1
|
Deleu S, Sabino J. Personalized Dietary Approaches to Optimizing Intestinal Microbial Health and Homeostasis. Gastroenterol Clin North Am 2025; 54:317-331. [PMID: 40348490 DOI: 10.1016/j.gtc.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Diet has a profound impact in human health, which is partly driven by changes in the intestinal microbiota. Several associations between dietary intake and the intestinal microbiota composition and function have been described. Namely, the Mediterranean diet is associated with beneficial bacteria, while the intake of ultraprocessed foods is linked to dysbiosis. It is, therefore, very tempting to tailor dietary approaches to the individual needs of the microbiota; however, high-quality prospective data are lacking. Provisionally, a diet rich in fruits and vegetables and low in ultraprocessed foods is recommended to improve the intestinal microbiota composition and function.
Collapse
Affiliation(s)
- Sara Deleu
- Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Department of Pathology, Case Western Reserve University, 2103 Cornell Road, Cleveland, OH 44106, USA; Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, Rome 00168, Italy
| | - João Sabino
- Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
| |
Collapse
|
2
|
Shi JY, Wang YJ, Bao QW, Qin YM, Li PP, Wu QQ, Xia CK, Wu DL, Xie SZ. Polygonatum cyrtonema Hua polysaccharide alleviates ulcerative colitis via gut microbiota-independent modulation of inflammatory immune response. Carbohydr Polym 2025; 356:123387. [PMID: 40049966 DOI: 10.1016/j.carbpol.2025.123387] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/30/2025] [Accepted: 02/13/2025] [Indexed: 05/13/2025]
Abstract
Polygonatum cyrtonema polysaccharides (PCP) exhibit ameliorative effects on colitis. However, whether the protective effects of PCP depend on the gut microbiota and how PCP regulates intestinal immune responses to alleviate colitis remain unclear. Therefore, this study investigated the effect of PCP against colitis focusing on the regulation of intestinal immune response. The PCP structure was reclassified as fructan. PCP treatment significantly reduced the symptoms of colitis. PCP restored IgA, ZO-1, Occludin, and MUC2 expression to enhance intestinal barrier function. Oral PCP administration markedly inhibited excessive inflammation-mediated immune response by modulating inflammatory cytokines secretion and Th17/Tregs cell balance and restored gut microbial composition. Interestingly, PCP still had a significant ameliorating effect on intestinal inflammation in colitis mice with gut microbial depletion by antibiotics. In the Caco-2/RAW264.7 co-culture inflammation model, PCP treatment improved the intestinal epithelial barrier function by regulating the inflammatory immune response through signal transduction pathways. Overall, these findings suggested that the alleviating effects of PCP on colitis are independent of gut microbiota, and that PCP can directly modulate the inflammatory immune response and intestinal barrier function, which in turn regulates gut microbiota. These findings will provide new insights into the action mechanism of natural polysaccharides in relieving colitis.
Collapse
Affiliation(s)
- Jin-Yang Shi
- School of Pharmacy, Anhui Province Key Laboratory of Bioactive Natural Products, Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Yong-Jian Wang
- School of Pharmacy, Anhui Province Key Laboratory of Bioactive Natural Products, Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Qian-Wen Bao
- School of Pharmacy, Anhui Province Key Laboratory of Bioactive Natural Products, Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Ya-Min Qin
- School of Pharmacy, Anhui Province Key Laboratory of Bioactive Natural Products, Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Pei-Pei Li
- School of Pharmacy, Anhui Province Key Laboratory of Bioactive Natural Products, Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Qiao-Qiao Wu
- School of Pharmacy, Anhui Province Key Laboratory of Bioactive Natural Products, Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Cheng-Kai Xia
- School of Pharmacy, Anhui Province Key Laboratory of Bioactive Natural Products, Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - De-Ling Wu
- School of Pharmacy, Anhui Province Key Laboratory of Bioactive Natural Products, Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China; Bozhou University, Bozhou, Anhui 236800, China.
| | - Song-Zi Xie
- School of Pharmacy, Anhui Province Key Laboratory of Bioactive Natural Products, Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China.
| |
Collapse
|
3
|
Martínez‐Augustin O, Tena‐Garitaonaindia M, Ceacero‐Heras D, Jiménez‐Ortas Á, Enguix‐Huete JJ, Álvarez‐Mercado AI, Ruiz‐Henares G, Aranda CJ, Gámez‐Belmonte R, Sánchez de Medina F. Macronutrients as Regulators of Intestinal Epithelial Permeability: Where Do We Stand? Compr Rev Food Sci Food Saf 2025; 24:e70178. [PMID: 40421830 PMCID: PMC12108046 DOI: 10.1111/1541-4337.70178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 03/23/2025] [Accepted: 04/04/2025] [Indexed: 05/28/2025]
Abstract
The intestinal barrier function (IBF) is essential for intestinal homeostasis. Its alterations have been linked to intestinal and systemic disease. Regulation of intestinal permeability is key in the maintenance of the IBF, in which the intestinal epithelium and tight junctions, the mucus layer, sIgA, and antimicrobial peptides are important factors. This review addresses the concept of IBF, focusing on permeability, and summarizes state-of-the-art information on how starvation and macronutrients regulate it. Novel mechanisms regulate intestinal permeability, like its induction by the normal process of nutrient absorption, the contribution of starvation-induced autophagy, or the stimulation of sIgA production by high-protein diets in a T-cell-independent fashion. In addition, observations evidence that starvation and protein restriction increase intestinal permeability, compromising mucin, antimicrobial peptides, and/or intestinal sIgA production. Regarding specific macronutrients, substantial evidence indicates that casein (compared to other protein sources), specific protein-derived peptides and glutamine reinforce IBF. Dietary carbohydrates regulate intestinal permeability in a structure- and composition-dependent fashion; fructose, glucose, and sucrose increase it, while nondigestible oligosaccharides (NDOs) decrease it. Among NDOs, human milk oligosaccharides (HMOs) stand as a promising tool. NODs effects are mediated by intestinal microbiota modulation, production of short-chain fatty acids, and direct interactions with intestinal cells. Finally, evidence supports avoiding high-fat diets for their detrimental effects on IBF. Most studies have been carried out in vitro or in animal models. More information is needed from clinical studies to substantiate beneficial effects and the use of macronutrients in the treatment and prevention of IBF-related diseases.
Collapse
Affiliation(s)
- Olga Martínez‐Augustin
- Department of Biochemistry and Molecular Biology II, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), School of Pharmacy, Insituto de Nutrición y Tecnología de los alimentos José Mataix and Instituto de Investigación Biosanitaria ibs.GRANADAUniversity of GranadaGranadaSpain
| | - Mireia Tena‐Garitaonaindia
- Department of Biochemistry and Molecular Biology II, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), School of Pharmacy, Insituto de Nutrición y Tecnología de los alimentos José Mataix and Instituto de Investigación Biosanitaria ibs.GRANADAUniversity of GranadaGranadaSpain
| | - Diego Ceacero‐Heras
- Department of Biochemistry and Molecular Biology II, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), School of Pharmacy, Insituto de Nutrición y Tecnología de los alimentos José Mataix and Instituto de Investigación Biosanitaria ibs.GRANADAUniversity of GranadaGranadaSpain
| | - Ángela Jiménez‐Ortas
- Department of Biochemistry and Molecular Biology II, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), School of Pharmacy, Insituto de Nutrición y Tecnología de los alimentos José Mataix and Instituto de Investigación Biosanitaria ibs.GRANADAUniversity of GranadaGranadaSpain
| | - Juan J. Enguix‐Huete
- Department of Pharmacology, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADAUniversity of GranadaGranadaSpain
| | - Ana I. Álvarez‐Mercado
- Department of Pharmacology, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADAUniversity of GranadaGranadaSpain
| | - Guillermo Ruiz‐Henares
- Department of Pharmacology, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADAUniversity of GranadaGranadaSpain
| | - Carlos J. Aranda
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina‐ IBIMA Plataforma BIONANDRICORS “Enfermedades inflamatorias”MálagaSpain
| | - Reyes Gámez‐Belmonte
- Department of Pharmacology, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADAUniversity of GranadaGranadaSpain
- Department of Medicine 1University of Erlangen‐NurembergErlangenGermany
| | - Fermín Sánchez de Medina
- Department of Pharmacology, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADAUniversity of GranadaGranadaSpain
| |
Collapse
|
4
|
Hao Y, Wang C, Wang L, Hu L, Duan T, Zhang R, Yang X, Li T. Nondigestible stachyose alleviates cyclophosphamide-induced small intestinal mucosal injury in mice by regulating intestinal exosomal miRNAs, independently of the gut microbiota. Food Res Int 2025; 209:116258. [PMID: 40253186 DOI: 10.1016/j.foodres.2025.116258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/16/2025] [Accepted: 03/11/2025] [Indexed: 04/21/2025]
Abstract
Stachyose has traditionally been considered to exert prebiotic effects primarily through its interaction with gut microbiota. However, this study reveals a novel mechanism by which stachyose alleviates cyclophosphamide (CY)-induced small intestinal mucosa disruption by regulating the intestinal exosomal miRNAs, without relying on the gut microbiota. Specifically, stachyose significantly mitigates CY-caused damage to the intestinal permeability, oxidative stress, and the structure of intestinal villi and crypts in pseudo-germ-free (PGF) mice. The immunofluorescence staining and qPCR analyses show that stachyose treatment restores CY-caused abnormal changes on the levels of tight junction proteins including MUC2, Occludin, Claudin-1, and ZO-1, and pro-inflammatory cytokines including TNF-α, IL-1β, and IL-2. Furthermore, by conducting fecal miRNA transplantation experiment, we further demonstrated that, similar to stachyose, stachyose-shaped intestinal miRNAs protect against CY-induced intestinal mucosal damage in PGF mice. In summary, this study provides new scientific evidence for the direct interaction between nondigestible stachyose and the proximal small intestine. It also opens new avenues for further investigation into the systemic nutritional functions of stachyose, particularly the health benefits of stachyose in the upper gastrointestinal tract.
Collapse
Affiliation(s)
- Yuhang Hao
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Chennan Wang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Lu Wang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Lili Hu
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Tianchi Duan
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Runguang Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Ting Li
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China..
| |
Collapse
|
5
|
Meng J, Sagawa M, Toshima K, Takahashi D. Stereoselective Total Synthesis of α-Galacto-Oligosaccharides Using Boron-Mediated Aglycon Delivery and Evaluation of their Immune-Enhancing Activities. Chembiochem 2025:e2401059. [PMID: 40193240 DOI: 10.1002/cbic.202401059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 04/01/2025] [Accepted: 04/07/2025] [Indexed: 04/09/2025]
Abstract
α-Galacto-oligosaccharides (α-GOSs) are natural oligomeric saccharides found in plants that have garnered significant interest due to their indigestible nature and various biological activities. However, they often exist as inseparable mixtures, particularly long-chain substances. This study successfully achieves the total synthesis of α-GOSs 1-6, featuring different lengths of galactose chains, using the boron-mediated aglycon delivery method developed in our laboratory. Additionally, this study investigates the immune-enhancing activity and structure-activity relationships of the chemically synthesized α-GOSs. It reveals that the length of the galactose chain in the α-GOSs significantly influences their immune-enhancing properties. Specifically, α-GOS 2, which contains two galactose units, is found to markedly promote macrophage phagocytosis and increase the production of cytokines such as IL-6, TNF-α, and IL-1β. These results suggest that α-GOS 2 could serve as a natural immunomodulatory agent in functional foods.
Collapse
Affiliation(s)
- Jikun Meng
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Moeri Sagawa
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Kazunobu Toshima
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Daisuke Takahashi
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| |
Collapse
|
6
|
Afsharnia A, Cai Y, Nauta A, Groeneveld A, Folkerts G, Wösten MMSM, Braber S. In Vivo Evidence on the Emerging Potential of Non-Digestible Oligosaccharides as Therapeutic Agents in Bacterial and Viral Infections. Nutrients 2025; 17:1068. [PMID: 40292455 PMCID: PMC11945282 DOI: 10.3390/nu17061068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/14/2025] [Accepted: 03/17/2025] [Indexed: 04/30/2025] Open
Abstract
The issue of antibiotic-resistant bacterial infections, coupled with the rise in viral pandemics and the slow development of new antibacterial and antiviral treatments, underscores the critical need for novel strategies to mitigate the spread of drug-resistant pathogens, enhance the efficacy of existing therapies, and accelerate the discovery and deployment of innovative antimicrobial and antiviral solutions. One promising approach to address these challenges is the dietary supplementation of non-digestible oligosaccharides (NDOs). NDOs, including human milk oligosaccharides (HMOs), play a vital role in shaping and sustaining a healthy gut microbiota. Beyond stimulating the growth and activity of beneficial gut bacteria, NDOs can also interact directly with pathogenic bacteria and viruses. Their antiviral and antibacterial properties arise from their unique interactions with pathogens and their ability to modulate the host's immune system. NDOs can function as decoy receptors, inhibit pathogen growth, bind to bacterial toxins, stimulate the host immune response, exhibit anti-biofilm properties, and enhance barrier protection. However, a notable gap exists in the comprehensive assessment of in vivo and clinical data on this topic. This review aims to provide an in-depth overview of the in vivo evidence related to the antiviral and antibacterial effects of various NDOs and HMOs, with a focus on discussing their possible mechanisms of action.
Collapse
Affiliation(s)
- Amirmohammad Afsharnia
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CB Utrecht, The Netherlands; (A.A.); (G.F.)
| | - Yang Cai
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China;
| | - Arjen Nauta
- FrieslandCampina, 3818 LE Amersfoort, The Netherlands; (A.N.); (A.G.)
| | - Andre Groeneveld
- FrieslandCampina, 3818 LE Amersfoort, The Netherlands; (A.N.); (A.G.)
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CB Utrecht, The Netherlands; (A.A.); (G.F.)
| | - Marc M. S. M. Wösten
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands;
| | - Saskia Braber
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CB Utrecht, The Netherlands; (A.A.); (G.F.)
| |
Collapse
|
7
|
Rubio-Casillas A, Rodríguez-Quintero CM, Hromić-Jahjefendić A, Uversky VN, Redwan EM, Brogna C. The essential role of prebiotics in restoring gut health in long COVID. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2025; 213:385-411. [PMID: 40246350 DOI: 10.1016/bs.pmbts.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
The gut microbiota (GM) plays an essential role in human health, influencing not only digestive processes but also the immune system´s functionality. The COVID-19 pandemic has highlighted the complex interaction between viral infections and the GM. Emerging evidence has demonstrated that SARS-CoV-2 can disrupt microbial homeostasis, leading to dysbiosis and compromised immune responses. The severity of COVID-19 has been associated with a reduction in the abundance of several beneficial bacteria in the gut. It has been proposed that consuming probiotics may help to re-colonize the GM. Although probiotics are important, prebiotics are essential for their metabolism, growth, and re-colonization capabilities. This chapter delves into the critical role of prebiotics in restoring GM after COVID-19 disease. The mechanisms by which prebiotics enhance the metabolism of beneficial bacteria will be described, and how prebiotics mediate the re-colonization of the gut with beneficial bacteria, thereby restoring microbial diversity and promoting the resilience of the gut-associated immune system. The benefits of consuming prebiotics from natural sources are superior to those from chemically purified commercial products.
Collapse
Affiliation(s)
- Alberto Rubio-Casillas
- Autlan Regional Hospital, Jalisco Health Services, Autlan, Jalisco, Mexico; Biology Laboratory, Autlan Regional Preparatory School, University of Guadalajara, Autlan, Jalisco, Mexico.
| | | | - Altijana Hromić-Jahjefendić
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Sarajevo, Bosnia and Herzegovina.
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States; Laboratory of New Methods in Biology, Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Russia.
| | - Elrashdy M Redwan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, New Borg EL-Arab, Alexandria, Egypt
| | - Carlo Brogna
- Craniomed Group Srl, Research Facility, Montemiletto (Av), Italy
| |
Collapse
|
8
|
Li T, Liu Y, Duan T, Guo C, Liu B, Fu X, Wang L, Wang X, Dong X, Wang C, Lu Y, Wang Y, Shi L, Tian H, Yang X. Nondigestible stachyose binds membranous HSP90β on small intestinal epithelium to regulate the exosomal miRNAs: A new function and mechanism. Cell Metab 2025; 37:345-360.e6. [PMID: 39561765 DOI: 10.1016/j.cmet.2024.10.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 07/16/2024] [Accepted: 10/15/2024] [Indexed: 11/21/2024]
Abstract
Oligosaccharides are conventionally recognized as "passersby" in the small intestine. However, our research has reframed this understanding by uncovering a new function of oligosaccharide stachyose, which binds hydrophobic residues of membranous HSP90β on small intestinal epithelial cells, thus reprograming the exosomal miRNA profile. CRISPR-Cas9-mediated HSP90β knockout abolished the accumulation of stachyose on cell membrane and its regulatory effects on these miRNAs. Notably, stachyose's regulation on these miRNAs is independent of its prebiotic role, as evidenced by the observation of stachyose-altered fecal miRNAs in pseudo-germ-free mice. These stachyose-altered miRNAs further shaped colonic microbiome, especially harboring Lactobacillus in mice. Thereinto, miR-30a-5p that was downregulated (Log2FC < -2) in both mice and human feces following stachyose treatment could specifically suppress the growth of Lactobacillus reuteri. These findings build a new regulatory axis of stachyose-intestinal miRNAs-gut microbiota and unveil a previously unknown mechanism underlying the direct "talk" of oligosaccharides to intestine epithelium via membranous HSP90β.
Collapse
Affiliation(s)
- Ting Li
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Yueyue Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Tianchi Duan
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Chao Guo
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Bin Liu
- Department of Traditional Chinese Medicine, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Xiuqiong Fu
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong 999077, China
| | - Lu Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Xiaoyuan Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Xinyue Dong
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Chennan Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Yalong Lu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Yu Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Lin Shi
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Honglei Tian
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Xingbin Yang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
9
|
Park S, Park Y, Jeong YJ, Oh JG, Yoo HJ, Yang J, Kwon JI, Lee KW. Combining 2'-fucosyllactose and galactooligosaccharides exerts anti-inflammatory effects and promotes gut health. J Dairy Sci 2024:S0022-0302(24)01117-2. [PMID: 39245164 DOI: 10.3168/jds.2024-25171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/04/2024] [Indexed: 09/10/2024]
Abstract
This study investigated the potential of 2'-Fucosyllactose (2'-FL) and galactooligosaccharides (GOS) combinations as a novel and cost-effective substitute for human milk oligosaccharides (HMOs) in promoting gut health and reducing inflammation. In vitro studies using Caco-2 cells showed that 2'-FL and GOS combinations (H1: GOS:2'-FL ratio of 1.8:1; H2: ratio of 3.6:1) reduced lipopolysaccharide-induced inflammation by decreasing pro-inflammatory markers, while individual treatments had no significant effects. In a mouse model of dextran sulfate sodium (DSS)-induced colitis, combined 2'-FL and GOS supplementation alleviated symptoms, improved gut permeability, and enhanced intestinal structure, with the GH1 group (H1 combo with DSS) being the most effective. 2'-FL and GOS combinations also enhanced short-chain fatty acid production in infant fecal batch fermentation and mouse fecal analysis, with GH1 showing the most promising results. GH1 supplementation altered gut microbiota in mice with DSS-induced colitis, promoting microbial diversity and a more balanced Firmicutes to Bacteroidota ratio. Infant formula products (IFPs) containing 2'-FL and GOS combinations (IFP2: 174 mg GOS and 95 mg 2'-FL per 14 g serving, 1.8:1 ratio; IFP3: 174 mg GOS and 48 mg 2'-FL per 14 g serving, 3.6:1 ratio) demonstrated gastrointestinal protective and anti-inflammatory properties in a coculture model of Caco-2 and THP-1 cells. These findings suggest that 2'-FL and GOS combinations have potential applications in advanced infant formulas and supplements to promote gut health and reduce inflammation.
Collapse
Affiliation(s)
- Sewon Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, 02841, Korea University, Seoul, Republic of Korea
| | - Yoonhee Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, 02841, Korea University, Seoul, Republic of Korea
| | - Yu-Jin Jeong
- Department of Biotechnology, College of Life Sciences and Biotechnology, 02841, Korea University, Seoul, Republic of Korea
| | - Jun Gu Oh
- Department of Biotechnology, College of Life Sciences and Biotechnology, 02841, Korea University, Seoul, Republic of Korea
| | - Hee Joon Yoo
- Department of Biotechnology, College of Life Sciences and Biotechnology, 02841, Korea University, Seoul, Republic of Korea
| | - Jiyeon Yang
- Department of Integrated Biomedical and Life Science, Graduate School, 02841, Korea University, Seoul, Republic of Korea
| | - Jung-Il Kwon
- Department of Integrated Biomedical and Life Science, Graduate School, 02841, Korea University, Seoul, Republic of Korea
| | - Kwang-Won Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, 02841, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
10
|
Liu P, Fei L, Wu D, Zhang Z, Chen W, Li W, Yang Y. Progress in the metabolic kinetics and health benefits of functional polysaccharides from plants, animals and microbes: A review. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2024; 7:100526. [DOI: 10.1016/j.carpta.2024.100526] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
|
11
|
Yin Z, Liu X, Guo L, Ren M, Kang W, Ma C, Waterhouse GIN, Sun-Waterhouse D. The potential of dietary fiber in building immunity against gastrointestinal and respiratory disorders. Crit Rev Food Sci Nutr 2023; 64:13318-13336. [PMID: 37837407 DOI: 10.1080/10408398.2023.2266462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2023]
Abstract
The numerous health benefits of dietary fibers (DFs) justify their inclusion in human diets and biomedical products. Given the short- and long-term human impacts of the COVID-19 virus on human health, the potential of DFs in building immunity against gastrointestinal and respiratory disorders is currently receiving high attention. This paper reviews the physicochemical properties of DFs, together with their immune functions and effects on the gastrointestinal tract and respiratory system mainly based on research in the last ten years. Possible modes of action of DFs in promoting health, especially building immunity, are explored. We seek to highlight the importance of understanding the exact physical and chemical characteristics and molecular behaviors of DFs in providing specific immune function. This review provides a perspective beyond the existing recognition of DFs' positive effects on human health, and offers a theoretical framework for the development of special DFs components and their application in functional foods and other therapeutic products against gastrointestinal and respiratory disorders. DFs enhance immunity from gastrointestinal and respiratory diseases to promote host health.
Collapse
Affiliation(s)
- Zhenhua Yin
- National R &D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
- Comprehensive Utilization of Edible and Medicinal Plant Resources Engineering Technology Research Center, Huanghe Science and Technology College, Zhengzhou, China
- Function Food Engineering Technology Research Center, Kaifeng, China
| | - Xiaopeng Liu
- National R &D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
- Function Food Engineering Technology Research Center, Kaifeng, China
| | - Lin Guo
- National R &D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
- Function Food Engineering Technology Research Center, Kaifeng, China
| | - Mengjie Ren
- National R &D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
- Function Food Engineering Technology Research Center, Kaifeng, China
| | - Wenyi Kang
- National R &D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
- Function Food Engineering Technology Research Center, Kaifeng, China
| | - Changyang Ma
- National R &D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
- Function Food Engineering Technology Research Center, Kaifeng, China
| | | | | |
Collapse
|
12
|
Li L, Yan S, Liu S, Wang P, Li W, Yi Y, Qin S. In-depth insight into correlations between gut microbiota and dietary fiber elucidates a dietary causal relationship with host health. Food Res Int 2023; 172:113133. [PMID: 37689844 DOI: 10.1016/j.foodres.2023.113133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 09/11/2023]
Abstract
Dietary fiber exerts a wide range of biological benefits on host health, which not only provides a powerful source of nutrition for gut microbiota but also supplies key microbial metabolites that directly affect host health. This review mainly focuses on the decomposition and metabolism of dietary fiber and the essential genera Bacteroides and Bifidobacterium in dietary fiber fermentation. Dietary fiber plays an essential role in host health by impacting outcomes related to obesity, enteritis, immune health, cancer and neurodegenerative diseases. Additionally, the gut microbiota-independent pathway of dietary fiber affecting host health is also discussed. Personalized dietary fiber intake combined with microbiome, genetics, epigenetics, lifestyle and other factors has been highlighted for development in the future. A higher level of evidence is needed to demonstrate which microbial phenotype benefits from which kind of dietary fiber. In-depth insights into the correlation between gut microbiota and dietary fiber provide strong theoretical support for the precise application of dietary fiber, which elucidates a dietary causal relationship with host health.
Collapse
Affiliation(s)
- Lili Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Shuling Yan
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuangjiang Liu
- Shandong University, Qingdao 266237, China; Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Ping Wang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Wenjun Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Yuetao Yi
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Song Qin
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| |
Collapse
|
13
|
van der Toorn M, Chatziioannou AC, Pellis L, Haandrikman A, van der Zee L, Dijkhuizen L. Biological Relevance of Goat Milk Oligosaccharides to Infant Health. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13935-13949. [PMID: 37691562 PMCID: PMC10540210 DOI: 10.1021/acs.jafc.3c02194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/12/2023]
Abstract
Milk is often regarded as the gold standard for the nourishment of all mammalian offspring. The World Health Organization (WHO) recommends exclusive breastfeeding for the first 6 months of the life of the infant, followed by a slow introduction of complementary foods to the breastfeeding routine for a period of approximately 2 years, whenever this is possible ( Global Strategy for Infant and Young Child Feeding; WHO, 2003). One of the most abundant components in all mammals' milk, which is associated with important health benefits, is the oligosaccharides. The milk oligosaccharides (MOS) of humans and other mammals differ in terms of their concentration and diversity. Among those, goat milk contains more oligosaccharides (gMOS) than other domesticated dairy animals, as well as a greater range of structures. This review summarizes the biological functions of MOS found in both human and goat milk to identify the possible biological relevance of gMOS in human health and development. Based on the existing literature, seven biological functions of gMOS were identified, namely, MOS action as prebiotics, immune modulators, and pathogen traps; their modulation of intestinal cells; protective effect against necrotizing enterocolitis; improved brain development; and positive effects on stressor exposure. Overall, goat milk is a viable alternate supply of functional MOS that could be employed in a newborn formula.
Collapse
Affiliation(s)
| | - Anastasia Chrysovalantou Chatziioannou
- CarbExplore
Research BV, Groningen, 9747 AN The Netherlands
- Department
of Chemistry, Laboratory of Analytical Biochemistry, University of Crete, Heraklion, 70013, Greece
| | | | | | | | - Lubbert Dijkhuizen
- CarbExplore
Research BV, Groningen, 9747 AN The Netherlands
- Microbial
Physiology, Groningen Biomolecular Sciences and Biotechnology Institute
(GBB), University of Groningen, Groningen, 9747 AG, The Netherlands
| |
Collapse
|
14
|
Kiernan DP, O’Doherty JV, Sweeney T. The Effect of Maternal Probiotic or Synbiotic Supplementation on Sow and Offspring Gastrointestinal Microbiota, Health, and Performance. Animals (Basel) 2023; 13:2996. [PMID: 37835602 PMCID: PMC10571980 DOI: 10.3390/ani13192996] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
The increasing prevalence of antimicrobial-resistant pathogens has prompted the reduction in antibiotic and antimicrobial use in commercial pig production. This has led to increased research efforts to identify alternative dietary interventions to support the health and development of the pig. The crucial role of the GIT microbiota in animal health and performance is becoming increasingly evident. Hence, promoting an improved GIT microbiota, particularly the pioneer microbiota in the young pig, is a fundamental focus. Recent research has indicated that the sow's GIT microbiota is a significant contributor to the development of the offspring's microbiota. Thus, dietary manipulation of the sow's microbiota with probiotics or synbiotics, before farrowing and during lactation, is a compelling area of exploration. This review aims to identify the potential health benefits of maternal probiotic or synbiotic supplementation to both the sow and her offspring and to explore their possible modes of action. Finally, the results of maternal sow probiotic and synbiotic supplementation studies are collated and summarized. Maternal probiotic or synbiotic supplementation offers an effective strategy to modulate the sow's microbiota and thereby enhance the formation of a health-promoting pioneer microbiota in the offspring. In addition, this strategy can potentially reduce oxidative stress and inflammation in the sow and her offspring, enhance the immune potential of the milk, the immune system development in the offspring, and the sow's feed intake during lactation. Although many studies have used probiotics in the maternal sow diet, the most effective probiotic or probiotic blends remain unclear. To this extent, further direct comparative investigations using different probiotics are warranted to advance the current understanding in this area. Moreover, the number of investigations supplementing synbiotics in the maternal sow diet is limited and is an area where further exploration is warranted.
Collapse
Affiliation(s)
- Dillon P. Kiernan
- School of Veterinary Medicine, University College Dublin, D04 C1P1 Dublin, Ireland;
| | - John V. O’Doherty
- School of Agriculture and Food Science, University College Dublin, D04 C1P1 Dublin, Ireland;
| | - Torres Sweeney
- School of Veterinary Medicine, University College Dublin, D04 C1P1 Dublin, Ireland;
| |
Collapse
|
15
|
Qi X, Li Y, Fang C, Jia Y, Chen M, Chen X, Jia J. The associations between dietary fibers intake and systemic immune and inflammatory biomarkers, a multi-cycle study of NHANES 2015-2020. Front Nutr 2023; 10:1216445. [PMID: 37720377 PMCID: PMC10501836 DOI: 10.3389/fnut.2023.1242115] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/15/2023] [Indexed: 09/19/2023] Open
Abstract
Background In recent years, there has been considerable growth in abnormal inflammatory reactions and immune system dysfunction, which are implicated in chronic inflammatory illnesses and a variety of other conditions. Dietary fibers have emerged as potential regulators of the human immune and inflammatory response. Therefore, this study aims to investigate the associations between dietary fibers intake and systemic immune and inflammatory biomarkers. Methods This cross-sectional study used data from the National Health and Nutrition Examination Survey (2015-2020). Dietary fibers intake was defined as the mean of two 24-h dietary recall interviews. The systemic immune-inflammation index (SII), systemic inflammation response index (SIRI), neutrophil-to-lymphocyte ratio (NLR), platelet-lymphocyte ratio (PLR), red blood cell distribution width-to-albumin ratio (RA), ferritin, high-sensitivity C-reactive protein (hs-CRP), and white blood cell (WBC) count were measured to evaluate systemic immune and inflammatory states of the body. The statistical software packages R and EmpowerStats were used to examine the associations between dietary fibers intake and systemic immune and inflammatory biomarkers. Results Overall, 14,392 participants were included in this study. After adjusting for age, gender, race, family monthly poverty level index, alcohol consumption, smoking status, vigorous recreational activity, body mass index, hyperlipidemia, hypertension, diabetes, and dietary inflammatory index, dietary fibers intake was inversely associated with SII (β = -2.19885, 95% CI: -3.21476 to -1.18294, p = 0.000248), SIRI (β = -0.00642, 95% CI: -0.01021 to -0.00263, p = 0.001738), NLR (β = -0.00803, 95% CI: -0.01179 to -0.00427, p = 0.000284), RA (β = -0.00266, 95% CI: -0.00401 to -0.00131, p = 0.000644), ferritin (β = -0.73086, 95% CI: -1.31385 to -0.14787, p = 0.020716), hs-CRP (β = -0.04629, 95% CI: -0.0743 to -0.01829, p = 0.002119), WBC (β = -0.01624, 95% CI: -0.02685 to -0.00563, p = 0.004066), neutrophils (β = -0.01346, 95% CI: -0.01929 to -0.00764, p = 0.000064). An inverse association between dietary fibers and PLR was observed in the middle (β = -3.11979, 95% CI: -5.74119 to -0.4984, p = 0.028014) and the highest tertile (β = -4.48801, 95% CI: -7.92369 to -1.05234, p = 0.016881) and the trend test (βtrend = -2.2626, 95% CI: -3.9648 to -0.5604, Ptrend = 0.0150). The observed associations between dietary fibers intake and SII, SIRI, NLR, RA, ferritin, hs-CRP, WBC, and neutrophils remained robust and consistent in the sensitivity analysis. No significant interaction by race was found. Conclusion Dietary fibers intake is associated with the improvement of the parameters of the immune response and inflammatory biomarkers, supporting recommendations to increase dietary fibers intake for enhanced immune health.
Collapse
Affiliation(s)
- Xiangjun Qi
- The First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanlong Li
- The First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Caishan Fang
- The First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yingying Jia
- Department of Gynecology, Zhengzhou Second Hospital, Zhengzhou, China
| | - Meicong Chen
- Guangzhou First People’s Hospital, Guangzhou, China
| | - Xueqing Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jie Jia
- Department of Ultrasound, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
16
|
Aldubayan MA, Mao X, Laursen MF, Pigsborg K, Christensen LH, Roager HM, Nielsen DS, Hjorth MF, Magkos F. Supplementation with inulin-type fructans affects gut microbiota and attenuates some of the cardiometabolic benefits of a plant-based diet in individuals with overweight or obesity. Front Nutr 2023; 10:1108088. [PMID: 37181156 PMCID: PMC10167298 DOI: 10.3389/fnut.2023.1108088] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/30/2023] [Indexed: 05/16/2023] Open
Abstract
Background The gut microbiota has emerged as a potential therapeutic target to improve the management of obesity and its comorbidities. Objective We investigated the impact of a high fiber (∼38 g/d) plant-based diet, consumed ad libitum, with or without added inulin-type fructans (ITF), on the gut microbiota composition and cardiometabolic outcomes in subjects with obesity. We also tested if baseline Prevotella/Bacteroides (P/B) ratio predicts weight loss outcomes. Methods This is a secondary exploratory analysis from the PREVENTOMICS study, in which 100 subjects (82 completers) aged 18-65 years with body mass index 27-40 kg/m2 were randomized to 10 weeks of double-blinded treatment with a personalized or a generic plant-based diet. Changes from baseline to end-of-trial in gut microbiota composition (16S rRNA gene amplicon sequencing), body composition, cardiometabolic health and inflammatory markers were evaluated in the whole cohort (n = 82), and also compared in the subgroup of subjects who were supplemented with an additional 20 g/d ITF-prebiotics (n = 21) or their controls (n = 22). Results In response to the plant-based diet, all subjects lost weight (-3.2 [95% CI -3.9, -2.5] kg) and experienced significant improvements in body composition and cardiometabolic health indices. Addition of ITF to the plant-based diet reduced microbial diversity (Shannon index) and selectively increased Bifidobacterium and Faecalibacterium (q < 0.05). The change in the latter was significantly associated with higher values of insulin and HOMA-IR and lower HDL cholesterol. In addition, the LDL:HDL ratio and the concentrations of IL-10, MCP-1 and TNFα were significantly elevated in the ITF-subgroup. There was no relationship between baseline P/B ratio and changes in body weight (r = -0.07, p = 0.53). Conclusion A plant-based diet consumed ad libitum modestly decreases body weight and has multiple health benefits in individuals with obesity. Addition of ITF-prebiotics on top this naturally fiber-rich background selectively changes gut microbiota composition and attenuates some of the realized cardiometabolic benefits. Clinical trial registration [https://clinicaltrials.gov/ct2/show/NCT04590989], identifier [NCT04590989].
Collapse
Affiliation(s)
- Mona Adnan Aldubayan
- Department of Clinical Nutrition, College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Xiaotian Mao
- Department of Food Science, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | | | - Kristina Pigsborg
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Lars H. Christensen
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Henrik M. Roager
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Dennis S. Nielsen
- Department of Food Science, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Mads Fiil Hjorth
- Obesity and Nutritional Sciences, Novo Nordisk Foundation, Tuborg Havnevej, Hellerup, Denmark
| | - Faidon Magkos
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
17
|
Goat milk as a natural source of bioactive compounds and strategies to enhance the amount of these beneficial components. Int Dairy J 2023. [DOI: 10.1016/j.idairyj.2022.105515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Armstrong HK, Bording-Jorgensen M, Santer DM, Zhang Z, Valcheva R, Rieger AM, Sung-Ho Kim J, Dijk SI, Mahmood R, Ogungbola O, Jovel J, Moreau F, Gorman H, Dickner R, Jerasi J, Mander IK, Lafleur D, Cheng C, Petrova A, Jeanson TL, Mason A, Sergi CM, Levine A, Chadee K, Armstrong D, Rauscher S, Bernstein CN, Carroll MW, Huynh HQ, Walter J, Madsen KL, Dieleman LA, Wine E. Unfermented β-fructan Fibers Fuel Inflammation in Select Inflammatory Bowel Disease Patients. Gastroenterology 2023; 164:228-240. [PMID: 36183751 DOI: 10.1053/j.gastro.2022.09.034] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND & AIMS Inflammatory bowel diseases (IBD) are affected by dietary factors, including nondigestible carbohydrates (fibers), which are fermented by colonic microbes. Fibers are overall beneficial, but not all fibers are alike, and some patients with IBD report intolerance to fiber consumption. Given reproducible evidence of reduced fiber-fermenting microbes in patients with IBD, we hypothesized that fibers remain intact in select patients with reduced fiber-fermenting microbes and can then bind host cell receptors, subsequently promoting gut inflammation. METHODS Colonic biopsies cultured ex vivo and cell lines in vitro were incubated with oligofructose (5 g/L), or fermentation supernatants (24-hour anaerobic fermentation) and immune responses (cytokine secretion [enzyme-linked immunosorbent assay/meso scale discovery] and expression [quantitative polymerase chain reaction]) were assessed. Influence of microbiota in mediating host response was examined and taxonomic classification of microbiota was conducted with Kraken2 and metabolic profiling by HUMAnN2, using R software. RESULTS Unfermented dietary β-fructan fibers induced proinflammatory cytokines in a subset of IBD intestinal biopsies cultured ex vivo, and immune cells (including peripheral blood mononuclear cells). Results were validated in an adult IBD randomized controlled trial examining β-fructan supplementation. The proinflammatory response to intact β-fructan required activation of the NLRP3 and TLR2 pathways. Fermentation of β-fructans by human gut whole microbiota cultures reduced the proinflammatory response, but only when microbes were collected from patients without IBD or patients with inactive IBD. Fiber-induced immune responses correlated with microbe functions, luminal metabolites, and dietary fiber avoidance. CONCLUSION Although fibers are typically beneficial in individuals with normal microbial fermentative potential, some dietary fibers have detrimental effects in select patients with active IBD who lack fermentative microbe activities. The study is publicly accessible at the U.S. National Institutes of Health database (clinicaltrials.gov identification number NCT02865707).
Collapse
Affiliation(s)
- Heather K Armstrong
- Centre of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, Alberta, Canada; Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada; Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada.
| | - Michael Bording-Jorgensen
- Centre of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, Alberta, Canada; Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Deanna M Santer
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Zhengxiao Zhang
- Centre of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, Alberta, Canada; Department of Medicine, Division of Gastroenterology, University of Alberta, Edmonton, Alberta, Canada; College of Food and Biological Engineering, Jimei University, Xiamen, Fujian, China
| | - Rosica Valcheva
- Centre of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, Alberta, Canada; Department of Medicine, Division of Gastroenterology, University of Alberta, Edmonton, Alberta, Canada
| | - Aja M Rieger
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Justin Sung-Ho Kim
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada; Department of Physics, University of Toronto, Toronto, Ontario, Canada
| | - Stephanie I Dijk
- Centre of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, Alberta, Canada; Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - Ramsha Mahmood
- Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Olamide Ogungbola
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Juan Jovel
- Centre of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, Alberta, Canada
| | - France Moreau
- Department of Microbiology, Immunology and Infectious Disease, University of Calgary, Calgary, Alberta, Canada
| | - Hayley Gorman
- Department of Microbiology, Immunology and Infectious Disease, University of Calgary, Calgary, Alberta, Canada
| | - Robyn Dickner
- Centre of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, Alberta, Canada; Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Jeremy Jerasi
- Centre of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, Alberta, Canada; Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Inderdeep K Mander
- Centre of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, Alberta, Canada; Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Dawson Lafleur
- Centre of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, Alberta, Canada; Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Christopher Cheng
- Centre of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, Alberta, Canada; Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Alexandra Petrova
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Terri-Lyn Jeanson
- Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Andrew Mason
- Centre of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, Alberta, Canada; Department of Medicine, Division of Gastroenterology, University of Alberta, Edmonton, Alberta, Canada
| | - Consolato M Sergi
- Anatomic Pathology Division, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Arie Levine
- Pediatric Gastroenterology Unit, Wolfson Medical Center, Tel-Aviv University, Holon, Israel
| | - Kris Chadee
- Department of Microbiology, Immunology and Infectious Disease, University of Calgary, Calgary, Alberta, Canada
| | - David Armstrong
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Sarah Rauscher
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada; Department of Physics, University of Toronto, Toronto, Ontario, Canada; Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Charles N Bernstein
- Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Matthew W Carroll
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Hien Q Huynh
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Jens Walter
- Centre of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, Alberta, Canada; APC Microbiome Ireland, School of Microbiology, and Department of Medicine, University College Cork, Cork, Ireland
| | - Karen L Madsen
- Centre of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, Alberta, Canada; Department of Medicine, Division of Gastroenterology, University of Alberta, Edmonton, Alberta, Canada
| | - Levinus A Dieleman
- Centre of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, Alberta, Canada; Department of Medicine, Division of Gastroenterology, University of Alberta, Edmonton, Alberta, Canada
| | - Eytan Wine
- Centre of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, Alberta, Canada; Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada; Department of Physiology, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
19
|
Ren Y, Nie L, Luo C, Zhu S, Zhang X. Advancement in Therapeutic Intervention of Prebiotic-Based Nanoparticles for Colonic Diseases. Int J Nanomedicine 2022; 17:6639-6654. [PMID: 36582460 PMCID: PMC9793785 DOI: 10.2147/ijn.s390102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Intestinal flora has become a therapeutic target for the intervention of colonic diseases (CDs) with better understanding of the interplay between microbiota and CDs. Depending on unique properties and prominent ability of regulating the intestinal flora, prebiotics can not only achieve a colon-specific drug delivery but also maintain the intestinal homeostasis, thus playing a positive role in the intervention of CDs. Currently, different studies on prebiotic-based nanoparticles have been contrived for colonic drug delivery and have shown great potential in curing various CDs, such as colitis and colorectal cancer. Nevertheless, there is a lack of systematic survey on the use of prebiotic nanoparticles for the treatment of CDs. This review aims to generalize the state-of-the-art of prebiotic nanomedicines specific for CDs. The species and function of intestinal flora and various kinds of prebiotics available as well as their regulating effects on intestinal flora were expounded. A variety of prebiotic nanoparticles pertinent to colon-targeted drug delivery systems were illustrated with particular emphasis on their curative activities on CDs. The efficacy and safety of prebiotic-based colonic drug delivery systems (p-CDDs) were also analyzed. In conclusion, the synergy between prebiotic nanoparticles and their cargos may hold promise for the treatment and intervention of CDs.
Collapse
Affiliation(s)
- Yuehong Ren
- Department of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou, People’s Republic of China
| | - Linghui Nie
- ASD Medical Rehabilitation Center, the Second People’s Hospital of Guangdong Province, Guangzhou, People’s Republic of China
| | - Chunhua Luo
- Newborn Intensive Care Unit, Guangzhou Women and Children’s Medical Center, Guangzhou, People’s Republic of China
| | - Shiping Zhu
- Department of Chinese Traditional Medicine, the First Affiliated Hospital of Jinan University, Guangzhou, People’s Republic of China,Shiping Zhu, Department of Chinese Traditional Medicine, the First Affiliated Hospital of Jinan University, 613 West Huangpu Avenue, Guangzhou, 513630, People’s Republic of China, Email
| | - Xingwang Zhang
- Department of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou, People’s Republic of China,Correspondence: Xingwang Zhang, Department of Pharmaceutics, College of Pharmacy, Jinan University, No. 855 East Xingye Avenue, Guangzhou, 511443, People’s Republic of China, Email
| |
Collapse
|
20
|
Recent Research and Application Prospect of Functional Oligosaccharides on Intestinal Disease Treatment. Molecules 2022; 27:molecules27217622. [PMID: 36364447 PMCID: PMC9656564 DOI: 10.3390/molecules27217622] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 11/09/2022] Open
Abstract
The intestinal tract is an essential digestive organ of the human body, and damage to the intestinal barrier will lead to various diseases. Functional oligosaccharides are carbohydrates with a low degree of polymerization and exhibit beneficial effects on human intestinal health. Laboratory experiments and clinical studies indicate that functional oligosaccharides repair the damaged intestinal tract and maintain intestinal homeostasis by regulating intestinal barrier function, immune response, and intestinal microbial composition. Functional oligosaccharides treat intestinal disease such as inflammatory bowel disease (IBD) and colorectal cancer (CRC) and have excellent prospects for therapeutic application. Here, we present an overview of the recent research into the effects of functional oligosaccharides on intestinal health.
Collapse
|
21
|
Mavrogeni ME, Asadpoor M, Henricks PAJ, Keshavarzian A, Folkerts G, Braber S. Direct Action of Non-Digestible Oligosaccharides against a Leaky Gut. Nutrients 2022; 14:4699. [PMID: 36364961 PMCID: PMC9655944 DOI: 10.3390/nu14214699] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 10/28/2023] Open
Abstract
The epithelial monolayer is the primary determinant of mucosal barrier function, and tight junction (TJ) complexes seal the paracellular space between the adjacent epithelial cells and represent the main "gate-keepers" of the paracellular route. Impaired TJ functionality results in increased permeation of the "pro-inflammatory" luminal contents to the circulation that induces local and systemic inflammatory and immune responses, ultimately triggering and/or perpetuating (chronic) systemic inflammatory disorders. Increased gut leakiness is associated with intestinal and systemic disease states such as inflammatory bowel disease and neurodegenerative diseases such as Parkinson's disease. Modulation of TJ dynamics is an appealing strategy aiming at inflammatory conditions associated with compromised intestinal epithelial function. Recently there has been a growing interest in nutraceuticals, particularly in non-digestible oligosaccharides (NDOs). NDOs confer innumerable health benefits via microbiome-shaping and gut microbiota-related immune responses, including enhancement of epithelial barrier integrity. Emerging evidence supports that NDOs also exert health-beneficial effects on microbiota independently via direct interactions with intestinal epithelial and immune cells. Among these valuable features, NDOs promote barrier function by directly regulating TJs via AMPK-, PKC-, MAPK-, and TLR-associated pathways. This review provides a comprehensive overview of the epithelial barrier-protective effects of different NDOs with a special focus on their microbiota-independent modulation of TJs.
Collapse
Affiliation(s)
- Maria Eleni Mavrogeni
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Mostafa Asadpoor
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Paul A. J. Henricks
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Ali Keshavarzian
- Division of Gastroenterology, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Saskia Braber
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
22
|
Lu K, He Y, Wu C, Bao J. Moderate Hyperglycemia-Preventive Effect and Mechanism of Action of Periplaneta americana Oligosaccharides in Streptozotocin-Induced Diabetic Mice. Nutrients 2022; 14:nu14214620. [PMID: 36364880 PMCID: PMC9654025 DOI: 10.3390/nu14214620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Periplaneta americana is a kind of medicinal and edible insect, and its oligosaccharides (PAOS) have been reported to exert anti-inflammatory effects by regulating immunity, reducing oxidative stress, and meliorating gut microbiota. We hypothesized PAOS might benefit experimental diabetes mellitus (DM), an inflammatory disease coordinated by both innate and adaptive immunity. This study aimed to evaluate the effect of PAOS on glycemia and its potential mechanisms. Mice model of diabetes was established, and then the potential effects of PAOS was tested in vivo. Here, we found that PAOS triggered a moderate hyperglycemia-preventive effect on DM mice, showing markedly alleviated symptoms of DM, reduced blood glucose, and meliorated functions of liver and pancreas β cell. Deciphering the underlying mechanism of PAOS-improving diabetes, the results revealed that PAOS downregulated the blood glucose level by activating PI3K/AKT/mTOR and Keap/Nrf2/HO-1 pathways, meanwhile inhibiting TLR4/MAPK/NF-κB, Beclin1/LC3, and NLRP3/caspase1 pathways in vivo. Furthermore, analyses of the microbial community intriguingly exhibited that PAOS promoted the communities of bacteria producing short-chain fatty acids (SCFAs), whereas attenuating lipopolysaccharides (LPS)-producing ones that favored inflammatory tolerance. Collectively, balancing the intestinal bacterial communities by PAOS, which favored anabolism but suppressed inflammatory responses, contributed substantially to the glycemia improvement of PAOS in DM mice. Accordingly, PAOS might function as complementary and alternative medicine for DM.
Collapse
Affiliation(s)
- Kaimin Lu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
- Pharmacy Research Center, Binzhou Medical University, Yantai 264003, China
| | - Yufei He
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Chuanfang Wu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
- Correspondence: (C.W.); (J.B.); Tel.: +86-28-8541-5171 (J.B.)
| | - Jinku Bao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
- Correspondence: (C.W.); (J.B.); Tel.: +86-28-8541-5171 (J.B.)
| |
Collapse
|
23
|
Venter C, Meyer RW, Greenhawt M, Pali-Schöll I, Nwaru B, Roduit C, Untersmayr E, Adel-Patient K, Agache I, Agostoni C, Akdis CA, Feeney M, Hoffmann-Sommergruber K, Lunjani N, Grimshaw K, Reese I, Smith PK, Sokolowska M, Vassilopoulou E, Vlieg-Boerstra B, Amara S, Walter J, O'Mahony L. Role of dietary fiber in promoting immune health-An EAACI position paper. Allergy 2022; 77:3185-3198. [PMID: 35801383 DOI: 10.1111/all.15430] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 06/27/2022] [Accepted: 07/04/2022] [Indexed: 01/28/2023]
Abstract
Microbial metabolism of specific dietary components, such as fiber, contributes to the sophisticated inter-kingdom dialogue in the gut that maintains a stable environment with important beneficial physiological, metabolic, and immunological effects on the host. Historical changes in fiber intake may be contributing to the increase of allergic and hypersensitivity disorders as fiber-derived metabolites are evolutionarily hardwired into the molecular circuitry governing immune cell decision-making processes. In this review, we highlight the importance of fiber as a dietary ingredient, its effects on the microbiome, its effects on immune regulation, the importance of appropriate timing of intervention to target any potential window of opportunity, and potential mechanisms for dietary fibers in the prevention and management of allergic diseases. In addition, we review the human studies examining fiber or prebiotic interventions on asthma and respiratory outcomes, allergic rhinitis, atopic dermatitis, and overall risk of atopic disorders. While exposures, interventions, and outcomes were too heterogeneous for meta-analysis, there is significant potential for using fiber in targeted manipulations of the gut microbiome and its metabolic functions in promoting immune health.
Collapse
Affiliation(s)
- Carina Venter
- Section of Allergy and Immunology, University of Colorado School of Medicine, Aurora, Colorado, USA.,Children's Hospital Colorado, Aurora, Colorado, USA
| | | | - Matthew Greenhawt
- Section of Allergy and Immunology, University of Colorado School of Medicine, Aurora, Colorado, USA.,Children's Hospital Colorado, Aurora, Colorado, USA
| | - Isabella Pali-Schöll
- Comparative Medicine, Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna, Vienna, Austria
| | - Bright Nwaru
- Krefting Research Centre, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Caroline Roduit
- University Children's Hospital Zurich, Zurich, Switzerland.,Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland
| | - Eva Untersmayr
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Karine Adel-Patient
- Université Paris-Saclay, CEA, INRAE, UMR MTS/SPI/Laboratoire d'Immuno-Allergie Alimentaire (LIAA), INRA, CEA, Université Paris Saclay, Gif sur Yvette Cedex, France
| | | | - Carlo Agostoni
- Pediatric Unit, De Marchi Clinic, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy.,Dipartimento di Scienze Cliniche e di Comunita, Universita' degli Studi, Milan, Italy
| | - Cezmi A Akdis
- Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland.,Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Mary Feeney
- Division of Asthma, Allergy and Lung Biology, Department of Paediatric Allergy, King's College London, London, UK.,Guy's & St Thomas' Hospital, London, UK
| | - Karin Hoffmann-Sommergruber
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Nonhlanhla Lunjani
- APC Microbiome Ireland, National University of Ireland, Cork, Ireland.,University of Cape Town, Cape Town, South Africa
| | - Kate Grimshaw
- Dietetic Department, Salford Royal NHS Foundation Trust, Salford, UK
| | - Imke Reese
- Private Practice for Dietary Advice and Nutrition Therapy, Munich, Germany
| | - Peter K Smith
- School of Medicine, Griffith University, Southport, Australia
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Emilia Vassilopoulou
- Department of Nutritonal Sciences and Dietetics, International Hellenic University, Thessaloniki, Greece
| | - Berber Vlieg-Boerstra
- OLVG, Department of Paediatrics, Amsterdam, the Netherlands.,Rijnstate Hospital, Department of Paediatrics, Arnhem, The Netherlands
| | - Shriya Amara
- Undergraduate, University College Los Angeles, Los Angeles, California, USA
| | - Jens Walter
- APC Microbiome Ireland, National University of Ireland, Cork, Ireland.,Department of Medicine, National University of Ireland, Cork, Ireland.,School of Microbiology, National University of Ireland, Cork, Ireland
| | - Liam O'Mahony
- APC Microbiome Ireland, National University of Ireland, Cork, Ireland.,Department of Medicine, National University of Ireland, Cork, Ireland.,School of Microbiology, National University of Ireland, Cork, Ireland
| |
Collapse
|
24
|
Integrated Multi-Omics Analysis Reveals Differential Effects of Fructo-Oligosaccharides (FOS) Supplementation on the Human Gut Ecosystem. Int J Mol Sci 2022; 23:ijms231911728. [PMID: 36233028 PMCID: PMC9569659 DOI: 10.3390/ijms231911728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/28/2022] Open
Abstract
Changes in the gut ecosystem, including the microbiome and the metabolome, and the host immune system after fructo-oligosaccharide (FOS) supplementation were evaluated. The supplementation of FOS showed large inter-individual variability in the absolute numbers of fecal bacteria and an increase in Bifidobacterium. The fecal metabolome analysis revealed individual variability in fructose utilization in response to FOS supplementation. In addition, immunoglobulin A(IgA) tended to increase upon FOS intake, and peripheral blood monocytes significantly decreased upon FOS intake and kept decreasing in the post-FOS phase. Further analysis using a metagenomic approach showed that the differences could be at least in part due to the differences in gene expressions of enzymes that are involved in the fructose metabolism pathway. While the study showed individual differences in the expected health benefits of FOS supplementation, the accumulation of “personalized” knowledge of the gut ecosystem with its genetic expression may enable effective instructions on prebiotic consumption to optimize health benefits for individuals in the future.
Collapse
|
25
|
Bergandi L, Flutto T, Valentini S, Thedy L, Pramotton R, Zenato S, Silvagno F. Whey Derivatives and Galactooligosaccharides Stimulate the Wound Healing and the Function of Human Keratinocytes through the NF-kB and FOXO-1 Signaling Pathways. Nutrients 2022; 14:nu14142888. [PMID: 35889845 PMCID: PMC9319648 DOI: 10.3390/nu14142888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 02/04/2023] Open
Abstract
Skin repair requires the activation of keratinocytes and is mediated by controlled inflammation and cell migration and proliferation, ending with the regeneration of well-differentiated cell layers. Whey derivatives contain galactooligosaccharides (GOS), which have potential beneficial effects on wound healing due to their activity as toll-like receptor ligands, although their direct nonprebiotic effects in the skin have not yet been described. In this study, we investigated the effects of different whey-derived products and purified GOS on a human keratinocyte cell line. We found that the inflammatory cytokine interleukin-8 (IL-8) was upregulated by nuclear factor kappa B (NF-kB) signaling triggered by whey derivatives and GOS and that wound healing was accelerated by promoting cell migration and the loss of E-cadherin in the absence of epithelial–mesenchymal transition. Interestingly, the treatments enhanced the mitochondrial function in association with the translocation of the Forkhead Box O1 (FOXO-1) transcription factor. Finally, we detected the increased expression of the differentiation markers induced by GOS and whey derivatives. All together, our results show that GOS-containing products can promote wound closure and skin health by direct activity on keratinocyte functions. Among the preparations tested, the fermented compound produced by autochthonous microorganisms was the most active in modulating keratinocyte activity, supporting the biological value of whey derivatives for health.
Collapse
Affiliation(s)
| | - Tania Flutto
- Institut Agricole Régional, 11100 Aosta, Italy; (T.F.); (S.V.); (L.T.); (R.P.); (S.Z.)
| | - Sabina Valentini
- Institut Agricole Régional, 11100 Aosta, Italy; (T.F.); (S.V.); (L.T.); (R.P.); (S.Z.)
| | - Laura Thedy
- Institut Agricole Régional, 11100 Aosta, Italy; (T.F.); (S.V.); (L.T.); (R.P.); (S.Z.)
| | - Rita Pramotton
- Institut Agricole Régional, 11100 Aosta, Italy; (T.F.); (S.V.); (L.T.); (R.P.); (S.Z.)
| | - Simona Zenato
- Institut Agricole Régional, 11100 Aosta, Italy; (T.F.); (S.V.); (L.T.); (R.P.); (S.Z.)
| | - Francesca Silvagno
- Department of Oncology, University of Torino, 10126 Torino, Italy;
- Correspondence:
| |
Collapse
|
26
|
Wang J, Chen MS, Wang RS, Hu JQ, Liu S, Wang YYF, Xing XL, Zhang BW, Liu JM, Wang S. Current Advances in Structure-Function Relationships and Dose-Dependent Effects of Human Milk Oligosaccharides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6328-6353. [PMID: 35593935 DOI: 10.1021/acs.jafc.2c01365] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
HMOs (human milk oligosaccharides) are the third most important nutrient in breast milk. As complex glycans, HMOs play an important role in regulating neonatal intestinal immunity, resisting viral and bacterial infections, displaying anti-inflammatory characteristics, and promoting brain development. Although there have been some previous reports of HMOs, a detailed literature review summarizing the structure-activity relationships and dose-dependent effects of HMOs is lacking. Hence, after introducing the structures and synthetic pathways of HMOs, this review summarizes and categorizes identified structure-function relationships of HMOs. Differential mechanisms of different structural HMOs utilization by microorganisms are summarized. This review also emphasizes the recent advances in the interactions between different health benefits and the variance of dosage effect based on in vitro cell tests, animal experiments, and human intervention studies. The potential relationships between the chemical structure, the dosage selection, and the physiological properties of HMOs as functional foods are vital for further understanding of HMOs and their future applications.
Collapse
Affiliation(s)
- Jin Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, No. 94 Weijin Road, Tianjin 300071, China
| | - Meng-Shan Chen
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, No. 94 Weijin Road, Tianjin 300071, China
| | - Rui-Shan Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, No. 94 Weijin Road, Tianjin 300071, China
| | - Jia-Qiang Hu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, No. 94 Weijin Road, Tianjin 300071, China
| | - Shuang Liu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, No. 94 Weijin Road, Tianjin 300071, China
| | - Yuan-Yi-Fei Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, No. 94 Weijin Road, Tianjin 300071, China
| | - Xiao-Long Xing
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, No. 94 Weijin Road, Tianjin 300071, China
| | - Bo-Wei Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, No. 94 Weijin Road, Tianjin 300071, China
| | - Jing-Min Liu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, No. 94 Weijin Road, Tianjin 300071, China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, No. 94 Weijin Road, Tianjin 300071, China
| |
Collapse
|
27
|
Roselli M, Maruszak A, Grimaldi R, Harthoorn L, Finamore A. Galactooligosaccharide Treatment Alleviates DSS-Induced Colonic Inflammation in Caco-2 Cell Model. Front Nutr 2022; 9:862974. [PMID: 35495925 PMCID: PMC9047546 DOI: 10.3389/fnut.2022.862974] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/04/2022] [Indexed: 12/19/2022] Open
Abstract
The biological activities of dietary bioactive polysaccharides have been largely explored. Studies on the immunomodulating effects of oligosaccharides and polysaccharides have shown that they are able to modulate innate immunity. Prebiotics are a class of poorly digested carbohydrates that are mainly produced from dietary fibers, which are carbohydrate polymers with ten or more monomeric units as defined by the Codex Alimentarius Commission in 2009. Considering the capacity of prebiotics in reducing gut inflammation, the aim of this study was to investigate the anti-inflammatory activity of galactooligosaccharide (Bimuno® GOS) in an in vitro model of ulcerative colitis (UC)-like inflamed intestinal cells. Differentiated Caco-2 cells were exposed to 2 % dextran-sulfate-sodium salt (DSS) to induce inflammation, and then with different concentrations of Bimuno GOS (1-1,000 μg/ml). Cell monolayer permeability, tight- and adherent junction protein distribution, pro-inflammatory cytokine secretion, and NF-kB cascade were assessed. Bimuno GOS at different concentrations, while not affecting cell monolayer permeability, was shown to counteract UC-like intestinal inflammatory responses and damages induced by DSS. Indeed, Bimuno GOS was able to counteract the detrimental effects of DSS on cell permeability, determined by transepithelial electrical resistance, phenol red apparent permeability, and tight- and adherent junction protein distribution. Furthermore, Bimuno GOS inhibited the DSS-induced NF-kB nuclear translocation and pro-inflammatory cytokine secretion. Further analyses showed that Bimuno GOS was able to revert the expression levels of most of the proteins involved in the NF-kB cascade to control levels. Thus, the prebiotic Bimuno GOS can be a safe and effective way to modulate the gut inflammatory state through NF-kB pathway modulation, and could possibly further improve efficacy in inducing remission of UC.
Collapse
Affiliation(s)
- Marianna Roselli
- Research Centre for Food and Nutrition, CREA (Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria), Rome, Italy
| | | | | | | | - Alberto Finamore
- Research Centre for Food and Nutrition, CREA (Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria), Rome, Italy
| |
Collapse
|
28
|
Eindor-Abarbanel A, Healey GR, Jacobson K. Therapeutic Advances in Gut Microbiome Modulation in Patients with Inflammatory Bowel Disease from Pediatrics to Adulthood. Int J Mol Sci 2021; 22:ijms222212506. [PMID: 34830388 PMCID: PMC8622771 DOI: 10.3390/ijms222212506] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 12/12/2022] Open
Abstract
There is mounting evidence that the gut microbiota plays an important role in the pathogenesis of inflammatory bowel disease (IBD). For the past decade, high throughput sequencing-based gut microbiome research has identified characteristic shifts in the composition of the intestinal microbiota in patients with IBD, suggesting that IBD results from alterations in the interactions between intestinal microbes and the host’s mucosal immune system. These studies have been the impetus for the development of new therapeutic approaches targeting the gut microbiome, such as nutritional therapies, probiotics, fecal microbiota transplant and beneficial metabolic derivatives. Innovative technologies can further our understanding of the role the microbiome plays as well as help to evaluate how the different approaches in microbiome modulation impact clinical responses in adult and pediatric patients. In this review, we highlight important microbiome studies in patients with IBD and their response to different microbiome modulation therapies, and describe the differences in therapeutic response between pediatric and adult patient cohorts.
Collapse
Affiliation(s)
- Adi Eindor-Abarbanel
- Department of Pediatrics, British Columbia’s Children’s Hospital, Vancouver, BC V6H 3N1, Canada; (A.E.-A.); (G.R.H.)
- Division of Gastroenterology, Hepatology and Nutrition, British Columbia’s Children’s Hospital, Vancouver, BC V6H 3N1, Canada
- BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
- Division of Gastroenterology, Hepatology and Nutrition, Yitzhak Shamir Medical Center, Affiliated to Tel Aviv University, Beer-Yaakov 7033001, Israel
| | - Genelle R. Healey
- Department of Pediatrics, British Columbia’s Children’s Hospital, Vancouver, BC V6H 3N1, Canada; (A.E.-A.); (G.R.H.)
- Division of Gastroenterology, Hepatology and Nutrition, British Columbia’s Children’s Hospital, Vancouver, BC V6H 3N1, Canada
- BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Kevan Jacobson
- Department of Pediatrics, British Columbia’s Children’s Hospital, Vancouver, BC V6H 3N1, Canada; (A.E.-A.); (G.R.H.)
- Division of Gastroenterology, Hepatology and Nutrition, British Columbia’s Children’s Hospital, Vancouver, BC V6H 3N1, Canada
- BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Correspondence:
| |
Collapse
|
29
|
Anti-Inflammatory Properties of Fructo-Oligosaccharides in a Calf Lung Infection Model and in Mannheimia haemolytica-Infected Airway Epithelial Cells. Nutrients 2021; 13:nu13103514. [PMID: 34684515 PMCID: PMC8537102 DOI: 10.3390/nu13103514] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/02/2021] [Accepted: 10/04/2021] [Indexed: 01/18/2023] Open
Abstract
Emerging antimicrobial-resistant pathogens highlight the importance of developing novel interventions. Here, we investigated the anti-inflammatory properties of Fructo-oligosaccharides (FOS) in calf lung infections and in airway epithelial cells stimulated with pathogens, and/or bacterial components. During a natural exposure, 100 male calves were fed milk replacer with or without FOS for 8 weeks. Then, immune parameters and cytokine/chemokine levels in the bronchoalveolar lavage fluid (BALF) and blood were measured, and clinical scores were investigated. Calf primary bronchial epithelial cells (PBECs) and human airway epithelial cells (A549) were treated with Mannheimia haemolytica, lipopolysaccharides (LPS), and/or flagellin, with or without FOS pretreatment. Thereafter, the cytokine/chemokine levels and epithelial barrier function were examined. Relative to the control (naturally occurring lung infections), FOS-fed calves had greater macrophage numbers in BALF and lower interleukin (IL)-8, IL-6, and IL-1β concentrations in the BALF and blood. However, FOS did not affect the clinical scores. At slaughter, FOS-fed calves had a lower severity of lung lesions compared to the control. Ex vivo, FOS prevented M. haemolytica-induced epithelial barrier dysfunction. Moreover, FOS reduced M. haemolytica- and flagellin-induced (but not LPS-induced) IL-8, TNF-α, and IL-6 release in PBECs and A549 cells. Overall, FOS had anti-inflammatory properties during the natural incidence of lung infections but had no effects on clinical symptoms.
Collapse
|
30
|
van Daal MT, Folkerts G, Garssen J, Braber S. Pharmacological Modulation of Immune Responses by Nutritional Components. Pharmacol Rev 2021; 73:198-232. [PMID: 34663688 DOI: 10.1124/pharmrev.120.000063] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The incidence of noncommunicable diseases (NCDs) has increased over the last few decades, and one of the major contributors to this is lifestyle, especially diet. High intake of saturated fatty acids and low intake of dietary fiber is linked to an increase in NCDs. Conversely, a low intake of saturated fatty acids and a high intake of dietary fiber seem to have a protective effect on general health. Several mechanisms have been identified that underlie this phenomenon. In this review, we focus on pharmacological receptors, including the aryl hydrocarbon receptor, binding partners of the retinoid X receptor, G-coupled protein receptors, and toll-like receptors, which can be activated by nutritional components and their metabolites. Depending on the nutritional component and the receptors involved, both proinflammatory and anti-inflammatory effects occur, leading to an altered immune response. These insights may provide opportunities for the prevention and treatment of NCDs and their inherent (sub)chronic inflammation. SIGNIFICANCE STATEMENT: This review summarizes the reported effects of nutritional components and their metabolites on the immune system through manipulation of specific (pharmacological) receptors, including the aryl hydrocarbon receptor, binding partners of the retinoid X receptor, G-coupled protein receptors, and toll-like receptors. Nutritional components, such as vitamins, fibers, and unsaturated fatty acids are able to resolve inflammation, whereas saturated fatty acids tend to exhibit proinflammatory effects. This may aid decision makers and scientists in developing strategies to decrease the incidence of noncommunicable diseases.
Collapse
Affiliation(s)
- Marthe T van Daal
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG, Utrecht, The Netherlands (M.T.v.D., G.F., J.G., S.B.); and Danone Nutricia Research, 3584 CT, Utrecht, The Netherlands (J.G.)
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG, Utrecht, The Netherlands (M.T.v.D., G.F., J.G., S.B.); and Danone Nutricia Research, 3584 CT, Utrecht, The Netherlands (J.G.)
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG, Utrecht, The Netherlands (M.T.v.D., G.F., J.G., S.B.); and Danone Nutricia Research, 3584 CT, Utrecht, The Netherlands (J.G.)
| | - Saskia Braber
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG, Utrecht, The Netherlands (M.T.v.D., G.F., J.G., S.B.); and Danone Nutricia Research, 3584 CT, Utrecht, The Netherlands (J.G.)
| |
Collapse
|
31
|
Toutounchi NS, Braber S, Hogenkamp A, Varasteh S, Cai Y, Wehkamp T, Tims S, Leusink-Muis T, van Ark I, Wiertsema S, Stahl B, Kraneveld AD, Garssen J, Folkerts G, van’t Land B. Human Milk Oligosaccharide 3'-GL Improves Influenza-Specific Vaccination Responsiveness and Immunity after Deoxynivalenol Exposure in Preclinical Models. Nutrients 2021; 13:3190. [PMID: 34579070 PMCID: PMC8466816 DOI: 10.3390/nu13093190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/03/2021] [Accepted: 09/10/2021] [Indexed: 01/15/2023] Open
Abstract
Deoxynivalenol (DON), a highly prevalent mycotoxin food contaminant, is known to have immunotoxic effects. In the current study, the potential of dietary interventions with specific mixtures of trans-galactosyl-oligosaccharides (TOS) to alleviate these effects were assessed in a murine influenza vaccination model. Vaccine-specific immune responses were measured in C57Bl/6JOlaHsd mice fed diets containing DON, TOS or a combination, starting 2 weeks before the first vaccination. The direct effects of TOS and its main oligosaccharide, 3'-galactosyl-lactose (3'-GL), on DON-induced damage were studied in Caco-2 cells, as an in vitro model of the intestinal epithelial barrier. Exposure to DON significantly reduced vaccine-specific immune responses and the percentages of Tbet+ Th1 cells and B cells in the spleen. DON significantly altered epithelial structure and integrity in the ileum and reduced the SCFA levels in the cecum. Adding TOS into DON-containing diets significantly improved vaccine-specific immune responses, restored the immune cell balance in the spleen and increased SCFA concentrations in the cecum. Incubating Caco-2 cells with TOS and 3'-GL in vitro further confirmed their protective effects against DON-induced barrier disruption, supporting immune modulation. Overall, dietary intervention with TOS can attenuate the adverse effects of DON on Th1-mediated immune responses and gut homeostasis. These beneficial properties might be linked to the high levels of 3'-GL in TOS.
Collapse
Affiliation(s)
- Negisa Seyed Toutounchi
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands; (N.S.T.); (S.B.); (A.H.); (S.V.); (Y.C.); (T.L.-M.); (I.v.A.); (B.S.); (A.D.K.); (J.G.); (G.F.)
| | - Saskia Braber
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands; (N.S.T.); (S.B.); (A.H.); (S.V.); (Y.C.); (T.L.-M.); (I.v.A.); (B.S.); (A.D.K.); (J.G.); (G.F.)
| | - Astrid Hogenkamp
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands; (N.S.T.); (S.B.); (A.H.); (S.V.); (Y.C.); (T.L.-M.); (I.v.A.); (B.S.); (A.D.K.); (J.G.); (G.F.)
| | - Soheil Varasteh
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands; (N.S.T.); (S.B.); (A.H.); (S.V.); (Y.C.); (T.L.-M.); (I.v.A.); (B.S.); (A.D.K.); (J.G.); (G.F.)
| | - Yang Cai
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands; (N.S.T.); (S.B.); (A.H.); (S.V.); (Y.C.); (T.L.-M.); (I.v.A.); (B.S.); (A.D.K.); (J.G.); (G.F.)
| | - Tjalling Wehkamp
- Danone Nutricia Research, 3584 CG Utrecht, The Netherlands; (T.W.); (S.T.); (S.W.)
| | - Sebastian Tims
- Danone Nutricia Research, 3584 CG Utrecht, The Netherlands; (T.W.); (S.T.); (S.W.)
| | - Thea Leusink-Muis
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands; (N.S.T.); (S.B.); (A.H.); (S.V.); (Y.C.); (T.L.-M.); (I.v.A.); (B.S.); (A.D.K.); (J.G.); (G.F.)
| | - Ingrid van Ark
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands; (N.S.T.); (S.B.); (A.H.); (S.V.); (Y.C.); (T.L.-M.); (I.v.A.); (B.S.); (A.D.K.); (J.G.); (G.F.)
| | - Selma Wiertsema
- Danone Nutricia Research, 3584 CG Utrecht, The Netherlands; (T.W.); (S.T.); (S.W.)
| | - Bernd Stahl
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands; (N.S.T.); (S.B.); (A.H.); (S.V.); (Y.C.); (T.L.-M.); (I.v.A.); (B.S.); (A.D.K.); (J.G.); (G.F.)
- Danone Nutricia Research, 3584 CG Utrecht, The Netherlands; (T.W.); (S.T.); (S.W.)
| | - Aletta D. Kraneveld
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands; (N.S.T.); (S.B.); (A.H.); (S.V.); (Y.C.); (T.L.-M.); (I.v.A.); (B.S.); (A.D.K.); (J.G.); (G.F.)
| | - Johan Garssen
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands; (N.S.T.); (S.B.); (A.H.); (S.V.); (Y.C.); (T.L.-M.); (I.v.A.); (B.S.); (A.D.K.); (J.G.); (G.F.)
- Danone Nutricia Research, 3584 CG Utrecht, The Netherlands; (T.W.); (S.T.); (S.W.)
| | - Gert Folkerts
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands; (N.S.T.); (S.B.); (A.H.); (S.V.); (Y.C.); (T.L.-M.); (I.v.A.); (B.S.); (A.D.K.); (J.G.); (G.F.)
| | - Belinda van’t Land
- Danone Nutricia Research, 3584 CG Utrecht, The Netherlands; (T.W.); (S.T.); (S.W.)
- Center of Translational Immunology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
32
|
Mulberry leaf-derived polysaccharide modulates the immune response and gut microbiota composition in immunosuppressed mice. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104545] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
33
|
Asadpoor M, Varasteh S, Pieters RJ, Folkerts G, Braber S. Differential effects of oligosaccharides on the effectiveness of ampicillin against Escherichia coli in vitro. PHARMANUTRITION 2021. [DOI: 10.1016/j.phanu.2021.100264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
34
|
Periplaneta americana Oligosaccharides Exert Anti-Inflammatory Activity through Immunoregulation and Modulation of Gut Microbiota in Acute Colitis Mice Model. Molecules 2021; 26:molecules26061718. [PMID: 33808686 PMCID: PMC8003390 DOI: 10.3390/molecules26061718] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 12/27/2022] Open
Abstract
The incidence and prevalence of inflammatory bowel disorders (IBD) are increasing around the world due to bacterial infection, abnormal immune response, etc. The conventional medicines for IBD treatment possess serious side effects. Periplaneta americana (P. americana), a traditional Chinese medicine, has been used to treat arthritis, fever, aches, inflammation, and other diseases. This study aimed to evaluate the anti-inflammatory effects of oligosaccharides from P. Americana (OPA) and its possible mechanisms in vivo. OPA were purified and biochemical characterization was analyzed by HPGPC, HPLC, FT-IR, and GC–MS. Acute colitis mice model was established, the acute toxicity and anti-inflammatory activity were tested in vivo. The results showed OPA with molecular mass of 1.0 kDa were composed of 83% glucose, 6% galactose, 11% xylose, and the backbone was (1→4)-Glcp. OPA had potent antioxidant activities in vitro and significantly alleviated the clinical symptoms of colitis, relieved colon damage without toxic side effects in vivo. OPA exhibited anti-inflammatory activity by regulating Th1/Th2, reducing oxidative stress, preserving intestinal barrier integrity, and inhibiting TLR4/MAPK/NF-κB pathway. Moreover, OPA protected gut by increasing microbial diversity and beneficial bacteria, and reducing pathogenic bacteria in feces. OPA might be the candidate of complementary and alternative medicines of IBD with low-cost and high safety.
Collapse
|
35
|
Hernández-Chirlaque C, Aranda CJ, Ocón B, Polo J, Martínez-Augustin O, Sánchez de Medina F. Immunoregulatory Effects of Porcine Plasma Protein Concentrates on Rat Intestinal Epithelial Cells and Splenocytes. Animals (Basel) 2021; 11:ani11030807. [PMID: 33805697 PMCID: PMC7999696 DOI: 10.3390/ani11030807] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Blood contains proteins which have interest as products that may regulate immune function. For this reason some protein-based products are currently used as nutritional supplements for animals, for instance two porcine concentrates, spray dried serum (SDS), and an immunoglobulin concentrate (IC). These products have shown to protect against colonic inflammation in rodents. In the present study we characterize the ability of these products to modulate immune function in isolated cells, namely intestinal epithelial cells (IEC18 cells) and rat spleen cells. Our data indicate that both porcine protein concentrates indeed alter immune cell function, based on the secretion of the modulators known as cytokines. In intestinal epithelial IEC18 cells they promoted the secretion of GROα and MCP-1 cytokines. In spleen cells they mainly inhibited the production of TNF, a key proinflammatory cytokine. In addition, the IC product augmented the release of IL-10, an anti-inflammatory cytokine. Taken together, our data indicate that the immunomodulatory effects observed in vivo are consistent with the direct actions of the protein concentrates on epithelial cells, T lymphocytes, and monocytes. Abstract Serum protein concentrates have been shown to exert in vivo anti-inflammatory effects. Specific effects on different cell types and their mechanism of action remain unraveled. We aimed to characterize the immunomodulatory effect of two porcine plasma protein concentrates, spray dried serum (SDS) and an immunoglobulin concentrate (IC), currently used as animal nutritional supplements with established in vivo immunomodulatory properties. Cytokine production by the intestinal epithelial cell line IEC18 and by primary cultures of rat splenocytes was studied. The molecular pathways involved were explored with specific inhibitors and gene knockdown. Our results indicate that both products induced GROα and MCP-1 production in IEC18 cells by a MyD88/NF-κB-dependent mechanism. Inhibition of TNF production was observed in rat primary splenocyte cultures. The immunoglobulin concentrate induced IL-10 expression in primary splenocytes and lymphocytes. The effect on TNF was independent of IL-10 production or the stimulation of NF-kB, MAPKs, AKT, or RAGE. In conclusion, SDS and IC directly regulate intestinal and systemic immune response in murine intestinal epithelial cells and in T lymphocytes and monocytes.
Collapse
Affiliation(s)
- Cristina Hernández-Chirlaque
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, CIBERehd, Instituto de Investigación Biosanitaria ibs.GRANADA, University of Granada, 18071 Granada, Spain; (C.H.-C.); (C.J.A.)
| | - Carlos J. Aranda
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, CIBERehd, Instituto de Investigación Biosanitaria ibs.GRANADA, University of Granada, 18071 Granada, Spain; (C.H.-C.); (C.J.A.)
| | - Borja Ocón
- Department of Pharmacology, CIBERehd, School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADA, University of Granada, 18071 Granada, Spain; (B.O.); (F.S.d.M.)
| | | | - Olga Martínez-Augustin
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, CIBERehd, Instituto de Investigación Biosanitaria ibs.GRANADA, University of Granada, 18071 Granada, Spain; (C.H.-C.); (C.J.A.)
- Correspondence: ; Tel.: +34-958-241-305
| | - Fermín Sánchez de Medina
- Department of Pharmacology, CIBERehd, School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADA, University of Granada, 18071 Granada, Spain; (B.O.); (F.S.d.M.)
| |
Collapse
|
36
|
Castro-Alves VC, Nascimento JROD. Size matters: TLR4-mediated effects of α-(1,5)-linear arabino-oligosaccharides in macrophage-like cells depend on their degree of polymerization. Food Res Int 2021; 141:110093. [PMID: 33641969 DOI: 10.1016/j.foodres.2020.110093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 12/09/2020] [Accepted: 12/27/2020] [Indexed: 02/08/2023]
Abstract
Linear arabino-oligosaccharides (LAOS) produced from controlled enzymatic hydrolysis of arabinans from sugar beet are well-known because of their chain-length dependent prebiotic effects. However, it is not clear if these α-(1,5)-linked arabinose oligosaccharides can interact directly with immune system cells, as well as if its degree of polymerization (DP) influences possible biological effects. Four high purity LAOS with distinct DP were tested in macrophage-like cells exposed or not to LPS. Results shown that LAOS interact with Toll-like receptor (TLR) 4 in a chain length-dependent manner. LAOS with higher DP induce stimulatory effects mainly through the TLR4/MyD88 pathway, thereby enhancing the release of tumor necrosis factor alpha (TNF-α), interleukin (IL-) 1β, 6, 12, and chemokines including MCP-1, RANTES, IL-8, and IP-10. Notably, LAOS with lower DP appears to have an opposite effect to those counterparts with higher DP, as they does not induce the secretion of cytokines and chemokines in macrophages-like cells, while also inhibit TLR4-mediated effects induced by both lipopolysaccharide and LAOS with higher DP. These findings provide not only insights into potential biological effects of LAOS, but also reveal that controlled enzymatic hydrolysis of sugar beet arabinans may lead to dietary oligosaccharides with desired biological properties.
Collapse
Affiliation(s)
- Victor Costa Castro-Alves
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil; Food Research Center (FoRC), Research, Innovation and Dissemination Centers, São Paulo Research Foundation (CEPID-FAPESP), São Paulo, Brazil.
| | - João Roberto Oliveira do Nascimento
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil; Food Research Center (FoRC), Research, Innovation and Dissemination Centers, São Paulo Research Foundation (CEPID-FAPESP), São Paulo, Brazil; Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
37
|
Luo L, Ma F, Wang Q. Response of the ileum transcriptome to probiotic and fructo-oligosaccharides in Taiping chicken. J Appl Genet 2021; 62:307-317. [PMID: 33638812 DOI: 10.1007/s13353-021-00624-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/18/2021] [Accepted: 02/20/2021] [Indexed: 11/28/2022]
Abstract
Taiping chicken is indigenous chickens (Gallus gallus domesticus), which was one of China's excellent poultry species, is an excellent chicken in Gansu Province. As the problems caused by the overuse of antibiotics become more and more severe, people begin to look for ways to replace them. Among them, probiotics and fructo-oligosaccharides are the research hotspot to replace antibiotics. Probiotics and fructo-oligosaccharides can promote the absorption of nutrients, improve the ability to resist and prevent diseases, and improve the intestinal tissue morphology. In this study, we used RNA-Seq analysis to study the gene expression in ileum tissue after Taiping chicken was given probiotics and fructo-oligosaccharides. In total, 67 genes were differentially expressed in the ileum. Ten of the differently expressed genes were further validated by RT-qPCR. In addition, these differentially expressed genes were mainly enriched to tyrosine metabolism, AGE-RAGE signaling pathway in diabetic complications, phenylalanine metabolism, and pyrimidine metabolism. The results which this study provides contribute to our understanding application of probiotics and fructo-oligosaccharides in indigenous chickens production and provide a theoretical basis for the genetic development of indigenous chickens.
Collapse
Affiliation(s)
- Lintong Luo
- College of Biological Engineering and Technology, Tianshui Normal University, South Xihe Road, Qinzhou District, Tianshui, 741000, Gansu Province, P. R. China
| | - Fang Ma
- College of Biological Engineering and Technology, Tianshui Normal University, South Xihe Road, Qinzhou District, Tianshui, 741000, Gansu Province, P. R. China.
| | - Qianning Wang
- College of Biological Engineering and Technology, Tianshui Normal University, South Xihe Road, Qinzhou District, Tianshui, 741000, Gansu Province, P. R. China
| |
Collapse
|
38
|
da Silva BP, Martino HSD, Tako E. Plant origin prebiotics affect duodenal brush border membrane functionality and morphology, in vivo ( Gallus Gallus). Food Funct 2021; 12:6157-6166. [PMID: 34079965 DOI: 10.1039/d1fo01159f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The intra-amniotic administration approach has been used to evaluate the effects of plant origin prebiotics on intestinal health and on brush border membrane functionality and morphology. Prebiotics are fermentable dietary fibers, which can positively affect the host by selectively stimulating the growth and activity of colon bacteria, thus improving intestinal health. The consumption of prebiotics increases digestive tract motility, which leads to hyperplasia and/or hypertrophy of intestinal cells, increasing nutrient digestive and absorptive surface area. This review collates information about the effects and relationship between prebiotic consumption on small intestinal brush border membrane functionality and morphology by utilizing the intra-amniotic administration approach. To date, research has shown that the intra-amniotic administration of prebiotics affects the expression of key brush border membrane functional proteins, intestinal surface area (villi height/width), and goblet cell number/size. These effects may improve brush border membrane functionality and digestive/absorptive capabilities.
Collapse
Affiliation(s)
| | | | - Elad Tako
- Department of Food Science, Cornell University, Ithaca, NY, USA 14853.
| |
Collapse
|
39
|
van Leeuwen SS, te Poele EM, Chatziioannou AC, Benjamins E, Haandrikman A, Dijkhuizen L. Goat Milk Oligosaccharides: Their Diversity, Quantity, and Functional Properties in Comparison to Human Milk Oligosaccharides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:13469-13485. [PMID: 33141570 PMCID: PMC7705968 DOI: 10.1021/acs.jafc.0c03766] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Human milk is considered the golden standard in infant nutrition. Free oligosaccharides in human milk provide important health benefits. These oligosaccharides function as prebiotics, immune modulators, and pathogen inhibitors and were found to improve barrier function in the gut. Infant formulas nowadays often contain prebiotics but lack the specific functions of human milk oligosaccharides (hMOS). Milk from domesticated animals also contains milk oligosaccharides but at much lower levels and with less diversity. Goat milk contains significantly more oligosaccharides (gMOS) than bovine (bMOS) or sheep (sMOS) milk and also has a larger diversity of structures. This review summarizes structural studies, revealing a diversity of up to 77 annotated gMOS structures with almost 40 structures fully characterized. Quantitative studies of goat milk oligosaccharides range from 60 to 350 mg/L in mature milk and from 200 to 650 mg/L in colostrum. These levels are clearly lower than in human milk (5-20 g/L) but higher than in other domesticated dairy animals, e.g., bovine (30-60 mg/L) and sheep (20-40 mg/L). Finally, the review focuses on demonstrated and potential functionalities of gMOS. Some studies have shown anti-inflammatory effects of mixtures enriched in gMOS. Goat MOS also display prebiotic potential, particularly in stimulating growth of bifidobacteria preferentially. Although functional studies of gMOS are still limited, several structures are also found in human milk and have known functions as immune modulators and pathogen inhibitors. In conclusion, goat milk constitutes a promising alternative source for milk oligosaccharides, which can be used in infant formula.
Collapse
Affiliation(s)
- Sander S. van Leeuwen
- Department
of Laboratory Medicine, Cluster Human Nutrition and Health, University Medical Center Groningen (UMCG), Hanzeplein 1, 9713 GZ Groningen, Netherlands
- E-mail:
| | | | | | | | | | - Lubbert Dijkhuizen
- CarbExplore
Research BV, 9747 AN Groningen, Netherlands
- Department
of Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology
Institute (GBB), University of Groningen, 9700 AB Groningen, Netherlands
| |
Collapse
|
40
|
Pujari R, Banerjee G. Impact of prebiotics on immune response: from the bench to the clinic. Immunol Cell Biol 2020; 99:255-273. [PMID: 32996638 DOI: 10.1111/imcb.12409] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 08/31/2020] [Accepted: 09/29/2020] [Indexed: 12/23/2022]
Abstract
Several preclinical and clinical studies have shown the immunomodulatory role exerted by prebiotics in regulating the immune response. In this review, we describe the mechanistic and clinical studies that decipher the cell signaling pathways implicated in the process. Prebiotic fibers are conventionally known to serve as substrate for probiotic commensal bacteria that release of short-chain fatty acids in the intestinal tract along with several other metabolites. Subsequently, they then act on the local as well as the systemic immune cells and the gut-associated epithelial cells, primarily through G-protein-coupled receptor-mediated pathways. However, other pathways including histone deacetylase inhibition and inflammasome pathway have also been implicated in regulating the immunomodulatory effect. The prebiotics can also induce a microbiota-independent effect by directly acting on the gut-associated epithelial and innate immune cells through the Toll-like receptors. The cumulative effect results in the maintenance of the epithelial barrier integrity and modulation of innate immunity through secretion of pro- and anti-inflammatory cytokines, switches in macrophage polarization and function, neutrophil recruitment and migration, dendritic cell and regulatory T-cell differentiation. Extending these in vitro and ex vivo observations, some prebiotics have been well investigated, with successful human and animal trials demonstrating the association between gut microbes and immunity biomarkers leading to improvement in health endpoints across populations. This review discusses scientific insights into the association between prebiotics, innate immunity and gut microbiome from in vitro to human oral intervention.
Collapse
Affiliation(s)
- Radha Pujari
- Innovation Centre, Tata Chemicals Ltd, Pune, Maharashtra, India
| | - Gautam Banerjee
- Innovation Centre, Tata Chemicals Ltd, Pune, Maharashtra, India
| |
Collapse
|
41
|
Fiber and Prebiotic Interventions in Pediatric Inflammatory Bowel Disease: What Role Does the Gut Microbiome Play? Nutrients 2020; 12:nu12103204. [PMID: 33092150 PMCID: PMC7589214 DOI: 10.3390/nu12103204] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 12/17/2022] Open
Abstract
The etiology of inflammatory bowel disease (IBD) is complex but is thought to be linked to an intricate interaction between the host’s immune system, resident gut microbiome and environment, i.e., diet. One dietary component that has a major impact on IBD risk and disease management is fiber. Fiber intakes in pediatric IBD patients are suboptimal and often lower than in children without IBD. Fiber also has a significant impact on beneficially shaping gut microbiota composition and functional capacity. The impact is likely to be particularly important in IBD patients, where various studies have demonstrated that an imbalance in the gut microbiome, referred to as dysbiosis, occurs. Microbiome-targeted therapeutics, such as fiber and prebiotics, have the potential to restore the balance in the gut microbiome and enhance host gut health and clinical outcomes. Indeed, studies in adult IBD patients demonstrate that fiber and prebiotics positively alter the microbiome and improve disease course. To date, no studies have been conducted to evaluate the therapeutic potential of fiber and prebiotics in pediatric IBD patients. Consequently, pediatric IBD specific studies that focus on the benefits of fiber and prebiotics on gut microbiome composition and functional capacity and disease outcomes are required.
Collapse
|
42
|
Ardalan ZS, Yao CK, Sparrow MP, Gibson PR. Review article: the impact of diet on ileoanal pouch function and on the pathogenesis of pouchitis. Aliment Pharmacol Ther 2020; 52:1323-1340. [PMID: 32955120 DOI: 10.1111/apt.16085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/30/2020] [Accepted: 08/24/2020] [Indexed: 12/09/2022]
Abstract
BACKGROUND There is expanding interest in the role that diet plays in ileoanal pouch function and in the pathogenesis of pouchitis. AIMS To present a narrative review of published literature regarding the relationship of diet with pouch function and the pathogenesis of pouchitis, and to provide potentially beneficial dietary strategies. METHODS Current relevant literature was summarised and critically examined. RESULTS Dietary components influence pouch function via their effect on upper gastrointestinal transit, small bowel water content and the structure and fermentative activity of the pouch microbiota. FODMAPs in fruits and vegetables appear to affect pouch function the most, with intake positively associated with increased stool frequency and reduced consistency. Dietary factors that influence the pathogenesis of pouchitis appear different and, at times, opposite to those better for optimising function. For example, risk of pouchitis appears to be inversely associated with intake of fruits. The food components mechanistically responsible for this observation are not known, but a rich supply of fermentable fibres and micronutrients in such foods might play a beneficial role via modulation of microbial community structure (such as increasing diversity and/or changing microbial communities to favour 'protective' over 'pathogenic' bacteria) and function and/or anti-inflammatory effects. CONCLUSION Available data are weak but suggest tailoring dietary recommendations according to pouch phenotype/behaviour and pouchitis risk might improve outcomes. More sophisticated dietary strategies that utilise the physiological and pathophysiological effects of dietary components on ileoanal pouches have potential to further improve outcomes. Well designed, adequately powered studies are required.
Collapse
Affiliation(s)
- Zaid S Ardalan
- Department of Gastroenterology, Alfred Health and Monash University, Melbourne, VIC, Australia
| | - Chu K Yao
- Department of Gastroenterology, Alfred Health and Monash University, Melbourne, VIC, Australia
| | - Miles P Sparrow
- Department of Gastroenterology, Alfred Health and Monash University, Melbourne, VIC, Australia
| | - Peter R Gibson
- Department of Gastroenterology, Alfred Health and Monash University, Melbourne, VIC, Australia
| |
Collapse
|
43
|
Johnson KVA, Burnet PWJ. Opposing effects of antibiotics and germ-free status on neuropeptide systems involved in social behaviour and pain regulation. BMC Neurosci 2020; 21:32. [PMID: 32698770 PMCID: PMC7374917 DOI: 10.1186/s12868-020-00583-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 07/07/2020] [Indexed: 12/16/2022] Open
Abstract
Background Recent research has revealed that the community of microorganisms inhabiting the gut affects brain development, function and behaviour. In particular, disruption of the gut microbiome during critical developmental windows can have lasting effects on host physiology. Both antibiotic exposure and germ-free conditions impact the central nervous system and can alter multiple aspects of behaviour. Social impairments are typically displayed by antibiotic-treated and germ-free animals, yet there is a lack of understanding of the underlying neurobiological changes. Since the μ-opioid, oxytocin and vasopressin systems are key modulators of mammalian social behaviour, here we investigate the effect of experimentally manipulating the gut microbiome on the expression of these pathways. Results We show that social neuropeptide signalling is disrupted in germ-free and antibiotic-treated mice, which may contribute to the behavioural deficits observed in these animal models. The most notable finding is the reduction in neuroreceptor gene expression in the frontal cortex of mice administered an antibiotic cocktail post-weaning. Additionally, the changes observed in germ-free mice were generally in the opposite direction to the antibiotic-treated mice. Conclusions Antibiotic treatment when young can impact brain signalling pathways underpinning social behaviour and pain regulation. Since antibiotic administration is common in childhood and adolescence, our findings highlight the potential adverse effects that antibiotic exposure during these key neurodevelopmental periods may have on the human brain, including the possible increased risk of neuropsychiatric conditions later in life. In addition, since antibiotics are often considered a more amenable alternative to germ-free conditions, our contrasting results for these two treatments suggest that they should be viewed as distinct models.
Collapse
Affiliation(s)
- Katerina V A Johnson
- Department of Experimental Psychology, University of Oxford, Radcliffe Observatory Quarter, Oxford, OX2 6GG, UK. .,Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, OX3 7JX, UK.
| | - Philip W J Burnet
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, OX3 7JX, UK
| |
Collapse
|
44
|
Maternal Supplementation of Food Ingredient (Prebiotic) or Food Contaminant (Mycotoxin) Influences Mucosal Immune System in Piglets. Nutrients 2020; 12:nu12072115. [PMID: 32708852 PMCID: PMC7400953 DOI: 10.3390/nu12072115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/08/2020] [Accepted: 07/15/2020] [Indexed: 12/29/2022] Open
Abstract
The early life period is crucial for the maturation of the intestinal barrier, its immune system, and a life-long beneficial host-microbiota interaction. The study aims to assess the impact of a beneficial dietary (short-chain fructooligosaccharides, scFOS) supplementation vs. a detrimental dietary environment (such as mycotoxin deoxynivalenol, DON) on offspring intestinal immune system developmental profiles. Sows were given scFOS-supplemented or DON-contaminated diets during the last 4 weeks of gestation, whereas force-feeding piglets with DON was performed during the first week of offspring life. Intestinal antigen-presenting cell (APC) subset frequency was analyzed by flow cytometry in the Peyer's patches and in lamina propria and the responsiveness of intestinal explants to toll-like receptor (TLR) ligands was performed using ELISA and qRT-PCR from post-natal day (PND) 10 until PND90. Perinatal exposure with scFOS did not affect the ontogenesis of APC. While it early induced inflammatory responses in piglets, scFOS further promoted the T regulatory response after TLR activation. Sow and piglet DON contamination decreased CD16+ MHCII+ APC at PND10 in lamina propria associated with IFNγ inflammation and impairment of Treg response. Our study demonstrated that maternal prebiotic supplementation and mycotoxin contamination can modulate the mucosal immune system responsiveness of offspring through different pathways.
Collapse
|
45
|
2'-fucosyllactose inhibits imiquimod-induced psoriasis in mice by regulating Th17 cell response via the STAT3 signaling pathway. Int Immunopharmacol 2020; 85:106659. [PMID: 32544868 DOI: 10.1016/j.intimp.2020.106659] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/25/2020] [Accepted: 05/31/2020] [Indexed: 12/21/2022]
Abstract
Psoriasis is a chronic immune-mediated inflammatory cutaneous disorder with Th17 cells and Th17-related cytokines playing an important role in its development. 2'-FL (2'-fucosyllactose), which makes up about 30% of all HMOs (human milk oligosaccharides) in blood type secretor positive maternal milk, plays an essential role in supporting aspects of immune development and regulation. To explore the immunomodulatory effect of 2'-FL in psoriasis, we employed the imiquimod (IMQ)-induced psoriasis-like mouse model. Our data showed that mice administered with 2'-FL exhibited attenuated skin damage and inflammation, characterized by significantly decreased erythema and thickness and reduced recruitment of pro-inflammatory cytokines, when compared to control mice. The alleviated skin inflammation in 2'-FL treated mice was associated with a reduced proportion of Th17 cells and decreased production of Th17-related cytokines. Furthermore, we have demonstrated that 2'-FL reduced the phosphorylation of STAT3 in the skin tissue from mice with IMQ stimulation, which could account for the decreasing recruitment of Th17 cells. In vitro studies showed that 2'-FL inhibited differentiation of Th17 cells, phosphorylation of STAT3, and RORγt mRNA levels in T cells under Th17 polarization. Our results indicate that 2'-FL ameliorates IMQ-induced psoriasis by inhibiting Th17 cell immune response and Th17-related cytokine secretion via modulation of the STAT3 signaling pathway.
Collapse
|
46
|
Serce Pehlevan O, Benzer D, Gursoy T, Karatekin G, Ovali F. Synbiotics use for preventing sepsis and necrotizing enterocolitis in very low birth weight neonates: a randomized controlled trial. Clin Exp Pediatr 2020; 63:226-231. [PMID: 32023397 PMCID: PMC7303425 DOI: 10.3345/cep.2019.00381] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 12/24/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Probiotics and prebiotics have strain-specific effects on the host. Synbiotics, a mixture of probiotics and prebiotics, are proposed to have more beneficial effects on the host than either agent has alone. PURPOSE We performed a randomized controlled trial to investigate the effect of Lactobacillus and Bifidobacterium together with oligosaccharides and lactoferrin on the development of necrotizing enterocolitis (NEC) or sepsis in very low birth weight neonates. METHODS Neonates with a gestational age ≤32 weeks and birth weight ≤1,500 g were enrolled. The study group received a combination of synbiotics and lactoferrin, whereas the control group received 1 mL of distilled water as placebo starting with the first feed until discharge. The outcome measures were the incidence of NEC stage ≥2 or late-onset cultureproven sepsis and NEC stage ≥2 or death. RESULTS Mean birth weight and gestational age of the study (n=104) and the control (n=104) groups were 1,197±235 g vs. 1,151±269 g and 29±1.9 vs. 28±2.2 weeks, respectively (P>0.05). Neither the incidence of NEC stage ≥2 or death, nor the incidence of NEC stage ≥2 or late-onset culture-proven sepsis differed between the study and control groups (5.8% vs. 5.9%, P=1; 26% vs. 21.2%, P=0.51). The only significant difference was the incidence of all stages of NEC (1.9% vs. 10.6%, P=0.019). CONCLUSION The combination of synbiotics and lactoferrin did not reduce NEC severity, sepsis, or mortality.
Collapse
Affiliation(s)
- Ozge Serce Pehlevan
- Neonatology Unit, Zeynep Kamil Maternity and Children's Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Derya Benzer
- Neonatology Unit, Zeynep Kamil Maternity and Children's Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Tugba Gursoy
- Neonatology Unit, Koc University School of Medicine, Istanbul, Turkey
| | - Guner Karatekin
- Neonatology Unit, Zeynep Kamil Maternity and Children's Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Fahri Ovali
- Neonatology Unit, Zeynep Kamil Maternity and Children's Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| |
Collapse
|
47
|
Del Fabbro S, Calder PC, Childs CE. Microbiota-independent immunological effects of non-digestible oligosaccharides in the context of inflammatory bowel diseases. Proc Nutr Soc 2020; 79:1-11. [PMID: 32345388 DOI: 10.1017/s0029665120006953] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The aim of the present paper is to review the effects of non-digestible oligosaccharides (NDO) on immunity, focusing on their microbiota-independent mechanisms of action, as well as to explore their potential beneficial role in inflammatory bowel diseases (IBD). IBD are chronic, inflammatory conditions of the gastrointestinal tract. Individuals with IBD have an aberrant immune response to commensal microbiota, resulting in extensive mucosal inflammation and increased intestinal permeability. NDO are prebiotic fibres well known for their role in supporting intestinal health through modulation of the gut microbiota. NDO reach the colon intact and are fermented by commensal bacteria, resulting in the production of SCFA with immunomodulatory properties. In disease states characterised by increased gut permeability, prebiotics may also bypass the gut barrier and directly interact with intestinal and systemic immune cells, as demonstrated in patients with IBD and in infants with an immature gut. In vitro models show that fructooligosaccharides, inulin and galactooligosaccharides exert microbiota-independent effects on immunity by binding to toll-like receptors on monocytes, macrophages and intestinal epithelial cells and by modulating cytokine production and immune cell maturation. Moreover, animal models and human supplementation studies demonstrate that some prebiotics, including inulin and lactulose, might reduce intestinal inflammation and IBD symptoms. Although there are convincing preliminary data to support NDO as immunomodulators in the management of IBD, their mechanisms of action are still unclear and larger standardised studies need to be performed using a wider range of prebiotics.
Collapse
Affiliation(s)
- Stefania Del Fabbro
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Philip C Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Caroline E Childs
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
48
|
Differential effects of inulin or its fermentation metabolites on gut barrier and immune function of porcine intestinal epithelial cells. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103855] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
49
|
López-García G, Cilla A, Barberá R, Alegría A. Anti-Inflammatory and Cytoprotective Effect of Plant Sterol and Galactooligosaccharides-Enriched Beverages in Caco-2 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1862-1870. [PMID: 31290324 DOI: 10.1021/acs.jafc.9b03025] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Plant sterol (PS) (1 g/100 mL) enriched milk-based fruit beverages with or without galactooligosaccharides (GOS) (1.8 g/100 mL) were used in differentiated Caco-2 cells. Their potential cytopreventive effect against oxidative stress induced by cholesterol oxidation products (COPs) and their anti-inflammatory properties were evaluated. Preincubation (24 h) with bioaccessible fractions from beverages without and with GOS (MfB and MfB-G) completely prevented the COPs (60 μM/4 h) induced oxidative stress independent to GOS presence with exception to calcium influx and GSH content, where a partial protective effect was observed. Besides, MfB produced a significant (p < 0.05) reduction of IL-8 (40%) and IL-6 (50%) after IL-1β-induction (1 ng/mL/24 h) through the inhibition of NF-κB p65 translocation into the nucleus (16%) compared to control cells, while GOS presence compromised their anti-inflammatory effect. Therefore, PS-enriched milk-based fruit beverage could be an interesting strategy to prevent intestinal injury produced by COPs and to attenuate the pro-inflammatory process in intestinal human diseases. GOS addition had no extra beneficial antioxidant effect and even reduced their anti-inflammatory properties.
Collapse
Affiliation(s)
- Gabriel López-García
- Nutrition and Food Science Area, Faculty of Pharmacy , University of Valencia , Avenida Vicente Andrés Estellés/n , Burjassot, Valencia 46100 , Spain
| | - Antonio Cilla
- Nutrition and Food Science Area, Faculty of Pharmacy , University of Valencia , Avenida Vicente Andrés Estellés/n , Burjassot, Valencia 46100 , Spain
| | - Reyes Barberá
- Nutrition and Food Science Area, Faculty of Pharmacy , University of Valencia , Avenida Vicente Andrés Estellés/n , Burjassot, Valencia 46100 , Spain
| | - Amparo Alegría
- Nutrition and Food Science Area, Faculty of Pharmacy , University of Valencia , Avenida Vicente Andrés Estellés/n , Burjassot, Valencia 46100 , Spain
| |
Collapse
|
50
|
Uerlings J, Schroyen M, Bautil A, Courtin C, Richel A, Sureda EA, Bruggeman G, Tanghe S, Willems E, Bindelle J, Everaert N. In vitro prebiotic potential of agricultural by-products on intestinal fermentation, gut barrier and inflammatory status of piglets. Br J Nutr 2020; 123:293-307. [PMID: 31699173 DOI: 10.1017/s0007114519002873] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The inclusion of fibre-rich ingredients in diets is one possible strategy to enhance intestinal fermentation and positively impact gut ecology, barrier and immunity. Nowadays, inulin-type fructans are used as prebiotics in the feed of piglets to manipulate gut ecology for health purposes. Likewise, some by-products could be considered as sustainable and inexpensive ingredients to reduce gut disorders at weaning. In the present study, chicory root and pulp, citrus pulp, rye bran and soya hulls were tested in a three-step in vitro model of the piglet's gastro-intestinal tract combining a pepsin-pancreatin hydrolysis (digestion), a dialysis step using cellulose membranes (absorption) and a colonic batch fermentation (fermentation). The fermentation kinetics, SCFA and microbiota profiles in the fermentation broth were assessed as indicators of prebiotic activity and compared with the ones of inulin. The immunomodulatory effects of fermentation supernatant (FS) were investigated in cultured intestinal porcine epithelial cells (IPEC-J2) by high-throughput quantitative PCR. Chicory root displayed a rapid and extensive fermentation and induced the second highest butyrate ratio after inulin. Citrus pulp demonstrated high acetate ratios and induced elevated Clostridium clusters IV and XIVa levels. Chicory root and pulp FS promoted the intestinal barrier integrity with up-regulated tight and adherens junction gene expressions in comparison with inulin FS. Chicory pulp FS exerted anti-inflammatory effects in cultured IPEC-J2. The novel approach combining an in vitro fermentation model with IPEC-J2 cells highlighted that both chicory root and pulp appear to be promising ingredients and should be considered to promote intestinal health at weaning.
Collapse
Affiliation(s)
- Julie Uerlings
- Precision Livestock and Nutrition Unit, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, ULiège, 5030 Gembloux, Belgium
- Research Foundation for Industry and Agriculture, National Scientific Research Foundation (FRIA-FNRS), 1000 Brussels, Belgium
| | - Martine Schroyen
- Precision Livestock and Nutrition Unit, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, ULiège, 5030 Gembloux, Belgium
| | - An Bautil
- Laboratory of Food Chemistry and Biochemistry, Department of Microbial and Molecular Systems (M²S), KU Leuven, 3001 Leuven, Belgium
| | - Christophe Courtin
- Laboratory of Food Chemistry and Biochemistry, Department of Microbial and Molecular Systems (M²S), KU Leuven, 3001 Leuven, Belgium
| | - Aurore Richel
- Biomass and Green Technologies, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, ULiège, 5030 Gembloux, Belgium
| | - Ester A Sureda
- Precision Livestock and Nutrition Unit, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, ULiège, 5030 Gembloux, Belgium
| | | | - Sofie Tanghe
- Royal Agrifirm Group, 7325 AW Apeldoorn, the Netherlands
| | - Els Willems
- Royal Agrifirm Group, 7325 AW Apeldoorn, the Netherlands
| | - Jérôme Bindelle
- Precision Livestock and Nutrition Unit, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, ULiège, 5030 Gembloux, Belgium
| | - Nadia Everaert
- Precision Livestock and Nutrition Unit, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, ULiège, 5030 Gembloux, Belgium
| |
Collapse
|