1
|
Ibarra-Gutiérrez MT, Serrano-García N, Orozco-Ibarra M. Rotenone-Induced Model of Parkinson's Disease: Beyond Mitochondrial Complex I Inhibition. Mol Neurobiol 2023; 60:1929-1948. [PMID: 36593435 DOI: 10.1007/s12035-022-03193-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/23/2022] [Indexed: 01/04/2023]
Abstract
Parkinson's disease (PD) is usually diagnosed through motor symptoms that make the patient incapable of carrying out daily activities; however, numerous non-motor symptoms include olfactory disturbances, constipation, depression, excessive daytime sleepiness, and rapid eye movement at sleep; they begin years before motor symptoms. Therefore, several experimental models have been studied to reproduce several PD functional and neurochemical characteristics; however, no model mimics all the PD motor and non-motor symptoms to date, which becomes a limitation for PD study. It has become increasingly relevant to find ways to study the disease from its slowly progressive nature. The experimental models most frequently used to reproduce PD are based on administering toxic chemical compounds, which aim to imitate dopamine deficiency. The most used toxic compounds to model PD have been 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 6-hydroxydopamine (6-OHDA), which inhibit the complex I of the electron transport chain but have some limitations. Another toxic compound that has drawn attention recently is rotenone, the classical inhibitor of mitochondrial complex I. Rotenone triggers the progressive death of dopaminergic neurons and α-synuclein inclusions formation in rats; also, rotenone induces microtubule destabilization. This review presents information about the experimental model of PD induced by rotenone, emphasizing its molecular characteristics beyond the inhibition of mitochondrial complex I.
Collapse
Affiliation(s)
- María Teresa Ibarra-Gutiérrez
- Laboratorio de Neurobiología Molecular y Celular, Instituto Nacional de Neurología y Neurocirugía, Av. Insurgentes Sur No. 3877 Col. La Fama, Tlalpan, C.P. 14269, Ciudad de Mexico, Mexico
| | - Norma Serrano-García
- Laboratorio de Neurobiología Molecular y Celular, Instituto Nacional de Neurología y Neurocirugía, Av. Insurgentes Sur No. 3877 Col. La Fama, Tlalpan, C.P. 14269, Ciudad de Mexico, Mexico
| | - Marisol Orozco-Ibarra
- Laboratorio de Neurobiología Molecular y Celular, Instituto Nacional de Neurología y Neurocirugía, Av. Insurgentes Sur No. 3877 Col. La Fama, Tlalpan, C.P. 14269, Ciudad de Mexico, Mexico.
| |
Collapse
|
2
|
Kip E, Parr-Brownlie LC. Healthy lifestyles and wellbeing reduce neuroinflammation and prevent neurodegenerative and psychiatric disorders. Front Neurosci 2023; 17:1092537. [PMID: 36875655 PMCID: PMC9975355 DOI: 10.3389/fnins.2023.1092537] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/23/2023] [Indexed: 02/17/2023] Open
Abstract
Since the mid-20th century, Western societies have considered productivity and economic outcomes are more important than focusing on people's health and wellbeing. This focus has created lifestyles with high stress levels, associated with overconsumption of unhealthy foods and little exercise, which negatively affect people's lives, and subsequently lead to the development of pathologies, including neurodegenerative and psychiatric disorders. Prioritizing a healthy lifestyle to maintain wellbeing may slow the onset or reduce the severity of pathologies. It is a win-win for everyone; for societies and for individuals. A balanced lifestyle is increasingly being adopted globally, with many doctors encouraging meditation and prescribing non-pharmaceutical interventions to treat depression. In psychiatric and neurodegenerative disorders, the inflammatory response system of the brain (neuroinflammation) is activated. Many risks factors are now known to be linked to neuroinflammation such as stress, pollution, and a high saturated and trans fat diet. On the other hand, many studies have linked healthy habits and anti-inflammatory products with lower levels of neuroinflammation and a reduced risk of neurodegenerative and psychiatric disorders. Sharing risk and protective factors is critical so that individuals can make informed choices that promote positive aging throughout their lifespan. Most strategies to manage neurodegenerative diseases are palliative because neurodegeneration has been progressing silently for decades before symptoms appear. Here, we focus on preventing neurodegenerative diseases by adopting an integrated "healthy" lifestyle approach. This review summarizes the role of neuroinflammation on risk and protective factors of neurodegenerative and psychiatric disorders.
Collapse
Affiliation(s)
- Elodie Kip
- Department of Anatomy, School of Biomedical Sciences, Brain Health Research Centre, Brain Research New Zealand, University of Otago, Dunedin, New Zealand
| | - Louise C Parr-Brownlie
- Department of Anatomy, School of Biomedical Sciences, Brain Health Research Centre, Brain Research New Zealand, University of Otago, Dunedin, New Zealand
| |
Collapse
|
3
|
Arab A, Mostafalou S. Neurotoxicity of pesticides in the context of CNS chronic diseases. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:2718-2755. [PMID: 34663153 DOI: 10.1080/09603123.2021.1987396] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
Following the introduction and application of pesticides in human life, they have always been along with health concerns both in acute poisoning and chronic toxicities. Neurotoxicity of pesticides in chronic exposures has been known as one of the most important human health problems, as most of these chemicals act through interacting with some elements of nervous system. Pesticide-induced neurotoxicity can be defined in different categories of neurological disorders including neurodegenerative (Alzheimer, Parkinson, amyotrophic lateral sclerosis, multiple sclerosis), neurodevelopmental (attention deficit hyperactivity disorder, autism spectrum disorders, developmental delay, and intellectual disability), neurobehavioral and neuropsychiatric (depression/suicide attempt, anxiety/insomnia, and cognitive impairment) disorders some of which are among the most debilitating human health problems. In this review, neurotoxicity of pesticides in the mentioned categories and sub-categories of neurological diseases have been systematically presented in relation to different route of exposures including general, occupational, environmental, prenatal, postnatal, and paternal.
Collapse
Affiliation(s)
- Ali Arab
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Sara Mostafalou
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
4
|
Lizana P, Mutis A, Quiroz A, Venthur H. Insights Into Chemosensory Proteins From Non-Model Insects: Advances and Perspectives in the Context of Pest Management. Front Physiol 2022; 13:924750. [PMID: 36072856 PMCID: PMC9441497 DOI: 10.3389/fphys.2022.924750] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/13/2022] [Indexed: 12/04/2022] Open
Abstract
Nowadays, insect chemosensation represents a key aspect of integrated pest management in the Anthropocene epoch. Olfaction-related proteins have been the focus of studies due to their function in vital processes, such ashost finding and reproduction behavior. Hence, most research has been based on the study of model insects, namely Drosophila melanogaster, Bombyx mori or Tribolium castaneum. Over the passage of time and the advance of new molecular techniques, insects considered non-models have been studied, contributing greatly to the knowledge of insect olfactory systems and enhanced pest control methods. In this review, a reference point for non-model insects is proposed and the concept of model and non-model insects is discussed. Likewise, it summarizes and discusses the progress and contribution in the olfaction field of both model and non-model insects considered pests in agriculture.
Collapse
Affiliation(s)
- Paula Lizana
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Temuco, Chile
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| | - Ana Mutis
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| | - Andrés Quiroz
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| | - Herbert Venthur
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
5
|
de Graaf L, Boulanger M, Bureau M, Bouvier G, Meryet-Figuiere M, Tual S, Lebailly P, Baldi I. Occupational pesticide exposure, cancer and chronic neurological disorders: A systematic review of epidemiological studies in greenspace workers. ENVIRONMENTAL RESEARCH 2022; 203:111822. [PMID: 34352232 DOI: 10.1016/j.envres.2021.111822] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
CONTEXT The greenspace sector includes a broad range of occupations: gardeners, landscapers, municipal workers, maintenance operators of public facilities, golf-course employees and other sports facilities, horticulturists, plant and tree nursery workers etc. The health impact of occupational pesticide exposure has mainly been studied among farmers. Other professionals such as greenspace workers are also extremely exposed, presenting specific exposure features (practices, types of pesticide used). The aim of this review was to summarize epidemiological literature that examine the relationship between pesticide exposure and the risk of cancer and long-term health effects in greenspace workers. METHOD Six main groups of greenspace workers were identified and examined through a systematic literature review based on PubMed and Scopus. The studies were then grouped according to their design, health outcomes and the type of population studied. RESULTS Forty-four articles were selected among the 1679 identified. Fifteen studies were conducted exclusively among greenspace workers, while ten also studied these workers with other pesticide applicators. Six were cohorts from the general population in which greenspace workers were identified. Elevated risks were found in several studies for leukaemia, soft-tissue sarcoma, multiple myeloma, non-Hodgkin lymphoma and Parkinson's disease. DISCUSSION The majority of studies used rough parameters for defining exposure such as job titles which could lead to the misclassification of exposure, with the risk of false or positive negative conclusions. Health outcomes were mainly collected through registries or death certificates, and information regarding potential confounders was often missing. CONCLUSION The review identified only 15 studies conducted exclusively among greenspace workers. Elevated risk was found for several sites of cancer and Parkinson's diseases. Further epidemiological research is needed, conducted specifically on these workers, to better characterize this population, its exposure to pesticides and the related health effects.
Collapse
Affiliation(s)
- L de Graaf
- ISPED, Université de Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux, France; INSERM U1219 Epicene, 146 rue Léo Saignat, 33076, Bordeaux, France.
| | - M Boulanger
- INSERM U1086 Anticipe, 3 avenue Général Harris, 14000, Caen, France; Centre de Lutte contre le Cancer François Baclesse, 3 avenue Général Harris, 14000, Caen, France; Université de Caen Normandie, Esplanade de la Paix, 14000, Caen, France
| | - M Bureau
- ISPED, Université de Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux, France; INSERM U1219 Epicene, 146 rue Léo Saignat, 33076, Bordeaux, France
| | - G Bouvier
- ISPED, Université de Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux, France; INSERM U1219 Epicene, 146 rue Léo Saignat, 33076, Bordeaux, France
| | - M Meryet-Figuiere
- INSERM U1086 Anticipe, 3 avenue Général Harris, 14000, Caen, France; Centre de Lutte contre le Cancer François Baclesse, 3 avenue Général Harris, 14000, Caen, France; Université de Caen Normandie, Esplanade de la Paix, 14000, Caen, France
| | - S Tual
- INSERM U1086 Anticipe, 3 avenue Général Harris, 14000, Caen, France; Centre de Lutte contre le Cancer François Baclesse, 3 avenue Général Harris, 14000, Caen, France; Université de Caen Normandie, Esplanade de la Paix, 14000, Caen, France
| | - P Lebailly
- INSERM U1086 Anticipe, 3 avenue Général Harris, 14000, Caen, France; Centre de Lutte contre le Cancer François Baclesse, 3 avenue Général Harris, 14000, Caen, France; Université de Caen Normandie, Esplanade de la Paix, 14000, Caen, France
| | - I Baldi
- ISPED, Université de Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux, France; INSERM U1219 Epicene, 146 rue Léo Saignat, 33076, Bordeaux, France; Service Santé Travail Environnement, CHU de Bordeaux, Place Amélie Raba Léon, 33076, Bordeaux, France
| |
Collapse
|
6
|
Does paraquat cause Parkinson's disease? A review of reviews. Neurotoxicology 2021; 86:180-184. [PMID: 34400206 DOI: 10.1016/j.neuro.2021.08.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 12/26/2022]
Abstract
To examine the extent to which a consensus exists in the scientific community regarding the relationship between exposure to paraquat and Parkinson's disease, a critical review of reviews was undertaken focusing on reviews published between 2006 and the present that offered opinions on the issue of causation. Systematic searches were undertaken of scientific databases along with searches of published bibliographies to identify English language reviews on the topic of paraquat and Parkinson's disease including those on the broader topic of environmental and occupational risk factors for Parkinson's disease. Of the 269 publications identified in the searches, there were twelve reviews, some with meta-analyses, that met the inclusion criteria. Information on methods used by the reviewers, if any, and source of funding was collected; the quality of the reviews was considered. No author of any published review stated that it has been established that exposure to paraquat causes Parkinson's disease, regardless of methods used and independent of funding source. A consensus exists in the scientific community that the available evidence does not warrant a claim that paraquat causes Parkinson's disease. Future research on this topic should focus on improving the quality of epidemiological studies including better exposure measures and identifying specific mechanisms of action. Future reviews of emerging evidence should be structured as systematic narrative reviews with meta-analysis if appropriate.
Collapse
|
7
|
Tomenson JA, Campbell C. Mortality from Parkinson's disease and other causes among a workforce manufacturing paraquat: an updated retrospective cohort study. J Occup Med Toxicol 2021; 16:20. [PMID: 34044863 PMCID: PMC8157632 DOI: 10.1186/s12995-021-00309-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 05/19/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Epidemiological studies of the association between Parkinson's disease (PD) and paraquat (PQ) exposure have given inconsistent findings. The aim of the study was to update information on the risk of PD and mortality from major causes of death among a UK workforce who manufactured PQ by extending the follow-up by seven and a half years. METHODS This retrospective cohort study included all employees who had ever worked on any of the four plants at Widnes, UK where PQ was manufactured between 1961 and 1995. The 926 male and 42 female workers were followed through 31 December 2017. Mortalities for males were compared with national and local rates, including rates for PD as a mentioned cause of death. RESULTS A total of 394 male and 21 female workers had died by end of follow-up. Four death certificates of male workers mentioned PD, including two deaths that were due to PD. At least 6 death certificates of male employees would have been expected to have mentioned PD (SMR = 0.67; 95% CI 0.18-1.72). Reduced mortalities compared with local rates were found for major causes of death. CONCLUSIONS The study provided no evidence of an increased risk of PD, or increased mortalities from other causes among PQ production workers whose exposure to PQ on a daily basis was at least comparable to that of a PQ sprayer or mixer/loader.
Collapse
|
8
|
Scutellarin inhibits the uninduced and metal-induced aggregation of α-Synuclein and disaggregates preformed fibrils: implications for Parkinson's disease. Biochem J 2020; 477:645-670. [DOI: 10.1042/bcj20190705] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/08/2020] [Accepted: 01/15/2020] [Indexed: 01/07/2023]
Abstract
The aggregation of the protein alpha synuclein (α-Syn), a known contributor in Parkinson's disease (PD) pathogenesis is triggered by transition metal ions through occupational exposure and disrupted metal ion homeostasis. Naturally occurring small molecules such as polyphenols have emerged as promising inhibitors of α-Syn fibrillation and toxicity and could be potential therapeutic agents against PD. Here, using an array of biophysical tools combined with cellular assays, we demonstrate that the novel polyphenolic compound scutellarin efficiently inhibits the uninduced and metal-induced fibrillation of α-Syn by acting at the nucleation stage and stabilizes a partially folded intermediate of α-Syn to form SDS-resistant, higher-order oligomers (∼680 kDa) and also disaggregates preformed fibrils of α-Syn into similar type of higher-order oligomers. ANS binding assay, fluorescence lifetime measurements and cell-toxicity experiments reveal scutellarin-generated oligomers as compact, low hydrophobicity structures with modulated surface properties and significantly reduced cytotoxicity than the fibrillation intermediates of α-Syn control. Fluorescence spectroscopy and isothermal titration calorimetry establish the binding between scutellarin and α-Syn to be non-covalent in nature and of moderate affinity (Ka ∼ 105 M−1). Molecular docking approaches suggest binding of scutellarin to the residues present in the NAC region and C-terminus of monomeric α-Syn and the C-terminal residues of fibrillar α-Syn, demonstrating inhibition of fibrillation upon binding to these residues and possible stabilization of the autoinhibitory conformation of α-Syn. These findings reveal interesting insights into the mechanism of scutellarin action and establish it as an efficient modulator of uninduced as well as metal-induced α-Syn fibrillation and toxicity.
Collapse
|
9
|
Silver MR, Racette BA, Dube U, Faust IM, Nielsen SS. Well Water and Parkinson's Disease in Medicare Beneficiaries: A Nationwide Case-Control Study. JOURNAL OF PARKINSON'S DISEASE 2020; 10:693-705. [PMID: 32083591 PMCID: PMC7342021 DOI: 10.3233/jpd-191793] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Well water frequently is considered a risk factor for Parkinson's disease (PD), but few studies were designed appropriately to test whether geographic factors affect PD risk. OBJECTIVE To determine the risk of PD in relation to residential use of private well water. METHODS In a nationwide, population-based case-control study, we identified all incident PD cases (N = 89,790) and all comparable controls (N = 21,549,400) age 66-90 who solely relied on Medicare coverage in the U.S. in 2009. We estimated the probability of use of private well water using zip code of residence at diagnosis/reference and U.S. Census data on household water source. We modeled this exposure linearly in logistic regression to calculate the odds ratio (OR) and 95% confidence interval (CI) of PD risk in relation to well water use. We adjusted for age, sex and race/ethnicity, and verified that smoking and use of medical care did not confound results. We repeated analyses with a 2-year exposure lag and separately within each U.S. state. RESULTS Use of well water was inversely associated with PD risk (OR = 0.87, 95% CI 0.85-0.89). We confirmed this association in a Cox survival analysis in which we followed controls for 5 years, death or PD diagnosis. There was little evidence that well water use increased risk of PD in any individual state. CONCLUSIONS Although it remains possible that exposures in well water in more narrow geographic regions increase PD risk, in general these results suggest that exposures more common in urban/suburban areas might also be relevant.
Collapse
Affiliation(s)
- Maya R. Silver
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Brad A. Racette
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Umber Dube
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Irene M. Faust
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Susan Searles Nielsen
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
10
|
Vaccari C, El Dib R, Gomaa H, Lopes LC, de Camargo JL. Paraquat and Parkinson's disease: a systematic review and meta-analysis of observational studies. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2019; 22:172-202. [PMID: 31476981 DOI: 10.1080/10937404.2019.1659197] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This investigation aimed to conduct a systematic review of the literature and meta-analysis to determine whether exposure to the herbicide paraquat was associated with the development of Parkinson's disease (PD). Observational studies that enrolled adults exposed to paraquat with PD as the outcome of interest were searched in the PubMed, Embase, LILACS, TOXNET, and Web of Science databases up to May 2019. Two authors independently selected relevant studies, extracted data, and assessed methodological quality. The evidence certainty was assessed by the GRADE approach, which served as basis for a tentative causality assessment, supplemented by the Bradford Hill criteria when necessary. Results from nine case-control studies indicated that PD occurrence was 25% higher in participants exposed to paraquat. The only cohort investigation included demonstrated a non-significant OR of 1.08. Results from subgroup analyses also indicated higher PD frequency in participants that were exposed to paraquat for longer periods or individuals co-exposed with paraquat and any other dithiocarbamate. Data indicate apositive association between exposure to paraquat and PD occurrence, but the weight-of-evidence does not enable one to assume an indisputable cause-effect relationship between these two conditions. Better designed studies are needed to increase confidence in results. Systematic Review Registration: PROSPERO CRD42017069994.
Collapse
Affiliation(s)
- Carolina Vaccari
- Department of Pathology, São Paulo State University (UNESP) , Botucatu , Brazil
| | - Regina El Dib
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP) , São Paulo , Brazil
- McMaster Institute of Urology, St. Joseph's Healthcare, McMaster University , Hamilton , Canada
- Department of Community Health and Epidemiology, Dalhousie University , Halifax , Canada
| | - Huda Gomaa
- Department of Bio-statistics, High Institute of Public Health, Alexandria University , Alexandria , Egypt
- Drug Information Center, Tanta Chest Hospital, Ministry of Health , Tanta , Egypt
| | - Luciane C Lopes
- Department of Pharmaceutical Sciences, University of Sorocaba (UNISO) , Sorocaba , Brazil
| | | |
Collapse
|
11
|
Ayton D, Ayton S, Barker AL, Bush AI, Warren N. Parkinson's disease prevalence and the association with rurality and agricultural determinants. Parkinsonism Relat Disord 2019; 61:198-202. [DOI: 10.1016/j.parkreldis.2018.10.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 10/10/2018] [Accepted: 10/22/2018] [Indexed: 12/21/2022]
|
12
|
Gunnarsson LG, Bodin L. Occupational Exposures and Neurodegenerative Diseases-A Systematic Literature Review and Meta-Analyses. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16030337. [PMID: 30691095 PMCID: PMC6388365 DOI: 10.3390/ijerph16030337] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/22/2019] [Accepted: 01/22/2019] [Indexed: 12/13/2022]
Abstract
Objectives: To carry out an integrated and stratified meta-analysis on occupational exposure to electromagnetic fields (EMFs), metals and pesticides and its effects on amyotrophic lateral sclerosis (ALS) and Parkinson's and Alzheimer's disease, and investigate the possibility of publication bias. Methods: In the current study, we updated our recently published meta-analyses on occupational exposures in relation to ALS, Alzheimer's and Parkinson's disease. Based on 66 original publications of good scientific epidemiological standard, according to the Meta-analysis of Observational Studies in Epidemiology (MOOSE) and the Grading of Recommendations, Assessment, Development and Evaluations (GRADE) guidelines, we analysed subgroups by carrying out stratified meta-analyses on publication year, statistical precision of the relative risk (RR) estimates, inspection of the funnel plots and test of bias. Results: Based on 19 studies the weighted RR for occupational exposure to EMFs was 1.26 (95% confidence interval (CI) 1.07⁻1.50) for ALS, 1.33 (95% CI 1.07⁻1.64) for Alzheimer's disease and 1.02 (95% CI 0.83⁻1.26) for Parkinson's disease. Thirty-one studies concerned occupational exposure to pesticides and the weighted RR was 1.35 (95% CI 1.02⁻1.79) for ALS, 1.50 (95% CI 0.98⁻2.29) for Alzheimer's disease and 1.66 (95% CI 1.42⁻1.94) for Parkinson's disease. Finally, 14 studies concerned occupational exposure to metals and only exposure to lead (five studies) involved an elevated risk for ALS or Parkinson's disease and the weighted RR was 1.57 (95% CI 1.11⁻2.20). The weighted RR for all the non-lead exposures was 0.97 (95% CI 0.88⁻1.06). Conclusions: Exposure to pesticides increased the risk of getting the mentioned neurodegenerative diseases by at least 50%. Exposure to lead was only studied for ALS and Parkinson's disease and involved 50% increased risk. Occupational exposure to EMFs seemed to involve some 10% increase in risk for ALS and Alzheimer's disease only.
Collapse
Affiliation(s)
- Lars-Gunnar Gunnarsson
- Department of Occupational and Environmental Medicine, School of Medicine, Örebro University, 701 82 Örebro, Sweden.
| | - Lennart Bodin
- Department of Statistics, Örebro University, 701 82 Örebro, Sweden.
- Institute of Environmental Medicine, Karolinska Institute, SE 177 77 Stockholm, Sweden.
| |
Collapse
|
13
|
Cao F, Souders Ii CL, Perez-Rodriguez V, Martyniuk CJ. Elucidating Conserved Transcriptional Networks Underlying Pesticide Exposure and Parkinson's Disease: A Focus on Chemicals of Epidemiological Relevance. Front Genet 2019; 9:701. [PMID: 30740124 PMCID: PMC6355689 DOI: 10.3389/fgene.2018.00701] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 12/13/2018] [Indexed: 12/21/2022] Open
Abstract
While a number of genetic mutations are associated with Parkinson's disease (PD), it is also widely acknowledged that the environment plays a significant role in the etiology of neurodegenerative diseases. Epidemiological evidence suggests that occupational exposure to pesticides (e.g., dieldrin, paraquat, rotenone, maneb, and ziram) is associated with a higher risk of developing PD in susceptible populations. Within dopaminergic neurons, environmental chemicals can have an array of adverse effects resulting in cell death, such as aberrant redox cycling and oxidative damage, mitochondrial dysfunction, unfolded protein response, ubiquitin-proteome system dysfunction, neuroinflammation, and metabolic disruption. More recently, our understanding of how pesticides affect cells of the central nervous system has been strengthened by computational biology. New insight has been gained about transcriptional and proteomic networks, and the metabolic pathways perturbed by pesticides. These networks and cell signaling pathways constitute potential therapeutic targets for intervention to slow or mitigate neurodegenerative diseases. Here we review the epidemiological evidence that supports a role for specific pesticides in the etiology of PD and identify molecular profiles amongst these pesticides that may contribute to the disease. Using the Comparative Toxicogenomics Database, these transcripts were compared to those regulated by the PD-associated neurotoxicant MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine). While many transcripts are already established as those related to PD (alpha-synuclein, caspases, leucine rich repeat kinase 2, and parkin2), lesser studied targets have emerged as “pesticide/PD-associated transcripts” [e.g., phosphatidylinositol glycan anchor biosynthesis class C (Pigc), allograft inflammatory factor 1 (Aif1), TIMP metallopeptidase inhibitor 3, and DNA damage inducible transcript 4]. We also compared pesticide-regulated genes to a recent meta-analysis of genome-wide association studies in PD which revealed new genetic mutant alleles; the pesticides under review regulated the expression of many of these genes (e.g., ELOVL fatty acid elongase 7, ATPase H+ transporting V0 subunit a1, and bridging integrator 3). The significance is that these proteins may contribute to pesticide-related increases in PD risk. This review collates information on transcriptome responses to PD-associated pesticides to develop a mechanistic framework for quantifying PD risk with exposures.
Collapse
Affiliation(s)
- Fangjie Cao
- Department of Physiological Sciences, Center for Environmental and Human Toxicology, University of Florida Genetics Institute, College of Veterinary Medicine, University of Florida Interdisciplinary Program in Biomedical Sciences Neuroscience, University of Florida, Gainesville, FL, United States
| | - Christopher L Souders Ii
- Department of Physiological Sciences, Center for Environmental and Human Toxicology, University of Florida Genetics Institute, College of Veterinary Medicine, University of Florida Interdisciplinary Program in Biomedical Sciences Neuroscience, University of Florida, Gainesville, FL, United States
| | - Veronica Perez-Rodriguez
- Department of Physiological Sciences, Center for Environmental and Human Toxicology, University of Florida Genetics Institute, College of Veterinary Medicine, University of Florida Interdisciplinary Program in Biomedical Sciences Neuroscience, University of Florida, Gainesville, FL, United States
| | - Christopher J Martyniuk
- Department of Physiological Sciences, Center for Environmental and Human Toxicology, University of Florida Genetics Institute, College of Veterinary Medicine, University of Florida Interdisciplinary Program in Biomedical Sciences Neuroscience, University of Florida, Gainesville, FL, United States
| |
Collapse
|
14
|
Tangamornsuksan W, Lohitnavy O, Sruamsiri R, Chaiyakunapruk N, Norman Scholfield C, Reisfeld B, Lohitnavy M. Paraquat exposure and Parkinson's disease: A systematic review and meta-analysis. ARCHIVES OF ENVIRONMENTAL & OCCUPATIONAL HEALTH 2018; 74:225-238. [PMID: 30474499 DOI: 10.1080/19338244.2018.1492894] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 06/19/2018] [Indexed: 06/09/2023]
Abstract
To reconcile and unify available results regarding paraquat exposure and Parkinson's disease (PD), we conducted a systematic review and meta-analysis to provide a quantitative estimate of the risk of PD associated with paraquat exposure. Six scientific databases including PubMed, Cochrane libraries, EMBASE, Scopus, ISI Web of Knowledge, and TOXLINE were systematically searched. The overall odds ratios (ORs) with corresponding 95% CIs were calculated using a random-effects model. Of 7,309 articles identified, 13 case control studies with 3,231 patients and 4,901 controls were included into our analysis. Whereas, one prospective cohort studies was included into our systematic review. A subsequent meta-analysis showed an association between PD and paraquat exposure (odds ratio = 1.64 (95% CI: 1.27-2.13; I2 = 24.8%). There is a statistically significant association between paraquat exposure and PD. Thus, future studies regarding paraquat and Parkinson's disease are warranted.
Collapse
Affiliation(s)
- Wimonchat Tangamornsuksan
- Center of Excellence for Environmental Health & Toxicology, Faculty of Pharmaceutical Sciences, Naresuan University , Phitsanulok , Thailand
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University , Phitsanulok , Thailand
| | - Ornrat Lohitnavy
- Center of Excellence for Environmental Health & Toxicology, Faculty of Pharmaceutical Sciences, Naresuan University , Phitsanulok , Thailand
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University , Phitsanulok , Thailand
- Pharmacokinetic Research Unit, Faculty of Pharmaceutical Sciences, Naresuan University , Phitsanulok , Thailand
| | - Rosarin Sruamsiri
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University , Phitsanulok , Thailand
- Center of Pharmaceutical Outcomes Research, Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University , Phitsanulok , Thailand
| | - Nathorn Chaiyakunapruk
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University , Phitsanulok , Thailand
- Center of Pharmaceutical Outcomes Research, Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University , Phitsanulok , Thailand
- School of Pharmacy, Monash University Malaysia , Malaysia , Selangor
- School of Pharmacy, University of Wisconsin-Madison , Madison , Wisconsin , USA
- School of Population Health, University of Queensland , Brisbane , Australia
| | - C Norman Scholfield
- Center of Excellence for Environmental Health & Toxicology, Faculty of Pharmaceutical Sciences, Naresuan University , Phitsanulok , Thailand
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University , Phitsanulok , Thailand
| | - Brad Reisfeld
- Center of Excellence for Environmental Health & Toxicology, Faculty of Pharmaceutical Sciences, Naresuan University , Phitsanulok , Thailand
- Department of Chemical and Biological Engineering, Colorado State University , Fort Collins , Colorado , USA
| | - Manupat Lohitnavy
- Center of Excellence for Environmental Health & Toxicology, Faculty of Pharmaceutical Sciences, Naresuan University , Phitsanulok , Thailand
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University , Phitsanulok , Thailand
- Pharmacokinetic Research Unit, Faculty of Pharmaceutical Sciences, Naresuan University , Phitsanulok , Thailand
| |
Collapse
|
15
|
Dos Santos AB, Kohlmeier KA, Rocha ME, Barreto GE, Barreto JA, de Souza ACA, Bezerra MA. Hair in Parkinson's disease patients exhibits differences in Calcium, Iron and Zinc concentrations measured by flame atomic absorption spectrometry - FAAS. J Trace Elem Med Biol 2018; 47:134-139. [PMID: 29544800 DOI: 10.1016/j.jtemb.2018.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/29/2018] [Accepted: 02/03/2018] [Indexed: 10/18/2022]
Abstract
Imbalances in metals have emerged as playing a role in the pathophysiology of Parkinson's Disease (PD). Monitoring of metal levels could serve as a biomarker of presence, or future development, of this disease. To this end, we evaluated the ability of flame atomic absorption spectrometry (FAAS) to assess the concentrations of Ca, Fe and Zn in hair of PD patients and to investigate if there was an association with age and disease duration. Hair samples were collected from 26 clinically-diagnosed PD patients, and 33 healthy individuals. Concentrations of Ca and Fe were lower in PD patients when compared to control, whereas, a higher concentration of Zn was detected in PD patients. Levels of Ca and Fe did not vary with age nor with the duration of PD. While Zn did not present variation with duration of the disease, there was a correlation with age as PD patients older than 65 years exhibited a higher concentration of Zn than controls. We conclude that FAAS is useful for detecting differences in Fe, Ca and Zn in hair samples of patients with PD. Hair samples required for this method are easy to collect, and the technique relies on a simple method of digestion of the organic matrix. The ease of use of FAAS should allow for more frequent monitoring of metallic levels in patients in a variety of small clinical situations, thereby offering the hope of allowing systematic tracking of metal levels as the disease progresses, or prior to the defining motor symptoms.
Collapse
Affiliation(s)
- Altair B Dos Santos
- Departamento de Ciências e Tecnologias, Universidade Estadual do Sudoeste da Bahia, Brazil; Department of Drug Design and Pharmacology, University of Copenhagen, Denmark
| | - Kristi A Kohlmeier
- Department of Drug Design and Pharmacology, University of Copenhagen, Denmark
| | - Marcelo E Rocha
- Departamento de Ciências e Tecnologias, Universidade Estadual do Sudoeste da Bahia, Brazil
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia; Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Jeferson A Barreto
- Departamento de Ciências e Tecnologias, Universidade Estadual do Sudoeste da Bahia, Brazil
| | | | - Marcos A Bezerra
- Departamento de Ciências e Tecnologias, Universidade Estadual do Sudoeste da Bahia, Brazil.
| |
Collapse
|
16
|
Narayan S, Liew Z, Bronstein JM, Ritz B. Occupational pesticide use and Parkinson's disease in the Parkinson Environment Gene (PEG) study. ENVIRONMENT INTERNATIONAL 2017; 107:266-273. [PMID: 28779877 PMCID: PMC5629094 DOI: 10.1016/j.envint.2017.04.010] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 04/09/2017] [Accepted: 04/10/2017] [Indexed: 06/02/2023]
Abstract
OBJECTIVE To study the influence of occupational pesticide use on Parkinson's disease (PD) in a population with information on various occupational, residential, and household sources of pesticide exposure. METHODS In a population-based case control study in Central California, we used structured interviews to collect occupational history details including pesticide use in jobs, duration of use, product names, and personal protective equipment use from 360 PD cases and 827 controls. We linked reported products to California's pesticide product label database and identified pesticide active ingredients and occupational use by chemical class including fungicides, insecticides, and herbicides. Employing unconditional logistic regression, we estimated odds ratios and 95% confidence intervals for PD and occupational pesticide use. RESULTS Ever occupational use of carbamates increased risk of PD by 455%, while organophosphorus (OP) and organochlorine (OC) pesticide use doubled risk. PD risk increased 110-211% with ever occupational use of fungicides, herbicides, and insecticides. Using any pesticide occupationally for >10years doubled the risk of PD compared with no occupational pesticide use. Surprisingly, we estimated higher risks among those reporting use of personal protective equipment (PPE). CONCLUSIONS Our findings provide additional evidence that occupational pesticide exposures increase PD risk. This was the case even after controlling for other sources of pesticide exposure. Specifically, risk increased with occupational use of carbamates, OPs, and OCs, as well as of fungicides, herbicides, or insecticides. Interestingly, some types of PPE use may not provide adequate protection during pesticide applications.
Collapse
Affiliation(s)
- Shilpa Narayan
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles (UCLA), 650 Charles E. Young Drive, Los Angeles, CA 90095-1772, USA.
| | - Zeyan Liew
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles (UCLA), 650 Charles E. Young Drive, Los Angeles, CA 90095-1772, USA.
| | - Jeff M Bronstein
- Department of Neurology, School of Medicine, UCLA, 710 Westwood Plaza, Los Angeles, CA 90095-1769, USA.
| | - Beate Ritz
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles (UCLA), 650 Charles E. Young Drive, Los Angeles, CA 90095-1772, USA; Department of Neurology, School of Medicine, UCLA, 710 Westwood Plaza, Los Angeles, CA 90095-1769, USA.
| |
Collapse
|
17
|
Ahmed H, Abushouk AI, Gabr M, Negida A, Abdel-Daim MM. Parkinson's disease and pesticides: A meta-analysis of disease connection and genetic alterations. Biomed Pharmacother 2017; 90:638-649. [PMID: 28412655 DOI: 10.1016/j.biopha.2017.03.100] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/06/2017] [Indexed: 12/11/2022] Open
Abstract
Parkinson's disease (PD) is a globally prevalent, multifactorial disorder that occurs due to interactions between genetic and environmental factors. Observational studies have shown a link between exposure to pesticides and the risk of PD. We performed this study to systemically review published case-control studies and estimate quantitatively the association between pesticide exposure and PD. We searched Medline (through PubMed) for eligible case-control studies. The association between pesticide exposure and PD risk or occurrence of certain genetic alterations, related to the pathogenesis of PD was presented as odds ratios (OR) and pooled under the random effects model, using the statistical add-in (MetaXL, version 5.0). The pooled result showed that exposure to pesticides is linked to PD (OR 1.46, 95% CI [1.21, 1.77]), but there was a significant heterogeneity among included studies. Exposure to pesticides increased the risk of alterations in different PD pathogenesis-related genes, such as GST (OR 1.97, 95% CI [1.41, 2.76]), PON-1 (OR 1.32, 95% CI [1.09, 1.6]), MDR1 (OR 2.06, 95% CI [1.58, 2.68]), and SNCA genes (OR 1.28, 95% CI [1.02, 1.37]). There was no statistically significant association between exposure to pesticides and alteration of CYP2D6 (OR 1.19, 95% CI [0.91, 1.54]), SLC6A3 (OR 0.74, 95% CI [0.55, 1]), MnSOD (OR 1.45, 95% CI [0.97, 2.16]), NQO1 (OR 1.35, 95% CI [0.91, 2.01]), and PON-2 genes (OR 0.88, 95% CI [0.53, 1.45]). In conclusion, this meta-analysis provides evidence that pesticide exposure is significantly associated with the risk of PD and alterations in genes involved in PD pathogenesis. However, the underlying mechanism of this association and the effect of the duration of exposure or the type of pesticides should be addressed by future research.
Collapse
Affiliation(s)
- Hussien Ahmed
- Medical Research Group of Egypt, Cairo, Egypt; Faculty of Medicine, Zagazig University, Zagazig, El-Sharkia, Egypt
| | - Abdelrahman Ibrahim Abushouk
- Medical Research Group of Egypt, Cairo, Egypt; Faculty of Medicine, Ain Shams University, Cairo, Egypt; NovaMed Medical Research Association, Cairo, Egypt
| | - Mohamed Gabr
- Medical Research Group of Egypt, Cairo, Egypt; Faculty of Medicine, Zagazig University, Zagazig, El-Sharkia, Egypt
| | - Ahmed Negida
- Medical Research Group of Egypt, Cairo, Egypt; Faculty of Medicine, Zagazig University, Zagazig, El-Sharkia, Egypt
| | - Mohamed M Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt; Pharmacology Department, Dr. D.Y. Patil Medical College, Pune, Maharashtra, India.
| |
Collapse
|
18
|
Goldman SM, Musgrove RE, Jewell SA, Di Monte DA. Pesticides and Parkinson's Disease: Current Experimental and Epidemiological Evidence. ADVANCES IN NEUROTOXICOLOGY 2017. [DOI: 10.1016/bs.ant.2017.07.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
19
|
Nandipati S, Litvan I. Environmental Exposures and Parkinson's Disease. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13090881. [PMID: 27598189 PMCID: PMC5036714 DOI: 10.3390/ijerph13090881] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 08/29/2016] [Accepted: 08/30/2016] [Indexed: 12/21/2022]
Abstract
Parkinson’s disease (PD) affects millions around the world. The Braak hypothesis proposes that in PD a pathologic agent may penetrate the nervous system via the olfactory bulb, gut, or both and spreads throughout the nervous system. The agent is unknown, but several environmental exposures have been associated with PD. Here, we summarize and examine the evidence for such environmental exposures. We completed a comprehensive review of human epidemiologic studies of pesticides, selected industrial compounds, and metals and their association with PD in PubMed and Google Scholar until April 2016. Most studies show that rotenone and paraquat are linked to increased PD risk and PD-like neuropathology. Organochlorines have also been linked to PD in human and laboratory studies. Organophosphates and pyrethroids have limited but suggestive human and animal data linked to PD. Iron has been found to be elevated in PD brain tissue but the pathophysiological link is unclear. PD due to manganese has not been demonstrated, though a parkinsonian syndrome associated with manganese is well-documented. Overall, the evidence linking paraquat, rotenone, and organochlorines with PD appears strong; however, organophosphates, pyrethroids, and polychlorinated biphenyls require further study. The studies related to metals do not support an association with PD.
Collapse
Affiliation(s)
- Sirisha Nandipati
- Department of Neurosciences Movement Disorders Center, University of California, San Diego, CA 92093, USA.
| | - Irene Litvan
- Department of Neurosciences Movement Disorders Center, University of California, San Diego, CA 92093, USA.
| |
Collapse
|
20
|
Association between Parkinson's Disease and Cigarette Smoking, Rural Living, Well-Water Consumption, Farming and Pesticide Use: Systematic Review and Meta-Analysis. PLoS One 2016; 11:e0151841. [PMID: 27055126 PMCID: PMC4824443 DOI: 10.1371/journal.pone.0151841] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 03/05/2016] [Indexed: 12/19/2022] Open
Abstract
Objective Bradford Hill’s viewpoints were used to conduct a weight-of-the-evidence assessment of the association between Parkinson’s disease (PD) and rural living, farming and pesticide use. The results were compared with an assessment based upon meta-analysis. For comparison, we also evaluated the association between PD and cigarette smoking as a “positive control” because a strong inverse association has been described consistently in the literature. Methods PubMed was searched systematically to identify all published epidemiological studies that evaluated associations between Parkinson’s disease (PD) and cigarette smoking, rural living, well-water consumption, farming and the use of pesticides, herbicides, insecticides, fungicides or paraquat. Studies were categorized into two study quality groups (Tier 1 or Tier 2); data were abstracted and a forest plot of relative risks (RRs) was developed for each risk factor. In addition, when available, RRs were tabulated for more highly exposed individuals compared with the unexposed. Summary RRs for each risk factor were calculated by meta-analysis of Tier 1, Tier 2 and all studies combined, with sensitivity analyses stratified by other study characteristics. Indices of between-study heterogeneity and evidence of reporting bias were assessed. Bradford Hill’s viewpoints were used to determine if a causal relationship between PD and each risk factor was supported by the weight of the evidence. Findings There was a consistent inverse (negative) association between current cigarette smoking and PD risk. In contrast, associations between PD and rural living, well-water consumption, farming and the use of pesticides, herbicides, insecticides, fungicides or paraquat were less consistent when assessed quantitatively or qualitatively. Conclusion The weight of the evidence and meta-analysis support the conclusion that there is a causal relationship between PD risk and cigarette smoking, or some unknown factor correlated with cigarette smoking. There may be risk factors associated with rural living, farming, pesticide use or well-water consumption that are causally related to PD, but the studies to date have not identified such factors. To overcome the limitations of research in this area, future studies will have to better characterize the onset of PD and its relationship to rural living, farming and exposure to pesticides.
Collapse
|
21
|
van der Mark M, Vermeulen R, Nijssen PCG, Mulleners WM, Sas AMG, van Laar T, Huss A, Kromhout H. Occupational exposure to solvents, metals and welding fumes and risk of Parkinson's disease. Parkinsonism Relat Disord 2015; 21:635-9. [PMID: 25903042 DOI: 10.1016/j.parkreldis.2015.03.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 03/26/2015] [Accepted: 03/29/2015] [Indexed: 01/08/2023]
Abstract
OBJECTIVES The aim of this study was to investigate the potential association between occupational exposure to solvents, metals and/or welding fumes and risk of developing Parkinson's disease (PD). METHODS Data of a hospital based case-control study including 444 PD patients and 876 age and sex matched controls was used. Occupational histories and lifestyle information of cases and controls were collected in a structured telephone interview. Exposures to aromatic solvents, chlorinated solvents and metals were estimated by linking the ALOHA+ job-exposure matrix to the occupational histories. Exposure to welding fumes was estimated using self-reported information on welding activities. RESULTS No statistically significant associations with any of the studied metal and solvent exposures were found. However, for self-reported welding activities we observed non-statistically significant reduced risk estimates (third tertile cumulative exposure: OR = 0.51 (95% CI: 0.21-1.24)). CONCLUSIONS The results of our study did not provide support for an increased chance on developing PD after occupational exposure to aromatic solvents, chlorinated solvents or exposure to metals. The results showed reduced risk estimates for welding, which is in line with previous research, but no clear explanation for these findings is available.
Collapse
Affiliation(s)
- Marianne van der Mark
- Division of Environmental Epidemiology, Institute for Risk Assessment Sciences, Utrecht University, P.O. Box 80178, 3508 TD Utrecht, The Netherlands.
| | - Roel Vermeulen
- Division of Environmental Epidemiology, Institute for Risk Assessment Sciences, Utrecht University, P.O. Box 80178, 3508 TD Utrecht, The Netherlands.
| | - Peter C G Nijssen
- St Elisabeth Hospital, P.O. Box 90151, 5000 LC Tilburg, The Netherlands; TweeSteden Hospital, P.O. Box 90107, 5000 LA Tilburg, The Netherlands.
| | - Wim M Mulleners
- Canisius-Wilhelmina Hospital, P.O. Box 9015, 6500 GS Nijmegen, The Netherlands.
| | - Antonetta M G Sas
- Vlietland Hospital, P.O. Box 215, 3100 AE Schiedam, The Netherlands.
| | - Teus van Laar
- University Medical Center Groningen, P.O. Box 30001, 9700 RB Groningen, The Netherlands.
| | - Anke Huss
- Division of Environmental Epidemiology, Institute for Risk Assessment Sciences, Utrecht University, P.O. Box 80178, 3508 TD Utrecht, The Netherlands.
| | - Hans Kromhout
- Division of Environmental Epidemiology, Institute for Risk Assessment Sciences, Utrecht University, P.O. Box 80178, 3508 TD Utrecht, The Netherlands.
| |
Collapse
|
22
|
Furlong M, Tanner CM, Goldman SM, Bhudhikanok GS, Blair A, Chade A, Comyns K, Hoppin JA, Kasten M, Korell M, Langston JW, Marras C, Meng C, Richards M, Ross GW, Umbach DM, Sandler DP, Kamel F. Protective glove use and hygiene habits modify the associations of specific pesticides with Parkinson's disease. ENVIRONMENT INTERNATIONAL 2015; 75:144-50. [PMID: 25461423 PMCID: PMC4272866 DOI: 10.1016/j.envint.2014.11.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 10/12/2014] [Accepted: 11/06/2014] [Indexed: 05/25/2023]
Abstract
Pesticides have been associated with Parkinson's disease (PD), and protective gloves and workplace hygiene can reduce pesticide exposure. We assessed whether use of gloves and workplace hygiene modified associations between pesticides and PD. The Farming and Movement Evaluation (FAME) study is a nested case-control study within the Agricultural Health Study. Use of protective gloves, other PPE, and hygiene practices were determined by questionnaire (69 cases and 237 controls were included). We considered interactions of gloves and hygiene with ever-use of pesticides for all pesticides with ≥5 exposed and unexposed cases and controls in each glove-use stratum (paraquat, permethrin, rotenone, and trifluralin). 61% of respondents consistently used protective gloves and 87% consistently used ≥2 hygiene practices. Protective glove use modified the associations of paraquat and permethrin with PD: neither pesticide was associated with PD among protective glove users, while both pesticides were associated with PD among non-users (paraquat OR 3.9 [95% CI 1.3, 11.7], interaction p=0.15; permethrin OR 4.3 [95% CI 1.2, 15.6] interaction p=0.05). Rotenone was associated with PD regardless of glove use. Trifluralin was associated with PD among participants who used <2 hygiene practices (OR 5.5 [95% CI 1.1, 27.1]) but was not associated with PD among participants who used 2 or more practices (interaction p=0.02). Although sample size was limited in the FAME study, protective glove use and hygiene practices appeared to be important modifiers of the association between pesticides and PD and may reduce risk of PD associated with certain pesticides.
Collapse
Affiliation(s)
- Melissa Furlong
- University of North Carolina at Chapel Hill, Gillings School of Global Public Health, Department of Epidemiology, Chapel Hill, NC, United States.
| | - Caroline M Tanner
- San Francisco Veteran's Affairs Medical Center, Parkinson's Disease Research, Education and Clinical Center, San Francisco, CA, United States; The University of California at San Francisco School of Medicine, Department of Neurology, United States
| | - Samuel M Goldman
- The University of California at San Francisco School of Medicine, Department of Neurology, United States
| | | | - Aaron Blair
- National Cancer Institute, Occupational and Environmental Epidemiology Branch, United States
| | - Anabel Chade
- Favaloro University, Institute of Neuroscience, Buenos Aires, Argentina
| | - Kathleen Comyns
- The University of California at San Francisco School of Medicine, Department of Neurology, United States
| | - Jane A Hoppin
- North Carolina State University, Department of Biological Sciences, Raleigh, NC, United States
| | - Meike Kasten
- University of Lubeck, Department of Psychiatry, Lubeck, Germany
| | - Monica Korell
- The University of California at San Francisco School of Medicine, Department of Neurology, United States
| | - J William Langston
- The Parkinson's Institute and Clinical Center, Sunnyvale, CA, United States
| | | | - Cheryl Meng
- San Francisco Veteran's Affairs Medical Center, Parkinson's Disease Research, Education and Clinical Center, San Francisco, CA, United States; The University of California at San Francisco School of Medicine, Department of Neurology, United States
| | | | - G Webster Ross
- VA Pacific Islands Health Care System, Honolulu, HI, United States
| | - David M Umbach
- National Institute of Environmental Health Sciences, Biostatistics Branch, Research Triangle Park, NC, United States
| | - Dale P Sandler
- National Institute of Environmental Health Sciences, Epidemiology Branch, Research Triangle Park, NC, United States
| | - Freya Kamel
- National Institute of Environmental Health Sciences, Epidemiology Branch, Research Triangle Park, NC, United States
| |
Collapse
|
23
|
Palacios N, Fitzgerald K, Roberts AL, Hart JE, Weisskopf MG, Schwarzschild MA, Ascherio A, Laden F. A prospective analysis of airborne metal exposures and risk of Parkinson disease in the nurses' health study cohort. ENVIRONMENTAL HEALTH PERSPECTIVES 2014; 122:933-8. [PMID: 24905870 PMCID: PMC4154211 DOI: 10.1289/ehp.1307218] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 06/03/2014] [Indexed: 05/04/2023]
Abstract
BACKGROUND Exposure to metals has been implicated in the pathogenesis of Parkinson disease (PD). OBJECTIVES We sought to examine in a large prospective study of female nurses whether exposure to airborne metals was associated with risk of PD. METHODS We linked the U.S. Environmental Protection Agency (EPA)'s Air Toxics tract-level data with the Nurses' Health Study, a prospective cohort of female nurses. Over the course of 18 years of follow-up from 1990 through 2008, we identified 425 incident cases of PD. We examined the association of risk of PD with the following metals that were part of the first U.S. EPA collections in 1990, 1996, and 1999: arsenic, antimony, cadmium, chromium, lead, manganese, mercury, and nickel. To estimate hazard ratios (HRs) and 95% CIs, we used the Cox proportional hazards model, adjusting for age, smoking, and population density. RESULTS In adjusted models, the HR for the highest compared with the lowest quartile of each metal ranged from 0.78 (95% CI: 0.59, 1.04) for chromium to 1.33 (95% CI: 0.98, 1.79) for mercury. CONCLUSIONS Overall, we found limited evidence for the association between adulthood ambient exposure to metals and risk of PD. The results for mercury need to be confirmed in future studies.
Collapse
Affiliation(s)
- Natalia Palacios
- Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Braun CMJ, Roberge C. Gender-related protection from or vulnerability to severe CNS diseases: gonado-structural and/or gonado-activational? A meta-analysis of relevant epidemiological studies. Int J Dev Neurosci 2014; 38:36-51. [PMID: 25109841 DOI: 10.1016/j.ijdevneu.2014.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 07/29/2014] [Accepted: 07/30/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND A vast scientific literature has dealt with gender-specific risk for brain disorder. That field is evolving toward a consensus to the effect that the estrogen hormone family is outstandingly and uniquely neuroprotective. However, the epidemiology relevant to this general outlook remains piecemeal. METHOD The present investigation strategically formats the relevant epidemiological findings around the world in order to quantitatively meta-analyze gender ratio of risk for a variety of relevant severe central nervous system (CNS) diseases at all three gonadal stages of the life cycle, pre pubertal, post adolescent/pre menopausal, and post menopausal. RESULTS The data quantitatively establish that (1) no single epidemiological study should be cited as evidence of gender-specific neuroprotection against the most common severe CNS diseases because the gender-specific risk ratios are contradictory from one study to the other; (2) risk for severe CNS disease is indeed significantly gender-specific, but either gender can be protected: it depends on the disease, not at all on the age bracket. CONCLUSION Our assay of gender-specific risk for severe brain disease around the world has not been able to support the idea according to which any one gender-prevalent gonadal steroid hormone dominates as a neuroprotective agent at natural concentrations.
Collapse
Affiliation(s)
- Claude M J Braun
- Department of Psychology, Université du Québec à Montréal, Canada.
| | - Carl Roberge
- Department of Psychology, Université du Québec à Montréal, Canada
| |
Collapse
|
25
|
Sunkaria A, Sharma DR, Wani WY, Gill KD. 4-Hydroxy TEMPO attenuates dichlorvos induced microglial activation and apoptosis. ACS Chem Neurosci 2014; 5:115-27. [PMID: 24369695 DOI: 10.1021/cn400206w] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Microglial cells have been implicated in various neurodegenerative diseases. Previous studies from our lab have shown that dichlorvos (an organophosphate) could induce Parkinson's like features in rats. Recently, we have shown that dichlorvos can induce microglial activation, and if not checked in time could ultimately induce neuronal apoptosis. However, this activation does not always pose a threat to the neurons. Activated microglia also secrete various neuronal growth factors, suggesting that they have beneficial roles in CNS repair. Therefore, it is essential to control their detrimental functions selectively. Here, we tried to find out how microglial cells behave when exposed to dichlorvos in either the presence or absence of potent nitric oxide scavenger and superoxide dismutase mimetic, 4-hydroxy TEMPO (4-HT). Wistar rat pups (1 day) were used to isolate and culture primary microglial cells. We found 4-HT pretreatment successfully attenuated the dichlorvos mediated microglial activation. Moreover, 4-HT pretreatment decreased the up-regulated levels of p53 and its downstream effector, p21. The expression of various cell cycle regulators such as Chk2, CDC25a, and cyclin A remained close to their basal levels when 4-HT pretreatment was given. DNA fragmentation analysis showed significant reduction in the DNA damage of 4-HT pretreated microglia as compared to dichlorvos treated cells. In addition to this, we found 4-HT pretreatment prevented the microglial cells from undergoing apoptotic cell death even after 48 h of dichlorvos exposure. Taken together, our results showed 4-HT pretreatment could successfully ameliorate the dichlorvos induced microglial cell damage.
Collapse
Affiliation(s)
- Aditya Sunkaria
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Deep Raj Sharma
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Willayat Yousuf Wani
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Kiran Dip Gill
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| |
Collapse
|
26
|
Abstract
Parkinson's disease (PD) is an idiopathic disease and its pathological feature is a loss of pigmented neurons in the substantia nigra. Some commonly used pesticides possess neurotoxicity, and exposure to such compounds may trigger mechanisms similar to those in the development of idiopathic PD. We conducted a systematic review of epidemiological studies, aiming at a critical evaluation of the association between the development of PD and pesticide exposure. Reported effect sizes (ES) in the relevant studies were pooled into the meta-analysis to derive summary ES. The summary ES suggested a significantly positive association between PD and overall pesticide use (non-occupational and/or occupational pesticide use) [1.42; 95% confidence interval (CI) 1.32 to 1.52, the fixed-effects model], as well as between PD and occupational pesticide exposure (1.49 with a 95% CI of 1.34-1.66). Both occupational herbicide and occupational insecticide exposure showed a significant association with PD. The results of the meta-analysis reported in this study suggest the existence of a statistically positive association between PD and pesticide exposure. The majority of the studies that were pooled in the meta-analysis were case-control design with very few cohort studies and most with poor exposure characterization thus, any further case-control studies using similar methodologies are unlikely to have a significant impact or understanding on the currently-reported association between pesticide exposure and the development of idiopathic PD. Therefore, we believe that if further epidemiological studies are going to be conducted in the area, they should be prospective cohort studies that will include accurate exposure assessment.
Collapse
Affiliation(s)
- Minako Takamiya Allen
- Institute of Environment and Health, Cranfield Health, Cranfield University, Cranfield, Bedfordshire MK43 0AL, United Kingdom.
| | | |
Collapse
|
27
|
Liew Z, Wang A, Bronstein J, Ritz B. Job exposure matrix (JEM)-derived estimates of lifetime occupational pesticide exposure and the risk of Parkinson's disease. ARCHIVES OF ENVIRONMENTAL & OCCUPATIONAL HEALTH 2014; 69:241-51. [PMID: 24499252 PMCID: PMC3916959 DOI: 10.1080/19338244.2013.778808] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Studies that report an association between Parkinson's disease (PD) and occupational pesticide exposure often use self-reported exposure and none adjust for concomitant ambient pesticide exposure. For a population-based case-control study of PD conducted in California's heavily agricultural region, the authors developed a comprehensive job exposure matrix (JEM) to assess occupational exposure to pesticides. Relying on 357 incident cases and 750 population controls enrolled between 2001 and 2011, the authors estimated more than a 2-fold risk increase for PD among men classified as highly occupationally exposed. The authors also observed an exposure-response pattern and farming tasks with direct and intense pesticide exposures such as spraying and handling of pesticides resulted in greater risks than indirect bystander exposures. Results did not change after adjustment for ambient pesticide exposure. The authors provide further evidence that occupational pesticide exposure increases the risk of PD.
Collapse
Affiliation(s)
- Zeyan Liew
- Department of Epidemiology, Fielding School of Public Health, University of California at Los Angeles, California, USA
| | - Anthony Wang
- Department of Epidemiology, Fielding School of Public Health, University of California at Los Angeles, California, USA
| | - Jeff Bronstein
- Department of Neurology, School of Medicine, University of California at Los Angeles, California, USA
| | - Beate Ritz
- Department of Epidemiology, Fielding School of Public Health, University of California at Los Angeles, California, USA
- Department of Neurology, School of Medicine, University of California at Los Angeles, California, USA
| |
Collapse
|
28
|
Mostafalou S, Abdollahi M. Pesticides and human chronic diseases: evidences, mechanisms, and perspectives. Toxicol Appl Pharmacol 2013; 268:157-77. [PMID: 23402800 DOI: 10.1016/j.taap.2013.01.025] [Citation(s) in RCA: 612] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 01/30/2013] [Accepted: 01/31/2013] [Indexed: 12/12/2022]
Abstract
Along with the wide use of pesticides in the world, the concerns over their health impacts are rapidly growing. There is a huge body of evidence on the relation between exposure to pesticides and elevated rate of chronic diseases such as different types of cancers, diabetes, neurodegenerative disorders like Parkinson, Alzheimer, and amyotrophic lateral sclerosis (ALS), birth defects, and reproductive disorders. There is also circumstantial evidence on the association of exposure to pesticides with some other chronic diseases like respiratory problems, particularly asthma and chronic obstructive pulmonary disease (COPD), cardiovascular disease such as atherosclerosis and coronary artery disease, chronic nephropathies, autoimmune diseases like systemic lupus erythematous and rheumatoid arthritis, chronic fatigue syndrome, and aging. The common feature of chronic disorders is a disturbance in cellular homeostasis, which can be induced via pesticides' primary action like perturbation of ion channels, enzymes, receptors, etc., or can as well be mediated via pathways other than the main mechanism. In this review, we present the highlighted evidence on the association of pesticide's exposure with the incidence of chronic diseases and introduce genetic damages, epigenetic modifications, endocrine disruption, mitochondrial dysfunction, oxidative stress, endoplasmic reticulum stress and unfolded protein response (UPR), impairment of ubiquitin proteasome system, and defective autophagy as the effective mechanisms of action.
Collapse
Affiliation(s)
- Sara Mostafalou
- Department of Toxicology and Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
29
|
Mortimer JA, Borenstein AR, Nelson LM. Associations of welding and manganese exposure with Parkinson disease: review and meta-analysis. Neurology 2012; 79:1174-80. [PMID: 22965675 PMCID: PMC3525308 DOI: 10.1212/wnl.0b013e3182698ced] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To examine associations of welding and manganese exposure with Parkinson disease (PD) using meta-analyses of data from cohort, case-control, and mortality studies. METHODS Epidemiologic studies related to welding or manganese exposure and PD were identified in a PubMed search, article references, published reviews, and abstracts. Inclusion criteria were 1) cohort, case-control, or mortality study with relative risk (RR), odds ratio (OR), or mortality OR (MOR) and 95 confidence intervals (95% CI); 2) RR, OR, and MOR matched or adjusted for age and sex; 3) valid study design and analysis. When participants of a study were a subgroup of those in a larger study, only results of the larger study were included to assure independence of datasets. Pooled RR/OR estimates and 95% CIs were obtained using random effects models; heterogeneity of study effects were evaluated using the Q statistic and I(2) index in fixed effect models. RESULTS Thirteen studies met inclusion criteria for the welding meta-analysis and 3 studies for the manganese exposure meta-analysis. The pooled RR for the association between welding and PD for all study designs was 0.86 (95% CI 0.80-0.92), with absence of between-study heterogeneity (I(2) = 0.0). Effect measures for cohort, case-control, and mortality studies were similar (0.91, 0.82, 0.87). For the association between manganese exposure and PD, the pooled OR was 0.76 (95% CI 0.41-1.42). CONCLUSIONS Welding and manganese exposure are not associated with increased PD risk. Possible explanations for the inverse association between welding and PD include confounding by smoking, healthy worker effect, and hormesis.
Collapse
Affiliation(s)
- James A Mortimer
- Department of Epidemiology and Biostatistics, University of South Florida, Tampa, USA.
| | | | | |
Collapse
|
30
|
Goldman SM, Kamel F, Ross GW, Bhudhikanok GS, Hoppin JA, Korell M, Marras C, Meng C, Umbach DM, Kasten M, Chade AR, Comyns K, Richards MB, Sandler DP, Blair A, Langston JW, Tanner CM. Genetic modification of the association of paraquat and Parkinson's disease. Mov Disord 2012; 27:1652-8. [PMID: 23045187 PMCID: PMC3572192 DOI: 10.1002/mds.25216] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 08/22/2012] [Accepted: 08/30/2012] [Indexed: 01/22/2023] Open
Abstract
Paraquat is one of the most widely used herbicides worldwide. It produces a Parkinson's disease (PD) model in rodents through redox cycling and oxidative stress (OS) and is associated with PD risk in humans. Glutathione transferases provide cellular protection against OS and could potentially modulate paraquat toxicity. We investigated PD risk associated with paraquat use in individuals with homozygous deletions of the genes encoding glutathione S-transferase M1 (GSTM1) or T1 (GSTT1). Eighty-seven PD subjects and 343 matched controls were recruited from the Agricultural Health Study, a study of licensed pesticide applicators and spouses in Iowa and North Carolina. PD was confirmed by in-person examination. Paraquat use and covariates were determined by interview. We genotyped subjects for homozygous deletions of GSTM1 (GSTM1*0) and GSTT1 (GSTT1*0) and tested interaction between paraquat use and genotype using logistic regression. Two hundred and twenty-three (52%) subjects had GSTM1*0, 95 (22%) had GSTT1*0, and 73 (17%; all men) used paraquat. After adjustment for potential confounders, there was no interaction with GSTM1. In contrast, GSTT1 genotype significantly modified the association between paraquat and PD. In men with functional GSTT1, the odds ratio (OR) for association of PD with paraquat use was 1.5 (95% confidence interval [CI]: 0.6-3.6); in men with GSTT1*0, the OR was 11.1 (95% CI: 3.0-44.6; P interaction: 0.027). Although replication is needed, our results suggest that PD risk from paraquat exposure might be particularly high in individuals lacking GSTT1. GSTT1*0 is common and could potentially identify a large subpopulation at high risk of PD from oxidative stressors such as paraquat.
Collapse
|
31
|
Silva BA, Breydo L, Fink AL, Uversky VN. Agrochemicals, α-synuclein, and Parkinson's disease. Mol Neurobiol 2012; 47:598-612. [PMID: 22933040 DOI: 10.1007/s12035-012-8333-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 08/13/2012] [Indexed: 12/21/2022]
Abstract
Epidemiological, population-based case-control, and experimental studies at the molecular, cellular, and organism levels revealed that exposure to various environmental agents, including a number of structurally different agrochemicals, may contribute to the pathogenesis of Parkinson's disease (PD) and several other neurodegenerative disorders. The role of genetic predisposition in PD has also been increasingly acknowledged, driven by the identification of a number of disease-related genes [e.g., α-synuclein, parkin, DJ-1, ubiquitin C-terminal hydrolase isozyme L1 (UCH-L1), and nuclear receptor-related factor 1]. Therefore, the etiology of this multifactorial disease is likely to involve both genetic and environmental factors. Various neurotoxicants, including agrochemicals, have been shown to elevate the levels of α-synuclein expression in neurons and to promote aggregation of this protein in vivo. Many agrochemicals physically interact with α-synuclein and accelerate the fibrillation and aggregation rates of this protein in vitro. This review analyzes some of the aspects linking α-synuclein to PD, provides brief structural and functional descriptions of this important protein, and represents some data connecting exposure to agrochemicals with α-synuclein aggregation and PD pathogenesis.
Collapse
Affiliation(s)
- Blanca A Silva
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | | | | | | |
Collapse
|
32
|
Harris MA, Tsui JK, Marion SA, Shen H, Teschke K. Association of Parkinson's disease with infections and occupational exposure to possible vectors. Mov Disord 2012; 27:1111-7. [PMID: 22753266 DOI: 10.1002/mds.25077] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 04/27/2012] [Accepted: 05/09/2012] [Indexed: 11/09/2022] Open
Abstract
The ultimate causes of idiopathic Parkinson's disease (PD) are not fully known, but environmental and occupational causes are suspected. Postencephalitic parkinsonism has been linked to influenza, and other viral infections have also been suspected to relate to PD. We estimated the relationship between PD and both infections and possible vectors of infection (i.e., animal and human) in a population-based, case-control study in British Columbia, Canada. We recruited 403 cases detected by their use of antiparkinsonian medications and 405 controls from the registrants of the provincial universal health insurance plan. Severe influenza was associated with PD (odds ratio [OR]: 2.01; 95% confidence interval [CI]: 1.16-3.48), although this effect was attenuated when reports were restricted to those occurring 10 or more years before diagnosis. Childhood illnesses were inversely associated with PD, particularly red measles (OR: 0.65; 95% CI: 0.48-0.90). Several animal exposures were associated with PD, with statistically significant effects for cats (OR: 2.06; 95% CI: 1.09-3.92) and cattle (OR: 2.23; 95% CI: 1.22-4.09). Influenza infection may be associated with PD. The inverse relationships with childhood infections may suggest an increased risk with subclinical or asymptomatic childhood infections. Occupational exposure to animals may increase risk through transmission of infections or may indicate exposure to another agent of interest (e.g., bacterial endotoxin).
Collapse
Affiliation(s)
- M Anne Harris
- University of British Columbia, School of Population and Public Health, Vancouver, British Columbia, Canada.
| | | | | | | | | |
Collapse
|
33
|
Systematic review of parkinsonian syndromes in short- and long-term survivors of paraquat poisoning. J Occup Environ Med 2012; 53:1332-6. [PMID: 21988794 DOI: 10.1097/jom.0b013e318233775d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The objective of this study was to assess whether high-dose paraquat exposure was associated with the development of parkinsonism. METHODS We carried out a systematic review of all published cases of paraquat toxicity meeting a case-definition of paraquat poisoning and who either recovered or lived for at least 30 days (primary analysis) or lived for 15 to 30 days (secondary analysis). Cases were included if they contained sufficient information to determine whether they had signs of parkinsonism. RESULTS Our search yielded 818 publications containing 83 cases. The primary analysis yielded 70 cases. None manifested signs of parkinsonism. An additional 13 were in the secondary analysis and none exhibited signs of parkinsonism. CONCLUSION An analysis the world's entire published experience found no connection between high-dose paraquat exposure in humans and the development of parkinsonism.
Collapse
|
34
|
van der Mark M, Brouwer M, Kromhout H, Nijssen P, Huss A, Vermeulen R. Is pesticide use related to Parkinson disease? Some clues to heterogeneity in study results. ENVIRONMENTAL HEALTH PERSPECTIVES 2012; 120:340-7. [PMID: 22389202 PMCID: PMC3295350 DOI: 10.1289/ehp.1103881] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Accepted: 10/21/2011] [Indexed: 05/22/2023]
Abstract
BACKGROUND Previous systematic reviews have indicated that pesticide exposure is possibly associated with Parkinson disease (PD). However, considerable heterogeneity has been observed in study results. OBJECTIVE We aimed at providing an update of the literature published on PD and exposure to pesticides by performing a systematic review and meta-analysis. In addition, we investigated whether methodological differences between studies could explain the heterogeneity in study results. METHODS We identified studies through a systematic literature search. We calculated summary risk ratios (sRRs) for pesticide exposure and subcategories using random effects meta-analyses and investigated sources of heterogeneity by meta-regression and stratified analyses. RESULTS Thirty-nine case-control studies, four cohort studies, and three cross-sectional studies were identified. An sRR of 1.62 [95% confidence interval (CI): 1.40, 1.88] for pesticide exposure (ever vs. never) was found. Summary estimates for subclasses of pesticides indicated a positive association with herbicides and insecticides, but not with fungicides. Heterogeneity in individual study results was not related to study design, source of control population, adjustment of results for potential confounders, or geographical area. However, results were suggestive for heterogeneity related to differences in the exposure assessment. Job title-based exposure assignment resulted in a higher sRR (2.5; 95% CI: 1.5, 4.1) than did assignment based on self-reported exposure (e.g., for self-reported ever/never exposure, sRR = 1.5; 95% CI: 1.3, 1.8). CONCLUSIONS This review affirms the evidence that exposure to herbicides and insecticides increase the risk of PD. Future studies should focus on more objective and improved methods of pesticide exposure assessment.
Collapse
Affiliation(s)
- Marianne van der Mark
- Institute for Risk Assessment Sciences, Division of Environmental Epidemiology, Utrecht University, The Netherlands.
| | | | | | | | | | | |
Collapse
|
35
|
Mandel JS, Adami HO, Cole P. Paraquat and Parkinson's disease: an overview of the epidemiology and a review of two recent studies. Regul Toxicol Pharmacol 2011; 62:385-92. [PMID: 22024235 DOI: 10.1016/j.yrtph.2011.10.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 10/03/2011] [Accepted: 10/04/2011] [Indexed: 11/17/2022]
Abstract
OBJECTIVE This paper reviews and evaluates two recent epidemiologic studies focused on pesticides, and in particular, paraquat as a cause of PD. Both studies are derived primarily from the Agricultural Health Study (AHS). A review and evaluation is also provided on the AHS and several additional studies of paraquat and PD. METHODS The methods used to design and conduct the studies and analyze the data are described and evaluated. RESULTS Studies were inadequately designed and often underpowered with very few exposed individuals. They were not population-based, failed to distinguish incident from prevalent cases, relied on multiple comparisons, and may have reported results selectively. The results across the studies are inconsistent. CONCLUSIONS The inherent difficulties of studying Parkinson's disease in relation to paraquat or other pesticides are well illustrated by these studies. A conclusion regarding these relationships cannot be reached based on the current literature. Further research with higher methodological standards is needed to reach a definitive conclusion.
Collapse
Affiliation(s)
- J S Mandel
- Exponent, Inc., Menlo Park, CA 94025, United States.
| | | | | |
Collapse
|
36
|
Song C, Kanthasamy A, Jin H, Anantharam V, Kanthasamy AG. Paraquat induces epigenetic changes by promoting histone acetylation in cell culture models of dopaminergic degeneration. Neurotoxicology 2011; 32:586-95. [PMID: 21777615 DOI: 10.1016/j.neuro.2011.05.018] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 04/22/2011] [Accepted: 05/23/2011] [Indexed: 11/15/2022]
Abstract
Environmental neurotoxic exposure to agrochemicals has been implicated in the etiopathogenesis of Parkinson's disease (PD). The widely used herbicide paraquat is among the few environmental chemicals potentially linked with PD. Since epigenetic changes are beginning to emerge as key mechanisms in neurodegenerative diseases, herein we examined the effects of paraquat on histone acetylation, a major epigenetic change in chromatin that can regulate gene expression, chromatin remodeling, cell survival and cell death. Exposure of N27 dopaminergic cells to paraquat induced histone H3 acetylation in a time-dependent manner. However, paraquat did not alter acetylation of another core histone H4. Paraquat-induced histone acetylation was associated with decreased total histone deacetylase (HDAC) activity and HDAC4 and 7 protein expression levels. To determine if histone acetylation plays a role in paraquat-induced apoptosis, the novel HAT inhibitor anacardic acid was used. Anacardic acid treatment significantly attenuated paraquat-induced caspase-3 enzyme activity, suppressed proteolytic activation and kinase activity of protein kinase C delta (PKCδ) and also blocked paraquat-induced cytotoxicity. Together, these results demonstrate that the neurotoxic agent paraquat induced acetylation of core histones in cell culture models of PD and that the inhibition of HAT activity by anacardic acid protects against apoptotic cell death, indicating that histone acetylation may represent key epigenetic changes in dopaminergic neuronal cells during neurotoxic insults.
Collapse
Affiliation(s)
- C Song
- Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, IA 50011, USA
| | | | | | | | | |
Collapse
|
37
|
Tanner CM, Kamel F, Ross GW, Hoppin JA, Goldman SM, Korell M, Marras C, Bhudhikanok GS, Kasten M, Chade AR, Comyns K, Richards MB, Meng C, Priestley B, Fernandez HH, Cambi F, Umbach DM, Blair A, Sandler DP, Langston JW. Rotenone, paraquat, and Parkinson's disease. ENVIRONMENTAL HEALTH PERSPECTIVES 2011; 119:866-72. [PMID: 21269927 PMCID: PMC3114824 DOI: 10.1289/ehp.1002839] [Citation(s) in RCA: 950] [Impact Index Per Article: 67.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2010] [Accepted: 01/26/2011] [Indexed: 05/18/2023]
Abstract
BACKGROUND Mitochondrial dysfunction and oxidative stress are pathophysiologic mechanisms implicated in experimental models and genetic forms of Parkinson's disease (PD). Certain pesticides may affect these mechanisms, but no pesticide has been definitively associated with PD in humans. OBJECTIVES Our goal was to determine whether pesticides that cause mitochondrial dysfunction or oxidative stress are associated with PD or clinical features of parkinsonism in humans. METHODS We assessed lifetime use of pesticides selected by mechanism in a case-control study nested in the Agricultural Health Study (AHS). PD was diagnosed by movement disorders specialists. Controls were a stratified random sample of all AHS participants frequency-matched to cases by age, sex, and state at approximately three controls:one case. RESULTS In 110 PD cases and 358 controls, PD was associated with use of a group of pesticides that inhibit mitochondrial complex I [odds ratio (OR)=1.7; 95% confidence interval (CI), 1.0-2.8] including rotenone (OR=2.5; 95% CI, 1.3-4.7) and with use of a group of pesticides that cause oxidative stress (OR = 2.0; 95% CI, 1.2-3.6), including paraquat (OR=2.5; 95% CI, 1.4-4.7). CONCLUSIONS PD was positively associated with two groups of pesticides defined by mechanisms implicated experimentally-those that impair mitochondrial function and those that increase oxidative stress-supporting a role for these mechanisms in PD pathophysiology.
Collapse
|
38
|
Wirdefeldt K, Adami HO, Cole P, Trichopoulos D, Mandel J. Epidemiology and etiology of Parkinson's disease: a review of the evidence. Eur J Epidemiol 2011; 26 Suppl 1:S1-58. [PMID: 21626386 DOI: 10.1007/s10654-011-9581-6] [Citation(s) in RCA: 753] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 04/05/2011] [Indexed: 12/14/2022]
Abstract
The etiology of Parkinson's disease (PD) is not well understood but likely to involve both genetic and environmental factors. Incidence and prevalence estimates vary to a large extent-at least partly due to methodological differences between studies-but are consistently higher in men than in women. Several genes that cause familial as well as sporadic PD have been identified and familial aggregation studies support a genetic component. Despite a vast literature on lifestyle and environmental possible risk or protection factors, consistent findings are few. There is compelling evidence for protective effects of smoking and coffee, but the biologic mechanisms for these possibly causal relations are poorly understood. Uric acid also seems to be associated with lower PD risk. Evidence that one or several pesticides increase PD risk is suggestive but further research is needed to identify specific compounds that may play a causal role. Evidence is limited on the role of metals, other chemicals and magnetic fields. Important methodological limitations include crude classification of exposure, low frequency and intensity of exposure, inadequate sample size, potential for confounding, retrospective study designs and lack of consistent diagnostic criteria for PD. Studies that assessed possible shared etiological components between PD and other diseases show that REM sleep behavior disorder and mental illness increase PD risk and that PD patients have lower cancer risk, but methodological concerns exist. Future epidemiologic studies of PD should be large, include detailed quantifications of exposure, and collect information on environmental exposures as well as genetic polymorphisms.
Collapse
Affiliation(s)
- Karin Wirdefeldt
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
39
|
Tomenson JA, Campbell C. Mortality from Parkinson's disease and other causes among a workforce manufacturing paraquat: a retrospective cohort study. BMJ Open 2011; 1:e000283. [PMID: 22080539 PMCID: PMC3211049 DOI: 10.1136/bmjopen-2011-000283] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Objective To assess the risk of Parkinson's disease (PD) and update information on mortality from major causes of death among a UK workforce who manufactured paraquat (PQ) between 1961 and 1995. There have been no previous studies of the incidence of PD among PQ production workers, although much epidemiological literature exists concerning the relationship between pesticides and PD, and interest has focused on PQ and its users. Methods The cohort included all employees who had ever worked on any of the four plants at Widnes where PQ was manufactured between 1961 and 1995, and 926 male and 42 female workers were followed through 30 June 2009. Mortalities for males were compared with national and local rates, including rates for PD as a mentioned cause of death. Results Overall, 307 workers had died by 30 June 2009. One male death was due to PD, and no other death certificate mentioned PD. At least 3.3 death certificates of male employees would have been expected to have mentioned PD (standardised mortality ratio=31; 95% CI 1 to 171). Personal monitoring results were indicative that the exposure of a PQ production worker on a daily basis was at least comparable with that of a PQ sprayer or mixer/loader. Reduced mortalities compared with local rates were found for major causes of death. Conclusions The study provided no evidence of an increased risk of PD, or increased mortalities from other causes.
Collapse
|
40
|
BK B, Bal A, Kandimalla RJL, Gill KD. Nigrostriatal neuronal death following chronic dichlorvos exposure: crosstalk between mitochondrial impairments, α synuclein aggregation, oxidative damage and behavioral changes. Mol Brain 2010; 3:35. [PMID: 21073741 PMCID: PMC2996378 DOI: 10.1186/1756-6606-3-35] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 11/13/2010] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND In recent years, several lines of evidence have shown an increase in Parkinson's disease prevalence in rural environments where pesticides are heavily used. Although, the underlying mechanism for neuronal degeneration in sporadic PD remains unknown, mitochondrial dysfunction, oxidative stress and proteasomal dysfunction are proposed as contributing factors. In this study rats were chronically and continuously exposed to the pesticide, dichlorvos to identify the molecular mechanism of nigrostaital neuronal degeneration. RESULT Chronic dichlorvos exposure (2.50 mg/kg b.wt.s.c/daily for 12 weeks) caused nigrostriatal dopaminergic degeneration. The degenerative changes were accompanied by a loss of 60-80% of the nigral dopamine neurons and 60-70% reduction in striatal dopamine and tyrosine hydroxylase levels. Dichlorvos exposed animals also showed α -synuclein and ubiquitin positive inclusions along with swollen, dystrophic neurites and mitochondrial abnormalities like decreased complex I&IV activities, increased mitochondrial size, axonal degeneration and presence of electron dense perinuclear cytoplasmic inclusions in the substantia nigra of rats. These animals also showed evidence of oxidative stress, including increased mitochondrial ROS levels, decreased MnSOD activity and increased lipid peroxidation. Measurable impairments in neurobehavioral indices were also observed. Notable exacerbations in motor impairments, open field and catalepsy were also evident in dichlorvos exposed animals. CONCLUSION All these findings taken together indicate that chronic dichlorvos exposure may cause nigrostaital neurodegenaration and significant behavioral impairments.
Collapse
Affiliation(s)
- Binukumar BK
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Amanjit Bal
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ramesh JL Kandimalla
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Kiran Dip Gill
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| |
Collapse
|
41
|
|
42
|
Rojas JC, Gonzalez-Lima F. Mitochondrial optic neuropathy: In vivo model of neurodegeneration and neuroprotective strategies. Eye Brain 2010; 2:21-37. [PMID: 28539759 PMCID: PMC5436181 DOI: 10.2147/eb.s9363] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
This review summarizes the characteristics of a rodent toxicologic model of optic neuropathy induced by the mitochondrial complex I inhibitor rotenone. This model has been developed to fulfill the demand for a drug-screening tool providing a sound mechanistic context to address the role of mitochondrial dysfunction in the pathogenesis of neurodegenerative disorders. It features biochemical, structural, and functional retinal deficits that resemble those of patients with Leber's hereditary optic neuropathy, a mitochondrial disease characterized by selective degeneration of retinal ganglion cells, and for which an environmental component is believed to play a major triggering role. The available data support the efficiency, sensitivity, and versatility of the model for providing insights into the mechanisms of neurodegeneration, including mitochondrial dysfunction, oxidative stress and excitotoxicity. Screening work with this model has provided proof-of-principle that interventions targeting the electron transport chain, such as USP methylene blue and near-infrared light therapy, are effective at preventing neurodegeneration induced by mitochondrial dysfunction in vivo. Prospective developments of this model include the use of neuronal reporter genes for in vivo non-invasive assessment of retinal degeneration at different time points, and its combination with genetic approaches to elucidate the synergism of environmental and genetic factors in neurodegeneration.
Collapse
Affiliation(s)
- Julio C Rojas
- Departments of Psychology, Pharmacology and Toxicology, University of Texas at Austin, Austin, TX, USA
| | - Francisco Gonzalez-Lima
- Departments of Psychology, Pharmacology and Toxicology, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
43
|
Berry C, La Vecchia C, Nicotera P. Paraquat and Parkinson's disease. Cell Death Differ 2010; 17:1115-25. [DOI: 10.1038/cdd.2009.217] [Citation(s) in RCA: 191] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
44
|
Gatto NM, Cockburn M, Bronstein J, Manthripragada AD, Ritz B. Well-water consumption and Parkinson's disease in rural California. ENVIRONMENTAL HEALTH PERSPECTIVES 2009; 117:1912-8. [PMID: 20049211 PMCID: PMC2799466 DOI: 10.1289/ehp.0900852] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 07/31/2009] [Indexed: 05/22/2023]
Abstract
INTRODUCTION Investigators have hypothesized that consuming pesticide-contaminated well water plays a role in Parkinson's disease (PD), and several previous epidemiologic studies support this hypothesis. OBJECTIVES We investigated whether consuming water from private wells located in areas with documented historical pesticide use was associated with an increased risk of PD. METHODS We employed a geographic information system (GIS)-based model to estimate potential well-water contamination from agricultural pesticides among 368 cases and 341 population controls enrolled in the Parkinson's Environment and Genes Study (PEG). We separately examined 6 pesticides (diazinon, chlorpyrifos, propargite, paraquat, dimethoate, and methomyl) from among 26 chemicals selected for their potential to pollute groundwater or for their interest in PD, and because at least 10% of our population was exposed to them. RESULTS Cases were more likely to have consumed private well water and to have consumed it on average 4.3 years longer than controls (p = 0.02). High levels of possible well-water contamination with methomyl [odds ratio (OR) = 1.67; 95% confidence interval (CI), 1.00-2.78]), chlorpyrifos (OR = 1.87; 95% CI, 1.05-3.31), and propargite (OR = 1.92; 95% CI, 1.15-3.20) resulted in approximately 70-90% increases in relative risk of PD. Adjusting for ambient pesticide exposures only slightly attenuated these increases. Exposure to a higher number of water-soluble pesticides and organophosphate pesticides also increased the relative risk of PD. CONCLUSION Our study, the first to use agricultural pesticide application records, adds evidence that consuming well water presumably contaminated with pesticides may play a role in the etiology of PD.
Collapse
Affiliation(s)
- Nicole M. Gatto
- Department of Epidemiology, University of California–Los Angeles, Los Angeles, California, USA
| | - Myles Cockburn
- Department of Preventive Medicine, University of Southern California, Los Angeles, California, USA
| | | | | | - Beate Ritz
- Department of Epidemiology, University of California–Los Angeles, Los Angeles, California, USA
- Department of Neurology and
- Department of Environmental Health Sciences, University of California–Los Angeles, Los Angeles, California, USA
- Address correspondence to B. Ritz, Department of Epidemiology, UCLA, Schools of Public Health and Medicine, Box 951772, 650 Charles E. Young Dr., Los Angeles, CA 90095-1772 USA. Telephone: (310) 206-7458. Fax: (310) 206-6039. E-mail:
| |
Collapse
|
45
|
Elbaz A, Clavel J, Rathouz PJ, Moisan F, Galanaud JP, Delemotte B, Alpérovitch A, Tzourio C. Professional exposure to pesticides and Parkinson disease. Ann Neurol 2009; 66:494-504. [DOI: 10.1002/ana.21717] [Citation(s) in RCA: 191] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
46
|
Bronstein J, Carvey P, Chen H, Cory-Slechta D, DiMonte D, Duda J, English P, Goldman S, Grate S, Hansen J, Hoppin J, Jewell S, Kamel F, Koroshetz W, Langston JW, Logroscino G, Nelson L, Ravina B, Rocca W, Ross GW, Schettler T, Schwarzschild M, Scott B, Seegal R, Singleton A, Steenland K, Tanner CM, Van Den Eeden S, Weisskopf M. Meeting report: consensus statement-Parkinson's disease and the environment: collaborative on health and the environment and Parkinson's Action Network (CHE PAN) conference 26-28 June 2007. ENVIRONMENTAL HEALTH PERSPECTIVES 2009; 117:117-121. [PMID: 19165397 PMCID: PMC2627854 DOI: 10.1289/ehp.11702] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Accepted: 08/25/2008] [Indexed: 05/26/2023]
Abstract
BACKGROUND Parkinson's disease (PD) is the second most common neurodegenerative disorder. People with PD, their families, scientists, health care providers, and the general public are increasingly interested in identifying environmental contributors to PD risk. METHODS In June 2007, a multidisciplinary group of experts gathered in Sunnyvale, California, USA, to assess what is known about the contribution of environmental factors to PD. RESULTS We describe the conclusions around which they came to consensus with respect to environmental contributors to PD risk. We conclude with a brief summary of research needs. CONCLUSIONS PD is a complex disorder, and multiple different pathogenic pathways and mechanisms can ultimately lead to PD. Within the individual there are many determinants of PD risk, and within populations, the causes of PD are heterogeneous. Although rare recognized genetic mutations are sufficient to cause PD, these account for < 10% of PD in the U.S. population, and incomplete penetrance suggests that environmental factors may be involved. Indeed, interplay among environmental factors and genetic makeup likely influences the risk of developing PD. There is a need for further understanding of how risk factors interact, and studying PD is likely to increase understanding of other neurodegenerative disorders.
Collapse
Affiliation(s)
| | - Paul Carvey
- Rush University Medical Center, Chicago, Illinois, USA
| | - Honglei Chen
- National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Deborah Cory-Slechta
- University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Donato DiMonte
- The Parkinson’s Institute and Clinical Center, Sunnyvale, California, USA
| | - John Duda
- Parkinson’s Disease Research, Education, and Clinical Center, Philadelphia, Pennsylvania, USA
| | - Paul English
- California Department of Health Services, Oakland, California, USA
| | - Samuel Goldman
- The Parkinson’s Institute and Clinical Center, Sunnyvale, California, USA
| | - Stephen Grate
- U.S. Army Medical Research and Material Command, Fort Detrick, Maryland, USA
| | - Johnni Hansen
- Institute of Cancer Epidemiology, Danish Cancer Society, Copenhagen, Denmark
| | - Jane Hoppin
- National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Sarah Jewell
- The Parkinson’s Institute and Clinical Center, Sunnyvale, California, USA
| | - Freya Kamel
- National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Walter Koroshetz
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, USA
| | - James W. Langston
- The Parkinson’s Institute and Clinical Center, Sunnyvale, California, USA
| | | | - Lorene Nelson
- Stanford University School of Medicine, Stanford, California, USA
| | - Bernard Ravina
- University of Rochester School of Medicine, Rochester, New York, USA
| | | | - George W. Ross
- Pacific Health Research Institute, Honolulu, Hawaii, USA
| | - Ted Schettler
- Science and Environmental Health Network, Ames, Iowa, USA
| | | | - Bill Scott
- University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Richard Seegal
- New York State Department of Health, Albany, New York, USA
| | | | | | - Caroline M. Tanner
- The Parkinson’s Institute and Clinical Center, Sunnyvale, California, USA
| | | | - Marc Weisskopf
- Harvard School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
47
|
Dhillon AS, Tarbutton GL, Levin JL, Plotkin GM, Lowry LK, Nalbone JT, Shepherd S. Pesticide/environmental exposures and Parkinson's disease in East Texas. J Agromedicine 2008; 13:37-48. [PMID: 19042691 DOI: 10.1080/10599240801986215] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Epidemiological evidence suggests that pesticides and other environmental exposures may have a role in the etiology of idiopathic Parkinson's disease (PD). However, there is little human data on risk associated with specific pesticide products, including organic pesticides such as rotenone with PD. Using a case-control design, this study examined self-reports of exposure to pesticide products, organic pesticides such as rotenone, and other occupational and environmental exposures on the risk of PD in an East Texas population. The findings demonstrated significantly increased risk of PD with use of organic pesticides such as rotenone in the past year in gardening (OR = 10.9; 95% CI = 2.5-48.0) and any rotenone use in the past (OR = 10.0; 95% CI = 2.9-34.3). Use of chlorpyrifos products (OR = 2.0; 95% CI = 1.02-3.8), past work in an electronics plant (OR = 5.1; 95% CI = 1.1-23.6), and exposure to fluorides (OR = 3.3; 95% CI = 1.03-10.3) were also associated with significantly increased risk. A trend of increased PD risk was observed with work history in paper/lumber mill (OR = 6.35; 95% CI = 0.7-51.8), exposure to cadmium (OR = 5.3; 95% CI = 0.6-44.9), exposure to paraquat (OR = 3.5; 95% CI = 0.4-31.6), and insecticide applications to farm animals/animal areas and agricultural processes (OR = 4.4; 95% CI = 0.5-38.1). Cigarette smoking, alcohol use, and fish intake were associated with reduced risk. In summary, this study demonstrates an increased risk of PD associated with organic pesticides such as rotenone and certain other pesticides and environmental exposures in this population.
Collapse
Affiliation(s)
- Amanpreet S Dhillon
- Department of Occupational Health Sciences, University of Texas Health Science Center at Tyler, Tyler, Texas 75708, USA.
| | | | | | | | | | | | | |
Collapse
|
48
|
Sai Y, Wu Q, Le W, Ye F, Li Y, Dong Z. Rotenone-induced PC12 cell toxicity is caused by oxidative stress resulting from altered dopamine metabolism. Toxicol In Vitro 2008; 22:1461-8. [PMID: 18579341 DOI: 10.1016/j.tiv.2008.04.019] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Revised: 04/21/2008] [Accepted: 04/21/2008] [Indexed: 12/21/2022]
Abstract
Rotenone is a widely used pesticide. Administration of rotenone can induce biochemical and histological alterations similar to those of Parkinson's disease in rats, leading to the selective loss of dopaminergic neurons in the substantia nigra pars compacta. However, it remains unclear why rotenone seems to affect preferentially dopaminergic cells. To address this question, we studied the effects of rotenone on dopamine distribution and metabolism to determine the role of endogenous dopamine in rotenone-induced PC12 cells toxicity. Results showed that cell viability was decreased and intracellular dopamine concentration was increased with rotenone administration in a dose-dependent manner. Rotenone exposure led to changes of proteins and enzymes associated with dopamine synthesis and transportation in PC12 cells. Tyrosine hydroxylase (TH) and vesicular monoamine transporter 2 (VMAT(2)) were markedly down-regulated, and dopamine transporter (DAT) was up-regulated in the cells. The activity of monoamine oxidase (MAO) was also increased. In addition, rotenone increased ROS formation, which was clearly inhibited by the pretreatment of GSH. Similar inhibitions of ROS formation were also observed in PC12 cells pretreated with the classical dopamine transporter inhibitor of GBR-12909 and the MAO inhibitor L-deprenyl. Moreover, opposite effects were observed in PC12 cells pretreated with the specific VMAT(2) inhibitor reserpine. These results suggest that rotenone administration may interfere with dopamine distribution and metabolism, leading to dopamine accumulated in the cytoplasm of PC12 cells, which may contribute to the ROS formation and cell death. Therefore, the endogenous dopamine resulted from the altered dopamine metabolism and redistribution may play an important role in rotenone toxicity in dopamine neurons.
Collapse
Affiliation(s)
- Yan Sai
- Department of Preventive Medicine, Third Military Medical University, Chongqing, China
| | | | | | | | | | | |
Collapse
|
49
|
Allam MF, Del Castillo AS, Navajas RFC. Parkinson's disease, smoking, and gender. Mov Disord 2008; 22:1829-30. [PMID: 17595042 DOI: 10.1002/mds.21623] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
50
|
Abstract
Several pesticides such as organophosphates, carbamates and the organochlorine pesticides directly target nervous tissue as their mechanism of toxicity. In several others, such as the fumigants, the nervous system is affected by toxicological mechanisms that diffusely affect most or all tissues in the body. Both the central and peripheral nervous system are involved in the acute toxidromes of many pesticides resulting in acute short-term effects. There is strong human epidemiological evidence for persistent nervous system damage following acute intoxication with several important pesticide groups such as organophosphates and certain fumigants. However, whether persistent nervous system damage follows chronic low-level exposure to pesticides in adults (particularly organophosphpates), and whether in utero and/or early childhood exposure leads to persistent nervous system damage, is a subject of study at present. Parkinson's Disease, one of the most common chronic central nervous system diseases, has been linked to pesticide exposure in some studies, but other studies have failed to find an association. Several new pesticidal chemicals such as the neo-nicotinoids and fipronil have central nervous system effects, but only case reports are available to date on acute human intoxications with several of these. Little data are yet available on whether long-term effects result from these chemicals. Several ongoing or recently completed studies should add valuable insight into the effects of pesticides on the human nervous system particularly the effect of low-dose, chronic exposure both in adults and children.
Collapse
|