1
|
Lu F, Wang Y, Wu S, Huang W, Yao H, Wang S, Shi X, Laborda P, Herrera-Balandrano DD. Germination time and in vitro gastrointestinal digestion impact on the isoflavone bioaccessibility and antioxidant capacities of soybean sprouts. Food Chem 2024; 460:140517. [PMID: 39043074 DOI: 10.1016/j.foodchem.2024.140517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 07/25/2024]
Abstract
Soybeans' isoflavone content increases with germination; nevertheless, their bioaccessibility in the gastrointestinal system is limited. This study evaluated the influence of germination time (1, 3, 5, and 7 days) and in vitro gastrointestinal conditions on the isoflavone profile of soybean sprouts. The total isoflavones (4.07 mg/g) and the malonyl genistin (1.37 mg/g) had the highest contents on day 5 in the gastric phase. The highest isoflavone bioaccessibility was observed in daidzein, genistein, and glycitin. An increase in antioxidant capacity was found during germination (day 7 > day 5 > day 3); however, the same trend was not observed during in vitro digestion. In summary, the results indicate that soybean sprouts germinated for 5 days may be more beneficial for consumption since they have the highest and most readily absorbed levels of isoflavones. These data suggest that soybean sprouts may be a functional food that provides bioavailable antioxidants.
Collapse
Affiliation(s)
- Fengyi Lu
- School of Life Sciences, Nantong University, Nantong, 226019, PR China
| | - Yanxia Wang
- School of Life Sciences, Nantong University, Nantong, 226019, PR China
| | - Siqi Wu
- School of Life Sciences, Nantong University, Nantong, 226019, PR China
| | - Wuyang Huang
- Institute of Agro-Product Processing, Jiangsu, Academy of Agricultural Sciences, Nanjing 210014, PR China
| | - Hongliang Yao
- School of Animal Science and Food Engineering, Jinling Institute of Technology, Nanjing 211169, PR China
| | - Suyan Wang
- School of Life Sciences, Nantong University, Nantong, 226019, PR China
| | - Xinchi Shi
- School of Life Sciences, Nantong University, Nantong, 226019, PR China
| | - Pedro Laborda
- School of Life Sciences, Nantong University, Nantong, 226019, PR China.
| | | |
Collapse
|
2
|
Xie D, Pan Y, Chen J, Mao C, Li Z, Qiu F, Yang L, Deng Y, Lu J. Association of genetic variants in soy isoflavones metabolism-related genes with decreased lung cancer risk. Gene 2024; 927:148732. [PMID: 38945312 DOI: 10.1016/j.gene.2024.148732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/02/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
BACKGROUND Soy isoflavones have been reported to exhibit anti-tumor effects. We hypothesize that genetic variants in soy isoflavone metabolism-related genes are associated with the risk of lung cancer. METHODS A two-stage case-control study design was conducted in this study. The discovery stage included 300 lung cancer cases and 600 healthy controls to evaluate the association of candidate genetic variants with lung cancer risk. The validation stage involved 1200 cases and 1200 controls to validate the associations found. Furthermore, qPCR was performed to assess the mRNA expression levels of different genotypes of the SNP. ELISA was used to explore the association between genotype and soy isoflavone levels, as well as the association between soy isoflavone levels and lung cancer risk. RESULTS A nonlinear association was observed between plasma soy isoflavone levels and lung cancer risk, with higher soy isoflavone levels associated with lower lung cancer risk (P < 0.001). The two-stage case-control study identified that UGT1A1 rs3755319 A > C was associated with decreased lung cancer risk (Recessive model: adjusted OR = 0.69, 95 %CI = 0.57-0.84, P < 0.001). Moreover, eQTL analysis showed that the expression level of UGT1A1 in the rs3755319 CC genotype was lower than in the AA + AC genotype (P < 0.05). The plasma concentration of soy isoflavones in the rs3755319 CC genotype was higher than in the AA + AC genotype (P = 0.008). CONCLUSIONS We identified a potentially functional SNP, UGT1A1 rs3755319 A > C, as being associated with decreased lung cancer risk. Further experiments will be needed to explore the mechanisms underlying the observed associations.
Collapse
Affiliation(s)
- Dongming Xie
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital, The Institute for Chemical Carcinogenesis, School of Public Health, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, PR China
| | - Yujie Pan
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital, The Institute for Chemical Carcinogenesis, School of Public Health, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, PR China
| | - Jinbin Chen
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, PR China
| | - Chun Mao
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital, The Institute for Chemical Carcinogenesis, School of Public Health, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, PR China
| | - Zhi Li
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital, The Institute for Chemical Carcinogenesis, School of Public Health, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, PR China
| | - Fuman Qiu
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital, The Institute for Chemical Carcinogenesis, School of Public Health, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, PR China
| | - Lei Yang
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital, The Institute for Chemical Carcinogenesis, School of Public Health, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, PR China
| | - Yibin Deng
- Centre for Medical Laboratory Science, the Affiliated Hospital of Youjiang Medical University for Nationalities, No. 18 Zhongshaner Rd., Youjiang District, Baise 533000, PR China; Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, No. 18 Zhongshaner Rd., Youjiang District, Baise 533000, PR China.
| | - Jiachun Lu
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital, The Institute for Chemical Carcinogenesis, School of Public Health, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, PR China.
| |
Collapse
|
3
|
Zahra M, Abrahamse H, George BP. Flavonoids: Antioxidant Powerhouses and Their Role in Nanomedicine. Antioxidants (Basel) 2024; 13:922. [PMID: 39199168 PMCID: PMC11351814 DOI: 10.3390/antiox13080922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 09/01/2024] Open
Abstract
This study emphasizes the critical role of antioxidants in protecting human health by counteracting the detrimental effects of oxidative stress induced by free radicals. Antioxidants-found in various forms such as vitamins, minerals, and the phytochemicals abundant in fruits and vegetables-neutralize free radicals by stabilizing them through electron donation. Specifically, flavonoid compounds are highlighted as robust defenders, addressing oxidative stress and inflammation to avert chronic illnesses like cancer, cardiovascular diseases, and neurodegenerative diseases. This research explores the bioactive potential of flavonoids, shedding light on their role not only in safeguarding health, but also in managing conditions such as diabetes, cancer, cardiovascular diseases, and neurodegenerative diseases. This review highlights the novel integration of South African-origin flavonoids with nanotechnology, presenting a cutting-edge strategy to improve drug delivery and therapeutic outcomes. This interdisciplinary approach, blending traditional wisdom with contemporary techniques, propels the exploration of flavonoid-mediated nanoparticles toward groundbreaking pharmaceutical applications, promising revolutionary advancements in healthcare. This collaborative synergy between traditional knowledge and modern science not only contributes to human health, but also underscores a significant step toward sustainable and impactful biomedical innovations, aligning with principles of environmental conservation.
Collapse
Affiliation(s)
| | | | - Blassan P. George
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 1711, Doornfontein 2028, South Africa; (M.Z.); (H.A.)
| |
Collapse
|
4
|
Oliveira JM, Oliveira IM, Sleiman HK, Dal Forno GO, Romano MA, Romano RM. Consumption of soy isoflavones during the prepubertal phase delays puberty and causes hypergonadotropic hypogonadism with disruption of hypothalamic-pituitary gonadotropins regulation in male rats. Toxicol Lett 2022; 369:1-11. [PMID: 35963426 DOI: 10.1016/j.toxlet.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 07/17/2022] [Accepted: 08/08/2022] [Indexed: 10/15/2022]
Abstract
Isoflavones are phytoestrogens with recognized estrogenic activity but may also affect testosterone, corticosterone and thyroid hormone levels in experimental models. However, the molecular mechanisms involved in these alterations are still unclear. Isoflavones are present in soy-based infant formula, in breast milk after the consumption of soy by the mother and are widely used for the preparation of beverages consumed by toddlers and teenagers. In this sense, we proposed to investigate the effects of soy isoflavone exposure during the prepubertal period, a recognized window of sensitivity for endocrine disruption, over the hypothalamic-pituitary-testicular (HPT) axis. For this, 42 3-week-old male Wistar rats were exposed to 0.5, 5 or 50 mg of soy isoflavones/kg from postnatal day (PND) 23 to PND60. We evaluated body growth, age at puberty, serum concentrations of LH, FSH, testosterone and estradiol, and the expression of the transcripts (mRNA) of genes encoding key genes controlling the hypothalamic-pituitary-testicular (HPT) axis. In the hypothalamus, we observed an increase in Esr1 mRNA expression (0.5 and 5 mg). In the pituitary, we observed an increase in Gnrhr mRNA expression (50 mg), a reduction in Lhb mRNA expression (0.5 mg), and a reduction in Ar mRNA expression. In the testis, we observed an increase in Lhcgr mRNA expression (50 mg) and a reduction in Star mRNA expression (0.5 and 5 mg). The serum levels of LH (5 and 50 mg) and FSH (0.5 mg) were increased, while testosterone and estradiol were reduced. Puberty was delayed in all groups. Taken together, these results suggest that prepubertal consumption of relevant levels of soy isoflavones disrupts the HPT axis, causing hypergonadotropic hypogonadism and altered expression levels of key genes regulating the axis.
Collapse
Affiliation(s)
- Jeane Maria Oliveira
- Laboratory of Reproductive Toxicology, Department of Medicine, State University of Centro-Oeste (UNICENTRO), Rua Simeão Camargo Varela de Sa, 03, Zip-Code 85040-080, Parana, Brazil.
| | - Isabela Medeiros Oliveira
- Laboratory of Reproductive Toxicology, Department of Medicine, State University of Centro-Oeste (UNICENTRO), Rua Simeão Camargo Varela de Sa, 03, Zip-Code 85040-080, Parana, Brazil.
| | - Hanan Khaled Sleiman
- Laboratory of Reproductive Toxicology, Department of Medicine, State University of Centro-Oeste (UNICENTRO), Rua Simeão Camargo Varela de Sa, 03, Zip-Code 85040-080, Parana, Brazil.
| | - Gonzalo Ogliari Dal Forno
- Laboratory of Reproductive Toxicology, Department of Medicine, State University of Centro-Oeste (UNICENTRO), Rua Simeão Camargo Varela de Sa, 03, Zip-Code 85040-080, Parana, Brazil.
| | - Marco Aurelio Romano
- Laboratory of Reproductive Toxicology, Department of Medicine, State University of Centro-Oeste (UNICENTRO), Rua Simeão Camargo Varela de Sa, 03, Zip-Code 85040-080, Parana, Brazil.
| | - Renata Marino Romano
- Laboratory of Reproductive Toxicology, Department of Medicine, State University of Centro-Oeste (UNICENTRO), Rua Simeão Camargo Varela de Sa, 03, Zip-Code 85040-080, Parana, Brazil.
| |
Collapse
|
5
|
Kim MS, Jung YS, Jang D, Cho CH, Lee SH, Han NS, Kim DO. Antioxidant capacity of 12 major soybean isoflavones and their bioavailability under simulated digestion and in human intestinal Caco-2 cells. Food Chem 2022; 374:131493. [PMID: 34802809 DOI: 10.1016/j.foodchem.2021.131493] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/23/2021] [Accepted: 10/26/2021] [Indexed: 12/22/2022]
Abstract
Soy isoflavones (SIs) show various health benefits, such as antioxidant and estrogenic effects. It is important to understand the bioaccessibility and bioavailability of SIs due to the close relation to their bioactivities. In this study, the antioxidant capacity, bioaccessibility, and bioavailability of 12 SIs were evaluated using radical-scavenging methods, simulations of human digestion, and Caco-2 cells in Transwell, respectively. All SIs were stable (91.1-99.2%) under gastric digestion conditions compared with the control (100%), whereas acetyl and malonyl conjugates were unstable (38.5% and 65.5%, respectively) under small intestinal digestion conditions. SI aglycones showed higher permeability (7-15 times) and cellular accumulation (8.8 times) than their glucosides. A small amount of SI conjugates was intact in the cell and in the basolateral side of each Transwell. These results suggest that SI conjugates, especially malonyl and acetyl forms, have incidental bioactivity after being metabolized to aglycones inside the cell.
Collapse
Affiliation(s)
- Mi-Seon Kim
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Young Sung Jung
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Davin Jang
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Chi Heung Cho
- Division of Functional Food Research, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Sang-Hoon Lee
- Division of Functional Food Research, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Nam Soo Han
- Brain Korea 21 Center for Bio-Health Industry, Department of Food Science and Biotechnology, Chungbuk National University, Chungbuk 28644, Republic of Korea
| | - Dae-Ok Kim
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea; Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea.
| |
Collapse
|
6
|
Hameed A, Liu Z, Wu H, Zhong B, Ciborowski M, Suleria HAR. A Comparative and Comprehensive Characterization of Polyphenols of Selected Fruits from the Rosaceae Family. Metabolites 2022; 12:metabo12030271. [PMID: 35323714 PMCID: PMC8950050 DOI: 10.3390/metabo12030271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 02/01/2023] Open
Abstract
The present research presents a comprehensive characterization of polyphenols from peach, pear, and plum using liquid chromatography coupled with electrospray ionization quadrupole-time-of-flight-mass spectrometry (LC-ESI-QTOF-MS/MS), followed by the determination of their antioxidant potential. Plums showed the highest total phenolic content (TPC; 0.62 mg GAE/g), while peaches showed the highest total flavonoid content (TFC; 0.29 mg QE/g), also corresponding to their high scavenging activities (i.e., DPPH, ABTS, FRAP, and TAC). In all three fruit samples, a total of 51 polyphenolic compounds were tentatively identified and were mainly characterized from hydroxybenzoic acids, hydroxycinnamic acids, hydroxyphenylpentanoic acids, flavanols, flavonols, and isoflavonoids subclasses. Twenty targeted phenolic compounds were quantified using high-performance liquid chromatography with photodiode array detection (HPLC-PDA). The plum cultivar showed the highest content of phenolic acids (chlorogenic acid, 11.86 mg/100 g), whereas peach samples showed the highest concentration of flavonoids (catechin, 7.31 mg/100 g), as compared to pear. Based on these findings, the present research contributes and complements the current characterization data of these fruits presented in the literature, as well as ensures and encourages the utilization of these fruits in different food, feed, and nutraceutical industries.
Collapse
Affiliation(s)
- Ahsan Hameed
- Clinical Research Center, Medical University of Bialystok, Jana Kilińskiego Street 1, 15-089 Bialystok, Poland; (A.H.); (M.C.)
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (Z.L.); (H.W.); (B.Z.)
| | - Ziyao Liu
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (Z.L.); (H.W.); (B.Z.)
| | - Hanjing Wu
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (Z.L.); (H.W.); (B.Z.)
| | - Biming Zhong
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (Z.L.); (H.W.); (B.Z.)
| | - Michal Ciborowski
- Clinical Research Center, Medical University of Bialystok, Jana Kilińskiego Street 1, 15-089 Bialystok, Poland; (A.H.); (M.C.)
| | - Hafiz Ansar Rasul Suleria
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (Z.L.); (H.W.); (B.Z.)
- Correspondence: ; Tel.: +61-3-834-44984
| |
Collapse
|
7
|
Bittner N, Boon A, Delbanco EH, Walter C, Mally A. Assessment of aromatic amides in printed food contact materials: analysis of potential cleavage to primary aromatic amines during simulated passage through the gastrointestinal tract. Arch Toxicol 2022; 96:1423-1435. [PMID: 35247070 PMCID: PMC9013685 DOI: 10.1007/s00204-022-03254-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/15/2022] [Indexed: 11/30/2022]
Abstract
Recent analyses conducted by German official food control reported detection of the aromatic amides N-(2,4-dimethylphenyl)acetamide (NDPA), N-acetoacetyl-m-xylidine (NAAX) and 3-hydroxy-2-naphthanilide (Naphthol AS) in cold water extracts from certain food contact materials made from paper or cardboard, including paper straws, paper napkins, and cupcake liners. Because aromatic amides may be cleaved to potentially genotoxic primary amines upon oral intake, these findings raise concern that transfer of NDPA, NAAX and Naphthol AS from food contact materials into food may present a risk to human health. The aim of the present work was to assess the stability of NDPA, NAAX and Naphthol AS and potential cleavage to 2,4-dimethylaniline (2,4-DMA) and aniline during simulated passage through the gastrointestinal tract using static in vitro digestion models. Using the digestion model established by the National Institute for Public Health and the Environment (RIVM, Bilthoven, NL) and a protocol recommended by the European Food Safety Authority, potential hydrolysis of the aromatic amides to the respective aromatic amines was assessed by LC-MS/MS following incubation of the aromatic amides with digestive fluid simulants. Time-dependent hydrolysis of NDPA and NAAX resulting in formation of the primary aromatic amine 2,4-DMA was consistently observed in both models. The highest rate of cleavage of NDPA and NAAX was recorded following 4 h incubation with 0.07 M HCl as gastric-juice simulant, and amounted to 0.21% and 0.053%, respectively. Incubation of Naphthol AS with digestive fluid simulants did not give rise to an increase in the concentration of aniline above the background that resulted from the presence of aniline as an impurity of the test compound. Considering the lack of evidence for aniline formation from Naphthol AS and the extremely low rate of hydrolysis of the amide bonds of NDPA and NAAX during simulated passage through the gastrointestinal tract that gives rise to only very minor amounts of the potentially mutagenic and/or carcinogenic aromatic amine 2,4-DMA, risk assessment based on assumption of 100% cleavage to the primary aromatic amines would appear to overestimate health risks related to the presence of aromatic amides in food contact materials.
Collapse
Affiliation(s)
- Nataly Bittner
- Department of Toxicology, University of Würzburg, Versbacher Str. 9, 97078, Würzburg, Germany
| | - Andy Boon
- Sun Chemical, Sargasso Building, Five Arches Business Centre, Maidstone Road, Sidcup, UK
| | - Evert H Delbanco
- Siegwerk Druckfarben AG & Co. KGaA, Alfred-Keller-Straße 55, 53721, Siegburg, Germany
| | - Christof Walter
- Verband der deutschen Lack- und Druckfarbenindustrie e.V. (VdL), Mainzer Landstraße 55, 60329, Frankfurt, Germany
| | - Angela Mally
- Department of Toxicology, University of Würzburg, Versbacher Str. 9, 97078, Würzburg, Germany.
| |
Collapse
|
8
|
Mączka W, Grabarczyk M, Wińska K. Can Antioxidants Reduce the Toxicity of Bisphenol? Antioxidants (Basel) 2022; 11:antiox11020413. [PMID: 35204295 PMCID: PMC8869647 DOI: 10.3390/antiox11020413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 12/18/2022] Open
Abstract
BPA is still the subject of extensive research due to its widespread use, despite its significant toxicity resulting not only from its negative impact on the endocrine system but also from disrupting the organism’s oxidative homeostasis. At the molecular level, bisphenol A (BPA) causes an increased production of ROS and hence a change in the redox balance, mitochondrial dysfunction, and modulation of cell signaling pathways. Importantly, these changes accumulate in animals and humans, and BPA toxicity may be aggravated by poor diet, metabolic disorders, and coexisting diseases. Accordingly, approaches using antioxidants to counteract the negative effects of BPA are being considered. The preliminary results that are described in this paper are promising, however, it should be emphasized that further studies are required to determine the optimal dosage and treatment regimen to counteract BPA toxicity. It also seems necessary to have a more holistic approach showing, on the one hand, the influence of BPA on the overall human metabolism and, on the other hand, the influence of antioxidants in doses that are acceptable with the diet on BPA toxicity. This is due in part to the fact that in many cases, the positive effect of antioxidants in in vitro studies is not confirmed by clinical studies. For this reason, further research into the molecular mechanisms of BPA activity is also recommended.
Collapse
|
9
|
Peeters L, Foubert K, Baldé MA, Tuenter E, Matheeussen A, Van Pelt N, Caljon G, Hermans N, Pieters L. Antiplasmodial activity of constituents and their metabolites after in vitro gastrointestinal biotransformation of a Nauclea pobeguinii extract. PHYTOCHEMISTRY 2022; 194:113029. [PMID: 34844038 DOI: 10.1016/j.phytochem.2021.113029] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 06/13/2023]
Abstract
Nauclea pobeguinii is traditionally used for treatment of malaria. Previous studies on the plant extract and strictosamide, the putative active constituent, showed a profound in vivo activity of the extract but no in vitro activity of strictosamide. This might indicate that one or more compounds present in the extract, most likely alkaloids, act as prodrugs undergoing biotransformation after oral administration resulting in the active compounds. The phytochemical composition of a N. pobeguinii extract was characterized using UHPLC-UV-HRMS (Ultrahigh-Performance Liquid Chromatography-Ultraviolet-High Resolution Mass Spectrometry) data. An in vitro gastrointestinal model was used to simulate biotransformation of the extract allowing monitoring of the relative abundances of individual constituents over time on one hand, while antiplasmodial activity and cytotoxicity of the biotransformed extract could be evaluated on the other hand. A diversity of compounds was (tentatively) identified in the extract, mainly saponins and alkaloids, including 32 compounds that have not been reported before in N. pobeguinii. The automated data analysis workflow used for unbiased screening for metabolites showed that glycosylated compounds decreased in intensity over time. Alkaloids containing no sugar moieties, including angustine-type alkaloids, showed no gastrointestinal biotransformation. In vitro gastrointestinal biotransformation of strictosamide did not result in a major metabolite. Moreover, multivariate data analysis using Orthogonal Partial Least Square-Discriminant Analysis (OPLS-DA) showed no in vitro activity of strictosamide or its metabolites suggesting that other compounds or metabolites present in the extract are responsible for the antiplasmodial effect of the N. pobeguinii extract. The OPLS-DA proposes alkaloids with a β-carboline moiety as active principles, suggesting that antiplasmodial activity of N. pobeguinii derives from an additive or synergistic effect of multiple minor alkaloids and their metabolites present in the bark extract of N. pobeguinii.
Collapse
Affiliation(s)
- Laura Peeters
- Natural Products & Food Research and Analysis (NatuRA), University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium.
| | - Kenn Foubert
- Natural Products & Food Research and Analysis (NatuRA), University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Mamadou Aliou Baldé
- Natural Products & Food Research and Analysis (NatuRA), University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Emmy Tuenter
- Natural Products & Food Research and Analysis (NatuRA), University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - An Matheeussen
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Natascha Van Pelt
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Nina Hermans
- Natural Products & Food Research and Analysis (NatuRA), University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Luc Pieters
- Natural Products & Food Research and Analysis (NatuRA), University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| |
Collapse
|
10
|
Wang Q, Spenkelink B, Boonpawa R, Rietjens IM. Use of Physiologically Based Pharmacokinetic Modeling to Predict Human Gut Microbial Conversion of Daidzein to S-Equol. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:343-352. [PMID: 34855380 PMCID: PMC8759082 DOI: 10.1021/acs.jafc.1c03950] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/12/2021] [Accepted: 11/18/2021] [Indexed: 06/01/2023]
Abstract
A physiologically based pharmacokinetic (PBPK) model was developed for daidzein and its metabolite S-equol. Anaerobic in vitro incubations of pooled fecal samples from S-equol producers and nonproducers allowed definition of the kinetic constants. PBPK model-based predictions for the maximum daidzein plasma concentration (Cmax) were comparable to literature data. The predictions also revealed that the Cmax of S-equol in producers was only up to 0.22% that of daidzein, indicating that despite its higher estrogenicity, S-equol is likely to contribute to the overall estrogenicity upon human daidzein exposure to a only limited extent. An interspecies comparison between humans and rats revealed that the catalytic efficiency for S-equol formation in rats was 210-fold higher than that of human S-equol producers. The described in vitro-in silico strategy provides a proof-of-principle on how to include microbial metabolism in humans in PBPK modeling as part of the development of new approach methodologies (NAMs).
Collapse
Affiliation(s)
- Qianrui Wang
- Division
of Toxicology, Wageningen University and
Research, 6708WE Wageningen, The Netherlands
| | - Bert Spenkelink
- Division
of Toxicology, Wageningen University and
Research, 6708WE Wageningen, The Netherlands
| | - Rungnapa Boonpawa
- Faculty
of Natural Resources and Agro-Industry, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, 47000 Sakon Nakhon, Thailand
| | - Ivonne M.C.M. Rietjens
- Division
of Toxicology, Wageningen University and
Research, 6708WE Wageningen, The Netherlands
| |
Collapse
|
11
|
Aboushanab SA, Khedr SM, Gette IF, Danilova IG, Kolberg NA, Ravishankar GA, Ambati RR, Kovaleva EG. Isoflavones derived from plant raw materials: bioavailability, anti-cancer, anti-aging potentials, and microbiome modulation. Crit Rev Food Sci Nutr 2021; 63:261-287. [PMID: 34251921 DOI: 10.1080/10408398.2021.1946006] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Isoflavones are secondary metabolites that represent the most abundant category of plant polyphenols. Dietary soy, kudzu, and red clover contain primarily genistein, daidzein, glycitein, puerarin, formononetin, and biochanin A. The structural similarity of these compounds to β-estradiol has demonstrated protection against age-related and hormone-dependent diseases in both genders. Demonstrative shreds of evidence confirmed the fundamental health benefits of the consumption of these isoflavones. These relevant activities are complex and largely driven by the source, active ingredients, dose, and administration period of the bioactive compounds. However, the preclinical and clinical studies of these compounds are greatly variable, controversial, and still with no consensus due to the non-standardized research protocols. In addition, absorption, distribution, metabolism, and excretion studies, and the safety profile of isoflavones have been far limited. This highlights a major gap in understanding the potentially critical role of these isoflavones as prospective replacement therapy. Our general review exclusively focuses attention on the crucial role of isoflavones derived from these plant materials and critically highlights their bioavailability, possible anticancer, antiaging potentials, and microbiome modulation. Despite their fundamental health benefits, plant isoflavones reveal prospective therapeutic effects that worth further standardized analysis.
Collapse
Affiliation(s)
- Saied A Aboushanab
- Institute of Chemical Engineering, Ural Federal University named after the first President of Russia B. N. Yeltsin, Yekaterinburg, Russia
| | - Shaimaa M Khedr
- Pharmaceutical and Fermentation Industries Development Center (PFIDC), City of Scientific Research and Technological Applications, SRTA-City, Alexandria, Egypt
| | - Irina F Gette
- Institute of Chemical Engineering, Ural Federal University named after the first President of Russia B. N. Yeltsin, Yekaterinburg, Russia.,Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Irina G Danilova
- Institute of Chemical Engineering, Ural Federal University named after the first President of Russia B. N. Yeltsin, Yekaterinburg, Russia.,Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Natalia A Kolberg
- Integrated Laboratory Complex, Ural State University of Economics, Yekaterinburg, Russia
| | - Gokare A Ravishankar
- C. D. Sagar Centre for Life Sciences, Dayananda Sagar College of Engineering, Dayananda Sagar Institutions, Bangalore, Karnataka, India
| | - Ranga Rao Ambati
- Department of Biotechnology, Vignan's Foundation of Science, Technology and Research, Guntur, Andhra Pradesh, India
| | - Elena G Kovaleva
- Institute of Chemical Engineering, Ural Federal University named after the first President of Russia B. N. Yeltsin, Yekaterinburg, Russia
| |
Collapse
|
12
|
Lodha D, Das S, Hati S. Antioxidant activity, total phenolic content and biotransformation of isoflavones during soy lactic‐fermentations. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15583] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Dikshita Lodha
- Department of Biochemistry St. Xavier’s College (Autonomous) Ahmedabad India
| | - Sujit Das
- Department of Rural Development and Agricultural Production North‐Eastern Hill University, Tura Campus Tura India
| | - Subrota Hati
- Dairy Microbiology Department SMC College of Dairy Science, Anand Agricultural University Anand India
| |
Collapse
|
13
|
Zhang M, van Ravenzwaay B, Rietjens IMCM. Development of a Generic Physiologically Based Kinetic Model to Predict In Vivo Uterotrophic Responses Induced by Estrogenic Chemicals in Rats Based on In Vitro Bioassays. Toxicol Sci 2021; 173:19-31. [PMID: 31626307 PMCID: PMC9186316 DOI: 10.1093/toxsci/kfz216] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The present study assessed the potential of a generic physiologically based kinetic (PBK) model to convert in vitro data for estrogenicity to predict the in vivo uterotrophic response in rats for diethylstibestrol (DES), ethinylestradiol (EE2), genistein (GEN), coumestrol (COU), and methoxychlor (MXC). PBK models were developed using a generic approach and in vitro concentration-response data from the MCF-7 proliferation assay and the yeast estrogen screening assay were translated into in vivo dose-response data. Benchmark dose analysis was performed on the predicted data and available in vivo uterotrophic data to evaluate the model predictions. The results reveal that the developed generic PBK model adequate defines the in vivo kinetics of the estrogens. The predicted dose-response data of DES, EE2, GEN, COU, and MXC matched the reported in vivo uterus weight response in a qualitative way, whereas the quantitative comparison was somewhat hampered by the variability in both in vitro and in vivo data. From a safety perspective, the predictions based on the MCF-7 proliferation assay would best guarantee a safe point of departure for further risk assessment although it may be conservative. The current study indicates the feasibility of using a combination of in vitro toxicity data and a generic PBK model to predict the relative in vivo uterotrophic response for estrogenic chemicals.
Collapse
Affiliation(s)
- Mengying Zhang
- Division of Toxicology, Wageningen University, Stippeneng 4, Wageningen, 6708 WE, The Netherlands
| | - Bennard van Ravenzwaay
- Division of Toxicology, Wageningen University, Stippeneng 4, Wageningen, 6708 WE, The Netherlands.,Experimental Toxicology and Ecology, BASF SE, Z 470, Ludwigshafen 67056, Germany
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University, Stippeneng 4, Wageningen, 6708 WE, The Netherlands
| |
Collapse
|
14
|
Screening of Novel Source for Genistein by Rapid and Sensitive UPLC-APCI-TOF Mass Spectrometry. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2021; 2021:5537917. [PMID: 33816609 PMCID: PMC7987462 DOI: 10.1155/2021/5537917] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/19/2021] [Accepted: 02/26/2021] [Indexed: 11/26/2022]
Abstract
Genistein has been shown to have a broad spectrum of health advantages. Only legumes were reported to have a significant amount of genistein with the highest concentration in Soybean. Soybean was found to cause allergies in children with atopic dermatitis and in adults. Limited food sources have hindered the use of genistein in daily diets, medications, and nutraceuticals. The main objective of the current research work was to discover the novel source for genistein by the simple method of extraction and quantification. Genistein was extracted by solid-liquid extraction technique. Extraction parameters were optimized by a single factor test. Identification and quantification of genistein from the selected seeds of Apiaceae were carried out using UPLC-APCI-TOF-MS. UPLC-APCI-TOF-MS method was successfully developed, validated (linearity (R2 = 0.999), precision (R.S.D. <5%), and accuracy (107.23%)), and used for the study. Remarkably, a high concentration of the genistein (811.57 μg/g) was found in the Cuminum cyminum. Solvent mixture (50 mL Methanol+25 mL Dimethyl sulphoxide+25 mL Water (v/v/v)), temperature (80°C), and time (1 h) were found to be the optimum extraction conditions. The concentration of genistein before optimization was 226.67 μg/g and after optimization is 811.57 μg/g. This shows the efficiency of the extraction method in the extraction of genistein without the need for hydrolysis. Novel source for genistein is identified in regular human food can be consumed in a regular diet which increases wellness of human health along with enhancing the taste of the food. The developed extraction method coupled with high throughput, sensitive, and selective UPLC-APCI-TOF-MS technique facilitates rapid quantification (8 minutes of run time) without primary purification of complex extract.
Collapse
|
15
|
Xie CL, Park KH, Kang SS, Cho KM, Lee DH. Isoflavone-enriched soybean leaves attenuate ovariectomy-induced osteoporosis in rats by anti-inflammatory activity. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:1499-1506. [PMID: 32851642 DOI: 10.1002/jsfa.10763] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/23/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND With an increasing aging population, postmenopausal osteoporosis has become a global public health problem. Previous evidence has shown that postmenopausal osteoporosis is a skeletal disease mainly caused by estrogen deficiency, generally accompanied by inflammation, and dietary isoflavones may ameliorate postmenopausal osteoporosis by anti-inflammatory activity. We have generated isoflavone-enriched soybean leaves (IESLs), but their anti-inflammatory activity and effect on attenuating osteoporosis are still obscure. Here, we determined the isoflavone profiles of IESLs and evaluated their anti-inflammatory activity in lipopolysaccharide-stimulated RAW 264.7 cells and anti-osteoporotic effects on ovariectomy-induced osteoporosis in rats. RESULTS IESLs had a high content of total isoflavone. Hydrolysate of IESLs (HIESLs) was rich with the aglycones daidzein and genistein, and HIESLs can significantly inhibit lipopolysaccharide-induced inflammation by reducing messenger RNA expression of iNOS, COX-2, IL6, and IL1β. Moreover, ovariectomized rats receiving aqueous extracts of IESLs (HIESLs) orally maintained more bone mass than control rats did, which was attributed to inhibition of osteoclastogenesis by downregulating the messenger RNA expression of the bone-specific genes RANKL/OPG, OC, and cathepsin K, and the inflammation-related genes IL6, NFκB, and COX-2. CONCLUSION IESLs may attenuate postmenopausal osteoporosis by suppressing osteoclastogenesis with anti-inflammatory activity and be a potential source of functional food ingredients for the prevention of osteoporosis. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Cheng-Liang Xie
- School of Pharmaceutical Science (Shenzhen), Sun Yat-sen University, Guangzhou, China
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Ki H Park
- Division of Applied Life Science (BK21 plus), IALS, Gyeongsang National University, Jinju, Republic of Korea
| | - Sang S Kang
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Kye M Cho
- Department of Food Science, Gyeongnam National University of Science and Technology, Jinju, Republic of Korea
| | - Dong H Lee
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
16
|
Chisari E, Shivappa N, Vyas S. Polyphenol-Rich Foods and Osteoporosis. Curr Pharm Des 2020; 25:2459-2466. [PMID: 31333106 DOI: 10.2174/1381612825666190722093959] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 07/20/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Osteoporosis is a metabolic disease affecting the bone mineral density and thus compromise the strength of the bones. Disease prevention through diet is the objective of the study and discussion. Among the several nutrients investigated, the intake of phenols seems to influence bone mineral density by acting as free radical scavengers, preventing oxidation-induced damage to bone cells. In addition, the growing understanding of the bone remodelling process supports the theory that inflammation significantly contributes to the etiopathogenesis of osteoporosis. METHODS To provide an overview of current evidence on polyphenol-rich foods and osteoporosis prevention we made a comprehensive review of the literature focusing on the state of art of the topic. RESULTS Some polyphenol-rich foods, including olive oil, fruit and vegetable, tea and soy, seem to be beneficial for preventing osteoporosis disease and its progression. The mechanism is still partly unknown and may involve different pathways which include inflammation and other disease reactions. CONCLUSIONS However, further research is needed to better understand the mechanisms regulating the molecular interaction between osteoporosis incidence and progression and polyphenol-rich foods. The current evidence suggests that dietary intervention with polyphenol rich foods may be useful to prevent incidence and progression of this condition.
Collapse
Affiliation(s)
- Emanuele Chisari
- University of Catania, Piazza Universita, 2, 95124, Catania CT, Italy
| | - Nitin Shivappa
- Cancer Prevention and Control Program, University of South Carolina, Columbia, SC 29208, United States.,Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, United States
| | - Shraddha Vyas
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, Fl, 33612, United States
| |
Collapse
|
17
|
Islam A, Islam MS, Uddin MN, Hasan MMI, Akanda MR. The potential health benefits of the isoflavone glycoside genistin. Arch Pharm Res 2020; 43:395-408. [PMID: 32253713 DOI: 10.1007/s12272-020-01233-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 04/03/2020] [Indexed: 12/11/2022]
Abstract
Genistin is a type of isoflavone glycoside and has a broad range of health benefits. It is found in a variety of dietary plants, such as soybean, kudzu (Japanese arrowroot), and other plant-based products. Genistin has been described to have several beneficial health impacts, such as decreasing the risk of osteoporosis and post-menopausal symptoms, as well as anti-cancer, anti-oxidative, cardioprotective, anti-apoptotic, neuroprotective, hepatoprotective, and anti-microbial activities. It may also assist individuals with metabolic syndrome. This review summarizes some of the molecular impacts and prospective roles of genistin in maintaining and treatment of health disorders. The review could help to develop novel genistin medicine with significant health benefits for application in the nutraceutical and pharmaceutical fields.
Collapse
Affiliation(s)
- Anowarul Islam
- College of Veterinary Medicine, Jeonbuk National University, Iksan, 54596, South Korea
| | - Md Sadikul Islam
- College of Veterinary Medicine, Jeonbuk National University, Iksan, 54596, South Korea
| | - Md Nazim Uddin
- Department of Livestock Production and Management, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Mir Md Iqbal Hasan
- Department of Physiology, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Md Rashedunnabi Akanda
- Department of Pharmacology and Toxicology, Sylhet Agricultural University, Sylhet, 3100, Bangladesh.
| |
Collapse
|
18
|
Modulation of equol production via different dietary regimens in an artificial model of the human colon. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103819] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
19
|
Wang Q, Spenkelink B, Boonpawa R, Rietjens IMCM, Beekmann K. Use of Physiologically Based Kinetic Modeling to Predict Rat Gut Microbial Metabolism of the Isoflavone Daidzein to S-Equol and Its Consequences for ERα Activation. Mol Nutr Food Res 2020; 64:e1900912. [PMID: 32027771 PMCID: PMC7154660 DOI: 10.1002/mnfr.201900912] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/06/2019] [Indexed: 12/13/2022]
Abstract
SCOPE To predict gut microbial metabolism of xenobiotics and the resulting plasma concentrations of metabolites formed, an in vitro-in silico-based testing strategy is developed using the isoflavone daidzein and its gut microbial metabolite S-equol as model compounds. METHODS AND RESULTS Anaerobic rat fecal incubations are optimized and performed to derive the apparent maximum velocities (Vmax ) and Michaelis-Menten constants (Km ) for gut microbial conversion of daidzein to dihydrodaidzein, S-equol, and O-desmethylangolensin, which are input as parameters for a physiologically based kinetic (PBK) model. The inclusion of gut microbiota in the PBK model allows prediction of S-equol concentrations and slightly reduced predicted maximal daidzein concentrations from 2.19 to 2.16 µm. The resulting predicted concentrations of daidzein and S-equol are comparable to in vivo concentrations reported. CONCLUSION The optimized in vitro approach to quantify kinetics for gut microbial conversions, and the newly developed PBK model for rats that includes gut microbial metabolism, provide a unique tool to predict the in vivo consequences of daidzein microbial metabolism for systemic exposure of the host to daidzein and its metabolite S-equol. The predictions reveal a dominant role for daidzein in ERα-mediated estrogenicity despite the higher estrogenic potency of its microbial metabolite S-equol.
Collapse
Affiliation(s)
- Qianrui Wang
- Division of ToxicologyWageningen University and ResearchWageningen6708 WEThe Netherlands
| | - Bert Spenkelink
- Division of ToxicologyWageningen University and ResearchWageningen6708 WEThe Netherlands
| | - Rungnapa Boonpawa
- Faculty of Natural Resources and Agro‐IndustryKasetsart University Chalermphrakiat Sakon Nakhon Province CampusSakon Nakhon47000Thailand
| | | | - Karsten Beekmann
- Division of ToxicologyWageningen University and ResearchWageningen6708 WEThe Netherlands
- Present address:
Wageningen Food Safety ResearchP. O. Box 2306700 AEWageningenThe Netherlands
| |
Collapse
|
20
|
Transcriptional Regulation of the Equol Biosynthesis Gene Cluster in Adlercreutzia equolifaciens DSM19450 T. Nutrients 2019; 11:nu11050993. [PMID: 31052328 PMCID: PMC6566806 DOI: 10.3390/nu11050993] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/26/2019] [Accepted: 04/30/2019] [Indexed: 02/06/2023] Open
Abstract
Given the emerging evidence of equol’s benefit to human health, understanding its synthesis and regulation in equol-producing bacteria is of paramount importance. Adlercreutzia equolifaciens DSM19450T is a human intestinal bacterium—for which the whole genome sequence is publicly available—that produces equol from the daidzein isoflavone. In the present work, daidzein (between 50 to 200 μM) was completely metabolized by cultures of A. equolifaciens DSM19450T after 10 h of incubation. However, only about one third of the added isoflavone was transformed into dihydrodaidzein and then into equol. Transcriptional analysis of the ORFs and intergenic regions of the bacterium’s equol gene cluster was therefore undertaken using RT-PCR and RT-qPCR techniques with the aim of identifying the genetic elements of equol biosynthesis and its regulation mechanisms. Compared to controls cultured without daidzein, the expression of all 13 contiguous genes in the equol cluster was enhanced in the presence of the isoflavone. Depending on the gene and the amount of daidzein in the medium, overexpression varied from 0.5- to about 4-log10 units. Four expression patterns of transcription were identified involving genes within the cluster. The genes dzr, ddr and tdr, which code for daidzein reductase, dihydrodaidzein reductase and tetrahydrodaidzein reductase respectively, and which have been shown involved in equol biosynthesis, were among the most strongly expressed genes in the cluster. These expression patterns correlated with the location of four putative ρ-independent terminator sequences in the cluster. All the intergenic regions were amplified by RT-PCR, indicating the operon to be transcribed as a single RNA molecule. These findings provide new knowledge on the metabolic transformation of daidzein into equol by A. equolifaciens DSM19450T, which might help in efforts to increase the endogenous formation of this compound and/or its biotechnological production.
Collapse
|
21
|
|
22
|
Islam MA, Hooiveld GJEJ, van den Berg JHJ, van der Velpen V, Murk AJ, Rietjens IMCM, van Leeuwen FXR. Soy supplementation: Impact on gene expression in different tissues of ovariectomized rats and evaluation of the rat model to predict (post)menopausal health effect. Toxicol Rep 2018; 5:1087-1097. [PMID: 30425930 PMCID: PMC6222031 DOI: 10.1016/j.toxrep.2018.10.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 09/29/2018] [Accepted: 10/18/2018] [Indexed: 11/06/2022] Open
Abstract
The usefulness of PBMC gene expressions as a surrogate tissue for risk assessment is questionable. SIF in a dose of 2 mg/kg b.w/day is not able to influence ERGs in target tissues such as breast and uterus. Plasma concentrations of SIF after 8 weeks oral exposure similar as the recommended dose for humans do not proliferate cells in in vitro cellular models. The ovariectomized rat is probably not a good model to predict human risk or benefit assessment of SIF in human.
This toxicogenomic study was conducted to predict (post)menopausal human health effects of commercial soy supplementation using ovariectomized rats as a model. Different target tissues (i.e. breast, uterus and sternum) and non-target tissues (i.e. peripheral blood mononuclear cells (PBMC), adipose and liver) of ovariectomized F344 rats exposed to a commercially available soy supplement for eight weeks, were investigated. Changes in gene expression in these tissues were analysed using whole-genome microarray analysis. No correlation in changes in gene expression were observed among different tissues, indicating tissue specific effects of soy isoflavone supplementation. Out of 87 well-established estrogen responsive genes (ERGs), only 19 were found to be significantly regulated (p < 0.05) in different tissues, particularly in liver, adipose and uterus tissues. Surprisingly, no ERGs were significantly regulated in estrogen sensitive breast and sternum tissues. The changes in gene expression in PBMC and adipose tissue in rats were compared with those in (post)menopausal female volunteers who received the same supplement in a similar oral dose and exposure duration in human intervention studies. No correlation in changes in gene expression between rats and humans was observed. Although receiving a similar dose, in humans the plasma levels expressed as total free aglycones were several folds higher than in the rat. Therefore, the overall results in young ovariectomized female F344 rats indicated that using rat transcriptomic data does not provide a suitable model for human risk or benefit analysis of soy isoflavone supplementation.
Collapse
Affiliation(s)
- Mohammed A Islam
- Division of Toxicology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, the Netherlands.,Department of Agricultural Chemistry, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Guido J E J Hooiveld
- Division of Human Nutrition, Wageningen University, Bomenweg 2, 6703 HE Wageningen, the Netherlands
| | | | - Vera van der Velpen
- Division of Human Nutrition, Wageningen University, Bomenweg 2, 6703 HE Wageningen, the Netherlands.,Metabolomics Service and Research Unit, Faculty of Biology and Medicine, University of Lausanne, Switzerland
| | - Albertinka J Murk
- Division of Toxicology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, the Netherlands.,Sub-department of Environmental Technology, Wageningen University, the Netherlands
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - F X Rolaf van Leeuwen
- Division of Toxicology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| |
Collapse
|
23
|
Juritsch AF, Moreau R. Role of soybean-derived bioactive compounds in inflammatory bowel disease. Nutr Rev 2018; 76:618-638. [PMID: 29800381 DOI: 10.1093/nutrit/nuy021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic, inflammatory condition of the gastrointestinal tract. Patients with IBD present with debilitating symptoms that alter the quality of life and can develop into severe complications requiring surgery. Epidemiological evidence indicates Westernized societies have an elevated IBD burden when compared with Asian societies. Considering the stark contrast between the typical Western and Eastern dietary patterns, it is postulated that differences in food and lifestyle contribute to lower IBD incidence in Asian countries. Soybeans (Glycine max), which are consumed in high quantities and as various preparations in Eastern societies, contain a wealth of natural, biologically active compounds that include isoflavones, bioactive peptides, protease inhibitors, and phytosterols, among many others. These compounds have been shown to improve human health, and preclinical evidence suggests they have potential to improve the prognosis of IBD. This review summarizes the current state of evidence regarding the effects and the mechanisms of action of these soybean-derived bioactive compounds in experimental models of IBD.
Collapse
Affiliation(s)
- Anthony F Juritsch
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Régis Moreau
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
24
|
Murota K, Nakamura Y, Uehara M. Flavonoid metabolism: the interaction of metabolites and gut microbiota. Biosci Biotechnol Biochem 2018; 82:600-610. [DOI: 10.1080/09168451.2018.1444467] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Abstract
Several dietary flavonoids exhibit anti-oxidative, anti-inflammatory, and anti-osteoporotic activities relevant to prevention of chronic diseases, including lifestyle-related diseases. Dietary flavonoids (glycoside forms) are enzymatically hydrolyzed and absorbed in the intestine, and are conjugated to their glucuronide/sulfate forms by phase II enzymes in epithelial cells and the liver. The intestinal microbiota plays an important role in the metabolism of flavonoids found in foods. Some specific products of bacterial transformation, such as ring-fission products and reduced metabolites, exhibit enhanced properties. Studies on the metabolism of flavonoids by the intestinal microbiota are crucial for understanding the role of these compounds and their impact on our health. This review focused on the metabolic pathways, bioavailability, and physiological role of flavonoids, especially metabolites of quercetin and isoflavone produced by the intestinal microbiota.
Collapse
Affiliation(s)
- Kaeko Murota
- Faculty of Science and Technology, Department of Life Science, Kindai University, Osaka, Japan
| | - Yoshimasa Nakamura
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Mariko Uehara
- Faculty of Applied Bioscience, Department of Nutritional Science and Food Safety, Tokyo University of Agriculture, Tokyo, Japan
| |
Collapse
|
25
|
Xie CL, Kang SS, Cho KM, Park KH, Lee DH. Isoflavone-enriched soybean ( Glycine max) leaves prevents ovariectomy-induced obesity by enhancing fatty acid oxidation. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.02.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
26
|
Soy Consumption and the Risk of Prostate Cancer: An Updated Systematic Review and Meta-Analysis. Nutrients 2018; 10:nu10010040. [PMID: 29300347 PMCID: PMC5793268 DOI: 10.3390/nu10010040] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 12/23/2017] [Accepted: 12/28/2017] [Indexed: 12/20/2022] Open
Abstract
Prostate cancer (PCa) is the second most commonly diagnosed cancer in men, accounting for 15% of all cancers in men worldwide. Asian populations consume soy foods as part of a regular diet, which may contribute to the lower PCa incidence observed in these countries. This meta-analysis provides a comprehensive updated analysis that builds on previously published meta-analyses, demonstrating that soy foods and their isoflavones (genistein and daidzein) are associated with a lower risk of prostate carcinogenesis. Thirty articles were included for analysis of the potential impacts of soy food intake, isoflavone intake, and circulating isoflavone levels, on both primary and advanced PCa. Total soy food (p < 0.001), genistein (p = 0.008), daidzein (p = 0.018), and unfermented soy food (p < 0.001) intakes were significantly associated with a reduced risk of PCa. Fermented soy food intake, total isoflavone intake, and circulating isoflavones were not associated with PCa risk. Neither soy food intake nor circulating isoflavones were associated with advanced PCa risk, although very few studies currently exist to examine potential associations. Combined, this evidence from observational studies shows a statistically significant association between soy consumption and decreased PCa risk. Further studies are required to support soy consumption as a prophylactic dietary approach to reduce PCa carcinogenesis.
Collapse
|
27
|
Lambert MNT, Hu LM, Jeppesen PB. A systematic review and meta-analysis of the effects of isoflavone formulations against estrogen-deficient bone resorption in peri- and postmenopausal women. Am J Clin Nutr 2017; 106:801-811. [PMID: 28768649 DOI: 10.3945/ajcn.116.151464] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 06/27/2017] [Indexed: 11/14/2022] Open
Abstract
Background: Age-related estrogen deficiency leads to accelerated bone resorption. There is evidence that, through selective estrogen receptor modulation, isoflavones may exert beneficial effects against estrogen-deficient bone loss. Isoflavone aglycones show higher bioavailability than their glycosidic counterparts and thus may have greater potency.Objective: To summarize evidence, we executed a systematic review and meta-analysis examining isoflavone therapies and bone mineral density (BMD) loss in peri- and postmenopausal women.Design: We systematically searched EMBASE and PubMed for randomized controlled trials (RCTs) evaluating isoflavone therapies for treating BMD loss at the lumbar spine and femoral neck in estrogen-deficient women. Separate meta-analyses were carried out with the use of random-effects models for the lumbar spine and femoral neck for all studies providing isoflavones as aglycones.Results: Twenty-six RCTs (n = 2652) were included in the meta-analysis. At the lumbar spine, isoflavone treatment was associated with a significantly (P < 0.00001) higher weighted mean difference (WMD) of BMD change of 0.01 (95% CI: 0.01, 0.02) than the control. For the femoral neck (18 RCTs, n = 1604), isoflavone treatment showed a significantly (P < 0.01) higher WMD of BMD change of 0.01 (95% CI: 0.00, 0.02) compared with the control. When isolating studies that provide isoflavone aglycones in their treatment arm, the average effect was further significantly increased at the spine (5 RCTs, n = 682) to 0.04 (P < 0.00001; 95% CI: 0.02, 0.05) and femoral neck (4 RCTs, n = 524) to 0.03 (P < 0.05; 95% CI: 0.00, 0.06) compared with the control. This protective effect against bone loss disappeared when only studies with formulations comprising predominantly isoflavone glycosides were included.Conclusions: Isoflavone treatments exert a moderately beneficial effect against estrogen-deficient bone loss in women. The effect appears dependent on whether isoflavone treatments are in aglycone form; we conclude that beneficial effects against bone loss may be enhanced for isoflavone aglycones.
Collapse
Affiliation(s)
| | - Lin Meng Hu
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Per Bendix Jeppesen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
28
|
Boonpawa R, Spenkelink A, Punt A, Rietjens IMCM. In vitro-in silico-based analysis of the dose-dependent in vivo oestrogenicity of the soy phytoestrogen genistein in humans. Br J Pharmacol 2017; 174:2739-2757. [PMID: 28585232 DOI: 10.1111/bph.13900] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 05/21/2017] [Accepted: 05/28/2017] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE The in vivo oestrogenicity of genistein and its glycoside genistin is still under debate. The present study aimed to develop a physiologically based kinetic (PBK) model that provides insight in dose-dependent plasma concentrations of genistein aglycone and its metabolites and enables prediction of in vivo oestrogenic effective dose levels of genistein and genistin in humans. EXPERIMENTAL APPROACH A PBK model for genistein and genistin in humans was developed based on in vitro metabolic parameters. The model obtained was used to translate in vitro oestrogenic concentration-response curves of genistein to in vivo oestrogenic dose-response curves for intake of genistein and genistin. KEY RESULTS The model predicted that genistein-7-O-glucuronide was the major circulating metabolite and that levels of the free aglycone were generally low [0.5-17% of total plasma genistein at oral doses from 0.01 to 50 mg (kg·bw)-1 ]. The predicted in vivo benchmark dose for 5% response values for oestrogenicity varied between 0.06 and 4.39 mg kg-1 genistein. For genistin, these values were 1.3-fold higher. These values are in line with reported human data and show that oestrogenic responses can be expected at an Asian dietary and a supplementary intake, while intake resulting from a Western diet may not be effective. CONCLUSIONS AND IMPLICATIONS The present study shows how plasma concentrations of genistein and its metabolites and oestrogenic dose levels of genistein in humans can be predicted by combining in vitro oestrogenicity with PBK model-based reverse dosimetry, eliminating the need for human intervention studies.
Collapse
Affiliation(s)
- Rungnapa Boonpawa
- Division of Toxicology, Wageningen University, Wageningen, The Netherlands
| | | | - Ans Punt
- Division of Toxicology, Wageningen University, Wageningen, The Netherlands
| | | |
Collapse
|
29
|
Vázquez L, Guadamuro L, Giganto F, Mayo B, Flórez AB. Development and Use of a Real-Time Quantitative PCR Method for Detecting and Quantifying Equol-Producing Bacteria in Human Faecal Samples and Slurry Cultures. Front Microbiol 2017; 8:1155. [PMID: 28713336 PMCID: PMC5491606 DOI: 10.3389/fmicb.2017.01155] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 06/07/2017] [Indexed: 12/23/2022] Open
Abstract
This work introduces a novel real-time quantitative PCR (qPCR) protocol for detecting and quantifying equol-producing bacteria. To this end, two sets of primers targeting the dihydrodaidzein reductase (ddr) and tetrahydrodaidzein reductase (tdr) genes, which are involved in the synthesis of equol, were designed. The primers showed high specificity and sensitivity when used to examine DNA from control bacteria, such as Slackia isoflavoniconvertens, Slackia equolifaciens, Asaccharobacter celatus, Adlercreutzia equolifaciens, and Enterorhabdus mucosicola. To demonstrate the validity and reliability of the protocol, it was used to detect and quantify equol-producing bacteria in human faecal samples and their derived slurry cultures. These samples were provided by 18 menopausal women under treatment of menopause symptoms with a soy isoflavone concentrate, among whom three were known to be equol-producers given the prior detection of the molecule in their urine. The tdr gene was detected in the faeces of all these equol-producing women at about 4–5 log10 copies per gram of faeces. In contrast, the ddr gene was only amplified in the faecal samples of two of these three women, suggesting the presence in the non-amplified sample of reductase genes unrelated to those known to be involved in equol formation and used for primer design in this study. When tdr and ddr were present in the same sample, similar copy numbers of the two genes were recorded. However, no significant increase in the copy number of equol-related genes along isoflavone treatment was observed. Surprisingly, positive amplification for both tdr and ddr genes was obtained in faecal samples and derived slurry cultures from two non-equol producing women, suggesting the genes could be non-functional or the daidzein metabolized to other compounds in samples from these two women. This novel qPCR tool provides a technique for monitoring gut microbes that produce equol in humans. Monitoring equol-producing bacteria in the human gut could provide a means of evaluating strategies aimed at increasing the endogenous formation of this bioactive compound.
Collapse
Affiliation(s)
- Lucía Vázquez
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas, IPLA-CSICVillaviciosa, Spain
| | - Lucía Guadamuro
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas, IPLA-CSICVillaviciosa, Spain
| | - Froilán Giganto
- Servicio Digestivo, Hospital Universitario Central de AsturiasOviedo, Spain
| | - Baltasar Mayo
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas, IPLA-CSICVillaviciosa, Spain
| | - Ana B Flórez
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas, IPLA-CSICVillaviciosa, Spain
| |
Collapse
|
30
|
Functional beverage from fermented soymilk with improved amino nitrogen, β-glucosidase activity and aglycone content using Bacillus subtilis starter. Food Sci Biotechnol 2016; 25:1399-1405. [PMID: 30263422 DOI: 10.1007/s10068-016-0218-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 07/16/2016] [Accepted: 07/17/2016] [Indexed: 01/28/2023] Open
Abstract
The bioactivity of soymilk was enhanced by fermentation with three strains of β-glucosidaseproducing Bacillus subtilis for 36 h at 37oC. The results indicated that protease, cellulase, and β-glucosidase activities were significantly (p<0.05) increased with increasing fermentation time. In addition, the amino-type nitrogen content in B. subtilis-fermented soymilk was increased to 121.1-140.7 mg% after 36 h of fermentation. Among the isoflavones in soymilk, the contents of β-glucosides or acetyl-glucosides were decreased, while aglycone content was increased by fermentation. In particular, the soymilk fermented with B. subtilis HJ18-9 had highest β-glucosidase activity and the largest increase in aglycone content. The total aerobic and anaerobic cell counts were increased with increasing fermentation time. Therefore, this study suggests that soy beverages fermented with β-glucosidase-producing B. subtilis have the potential to enhance the health and nutritional status of consumers.
Collapse
|
31
|
Shi J, Zheng H, Yu J, Zhu L, Yan T, Wu P, Lu L, Wang Y, Hu M, Liu Z. SGLT-1 Transport and Deglycosylation inside Intestinal Cells Are Key Steps in the Absorption and Disposition of Calycosin-7-O- -D-Glucoside in Rats. Drug Metab Dispos 2015; 44:283-96. [DOI: 10.1124/dmd.115.067009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 12/10/2015] [Indexed: 12/14/2022] Open
|
32
|
Use of physiologically based kinetic (PBK) modeling to study interindividual human variation and species differences in plasma concentrations of quercetin and its metabolites. Biochem Pharmacol 2015; 98:690-702. [DOI: 10.1016/j.bcp.2015.09.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 09/29/2015] [Indexed: 11/23/2022]
|
33
|
Uifălean A, Farcaş A, Ilieş M, Hegheş SC, Ionescu C, Iuga CA. Assessment of isoflavone aglycones variability in soy food supplements using a validated HPLC-UV method. ACTA ACUST UNITED AC 2015; 88:373-80. [PMID: 26609272 PMCID: PMC4632898 DOI: 10.15386/cjmed-468] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 05/29/2015] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND AIMS Soy supplements are often recommended in the management of menopause symptoms. The declared content of soy supplements is commonly expressed as total isoflavones per dosage form. Given that soy isoflavones have different estrogenic potencies, pharmacokinetics and metabolism, the aim of this study was to evaluate the total isoflavone content and the aglycone profile of seven soy supplements and one soy seed extract. Label accuracy was assessed, in relation to the precise content and the recommended posology for estimating whether the optimal dose is achieved for alleviating menopause symptoms. METHODS A high performance liquid chromatography method was developed for evaluating the aglycone content (genistein, daidzein, glycitein). After extraction and acidic hydrolysis, the aglycones were separated on a C18 column, using 0.1% acetic acid and acetonitrile as mobile phases. The flow rate was 1.5mL min(-1) and the UV detector wavelength was set at 260nm. A linear relationship was found in the range 5-80μg mL(-1). The method was validated using the accuracy profile methodology. RESULTS The total isoflavone content ranged from 6.07 to 41.68mg dosage form(-1). Various aglycone profiles were obtained for each supplement which can result in a different estrogenic activity, bioavailability and finally, in a different efficiency in alleviating menopause symptoms. In most clinical trials where soy isoflavones were evaluated, little attention was paid to determining the exact aglycone profile of the employed soy extracts. CONCLUSIONS As clinical outcomes continue to be controversial, this study highlights the need of standardization in genistein, rather than total isoflavones and labeling accuracy for soy supplements.
Collapse
Affiliation(s)
- Alina Uifălean
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Anca Farcaş
- Department of Mathematics and Computer Science, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Maria Ilieş
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Simona Codruţa Hegheş
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Corina Ionescu
- Department of Pharmaceutical Biochemistry and Clinical Laboratory, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cristina Adela Iuga
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
34
|
Islam MA, Bekele R, Vanden Berg JHJ, Kuswanti Y, Thapa O, Soltani S, van Leeuwen FXR, Rietjens IMCM, Murk AJ. Deconjugation of soy isoflavone glucuronides needed for estrogenic activity. Toxicol In Vitro 2015; 29:706-15. [PMID: 25661160 DOI: 10.1016/j.tiv.2015.01.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 01/17/2015] [Accepted: 01/26/2015] [Indexed: 10/24/2022]
Abstract
Soy isoflavones (SIF) are present in the systemic circulation as conjugated forms of which the estrogenic potency is not yet clear. The present study provides evidence that the major SIF glucuronide metabolites in blood, genistein-7-O-glucuronide (GG) and daidzein-7-O-glucuronide (DG), only become estrogenic after deconjugation. The estrogenic potencies of genistein (Ge), daidzein (Da), GG and DG were determined using stably transfected U2OS-ERα, U2OS-ERβ reporter gene cells and proliferation was tested in T47D-ERβ cells mimicking the ERα/ERβ ratio of healthy breast cells and inT47D breast cancer cells. In all assays applied, the estrogenic potency of the aglycones was significantly higher than that of their corresponding glucuronides. UPLC analysis revealed that in U2OS and T47D cells, 0.2-1.6% of the glucuronides were deconjugated to their corresponding aglycones. The resulting aglycone concentrations can account for the estrogenicity observed upon glucuronide exposure. Interestingly, under similar experimental conditions, rat breast tissue S9 fraction was about 30 times more potent in deconjugating these glucuronides than human breast tissue S9 fraction. Our study confirms that SIF glucuronides are not estrogenic as such, and that the small % of deconjugation in the cell is enough to explain the slight bioactivity observed for the SIF-glucuronides. Species differences in deconjugation capacity should be taken into account when basing risk-benefit assessment of these SIF for the human population on animal data.
Collapse
Affiliation(s)
- M A Islam
- Division of Toxicology, Wageningen University, 6703 HE Wageningen, The Netherlands.
| | - R Bekele
- Division of Toxicology, Wageningen University, 6703 HE Wageningen, The Netherlands
| | - J H J Vanden Berg
- Division of Toxicology, Wageningen University, 6703 HE Wageningen, The Netherlands
| | - Y Kuswanti
- Division of Toxicology, Wageningen University, 6703 HE Wageningen, The Netherlands
| | - O Thapa
- Division of Toxicology, Wageningen University, 6703 HE Wageningen, The Netherlands
| | - S Soltani
- Division of Toxicology, Wageningen University, 6703 HE Wageningen, The Netherlands
| | - F X R van Leeuwen
- Division of Toxicology, Wageningen University, 6703 HE Wageningen, The Netherlands
| | - I M C M Rietjens
- Division of Toxicology, Wageningen University, 6703 HE Wageningen, The Netherlands
| | - A J Murk
- Division of Toxicology, Wageningen University, 6703 HE Wageningen, The Netherlands
| |
Collapse
|
35
|
Islam MA, Hooiveld GJEJ, van den Berg JHJ, Boekschoten MV, van der Velpen V, Murk AJ, Rietjens IMCM, van Leeuwen FXR. Plasma bioavailability and changes in PBMC gene expression after treatment of ovariectomized rats with a commercial soy supplement. Toxicol Rep 2015; 2:308-321. [PMID: 28962364 PMCID: PMC5598277 DOI: 10.1016/j.toxrep.2014.12.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 12/18/2014] [Accepted: 12/18/2014] [Indexed: 11/02/2022] Open
Abstract
The health effects of soy supplementation in (post)menopausal women are still a controversial issue. The aim of the present study was to establish the effect of the soy isoflavones (SIF) present in a commercially available supplement on ovariectomized rats and to investigate whether these rats would provide an adequate model to predict effects of SIF in (post)menopausal women. Two dose levels (i.e. 2 and 20 mg/kg b.w.) were used to characterize plasma bioavailability, urinary and fecal concentrations of SIF and changes in gene expression in peripheral blood mononuclear cells (PBMC). Animals were dosed at 0 and 48 h and sacrificed 4 h after the last dose. A clear dose dependent increase of SIF concentrations in plasma, urine and feces was observed, together with a strong correlation in changes in gene expression between the two dose groups. All estrogen responsive genes and related biological pathways (BPs) that were affected by the SIF treatment were regulated in both dose groups in the same direction and indicate beneficial effects. However, in general no correlation was found between the changes in gene expression in rat PBMC with those in PBMC of (post)menopausal women exposed to a comparable dose of the same supplement. The outcome of this short-term study in rats indicates that the rat might not be a suitable model to predict effects of SIF in humans. Although the relative exposure period in this rat study is comparable with that of the human study, longer repetitive administration of rats to SIF may be required to draw a final conclusion on the suitability of the rat a model to predict effects of SIF in humans.
Collapse
Key Words
- BPs, biological pathways
- Bioavailability
- DMSO, dimethyl sulfoxide
- Dose effect
- E2, estradiol
- ECM, extracellular matrix
- EREs, estrogen-responsive elements
- ERs, estrogen receptors
- GSEA, gene set enrichment analysis
- Gene expression
- HD, high dose
- HPLC, high performance liquid chromatography
- KEGG, kyoto encyclopedia of genes and genomes
- LD, low dose
- MDS, multidimensional scaling
- NCBI, National Center for Biotechnology Information
- PBMC, peripheral blood mononuclear cells
- SIF, soy isoflavones
- Soy supplementation
- Species differences
- UPC, universal expression code
Collapse
Affiliation(s)
- Mohammed A Islam
- Division of Toxicology, Wageningen University, Tuinlaan 5, 6703 HE Wageningen, The Netherlands
| | - Guido J E J Hooiveld
- Division of Human Nutrition, Wageningen University, Bomenweg 2, 6703 HE Wageningen, The Netherlands
| | | | - Mark V Boekschoten
- Division of Human Nutrition, Wageningen University, Bomenweg 2, 6703 HE Wageningen, The Netherlands
| | - Vera van der Velpen
- Division of Human Nutrition, Wageningen University, Bomenweg 2, 6703 HE Wageningen, The Netherlands.,Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, UK
| | - Albertinka J Murk
- Division of Toxicology, Wageningen University, Tuinlaan 5, 6703 HE Wageningen, The Netherlands
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University, Tuinlaan 5, 6703 HE Wageningen, The Netherlands
| | - F X Rolaf van Leeuwen
- Division of Toxicology, Wageningen University, Tuinlaan 5, 6703 HE Wageningen, The Netherlands
| |
Collapse
|
36
|
Messina M. Post-Diagnosis Soy Isoflavone Intake Is Not Harmful to Women with Breast Cancer. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.breastdis.2015.07.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|