1
|
Sonomoto K, Song R, Eriksson D, Hahn AM, Meng X, Lyu P, Cao S, Liu N, Taudte RV, Wirtz S, Tanaka Y, Winkler TH, Schett G, Soulat D, Bozec A. High-fat-diet-associated intestinal microbiota exacerbates psoriasis-like inflammation by enhancing systemic γδ T cell IL-17 production. Cell Rep 2023; 42:112713. [PMID: 37421628 PMCID: PMC10391630 DOI: 10.1016/j.celrep.2023.112713] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/15/2023] [Accepted: 06/13/2023] [Indexed: 07/10/2023] Open
Abstract
Although it is known that psoriasis is strongly associated with obesity, the mechanistic connection between diet and skin lesions is not well established. Herein, we showed that only dietary fat, not carbohydrates or proteins, exacerbates psoriatic disease. Enhanced psoriatic skin inflammation was associated with changes in the intestinal mucus layer and microbiota composition by high-fat diet (HFD). Change of intestinal microbiota by vancomycin treatment effectively blocked activation of psoriatic skin inflammation by HFD, inhibited the systemic interleukin-17 (IL-17) response, and led to increased mucophilic bacterial species such as Akkermansia muciniphila. By using IL-17 reporter mice, we could show that HFD facilitates IL-17-mediated γδ T cell response in the spleen. Notably, oral gavage with live or heat-killed A. muciniphila effectively inhibited HFD-induced enhancement of psoriatic disease. In conclusion, HFD exacerbates psoriatic skin inflammation through changing the mucus barrier and the intestine microbial composition, which leads to an enhanced systemic IL-17 response.
Collapse
Affiliation(s)
- Koshiro Sonomoto
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsche Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany; Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan; The Department of Clinical Nursing, School of Health Sciences, University of Occupational and Environmental Health, Fukuoka, Japan
| | - Rui Song
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsche Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Daniel Eriksson
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsche Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Anne M Hahn
- Division of Genetics, Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Xianyi Meng
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsche Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Pang Lyu
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsche Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Shan Cao
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsche Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Ning Liu
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsche Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - R Verena Taudte
- Institute for Experimental und Clinical Pharmacology and Toxicology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Stefan Wirtz
- Department of Internal Medicine 1 - Gastroenterology, Pneumology and Endocrinology, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Yoshiya Tanaka
- Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Thomas H Winkler
- Division of Genetics, Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsche Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Didier Soulat
- Institute of Clinical Microbiology, Immunology and Hygiene, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Aline Bozec
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsche Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany.
| |
Collapse
|
2
|
Lau TC, Fiebig-Comyn AA, Shaler CR, McPhee JB, Coombes BK, Schertzer JD. Low dietary fiber promotes enteric expansion of a Crohn's disease-associated pathobiont independent of obesity. Am J Physiol Endocrinol Metab 2021; 321:E338-E350. [PMID: 34280051 DOI: 10.1152/ajpendo.00134.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Obesity is associated with metabolic, immunological, and infectious disease comorbidities, including an increased risk of enteric infection and inflammatory bowel disease such as Crohn's disease (CD). Expansion of intestinal pathobionts such as adherent-invasive Escherichia coli (AIEC) is a common dysbiotic feature of CD, which is amplified by prior use of oral antibiotics. Although high-fat, high-sugar diets are associated with dysbiotic expansion of E. coli, it is unknown if the content of fat or another dietary component in obesogenic diets is sufficient to promote AIEC expansion. Here, we found that administration of an antibiotic combined with feeding mice an obesogenic low-fiber, high-sucrose, high-fat diet (HFD) that is typically used in rodent-obesity studies promoted AIEC intestinal expansion. Even a short-term (i.e., 1 day) pulse of HFD feeding before infection was sufficient to promote AIEC expansion, indicating that the magnitude of obesity was not the main driver of AIEC expansion. Controlled-diet experiments demonstrated that neither dietary fat nor sugar were the key determinants of AIEC colonization, but that lowering dietary fiber from approximately 13% to 5%-6% was sufficient to promote the intestinal expansion of AIEC when combined with antibiotics in mice. When combined with antibiotics, lowering fiber promoted AIEC intestinal expansion to a similar extent as widely used HFDs in mice. However, lowering dietary fiber was sufficient to promote AIEC intestinal expansion without affecting body mass. Our results show that low dietary fiber combined with oral antibiotics are environmental factors that promote the expansion of Crohn's disease-associated pathobionts in the gut.NEW & NOTEWORTHY It is commonly thought that obesity or a high-fat diet alters pathogenic bacteria and promotes inflammatory gut diseases. We found that lower dietary fiber is a key factor that expands a gut pathobiont linked to Crohn's disease, independent of obesity status in mice.
Collapse
Affiliation(s)
- Trevor C Lau
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Aline A Fiebig-Comyn
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Christopher R Shaler
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Joseph B McPhee
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada
| | - Brian K Coombes
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Jonathan D Schertzer
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity, and Diabetes Research, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
3
|
Maurer SF, Dieckmann S, Lund J, Fromme T, Hess AL, Colson C, Kjølbaek L, Astrup A, Gillum MP, Larsen LH, Liebisch G, Amri EZ, Klingenspor M. No Effect of Dietary Fish Oil Supplementation on the Recruitment of Brown and Brite Adipocytes in Mice or Humans under Thermoneutral Conditions. Mol Nutr Food Res 2021; 65:e2000681. [PMID: 33274552 DOI: 10.1002/mnfr.202000681] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/09/2020] [Indexed: 01/06/2023]
Abstract
SCOPE Brown and brite adipocytes within the mammalian adipose organ provide non-shivering thermogenesis and thus, have an exceptional capacity to dissipate chemical energy as heat. Polyunsaturated fatty acids (PUFA) of the n3-series, abundant in fish oil, have been repeatedly demonstrated to enhance the recruitment of thermogenic capacity in these cells, consequently affecting body adiposity and glucose tolerance. These effects are scrutinized in mice housed in a thermoneutral environment and in a human dietary intervention trial. METHODS AND RESULTS Mice are housed in a thermoneutral environment eliminating the superimposing effect of mild cold-exposure on thermogenic adipocyte recruitment. Dietary fish oil supplementation in two different inbred mouse strains neither affects body mass trajectory nor enhances the recruitment of brown and brite adipocytes, both in the presence and absence of a β3-adrenoreceptor agonist imitating the effect of cold-exposure on adipocytes. In line with these findings, dietary fish oil supplementation of persons with overweight or obesity fails to recruit thermogenic adipocytes in subcutaneous adipose tissue. CONCLUSION Thus, the authors' data question the hypothesized potential of n3-PUFA as modulators of adipocyte-based thermogenesis and energy balance regulation.
Collapse
Affiliation(s)
- Stefanie F Maurer
- Chair for Molecular Nutritional Medicine, Technical University of Munich, TUM School of Life Sciences, Freising, 85354, Germany
- EKFZ - Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, 85354, Germany
| | - Sebastian Dieckmann
- Chair for Molecular Nutritional Medicine, Technical University of Munich, TUM School of Life Sciences, Freising, 85354, Germany
- EKFZ - Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, 85354, Germany
- ZIEL - Institute for Food and Health, Technical University of Munich, Freising, 85354, Germany
| | - Jens Lund
- Department of Nutrition, Exercise and Sports (NEXS), Faculty of Science, University of Copenhagen, Frederiksberg, DK-1958, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - Tobias Fromme
- Chair for Molecular Nutritional Medicine, Technical University of Munich, TUM School of Life Sciences, Freising, 85354, Germany
- EKFZ - Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, 85354, Germany
- ZIEL - Institute for Food and Health, Technical University of Munich, Freising, 85354, Germany
| | - Anne Lundby Hess
- Department of Nutrition, Exercise and Sports (NEXS), Faculty of Science, University of Copenhagen, Frederiksberg, DK-1958, Denmark
| | - Cécilia Colson
- Université Côte d'Azur, CNRS, Inserm, iBV, Nice, 06107, France
| | - Louise Kjølbaek
- Department of Nutrition, Exercise and Sports (NEXS), Faculty of Science, University of Copenhagen, Frederiksberg, DK-1958, Denmark
| | - Arne Astrup
- Department of Nutrition, Exercise and Sports (NEXS), Faculty of Science, University of Copenhagen, Frederiksberg, DK-1958, Denmark
| | - Matthew Paul Gillum
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - Lesli Hingstrup Larsen
- Department of Nutrition, Exercise and Sports (NEXS), Faculty of Science, University of Copenhagen, Frederiksberg, DK-1958, Denmark
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, Regensburg, 93053, Germany
| | - Ez-Zoubir Amri
- Université Côte d'Azur, CNRS, Inserm, iBV, Nice, 06107, France
| | - Martin Klingenspor
- Chair for Molecular Nutritional Medicine, Technical University of Munich, TUM School of Life Sciences, Freising, 85354, Germany
- EKFZ - Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, 85354, Germany
- ZIEL - Institute for Food and Health, Technical University of Munich, Freising, 85354, Germany
| |
Collapse
|
4
|
Soták M, Casselbrant A, Rath E, Zietek T, Strömstedt M, Adingupu DD, Karlsson D, Fritsch Fredin M, Ergang P, Pácha J, Batorsky A, Alpers CE, Börgeson E, Hansen PBL, Ericsson A, Björnson Granqvist A, Wallenius V, Fändriks L, Unwin RJ. Intestinal sodium/glucose cotransporter 3 expression is epithelial and downregulated in obesity. Life Sci 2020; 267:118974. [PMID: 33385407 DOI: 10.1016/j.lfs.2020.118974] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/11/2020] [Accepted: 12/20/2020] [Indexed: 12/12/2022]
Abstract
AIM We aimed to determine whether the sodium/glucose cotransporter family member SGLT3, a proposed glucose sensor, is expressed in the intestine and/or kidney, and if its expression is altered in mouse models of obesity and in humans before and after weight-loss surgery. MAIN METHODS We used in-situ hybridization and quantitative PCR to determine whether the Sglt3 isoforms 3a and 3b were expressed in the intestine and kidney of C57, leptin-deficient ob/ob, and diabetic BTBR ob/ob mice. Western blotting and immunohistochemistry were also used to assess SGLT3 protein levels in jejunal biopsies from obese patients before and after weight-loss Roux-en-Y gastric bypass surgery (RYGB), and in lean healthy controls. KEY FINDINGS Sglt3a/3b mRNA was detected in the small intestine (duodenum, jejunum and ileum), but not in the large intestine or kidneys of mice. Both isoforms were detected in epithelial cells (confirmed using intestinal organoids). Expression of Sglt3a/3b mRNA in duodenum and jejunum was significantly lower in ob/ob and BTBR ob/ob mice than in normal-weight littermates. Jejunal SGLT3 protein levels in aged obese patients before RYGB were lower than in lean individuals, but substantially upregulated 6 months post-RYGB. SIGNIFICANCE Our study shows that Sglt3a/3b is expressed primarily in epithelial cells of the small intestine in mice. Furthermore, we observed an association between intestinal mRNA Sglt3a/3b expression and obesity in mice, and between jejunal SGLT3 protein levels and obesity in humans. Further studies are required to determine the possible role of SGLT3 in obesity.
Collapse
Affiliation(s)
- Matúš Soták
- Bioscience, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Institute of Medicine, University of Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Sweden.
| | - Anna Casselbrant
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Eva Rath
- Chair of Nutrition and Immunology, Technische Universität München, Freising, Germany
| | - Tamara Zietek
- Department of Nutritional Physiology, Technische Universität München, Freising, Germany
| | - Maria Strömstedt
- Bioscience, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Damilola D Adingupu
- Bioscience, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Daniel Karlsson
- Bioscience, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Maria Fritsch Fredin
- Bioscience, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Peter Ergang
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Jiří Pácha
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Anna Batorsky
- Department of Pathology, University of Washington School of Medicine, Seattle, USA
| | - Charles E Alpers
- Department of Pathology, University of Washington School of Medicine, Seattle, USA
| | - Emma Börgeson
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Institute of Medicine, University of Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Sweden; Department of Clinical Physiology, Sahlgrenska University Hospital, Sweden
| | - Pernille B L Hansen
- Bioscience, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Sweden
| | - Anette Ericsson
- Bioscience, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Anna Björnson Granqvist
- Bioscience, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Ville Wallenius
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lars Fändriks
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Robert J Unwin
- Bioscience, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; Department of Renal Medicine, Division of Medicine, University College London, UK
| |
Collapse
|
5
|
Yin R, Xue Y, Hu J, Hu X, Shen Q. The effects of diet and streptozotocin on metabolism and gut microbiota in a type 2 diabetes mellitus mouse model. FOOD AGR IMMUNOL 2020. [DOI: 10.1080/09540105.2020.1761302] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Ruiyang Yin
- Key Laboratory of Plant Protein and Grain processing, National Engineering Research Center for Fruits and Vegetable Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, People’s Republic of China
| | - Yong Xue
- Key Laboratory of Plant Protein and Grain processing, National Engineering Research Center for Fruits and Vegetable Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, People’s Republic of China
| | - Jinrong Hu
- Key Laboratory of Plant Protein and Grain processing, National Engineering Research Center for Fruits and Vegetable Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, People’s Republic of China
| | - Xiaosong Hu
- Key Laboratory of Plant Protein and Grain processing, National Engineering Research Center for Fruits and Vegetable Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, People’s Republic of China
| | - Qun Shen
- Key Laboratory of Plant Protein and Grain processing, National Engineering Research Center for Fruits and Vegetable Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, People’s Republic of China
| |
Collapse
|
6
|
Le Gall M, Thenet S, Aguanno D, Jarry AC, Genser L, Ribeiro-Parenti L, Joly F, Ledoux S, Bado A, Le Beyec J. Intestinal plasticity in response to nutrition and gastrointestinal surgery. Nutr Rev 2020; 77:129-143. [PMID: 30517714 DOI: 10.1093/nutrit/nuy064] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The plasticity of a material corresponds to its capacity to change its feature under the effect of an external action. Intestinal plasticity could be defined as the ability of the intestine to modify its size or thickness and intestinal cells to modulate their absorption and secretion functions in response to external or internal cues/signals. This review will focus on intestinal adaptation mechanisms in response to diet and nutritional status. These physiological mechanisms allow a fine and rapid adaptation of the gut to promote absorption of ingested food, but they can also lead to obesity in response to overnutrition. This plasticity could thus become a therapeutic target to treat not only undernutrition but also obesity. How the intestine adapts in response to 2 types of surgical remodeling of the digestive tract-extensive bowel resection leading to intestinal failure and surgical treatment of pathological obesity (ie, bariatric surgeries)-will also be reviewed.
Collapse
Affiliation(s)
- Maude Le Gall
- Centre de Recherche sur l'Inflammation, Inserm UMRS _1149, Université Paris Diderot, AP-HP, Paris, France
| | - Sophie Thenet
- Centre de Recherche des Cordeliers, Sorbonne Université, EPHE, PSL University, Sorbonne Cités, UPD Univ Paris 05, INSERM, CNRS, Paris, France
| | - Doriane Aguanno
- Centre de Recherche des Cordeliers, Sorbonne Université, EPHE, PSL University, Sorbonne Cités, UPD Univ Paris 05, INSERM, CNRS, Paris, France
| | - Anne-Charlotte Jarry
- Centre de Recherche sur l'Inflammation, Inserm UMRS _1149, Université Paris Diderot, AP-HP, Paris, France
| | - Laurent Genser
- Sorbonne Université, INSERM, Nutriomics Team, Paris, France, and the Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Department of Hepato-Biliary and Pancreatic Surgery, Liver Transplantation, Paris, France
| | - Lara Ribeiro-Parenti
- Centre de Recherche sur l'Inflammation, Inserm UMRS _1149, Université Paris Diderot, AP-HP, Paris, France.,Department of General and Digestive Surgery, University Hospital Bichat-Claude-Bernard, Paris, France
| | - Francisca Joly
- Centre de Recherche sur l'Inflammation, Inserm UMRS _1149, Université Paris Diderot, AP-HP, Paris, France.,Department of Gastroenterology, Inflammatory Bowel Diseases, Nutritional Support and Intestinal Transplantation, Paris, France
| | - Séverine Ledoux
- Centre de Recherche sur l'Inflammation, Inserm UMRS _1149, Université Paris Diderot, AP-HP, Paris, France.,Service des Explorations Fonctionnelles, Centre de référence de prise en charge de l'obésité, GHUPNVS, Hôpital Louis Mourier, Colombes, France
| | - André Bado
- Centre de Recherche sur l'Inflammation, Inserm UMRS _1149, Université Paris Diderot, AP-HP, Paris, France
| | - Johanne Le Beyec
- Centre de Recherche sur l'Inflammation, Inserm UMRS _1149, Université Paris Diderot, AP-HP, Paris, France.,Sorbonne Université, AP-HP, Hôpital Pitié-Salpêtrière-Charles Foix, Biochimie Endocrinienne et Oncologique, Paris, France
| |
Collapse
|
7
|
Schulfer A, Santiago-Rodriguez TM, Ly M, Borin JM, Chopyk J, Blaser MJ, Pride DT. Fecal Viral Community Responses to High-Fat Diet in Mice. mSphere 2020; 5:e00833-19. [PMID: 32102942 PMCID: PMC7045389 DOI: 10.1128/msphere.00833-19] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 02/05/2020] [Indexed: 12/22/2022] Open
Abstract
Alterations in diet can have significant impact on the host, with high-fat diet (HFD) leading to obesity, diabetes, and inflammation of the gut. Although membership and abundances in gut bacterial communities are strongly influenced by diet, substantially less is known about how viral communities respond to dietary changes. Examining fecal contents of mice as the mice were transitioned from normal chow to HFD, we found significant changes in the relative abundances and the diversity in the gut of bacteria and their viruses. Alpha diversity of the bacterial community was significantly diminished in response to the diet change but did not change significantly in the viral community. However, the diet shift significantly impacted the beta diversity in both the bacterial and viral communities. There was a significant shift away from the relatively abundant Siphoviridae accompanied by increases in bacteriophages from the Microviridae family. The proportion of identified bacteriophage structural genes significantly decreased after the transition to HFD, with a conserved loss of integrase genes in all four experimental groups. In total, this study provides evidence for substantial changes in the intestinal virome disproportionate to bacterial changes, and with alterations in putative viral lifestyles related to chromosomal integration as a result of shift to HFD.IMPORTANCE Prior studies have shown that high-fat diet (HFD) can have profound effects on the gastrointestinal (GI) tract microbiome and also demonstrate that bacteria in the GI tract can affect metabolism and lean/obese phenotypes. We investigated whether the composition of viral communities that also inhabit the GI tract are affected by shifts from normal to HFD. We found significant and reproducible shifts in the content of GI tract viromes after the transition to HFD. The differences observed in virome community membership and their associated gene content suggest that these altered viral communities are populated by viruses that are more virulent toward their host bacteria. Because HFD also are associated with significant shifts in GI tract bacterial communities, we believe that the shifts in the viral community may serve to drive the changes that occur in associated bacterial communities.
Collapse
Affiliation(s)
| | | | - Melissa Ly
- Department of Pathology, University of California, San Diego, California, USA
| | - Joshua M Borin
- Division of Biological Sciences, University of California, San Diego, California, USA
| | - Jessica Chopyk
- Department of Pathology, University of California, San Diego, California, USA
| | - Martin J Blaser
- New York University, New York, New York, USA
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, New Jersey, USA
| | - David T Pride
- Department of Pathology, University of California, San Diego, California, USA
- Department of Medicine, University of California, San Diego, California, USA
| |
Collapse
|
8
|
Lycopene supplementation attenuates western diet-induced body weight gain through increasing the expressions of thermogenic/mitochondrial functional genes and improving insulin resistance in the adipose tissue of obese mice. J Nutr Biochem 2019; 69:63-72. [DOI: 10.1016/j.jnutbio.2019.03.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 03/02/2019] [Accepted: 03/12/2019] [Indexed: 12/16/2022]
|
9
|
Faraj TA, Stover C, Erridge C. Dietary Toll-Like Receptor Stimulants Promote Hepatic Inflammation and Impair Reverse Cholesterol Transport in Mice via Macrophage-Dependent Interleukin-1 Production. Front Immunol 2019; 10:1404. [PMID: 31316501 PMCID: PMC6611433 DOI: 10.3389/fimmu.2019.01404] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/04/2019] [Indexed: 01/21/2023] Open
Abstract
Background: The mechanisms connecting dietary intake of processed foods with systemic inflammatory markers and cardiovascular risk remain poorly defined. We sought to compare the abundance of pro-inflammatory stimulants of innate immune receptors in processed foods with those produced by the murine ileal and caecal microbiota, and to explore the impact of their ingestion on systemic inflammation and lipid metabolism in vivo. Methods and results: Calibrated receptor-dependent reporter assays revealed that many processed foods, particularly those based on minced meats, contain pro-inflammatory stimulants of Toll-like receptor (TLR)-2 and TLR4 at concentrations which greatly exceed those produced by the endogenous murine ileal microbiota. Chronic dietary supplementation with these stimulants, at concentrations relevant to those measured in the Western diet, promoted hepatic inflammation and reduced several markers of reverse cholesterol transport (RCT) in mice. Hepatocytes were found to be insensitive to TLR2- and TLR4-stimulants directly, but their secretion of functional cholesterol acceptors was impaired by interleukin (IL)-1β released by TLR-responsive hepatic macrophages. Hepatic macrophage priming by high-fat diet enhanced the impairment of RCT by ingested endotoxin, and this was reversed by macrophage depletion via clodronate liposome treatment, or genetic deficiency in the IL-1 receptor. Conclusion: These findings reveal an unexpected mechanism connecting processed food consumption with cardiovascular risk factors, and introduce the food microbiota as a potential target for therapeutic regulation of lipid metabolism.
Collapse
Affiliation(s)
- Tola A. Faraj
- Department of Cardiovascular Sciences, University of Leicester, Glenfield Hospital, Leicester, United Kingdom
- Department of Pharmacognosy, Hawler Medical University, Erbil, Iraq
| | - Cordula Stover
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
| | - Clett Erridge
- Department of Cardiovascular Sciences, University of Leicester, Glenfield Hospital, Leicester, United Kingdom
- School of Life Sciences, Anglia Ruskin University, Cambridge, United Kingdom
| |
Collapse
|
10
|
Kleinert M, Clemmensen C, Hofmann SM, Moore MC, Renner S, Woods SC, Huypens P, Beckers J, de Angelis MH, Schürmann A, Bakhti M, Klingenspor M, Heiman M, Cherrington AD, Ristow M, Lickert H, Wolf E, Havel PJ, Müller TD, Tschöp MH. Animal models of obesity and diabetes mellitus. Nat Rev Endocrinol 2018; 14:140-162. [PMID: 29348476 DOI: 10.1038/nrendo.2017.161] [Citation(s) in RCA: 547] [Impact Index Per Article: 78.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
More than one-third of the worldwide population is overweight or obese and therefore at risk of developing type 2 diabetes mellitus. In order to mitigate this pandemic, safer and more potent therapeutics are urgently required. This necessitates the continued use of animal models to discover, validate and optimize novel therapeutics for their safe use in humans. In order to improve the transition from bench to bedside, researchers must not only carefully select the appropriate model but also draw the right conclusions. In this Review, we consolidate the key information on the currently available animal models of obesity and diabetes and highlight the advantages, limitations and important caveats of each of these models.
Collapse
Affiliation(s)
- Maximilian Kleinert
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Division of Metabolic Diseases, Department of Medicine, Technische Universität München, D-80333 Munich, Germany
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Christoffer Clemmensen
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Division of Metabolic Diseases, Department of Medicine, Technische Universität München, D-80333 Munich, Germany
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Susanna M Hofmann
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Institute for Diabetes and Regeneration Research, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig-Maximilians-Universität München, Ziemssenstr. 1, D-80336 Munich, Germany
| | - Mary C Moore
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37212, USA
| | - Simone Renner
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilan University München, Feodor-Lynen-Str. 25, D-81377 Munich, Germany
| | - Stephen C Woods
- University of Cincinnati College of Medicine, Department of Psychiatry and Behavioral Neuroscience, Metabolic Diseases Institute, 2170 East Galbraith Road, Cincinnati, Ohio 45237, USA
| | - Peter Huypens
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Johannes Beckers
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Technische Universität München, Chair of Experimental Genetics, D-85354 Freising, Germany
| | - Martin Hrabe de Angelis
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Technische Universität München, Chair of Experimental Genetics, D-85354 Freising, Germany
| | - Annette Schürmann
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Department of Experimental Diabetology, German Institute of Human Nutrition (DIfE), Arthur-Scheunert-Allee 114-116, D-14558 Nuthetal, Germany
| | - Mostafa Bakhti
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Institute for Diabetes and Regeneration Research, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Martin Klingenspor
- Chair of Molecular Nutritional Medicine, Technische Universität München, TUM School of Life Sciences Weihenstephan, Gregor-Mendel-Str. 2, D-85354 Freising, Germany
- Else Kröner-Fresenius Center for Nutritional Medicine, Technische Universität München, D-85354 Freising, Germany
- Institute for Food & Health, Technische Universität München, D-85354 Freising, Germany
| | - Mark Heiman
- MicroBiome Therapeutics, 1316 Jefferson Ave, New Orleans, Louisiana 70115, USA
| | - Alan D Cherrington
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37212, USA
| | - Michael Ristow
- Energy Metabolism Laboratory, Institute of Translational Medicine, Swiss Federal Institute of Technology (ETH) Zurich, CH-8603 Zurich-Schwerzenbach, Switzerland
| | - Heiko Lickert
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Institute for Diabetes and Regeneration Research, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Eckhard Wolf
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilan University München, Feodor-Lynen-Str. 25, D-81377 Munich, Germany
| | - Peter J Havel
- Department of Molecular Biosciences, School of Veterinary Medicine and Department of Nutrition, 3135 Meyer Hall, University of California, Davis, California 95616-5270, USA
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Division of Metabolic Diseases, Department of Medicine, Technische Universität München, D-80333 Munich, Germany
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Matthias H Tschöp
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Division of Metabolic Diseases, Department of Medicine, Technische Universität München, D-80333 Munich, Germany
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| |
Collapse
|
11
|
Ott B, Skurk T, Lagkouvardos L, Fischer S, Büttner J, Lichtenegger M, Clavel T, Lechner A, Rychlik M, Haller D, Hauner H. Short-Term Overfeeding with Dairy Cream Does Not Modify Gut Permeability, the Fecal Microbiota, or Glucose Metabolism in Young Healthy Men. J Nutr 2018; 148:77-85. [PMID: 29378051 DOI: 10.1093/jn/nxx020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 10/23/2017] [Indexed: 12/29/2022] Open
Abstract
Background High-fat diets (HFDs) have been linked to low-grade inflammation and insulin resistance. Objective The main purpose of the present study was to assess whether acute overfeeding with an HFD affects insulin sensitivity, gut barrier function, and fecal microbiota in humans. Methods In a prospective intervention study, 24 healthy men [mean ± SD: age 23.0 ± 2.8 y, body mass index (in kg/m2) 23.0 ± 2.1] received an HFD (48% of energy from fat) with an additional 1000 kcal/d (as whipping cream) above their calculated energy expenditure for 7 d. Insulin sensitivity (hyperinsulinemic euglycemic clamp), gut permeability (sugar and polyethylene glycol absorption tests, plasma zonulin), and gut microbiota profiles (high-throughput 16S rRNA gene sequencing) were assessed before and after overfeeding, and 14 d after intervention. Additionally, inflammation markers such as high-sensitivity C-reactive protein, lipopolysaccharide-binding protein, leptin, high-molecular-weight adiponectin, calprotectin, regulated on activation normal, T cell expressed and secreted (RANTES), and monocyte chemoattractant protein-1 were measured in plasma by ELISA. Finally, lipid parameters were analyzed in serum by a laboratory service. Results Although participants gained 0.9 ± 0.6 kg (P < 0.001) body weight, overnutrition was not associated with a significant change in insulin sensitivity (M value and glucose disposal). Overfeeding for 7 d resulted in elevated serum total (10.2%), LDL (14.6%) and HDL (14.8%) cholesterol concentrations (P < 0.01). In contrast, fasting plasma triglyceride significantly declined (29.3%) during overfeeding (P < 0.001). In addition, there were no significant changes in inflammatory markers. Urine excretion of 4 sugars and polyethylene glycol, used as a proxy for gut permeability, and plasma concentration of zonulin, a marker of paracellular gut permeability, were unchanged. Moreover, overfeeding was not associated with consistent changes in gut microbiota profiles, but marked alterations were observed in a subgroup of 6 individuals. Conclusions Our findings suggest that short-term overfeeding with an HFD does not significantly impair insulin sensitivity and gut permeability in normal-weight healthy men, and that changes in dominant communities of fecal bacteria occur only in certain individuals. The study was registered in the German Clinical Trial Register as DRKS00006211.
Collapse
Affiliation(s)
- Beate Ott
- Else Kröner-Fresenius-Center of Nutritional Medicine, ZIEL Institute for FOOD and Health, Chair of Analytical Food Chemistry, and Chair of Nutrition and Immunology, Technical University of Munich, Freising, Germany.,ZIEL Institute for FOOD and Health, Chair of Analytical Food Chemistry, and Chair of Nutrition and Immunology, Technical University of Munich, Freising, Germany
| | - Thomas Skurk
- Else Kröner-Fresenius-Center of Nutritional Medicine, ZIEL Institute for FOOD and Health, Chair of Analytical Food Chemistry, and Chair of Nutrition and Immunology, Technical University of Munich, Freising, Germany.,ZIEL Institute for FOOD and Health, Chair of Analytical Food Chemistry, and Chair of Nutrition and Immunology, Technical University of Munich, Freising, Germany
| | - Llias Lagkouvardos
- ZIEL Institute for FOOD and Health, Chair of Analytical Food Chemistry, and Chair of Nutrition and Immunology, Technical University of Munich, Freising, Germany
| | - Sandra Fischer
- ZIEL Institute for FOOD and Health, Chair of Analytical Food Chemistry, and Chair of Nutrition and Immunology, Technical University of Munich, Freising, Germany
| | - Janine Büttner
- Charité-Universitätsmedizin, Medizinische Klinik mit Schwerpunkt Hepatologie und Gastroenterologie, Berlin, Germany
| | - Martina Lichtenegger
- Chair of Analytical Food Chemistry, and Chair of Nutrition and Immunology, Technical University of Munich, Freising, Germany
| | - Thomas Clavel
- ZIEL Institute for FOOD and Health, Chair of Analytical Food Chemistry, and Chair of Nutrition and Immunology, Technical University of Munich, Freising, Germany.,Institute of Medical Microbiology, RWTH University Hospital, Aachen, Germany
| | - Andreas Lechner
- Diabetes Research Group, Medical Department 4, Ludwig-Maximilians Universität, Munich, Germany.,Clinical Cooperation Group Type 2 Diabetes, German Research Center for Environmental Health, Neuherberg, Germany.,Diabetes Research Group, German Center for Diabetes Research, Munich, Germany
| | - Michael Rychlik
- Chair of Analytical Food Chemistry, and Chair of Nutrition and Immunology, Technical University of Munich, Freising, Germany
| | - Dirk Haller
- ZIEL Institute for FOOD and Health, Chair of Analytical Food Chemistry, and Chair of Nutrition and Immunology, Technical University of Munich, Freising, Germany.,Chair of Nutrition and Immunology, Technical University of Munich, Freising, Germany
| | - Hans Hauner
- Else Kröner-Fresenius-Center of Nutritional Medicine, ZIEL Institute for FOOD and Health, Chair of Analytical Food Chemistry, and Chair of Nutrition and Immunology, Technical University of Munich, Freising, Germany.,ZIEL Institute for FOOD and Health, Chair of Analytical Food Chemistry, and Chair of Nutrition and Immunology, Technical University of Munich, Freising, Germany.,Institute of Nutritional Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
12
|
Lohr K, Pachl F, Moghaddas Gholami A, Geillinger KE, Daniel H, Kuster B, Klingenspor M. Reduced mitochondrial mass and function add to age-related susceptibility toward diet-induced fatty liver in C57BL/6J mice. Physiol Rep 2017; 4:4/19/e12988. [PMID: 27694529 PMCID: PMC5064140 DOI: 10.14814/phy2.12988] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 09/09/2016] [Indexed: 01/11/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a major health burden in the aging society with an urging medical need for a better understanding of the underlying mechanisms. Mitochondrial fatty acid oxidation and mitochondrial‐derived reactive oxygen species (ROS) are considered critical in the development of hepatic steatosis, the hallmark of NAFLD. Our study addressed in C57BL/6J mice the effect of high fat diet feeding and age on liver mitochondria at an early stage of NAFLD development. We therefore analyzed functional characteristics of hepatic mitochondria and associated alterations in the mitochondrial proteome in response to high fat feeding in adolescent, young adult, and middle‐aged mice. Susceptibility to diet‐induced obesity increased with age. Young adult and middle‐aged mice developed fatty liver, but not adolescent mice. Fat accumulation was negatively correlated with an age‐related reduction in mitochondrial mass and aggravated by a reduced capacity of fatty acid oxidation in high fat‐fed mice. Irrespective of age, high fat diet increased ROS production in hepatic mitochondria associated with a balanced nuclear factor erythroid‐derived 2 like 2 (NFE2L2) dependent antioxidative response, most likely triggered by reduced tethering of NFE2L2 to mitochondrial phosphoglycerate mutase 5. Age indirectly influenced mitochondrial function by reducing mitochondrial mass, thus exacerbating diet‐induced fat accumulation. Therefore, consideration of age in metabolic studies must be emphasized.
Collapse
Affiliation(s)
- Kerstin Lohr
- Chair of Molecular Nutritional Medicine, Technische Universität München, Else Kröner Fresenius Center for Nutritional Medicine, Freising-Weihenstephan, Germany Z I E L - Research Center for Nutrition and Food Sciences, Technische Universität München, Freising-Weihenstephan, Germany
| | - Fiona Pachl
- Chair of Proteomics and Bioanalytics, Technische Universität München Bavarian Biomolecular Mass Spectrometry Center, Freising-Weihenstephan, Germany
| | - Amin Moghaddas Gholami
- Chair of Proteomics and Bioanalytics, Technische Universität München Bavarian Biomolecular Mass Spectrometry Center, Freising-Weihenstephan, Germany
| | - Kerstin E Geillinger
- Z I E L - Research Center for Nutrition and Food Sciences, Technische Universität München, Freising-Weihenstephan, Germany Nutritional Physiology, Technische Universität München, Freising-Weihenstephan, Germany
| | - Hannelore Daniel
- Z I E L - Research Center for Nutrition and Food Sciences, Technische Universität München, Freising-Weihenstephan, Germany Nutritional Physiology, Technische Universität München, Freising-Weihenstephan, Germany
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, Technische Universität München Bavarian Biomolecular Mass Spectrometry Center, Freising-Weihenstephan, Germany
| | - Martin Klingenspor
- Chair of Molecular Nutritional Medicine, Technische Universität München, Else Kröner Fresenius Center for Nutritional Medicine, Freising-Weihenstephan, Germany Z I E L - Research Center for Nutrition and Food Sciences, Technische Universität München, Freising-Weihenstephan, Germany
| |
Collapse
|
13
|
Guerville M, Leroy A, Sinquin A, Laugerette F, Michalski MC, Boudry G. Western-diet consumption induces alteration of barrier function mechanisms in the ileum that correlates with metabolic endotoxemia in rats. Am J Physiol Endocrinol Metab 2017; 313:E107-E120. [PMID: 28400412 DOI: 10.1152/ajpendo.00372.2016] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 04/03/2017] [Accepted: 04/04/2017] [Indexed: 12/11/2022]
Abstract
Obesity and its related disorders have been associated with the presence in the blood of gut bacteria-derived lipopolysaccharides (LPS). However, the factors underlying this low-grade elevation in plasma LPS, so-called metabolic endotoxemia, are not fully elucidated. We aimed to investigate the effects of Western diet (WD) feeding on intestinal and hepatic LPS handling mechanisms in a rat model of diet-induced obesity (DIO). Rats were fed either a standard chow diet (C) or a Western Diet (WD, 45% fat) for 6 wk. They were either fed ad libitum or pair-fed to match the caloric intake of C rats for the first week, then fed ad libitum for the remaining 5 wk. Six-week WD feeding led to a mild obese phenotype with increased adiposity and elevated serum LPS-binding protein (LBP) levels relative to C rats, irrespective of initial energy intake. Serum LPS was not different between dietary groups but exhibited strong variability. Disrupted ileal mucus secretion and decreased ileal Reg3-γ and -β gene expression along with high ileal permeability to LPS were observed in WD compared with C-fed rats. Ileal and cecal intestinal alkaline phosphatase (IAP) activity as well as Verrucomicrobia and Bifidobacterium cecal levels were increased in WD-fed rats compared with C-fed rats. WD consumption did not impact mRNA levels of LPS-handling hepatic enzymes. Correlation analysis revealed that ileal passage of LPS, IAP activity, Proteobacteria levels and hepatic aoah gene expression correlated with serum LPS and LBP, suggesting that ileal mucosal defense impairment induced by WD feeding contribute to metabolic endotoxemia.
Collapse
Affiliation(s)
- Mathilde Guerville
- Institut Numecan INRA INSERM Université de Rennes 1, Saint-Gilles, France; and
| | - Anaïs Leroy
- Institut Numecan INRA INSERM Université de Rennes 1, Saint-Gilles, France; and
| | - Annaëlle Sinquin
- Institut Numecan INRA INSERM Université de Rennes 1, Saint-Gilles, France; and
| | - Fabienne Laugerette
- Univ-Lyon, CarMeN Laboratory, INRA U1397, Université Claude Bernard Lyon 1, Inserm U1060, INSA Lyon, Villeurbanne, France
| | - Marie-Caroline Michalski
- Univ-Lyon, CarMeN Laboratory, INRA U1397, Université Claude Bernard Lyon 1, Inserm U1060, INSA Lyon, Villeurbanne, France
| | - Gaëlle Boudry
- Institut Numecan INRA INSERM Université de Rennes 1, Saint-Gilles, France; and
| |
Collapse
|
14
|
Rodríguez-Carrio J, López P, Sánchez B, González S, Gueimonde M, Margolles A, de Los Reyes-Gavilán CG, Suárez A. Intestinal Dysbiosis Is Associated with Altered Short-Chain Fatty Acids and Serum-Free Fatty Acids in Systemic Lupus Erythematosus. Front Immunol 2017; 8:23. [PMID: 28167944 PMCID: PMC5253653 DOI: 10.3389/fimmu.2017.00023] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 01/05/2017] [Indexed: 12/21/2022] Open
Abstract
Metabolic impairments are a frequent hallmark of systemic lupus erythematosus (SLE). Increased serum levels of free fatty acids (FFA) are commonly found in these patients, although the underlying causes remain elusive. Recently, it has been suggested that factors other than inflammation or clinical features may be involved. The gut microbiota is known to influence the host metabolism, the production of short-chain fatty acids (SCFA) playing a potential role. Taking into account that lupus patients exhibit an intestinal dysbiosis, we wondered whether altered FFA levels may be associated with the intestinal microbial composition in lupus patients. To this aim, total and specific serum FFA levels, fecal SCFA levels, and gut microbiota composition were determined in 21 SLE patients and 25 healthy individuals. The Firmicutes to Bacteroidetes (F/B) ratio was strongly associated with serum FFA levels in healthy controls (HC), even after controlling for confounders. However, this association was not found in lupus patients, where a decreased F/B ratio and increased FFA serum levels were noted. An altered production of SCFA was related to the intestinal dysbiosis in lupus, while SCFA levels paralleled those of serum FFA in HC. Although a different serum FFA profile was not found in SLE, specific FFA showed distinct patterns on a principal component analysis. Immunomodulatory omega-3 FFA were positively correlated to the F/B ratio in HC, but not in SLE. Furthermore, divergent associations were observed for pro- and anti-inflammatory FFA with endothelial activation biomarkers in lupus patients. Overall, these findings support a link between the gut microbial ecology and the host metabolism in the pathological framework of SLE. A potential link between intestinal dysbiosis and surrogate markers of endothelial activation in lupus patients is supported, FFA species having a pivotal role.
Collapse
Affiliation(s)
- Javier Rodríguez-Carrio
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC) , Villaviciosa, Asturias , Spain
| | - Patricia López
- Area of Immunology, Department of Functional Biology, University of Oviedo , Oviedo, Asturias , Spain
| | - Borja Sánchez
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC) , Villaviciosa, Asturias , Spain
| | - Sonia González
- Area of Physiology, Department of Functional Biology, University of Oviedo , Oviedo, Asturias , Spain
| | - Miguel Gueimonde
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC) , Villaviciosa, Asturias , Spain
| | - Abelardo Margolles
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC) , Villaviciosa, Asturias , Spain
| | - Clara G de Los Reyes-Gavilán
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC) , Villaviciosa, Asturias , Spain
| | - Ana Suárez
- Area of Immunology, Department of Functional Biology, University of Oviedo , Oviedo, Asturias , Spain
| |
Collapse
|
15
|
Lundquist P, Artursson P. Oral absorption of peptides and nanoparticles across the human intestine: Opportunities, limitations and studies in human tissues. Adv Drug Deliv Rev 2016; 106:256-276. [PMID: 27496705 DOI: 10.1016/j.addr.2016.07.007] [Citation(s) in RCA: 321] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/02/2016] [Accepted: 07/08/2016] [Indexed: 12/23/2022]
Abstract
In this contribution, we review the molecular and physiological barriers to oral delivery of peptides and nanoparticles. We discuss the opportunities and predictivity of various in vitro systems with special emphasis on human intestine in Ussing chambers. First, the molecular constraints to peptide absorption are discussed. Then the physiological barriers to peptide delivery are examined. These include the gastric and intestinal environment, the mucus barrier, tight junctions between epithelial cells, the enterocytes of the intestinal epithelium, and the subepithelial tissue. Recent data from human proteome studies are used to provide information about the protein expression profiles of the different physiological barriers to peptide and nanoparticle absorption. Strategies that have been employed to increase peptide absorption across each of the barriers are discussed. Special consideration is given to attempts at utilizing endogenous transcytotic pathways. To reliably translate in vitro data on peptide or nanoparticle permeability to the in vivo situation in a human subject, the in vitro experimental system needs to realistically capture the central aspects of the mentioned barriers. Therefore, characteristics of common in vitro cell culture systems are discussed and compared to those of human intestinal tissues. Attempts to use the cell and tissue models for in vitro-in vivo extrapolation are reviewed.
Collapse
Affiliation(s)
- P Lundquist
- Department of Pharmacy, Uppsala University, Box 580, SE-752 37 Uppsala, Sweden.
| | - P Artursson
- Department of Pharmacy, Uppsala University, Box 580, SE-752 37 Uppsala, Sweden.
| |
Collapse
|
16
|
Neyrinck AM, Schüppel VL, Lockett T, Haller D, Delzenne NM. Microbiome and metabolic disorders related to obesity: Which lessons to learn from experimental models? Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2016.08.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
17
|
Kübeck R, Bonet-Ripoll C, Hoffmann C, Walker A, Müller VM, Schüppel VL, Lagkouvardos I, Scholz B, Engel KH, Daniel H, Schmitt-Kopplin P, Haller D, Clavel T, Klingenspor M. Dietary fat and gut microbiota interactions determine diet-induced obesity in mice. Mol Metab 2016; 5:1162-1174. [PMID: 27900259 PMCID: PMC5123202 DOI: 10.1016/j.molmet.2016.10.001] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 09/26/2016] [Accepted: 10/04/2016] [Indexed: 12/19/2022] Open
Abstract
Objective Gut microbiota may promote positive energy balance; however, germfree mice can be either resistant or susceptible to diet-induced obesity (DIO) depending on the type of dietary intervention. We here sought to identify the dietary constituents that determine the susceptibility to body fat accretion in germfree (GF) mice. Methods GF and specific pathogen free (SPF) male C57BL/6N mice were fed high-fat diets either based on lard or palm oil for 4 wks. Mice were metabolically characterized at the end of the feeding trial. FT-ICR-MS and UPLC-TOF-MS were used for cecal as well as hepatic metabolite profiling and cecal bile acids quantification, respectively. Hepatic gene expression was examined by qRT-PCR and cecal gut microbiota of SPF mice was analyzed by high-throughput 16S rRNA gene sequencing. Results GF mice, but not SPF mice, were completely DIO resistant when fed a cholesterol-rich lard-based high-fat diet, whereas on a cholesterol-free palm oil-based high-fat diet, DIO was independent of gut microbiota. In GF lard-fed mice, DIO resistance was conveyed by increased energy expenditure, preferential carbohydrate oxidation, and increased fecal fat and energy excretion. Cecal metabolite profiling revealed a shift in bile acid and steroid metabolites in these lean mice, with a significant rise in 17β-estradiol, which is known to stimulate energy expenditure and interfere with bile acid metabolism. Decreased cecal bile acid levels were associated with decreased hepatic expression of genes involved in bile acid synthesis. These metabolic adaptations were largely attenuated in GF mice fed the palm-oil based high-fat diet. We propose that an interaction of gut microbiota and cholesterol metabolism is essential for fat accretion in normal SPF mice fed cholesterol-rich lard as the main dietary fat source. This is supported by a positive correlation between bile acid levels and specific bacteria of the order Clostridiales (phylum Firmicutes) as a characteristic feature of normal SPF mice fed lard. Conclusions In conclusion, our study identified dietary cholesterol as a candidate ingredient affecting the crosstalk between gut microbiota and host metabolism. Cholesterol-based but not plant sterol-based high-fat diet protects germfree (GF) mice from diet-induced obesity (DIO). DIO resistant GF mice show preferential carbohydrate oxidation, higher energy expenditure and energy and fat excretion. DIO resistance in GF mice is accompanied by increased steroid hormone levels but decreased bile acid levels in the cecum. Substrate oxidation and fat excretion in DIO resistant GF mice is linked to decreased hepatic Cyp7a1 and Nr1h4 expression.
Collapse
Key Words
- ANOVA, analysis of variance
- Abcg5, ATP-binding cassette sub-family G member 5
- Abcg8, ATP-binding cassette sub-family G member 8
- Actb, beta actin
- Akr1d1, aldo-keto-reductase family member 1
- BMR, basal metabolic rate
- CA, cholic acid
- CD, control diet
- CDCA, chenodeoxycholic acid
- CIDEA, cell death inducing DFFA-like effector
- COX4, cytochrome c oxidase subunit 4
- Cyp27a1, cholesterol 27 alpha-hydroxylase
- Cyp7a1, cholesterol 7 alpha-hydroxylase
- DCA, deoxycholic acid
- DEE, daily energy expenditure
- DIO, diet-induced obesity
- Dhcr7, 7-dehydrocholesterol reductase
- Diet-induced obesity resistance
- Eef2, eukaryotic elongation factor 2
- Energy balance
- FT-ICR-MS, Fourier transform-Ion Cyclotron Resonance-Mass Spectrometry
- FT-IR, Fourier transform-infrared spectroscopy
- GF, germfree
- GUSB, beta-glucuronidase
- Germfree
- HDCA, hyodeoxycholic acid
- HP, heat production
- High-fat diet
- Hmgcr, 3-hydroxy-3-methylglutaryl Coenzyme A reductase
- Hmgcs, 3-hydroxy-3-methylglutaryl Coenzyme A synthase 1
- Hprt1, hypoxanthine guanine phosphoribosyl transferase
- Hsd11b1, hydroxysteroid (11-β) dehydrogenase 1
- Hsp90, heat shock protein 90
- LHFD, high-fat diet based on lard
- Ldlr, low density lipoprotein receptor
- MCA, muricholic acid
- Nr1h2, nuclear receptor subfamily 1, group H, member 2 (liver X receptor β)
- Nr1h3, nuclear receptor subfamily 1, group H, member 3 (liver X receptor α)
- Nr1h4, nuclear receptor subfamily 1, group H, member 4 (farnesoid X receptor α)
- PHFD, high-fat diet based on palm oil
- PRDM16, PR domain containing 16
- SPF, specific pathogen free
- Srebf1, sterol regulatory element binding transcription factor 1
- TCA, taurocholic acid
- TMCA, Tauromuricholic acid
- Tf2b, transcription factor II B
- UCP1, uncoupling protein 1
- UDCA, ursodeoxycholic acid
- UPLC-TOF-MS, ultraperformance liquid chromatography-time of flight-mass spectrometry
- qPCR, quantitative real-time polymerase chain reaction
Collapse
Affiliation(s)
- Raphaela Kübeck
- ZIEL - Institute for Food and Health, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany; Chair of Molecular Nutritional Medicine, Technical University of Munich, TUM School of Life Sciences Weihenstephan, EKFZ - Else Kröner-Fresenius-Center for Nutritional Medicine, Gregor-Mendel-Str. 2, 85354 Freising, Germany
| | - Catalina Bonet-Ripoll
- ZIEL - Institute for Food and Health, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany; Chair of Molecular Nutritional Medicine, Technical University of Munich, TUM School of Life Sciences Weihenstephan, EKFZ - Else Kröner-Fresenius-Center for Nutritional Medicine, Gregor-Mendel-Str. 2, 85354 Freising, Germany
| | - Christina Hoffmann
- ZIEL - Institute for Food and Health, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany; Chair of Molecular Nutritional Medicine, Technical University of Munich, TUM School of Life Sciences Weihenstephan, EKFZ - Else Kröner-Fresenius-Center for Nutritional Medicine, Gregor-Mendel-Str. 2, 85354 Freising, Germany
| | - Alesia Walker
- Research Unit Analytical BioGeoChemistry, Department of Environmental Sciences, Helmholtz Zentrum München, Ingolstädter Landstr.1, 85764 Neuherberg, Germany
| | - Veronika Maria Müller
- ZIEL - Institute for Food and Health, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany; Chair of Nutritional Physiology, Technical University of Munich, TUM School of Life Sciences Weihenstephan, Gregor-Mendel-Str. 2, 85354 Freising, Germany
| | - Valentina Luise Schüppel
- ZIEL - Institute for Food and Health, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany; Chair of Nutrition and Immunology, Technical University of Munich, TUM School of Life Sciences Weihenstephan, Maximus-von-Imhof-Forum 2, 85354 Freising, Germany
| | - Ilias Lagkouvardos
- ZIEL - Institute for Food and Health, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany
| | - Birgit Scholz
- Chair of General Food Technology, Technische Universität München, Alte Akademie 10, 85354 Freising, Germany
| | - Karl-Heinz Engel
- Chair of General Food Technology, Technische Universität München, Alte Akademie 10, 85354 Freising, Germany
| | - Hannelore Daniel
- Chair of Nutritional Physiology, Technical University of Munich, TUM School of Life Sciences Weihenstephan, Gregor-Mendel-Str. 2, 85354 Freising, Germany
| | - Philippe Schmitt-Kopplin
- ZIEL - Institute for Food and Health, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany; Research Unit Analytical BioGeoChemistry, Department of Environmental Sciences, Helmholtz Zentrum München, Ingolstädter Landstr.1, 85764 Neuherberg, Germany; Chair of Analytical Food Chemistry, Technische Universität München, Alte Akademie 10, 85354 Freising, Germany
| | - Dirk Haller
- ZIEL - Institute for Food and Health, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany; Chair of Nutrition and Immunology, Technical University of Munich, TUM School of Life Sciences Weihenstephan, Maximus-von-Imhof-Forum 2, 85354 Freising, Germany
| | - Thomas Clavel
- ZIEL - Institute for Food and Health, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany
| | - Martin Klingenspor
- ZIEL - Institute for Food and Health, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany; Chair of Molecular Nutritional Medicine, Technical University of Munich, TUM School of Life Sciences Weihenstephan, EKFZ - Else Kröner-Fresenius-Center for Nutritional Medicine, Gregor-Mendel-Str. 2, 85354 Freising, Germany.
| |
Collapse
|
18
|
Guerville M, Boudry G. Gastrointestinal and hepatic mechanisms limiting entry and dissemination of lipopolysaccharide into the systemic circulation. Am J Physiol Gastrointest Liver Physiol 2016; 311:G1-G15. [PMID: 27151941 DOI: 10.1152/ajpgi.00098.2016] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 04/30/2016] [Indexed: 01/31/2023]
Abstract
The human microbiota consists of 100 trillion microorganisms that provide important metabolic and biological functions benefiting the host. However, the presence in host plasma of a gut-derived bacteria component, the lipopolysaccharide (LPS), has been identified as a causal or complicating factor in multiple serious diseases such as sepsis and septic shock and, more recently, obesity-associated metabolic disorders. Understanding the precise mechanisms by which gut-derived LPS is transported from the gut lumen to the systemic circulation is crucial to advance our knowledge of LPS-associated diseases and elaborate targeted strategies for their prevention. The aim of this review is to synthetize current knowledge on the host mechanisms limiting the entry and dissemination of LPS into the systemic circulation. To prevent bacterial colonization and penetration, the intestinal epithelium harbors multiple defense mechanisms including the secretion of antimicrobial peptides and mucins as well as detoxification enzymes. Despite this first line of defense, LPS can reach the apical site of intestinal epithelial cells (IECs) and, because of its large size, likely crosses IECs via transcellular transport, either lipid raft- or clathrin-mediated endocytosis or goblet cell-associated passage. However, the precise pathway remains poorly described. Finally, if LPS crosses the gut mucosa, it is directed via the portal vein to the liver, where major detoxification processes occur by deacetylation and excretion through the bile. If this disposal process is not sufficient, LPS enters the systemic circulation, where it is handled by numerous transport proteins that clear it back to the liver for further excretion.
Collapse
Affiliation(s)
| | - Gaëlle Boudry
- INRA UR1341 ADNC, Domaine de la Prise, Saint-Gilles, France
| |
Collapse
|
19
|
Woting A, Blaut M. The Intestinal Microbiota in Metabolic Disease. Nutrients 2016; 8:202. [PMID: 27058556 PMCID: PMC4848671 DOI: 10.3390/nu8040202] [Citation(s) in RCA: 199] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 03/17/2016] [Accepted: 03/29/2016] [Indexed: 02/06/2023] Open
Abstract
Gut bacteria exert beneficial and harmful effects in metabolic diseases as deduced from the comparison of germfree and conventional mice and from fecal transplantation studies. Compositional microbial changes in diseased subjects have been linked to adiposity, type 2 diabetes and dyslipidemia. Promotion of an increased expression of intestinal nutrient transporters or a modified lipid and bile acid metabolism by the intestinal microbiota could result in an increased nutrient absorption by the host. The degradation of dietary fiber and the subsequent fermentation of monosaccharides to short-chain fatty acids (SCFA) is one of the most controversially discussed mechanisms of how gut bacteria impact host physiology. Fibers reduce the energy density of the diet, and the resulting SCFA promote intestinal gluconeogenesis, incretin formation and subsequently satiety. However, SCFA also deliver energy to the host and support liponeogenesis. Thus far, there is little knowledge on bacterial species that promote or prevent metabolic disease. Clostridium ramosum and Enterococcus cloacae were demonstrated to promote obesity in gnotobiotic mouse models, whereas bifidobacteria and Akkermansia muciniphila were associated with favorable phenotypes in conventional mice, especially when oligofructose was fed. How diet modulates the gut microbiota towards a beneficial or harmful composition needs further research. Gnotobiotic animals are a valuable tool to elucidate mechanisms underlying diet–host–microbe interactions.
Collapse
Affiliation(s)
- Anni Woting
- Department of Gastrointestinal Microbiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany.
| | - Michael Blaut
- Department of Gastrointestinal Microbiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany.
| |
Collapse
|
20
|
Volynets V, Reichold A, Bárdos G, Rings A, Bleich A, Bischoff SC. Assessment of the Intestinal Barrier with Five Different Permeability Tests in Healthy C57BL/6J and BALB/cJ Mice. Dig Dis Sci 2016; 61:737-46. [PMID: 26520109 DOI: 10.1007/s10620-015-3935-y] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/14/2015] [Indexed: 12/24/2022]
Abstract
BACKGROUND Intestinal permeability is thought to be of major relevance for digestive and nutrition-related diseases, and therefore has been studied in numerous mouse models of disease. However, it is unclear which tools are the preferable ones, and how normal values should be defined. AIMS To compare different in vivo permeability tests in healthy mice of commonly used genetic backgrounds. METHODS We assessed the intestinal barrier in male and female C57BL/6J and BALB/cJ mice of different ages, using four orally administered permeability markers, FITC-dextran 4000 (FITC-D4000) and ovalbumin (OVA) measured in plasma, and polyethylene glycol (PEG) and lactulose/mannitol (Lac/Man) measured in urine, and by assessing lipopolysaccharide (LPS) in portal vein plasma. RESULTS After gavage, FITC-D4000, OVA, Lac/Man, and PEG400, but not PEG4000, were detectable in plasma or urine. Female mice tended to have a higher permeability according to the FITC-D4000, OVA, and PEG400 tests, but the Lac/Man ratio was higher in males. No significant differences between the two mouse strains of young and old mice were observed except for mannitol recovery, which was higher in BALB/cJ mice compared to C57BL/6J mice (p < 0.05). Virtually no LPS was detected in healthy mice. For all markers, normal values have been defined based on 5th-95th percentile ranges of our data. CONCLUSION Selected oral permeability tests, such as FITC-D4000, OVA, PEG400, and Lac/Man, as well as LPS measurements in portal vein plasma, could be suitable for the evaluation of the intestinal barrier in mice, if used in a standardized way.
Collapse
Affiliation(s)
- Valentina Volynets
- Department of Nutritional Medicine, University of Hohenheim, Fruwirthstr. 12, 70593, Stuttgart, Germany
| | - Astrid Reichold
- Department of Nutritional Medicine, University of Hohenheim, Fruwirthstr. 12, 70593, Stuttgart, Germany
| | - Gyöngyi Bárdos
- Department of Nutritional Medicine, University of Hohenheim, Fruwirthstr. 12, 70593, Stuttgart, Germany
| | - Andreas Rings
- Department of Nutritional Medicine, University of Hohenheim, Fruwirthstr. 12, 70593, Stuttgart, Germany
| | - André Bleich
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Germany
| | - Stephan C Bischoff
- Department of Nutritional Medicine, University of Hohenheim, Fruwirthstr. 12, 70593, Stuttgart, Germany.
| |
Collapse
|
21
|
Müller VM, Zietek T, Rohm F, Fiamoncini J, Lagkouvardos I, Haller D, Clavel T, Daniel H. Gut barrier impairment by high-fat diet in mice depends on housing conditions. Mol Nutr Food Res 2016; 60:897-908. [PMID: 26679432 DOI: 10.1002/mnfr.201500775] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 12/03/2015] [Accepted: 12/04/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Veronika Maria Müller
- Chair of Nutritional Physiology; Technische Universität München; Freising Germany
- ZIEL - Institute for Food & Health; Freising Germany
| | - Tamara Zietek
- Chair of Nutritional Physiology; Technische Universität München; Freising Germany
- ZIEL - Institute for Food & Health; Freising Germany
| | - Florian Rohm
- Chair of Nutritional Physiology; Technische Universität München; Freising Germany
- ZIEL - Institute for Food & Health; Freising Germany
| | - Jarlei Fiamoncini
- Chair of Nutritional Physiology; Technische Universität München; Freising Germany
- ZIEL - Institute for Food & Health; Freising Germany
| | - Ilias Lagkouvardos
- ZIEL - Institute for Food & Health; Freising Germany
- Chair of Nutrition and Immunology; Technische Universität München; Freising Germany
| | - Dirk Haller
- ZIEL - Institute for Food & Health; Freising Germany
- Chair of Nutrition and Immunology; Technische Universität München; Freising Germany
| | - Thomas Clavel
- ZIEL - Institute for Food & Health; Freising Germany
- Chair of Nutrition and Immunology; Technische Universität München; Freising Germany
| | - Hannelore Daniel
- Chair of Nutritional Physiology; Technische Universität München; Freising Germany
- ZIEL - Institute for Food & Health; Freising Germany
| |
Collapse
|
22
|
Rapid Alterations in Perirenal Adipose Tissue Transcriptomic Networks with Cessation of Voluntary Running. PLoS One 2015; 10:e0145229. [PMID: 26678390 PMCID: PMC4683046 DOI: 10.1371/journal.pone.0145229] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 11/30/2015] [Indexed: 12/20/2022] Open
Abstract
In maturing rats, the growth of abdominal fat is attenuated by voluntary wheel running. After the cessation of running by wheel locking, a rapid increase in adipose tissue growth to a size that is similar to rats that have never run (i.e. catch-up growth) has been previously reported by our lab. In contrast, diet-induced increases in adiposity have a slower onset with relatively delayed transcriptomic responses. The purpose of the present study was to identify molecular pathways associated with the rapid increase in adipose tissue after ending 6 wks of voluntary running at the time of puberty. Age-matched, male Wistar rats were given access to running wheels from 4 to 10 weeks of age. From the 10th to 11th week of age, one group of rats had continued wheel access, while the other group had one week of wheel locking. Perirenal adipose tissue was extracted, RNA sequencing was performed, and bioinformatics analyses were executed using Ingenuity Pathway Analysis (IPA). IPA was chosen to assist in the understanding of complex ‘omics data by integrating data into networks and pathways. Wheel locked rats gained significantly more fat mass and significantly increased body fat percentage between weeks 10–11 despite having decreased food intake, as compared to rats with continued wheel access. IPA identified 646 known transcripts differentially expressed (p < 0.05) between continued wheel access and wheel locking. In wheel locked rats, IPA revealed enrichment of transcripts for the following functions: extracellular matrix, macrophage infiltration, immunity, and pro-inflammatory. These findings suggest that increases in visceral adipose tissue that accompanies the cessation of pubertal physical activity are associated with the alteration of multiple pathways, some of which may potentiate the development of pubertal obesity and obesity-associated systemic low-grade inflammation that occurs later in life.
Collapse
|
23
|
Maurer SF, Fromme T, Grossman LI, Hüttemann M, Klingenspor M. The brown and brite adipocyte marker Cox7a1 is not required for non-shivering thermogenesis in mice. Sci Rep 2015; 5:17704. [PMID: 26635001 PMCID: PMC4669493 DOI: 10.1038/srep17704] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 11/03/2015] [Indexed: 12/11/2022] Open
Abstract
The cytochrome c oxidase subunit isoform Cox7a1 is highly abundant in skeletal muscle and heart and influences enzyme activity in these tissues characterised by high oxidative capacity. We identified Cox7a1, well-known as brown adipocyte marker gene, as a cold-responsive protein of brown adipose tissue. We hypothesised a mechanistic relationship between cytochrome c oxidase activity and Cox7a1 protein levels affecting the oxidative capacity of brown adipose tissue and thus non-shivering thermogenesis. We subjected wildtype and Cox7a1 knockout mice to different temperature regimens and tested characteristics of brown adipose tissue activation. Cytochrome c oxidase activity, uncoupling protein 1 expression and maximal norepinephrine-induced heat production were gradually increased during cold-acclimation, but unaffected by Cox7a1 knockout. Moreover, the abundance of uncoupling protein 1 competent brite cells in white adipose tissue was not influenced by presence or absence of Cox7a1. Skin temperature in the interscapular region of neonates was lower in uncoupling protein 1 knockout pups employed as a positive control, but not in Cox7a1 knockout pups. Body mass gain and glucose tolerance did not differ between wildtype and Cox7a1 knockout mice fed with high fat or control diet. We conclude that brown adipose tissue function in mice does not require the presence of Cox7a1.
Collapse
Affiliation(s)
- Stefanie F Maurer
- Chair of Molecular Nutritional Medicine, Technische Universität München, Else Kröner-Fresenius Center for Nutritional Medicine &ZIEL-Institute for Food and Health, 85350 Freising-Weihenstephan, Germany
| | - Tobias Fromme
- Chair of Molecular Nutritional Medicine, Technische Universität München, Else Kröner-Fresenius Center for Nutritional Medicine &ZIEL-Institute for Food and Health, 85350 Freising-Weihenstephan, Germany
| | - Lawrence I Grossman
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Martin Klingenspor
- Chair of Molecular Nutritional Medicine, Technische Universität München, Else Kröner-Fresenius Center for Nutritional Medicine &ZIEL-Institute for Food and Health, 85350 Freising-Weihenstephan, Germany
| |
Collapse
|
24
|
Cani PD, Everard A. Talking microbes: When gut bacteria interact with diet and host organs. Mol Nutr Food Res 2015; 60:58-66. [PMID: 26178924 PMCID: PMC5014210 DOI: 10.1002/mnfr.201500406] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/03/2015] [Accepted: 07/07/2015] [Indexed: 12/12/2022]
Abstract
Obesity and diabetes have reached epidemic proportions. Evidence suggests that besides dietary habits and physical activity, other environmental factors, such as gut microbes, are recognized as additional partners implicated in the control of energy homeostasis. Studies on the human gut microbiota have shown that the general population can be stratified on the sole basis of three dominant bacteria (i.e., the concept of enterotypes), while some others have suggested categorizing the population according to their microbiome gene richness. Both aspects have been strengthened by recent studies investigating the impact of nutrients (e.g., dietary fibers, fat feeding) and dietary habits (i.e., vegans versus omnivores) of different populations. Using preclinical models, quite a few novel mechanisms have been proposed in these gut microbiota–host interactions, including the role of novel bacteria, the regulation of antimicrobial peptide production, the maintenance of the gut barrier function and intestinal innate immunity. In this review, we discuss several of the aforementioned aspects. Nonetheless, determining the overall mechanisms by which microbes dialogue with host cells will require further investigations before anticipating the development of next‐generation nutritional interventions using prebiotics, probiotics, synbiotics, or even specific nutrients for promoting health benefits.
Collapse
Affiliation(s)
- Patrice D Cani
- Metabolism and Nutrition Research Group, WELBIO- Walloon Excellence in Life Sciences and BIOtechnology, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Amandine Everard
- Metabolism and Nutrition Research Group, WELBIO- Walloon Excellence in Life Sciences and BIOtechnology, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
25
|
Woting A, Pfeiffer N, Hanske L, Loh G, Klaus S, Blaut M. Alleviation of high fat diet-induced obesity by oligofructose in gnotobiotic mice is independent of presence of Bifidobacterium longum. Mol Nutr Food Res 2015. [PMID: 26202344 PMCID: PMC5049449 DOI: 10.1002/mnfr.201500249] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Scope Diet‐induced obesity is associated with changes in the gut microbiota and low‐grade inflammation. Oligofructose was reported to ameliorate high fat diet‐induced metabolic disorders in mice by restoring the number of intestinal bifidobacteria. However, this has not been experimentally demonstrated. Methods and results We fed conventional mice, germfree mice, mice associated with a simplified human gut microbiota composed of eight bacterial species including Bifidobacterium longum (SIHUMI), and mice associated with SIHUMI without B. longum a low fat diet (LFD), a high fat diet (HFD), or a HFD containing 10% oligofructose (HFD + OFS) for five weeks. We assessed body composition, bacterial cell numbers and metabolites, markers of inflammation, and gut permeability. Conventional mice fed HFD or HFD + OFS did not differ in body weight gain and glucose tolerance. The gnotobiotic mouse groups fed LFD or HFD + OFS gained less body weight and body fat, and displayed an improved glucose tolerance compared with mice fed HFD. These differences were not affected by the presence of B. longum. Mice fed HFD showed no signs of inflammation or increased intestinal permeability. Conclusion The ability of oligofructose to reduce obesity and to improve glucose tolerance in gnotobiotic mice fed HFD was independent of the presence of B. longum.
Collapse
Affiliation(s)
- Anni Woting
- Department of Gastrointestinal Microbiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Nora Pfeiffer
- Department of Gastrointestinal Microbiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Laura Hanske
- Department of Gastrointestinal Microbiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Gunnar Loh
- Department of Gastrointestinal Microbiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Susanne Klaus
- Group of Physiology of Energy Metabolism, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Michael Blaut
- Department of Gastrointestinal Microbiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| |
Collapse
|