio, Rana pipiens, Cherax quadricarinatus, Misgurnus anguillicaudatus, Corbicula fluminea, and Ampullaria gigas) were analyzed by ultrahigh-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) coupled with a proposed QuEChERS method. The proposed method was validated in terms of linearity (coefficients of determination of 0.9980-0.9999), the limits of quantification (0.01 μg·kg-1), the relative standard deviation (0.6-4.4%), and recovery (70.12-118.15%). The results demonstrated that the proposed method fulfilled the requirements for pesticide analysis in all tested aquatic organisms. The residues of QoIs in the same aquatic organism exposed to QoI concentrations of 5 and 500 μg L-1 decreased in the order pyraoxystrobin > pyraclostrobin > triclopyricarb > picoxystrobin > azoxystrobin > fluoxastrobin. Furthermore, the acute toxicity was strongly correlated with the enrichment level of the QoIs in aquatic organisms. This study provides the first documentation of a correlation between the enrichment level of QoIs and acute toxicity in aquatic organisms, which provides a basis for the management of agrochemicals considering aquatic ecological risks.
Collapse
Affiliation(s)
- Hong Li
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
| | - Shuai Hu
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
| | - Fengshou Sun
- Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
| | - Qi Sun
- Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
| | - Ning Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong, 271016, People's Republic of China
| | - Beixing Li
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
- Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
| | - Nan Zou
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
- Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
| | - Jin Lin
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
- Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
| | - Wei Mu
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
- Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
| | - Xiuyu Pang
- Department of Nutrition and Food Hygiene, School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong, 271016, People's Republic of China.
| |
Collapse
|
12
|
Zhang S, Song N, He Z, Zeng M, Chen J. Multi-Pesticide Residue Analysis Method Designed for the Robot Experimenters. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:16424-16434. [PMID: 36521107 DOI: 10.1021/acs.jafc.2c06229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Robots replacing humans as the executioners is crucial work for intelligent multi-pesticide residue analysis to maximize reproducibility and throughput while minimizing the expertise required to perform the entire process. Traditional analysis methods are predicated on manual execution, so we configured our robot experimenter, automated the analytical workflow, and achieved the goal of robotics execution. Our robot experimenter with an X-Y-Z axis robotic arm was interfaced with seven modules and ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) for automated standard solution preparation, sample pre-treatment, and UPLC-MS/MS detection. An algorithm was established to make the prepared matrix-matched standard solutions meet the monitoring requirements. The strategy was demonstrated and validated for the detection of 325 pesticides in 4 typical food matrices, suggesting that the developed method is applicable for the analysis of pesticide residues in vegetables and tea as part of regulatory monitoring programs and other purposes.
Collapse
Affiliation(s)
- Shuang Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ninghui Song
- Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment (MEE), Nanjing Institute of Environmental Sciences, Nanjing 210042, China
| | - Zhiyong He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jie Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
13
|
Investigation and Analysis of Pesticide Residues in Four Common Vegetables and Risk Assessment of Dietary Exposure in Ceramic Capital, China. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196562. [PMID: 36235099 PMCID: PMC9571922 DOI: 10.3390/molecules27196562] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 11/05/2022]
Abstract
In order to understand the basic situation of pesticide residues in vegetables in China’s porcelain capital, four kinds of common vegetables on the market were selected in this study for detection and analysis of pesticide residues. The pesticide residues in vegetables were analyzed through sample selection, optimization of instrument and equipment conditions, and comparison of detection pass rates. The sampling locations were common vegetables purchasing places such as large and medium-sized supermarkets. QuEChERS method was used as the sample pretreatment, and gas chromatography (GC-MS/MS) was used for quantitative analysis. Finally, the exposure risk of pesticides was assessed according to the test results. The results showed that all the pesticides were detected in four kinds of vegetables, but the detected pesticides did not exceed the national standard (GB 2763-2014, China). Moreover, the target risk coefficient (THQ) and risk index (HI) values of four vegetables were less than one, indicating that the combined and toxic effect of pesticide residual mixed contamination was smaller in four vegetables. Therefore, there was no significant harm from people using these vegetables.
Collapse
|
14
|
Prata R, López-Ruiz R, Petrarca MH, Teixeira Godoy H, Garrido Frenich A, Romero-González R. Targeted and non-targeted analysis of pesticides and aflatoxins in baby foods by liquid chromatography coupled to quadrupole Orbitrap mass spectrometry. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Bhattacharyya S, Poi R, Baskey Sen M, Kumar Hazra D, Ghosh R, Mandal S, Karmakar R. Establishment of modified QuEChERS-GC–MS-LC–MS/MS method for simultaneous screening of multi-class multi-pesticide residues in betelvine and consumer risk assessment. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Zhao H, Li M, Liu X, Yang J, Li X, Chen J, Dai X, Simal-Gandara J, Kong Z, Li Z. Simultaneous determination of succinate-dehydrogenase-inhibitor fungicide traces in cereals by QuEChERS preparation and UPLC-MS/MS analysis. Food Chem 2022; 396:133708. [PMID: 35878445 DOI: 10.1016/j.foodchem.2022.133708] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/12/2022] [Accepted: 07/12/2022] [Indexed: 11/04/2022]
Abstract
A method for the simultaneous determination of 19 succinate dehydrogenase inhibitor (SDHI) fungicide residues in 8 kinds of cereals was established by combining UHPLC-MS/MS with the improved QuEChERS method. MgSO4 and octadecylsilane (C18) were used as the dispersive-solid phase extraction sorbent. The proposed method had good linearity in the range of 10-100 µg/L with correlation coefficients (R2 > 0.99). The limit of quantification of 19 fungicides was 10 µg/L, which is the minimum addition level of the method. The fortified recoveries of 19 SDHI fungicides at three levels were ranged from 79.57 % to 126.25 %. The developed method was utilized for the analysis of 45 real cereal samples, only 5 samples were detected with SDHI fungicides. The contents of the fungicides detected in the real samples are far lower than the MRL. The results indicated that the proposed method is reliable for detecting SDHI fungicides in cereals.
Collapse
Affiliation(s)
- Haoran Zhao
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Minmin Li
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaowei Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiajie Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; College Life Science & Technology, Xinjiang University, 830046 Shengli Road, Urumqi, China
| | - Xueyao Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, Hebei, China
| | - Jieyin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Xiaofeng Dai
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Analytical Chemistry and Food Science Department, Faculty of Science, E32004 Ourense, Spain.
| | - Zhiqiang Kong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China.
| | - Zhizhong Li
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China.
| |
Collapse
|
17
|
González-Curbelo MÁ, Varela-Martínez DA, Riaño-Herrera DA. Pesticide-Residue Analysis in Soils by the QuEChERS Method: A Review. Molecules 2022; 27:molecules27134323. [PMID: 35807567 PMCID: PMC9268078 DOI: 10.3390/molecules27134323] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 11/16/2022] Open
Abstract
Pesticides are among the most important contaminants worldwide due to their wide use, persistence, and toxicity. Their presence in soils is not only important from an environmental point of view, but also for food safety issues, since such residues can migrate from soils to food. However, soils are extremely complex matrices, which present a challenge to any analytical chemist, since the extraction of a wide range of compounds with diverse physicochemical properties, such as pesticides, at trace levels is not an easy task. In this context, the QuEChERS method (standing for quick, easy, cheap, effective, rugged, and safe) has become one of the most green and sustainable alternatives in this field due to its inherent advantages, such as fast sample preparation, the minimal use of hazardous reagents and solvents, simplicity, and low cost. This review is aimed at providing a critical revision of the most relevant modifications of the QuEChERS method (including the extraction and clean-up steps of the method) for pesticide-residue analysis in soils.
Collapse
Affiliation(s)
- Miguel Ángel González-Curbelo
- Departamento de Ciencias Básicas, Facultad de Ingeniería, Universidad EAN, Calle 79 nº 11-45, Bogotá 110221, Colombia;
- Correspondence: (M.Á.G.-C.); (D.A.R.-H.)
| | | | - Diego Alejandro Riaño-Herrera
- Departamento de Ingeniería Ambiental y Energías, Facultad de Ingeniería, Universidad EAN, Calle 79 nº 11-45, Bogotá 110221, Colombia
- Correspondence: (M.Á.G.-C.); (D.A.R.-H.)
| |
Collapse
|
18
|
Tsagkaris AS, Uttl L, Dzuman Z, Pulkrabova J, Hajslova J. A critical comparison between an ultra-high-performance liquid chromatography triple quadrupole mass spectrometry (UHPLC-QqQ-MS) method and an enzyme assay for anti-cholinesterase pesticide residue detection in cereal matrices. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1479-1489. [PMID: 35343530 DOI: 10.1039/d2ay00355d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Analytical method development for the control of pesticide residues occurring in significant dietary foodstuffs is of utmost importance considering their potential impact on consumer health and food market sustainability. Depending on the purpose, either instrumental analysis, mainly chromatographic methods, or screening assays, mostly using biorecognition affinity, are commonly used, featuring different advantages and drawbacks. To practically compare these two different types of analytical strategies, we applied them for the detection of (i) 97 organophosphate (OP) and carbamate (CM) pesticide residues in wheat flour and (ii) carbofuran (a carbamate insecticide) in wheat, rye and maize flour samples. Regarding high-end analysis, an ultra-high-performance liquid chromatography coupled with triple quadrupole mass spectrometry (UHPLC-QqQ-MS) method was developed and validated achieving low limits of quantification (LOQs, from 0.002 to 0.040 mg kg-1) and a short chromatographic run (12 min). In terms of bioanalytical methods, a fast (17 min) and cost-efficient (∼0.01€ per sample) acetylcholinesterase (AChE) microplate assay for carbofuran screening was utilized. Importantly, carbofuran was the strongest of the 11 OP and CM tested pesticides achieving a half maximal inhibitory concentration (IC50) of 0.021 μM whilst the assay detectability was at the parts per billion level in all three cereal matrices. Based on the attained results, a critical discussion is presented providing the analytical merits and bottlenecks for each case and a wider outlook related to the application of analytical methods in the food safety control analytical scheme.
Collapse
Affiliation(s)
- A S Tsagkaris
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6 - Dejvice, Prague, Czech Republic.
| | - L Uttl
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6 - Dejvice, Prague, Czech Republic.
| | - Z Dzuman
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6 - Dejvice, Prague, Czech Republic.
| | - J Pulkrabova
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6 - Dejvice, Prague, Czech Republic.
| | - J Hajslova
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6 - Dejvice, Prague, Czech Republic.
| |
Collapse
|
19
|
Marques SPD, Owen RW, da Silva AMA, Alves Neto ML, Trevisan MTS. QuEChERS extraction for quantitation of bitter acids and xanthohumol in hops by HPLC-UV. Food Chem 2022; 388:132964. [PMID: 35447586 DOI: 10.1016/j.foodchem.2022.132964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 03/27/2022] [Accepted: 04/10/2022] [Indexed: 11/26/2022]
Abstract
We hypothesised that QuEChERS could be successfully applied to the extraction of bitter acids and xanthohumol from hops, which would be less time consuming, cheaper, and more eco-friendly by the severe reduction of solvent use. High performance liquid chromatography was used to separate the compounds after extraction and quantitation was evaluated against standard calibration curves for bitter acids prepared from an International calibration extract (ICE-4) and an authentic standard of xanthohumol. The standard QuEChERS method was compared to mini and micro-versions including clean-up and spiking procedures. The quantitative analyzes indicate the applicability of the QuEChERS method for the quantitation of bitter acids compared to Soxhlet extraction. The statistical data confirm reproducibility of the total alpha- and beta- acids measured by the standard method and the modified mini- and micro-QuEChERS procedures. Our hypothesis is supported by the data described and is consistent with other previous methods described in the literature.
Collapse
Affiliation(s)
- Samuel Pedro Dantas Marques
- Instituto Federal de Educação, Ciência e Tecnologia do Ceará, Departamento de Química, Av. José de Freitas Queiroz, 5000, Quixadá, CE CEP: 63902-580, Brazil; Programa de Pós-graduação em Química, Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Campus do Pici - Bloco 935 superior - Laboratório de Produtos Naturais e Biotecnologia (LPNBio), CP: 60451-970 Fortaleza, CE, Brazil.
| | - Robert Wyn Owen
- Programa de Pós-graduação em Química, Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Campus do Pici - Bloco 935 superior - Laboratório de Produtos Naturais e Biotecnologia (LPNBio), CP: 60451-970 Fortaleza, CE, Brazil
| | - Ana Maria Amaral da Silva
- Universidade Federal do Ceará, Departamento de Pós-Graduação em Química, Campus do Pici - Bloco 940 - Cx. Postal: 6021, CEP: 60455-760 Fortaleza, CE, Brazil
| | - Manoel Lourenço Alves Neto
- Departamento de Física, Universidade Federal do Ceará, Campus do Pici, Fortaleza, Ceará 60455-760, Brazil.
| | - Maria Teresa Salles Trevisan
- Programa de Pós-graduação em Química, Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Campus do Pici - Bloco 935 superior - Laboratório de Produtos Naturais e Biotecnologia (LPNBio), CP: 60451-970 Fortaleza, CE, Brazil.
| |
Collapse
|
20
|
Bang Ye S, Huang Y, Lin DY. QuEChERS sample pre-processing with UPLC-MS/MS: A method for detecting 19 quinolone-based veterinary drugs in goat's milk. Food Chem 2022; 373:131466. [PMID: 34731812 DOI: 10.1016/j.foodchem.2021.131466] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/28/2021] [Accepted: 10/21/2021] [Indexed: 11/04/2022]
Abstract
We develop and validate a method for the rapid determination and identification of 19 quinolones in goat's milk by combining the QuEChERS technique with ultra-performance liquid chromatography-tandem mass spectrometry. Plackett-Burman and Central Composite Design methods were used to select the parameters that best promote the extraction efficiency, which led to extraction with acetonitrile/5% formic acid, followed by phase separation with sodium citrate, disodium hydrogen citrate, Na2SO4, and NaCl as optimal. The supernatant was then extracted and cleaned by dispersive solid-phase extraction using C18 and Na2SO4 aided by low-temperature clean-up. The method was validated, with limits of quantification (LOQs) of 5 ppb, specificities of 1/5 LOQ, linearities (R2) > 0.9853, recoveries of 73.4-114.2%, repeatabilities < 15.0%, and intermediate precisions < 13.6%. The developed method was suitable for the routine analysis of quinolone residues in goat's milk and was used to test 10 goat milk samples produced in Taiwan.
Collapse
Affiliation(s)
- Siou Bang Ye
- Chiayi County Health Bureau Laboratory Section, No. 3, E. Sec., Sianghe 2nd Rd., Taibao City, Chiayi County 61249, Taiwan, ROC; Institute of Food Safety Management, National Pingtung University of Science and Technology, 1, Shuefu Road, Neipu, Pingtung 912301, Taiwan, ROC
| | - Ying Huang
- Chiayi County Health Bureau Laboratory Section, No. 3, E. Sec., Sianghe 2nd Rd., Taibao City, Chiayi County 61249, Taiwan, ROC
| | - Ding-Yan Lin
- Institute of Food Safety Management, National Pingtung University of Science and Technology, 1, Shuefu Road, Neipu, Pingtung 912301, Taiwan, ROC.
| |
Collapse
|
21
|
Alcântara DB, Dionísio AP, Artur AG, Silveira BKS, Lopes AF, Guedes JAC, Luz LR, Nascimento RF, Lopes GS, Hermsdorff HHM, Zocolo GJ. Selenium in Brazil nuts: An overview of agronomical aspects, recent trends in analytical chemistry, and health outcomes. Food Chem 2022; 372:131207. [PMID: 34634585 DOI: 10.1016/j.foodchem.2021.131207] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/30/2021] [Accepted: 09/20/2021] [Indexed: 01/15/2023]
Abstract
Se is an essential element in mammals. We review how its bioavailability in soil and the ability of plants to accumulate Se in foods depends on the soil Se profile (including levels and formats), besides to describe how the various selenoproteins have important biochemical functions in the body and directly impact human health. Owing to its favorable characteristics, the scientific community has investigated selenomethionine in most nut matrices. Among nuts, Brazil nuts have been highlighted as one of the richest sources of bioavailable Se. We summarize the most commonly used analytical methods for Se species and total Se determination in nuts. We also discuss the chemical forms of Se metabolized by mammals, human biochemistry and health outcomes from daily dietary intake of Se from Brazil nuts. These findings may facilitate the understanding of the importance of adequate dietary Se intake and enable researchers to define methods to determine Se species.
Collapse
Affiliation(s)
- Daniel B Alcântara
- Department of Analytical Chemistry and Physical Chemistry, Universidade Federal do Ceará, 60455-760 Fortaleza, CE, Brazil
| | - Ana P Dionísio
- Embrapa Agroindústria Tropical, Dra Sara Mesquita St., 2270, 60511-110 Fortaleza, CE, Brazil
| | - Adriana G Artur
- Department of Soil Science, Universidade Federal do Ceará, 60455-760 Fortaleza, CE, Brazil
| | - Brenda K S Silveira
- Department of Nutrition and Health, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| | - Amanda F Lopes
- Department of Analytical Chemistry and Physical Chemistry, Universidade Federal do Ceará, 60455-760 Fortaleza, CE, Brazil
| | - Jhonyson A C Guedes
- Department of Analytical Chemistry and Physical Chemistry, Universidade Federal do Ceará, 60455-760 Fortaleza, CE, Brazil
| | - Lícia R Luz
- Department of Analytical Chemistry and Physical Chemistry, Universidade Federal do Ceará, 60455-760 Fortaleza, CE, Brazil
| | - Ronaldo F Nascimento
- Department of Analytical Chemistry and Physical Chemistry, Universidade Federal do Ceará, 60455-760 Fortaleza, CE, Brazil
| | - Gisele S Lopes
- Department of Analytical Chemistry and Physical Chemistry, Universidade Federal do Ceará, 60455-760 Fortaleza, CE, Brazil
| | - Helen H M Hermsdorff
- Department of Nutrition and Health, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| | - Guilherme J Zocolo
- Embrapa Agroindústria Tropical, Dra Sara Mesquita St., 2270, 60511-110 Fortaleza, CE, Brazil.
| |
Collapse
|
22
|
Feng T, Zhang M, Sun Q, Mujumdar AS, Yu D. Extraction of functional extracts from berries and their high quality processing: a comprehensive review. Crit Rev Food Sci Nutr 2022; 63:7108-7125. [PMID: 35187995 DOI: 10.1080/10408398.2022.2040418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Berry fruits have attracted increasing more attention of the food processing industry as well as consumers due to their widely acclaimed advantages as highly effective anti-oxidant properties which may provide protection against some cancers as well as aging. However, the conventional extraction methods are inefficient and wasteful of solvent utilization. This paper presents a critical overview of some novel extraction methods applicable to berries, including pressurized-liquid extraction, ultrasound-assisted extraction, microwave-assisted extraction, supercritical fluid extraction, enzyme-assisted extraction as well as some combined extraction methods. When combined with conventional methods, the new technologies can be more efficient and environmentally friendly. Additionally, high quality processing of the functional extracts from berry fruits, such as refined processing technology, is introduced in this review. Finally, progress of applications of berry functional extracts in the food industry is described in detail; this should encourage further scientific research and industrial utilization.
Collapse
Affiliation(s)
- Tianlin Feng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, Jiangsu, China
| | - Qing Sun
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Quebec, Canada
| | - Dongxing Yu
- Shanghao Biotech Co., Ltd, Qingdao, Shandong, China
| |
Collapse
|
23
|
Kang HJ, Lee SY, Lee DY, Kang JH, Kim JH, Kim HW, Oh DH, Jeong JW, Hur SJ. Main mechanisms for carcinogenic heterocyclic amine reduction in cooked meat by natural materials. Meat Sci 2021; 183:108663. [PMID: 34481233 DOI: 10.1016/j.meatsci.2021.108663] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 12/14/2022]
Abstract
Carcinogens such as heterocyclic amine (HCA), produced during meat cooking, pose a risk of digestive and reproductive cancers in humans. Nevertheless, the exact mechanisms for HCA formation in meat and the control of HCA formation are not known. In this review, we provide an overview of the main cause of HCA formation in cooked meat, fundamental data on natural materials to inhibit HCA carcinogenicity, and methods to analyze HCA in cooked meat. Related past studies has shown that natural substances contain various components that act as antioxidants, and these antioxidants can prevent HCA and mutagenic factors. Free radicals and DNA adducts produced by HCA metabolism have carcinogenic properties. Antioxidants have been found to inhibit oxidative stress caused by free radicals and DNA adducts. Therefore, we can be hypothesized that various natural materials can inhibit HCA carcinogens and mutagens.
Collapse
Affiliation(s)
- Hea Jin Kang
- Department of Animal Science and Technology, Chung-Ang University, 4726 Seodong-daero, Daedeok-myeon, Anseong-si, Gyeonggi 17546, South Korea
| | - Seung Yun Lee
- Department of Animal Science and Technology, Chung-Ang University, 4726 Seodong-daero, Daedeok-myeon, Anseong-si, Gyeonggi 17546, South Korea
| | - Da Young Lee
- Department of Animal Science and Technology, Chung-Ang University, 4726 Seodong-daero, Daedeok-myeon, Anseong-si, Gyeonggi 17546, South Korea
| | - Ji Hyeop Kang
- Department of Animal Science and Technology, Chung-Ang University, 4726 Seodong-daero, Daedeok-myeon, Anseong-si, Gyeonggi 17546, South Korea
| | - Jae Hyeon Kim
- Department of Animal Science and Technology, Chung-Ang University, 4726 Seodong-daero, Daedeok-myeon, Anseong-si, Gyeonggi 17546, South Korea
| | - Hyun Woo Kim
- Department of Animal Science and Technology, Chung-Ang University, 4726 Seodong-daero, Daedeok-myeon, Anseong-si, Gyeonggi 17546, South Korea
| | - Dong Hoon Oh
- Department of Animal Science and Technology, Chung-Ang University, 4726 Seodong-daero, Daedeok-myeon, Anseong-si, Gyeonggi 17546, South Korea
| | - Jae Won Jeong
- Department of Animal Science and Technology, Chung-Ang University, 4726 Seodong-daero, Daedeok-myeon, Anseong-si, Gyeonggi 17546, South Korea
| | - Sun Jin Hur
- Department of Animal Science and Technology, Chung-Ang University, 4726 Seodong-daero, Daedeok-myeon, Anseong-si, Gyeonggi 17546, South Korea.
| |
Collapse
|
24
|
Determination of Residual Triflumezopyrim Insecticide in Agricultural Products through a Modified QuEChERS Method. Foods 2021; 10:foods10092090. [PMID: 34574200 PMCID: PMC8472026 DOI: 10.3390/foods10092090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 08/29/2021] [Accepted: 08/31/2021] [Indexed: 11/25/2022] Open
Abstract
A rapid and simple analytical method for triflumezopyrim, a new class of mesoionic insecticides and commercialized molecules from DuPont, was developed with a modified QuEChERS method. The pH adjustment was used to improve the extraction efficiency of acetonitrile solvent, and dispersive solid-phase extraction was employed for the clean-up process. The five selected food commodities were used to verify the present optimized method, which displayed good linearity with an excellent correlation coefficient (R2 = 0.9992–0.9998) in the 0.003–0.30 mg/kg calibration range. The method limits of detection (LOD) and quantification (LOQ) were determined to be a value of 0.003 and 0.01 mg/kg, respectively. The mean recovery for the triflumezopyrim was in the 89.7–104.3% range. The relative standard deviations were ≤9.8% for intra- (n = 5) and inter-day (n = 15) precisions at concentrations of 0.01, 0.1, and 0.5 mg/kg in the five representative samples. The matrix effect has been calculated to confirm the effect during ionization of the analyte in the UPLC-MS/MS. The matrix effects of the instrumental analysis showed that triflumezopyrim was less susceptible to matrices. The proposed analytical method in this study has effectively improved the accuracy, selectivity, and sensitivity for the determination of triflumezopyrim in agricultural commodities; therefore, it can serve as a reference method for the establishment of maximum residue limits (MRLs).
Collapse
|
25
|
Tauseef M, Rafique N, Ahmad I, Ishtiaq M, Samad A, Saba S, Ahad K, Mehboob F. Analysis of multiple pesticide residues in rice by LC–MS/MS. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01533-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Hakami RA, Aqel A, Ghfar AA, ALOthman ZA, Badjah-Hadj-Ahmed AY. Development of QuEChERS extraction method for the determination of pesticide residues in cereals using DART-ToF-MS and GC-MS techniques. Correlation and quantification study. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.103822] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
27
|
Le LHT, Tran-Lam TT, Cam TQ, Nguyen TN, Dao YH. Pesticides in edible mushrooms in Vietnam. FOOD ADDITIVES & CONTAMINANTS PART B-SURVEILLANCE 2021; 14:139-148. [PMID: 33899691 DOI: 10.1080/19393210.2021.1908434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Maximum residue limits (MRLs) for pesticides have been established for edible mushrooms in order to control quality and ensure benefits of consumers in numerous countries, especially areas comprising Europe. In this study, by means of optimising extract purification conditions, a high sensitivity and reliability method to simultaneously determine 180 pesticides in mushrooms has been proposed. Matrix effects were minimised by combining QuEChERS extraction and a mixed mode of SPE cleaned up with different adsorbent materials after sample preparation. The method was completely validated following the requirements of SANTE/12682/2019. The LOQs ranged from 2 to 5 μg/kg, well below the MRLs as regulated by the EU (10-50 μg/kg). Both relative standard deviation of repeatability (RSDr) and reproducibility (RSDR) were less than 20% and recoveries varied from 70 to 120%. Therefore, this method was considered to be suitable for routine analysis of multi-pesticide residues in edible mushrooms.
Collapse
Affiliation(s)
- Le Hai Thi Le
- Faculty of Environment, Hanoi University of Natural Resources and Environment, Ministry of Natural Resource and Environment (MONRE), Hanoi, Vietnam
| | - Thanh-Thien Tran-Lam
- Laboratory of Environmental and bioorganic chemistry, Institute of Chemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam.,Department of Mechanics and Marine Environment, Institute of Mechanics and Applied Informatics, Vietnam Academy of Science and Technology, Ho Chi Minh city, Vietnam
| | - Thuy Quan Cam
- Department of Analytical Engineering, Viet Tri University of Industry (VUI), Viet TrI, Phu Tho, Vietnam
| | - Tung Ngoc Nguyen
- Technology Development and Measurement Services Department, Center for Research and Technology Transfer (CRETECH), Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Yen Hai Dao
- Laboratory of Environmental and bioorganic chemistry, Institute of Chemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| |
Collapse
|
28
|
Wang K, Zhao L, Zhang C, Zhang H, Lian K. Determination of 12 insect growth regulator residues in foods of different matrixes by modified QuEChERS and UPLC-MS/MS. RSC Adv 2021; 11:12162-12171. [PMID: 35423783 PMCID: PMC8697085 DOI: 10.1039/d1ra00046b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/22/2021] [Indexed: 12/19/2022] Open
Abstract
An analytical method was developed and validated for the simultaneous determination of 12 insect growth regulators (IGRs) (buprofezin, cyantraniliprole, flubendiamide, flonicamid, tolfenpyrad, chlorantraniliprole, RH-5849, methoxyfenozide, chromafenozide, tebufenozide, pyriproxyfen and fenoxycarb) in foods collected from different matrixes by modified QuEChERS and ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The samples were ultrasonically extracted with acetonitrile containing 0.5% formic acid, and different QuEChERS purification conditions were optimized for different matrixes (vegetable oil, fruit and tea). 12 IGRs were separated on a Plus C18 column, and detected by MS/MS under multiple reaction monitoring (MRM) mode. The developed method was validated in terms of linearity, matrix effect, accuracy and precision. Acceptable recoveries of IGRs in three different substrates (vegetable oil, tea and fruit) at three spiked levels were in the range of 65.47-95.17%, 80.55-110.15%, and 62.02-96.50%, respectively, with RSDs less than 11.58%. The method showed a good linearity (R 2 ≥ 0.9994) for all analytes in the range of 0.2-200 μg L-1. The LODs (S/N = 3) and LOQs (S/N = 10) of the method were 0.04-0.40 μg kg-1, and 0.13-1.24 μg kg-1, respectively. Owing to the advantages of simple operation, high accuracy and sensitivity, this method is suitable for the rapid and simultaneous detection of 12 IGRs in vegetable oil, tea and fruit.
Collapse
Affiliation(s)
- Ke Wang
- Shijiazhuang Center for Disease Control and Prevention Shijiazhuang 050011 China
- Shijiazhuang Technology Innovation Center for Chemical Poison Detection and Risk Early Warning Shijiazhuang 050011 China
| | - Lingzhi Zhao
- Shijiazhuang Center for Disease Control and Prevention Shijiazhuang 050011 China
| | - Can Zhang
- Hebei Key Laboratory of Environment and Human Health, School of Public Health, Hebei Medical University Shijiazhuang 050017 China
| | - Hong Zhang
- Shijiazhuang Center for Disease Control and Prevention Shijiazhuang 050011 China
- Shijiazhuang Technology Innovation Center for Chemical Poison Detection and Risk Early Warning Shijiazhuang 050011 China
| | - Kaoqi Lian
- Hebei Key Laboratory of Environment and Human Health, School of Public Health, Hebei Medical University Shijiazhuang 050017 China
| |
Collapse
|
29
|
Harischandra NR, Pallavi MS, Bheemanna M, PavanKumar K, Chandra Sekhara Reddy V, Udaykumar NR, Paramasivam M, Yadav S. Simultaneous determination of 79 pesticides in pigeonpea grains using GC-MS/MS and LC-MS/MS. Food Chem 2021; 347:128986. [PMID: 33515969 DOI: 10.1016/j.foodchem.2020.128986] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 11/18/2022]
Abstract
Pigeonpea grains are important sources of vegetarian proteins. It is the paramount importance to check the pesticide residues due to their frequent use during production. The LC-MS/MS and GC-MS/MS analytical method was developed and validated for the simultaneous determination of 79 pesticide residues in pigeonpea. The LOD and LOQ of the analytical method were in the range of 0.53 to 3.97 and 1.60 to 10.05 µg kg-1, respectively, with a correlation coefficient of more than 0.997. Average recoveries were in the range of 80 to 118.8%, with the RSD of less than 15%. Measurement uncertainty (Ux) for pesticides was in the range of 3.42 to 12.76 µg kg-1 evaluated at 50 µg kg-1. The method was applied to analyze the sample collected from the farmer's field. This method could be useful for routine analysis of selected pesticide residue for monitoring purposes.
Collapse
Affiliation(s)
- Naik R Harischandra
- Pesticide Residue and Food Quality Analysis Laboratory, University of Agricultural Sciences, Raichur 584 104, India.
| | - M S Pallavi
- Pesticide Residue and Food Quality Analysis Laboratory, University of Agricultural Sciences, Raichur 584 104, India
| | - M Bheemanna
- Pesticide Residue and Food Quality Analysis Laboratory, University of Agricultural Sciences, Raichur 584 104, India
| | - K PavanKumar
- Pesticide Residue and Food Quality Analysis Laboratory, University of Agricultural Sciences, Raichur 584 104, India
| | - V Chandra Sekhara Reddy
- Pesticide Residue and Food Quality Analysis Laboratory, University of Agricultural Sciences, Raichur 584 104, India
| | - Nidoni R Udaykumar
- Pesticide Residue and Food Quality Analysis Laboratory, University of Agricultural Sciences, Raichur 584 104, India
| | - M Paramasivam
- Pesticide Toxicology Laboratory, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - Satish Yadav
- National Institute of Plant Health Management, Hyderabad, India; Arbro Pharmaceuticals Pvt., Ltd., (Analytical Division), New Delhi, India
| |
Collapse
|
30
|
Câmara JS, Albuquerque BR, Aguiar J, Corrêa RCG, Gonçalves JL, Granato D, Pereira JAM, Barros L, Ferreira ICFR. Food Bioactive Compounds and Emerging Techniques for Their Extraction: Polyphenols as a Case Study. Foods 2020; 10:foods10010037. [PMID: 33374463 PMCID: PMC7823739 DOI: 10.3390/foods10010037] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 12/11/2022] Open
Abstract
Experimental studies have provided convincing evidence that food bioactive compounds (FBCs) have a positive biological impact on human health, exerting protective effects against non-communicable diseases (NCD) including cancer and cardiovascular (CVDs), metabolic, and neurodegenerative disorders (NDDs). These benefits have been associated with the presence of secondary metabolites, namely polyphenols, glucosinolates, carotenoids, terpenoids, alkaloids, saponins, vitamins, and fibres, among others, derived from their antioxidant, antiatherogenic, anti-inflammatory, antimicrobial, antithrombotic, cardioprotective, and vasodilator properties. Polyphenols as one of the most abundant classes of bioactive compounds present in plant-based foods emerge as a promising approach for the development of efficacious preventive agents against NCDs with reduced side effects. The aim of this review is to present comprehensive and deep insights into the potential of polyphenols, from their chemical structure classification and biosynthesis to preventive effects on NCDs, namely cancer, CVDs, and NDDS. The challenge of polyphenols bioavailability and bioaccessibility will be explored in addition to useful industrial and environmental applications. Advanced and emerging extraction techniques will be highlighted and the high-resolution analytical techniques used for FBCs characterization, identification, and quantification will be considered.
Collapse
Affiliation(s)
- José S. Câmara
- CQM—Centro de Química da Madeira, Campus Universitário da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal; (J.A.); (J.L.G.); (J.A.M.P.)
- Departamento de Química, Faculdade de Ciências Exatas e da Engenharia da Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
- Correspondence: (J.S.C.); (L.B.); Tel.: +351-29170-5112 (J.S.C.); +351-2-7333-0901 (L.B.)
| | - Bianca R. Albuquerque
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (B.R.A.); (R.C.G.C.); (I.C.F.R.F.)
- REQUIMTE—Science Chemical Department, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira N° 228, 4050-313 Porto, Portugal
| | - Joselin Aguiar
- CQM—Centro de Química da Madeira, Campus Universitário da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal; (J.A.); (J.L.G.); (J.A.M.P.)
| | - Rúbia C. G. Corrêa
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (B.R.A.); (R.C.G.C.); (I.C.F.R.F.)
- Program of Master in Clean Technologies, Cesumar Institute of Science Technology and Innovation (ICETI), Cesumar University—UniCesumar, Parana 87050-390, Brazil
| | - João L. Gonçalves
- CQM—Centro de Química da Madeira, Campus Universitário da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal; (J.A.); (J.L.G.); (J.A.M.P.)
| | - Daniel Granato
- Food Processing and Quality, Natural Resources Institute Finland (Luke), Tietotie 2, FI-02150 Espoo, Finland;
| | - Jorge A. M. Pereira
- CQM—Centro de Química da Madeira, Campus Universitário da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal; (J.A.); (J.L.G.); (J.A.M.P.)
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (B.R.A.); (R.C.G.C.); (I.C.F.R.F.)
- Correspondence: (J.S.C.); (L.B.); Tel.: +351-29170-5112 (J.S.C.); +351-2-7333-0901 (L.B.)
| | - Isabel C. F. R. Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (B.R.A.); (R.C.G.C.); (I.C.F.R.F.)
| |
Collapse
|
31
|
Montemurro N, Orfanioti A, Manasfi R, Thomaidis NS, Pérez S. Comparison of high resolution mrm and sequential window acquisition of all theoretical fragment-ion acquisition modes for the quantitation of 48 wastewater-borne pollutants in lettuce. J Chromatogr A 2020; 1631:461566. [PMID: 33002708 DOI: 10.1016/j.chroma.2020.461566] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/01/2020] [Accepted: 09/17/2020] [Indexed: 12/16/2022]
Abstract
Screening of a large number of chemicals of emerging concern is highly desirable for the control of crops irrigated with reclaimed water since it is considered an alternative water source of great value. This study describes a high resolution mass spectrometry approach for developing methods for quantification in lettuce leaves of 48 different wastewater-borne pollutants (including analgesics and anti-inflammatories, anti-hypertensives, antifungal agents, lipid regulators, psychiatric drugs and stimulants, β-blockers, antibiotics, antimycotics, and sweeteners) frequently found in water resources. In this respect, a simple and fast QuEChERS-based method for the determination of contaminants in lettuce has been developed. During extraction, the use of formic acid was adopted to further improve the results of some problematic compounds (e.g., fenofibrate, furosemide, metronidazole, oxcarbazepine, sulfanilamide). High resolution multiple reaction monitoring (MRMHR) and SWATH acquisition were compared in term of accuracy, repeatability, sensitivity, linearity and matrix effect. Both methods provided similar recoveries between 80 and 120% in lettuce leaves, although sulfanilamide, ciprofloxacin, and sulfamethazine presenting values of 26.8, 27.8, and 28.4% in MRMHR and 25, 33.9, and 35% in SWATH, respectively. The effectiveness of a two-step cleanup on analyte recovery was also assessed and matrix effects were also taken into consideration during the method validation. The developed method allows the simultaneous quantitative analysis of 48 compounds (drug residues and metabolites) in lettuce leaves irrigated with treated wastewater for human consumption. Application of the present method to lettuce crops growth in controlled conditions showed the presence of 14 out 48 studied compounds with similar concentrations in both acquisition modes ranging from 3.3 and 1.3 ng g - 1 for climbazole (for MRMHR and SWATH, respectively) to 33.2 and 17.7 ng g - 1 for sulfamethazine. Drug residues such as carbamazepine (6.0 and 8.5 ng g - 1), and its metabolite carbamazepine epoxide (18.1 and 16.5 ng g - 1), frequently found in wastewater effluents, were also detected.
Collapse
Affiliation(s)
- Nicola Montemurro
- ENFOCHEM, IDAEA-CSIC, c/Jordi Girona 18-26, 08034 Barcelona (Spain).
| | - Anastasia Orfanioti
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771 Athens, Greece
| | - Rayana Manasfi
- UMR HydroSciences 5569, HSM, Montpellier University, 15 Avenue Ch. Flahault, 34093 Montpellier cedex 5, France
| | - Nikolaos S Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771 Athens, Greece
| | - Sandra Pérez
- ENFOCHEM, IDAEA-CSIC, c/Jordi Girona 18-26, 08034 Barcelona (Spain)
| |
Collapse
|
32
|
Peng G, Lu Y, You W, Yin Z, Li Y, Gao Y. Analysis of five bisphenol compounds in sewage sludge by dispersive solid-phase extraction with magnetic montmorillonite. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
33
|
Residue Analysis of Insecticides in Potatoes by QuEChERS-dSPE/UHPLC-PDA. Foods 2020; 9:foods9081000. [PMID: 32722562 PMCID: PMC7466252 DOI: 10.3390/foods9081000] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 11/27/2022] Open
Abstract
Insecticides are broadly applied in agriculture to defend crops from illnesses and pest attacks, consequently guaranteeing high production. However, their residual deposits in food products are becoming a main concern with regard to human consumption. As such, sensitive analytical methods should be developed to assess, prevent and control insecticide residues. In this research, an accurate, fast and reliable residual analytical method, that is quick, easy, cheap, effective, rugged and safe, combined with dispersive solid phase extraction (QuEChERS-dSPE), was developed for the determination of the most common insecticides used in potatoes cultivation (chlorpyrifos, λ-cyhalothrin, deltamethrin and acrinathrin), using an ultra-high performance chromatography photodiode array detector (UHPLC-PDA). The most influential extraction and instrumentation parameters that affect the method’s performance, such as extraction solvent, ratio salts, sorbents, stationary phases, gradient conditions and eluents, were assessed. Under the ideal conditions, good linearity (0.992–0.998), limits of detection (0.02–0.47 µg/kg) and quantification (0.06–1.58 µg/kg), recovery (94.1 to 112%) and precision (relative standard deviation <18%) were achieved for spiked levels between 2.5 and 50 µg/kg. The obtained results revealed that the potatoes analyzed do not represent any concern for human healthy, as the insecticide residues detected were lower than the maximum residue limits set by the European Union, Codex Alimentarius, and other organizations.
Collapse
|
34
|
Kim SB, Bisson J, Friesen JB, Pauli GF, Simmler C. Selective Chlorophyll Removal Method to "Degreen" Botanical Extracts. JOURNAL OF NATURAL PRODUCTS 2020; 83:1846-1858. [PMID: 32426979 PMCID: PMC7398693 DOI: 10.1021/acs.jnatprod.0c00005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Chlorophylls are present in all extracts from the aerial parts of green plant materials. Chlorophylls may act as in vitro bioassay nuisance compounds, possibly preventing the reproducibility and accurate measurement of readouts due to their UV/vis absorbance, fluorescence properties, and tendency to precipitate in aqueous media. Despite the diversity of methods used traditionally to remove chlorophylls, details about their mode of operation, specificity, and reproducibility are scarce. Herein, we report a selective and efficient 45 min liquid-liquid/countercurrent chlorophyll cleanup method using Centrifugal Partition Chromatography (CPC) with a solvent system composed of hexanes-EtOAc-MeOH-water (5:5:5:5, v/v) in elution-extrusion mode. The broader utility of the method was assessed with four different extracts prepared from three well-characterized plant materials: Epimedium sagittatum (leaves), Senna alexandrina (leaves), and Trifolium pratense (aerial parts). The reproducibility of the method, the selectivity of the chlorophyll removal, as well as the preservation of the phytochemical integrity of the resulting chlorophyll-free ("degreened") extracts were evaluated using HPTLC, UHPLC-UV, 1H NMR spectroscopy, and LC-MS as orthogonal phytochemical methods. The cleanup process adequately preserves the metabolomic diversity as well as the integrity of the original extracts. This method was found to be sufficiently rapid for the "degreening" of botanical extracts in higher-throughput sample preparation for further biological screening.
Collapse
Affiliation(s)
- Seon Beom Kim
- Center for Natural Product Technologies, Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS) and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, United States
| | - Jonathan Bisson
- Center for Natural Product Technologies, Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS) and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, United States
| | - J. Brent Friesen
- Center for Natural Product Technologies, Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS) and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, United States
- Physical Sciences Department, Rosary College of Arts and Sciences, Dominican University, River Forest, IL 60305, United States
| | - Guido F. Pauli
- Center for Natural Product Technologies, Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS) and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, United States
| | - Charlotte Simmler
- Center for Natural Product Technologies, Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS) and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, United States
| |
Collapse
|
35
|
Zheng X, Liu C, Hu J. Residues and Dietary Risk Assessments of 2,4-D Isooctyl Ester, Metribuzin, Acetochlor, and 2-Ethyl-6-methylaniline in Corn or Soybean Fields. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4315-4324. [PMID: 32202777 DOI: 10.1021/acs.jafc.0c00193] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Since 2,4-dichlorophenoxy acetic acid (2,4-D) was discovered in the 1940s, 2,4-D and its derivatives remain among most commonly used herbicides in the world. There have been recent increases in using 2,4-D products in a combination with other herbicides such as metribuzin and acetochlor to control noxious weeds. However, accurate analysis of 2,4-D isooctyl ester remains to be improved due to long analysis time and rapid conversion of the ester to acid (i.e., under-reporting residues). In this work, a simple hydrolysis procedure was introduced to provide a quantitative hydrolytic rate of the ester (>95%) and did not affect the other pH-sensitive compounds. Analysis parameters and sample pretreatments were optimized for improved selectivity and accuracy. The hydrolysis-QuEChERS (quick, easy, cheap, effective, rugged, and safe) technique for multidetermination of 2,4-D isooctyl ester, metribuzin, acetochlor, and 2-ethyl-6-methylaniline in corn and soybeans via high performance liquid chromatography-tandem mass spectrometry was established. The method had average recoveries of 74-109% with relative standard deviations ≤13.5% and limits of quantifications (LOQs) of 0.05 mg/kg. The terminal residues of these compounds found in real edible matrixes were less than the corresponding LOQs at harvest time. The risk quotients were far below 100%, indicating a low health risk to consumers.
Collapse
Affiliation(s)
- Xutian Zheng
- College of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
| | - Chaolun Liu
- Chemistry Department, University of Hawaii at Manoa 2545 The Mall, Honolulu, Hawaii 96822,United States
| | - Jiye Hu
- College of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
| |
Collapse
|
36
|
Pacheco-Fernández I, Allgaier-Díaz DW, Mastellone G, Cagliero C, Díaz DD, Pino V. Biopolymers in sorbent-based microextraction methods. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115839] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
37
|
Rodrigues CA, Nicácio AE, Boeing JS, Garcia FP, Nakamura CV, Visentainer JV, Maldaner L. Rapid extraction method followed by a d-SPE clean-up step for determination of phenolic composition and antioxidant and antiproliferative activities from berry fruits. Food Chem 2020; 309:125694. [DOI: 10.1016/j.foodchem.2019.125694] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 12/13/2022]
|
38
|
Gallego R, Tardif C, Parreira C, Guerra T, Alves MJ, Ibáñez E, Herrero M. Simultaneous extraction and purification of fucoxanthin from Tisochrysis lutea microalgae using compressed fluids. J Sep Sci 2020; 43:1967-1977. [PMID: 32045088 DOI: 10.1002/jssc.202000021] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/07/2020] [Accepted: 02/07/2020] [Indexed: 11/07/2022]
Abstract
The marine microalga Tisochrysis lutea, a Haptophyta with a thin cell wall and currently used mainly in aquaculture is a potential source of several bioactive compounds of interest such as carotenoids. In the present study, the simultaneous extraction and purification of fucoxanthin, the main carotenoid from T. lutea, was optimized using pressurized fluid extraction followed by in-cell purification. An experimental design was employed to maximize carotenoids' extraction; the experimental factors chosen were: (i) percentage of ethanol/ethyl acetate (0-100 %), (ii) temperature (40-150°C), and (iii) number of static extraction cycles (1-3). The maximum carotenoids' recovery, mainly fucoxanthin, was obtained with pure ethyl acetate at 40°C using one extraction cycle, achieving values of 132.8 mg of carotenoids per gram of extract. Once the optimum extraction conditions were confirmed, in-cell purification strategies using different adsorbents were developed to obtain fucoxanthin-enriched extracts. Activated charcoal showed potential retention of chlorophylls allowing an effective purification of fucoxanthin in the obtained extracts. Chemical characterization of extracts was carried out by reversed-phase high-performance liquid chromatography with diode array detection. Therefore, a selective fractionation of high value compounds was achieved using the proposed green downstream platform based on the use of compressed fluids.
Collapse
Affiliation(s)
- Rocío Gallego
- Laboratory of Foodomics, Institute of Food Science Research (CIAL, CSIC-UAM), Madrid, Spain
| | - Charles Tardif
- Laboratory of Foodomics, Institute of Food Science Research (CIAL, CSIC-UAM), Madrid, Spain
| | - Celina Parreira
- A4F - Algae for Future, Campus do Lumiar, Estrada do Paço do Lumiar, Lisboa, Portugal
| | - Tiago Guerra
- A4F - Algae for Future, Campus do Lumiar, Estrada do Paço do Lumiar, Lisboa, Portugal
| | - Maria João Alves
- A4F - Algae for Future, Campus do Lumiar, Estrada do Paço do Lumiar, Lisboa, Portugal
| | - Elena Ibáñez
- Laboratory of Foodomics, Institute of Food Science Research (CIAL, CSIC-UAM), Madrid, Spain
| | - Miguel Herrero
- Laboratory of Foodomics, Institute of Food Science Research (CIAL, CSIC-UAM), Madrid, Spain
| |
Collapse
|
39
|
Li Y, Li Y, Yang Y. Rapid screening of amitraz and its metabolite residues in honey using a quick, easy, cheap, effective, rugged, and safe extraction method coupled with UHPLC and Q Exactive. J Sep Sci 2020; 43:1466-1473. [PMID: 32052934 DOI: 10.1002/jssc.201900801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 01/15/2020] [Accepted: 02/08/2020] [Indexed: 12/14/2022]
Abstract
A method for determining amitraz and 2,4-dimethylaniline in honey was established by using ultra-high-performance liquid chromatoghaphy and Q Exactive after applying quick, easy, cheap, effective, rugged, and safe extracting process. A suitable extraction method was designed to extract the amitraz and 2,4-dimethylaniline after a suitable amount of honey samples was dissolved. A Thermo Syncronis C18 column (100 × 2.1 mm, 1.7 μm) was used for chromatographic separation of the samples. Then the two compounds were quantitatively analyzed via a program of Q Exactive. The linearity of amitraz and 2,4-dimethylaniline was good in the concentration range of 0.5-100 μg/L, and the correlation coefficient R2 was >0.99. The average recovery and relative standard deviation of each component were 81.3-90.0% and 5.1-7.2%. The 24- and 48-h test results showed that the sample needed to be tested within 24 h. The limit of detection was 0.1 μg/kg for amitraz and 2,4-dimethylaniline, whereas for both the limit of quantitation was 0.3 μg/kg.
Collapse
Affiliation(s)
- Yanping Li
- Fujian Inspection and Research Institute for Product Quality, Fujian, P. R. China
| | - Yuxiang Li
- Fujian Provincial Key Laboratory of Zoonosis Research (Fujian Center for Disease Control & Prevention), Fuzhou, P. R. China
| | - Yan Yang
- Fujian Provincial Key Laboratory of Zoonosis Research (Fujian Center for Disease Control & Prevention), Fuzhou, P. R. China
| |
Collapse
|
40
|
Klisara N, Palaniappan A, Liedberg B. Sorbent-incorporated dipstick for direct assaying of proteases. Anal Bioanal Chem 2020; 412:1385-1393. [DOI: 10.1007/s00216-019-02366-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/11/2019] [Accepted: 12/18/2019] [Indexed: 11/28/2022]
|
41
|
Kucharski D, Drzewicz P, Nałęcz-Jawecki G, Mianowicz K, Skowronek A, Giebułtowicz J. Development and Application of a Novel QuEChERS Method for Monitoring of Tributyltin and Triphenyltin in Bottom Sediments of the Odra River Estuary, North Westernmost Part of Poland. Molecules 2020; 25:molecules25030591. [PMID: 32013201 PMCID: PMC7037272 DOI: 10.3390/molecules25030591] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 11/16/2022] Open
Abstract
A Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) extraction method combined with Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) for determination of organotin compounds (OTC) has been newly developed. The novel analytical method was validated and the quality of the results was tested by the use of certificate reference material of freshwater sediment BCR 646. The method was applied in determination of OTC concentration in real samples of bottom sediments collected from the Polish part of Odra River Estuary. The samples came from locations with different anthropogenic impact. Additionally, the extraction recovery of OTC and matrix effect on MS signal response was investigated based on those real environmental samples. It was found that organic compounds and anthropogenic contaminations present in bottom sediments may affect extraction efficiency of the organotin compounds (OTC) and change the matrix effect on MS signal response. The highest concentrations of tributyltin were found in bottom sediments collected from locations in vicinity of the Szczecin harbor and shipyards. The presence of triphenyltin above limit of detection (5 ng TPhT/g of sediment) was observed only in two samples and its concentration was several times lower compared to concentration of tributyltin (from 58 ng/g to 5263 ng/g). In spite of the fact that, the application of TBT-based paints on hull of vessel entering EU ports has been banned by European Commission regulation No. 782/2003 since 2008, the OTC compounds are still present in bottom sediment and pose significant threat to the environment. This threat should be taken into account during dredging of waterways and other hydrotechnical works.
Collapse
Affiliation(s)
- Dawid Kucharski
- Department of Bioanalysis and Drugs Analysis, Faculty of Pharmacy, Medical University of Warsaw, ul. Banacha 1, 02-097 Warszawa, Poland;
| | - Przemysław Drzewicz
- Polish Geological Institute-National Research Institute, ul. Rakowiecka 4, 00-975 Warszawa, Poland;
- Correspondence: (P.D.); (J.G.); Tel.: +48-22-459-2319 (P.D.); +48-572-0949 (J.G.); Fax: +48-22-849-5351 (P.D.); +48-22-572-0976 (J.G.)
| | - Grzegorz Nałęcz-Jawecki
- Department of Environmental Health Sciences, Faculty of Pharmacy, Medical University of Warsaw, ul. Banacha 1, 02-007 Warszawa, Poland;
| | - Kamila Mianowicz
- Institute of Marine and Environmental Sciences, University of Szczecin, Wały Chrobrego 1-2, 70-500 Szczecin, Poland;
| | - Artur Skowronek
- Polish Geological Institute-National Research Institute, ul. Rakowiecka 4, 00-975 Warszawa, Poland;
| | - Joanna Giebułtowicz
- Department of Bioanalysis and Drugs Analysis, Faculty of Pharmacy, Medical University of Warsaw, ul. Banacha 1, 02-097 Warszawa, Poland;
- Correspondence: (P.D.); (J.G.); Tel.: +48-22-459-2319 (P.D.); +48-572-0949 (J.G.); Fax: +48-22-849-5351 (P.D.); +48-22-572-0976 (J.G.)
| |
Collapse
|
42
|
Modified QuEChERS Method for Multiresidue Determination of Pesticides in Pecan Nuts by Liquid Chromatography Tandem Mass Spectrometry. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-019-01696-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
43
|
Modified QuEChERS Extraction and HPLC-MS/MS for Simultaneous Determination of 155 Pesticide Residues in Rice ( Oryza sativa L.). Foods 2019; 9:foods9010018. [PMID: 31878165 PMCID: PMC7022397 DOI: 10.3390/foods9010018] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/11/2019] [Accepted: 12/18/2019] [Indexed: 11/16/2022] Open
Abstract
Rice (Oryza sativa L.) is the staple food of more than half of the world’s population. The main factors affecting the quality of rice include grain length, texture, stickiness, flavor, and aroma. Pesticides are intended for the protection of plant products from weeds, fungi, or insects. However, pesticides also result in negative effects such as environment disturbances, pest resistance and toxicity to both users and food consumers. The aim of this study was to conduct validation experiments of a method for the determination of multi-pesticides in rice, a model food of other cereals. A quick, easy, cheap, effective, rugged, and safe (QuEChERS) method was used for the extraction of pesticide residues from rice followed by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) with a triple quadrupole instrument using electrospray ionization. The analytical method has chromatography-tandem according to SANTE/11813/2017. The limit of quantification was 5 μg/kg. Recoveries for the 155 analyzed pesticides ranged between 77.1% for pirimiphos-ethyl and 111.5% for flutriafol and they were determined at 3 spiking levels. The proposed method was demonstrated to be quick, simple, precise, and accurate and allowed for evaluating the compliance of cereals samples with legislated maximum residue levels of pesticides in the European Union.
Collapse
|
44
|
Xie Y, Gao F, Tu X, Ma X, Dai R, Peng G, Yu Y, Lu L. Flake-like neodymium molybdate wrapped with multi-walled carbon nanotubes as an effective electrode material for sensitive electrochemical detection of carbendazim. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113468] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
45
|
Diagnostic detection systems and QuEChERS methods for multiclass pesticide analyses in different types of fruits: An overview from the last decade. Food Chem 2019; 298:124958. [DOI: 10.1016/j.foodchem.2019.124958] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 05/27/2019] [Accepted: 06/06/2019] [Indexed: 01/25/2023]
|
46
|
A new composite based on graphene oxide-poly 3-aminophenol for solid-phase microextraction of four triazole fungicides in water and fruit juices prior to high-performance liquid chromatography analysis. Food Chem 2019; 299:125127. [DOI: 10.1016/j.foodchem.2019.125127] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 12/20/2022]
|
47
|
de Matos EMC, Ribeiro LC, Prestes OD, da Silva JAG, de Farias BS, Pinto LADA, Zanella R. Multiclass Method for the Determination of Pesticide Residues in Oat Using Modified QuEChERS with Alternative Sorbent and Liquid Chromatography with Tandem Mass Spectrometry. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01641-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
Islam AKMM, Lee H, Ro J, Kim D, Kwon H. Application of high‐surface‐area graphitized carbon black with primary secondary amine as an alternative quick, easy, cheap, effective, rugged, and safe cleanup material for pesticide multi‐residue analysis in spinach. J Sep Sci 2019; 42:2379-2389. [DOI: 10.1002/jssc.201900066] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/03/2019] [Accepted: 05/04/2019] [Indexed: 01/06/2023]
Affiliation(s)
- Abul Kasem Mohammad Mydul Islam
- Department of Agro‐food Safety and Crop ProtectionNational Institute of Agricultural SciencesRural Development Administration Wanju‐gun Jeollabuk‐do Republic of Korea
| | - Hyo‐Sub Lee
- Department of Agro‐food Safety and Crop ProtectionNational Institute of Agricultural SciencesRural Development Administration Wanju‐gun Jeollabuk‐do Republic of Korea
| | - Jin‐Ho Ro
- Department of Agro‐food Safety and Crop ProtectionNational Institute of Agricultural SciencesRural Development Administration Wanju‐gun Jeollabuk‐do Republic of Korea
| | - Danbi Kim
- Department of Agro‐food Safety and Crop ProtectionNational Institute of Agricultural SciencesRural Development Administration Wanju‐gun Jeollabuk‐do Republic of Korea
| | - Hyeyoung Kwon
- Department of Agro‐food Safety and Crop ProtectionNational Institute of Agricultural SciencesRural Development Administration Wanju‐gun Jeollabuk‐do Republic of Korea
| |
Collapse
|
49
|
Hrynko I, Łozowicka B, Kaczyński P. Comprehensive analysis of insecticides in melliferous weeds and agricultural crops using a modified QuEChERS/LC-MS/MS protocol and of their potential risk to honey bees (Apis mellifera L.). THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 657:16-27. [PMID: 30530215 DOI: 10.1016/j.scitotenv.2018.11.470] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/27/2018] [Accepted: 11/30/2018] [Indexed: 06/09/2023]
Abstract
The risk of exposure of honey bees to the presence of insecticides in melliferous plants is higher than previously reported. Therefore, monitoring insecticide residues in these plants is of great importance to honey bee safety. A novelty of the present research was the development of an innovative procedure for determination of residues of 142 insecticides in weeds and agricultural crops among melliferous plants. Phacelia, buckwheat, rape, common dandelion, cornflower and clover were selected for testing. Samples were extracted via QuEChERS. Two single sorbents (Z-Sep and Chitosan) and two combinations of sorbents (PSA/C18/ENVI-Carb/MgSO4, PSA/GCB/MgSO4) were tested. The matrix effect was applied as the main criterion for assessment of the method's effectiveness. The best sorbent for preparation of: (i) common dandelion samples was PSA/GCB/MgSO4, (ii) rape, cornflower and clover samples - PSA/C18/ENVI-Carb/MgSO4 sorbent and (iii) phacelia and buckwheat samples - Z-Sep sorbent. The developed procedure was applied for quantification of insecticide residues in 41 melliferous plant samples to estimate exposure of honey bees to pesticides through calculation of the hazard quotient (HQ). In total, 12 different insecticides were detected. The presence of neonicotinoid insecticides was found 7 times. The residues most frequently identified in melliferous plants were deltamethrin, dimethoate, and its metabolite, omethoate. An increased insecticide risk to honey bees was found for 4.9% and 9.8% of samples, for the oral and contact dose, respectively. This is why the hazard of melliferous plant residues was considered elevated for honey bees. The results clearly demonstrated that the approach developed provides reliable, simple and rapid determination of insecticides in melliferous plants, which is of great importance to honey bee safety.
Collapse
Affiliation(s)
- Izabela Hrynko
- Plant Protection Institute - National Research Institute, Laboratory of Pesticide Residues, Chelmonskiego 22, Bialystok, Poland.
| | - Bożena Łozowicka
- Plant Protection Institute - National Research Institute, Laboratory of Pesticide Residues, Chelmonskiego 22, Bialystok, Poland
| | - Piotr Kaczyński
- Plant Protection Institute - National Research Institute, Laboratory of Pesticide Residues, Chelmonskiego 22, Bialystok, Poland
| |
Collapse
|
50
|
Man Y, Zheng Y, Liu X, Dong F, Xu J, Wu X, Zheng Y. Simultaneous Determination of Isofetamid and Its Two Metabolites in Fruits and Vegetables Using Ultra-Performance Liquid Chromatography with Tandem Mass Spectrometry. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01466-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|