1
|
Lin S, Li T, Zhang B, Wang P. Taurine rescues intervertebral disc degeneration by activating mitophagy through the PINK1/Parkin pathway. Biochem Biophys Res Commun 2024; 739:150587. [PMID: 39182353 DOI: 10.1016/j.bbrc.2024.150587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Intervertebral disc degeneration (IDD) is a common cause of low back pain and disability. Recent studies have highlighted the critical role of mitochondrial dysfunction in the progression of IDD. In this study, we investigated the therapeutic potential of taurine in delaying IDD through the activation of mitophagy via the PINK1/Parkin pathway. Our in vitro and in vivo experiments demonstrate that taurine treatment significantly enhances mitophagy, reduces oxidative stress, delays cell senescence, and promotes the removal of damaged mitochondria in nucleus pulposus cells (NPC). Additionally, taurine-mediated activation of the PINK1/Parkin pathway leads to improved mitochondrial homeostasis and slows the progression of disc degeneration. These findings provide new insights into the protective effects of taurine and highlight its potential as a therapeutic agent for IDD.
Collapse
Affiliation(s)
- Shengyuan Lin
- Department of Orthopaedics, Changsha Hospital of Traditional Chinese Medicine (Changsha Eighth Hospital), Changsha, 410199, China.
| | - Tao Li
- Department of Orthopaedics, Changsha Hospital of Traditional Chinese Medicine (Changsha Eighth Hospital), Changsha, 410199, China
| | - Bin Zhang
- Department of Orthopaedics, Changsha Hospital of Traditional Chinese Medicine (Changsha Eighth Hospital), Changsha, 410199, China
| | - Peng Wang
- Department of Orthopaedics, Changsha Hospital of Traditional Chinese Medicine (Changsha Eighth Hospital), Changsha, 410199, China
| |
Collapse
|
2
|
Nayak A, Panda SS, Dwivedi I, Meena S, Aich P. Role of gut microbial-derived metabolites and other select agents on adipocyte browning. Biochem Biophys Res Commun 2024; 737:150518. [PMID: 39142136 DOI: 10.1016/j.bbrc.2024.150518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/26/2024] [Accepted: 08/06/2024] [Indexed: 08/16/2024]
Abstract
AIMS Metabolic disease is a multifaceted condition characterized by the disruption of numerous metabolic parameters within the host. Its prevalence has surged significantly in recent years and it has become a prominent non-communicable disease worldwide. The effect of gut microbiota on various beige fat induction is well studied, while the mechanisms behind the link remain unclear. Given that gut microbiota-derived metabolites (meta-metabolites) secreted in the gut serve as a key mode of communication with their host through direct circulation or indirect host physiology modification, understanding the effect of meta-metabolites on adipose tissue is essential. METHODOLOGY In our previous in-vivo studies, we observed a correlation between gut microbiota and the formation of beige fat. In this study, we further aimed to validate this correlation by treating the adipocyte cell line (3T3-L1) with meta-metabolites collected from the cecum of mice exhibiting beige adipose tissue formation. Additionally, we treated the adipocyte cell line with known beige fat inducers (L-Rhamnose and Ginsenoside) to assess meta-metabolites' efficacy on beige fat formation. KEY FINDINGS Upon treatment with the meta-metabolites from the antibiotic-treated mice, we observed a significant increase in lipid metabolism and beige-specific gene expression. Analyzing the metabolites in these cells revealed that a set of metabolites potentially govern adipocytes, contributing to a metabolically active state. These effects were at par or even better than those of cells treated with L-Rhamnose or Ginsenoside. SIGNIFICANCE This research sheds light on the intricate interplay between microbial metabolites and adipose tissue, offering valuable clues for understanding and potentially manipulating these processes for therapeutic purposes.
Collapse
Affiliation(s)
- Akankshya Nayak
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Jatni, 752050, India; Homi Bhabha National Institute, Training School Complex, Mumbai, 400094, India; Centre for Interdisciplinary Science (CIS), National Institute of Science Education and Research (NISER), Jatni, 752050, India
| | - Swati Sagarika Panda
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Jatni, 752050, India; Homi Bhabha National Institute, Training School Complex, Mumbai, 400094, India; Centre for Interdisciplinary Science (CIS), National Institute of Science Education and Research (NISER), Jatni, 752050, India
| | - Isha Dwivedi
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Jatni, 752050, India; Homi Bhabha National Institute, Training School Complex, Mumbai, 400094, India; Centre for Interdisciplinary Science (CIS), National Institute of Science Education and Research (NISER), Jatni, 752050, India
| | - Shivani Meena
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Jatni, 752050, India; Homi Bhabha National Institute, Training School Complex, Mumbai, 400094, India; Centre for Interdisciplinary Science (CIS), National Institute of Science Education and Research (NISER), Jatni, 752050, India
| | - Palok Aich
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Jatni, 752050, India; Homi Bhabha National Institute, Training School Complex, Mumbai, 400094, India; Centre for Interdisciplinary Science (CIS), National Institute of Science Education and Research (NISER), Jatni, 752050, India.
| |
Collapse
|
3
|
Li S, Zhou L, Ren J, Zhang Q, Xiao X. Maternal exercise programs placental miR-495-5p-mediated Snx7 expression and kynurenic acid metabolic pathway induced by prenatal high-fat diet: based on miRNA-seq, transcriptomics, and metabolomics. J Nutr Biochem 2024:109830. [PMID: 39647668 DOI: 10.1016/j.jnutbio.2024.109830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/21/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024]
Abstract
Poor intrauterine environments increase the prevalence for chronic metabolic diseases in offspring, whereas maternal exercise is an effective measure to break this vicious intergenerational cycle. Placenta is increasingly being studied to explore its role in maternal-fetal metabolic cross-talk. The association between placental miRNA and offspring development trajectories has been established, yet the specific role and mechanism thereof in maternal exercise-induced metabolic protection remain elusive. Here, C57BL/6 female mice were subjected to either a normal control or a high-fat diet (HFD), half of the HFD-fed dams were housed with voluntary wheel running for 3 weeks before and during gestation. At embryonic day 18.5, we sacrificed parturient mice and then conducted miRNA-seq, transcriptomic, and metabolomic profiling of the placenta. Our data revealed that maternal HFD resulted in significant alterations in both miRNA and gene expressions, as well as metabolic pathways of the placenta, whereas prenatal exercise negated these perturbations. The common differentially expressed transcripts among three groups were enriched in multiple critical pathways involving energy expenditure, signal transduction, and fetal development. Through integrated analysis of multi-omics data, we speculated that maternal exercise reversed the suppression of miR-495-5p induced by HFD, thereby inhibiting miR-495-5p-targeted Snx7 and modulating kynurenic acid production. These datasets provided novel mechanistic insight into how maternal exercise positively affects the metabolic homeostasis of offspring. The discovered important miRNAs, mRNAs, and metabolites could be promising predictive and therapeutic targets for protecting offspring metabolic health.
Collapse
Affiliation(s)
- Shunhua Li
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Liyuan Zhou
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Jing Ren
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Qian Zhang
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xinhua Xiao
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
4
|
Ye J, Meng Q, Jin K, Luo Y, Yue T. Phage cocktail alleviated type 2 diabetes by reshaping gut microbiota and decreasing proinflammatory cytokines. Appl Microbiol Biotechnol 2024; 108:9. [PMID: 38159123 DOI: 10.1007/s00253-023-12912-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/22/2023] [Accepted: 10/30/2023] [Indexed: 01/03/2024]
Abstract
Type 2 diabetes (T2D), a global health concern, is closely associated with the gut microbiota. Restoration of a balanced microbiota and intestinal homeostasis benefit therapy of T2D. Some special phages may selectively alter the gut microbiota without causing dysbiosis, such as MS2 and P22. However, scarcely systematic analysis of cascading effects triggered by MS2 and P22 phages on the microbiota, as well as interactions between specific gut bacteria and systemic metabolism, seriously inhibit the development of positive interventions of phages. Based on multi-omic analysis, we analyzed the intrinsic correlations among specific microbiota, their bioactive metabolites, and key indicators of T2D. We found that gavage of the MS2-P22 phage cocktail could significantly alter the gut microbiome to attenuate dysbiosis of diabetic C57BL/6 mice caused by high-fat diets (HFDs) and streptozotocin (STZ), by affecting microbial compositions as well as their metabolic pathways and metabolites, especially increasing amounts of short-chain fatty acid-producing (SCFA-producing) bacteria (e.g., Blautia and Romboutsia) and short-chain fatty acids (SCFAs). Correspondingly, a noteworthy reduction in the number of several opportunistic pathogens occurred, e.g., Candidatus Saccharimonas, Aerococcus, Oscillibacter, Desulfovibrio, and Clostridium sensu stricto 1. Synchronously, the levels of proinflammatory cytokines and lipopolysaccharide (LPS) were reduced to recover gut barrier function in T2D mice. These findings might benefit the development of a new dietary intervention for T2D based on phage cocktails. KEY POINTS: • Intestinal barrier integrity of T2D mice is improved by a phage cocktail • Negative relationship between Muribaculaceae and Corynebacterium reshaped gut microbiota • Acetate, propionate, and butyrate decreased the level of proinflammatory factors.
Collapse
Affiliation(s)
- Jianming Ye
- College of Food Science and Technology, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Qiang Meng
- College of Food Science and Technology, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Kezhu Jin
- College of Food Science and Technology, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Yane Luo
- College of Food Science and Technology, Northwest University, Xi'an, 710069, Shaanxi, China.
- Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Xi'an, 710069, Shaanxi, China.
- Research Center of Food Safety Risk Assessment and Control, Xi'an, 710069, Shaanxi, China.
| | - Tianli Yue
- College of Food Science and Technology, Northwest University, Xi'an, 710069, Shaanxi, China.
- Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Xi'an, 710069, Shaanxi, China.
- Research Center of Food Safety Risk Assessment and Control, Xi'an, 710069, Shaanxi, China.
| |
Collapse
|
5
|
Yang X, He M, Cao J, Tang Q, Yang B, Li T, Sun M. Acupuncture and Moxibustion for Inflammatory Bowel Disease: Regulatory Mechanisms Revealed by Microbiome and Metabolomic Analysis. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:1891-1923. [PMID: 39581856 DOI: 10.1142/s0192415x24500745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Acupuncture and moxibustion are widely acknowledged as effective complementary therapies for managing inflammatory bowel disease (IBD) in traditional Chinese medicine. However, the regulatory mechanisms by which these two therapies exert their therapeutic effects in IBD are yet to be fully elucidated. The objective of this study was to investigate the mechanisms of action underlying acupuncture and moxibustion and the regulative differences between them as therapeutic interventions for IBD. Using a dextran sodium sulfate-induced IBD mice model, the effects of the two treatments were evaluated by examination of body weight, stool samples, colon morphology, inflammatory factors, gut microbiota, and metabolites. The results indicated that both acupuncture and moxibustion mitigated body weight reduction; improved the structural characteristics of intestinal tissues; increased levels of anti-inflammatory cytokines including interleukin (IL)-10; and decreased levels of pro-inflammatory cytokines, including tumor necrosis factor-alpha (TNF-[Formula: see text]), nuclear factor kappa B (NF-[Formula: see text]B), IL-6, IL-1[Formula: see text], and IL-17. Acupuncture and moxibustion had distinct effects on the regulation of the intestinal microbiota and metabolic pathways in IBD mice. Moxibustion regulated a greater number of metabolic pathways than acupuncture, the majority of which were associated with amino acid metabolism, brain signal transmission, energy metabolism, and anti-inflammatory pathways. These findings provide a scientific basis for the differential applications of acupuncture and moxibustion in clinical practice.
Collapse
Affiliation(s)
- Xinyue Yang
- School of Medicine, Lishui University, Lishui 323000, Zhejiang Province, P. R. China
- Changchun University of Chinese Medicine, Changchun 130117, Jilin Province, P. R. China
| | - Min He
- Changchun University of Chinese Medicine, Changchun 130117, Jilin Province, P. R. China
| | - Jiazhen Cao
- Changchun University of Chinese Medicine, Changchun 130117, Jilin Province, P. R. China
| | - Qingqing Tang
- Changchun University of Chinese Medicine, Changchun 130117, Jilin Province, P. R. China
| | - Bo Yang
- Changchun University of Chinese Medicine, Changchun 130117, Jilin Province, P. R. China
| | - Tie Li
- Changchun University of Chinese Medicine, Changchun 130117, Jilin Province, P. R. China
| | - Mengmeng Sun
- Changchun University of Chinese Medicine, Changchun 130117, Jilin Province, P. R. China
| |
Collapse
|
6
|
Wang X, Zhao K, Zhao S, Zhou J, Cao M, Lu L, Chen Y, Yang H, Zhang B, Shao C, Zhao Y, Tang R, Xue B. Effects of dietary rumen-protected glucose level and taurine supplementation on weight change and oxidative stress state of yaks after transport. Front Vet Sci 2024; 11:1492747. [PMID: 39641099 PMCID: PMC11617540 DOI: 10.3389/fvets.2024.1492747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024] Open
Abstract
Rumen-protected glucose (RPG) and taurine (TAU) are crucial for the nutrition and physiology of ruminants, enhancing production performance and mitigating negative energy balance. This study aimed to assess the impact of RPG levels and TAU supplementation on the body weight, antioxidant capacity, immune function and stress responses in yaks before and after transport. Thirty-two healthy male yaks, aged 3 years and weighing 172.5 ± 10.2 kg, were randomly assigned to one of four dietary treatments: (1) low RPG and low TAU (LRLT), with 1% RPG and 5 g/d TAU; (2) low RPG and high TAU (LRHT), with 1% RPG and 15 g/d TAU; (3) high RPG and low TAU (HRLT), with 3% RPG and 5 g/d TAU; and (4) high RPG and high TAU (HRHT), with 3% RPG and 15 g/d TAU. The yaks were treated with the corresponding diet for 7 days, then received 9 h of transportation, and finally fed the same diet at their destination for 30 days. The weight was measured before and on days 0 and 30 after transport, and the plasma was collected before and on day 0, 10, and 30 after transport for analysis of biochemical, antioxidant, immune, and stress response indicators. We observed that transport increased plasma concentrations of total cholesterol, total protein, lactate dehydrogenase, creatine kinase, malondialdehyde, cortisol and lipopolysaccharides of yaks among treatments, while decreased their BW and plasma IL-10 concentration. Increasing TAU supplementation reduced weight loss (8.42 vs. 11.9 kg) and weight loss percent (4.83% vs. 6.87%) in yaks after transport. The concentration of MDA in plasma was lower in HRHT than in LRLT at day 0 after transport (p = 0.03). The activity of GSH-PX was higher in HRHT than in LRLT at day 10 after transport (p = 0.04). Concentrations of IL-10 at day 0 and 10 after transport was higher in HRHT than in LRLT and HRLT (p = 0.02, p = 0.01, respectively). With the increase of TAU supplementation, concentrations of IL-1β at day 30 after transport (p = 0.02), TNF-α at day 0 after transport (p = 0.02), COR at day 10 (p = 0.03) and 30 (p = 0.05) after transport as well as LPS at day 0 after transport (p = 0.04) decreased. In addition, concentrations of COR at day 0 after transport was lower in LRHT and HRHT than in LRLT (p = 0.03). Based on all the results, we demonstrated that increasing TAU supplementation levels reduced post-transport weight loss in yaks, improved their antioxidant capacity and immune function, and alleviated stress responses. Considering the effect of resistance to transport stress and costs, the optimal treatment identified in this study involved a diet containing 1% RPG and supplemented with 15 g/d TAU.
Collapse
Affiliation(s)
- Xiaolin Wang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Kaiqiang Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Shoupei Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Jia Zhou
- Chongqing Academy of Animal Sciences, Chongqing, China
| | - Mingyu Cao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Lianghao Lu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Yuanyuan Chen
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Huaming Yang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Bao Zhang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Chong Shao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Yanfei Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Rui Tang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Bai Xue
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
7
|
Chen H, Zheng M, Li M, Zheng Y, Wang X, He Y. Taurine ameliorates radiation-induced oxidative stress in bone marrow mesenchymal stromal cells and promotes osteogenesis. Free Radic Biol Med 2024; 225:805-820. [PMID: 39486749 DOI: 10.1016/j.freeradbiomed.2024.10.308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/02/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Osteoradionecrosis of the jaw (ORNJ) is a severe complication following head and neck radiotherapy that significantly impacts the quality of life of patients. Currently, there is a lack of comprehensive understanding of the microenvironmental factors involved in ORNJ. In this study, we reveal the activation of taurine metabolism in irradiated mandibular stromal cells using scRNA-Seq and demonstrate a decrease in taurine levels in irradiated bone marrow mesenchymal stromal cells (BMSCs) through metabolomics. Compared with unirradiated BMSCs, taurine uptake in irradiated BMSCs increases. Taurine concentrations in the peripheral blood and jaws of irradiated mice are significantly lower than those in unirradiated mice (P = 0.0064 and 0.0249 respectively). Supplementation with taurine promotes osteogenic differentiation, reduces oxidative stress, and decreases DNA damage in irradiated BMSCs. Oral administration of taurine significantly improves the survival rate of irradiated mice and enhances osteogenesis in irradiated jaws. Our study highlights the role of taurine in the recovery from radiation-induced jaw injury, and suggests its potential as a non-invasive therapeutic option for combating ORNJ.
Collapse
Affiliation(s)
- Heng Chen
- Department of Oral Maxillofacial & Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, PR China
| | - Mengting Zheng
- Department of Oral Maxillofacial & Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, PR China
| | - Mengyu Li
- Department of Oral Maxillofacial & Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, PR China
| | - Yang Zheng
- Department of Oral Maxillofacial & Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, PR China
| | - Xu Wang
- Department of Oral Maxillofacial & Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, PR China.
| | - Yue He
- Department of Oral Maxillofacial & Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, PR China.
| |
Collapse
|
8
|
Borewicz K, Zhao Y, Zhu Y. Daily intake of a dairy-based nutritional supplement improved self-reported gastrointestinal symptoms and modulated microbiota in adult Chinese volunteers. Sci Rep 2024; 14:28651. [PMID: 39562633 PMCID: PMC11576911 DOI: 10.1038/s41598-024-79360-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 11/08/2024] [Indexed: 11/21/2024] Open
Abstract
Mild and persisting gastrointestinal symptoms (MPGS) as bloating, constipation or diarrhea are widespread in older adults and often accompanied by gut microbiota dysbiosis. Nutritional interventions help to regulate and restore microbiota and gut function. In this non-randomized continuous prospective cohort study, we evaluated the effects of a 21-day intervention using a dietary dairy-based supplement (AGIJOY™) on self-reported gastrointestinal (GI) symptoms, fecal microbiota composition and short chain fatty acids (SCFA) levels in a cohort of Chinese adults (N = 46, age 27-73) suffering from MPGS. Questionnaire data and fecal samples were collected at baseline (D0), on day 7 and 21 of intervention (D7 and D21). The results showed significant improvement in the self-reported GI symptoms on D21 and a gradual shift in the fecal microbiota composition. In the first week of intervention, the relative abundance (RA) of fecal bifidobacteria significantly increased and the RA of Bacteroides and Helicobacter decreased (p < 0.05). The levels of fecal SCFA remained unchanged during the study. To our knowledge, this is the first study testing the effect of this prebiotic and postbiotic containing milk-based supplement blend on gut microbiota and MPGS among Chinese population under a real living environment.
Collapse
Affiliation(s)
- Klaudyna Borewicz
- Mead Johnson B.V., Middenkampweg 2, 6545 CJ, Nijmegen, The Netherlands.
- Mead Johnson Nutrition and Health Innovation Institute, 29/F, Yuexiu Financial Tower, No. 28 Zhujiang Road East, Zhujiang New Town, Guangzhou, 510623, People's Republic of China.
| | - Yifan Zhao
- Shenzhen Xbiome Biotech Co. Ltd, Shenzhen, 518055, People's Republic of China
| | - Yaqiong Zhu
- Mead Johnson Nutrition and Health Innovation Institute, 29/F, Yuexiu Financial Tower, No. 28 Zhujiang Road East, Zhujiang New Town, Guangzhou, 510623, People's Republic of China
| |
Collapse
|
9
|
Łukasiewicz Mierzejewska M, Kotuszewska M, Puppel K, Madras Majewska B. Effects of In Ovo Taurine Injection on Embryo Development, Antioxidant Status, and Bioactive Peptide Content in Chicken Embryos ( Gallus gallus domesticus). Int J Mol Sci 2024; 25:11783. [PMID: 39519333 PMCID: PMC11546265 DOI: 10.3390/ijms252111783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Stress in birds disrupts the homeostasis of the organism, leading to an inability to neutralize reactive oxygen species. Taurine, an effective antioxidant, affects various cellular mechanisms, including cation modulation, protein phosphorylation, and cell proliferation. The aim of the study was to evaluate the effect of colloid with taurine applied in ovo to Albumin on embryonic development, oxidative stress indicators and the content of bioactive peptides-carnosine and anserine-in the pectoral muscle. The research materials were eggs of the parent flock (Ross 308) divided into four groups (K (without injection), T50-concentration of taurine hydrocolloid 50 ppm (mg/L); T100-colloid concentration 100 ppm (mg/L) taurine; T500-colloid concentration of 500 ppm (mg/L) taurine). The experimental solutions were injected in an amount of 0.3 mL into egg white. Eggs were incubated under standard incubation conditions. The addition of 100 and 500 ppm taurine had a highly significant (p = 0.001) effect on the plasma antioxidant potential in chicks. The level of anserine increased with increasing concentrations of taurine. These changes were highly significant (p = 0.007). The level of anserine in the T2 and T3 groups was determined to be 2.5 times higher than in the pectoral muscles of embryos not treated with taurine colloid. An analysis of the results showed that the administration of an increased dose of hydrocolloid with taurine increased the content of carnosine and anserine in the pectoral muscle. Colloid with taurine applied in ovo to chicken white egg reduces oxidative stress and increases homeostasis of the organism.
Collapse
Affiliation(s)
- Monika Łukasiewicz Mierzejewska
- Institute of Animal Science, Warsaw University of Life Sciences, Ciszewskiego 8 Street, 02-786 Warsaw, Poland; (K.P.); (B.M.M.)
| | - Marta Kotuszewska
- Scientific Circle “Aves”, Warsaw University of Life Sciences, Ciszewskiego 8 Street, 02-786 Warsaw, Poland;
| | - Kamila Puppel
- Institute of Animal Science, Warsaw University of Life Sciences, Ciszewskiego 8 Street, 02-786 Warsaw, Poland; (K.P.); (B.M.M.)
| | - Beata Madras Majewska
- Institute of Animal Science, Warsaw University of Life Sciences, Ciszewskiego 8 Street, 02-786 Warsaw, Poland; (K.P.); (B.M.M.)
| |
Collapse
|
10
|
Batitucci G, Abud GF, Ortiz GU, Belisário LF, Travieso SG, de Lima Viliod MC, Venturini ACR, de Freitas EC. Sarcobesity: New paradigms for healthy aging related to taurine supplementation, gut microbiota and exercise. Ageing Res Rev 2024; 101:102460. [PMID: 39173917 DOI: 10.1016/j.arr.2024.102460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/16/2024] [Accepted: 08/15/2024] [Indexed: 08/24/2024]
Abstract
Enigmatic sarcopenic obesity is still a challenge for science and adds to the global public health burden. The progressive accumulation of body fat combined with a dysfunctional skeletal muscle structure and composition, oxidative stress, mitochondrial dysfunction, and anabolic resistance, among other aggravating factors, together represent the seriousness and complexity of treating the metabolic disorder of sarcobesity in aging. For this reason, further studies are needed that encourage the support of therapeutic management. It is along these lines that we direct the reader to therapeutic approaches that demonstrate important, but still obscure, outcomes in the physiological conditions of sarcobesity, such as the role of taurine in modulating inflammatory and antioxidant mechanisms in muscle and adipose tissue, as well as the management of gut microbiota, able to systemically re-establish the structure and function of the gut-muscle axis, in addition to the merits of physical exercise as an instrument to improve muscular health and lifestyle quality.
Collapse
Affiliation(s)
- Gabriela Batitucci
- School of Medical Sciences, Obesity and Comorbidities Research Center, University of Campinas - UNICAMP, Campinas, Sao Paulo, Brazil
| | - Gabriela Ferreira Abud
- Department of Health Sciences, Ribeirao Preto Medical School, University of São Paulo - FMRP/USP, Ribeirao Preto, Sao Paulo, Brazil
| | - Gabriela Ueta Ortiz
- Department of Health Sciences, Ribeirao Preto Medical School, University of São Paulo - FMRP/USP, Ribeirao Preto, Sao Paulo, Brazil
| | - Lucas Fernandes Belisário
- Laboratory of Exercise Physiology and Metabolism, School of Physical Education and Sports of Ribeirao Preto, University of Sao Paulo - EEFERP/USP, Ribeirao Preto, Brazil
| | - Sofia Germano Travieso
- Department of Health Sciences, Ribeirao Preto Medical School, University of São Paulo - FMRP/USP, Ribeirao Preto, Sao Paulo, Brazil
| | - Marcela Coffacci de Lima Viliod
- Laboratory of Exercise Physiology and Metabolism, School of Physical Education and Sports of Ribeirao Preto, University of Sao Paulo - EEFERP/USP, Ribeirao Preto, Brazil
| | - Ana Cláudia Rossini Venturini
- Laboratory of Exercise Physiology and Metabolism, School of Physical Education and Sports of Ribeirao Preto, University of Sao Paulo - EEFERP/USP, Ribeirao Preto, Brazil
| | - Ellen Cristini de Freitas
- Department of Health Sciences, Ribeirao Preto Medical School, University of São Paulo - FMRP/USP, Ribeirao Preto, Sao Paulo, Brazil; Laboratory of Exercise Physiology and Metabolism, School of Physical Education and Sports of Ribeirao Preto, University of Sao Paulo - EEFERP/USP, Ribeirao Preto, Brazil.
| |
Collapse
|
11
|
Fu Y, Yan J, Lan L, Zhang H, Wang P, Wang Y, Xiong X, Li J, He H. Cloning, bioinformatics analysis and expression of the cysteine dioxygenase type 1 (CDO1) gene in domestic yak. Front Vet Sci 2024; 11:1488782. [PMID: 39493813 PMCID: PMC11527789 DOI: 10.3389/fvets.2024.1488782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/09/2024] [Indexed: 11/05/2024] Open
Abstract
Introduction The CDO1 gene is an important gene in the taurine synthesis pathway and has been observed to have high expression in ovaries of female mammals. This study aims to explore the conservation of CDO1 gene in domestic yaks, as well as to examine the fundamental characteristics of CDO1 gene and its expression in female yaks. Methods Ovarian samples were collected from yaks in the follicular phase, luteal phase and gestation period in this experiment, and their total RNA and protein were extracted. Then Polymerase Chain Reaction (PCR) and bioinformatics online software were used to clone and analyze the CDO1 gene. The relative expression of CDO1 in yak ovaries was detected by Quantitative Real-time PCR (RT-qPCR) and Western blotting. The distribution and localization of CDO1 protein in ovary were detected by immunohistochemistry. Results We have successfully cloned the coding region of CDO1 gene in yak. The results showed that the CDS region of CDO1 gene was 603 bp, encoding 200 amino acids, and was a relatively stable hydrophilic protein. CDO1 is relatively conservative in species evolution. The protein encoded by CDO1 gene does not have a signaling peptide or a transmembrane structure. It is a protein that is not involved in transmembrane transport and is mainly located in the cytoplasm. The secondary structure of the protein is dominated by the random coil. CDO1 is estimated to interact with 10 proteins. The results of RT-qPCR and Western blotting showed that the CDO1 gene exhibited the highest expression in the ovary during the luteal phase and the lowest expression in the ovary during the follicular phase (P < 0.01). The results of immunohistochemistry showed that CDO1 was mainly expressed in granular cells, theca cells and lutein cells of ovarian tissue. Conclusion These results suggest that the CDO1 gene has undergone minimal evolutionary changes during the course of animal evolution. The results provide a reference for further investigation of the function of CDO1 gene in reproduction and production in yaks.
Collapse
Affiliation(s)
- Yuxin Fu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Chengdu, China
- Key Laboratory of Animal Medicine at Southwest Minzu University of Sichuan Province, Chengdu, China
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Jiuru Yan
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Chengdu, China
- Key Laboratory of Animal Medicine at Southwest Minzu University of Sichuan Province, Chengdu, China
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Lan Lan
- Animal Husbandry Science Institute of Ganzi Tibetan Autonomous Prefecture, Kangding, China
| | - Huizhu Zhang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Chengdu, China
- Key Laboratory of Animal Medicine at Southwest Minzu University of Sichuan Province, Chengdu, China
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Peng Wang
- Animal Husbandry Science Institute of Ganzi Tibetan Autonomous Prefecture, Kangding, China
| | - Yaying Wang
- Key Laboratory of Animal Medicine at Southwest Minzu University of Sichuan Province, Chengdu, China
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Xianrong Xiong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Chengdu, China
- Key Laboratory of Animal Medicine at Southwest Minzu University of Sichuan Province, Chengdu, China
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Jian Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Chengdu, China
- Key Laboratory of Animal Medicine at Southwest Minzu University of Sichuan Province, Chengdu, China
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Honghong He
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Chengdu, China
- Key Laboratory of Animal Medicine at Southwest Minzu University of Sichuan Province, Chengdu, China
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
| |
Collapse
|
12
|
McCauley SR, Clark SD, Leach SB, Quest BW, Streeter RM. Evaluation of taurine and carnitine concentrations in whole blood, plasma, skeletal muscle and cardiac muscle in dogs. J Anim Physiol Anim Nutr (Berl) 2024; 108:999-1015. [PMID: 38432690 DOI: 10.1111/jpn.13946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/12/2023] [Accepted: 02/14/2024] [Indexed: 03/05/2024]
Abstract
Little is known about how plasma and whole blood taurine and plasma carnitine correlate to concentrations in skeletal and cardiac muscle and the effects of diet in dogs. The purpose of this study was to evaluate the correlation among plasma, skeletal and cardiac muscle carnitine and taurine and whole blood taurine and determine the effect of diet. The study protocol was approved by the Pet Food Solutions Institutional Animal Care and Use Committee. Thirty-three mixed-breed hounds and 32 beagles were evaluated at Day 0 then removed from their baseline diet and randomized to a test diet: high animal protein, grain-inclusive (HA-GI), low animal protein, grain-free (LA-GF), low animal protein, grain-inclusive (LA-GI), or high animal protein, grain-free (HA-GF). Blood was drawn every 30 days and endomyocardial (mixed breeds only) and skeletal muscle biopsies were collected at Days 0 and 180. The correlations between plasma and whole blood taurine, or plasma carnitine and skeletal and cardiac muscle concentrations were weak (p < 0.01-0.05). Mixed-breed hounds had increased (p = 0.029) whole blood taurine compared to beagles. Plasma taurine was lower with diet HA-GF, (p = 0.009) however, all diets had increased taurine from Day 0 and were, on average within the laboratory reference range. Dogs fed the HA-GI diet had increased cardiac muscle carnitine esters (p = 0.014). Increased carnitine esters were also appreciated in cardiac muscle in all diets from Day 0 to 180 (p = 0.0001). On Day 180 mixed-breed hounds had increased skeletal total carnitine (p < 0.001) compared to all time points and breeds. This study observed no correlation between plasma, whole blood, skeletal and cardiac muscle taurine concentrations but noted some effects between time, breed and diet.
Collapse
Affiliation(s)
| | | | - Stacey B Leach
- College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | | | | |
Collapse
|
13
|
Cao H, Shi Y, Wang J, Niu Z, Wei L, Tian H, Yu F, Gao L. The intestinal microbiota and metabolic profiles of Strauchbufo raddei underwent adaptive changes during hibernation. Integr Zool 2024; 19:612-630. [PMID: 37430430 DOI: 10.1111/1749-4877.12749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
The intestinal microbiota help regulate hibernation in vertebrates. However, it needs to be established how hibernation modulates the gut microbiome and intestinal metabolism. In the present study, we used an artificial hibernation model to examine the responses of the gut microbiota of the Strauchbufo raddei to the environmental changes associated with this behavior. Hibernation significantly lowered the diversity of the microbiota and altered the microbial community of the gut. Proteobacteria, Firmicutes, and Bacteroidota were the major bacterial phyla in the intestines of S. raddei. However, Firmicutes and Proteobacteria predominated in the gut of active and hibernating S. raddei, respectively. Certain bacterial genera such as Pseudomonas, Vibrio, Ralstonia, and Rhodococcus could serve as biomarkers distinguishing hibernating and non-hibernating S. raddei. The gut microbiota was more resistant to environmental stress in hibernating than active S. raddei. Moreover, metabolomics revealed that metabolites implicated in fatty acid biosynthesis were highly upregulated in the intestines of hibernating S. raddei. The metabolites that were enriched during hibernation enabled S. raddei to adapt to the low temperatures and the lack of exogenous food that are characteristic of hibernation. A correlation analysis of the intestinal microbiota and their metabolites revealed that the gut microbiota might participate in the metabolic regulation of hibernating S. raddei. The present study clarified the modifications that occur in the intestinal bacteria and their symbiotic relationship with their host during hibernation. These findings are indicative of the adaptive changes in the metabolism of amphibians under different environmental conditions.
Collapse
Affiliation(s)
- Hanwen Cao
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yongpeng Shi
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Ji Wang
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Zhanyu Niu
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Li Wei
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Huabing Tian
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Feifei Yu
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Lan Gao
- School of Life Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
14
|
Meng X, Ren K, Liu X, Lyu C, Jung HW, Zhang Y, Zhang S. Efficacy of Rhamnus utilis Decne. Aqueous extract in mice with acute alcoholic liver injury and metabolomic study. Heliyon 2024; 10:e32523. [PMID: 38952369 PMCID: PMC11215275 DOI: 10.1016/j.heliyon.2024.e32523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 07/03/2024] Open
Abstract
Rhamnus utilis Decne. (Family Rhamnaceae Juss.) leaf is commonly prepared as a anti-inflammatory herbal medicine and used for tea production. To investigate the mechanism of Rhamnus utilis Decne. aqueous extract (RDAE) against acute alcoholic liver disease (ALD) in mice. The ALD mouse (Male ICR) model was induced via intragastric administration of 52 % alcohol. Mice in each group were treated by gavage once daily with the RDAE (1.12, 2.25, 4.500 g/kg). The expression of proteins involved in the MAPKs/NF-κB/COX-2-iNOS pathway was measured by western blotting. Non-targeted metabolomics was used to determine metabolic profiles and critical pathways, while targeted metabolomics validated key amino acid metabolites. After administration of RDAE, the body mass of mice was significantly increased. The liver index was significantly decreased. Meanwhile, the serum levels of AST, ALT, TG, TC, MDA, TNF-α, IL-1β and IL-6 were significantly decreased (P < 0.05, P < 0.01), but GSH level was inversely increased (P < 0.05). Metabolomic analysis revealed nine major pathways involved in the therapeutic effect of RDAE, including fructose and mannose metabolism. The levels of 7 amino acids including leucine, proline and alanine/sarcosine were significantly upregulated. Additionally, protein levels of p-NF-κB (p65)/NF-κB (p65), p-ERK1/2/ERK1/2, p-JNK/JNK, p-p38/p38, COX-2 and iNOS were significantly decreased (P < 0.01, P < 0.05). RDAE is used to treat acute ALD by improving lipid metabolism, inhibiting the expression of pro-inflammatory cytokines and regulating MAPKs/NF-κB/COX-2-iNOS signalling pathway. These findings provide valuable insights for acute ALD therapy based on traditional Chinese medicine (TCM).
Collapse
Affiliation(s)
- Xianglong Meng
- College of Chinese Materia Medica and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, 030619, Shanxi, China
- Shanxi Key Laboratory of Traditional Herbal Medicines Processing, Jinzhong, 030619, Shanxi, China
| | - Kele Ren
- College of Chinese Materia Medica and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, 030619, Shanxi, China
- Shanxi Key Laboratory of Traditional Herbal Medicines Processing, Jinzhong, 030619, Shanxi, China
| | - Xiaoqin Liu
- College of Chinese Materia Medica and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, 030619, Shanxi, China
- Shanxi Key Laboratory of Traditional Herbal Medicines Processing, Jinzhong, 030619, Shanxi, China
- College of Pharmacy, Shandong Modern University, Jinan, 250104, China
| | - Chenzi Lyu
- Department of Herbology, College of Korean Medicine, Dongguk University, Gyeongju, 38066, South Korea
| | - Hyo Won Jung
- Department of Herbology, College of Korean Medicine, Dongguk University, Gyeongju, 38066, South Korea
| | - Yilong Zhang
- Shanxi Pengyakang Biotechnology Co., Ltd, Lyuliang, 033000, Shanxi, China
| | - Shuosheng Zhang
- College of Chinese Materia Medica and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, 030619, Shanxi, China
- Shanxi Key Laboratory of Traditional Herbal Medicines Processing, Jinzhong, 030619, Shanxi, China
| |
Collapse
|
15
|
Liu F, Liang L, Luo Z, Zhang G, Zuo F, Wang L. Effects of taurine on metabolomics of bovine mammary epithelial cells under high temperature conditions. Front Vet Sci 2024; 11:1393276. [PMID: 38915889 PMCID: PMC11194699 DOI: 10.3389/fvets.2024.1393276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/29/2024] [Indexed: 06/26/2024] Open
Abstract
High temperature induces heat stress, adversely affecting the growth and lactation performance of cows. Research has shown the protective effect of taurine against hepatotoxicity both in vivo and in vitro. This study aimed to investigate the effect of taurine on the metabolomics of mammary epithelial cells of dairy cows under high-temperature conditions. Mammary epithelial cells were exposed to 0 mmol/L (HS, control), 8 mmol/L (HT-8), and 32 mmol/L (HT-32) of taurine, then incubated at 42°C for 6 h. Metabolomics analysis was conducted using Liquid Chromatograph Mass Spectrometer (LC-MS). Compared with the HS group, 2,873 and 3,243 metabolites were detected in the HT-8 group in positive and negative ion modes. Among these, 108 and 97 metabolites were significantly upregulated in positive and negative ion modes, while 60 and 166 metabolites were downregulated. Notably, 15 different metabolites such as palmitic acid, adenine and hypoxanthine were screened out in the HT-8 group. Compared with the HS group, 2,873 and 3,243 metabolites were, respectively, detected in the HT-32 group in the positive and negative ion modes. Among those metabolites, 206 metabolites were significantly up-regulated, while 206 metabolites were significantly downregulated in the positive mode. On the other hand, 497 metabolites were significantly upregulated in the negative mode, while 517 metabolites were reported to be downregulated. Noteworthy, 30 distinct metabolites, such as palmitic acid, phytosphingosine, hypoxanthine, nonanoic acid, and octanoic acid, were screened out in the HT-32 group. KEGG enrichment analysis showed that these metabolites were mainly involved in lipid metabolism, purine metabolism and other biological processes. Overall, our study indicates that taurine supplementation alters the metabolites primarily associated with purine metabolism, lipid metabolism and other pathways to alleviate heat stress in bovine mammary epithelial cells.
Collapse
Affiliation(s)
- Feifei Liu
- College of Animal Science and Technology, Southwest University, Rongchang, Chongqing, China
| | - Liang Liang
- College of Animal Science and Technology, Southwest University, Rongchang, Chongqing, China
| | - Zonggang Luo
- College of Animal Science and Technology, Southwest University, Rongchang, Chongqing, China
| | - Gongwei Zhang
- College of Animal Science and Technology, Southwest University, Rongchang, Chongqing, China
- Beef Cattle Engineering and Technology Research Center of Chongqing, Southwest University, Rongchang, Chongqing, China
| | - Fuyuan Zuo
- College of Animal Science and Technology, Southwest University, Rongchang, Chongqing, China
- Beef Cattle Engineering and Technology Research Center of Chongqing, Southwest University, Rongchang, Chongqing, China
| | - Ling Wang
- College of Animal Science and Technology, Southwest University, Rongchang, Chongqing, China
- Beef Cattle Engineering and Technology Research Center of Chongqing, Southwest University, Rongchang, Chongqing, China
| |
Collapse
|
16
|
Zheng J, Zhang J, Zhou Y, Zhang D, Guo H, Li B, Cui S. Taurine Alleviates Experimental Colitis by Enhancing Intestinal Barrier Function and Inhibiting Inflammatory Response through TLR4/NF-κB Signaling. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12119-12129. [PMID: 38761152 DOI: 10.1021/acs.jafc.4c00662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
Taurine (Tau) is a semiessential amino acid in mammals with preventive and therapeutic effects on several intestinal disorders. However, the exact function of taurine in ulcerative colitis (UC) is still largely unclear. In this study, we used two taurine-deficient mouse models (CSAD-/- and TauT-/- mice) to explore the influence of taurine on the progression of UC in both dextran sulfate sodium (DSS)-induced colitis and LPS-stimulated Caco-2 cells. We found that cysteine sulfinic acid decarboxylase (CSAD) and taurine transporter (TauT) expressions and taurine levels were markedly reduced in colonic tissues of mice treated with DSS. The CSAD and TauT knockouts exacerbated DSS-induced clinical symptoms and pathological damage and aggravated the intestinal barrier dysfunction and the colonic mucosal inflammatory response. Conversely, taurine pretreatment enhanced the intestinal barrier functions by increasing goblet cells and upregulating tight junction protein expression. Importantly, taurine bound with TLR4 and inhibited the TLR4/NF-κB pathway, ultimately reducing proinflammatory factors (TNF-α and IL-6) and oxidative stress. Our findings highlight the essential role of taurine in maintaining the intestinal barrier integrity and inhibiting intestinal inflammation, indicating that taurine is a promising supplement for colitis treatment.
Collapse
Affiliation(s)
- Jiaming Zheng
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, People's Republic of China
| | - Jinglin Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, People's Republic of China
| | - Yewen Zhou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, People's Republic of China
| | - Di Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, People's Republic of China
- Institute of Reproduction and Metabolism, Yangzhou University, Yangzhou 225009, People's Republic of China
| | - Hongzhou Guo
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, People's Republic of China
| | - Bin Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, People's Republic of China
- Institute of Reproduction and Metabolism, Yangzhou University, Yangzhou 225009, People's Republic of China
| | - Sheng Cui
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, People's Republic of China
- Institute of Reproduction and Metabolism, Yangzhou University, Yangzhou 225009, People's Republic of China
| |
Collapse
|
17
|
Ouyang G, Wang N, Tong J, Sun W, Yang J, Wu G. Alleviation of taurine on liver injury of type 2 diabetic rats by improving antioxidant and anti-inflammatory capacity. Heliyon 2024; 10:e28400. [PMID: 38560269 PMCID: PMC10979286 DOI: 10.1016/j.heliyon.2024.e28400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/18/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a serious metabolic disease characterized by insulin resistance and reduced insulin production, which causes abnormally elevated blood glucose. It has been reported that T2DM can enhance oxidative stress and inflammatory responses, and stimulate a variety of complications including liver injury. Studies have shown that taurine has antioxidant and anti-inflammatory effects that can not only ameliorate diabetes but also alleviate liver injury caused by various diseases. However, its effect on liver injury in T2DM is not clear. In our study, a high-fat diet and intraperitoneal injection of streptozotocin (STZ) was used to induce liver injury in T2DM rats, and taurine was given as a treatment. Through the use of HE staining on paraffin sections, ELISA, and qRT-PCR, the effects of taurine on liver pathological alterations, antioxidant capacity, and inflammatory response were investigated. We found that: hepatic transaminase levels of rats were reduced significantly following taurine administration; histopathological observations revealed that the morphology of rat hepatocytes was close to normal, and the number of inflammatory cells around liver vessels was significantly reduced; antioxidant-related indicators were significantly increased, including SOD, CAT, GSH-Px and T-AOC, while related factors of the Nrf2 signalling pathway and its downstream HO-1, NQO1 and γ-GCS were significantly increased; the expression of the JAK2-STAT1 signalling pathway, TLR4/NF-κB signalling pathway and NLRP3 inflammatory vesicle-related factors were significantly reduced. Our results suggest taurine can alleviate T2DM-induced liver injury by improving the antioxidant capacity of the liver and inhibiting macrophage M1-type polarization and the inflammatory response mediated thereby.
Collapse
Affiliation(s)
- Guangyi Ouyang
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Nannan Wang
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Jihang Tong
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Wenke Sun
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Jiancheng Yang
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Gaofeng Wu
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| |
Collapse
|
18
|
Calabrese EJ, Pressman P, Hayes AW, Kapoor R, Dhawan G, Agathokleous E, Calabrese V. Taurine induces hormesis in multiple biological models: May have transformative implications for overall societal health. Chem Biol Interact 2024; 392:110930. [PMID: 38432405 DOI: 10.1016/j.cbi.2024.110930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/14/2024] [Accepted: 02/22/2024] [Indexed: 03/05/2024]
Abstract
This paper represents the first integrative assessment and documentation of taurine-induced hormetic effects in the biological and biomedical areas, their dose response features, mechanistic frameworks, and possible public health, therapeutic and commercial applications. Taurine-induced hormetic effects are documented in a wide range of experimental models, cell types and for numerous biological endpoints, with most of these experimental findings being reported within the past five years. It is suggested that the concept of hormesis may have a transformative effect on taurine research and its public health and therapeutic applications.
Collapse
Affiliation(s)
- Edward J Calabrese
- School of Public Health and Health Sciences, Department of Environmental Health, Morrill I-N344, University of Massachusetts, Amherst, MA, 01003, USA.
| | - Peter Pressman
- University of Maine, 5728 Fernald Hall, Room 201, Orono, ME, 04469, USA.
| | - A Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management, College of Public Health, University of South Florida, Tampa, FL, USA.
| | - Rachna Kapoor
- Saint Francis Hospital and Medical Center, Hartford, CT, USA.
| | - Gaurav Dhawan
- Sri Guru Ram Das (SGRD), University of Health Sciences, Amritsar, India.
| | - Evgenios Agathokleous
- School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine University of Catania, Via Santa Sofia 97, Catania, 95123, Italy.
| |
Collapse
|
19
|
Zhang J, Cui X, Zhao S, Chang Z, Zhang J, Chen Y, Liu J, Sun G, Wang Y, Liu Y. Establishment of a pharmacokinetics and pharmacodynamics model of Schisandra lignans against hippocampal neurotransmitters in AD rats based on microdi-alysis liquid chromatography-mass spectrometry. Front Pharmacol 2024; 15:1342121. [PMID: 38529184 PMCID: PMC10961592 DOI: 10.3389/fphar.2024.1342121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/20/2024] [Indexed: 03/27/2024] Open
Abstract
Objective: Our previous studies substantiated that the biological activity of Schisandra chinensis lignans during the treatment of Alzheimer's disease (AD) was mediated by neurotransmitter levels, and 15 of its active components were identified. However, the pharmacokinetic and pharmacodynamic relationship of Schisandra chinensis lignans has been less studied. The objective of this study was to investigate the relationship between the pharmacokinetics and pharmacodynamics of Schisandra chinensis lignans in the treatment of AD, and to establish a pharmacokinetic-pharmacodynamic (PK-PD) model. Methods and Results: Herein, we established a microdialysis-ultra performance liquid chromatography-triple quadruple mass spectrometry (MD-LC-TQ-MS) technique that could simultaneously and continuously collect and quantitatively analyze the active compounds and neurotransmitters related to the therapeutic effects of Schisandra chinensis in awake AD rats. Eight lignans were detected in the hippocampus, and a PK-PD model was established. The fitted curves highlighted a temporal lag between the maximum drug concentration and the peak drug effect. Following treatment, the levels of four neurotransmitters tended to converge with those observed in the sham operation group. Conclusion: By establishing a comprehensive concentration-time-effect relationship for Schisandra chinensis lignans in AD treatment, our study provides novel insights into the in vivo effects of these lignans in AD rats.
Collapse
Affiliation(s)
- Jinpeng Zhang
- Department of Pharmaceutical Analysis, College of Pharmacy, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
- Qian Xi Nan Maternal and Child Care Hospital, Xingyi, China
| | - Xinyuan Cui
- Department of Pharmaceutical Analysis, College of Pharmacy, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Shuo Zhao
- Department of Pharmaceutical Analysis, College of Pharmacy, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Zenghui Chang
- Department of Pharmaceutical Analysis, College of Pharmacy, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Junshuo Zhang
- Department of Pharmaceutical Analysis, College of Pharmacy, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Yufeng Chen
- Department of Pharmaceutical Analysis, College of Pharmacy, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Jiale Liu
- Department of Pharmaceutical Analysis, College of Pharmacy, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Guohao Sun
- Department of Pharmaceutical Analysis, College of Pharmacy, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Yiyuan Wang
- Department of Pharmaceutical Analysis, College of Pharmacy, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Yuanyuan Liu
- Department of Pharmaceutical Analysis, College of Pharmacy, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| |
Collapse
|
20
|
Liu H, Niu T, Qiu G, Cui S, Zhang D. Taurine promotes insulin synthesis by enhancing Isl-1 expression through miR-7a/RAF1/ERK1/2 pathway. In Vitro Cell Dev Biol Anim 2024; 60:23-35. [PMID: 38117455 DOI: 10.1007/s11626-023-00835-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/04/2023] [Indexed: 12/21/2023]
Abstract
It has been well established that the circulating taurine affects the insulin synthesis in pancreatic islet β-cells, whereas miR-7a and LIM-homeodomain transcription factor Isl-1 are important intracellular factors regulating insulin transcription and synthesis. However, it still remains unknown whether taurine regulates insulin synthesis by affecting miR-7a and/or Isl-1 expressions in mouse pancreatic islet β-cells. The present study was thus proposed to identify the effects of taurine on the expressions of miR-7a and/or Isl-1 and their relations to insulin synthesis in mouse pancreatic islet β-cells by using miR-7a2 knockout (KO) and taurine transporter (TauT) KO mouse models and the related in vitro experiments. The results demonstrated that taurine supplement significantly decreased the pancreas miR-7a expression, but sharply upregulated the pancreas Isl-1 and insulin expressions, and serum insulin levels. However, the enhanced effects of taurine on Isl-1 expression and insulin synthesis were mitigated in the TauT KO and miR-7a2 KO mice. In addition, our results confirmed that taurine markedly increased pancreas RAF1 and ERK1/2 expressions. Collectively, the present study firstly demonstrates that taurine regulates insulin synthesis through TauT/miR-7a/RAF1/ERK1/2/Isl-1 signaling pathway, which are crucial for our understanding the mechanisms of taurine affecting insulin synthesis, and also potential for establishing the therapeutic strategies for diabetes and the diseases related to metabolism.
Collapse
Affiliation(s)
- Hui Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
- Institute of Reproduction and Metabolism, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Tongjuan Niu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
- Institute of Reproduction and Metabolism, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Guobin Qiu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
- Institute of Reproduction and Metabolism, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Sheng Cui
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
- Institute of Reproduction and Metabolism, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Di Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China.
- Institute of Reproduction and Metabolism, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China.
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, People's Republic of China.
| |
Collapse
|
21
|
Ommati MM, Rezaei H, Socorro RM, Tian W, Zhao J, Rouhani A, Sabouri S, Ghaderi F, Niknahad AM, Najibi A, Mazloomi S, Safipour M, Honarpishefard Z, Wang HW, Niknahad H, Heidari R. Pre/postnatal taurine supplementation improves neurodevelopment and brain function in mice offspring: A persistent developmental study from puberty to maturity. Life Sci 2024; 336:122284. [PMID: 38008208 DOI: 10.1016/j.lfs.2023.122284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 11/28/2023]
Abstract
Taurine (TAU) is a sulfur-containing amino acid abundantly found in the human body. Endogenously, TAU is synthesized from cysteine in the liver. However, newborns rely entirely on TAU's dietary supply (milk). There is no investigation on the effect of long-term TAU administration on next-generation neurological development. The current study evaluated the effect of long-term TAU supplementation during the maternal gestational and litter weaning time on several neurological parameters in mice offspring. Moreover, the effects of TAU on mitochondrial function and oxidative stress biomarkers as plausible mechanisms of its action in the whole brain and hippocampus have been evaluated. TAU (0.5 % and 1 % w/v) was dissolved in the drinking water of pregnant mice (Day one of pregnancy), and amino acid supplementation was continued during the weaning time (post-natal day; PND = 21) until litters maturity (PND = 65). It was found that TAU significantly improved cognitive function, memory performance, reflexive motor activity, and emotional behaviors in F1-mice generation. TAU measurement in the brain and hippocampus revealed higher levels of this amino acid. TAU and ATP levels were also significantly higher in the mitochondria isolated from the whole brain and hippocampus. Based on these data, TAU could be suggested as a supplement during pregnancy or in pediatric formula. The effects of TAU on cellular mitochondrial function and energy metabolism might play a fundamental role in the positive effects of this amino acid observed in this investigation.
Collapse
Affiliation(s)
- Mohammad Mehdi Ommati
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan, China; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Heresh Rezaei
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Retana-Márquez Socorro
- Department of Reproductive Biology, Universidad Autónoma Metropolitana-Iztapalapa, México City, Mexico
| | - Weishun Tian
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan, China
| | - Jing Zhao
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan, China
| | - Ayeh Rouhani
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samira Sabouri
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan, China; College of Animal Science and Veterinary, Shanxi agricultural University, Taigu, Shanxi, China
| | - Fatemeh Ghaderi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Mohammad Niknahad
- Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Asma Najibi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Chemistry and Biochemistry, Miami University, 244 Hughes Laboratories, 651 E. High Street, Oxford, OH 45056, USA
| | - Sahra Mazloomi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Moslem Safipour
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Honarpishefard
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hong-Wei Wang
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan, China.
| | - Hossein Niknahad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Reproductive Biology, Universidad Autónoma Metropolitana-Iztapalapa, México City, Mexico.
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
22
|
Fan S, Zhou Y, Zhao Y, Daglia M, Zhang J, Zhu Y, Bai J, Zhu L, Xiao X. Metabolomics reveals the effects of Lactiplantibacillus plantarum dy-1 fermentation on the lipid-lowering capacity of barley β-glucans in an in vitro model of gut-liver axis. Int J Biol Macromol 2023; 253:126861. [PMID: 37714241 DOI: 10.1016/j.ijbiomac.2023.126861] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/11/2023] [Accepted: 09/09/2023] [Indexed: 09/17/2023]
Abstract
Bioactive polysaccharides known as the biological response modifiers, can directly interact with intestinal epithelium cells (IEC) and regulate key metabolic processes such as lipid metabolism. Here, the coculture of Caco-2/HT29 monolayer (>400 Ω × cm2) and HepG2 cells was developed to mimic the gut-liver interactions. This system was used to investigate the effects of raw and fermented barley β-glucans (RBG and FBG) on lipid metabolism by directly interacting with IEC. Both RBG and FBG significantly and consistently reduced the lipid droplets and triacylglycerol levels in monoculture and coculture of HepG2 overloaded with oleic acid. Notably, FBG significantly and distinctly elevated PPARα (p < 0.05) and PPARα-responsive ACOX-1 (p < 0.01) gene expressions, promoting lipid degradation in cocultured HepG2. Moreover, the metabolomics analyses revealed that FBG had a unique impact on extracellular metabolites, among them, the differential metabolite thiomorpholine 3-carboxylate was significantly and strongly correlated with PPARα (r = -0.68, p < 0.01) and ACOX-1 (r = -0.76, p < 0.01) expression levels. Taken together, our findings suggest that FBG-mediated gut-liver interactions play a key role in its lipid-lowering effects that are superior to those of RBG. These results support the application of Lactiplantibacillus fermentation for improving hypolipidemic outcomes.
Collapse
Affiliation(s)
- Songtao Fan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yurong Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yansheng Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Maria Daglia
- Department of Pharmacy, University of Naples Federico II, Naples, Italy; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| | - Jiayan Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Ying Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Juan Bai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Lin Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Xiang Xiao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
23
|
Zhao DD, Gai YD, Li C, Fu ZZ, Yin DQ, Xie M, Dai JY, Wang XX, Li YX, Wu GF, Feng Y, Hu JM, Lin SM, Yang JC. Dietary taurine effect on intestinal barrier function, colonic microbiota and metabolites in weanling piglets induced by LPS. Front Microbiol 2023; 14:1259133. [PMID: 38188568 PMCID: PMC10770862 DOI: 10.3389/fmicb.2023.1259133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/27/2023] [Indexed: 01/09/2024] Open
Abstract
Diarrhea in piglets is one of the most important diseases and a significant cause of death in piglets. Preliminary studies have confirmed that taurine reduces the rate and index of diarrhea in piglets induced by LPS. However, there is still a lack of relevant information on the specific target and mechanism of action of taurine. Therefore, we investigated the effects of taurine on the growth and barrier functions of the intestine, microbiota composition, and metabolite composition of piglets induced by LPS. Eighteen male weaned piglets were randomly divided into the CON group (basal diet + standard saline injection), LPS group (basal diet + LPS-intraperitoneal injection), and TAU + LPS group (basal diet + 0.3% taurine + LPS-intraperitoneal injection). The results show that taurine significantly increased the ADG and decreased the F/G (p < 0.05) compared with the group of CON. The group of TAU + LPS significantly improved colonic villous damage (p < 0.05). The expression of ZO-1, Occludin and Claudin-1 genes and proteins were markedly up-regulated (p < 0.05). Based on 16s rRNA sequencing analysis, the relative abundance of Lactobacilluscae and Firmicutes in the colon was significantly higher in the LPS + TAU group compared to the LPS group (p < 0.05). Four metabolites were significantly higher and one metabolite was significantly lower in the TAU + LPS group compared to the LPS group (p < 0.01). The above results show that LPS disrupts intestinal microorganisms and metabolites in weaned piglets and affects intestinal barrier function. Preventive addition of taurine enhances beneficial microbiota, modulates intestinal metabolites, and strengthens the intestinal mechanical barrier. Therefore, taurine can be used as a feed additive to prevent intestinal damage by regulating intestinal microorganisms and metabolites.
Collapse
Affiliation(s)
- Dong-dong Zhao
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Ye-dan Gai
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Chen Li
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Zi-zheng Fu
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - De-Qi Yin
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Mingxin Xie
- Animal Husbandry and Veterinary College, Jiangsu Vocational College of Agriculture and Forestry, Zhenjiang, China
| | - Jing-yuan Dai
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Xin-xin Wang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yan-xi Li
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Gao-feng Wu
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Ying Feng
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Jian-min Hu
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Shu-mei Lin
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Jian-cheng Yang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
24
|
Jia Y, Zou K, Zou L. Research progress of metabolomics in cervical cancer. Eur J Med Res 2023; 28:586. [PMID: 38093395 PMCID: PMC10717910 DOI: 10.1186/s40001-023-01490-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 10/30/2023] [Indexed: 12/17/2023] Open
Abstract
INTRODUCTION Cervical cancer threatens women's health seriously. In recent years, the incidence of cervical cancer is on the rise, and the age of onset tends to be younger. Prevention, early diagnosis and specific treatment have become the main means to change the prognosis of cervical cancer patients. Metabolomics research can directly reflect the changes of biochemical processes and microenvironment in the body, which can provide a comprehensive understanding of the changes of metabolites in the process of disease occurrence and development, and provide new ways for the prevention and diagnosis of diseases. OBJECTIVES The aim of this study is to review the metabolic changes in cervical cancer and the application of metabolomics in the diagnosis and treatment. METHODS PubMed, Web of Science, Embase and Scopus electronic databases were systematically searched for relevant studies published up to 2022. RESULTS With the emergence of metabolomics, metabolic regulation and cancer research are further becoming a focus of attention. By directly reflecting the changes in the microenvironment of the body, metabolomics research can provide a comprehensive understanding of the patterns of metabolites in the occurrence and development of diseases, thus providing new ideas for disease prevention and diagnosis. CONCLUSION With the continuous, in-depth research on metabolomics research technology, it will bring more benefits in the screening, diagnosis and treatment of cervical cancer with its advantages of holistic and dynamic nature.
Collapse
Affiliation(s)
- Yuhan Jia
- Department of Radiotherapy, The Second Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Kun Zou
- Department of Radiotherapy, The First Hospital of Dalian Medical University, Dalian, Liaoning Province, China.
| | - Lijuan Zou
- Department of Radiotherapy, The Second Hospital of Dalian Medical University, Dalian, Liaoning Province, China.
| |
Collapse
|
25
|
Yu Z, Cheng M, Luo S, Wei J, Song T, Gong Y, Zhou Z. Comparative Lipidomics and Metabolomics Reveal the Underlying Mechanisms of Taurine in the Alleviation of Nonalcoholic Fatty Liver Disease Using the Aged Laying Hen Model. Mol Nutr Food Res 2023; 67:e2200525. [PMID: 37909476 DOI: 10.1002/mnfr.202200525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 06/18/2023] [Indexed: 11/03/2023]
Abstract
SCOPE Aged laying hen is recently suggested as a more attractive animal model than rodent for studying nonalcoholic fatty liver disease (NAFLD) of humans. This study aims to reveal effects and metabolic regulation mechanisms of taurine alleviating NAFLD by using the aged laying hen model. METHODS AND RESULTS Liver histomorphology and biochemical indices show 0.02% taurine effectively alleviated fat deposition and liver damage. Comparative liver lipidomics and gene expressions analyses reveal taurine promoted lipolysis, fatty acids oxidation, lipids transport, and reduced oxidative stress in liver. Furthermore, comparative serum metabolomics screen six core metabolites negatively correlated with NAFLD, including linoleic acid, gamma-linolenic acid, pantothenate, L-methionine, 2-methylbutyroylcarnitine, L-carnitine; and two core metabolites positively correlated with NAFLD, including lysophosphatidylcholine (14:0/0:0) and lysophosphatidylcholine (16:0/0:0). Metabolic pathway analysis reveals taurine mainly regulated linoleic acid metabolism, cysteine and methionine metabolism, carnitine metabolism, pantothenic acid and coenzyme A biosynthesis metabolism, and glycerophospholipid metabolism to up-adjust levels of six negatively correlated metabolites and down-adjust two positively correlated metabolites for alleviating NAFLD of aged hens. CONCLUSION This study firstly reveals underlying metabolic mechanisms of taurine alleviating NAFLD using the aged hen model, thereby laying the foundation for taurine's application in the prevention of NAFLD in both human and poultry.
Collapse
Affiliation(s)
- Zhengwang Yu
- Department of Animal Nutrition and Feed Science, College of Animal Sciences & Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Shanghai Yuanyao Agriculture and Animal Husbandry Technology Co., Ltd, Shanghai, 200000, China
| | - Manman Cheng
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Sciences & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shimei Luo
- Department of Animal Nutrition and Feed Science, College of Animal Sciences & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jingjing Wei
- Department of Animal Nutrition and Feed Science, College of Animal Sciences & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tieping Song
- Yichang Tianyou Huamu Technology Co.,Ltd, Yichang, 443000, China
| | - Yanzhang Gong
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Sciences & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhongxin Zhou
- Department of Animal Nutrition and Feed Science, College of Animal Sciences & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
26
|
An W, Huang Z, Mao Z, Jia G, Zhao H, Liu G, Chen X. Taurine promotes muscle fiber type transformation through CaN/NFATc1 signaling in porcine myoblasts. J Cell Physiol 2023; 238:2879-2887. [PMID: 37842836 DOI: 10.1002/jcp.31136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/17/2023]
Abstract
This study investigated the effect of taurine (TAU) on the muscle fiber type transformation in porcine myoblasts and its molecular mechanisms. The findings revealed that TAU augmented the protein expression of slow MyHC and the enzyme activities of oxidative metabolism markers like malate dehydrogenase and succinic dehydrogenase. Conversely, it curtailed the expression of fast MyHC and glycolytic metabolism enzyme activity of lactate dehydrogenase. Moreover, TAU elevated the expression of genes associated with oxidative fiber while diminishing the expression of those linked to glycolytic fibers, suggesting that TAU promoted the muscle fiber type transformation from glycolytic fiber to oxidative fiber. Additionally, TAU notably enhanced the expression of key molecules of calcineurin (CaN)/nuclear factor of activated T cells c1 (NFATc1) signaling and the CaN activity in porcine myoblasts. However, CaN inhibitor cyclosporine A abolished these effects induced by TAU. Our results indicated that TAU regulated the muscle fiber type transformation from glycolytic to oxidative fiber by activation of CaN/NFATc1 signaling.
Collapse
Affiliation(s)
- Wenting An
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Zhiqing Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Zhengyu Mao
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Gang Jia
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Hua Zhao
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Guangmang Liu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Xiaoling Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
27
|
Jagim AR, Harty PS, Tinsley GM, Kerksick CM, Gonzalez AM, Kreider RB, Arent SM, Jager R, Smith-Ryan AE, Stout JR, Campbell BI, VanDusseldorp T, Antonio J. International society of sports nutrition position stand: energy drinks and energy shots. J Int Soc Sports Nutr 2023; 20:2171314. [PMID: 36862943 PMCID: PMC9987737 DOI: 10.1080/15502783.2023.2171314] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 03/04/2023] Open
Abstract
Position Statement: The International Society of Sports Nutrition (ISSN) bases the following position stand on a critical analysis of the literature regarding the effects of energy drink (ED) or energy shot (ES) consumption on acute exercise performance, metabolism, and cognition, along with synergistic exercise-related performance outcomes and training adaptations. The following 13 points constitute the consensus of the Society and have been approved by the Research Committee of the Society: Energy drinks (ED) commonly contain caffeine, taurine, ginseng, guarana, carnitine, choline, B vitamins (vitamins B1, B2, B3, B5, B6, B9, and B12), vitamin C, vitamin A (beta carotene), vitamin D, electrolytes (sodium, potassium, magnesium, and calcium), sugars (nutritive and non-nutritive sweeteners), tyrosine, and L-theanine, with prevalence for each ingredient ranging from 1.3 to 100%. Energy drinks can enhance acute aerobic exercise performance, largely influenced by the amount of caffeine (> 200 mg or >3 mg∙kg bodyweight [BW-1]) in the beverage. Although ED and ES contain several nutrients that are purported to affect mental and/or physical performance, the primary ergogenic nutrients in most ED and ES based on scientific evidence appear to be caffeine and/or the carbohydrate provision. The ergogenic value of caffeine on mental and physical performance has been well-established, but the potential additive benefits of other nutrients contained in ED and ES remains to be determined. Consuming ED and ES 10-60 minutes before exercise can improve mental focus, alertness, anaerobic performance, and/or endurance performance with doses >3 mg∙kg BW-1. Consuming ED and ES containing at least 3 mg∙kg BW-1 caffeine is most likely to benefit maximal lower-body power production. Consuming ED and ES can improve endurance, repeat sprint performance, and sport-specific tasks in the context of team sports. Many ED and ES contain numerous ingredients that either have not been studied or evaluated in combination with other nutrients contained in the ED or ES. For this reason, these products need to be studied to demonstrate efficacy of single- and multi-nutrient formulations for physical and cognitive performance as well as for safety. Limited evidence is available to suggest that consumption of low-calorie ED and ES during training and/or weight loss trials may provide ergogenic benefit and/or promote additional weight control, potentially through enhanced training capacity. However, ingestion of higher calorie ED may promote weight gain if the energy intake from consumption of ED is not carefully considered as part of the total daily energy intake. Individuals should consider the impact of regular coingestion of high glycemic index carbohydrates from ED and ES on metabolic health, blood glucose, and insulin levels. Adolescents (aged 12 through 18) should exercise caution and seek parental guidance when considering the consumption of ED and ES, particularly in excessive amounts (e.g. > 400 mg), as limited evidence is available regarding the safety of these products among this population. Additionally, ED and ES are not recommended for children (aged 2-12), those who are pregnant, trying to become pregnant, or breastfeeding and those who are sensitive to caffeine. Diabetics and individuals with preexisting cardiovascular, metabolic, hepatorenal, and/or neurologic disease who are taking medications that may be affected by high glycemic load foods, caffeine, and/or other stimulants should exercise caution and consult with their physician prior to consuming ED. The decision to consume ED or ES should be based upon the beverage's content of carbohydrate, caffeine, and other nutrients and a thorough understanding of the potential side effects. Indiscriminate use of ED or ES, especially if multiple servings per day are consumed or when consumed with other caffeinated beverages and/or foods, may lead to adverse effects. The purpose of this review is to provide an update to the position stand of the International Society of Sports Nutrition (ISSN) integrating current literature on ED and ES in exercise, sport, and medicine. The effects of consuming these beverages on acute exercise performance, metabolism, markers of clinical health, and cognition are addressed, as well as more chronic effects when evaluating ED/ES use with exercise-related training adaptions.
Collapse
Affiliation(s)
- Andrew R. Jagim
- Sports Medicine, Mayo Clinic Health System, La Crosse, WI, USA
- Exercise & Sport Science, University of Wisconsin – La Crosse, La Crosse, WI, USA
| | - Patrick S. Harty
- Exercise & Performance Nutrition Laboratory, Lindenwood University, St. Charles, MO, USA
| | - Grant M. Tinsley
- Energy Balance and Body Composition Laboratory, Department of Kinesiology & Sport Management, Texas Tech University, Lubbock, TX, USA
| | - Chad M. Kerksick
- Sports Medicine, Mayo Clinic Health System, La Crosse, WI, USA
- Exercise & Performance Nutrition Laboratory, Lindenwood University, St. Charles, MO, USA
| | - Adam M. Gonzalez
- Department of Allied Health and Kinesiology, Hofstra University, Hempstead, NY, USA
| | - Richard B. Kreider
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX, USA
| | - Shawn M Arent
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | | | - Abbie E. Smith-Ryan
- Applied Physiology Laboratory, Department of Exercise & Sport Science, University of North Carolina, Chapel Hill, NC, USA
| | - Jeffrey R. Stout
- School of Kinesiology and Rehabilitation Science, University of Central Florida, Orlando, FL, USA
| | - Bill I. Campbell
- Performance & Physique Enhancement Laboratory, University of South Florida, Tampa, FL, USA
| | - Trisha VanDusseldorp
- Bonafede Health, LLC, JDS Therapeutics, Harrison, NY, USA
- Department of Health and Exercise Sciences, Jacksonville University, Jacksonville, FL, USA
| | - Jose Antonio
- Department of Health and Human Performance, Nova Southeastern University, Davie, FL, USA
| |
Collapse
|
28
|
Wang K, Khoramjoo M, Srinivasan K, Gordon PMK, Mandal R, Jackson D, Sligl W, Grant MB, Penninger JM, Borchers CH, Wishart DS, Prasad V, Oudit GY. Sequential multi-omics analysis identifies clinical phenotypes and predictive biomarkers for long COVID. Cell Rep Med 2023; 4:101254. [PMID: 37890487 PMCID: PMC10694626 DOI: 10.1016/j.xcrm.2023.101254] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/25/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023]
Abstract
The post-acute sequelae of COVID-19 (PASC), also known as long COVID, is often associated with debilitating symptoms and adverse multisystem consequences. We obtain plasma samples from 117 individuals during and 6 months following their acute phase of infection to comprehensively profile and assess changes in cytokines, proteome, and metabolome. Network analysis reveals sustained inflammatory response, platelet degranulation, and cellular activation during convalescence accompanied by dysregulation in arginine biosynthesis, methionine metabolism, taurine metabolism, and tricarboxylic acid (TCA) cycle processes. Furthermore, we develop a prognostic model composed of 20 molecules involved in regulating T cell exhaustion and energy metabolism that can reliably predict adverse clinical outcomes following discharge from acute infection with 83% accuracy and an area under the curve (AUC) of 0.96. Our study reveals pertinent biological processes during convalescence that differ from acute infection, and it supports the development of specific therapies and biomarkers for patients suffering from long COVID.
Collapse
Affiliation(s)
- Kaiming Wang
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, AB, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada; Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Mobin Khoramjoo
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada; Department of Physiology, University of Alberta, Edmonton, AB, Canada
| | - Karthik Srinivasan
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada
| | - Paul M K Gordon
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Rupasri Mandal
- The Metabolomics Innovation Center, University of Alberta, Edmonton, AB, Canada
| | - Dana Jackson
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, AB, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| | - Wendy Sligl
- Department of Critical Care Medicine, University of Alberta, Edmonton, AB, Canada; Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Maria B Grant
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Josef M Penninger
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada; Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria
| | - Christoph H Borchers
- Segal Cancer Proteomics Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montreal, QC, Canada; Gerald Bronfman Department of Oncology, McGill University, Montreal, QC, Canada
| | - David S Wishart
- The Metabolomics Innovation Center, University of Alberta, Edmonton, AB, Canada
| | - Vinay Prasad
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada
| | - Gavin Y Oudit
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, AB, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada; Department of Physiology, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
29
|
Rehman SU, Ali R, Zhang H, Zafar MH, Wang M. Research progress in the role and mechanism of Leucine in regulating animal growth and development. Front Physiol 2023; 14:1252089. [PMID: 38046946 PMCID: PMC10691278 DOI: 10.3389/fphys.2023.1252089] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/08/2023] [Indexed: 12/05/2023] Open
Abstract
Leucine, a branched-chain amino acid, is essential in regulating animal growth and development. Recent research has uncovered the mechanisms underlying Leucine's anabolic effects on muscle and other tissues, including its ability to stimulate protein synthesis by activating the mTORC1 signaling pathway. The co-ingestion of carbohydrates and essential amino acids enhances Leucine's anabolic effects. Moreover, Leucine has been shown to benefit lipid metabolism, and insulin sensitivity, making it a promising strategy for preventing and treating metabolic diseases, including type 2 diabetes and obesity. While emerging evidence indicates that epigenetic mechanisms may mediate Leucine's effects on growth and development, more research is needed to elucidate its mechanisms of action fully. Specific studies have demonstrated that Leucine promotes muscle growth and metabolic health in animals and humans, making it a promising therapeutic agent. However, it is essential to note that Leucine supplementation may cause digestive issues or interact with certain medications, and More study is required to determine definitively optimal dosages. Therefore, it is important to understand how Leucine interacts with other nutrients, dietary factors, and lifestyle habits to maximize its benefits. Overall, Leucine's importance in human nutrition is far-reaching, and its potential to prevent muscle loss and enhance athletic performance warrants further investigation.
Collapse
Affiliation(s)
| | | | | | | | - Mengzhi Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
30
|
Tang J, Wang L, Shi M, Feng S, Zhang T, Han H. Study on the mechanism of Shuganzhi Tablet against nonalcoholic fatty liver disease and lipid regulation effects of its main substances in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2023; 316:116780. [PMID: 37311504 DOI: 10.1016/j.jep.2023.116780] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/30/2023] [Accepted: 06/10/2023] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shuganzhi Tablet (SGZT) originates from a famous traditional Chinese herbal formula Chaihu Decoction which can be applied to treat liver diseases, however, the pharmacodynamic mechanism of SGZT needs to be evaluated. AIM OF THIS STUDY To study the mechanism of SGZT in the treatment of non-alcoholic fatty liver disease (NAFLD), and screen out its effective ingredients. MATERIALS AND METHODS In this study, firstly, the main components of SGZT were analyzed qualitatively. And a rat model of NAFLD was established by feeding high-fat diet. Serum biochemical indexes and liver pathological analysis were used to evaluate the pharmacodynamic effect of SGZT in the treatment of NAFLD. In order to explore the pharmacodynamic mechanism, proteomics and metabolomics analysis were used. Western blotting was used to verify the expression of important differential proteins. And L02 cells were treated with free fatty acids (FFA) and the main substances of SGZT to establish the cell model of NAFLD in vitro and to reveal the pharmacodynamic substance of SGZT. RESULTS Twelve components were detected in SGZT, and according to the results of serum biochemical indexes and liver pathological analysis, SGZT could effectively treat NAFLD. Combined with the results of bioinformatics analysis, we found that 133 differentially expressed proteins were reversed in liver samples of rats treated with SGZT. The important proteins in PPAR signaling pathway, steroid biosynthesis, cholesterol metabolism and fatty acid metabolism were mainly regulated to maintain cholesterol homeostasis and improve lipid metabolism. SGZT also affected various metabolites in rat liver, including eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and taurine. In addition, the main components contained in SGZT (hesperidin, polydatin, naringin, emodin, specnuezhenide, saikosaponin A) and a metabolite (resveratrol) could significantly reduce FFA-induced intracellular lipid accumulation. CONCLUSION SGZT effectively treated NAFLD, and PPAR-γ, Acsl4, Plin2 and Fads1 may be the main targets of SGZT. And Fads1-EPA/DHA-PPAR-γ may be the potential pharmacodynamic pathway. Cell experiments in vitro revealed that the main components of SGZT and their metabolites, such as hesperidin, polydatin, naringin, emodin, specnuezhenide, saikosaponin A and resveratrol may be the main components of its efficacy. Further research is needed to reveal and validate the pharmacodynamic mechanism.
Collapse
Affiliation(s)
- Jie Tang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China.
| | - Lixiang Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China.
| | - Mengge Shi
- Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China.
| | - Shuaixia Feng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China.
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China.
| | - Han Han
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China.
| |
Collapse
|
31
|
Ahmed K, Choi HN, Yim JE. The Impact of Taurine on Obesity-Induced Diabetes Mellitus: Mechanisms Underlying Its Effect. Endocrinol Metab (Seoul) 2023; 38:482-492. [PMID: 37846056 PMCID: PMC10613769 DOI: 10.3803/enm.2023.1776] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/07/2023] [Accepted: 08/28/2023] [Indexed: 10/18/2023] Open
Abstract
This review explores the potential benefits of taurine in ameliorating the metabolic disorders of obesity and type 2 diabetes (T2D), highlighting the factors that bridge these associations. Relevant articles and studies were reviewed to conduct a comprehensive analysis of the relationship between obesity and the development of T2D and the effect of taurine on those conditions. The loss of normal β-cell function and development of T2D are associated with obesity-derived insulin resistance. The occurrence of diabetes has been linked to the low bioavailability of taurine, which plays critical roles in normal β-cell function, anti-oxidation, and anti-inflammation. The relationships among obesity, insulin resistance, β-cell dysfunction, and T2D are complex and intertwined. Taurine may play a role in ameliorating these metabolic disorders through different pathways, but further research is needed to fully understand its effects and potential as a therapeutic intervention.
Collapse
Affiliation(s)
- Kainat Ahmed
- Interdisciplinary Program in Senior Human Ecology, Changwon National University, Changwon, Korea
| | - Ha-Neul Choi
- Department of Food and Nutrition, Changwon National University, Changwon, Korea
| | - Jung-Eun Yim
- Interdisciplinary Program in Senior Human Ecology, Changwon National University, Changwon, Korea
- Department of Food and Nutrition, Changwon National University, Changwon, Korea
| |
Collapse
|
32
|
Santulli G, Kansakar U, Varzideh F, Mone P, Jankauskas SS, Lombardi A. Functional Role of Taurine in Aging and Cardiovascular Health: An Updated Overview. Nutrients 2023; 15:4236. [PMID: 37836520 PMCID: PMC10574552 DOI: 10.3390/nu15194236] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Taurine, a naturally occurring sulfur-containing amino acid, has attracted significant attention in recent years due to its potential health benefits. Found in various foods and often used in energy drinks and supplements, taurine has been studied extensively to understand its impact on human physiology. Determining its exact functional roles represents a complex and multifaceted topic. We provide an overview of the scientific literature and present an analysis of the effects of taurine on various aspects of human health, focusing on aging and cardiovascular pathophysiology, but also including athletic performance, metabolic regulation, and neurological function. Additionally, our report summarizes the current recommendations for taurine intake and addresses potential safety concerns. Evidence from both human and animal studies indicates that taurine may have beneficial cardiovascular effects, including blood pressure regulation, improved cardiac fitness, and enhanced vascular health. Its mechanisms of action and antioxidant properties make it also an intriguing candidate for potential anti-aging strategies.
Collapse
Affiliation(s)
- Gaetano Santulli
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; (U.K.); (S.S.J.); (A.L.)
- Department of Molecular Pharmacology, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York, NY 10461, USA; (F.V.); (P.M.)
| | - Urna Kansakar
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; (U.K.); (S.S.J.); (A.L.)
| | - Fahimeh Varzideh
- Department of Molecular Pharmacology, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York, NY 10461, USA; (F.V.); (P.M.)
| | - Pasquale Mone
- Department of Molecular Pharmacology, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York, NY 10461, USA; (F.V.); (P.M.)
| | - Stanislovas S. Jankauskas
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; (U.K.); (S.S.J.); (A.L.)
| | - Angela Lombardi
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; (U.K.); (S.S.J.); (A.L.)
| |
Collapse
|
33
|
Xie Z, Du J, Gan M, Zhou C, Li M, Liu C, Wang M, Chen L, Zhao Y, Wang Y, Jiang Y, Cheng W, Zhu K, Luo Y, Zhu L, Shen L. Short-term dietary choline supplementation alters the gut microbiota and liver metabolism of finishing pigs. Front Microbiol 2023; 14:1266042. [PMID: 37840732 PMCID: PMC10569418 DOI: 10.3389/fmicb.2023.1266042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/04/2023] [Indexed: 10/17/2023] Open
Abstract
Choline is an essential nutrient for pig development and plays a role in the animal's growth performance, carcass characteristics, and reproduction aspects in weaned pigs and sows. However, the effect of choline on finishing pigs and its potential regulatory mechanism remains unclear. Here, we feed finishing pigs with 1% of the hydrochloride salt of choline, such as choline chloride (CHC), under a basic diet condition for a short period of time (14 days). A 14-day supplementation of CHC significantly increased final weight and carcass weight while having no effect on carcass length, average backfat, or eye muscle area compared with control pigs. Mechanically, CHC resulted in a significant alteration of gut microbiota composition in finishing pigs and a remarkably increased relative abundance of bacteria contributing to growth performance and health, including Prevotella, Ruminococcaceae, and Eubacterium. In addition, untargeted metabolomics analysis identified 84 differently abundant metabolites in the liver between CHC pigs and control pigs, of which most metabolites were mainly enriched in signaling pathways related to the improvement of growth, development, and health. Notably, there was no significant difference in the ability of oxidative stress resistance between the two groups, although increased bacteria and metabolites keeping balance in reactive oxygen species showed in finishing pigs after CHC supplementation. Taken together, our results suggest that a short-term supplementation of CHC contributes to increased body weight gain and carcass weight of finishing pigs, which may be involved in the regulation of gut microbiota and alterations of liver metabolism, providing new insights into the potential of choline-mediated gut microbiota/metabolites in improving growth performance, carcass characteristics, and health.
Collapse
Affiliation(s)
- Zhongwei Xie
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu, China
| | - Junhua Du
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu, China
| | - Mailin Gan
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu, China
| | - Chengpeng Zhou
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu, China
| | - Menglin Li
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu, China
| | - Chengming Liu
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu, China
| | - Meng Wang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu, China
| | - Lei Chen
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu, China
| | - Ye Zhao
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu, China
| | - Yan Wang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu, China
| | - Yanzhi Jiang
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu, China
- College of Life Science, Sichuan Agricultural University, Chengdu, China
| | | | - Kangping Zhu
- Sichuan Dekon Livestock Foodstuff Group, Shuangliu, China
| | - Yi Luo
- Sichuan Dekon Livestock Foodstuff Group, Shuangliu, China
| | - Li Zhu
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu, China
| | - Linyuan Shen
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
34
|
Cetin AK, Buyukdere Y, Gulec A, Akyol A. Taurine supplementation reduces adiposity and hepatic lipid metabolic activity in adult offspring following maternal cafeteria diet. Nutr Res 2023; 117:15-29. [PMID: 37423013 DOI: 10.1016/j.nutres.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/07/2023] [Accepted: 06/07/2023] [Indexed: 07/11/2023]
Abstract
Maternal taurine supplementation has been shown to exert protective effects following a maternal obesogenic diet on offspring growth and metabolism. However, the long-term effects of maternal cafeteria diet on adiposity, metabolic profile, and hepatic gene expression patterns following supplementation of taurine in adult offspring remains unclear. In this study, we hypothesized that exposure to maternal taurine supplementation would modulate the effects of maternal cafeteria diet by reducing adiposity and hepatic gene expression patterns involved in lipid metabolism in adult offspring. Female Wistar rats were fed a control diet, control diet supplemented with 1.5% taurine in drinking water, cafeteria diet (CAF) or CAF supplemented with taurine (CAFT) from weaning. After 8 weeks, all animals were mated and maintained on the same diets during pregnancy and lactation. After weaning, all offspring were fed with control chow diet until the age of 20 weeks. Despite similar body weights, CAFT offspring had significantly lower fat deposition and body fat when compared with CAF offspring. Microarray analysis revealed that genes (Akr1c3, Cyp7a1, Hsd17b6, Cd36, Acsm3, and Aldh1b1) related to steroid hormone biosynthesis, cholesterol metabolism, peroxisome proliferator-activated receptor signaling pathway, butanoate metabolism, and fatty acid degradation were down-regulated in CAFT offspring. The current study shows that exposure to maternal cafeteria diet promoted adiposity and taurine supplementation reduced lipid deposition and in both male and female offspring and led to alterations in hepatic gene expression patterns, reducing the detrimental effects of maternal cafeteria diet.
Collapse
Affiliation(s)
- Arzu Kabasakal Cetin
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, 06100 Sihhiye, Ankara, Turkey
| | - Yucel Buyukdere
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, 06100 Sihhiye, Ankara, Turkey
| | - Atila Gulec
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, 06100 Sihhiye, Ankara, Turkey
| | - Asli Akyol
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, 06100 Sihhiye, Ankara, Turkey.
| |
Collapse
|
35
|
Song Q, Guo JX, Ma YX, Ou T, Zhang J, Li HZ, Mi SQ, Zhang YZ, Oda H, Chen W. Taurine alleviated hepatic steatosis in oleic acid-treated-HepG2 cells and rats fed a high-fat diet. Heliyon 2023; 9:e16401. [PMID: 37274675 PMCID: PMC10238701 DOI: 10.1016/j.heliyon.2023.e16401] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/21/2023] [Accepted: 05/16/2023] [Indexed: 06/06/2023] Open
Abstract
Taurine has been proven in many trials to alleviate the symptoms of metabolic associated fatty liver disease. Here its protective effect for hepatic steatosis and modulation of AMP-activated protein kinase and insulin signaling pathway were investigated. Steatotic HepG2 cell established with oleic acid (0.05 mmol/L), treated with taurine (5 mmol/L), dorsomorphin (10 μmol/L) for 24 h. Sprague Dawley rats were divided into regular and high-fat diet (HFD) groups, and their corresponding taurine (70 or 350 mg/kg BW/d) groups, fed for 8 weeks. In steatotic cell, taurine reduced the TG concentration and SREBP-1c, PPARγ, FAS, ACC, SCD1 protein levels, decreased phosphorylation of mTOR, IRS1 (Ser302), increased phosphorylation of AMPKα, LKB1, PI3K, Akt, ACC. While dorsomorphin eliminated taurine's TG-lowering effect. In HFD-fed rats, taurine reduced liver TG, serum TG, ALT, AST, IL-1β, IL-4, TNF-α. The effects of taurine on the main factors of fatty acid synthesis were mostly consistent with cell experiments, and the reduction of microRNAs (451, 33, 291b) was aligned with the improvement in LKB1 and AMPK expression in HFD rats. Taurine alleviated steatosis-induced inhibition of IRS1-PI3K-Akt pathway, but suppressed its positively regulated downstream factor mTOR. In parallel, taurine reduced steatosis by activating LKB1-AMPKα pathway via phosphorylation and no-phosphorylation manner, then inhibiting SREBP-1c directly or by suppressing mTOR phosphorylation.
Collapse
Affiliation(s)
- Qi Song
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, 100191, China
- Laboratory of Nutritional Biochemistry, Nagoya University, Nagoya, 464-8601, Japan
| | - Jun Xia Guo
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, 100191, China
| | - Yu Xun Ma
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, 100191, China
| | - Tong Ou
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, 100191, China
| | - Jing Zhang
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, 100191, China
| | - Hui Zi Li
- Department of Nutrition, PLA Rocket Force Characteristic Medical Center, Beijing, 100088, China
| | - Sheng Quan Mi
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, 100191, China
| | - Yan Zhen Zhang
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, 100191, China
| | - Hiroaki Oda
- Laboratory of Nutritional Biochemistry, Nagoya University, Nagoya, 464-8601, Japan
| | - Wen Chen
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, 100191, China
| |
Collapse
|
36
|
Ramirez-Camba CD, Levesque CL. The Linear-Logistic Model: A Novel Paradigm for Estimating Dietary Amino Acid Requirements. Animals (Basel) 2023; 13:ani13101708. [PMID: 37238138 DOI: 10.3390/ani13101708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/16/2023] [Accepted: 05/20/2023] [Indexed: 05/28/2023] Open
Abstract
This study aimed to determine whether current methods for estimating AA requirements for animal health and welfare are sufficient. An exploratory data analysis (EDA) was conducted, which involved a review of assumptions underlying AA requirements research, a data mining approach to identify animal responses to dietary AA levels exceeding those for maximum protein retention, and a literature review to assess the physiological relevance of the linear-logistic model developed through the data mining approach. The results showed that AA dietary levels above those for maximum growth resulted in improvements in key physiological responses, and the linear-logistic model depicted the AA level at which growth and protein retention rates were maximized, along with key metabolic functions related to milk yield, litter size, immune response, intestinal permeability, and plasma AA concentrations. The results suggest that current methods based solely on growth and protein retention measurements are insufficient for optimizing key physiological responses associated with health, survival, and reproduction. The linear-logistic model could be used to estimate AA doses that optimize these responses and, potentially, survival rates.
Collapse
Affiliation(s)
- Christian D Ramirez-Camba
- Department of Animal Science, University of Minnesota, St. Paul, MN 55108, USA
- Department of Animal Science, South Dakota State University, Brookings, SD 57007, USA
| | - Crystal L Levesque
- Department of Animal Science, South Dakota State University, Brookings, SD 57007, USA
| |
Collapse
|
37
|
Meng S, Zhang Y, Lv S, Zhang Z, Liu X, Jiang L. Comparison of muscle metabolomics between two Chinese horse breeds. Front Vet Sci 2023; 10:1162953. [PMID: 37215482 PMCID: PMC10196265 DOI: 10.3389/fvets.2023.1162953] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/03/2023] [Indexed: 05/24/2023] Open
Abstract
With their enormous muscle mass and athletic ability, horses are well-positioned as model organisms for understanding muscle metabolism. There are two different types of horse breeds-Guanzhong (GZ) horses, an athletic breed with a larger body height (~148.7 cm), and the Ningqiang pony (NQ) horses, a lower height breed generally used for ornamental purposes-both inhabited in the same region of China with obvious differences in muscle content. The main objective of this study was to evaluate the breed-specific mechanisms controlling muscle metabolism. In this study, we observed muscle glycogen, enzyme activities, and LC-MS/MS untargeted metabolomics in the gluteus medius muscle of six, each of GZ and NQ horses, to explore differentiated metabolites that are related to the development of two muscles. As expected, the glycogen content, citrate synthase, and hexokinase activity of muscle were significantly higher in GZ horses. To alleviate the false positive rate, we used both MS1 and MS2 ions for metabolite classification and differential analysis. As a result, a total of 51,535 MS1 and 541 MS2 metabolites were identified, and these metabolites can separate these two groups from each other. Notably, 40% of these metabolites were clustered into lipids and lipid-like molecules. Furthermore, 13 significant metabolites were differentially detected between GZ and NQ horses (fold change [FC] value ≥ 2, variable important in projection value ≥1, and Q value ≤ 0.05). They are primarily clustered into glutathione metabolism (GSH, p = 0.01), taurine, and hypotaurine metabolism (p < 0.05) pathways. Seven of the 13 metabolites were also found in thoroughbred racing horses, suggesting that metabolites related to antioxidants, amino acids, and lipids played a key role in the development of skeleton muscle in horses. Those metabolites related to muscle development shed a light on racing horses' routine maintenance and improvement of athletic performance.
Collapse
Affiliation(s)
- Sihan Meng
- Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Yanli Zhang
- Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Shipeng Lv
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Zhengkai Zhang
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Xuexue Liu
- Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- Centre d'Anthropobiologie et de Génomique de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Lin Jiang
- Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| |
Collapse
|
38
|
Zhu Q, Azad MAK, Dong H, Li C, Li R, Cheng Y, Liu Y, Yin Y, Kong X. Sow-Offspring Diets Supplemented with Probiotics and Synbiotics Are Associated with Offspring's Growth Performance and Meat Quality. Int J Mol Sci 2023; 24:ijms24087668. [PMID: 37108828 PMCID: PMC10144797 DOI: 10.3390/ijms24087668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Probiotics and synbiotics supplementation have been shown to play potential roles in animal production. The present study aimed to evaluate the effects of dietary probiotics and synbiotics supplementation to sows during gestation and lactation and to offspring pigs (sow-offspring) on offspring pigs' growth performance and meat quality. Sixty-four healthy Bama mini-pigs were selected and randomly allocated into four groups after mating: the control, antibiotics, probiotics, and synbiotics groups. After weaning, two offspring pigs per litter were selected, and four offspring pigs from two litters were merged into one pen. The offspring pigs were fed a basal diet and the same feed additive according to their corresponding sows, representing the control group (Con group), sow-offspring antibiotics group (S-OA group), sow-offspring probiotics group (S-OP group), and sow-offspring synbiotics group (S-OS group). Eight pigs per group were euthanized and sampled at 65, 95, and 125 d old for further analyses. Our findings showed that probiotics supplementation in sow-offspring diets promoted growth and feed intake of offspring pigs during 95-125 d old. Moreover, sow-offspring diets supplemented with probiotics and synbiotics altered meat quality (meat color, pH45min, pH24h, drip loss, cooking yield, and shear force), plasma UN and AMM levels, and gene expressions associated with muscle-fiber types (MyHCI, MyHCIIa, MyHCIIx, and MyHCIIb) and muscle growth and development (Myf5, Myf6, MyoD, and MyoG). This study provides a theoretical basis for the maternal-offspring integration regulation of meat quality by dietary probiotics and synbiotics supplementation.
Collapse
Affiliation(s)
- Qian Zhu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Md Abul Kalam Azad
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haibo Dong
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Chenjian Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Ruixuan Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yating Cheng
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Liu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Yulong Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangfeng Kong
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Research Center of Mini-Pig, Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, China
| |
Collapse
|
39
|
Ping Y, Shan J, Liu Y, Liu F, Wang L, Liu Z, Li J, Yue D, Wang L, Chen X, Zhang Y. Taurine enhances the antitumor efficacy of PD-1 antibody by boosting CD8 + T cell function. Cancer Immunol Immunother 2023; 72:1015-1027. [PMID: 36261540 DOI: 10.1007/s00262-022-03308-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 10/10/2022] [Indexed: 03/20/2023]
Abstract
The functional state of CD8+ T cells determines the therapeutic efficacy of PD-1 blockade antibodies in tumors. Amino acids are key nutrients for maintaining T cell antitumor immunity. In this study, we used samples from lung cancer patients treated with PD-1 blockade antibodies to assay the amino acids in their serum by mass spectrometry. We found that lung cancer patients with high serum taurine levels generally responded to PD-1 blockade antibody therapy, in parallel with the secretion of high levels of cytotoxic cytokines (IFN-γ and TNF-α). CD8+ T cells cultured with exogenous taurine exhibited decreased apoptosis, enhanced proliferation, and increased secretion of cytotoxic cytokines. High SLC6A6 expression in CD8+ T cells was positively associated with an effector T cell signature. SLC6A6 knockdown limited the function and proliferation of CD8+ T cells. RNA sequencing revealed that SLC6A6 knockdown altered the calcium signaling pathway, oxidative phosphorylation, and T cell receptor signaling in CD8+ T cells. Furthermore, taurine enhanced T cell proliferation and function in vitro by stimulation of PLCγ1-mediated calcium and MAPK signaling. Taurine plus immune checkpoint blockade antibody significantly attenuated tumor growth and markedly improved the function and proliferation of CD8+ T cells in a mouse tumor model. Thus, our findings indicate that taurine is an important driver for improving CD8+ T cell immune responses and could serve as a potential therapeutic agent for cancer patients.
Collapse
Affiliation(s)
- Yu Ping
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jiqi Shan
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yaqing Liu
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Fengsen Liu
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Liuya Wang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhangnan Liu
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jieyao Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Dongli Yue
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Liping Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xinfeng Chen
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, Henan, China.
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
40
|
Zhang D, Fan J, Liu H, Qiu G, Cui S. Testosterone enhances taurine synthesis by upregulating androgen receptor and cysteine sulfinic acid decarboxylase expressions in male mouse liver. Am J Physiol Gastrointest Liver Physiol 2023; 324:G295-G304. [PMID: 36749568 DOI: 10.1152/ajpgi.00076.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Taurine is an end-product of cysteine metabolism, whereas cysteine dioxygenase (CDO) and cysteine sulfinate decarboxylase (CSAD) are key enzymes regulating taurine synthesis. Sex steroids, including estrogens and androgens, are associated with liver physiopathological processes; however, we still do not know whether taurine and sex steroids interact in regulating liver physiology and hepatic diseases, and whether there are sex differences, although our recent study shows that the estrogen is involved in regulating taurine synthesis in mouse liver. The present study was thus proposed to identify whether 17-β-estradiol and testosterone (T) play their roles by regulating CDO and CSAD expression and taurine synthesis in male mouse liver. Our results demonstrated that testosterone did not have a significant influence on CDO expression but significantly enhanced CSAD, androgen receptor (AR) expressions, and taurine levels in mouse liver, cultured hepatocytes, and HepG2 cells, whereas these effects were abrogated by AR antagonist flutamide. Furthermore, our results showed that testosterone increased CSAD-promoter-luciferase activity through the direct interaction of the AR DNA binding domain with the CSAD promoter. These findings first demonstrate that testosterone acts as an important factor to regulate sulfur amino acid metabolism and taurine synthesis through AR/CSAD signaling pathway. In addition, the in vivo and in vitro experiments showed that 17-β-estradiol has no significant effects on liver CSAD expression and taurine synthesis in male mice and suggest that the effects of sex steroids on the taurine synthesis in mouse liver have sex differences. These results are crucial for understanding the physiological functions of taurine/androgen and their interacting mechanisms in the liver.NEW & NOTEWORTHY This study demonstrates that testosterone functions to enhance taurine synthesis by interacting with androgen receptor and binding to cysteine sulfinate decarboxylase (CSAD) promoter zone. Whereas estrogen has no significant effects either on liver CSAD expression or taurine synthesis in male mice and suggests that the effects of sex steroids on taurine synthesis in the liver have gender differences. These new findings are the potential for establishing effective protective and therapeutic strategies for liver diseases.
Collapse
Affiliation(s)
- Di Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People's Republic of China
| | - Jingjing Fan
- College of Biological and Agricultural Engineering, Weifang University, Weifang, People's Republic of China
| | - Hui Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People's Republic of China
| | - Guobin Qiu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People's Republic of China
| | - Sheng Cui
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People's Republic of China
- Institute of Reproduction and Metabolism, Yangzhou University, Yangzhou, People's Republic of China
| |
Collapse
|
41
|
Dordevic D, Capikova J, Dordevic S, Tremlová B, Gajdács M, Kushkevych I. Sulfur content in foods and beverages and its role in human and animal metabolism: A scoping review of recent studies. Heliyon 2023; 9:e15452. [PMID: 37123936 PMCID: PMC10130226 DOI: 10.1016/j.heliyon.2023.e15452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/24/2023] [Accepted: 04/10/2023] [Indexed: 05/02/2023] Open
Abstract
Sulfur is a vital element that all living things require, being a component of proteins and other bio-organic substances. The various kinds and varieties of microbes in nature allow for the transformation of this element. It also should be emphasized that volatile sulfur compounds are typically present in food in trace amounts. Life cannot exist without sulfur, yet it also poses a potential health risk. The colon's sulfur metabolism, which is managed by eukaryotic cells, is much better understood than the S metabolism in gastrointestinal bacteria. Numerous additional microbial processes are anticipated to have an impact on the content and availability of sulfated compounds, as well as intestinal S metabolism. Hydrogen sulfide is the sulfur derivative that has attracted the most attention in relation to colonic health, but it is still unclear whether it is beneficial or harmful. Several lines of evidence suggest that sulfate-reducing bacteria or exogenous hydrogen sulfide may be the root cause of intestinal ailments, including inflammatory bowel diseases and colon cancer. Taurine serves a variety of biological and physiological purposes, including roles in inflammation and protection, additionally, low levels of taurine can be found in bodily fluids, and taurine is the primary sulfur component present in muscle tissue (serum and urine). The aim of this scoping review was to compile data from the most pertinent scientific works about S compounds' existence in food and their metabolic processes. The importance of S compounds in various food products and how these compounds can impact metabolic processes are both stressed in this paper.
Collapse
Affiliation(s)
- Dani Dordevic
- Department of Plant Origin Food Sciences, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackého tř. 1946/1, 612 42, Brno, Czech Republic
| | - Jana Capikova
- Department of Plant Origin Food Sciences, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackého tř. 1946/1, 612 42, Brno, Czech Republic
| | - Simona Dordevic
- Department of Plant Origin Food Sciences, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackého tř. 1946/1, 612 42, Brno, Czech Republic
| | - Bohuslava Tremlová
- Department of Plant Origin Food Sciences, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackého tř. 1946/1, 612 42, Brno, Czech Republic
| | - Márió Gajdács
- Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, Tisza Lajos krt. 64-66, 6720, Szeged, Hungary
| | - Ivan Kushkevych
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, 62500, Brno, Czech Republic
- Corresponding author.
| |
Collapse
|
42
|
Li H, Chen X, Zuo Z, Wang J, Guo Y. Identification and Characterization of Peptides from Bovine Collagen Hydrolysates that Promote Myogenic Cell Proliferation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4876-4889. [PMID: 36917229 DOI: 10.1021/acs.jafc.2c08929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In this study, bovine collagen hydrolysate was purified via a series of chromatograms, and the peptides with the highest activity for promoting myoblast proliferation were identified by LC-MS-MS. It was demonstrated that the peptide GDAGPPGPAGPAGPPGPIG (hydroxylation) could promote C2C12 proliferation (+18.5% ± 0.04, P < 0.05). The certain peptide was capable of regulating the myogenic cell cycle and inhibiting myogenic cell apoptosis. By combining molecular docking, quantitative real-time PCR, and metabonomics, we suggested that the peptide GDAGPPGPAGPAGPPGPIG (hydroxylation) might bind to FGFR1 and affect the expression of genes downstream of FGFR1 and influence protein synthesis to promote myoblast proliferation. The above results showed that the peptides isolated in this study have the potential to alleviate sarcopenia in the elderly.
Collapse
Affiliation(s)
- Hanfeng Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China
| | - Xin Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China
| | - Zhijie Zuo
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China
| | - Jianing Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yanchuan Guo
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China
| |
Collapse
|
43
|
Reikvam H, Bruserud Ø, Hatfield KJ. Pretransplant systemic metabolic profiles in allogeneic hematopoietic stem cell transplant recipients - identification of patient subsets with increased transplant-related mortality. Transplant Cell Ther 2023:S2666-6367(23)01196-X. [PMID: 36966869 DOI: 10.1016/j.jtct.2023.03.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/11/2023] [Accepted: 03/17/2023] [Indexed: 04/24/2023]
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is used in the treatment of high-risk acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS); however, the treatment has high risk of severe transplantation-related mortality (TRM). In this study, we examined pretransplantation serum samples derived from 92 consecutive allotransplant recipients with AML or MDS. Using nontargeted metabolomics, we identified 1274 metabolites including 968 of known identity (named biochemicals). We further investigated metabolites that differed significantly when comparing patients with and without early extensive fluid retention, pretransplantation inflammation (both being associated with increased risk of acute graft-versus-host disease [GVHD]/nonrelapse mortality) and development of systemic steroid-requiring acute GVHD (aGVHD). All three factors are associated with TRM and were also associated with significantly altered amino acid metabolism, although there was only a minor overlap between these three factors with regard to significantly altered individual metabolites. Furthermore, steroid-requiring aGVHD was especially associated with altered taurine/hypotaurine, tryptophan, biotin, and phenylacetate metabolism together with altered malate-aspartate shuttle and urea cycle regulation. In contrast, pretransplantation inflammation was associated with a weaker modulation of many different metabolic pathways, whereas extensive fluid retention was associated with a weaker modulation of taurine/hypotaurine metabolism. An unsupervised hierarchical cluster analysis based on the 13 most significantly identified metabolites associated with aGVHD identified a patient subset with high metabolite levels and increased frequencies of MDS/MDS-AML, steroid-requiring aGVHD and early TRM. On the other hand, a clustering analysis based on metabolites that were significantly altered for aGVHD, inflammation, and fluid retention comparison groups identified a patient subset with a highly significant association with TRM. Our study suggests that the systemic pretransplantation metabolic profiles can be used to identify patient subsets with an increased frequency of TRM.
Collapse
Affiliation(s)
- Håkon Reikvam
- Department of Clinical Science, University of Bergen, 5020, Bergen, Norway; Department of Medicine, Haukeland University Hospital, 5021, Bergen, Norway
| | - Øystein Bruserud
- Department of Clinical Science, University of Bergen, 5020, Bergen, Norway; Department of Medicine, Haukeland University Hospital, 5021, Bergen, Norway.
| | - Kimberley J Hatfield
- Department of Clinical Science, University of Bergen, 5020, Bergen, Norway; Department of Immunology and Transfusion Medicine, Haukeland University Hospital, N-5009, Bergen, Norway.
| |
Collapse
|
44
|
Ji X, Tang Z, Zhang F, Zhou F, Wu Y, Wu D. Dietary taurine supplementation counteracts deoxynivalenol-induced liver injury via alleviating oxidative stress, mitochondrial dysfunction, apoptosis, and inflammation in piglets. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 253:114705. [PMID: 36863159 DOI: 10.1016/j.ecoenv.2023.114705] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/16/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
Deoxynivalenol (DON), as a widespread Fusarium mycotoxin in cereals, food products, and animal feed, is detrimental to both human and animal health. The liver is not only the primary organ responsible for DON metabolism but also the principal organ affected by DON toxicity. Taurine is well known to display various physiological and pharmacological functions due to its antioxidant and anti-inflammatory properties. However, the information regarding taurine supplementation counteracting DON-induced liver injury in piglets is still unclear. In our work, twenty-four weaned piglets were subjected to four groups for a 24-day period, including the BD group (a basal diet), the DON group (3 mg/kg DON-contaminated diet), the DON+LT group (3 mg/kg DON-contaminated diet + 0.3% taurine), and the DON+HT group (3 mg/kg DON-contaminated diet + 0.6% taurine). Our findings indicated that taurine supplementation improved growth performance and alleviated DON-induced liver injury, as evidenced by the reduced pathological and serum biochemical changes (ALT, AST, ALP, and LDH), especially in the group with the 0.3% taurine. Taurine could counteract hepatic oxidative stress in piglets exposed to DON, as it reduced ROS, 8-OHdG, and MDA concentrations and improved the activity of antioxidant enzymes. Concurrently, taurine was observed to upregulate the expression of key factors involved in mitochondrial function and the Nrf2 signaling pathway. Furthermore, taurine treatment effectively attenuated DON-induced hepatocyte apoptosis, as verified through the decreased proportion of TUNEL-positive cells and regulation of the mitochondria-mediated apoptosis pathway. Finally, the administration of taurine was able to reduce liver inflammation due to DON, by inactivating the NF-κB signaling pathway and declining the production of pro-inflammatory cytokines. In summary, our results implied that taurine effectively improved DON-induced liver injury. The underlying mechanism should be that taurine restored mitochondrial normal function and antagonized oxidative stress, thereby reducing apoptosis and inflammatory responses in the liver of weaned piglets.
Collapse
Affiliation(s)
- Xu Ji
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230001, China; Anhui Province Key Laboratory of Animal Nutrition Regulation and Health, Chuzhou 233100, China
| | - Zhongqi Tang
- College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China
| | - Feng Zhang
- College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China; Anhui Province Key Laboratory of Animal Nutrition Regulation and Health, Chuzhou 233100, China; Fengyang Xiaogang Minyi Land Shares Cooperatives, Chuzhou 233100, China
| | - Fen Zhou
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230001, China
| | - Yijing Wu
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230001, China
| | - Dong Wu
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230001, China.
| |
Collapse
|
45
|
Liu Q, He M, Zeng Z, Huang X, Fang S, Zhao Y, Ke S, Wu J, Zhou Y, Xiong X, Li Z, Fu H, Huang L, Chen C. Extensive identification of serum metabolites related to microbes in different gut locations and evaluating their associations with porcine fatness. Microb Biotechnol 2023; 16:1293-1311. [PMID: 36916818 DOI: 10.1111/1751-7915.14245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 02/26/2023] [Accepted: 03/02/2023] [Indexed: 03/16/2023] Open
Abstract
Gut microbiota plays important roles in host metabolism. Whether and how much the gut microbiota in different gut locations contributes to the variations of host serum metabolites are largely unknown, because it is difficult to obtain microbial samples from different gut locations on a large population scale. Here, we quantified the gut microbial compositions using 16S rRNA gene sequencing for 1070 samples collected from the ileum, cecum and faeces of 544 F6 pigs from a mosaic pig population. Untargeted metabolome measurements determined serum metabolome profiles. We found 1671, 12,985 and 103,250 significant correlations between circulating serum metabolites and bacterial ASVs in the ileum, cecum, and faeces samples. We detected nine serum metabolites showing significant correlations with gut bacteria in more than one gut location. However, most metabolite-microbiota pairwise associations were gut location-specific. Targeted metabolome analysis revealed that CDCA, taurine, L-leucine and N-acetyl-L-alanine can be used as biomarkers to predict porcine fatness. Enriched taxa in fat pigs, for example Prevotella and Lawsonia intracellularis were positively associated with L-leucine, while enriched taxa in lean pigs, such as Clostridium butyricum, were negatively associated with L-leucine and CDCA, but positively associated with taurine and N-acetyl-L-alanine. These results suggested that the contributions of gut microbiota in each gut location to the variations of serum metabolites showed spatial heterogeneity.
Collapse
Affiliation(s)
- Qin Liu
- National Key Laboratory for Swine Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Maozhang He
- National Key Laboratory for Swine Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China.,Department of Microbiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Zhijun Zeng
- Research Center for Differention and Development of TCM Basic Theory, Jiangxi Province Key Laboratory of TCM Etiopathogenisis, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Xiaochang Huang
- National Key Laboratory for Swine Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Shaoming Fang
- National Key Laboratory for Swine Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Yuanzhang Zhao
- National Key Laboratory for Swine Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Shanlin Ke
- National Key Laboratory for Swine Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Jinyuan Wu
- National Key Laboratory for Swine Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Yunyan Zhou
- National Key Laboratory for Swine Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Xinwei Xiong
- National Key Laboratory for Swine Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Zhuojun Li
- National Key Laboratory for Swine Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Hao Fu
- National Key Laboratory for Swine Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Lusheng Huang
- National Key Laboratory for Swine Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Congying Chen
- National Key Laboratory for Swine Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
46
|
Chen J, Mao L, Jiang Y, Liu H, Wang X, Meng L, Du Q, Han J, He L, Huang H, Wang Y, Xiong C, Wei Y, Nie Z. Revealing the In Situ Behavior of Aggregation-Induced Emission Nanoparticles and Their Biometabolic Effects via Mass Spectrometry Imaging. ACS NANO 2023; 17:4463-4473. [PMID: 36802559 DOI: 10.1021/acsnano.2c10058] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Simultaneous imaging of exogenous nanomaterials and endogenous metabolites in situ remains challenging and is beneficial for a systemic understanding of the biological behavior of nanomaterials at the molecular level. Here, combined with label-free mass spectrometry imaging, visualization and quantification of the aggregation-induced emission nanoparticles (NPs) in tissue were realized as well as related endogenous spatial metabolic changes simultaneously. Our approach enables us to identify the heterogeneous deposition and clearance behavior of nanoparticles in organs. The accumulation of nanoparticles in normal tissues results in distinct endogenous metabolic changes such as oxidative stress as indicated by glutathione depletion. The low passive delivery efficiency of nanoparticles to tumor foci suggested that the enrichment of NPs in tumors did not benefit from the abundant tumor vessels. Moreover, spatial-selective metabolic changes upon NPs mediated photodynamic therapy was identified, which enables understanding of the NPs induced apoptosis in the process of cancer therapy. This strategy allows us to simultaneously detect exogenous nanomaterials and endogenous metabolites in situ, hence to decipher spatial selective metabolic changes in drug delivery and cancer therapy processes.
Collapse
Affiliation(s)
- Junyu Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Liucheng Mao
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yuming Jiang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Huihui Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiao Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Lingwei Meng
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Qiuyao Du
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Jing Han
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Liuying He
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Hongye Huang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yawei Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Caiqiao Xiong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yen Wei
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zongxiu Nie
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100190, China
- College of Chemical Engineering, Jiujiang University, Jiujiang, Jiangxi 332005, China
| |
Collapse
|
47
|
An Early and Sustained Inflammatory State Induces Muscle Changes and Establishes Obesogenic Characteristics in Wistar Rats Exposed to the MSG-Induced Obesity Model. Int J Mol Sci 2023; 24:ijms24054730. [PMID: 36902158 PMCID: PMC10003260 DOI: 10.3390/ijms24054730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 03/05/2023] Open
Abstract
The model of obesity induced by monosodium glutamate cytotoxicity on the hypothalamic nuclei is widely used in the literature. However, MSG promotes persistent muscle changes and there is a significant lack of studies that seek to elucidate the mechanisms by which damage refractory to reversal is established. This study aimed to investigate the early and chronic effects of MSG induction of obesity upon systemic and muscular parameters of Wistar rats. The animals were exposed to MSG subcutaneously (4 mg·g-1 b.w.) or saline (1.25 mg·g-1 b.w.) daily from PND01 to PND05 (n = 24). Afterwards, in PND15, 12 animals were euthanized to determine the plasma and inflammatory profile and to assess muscle damage. In PND142, the remaining animals were euthanized, and samples for histological and biochemical analyses were obtained. Our results suggest that early exposure to MSG reduced growth, increased adiposity, and inducted hyperinsulinemia and a pro-inflammatory scenario. In adulthood, the following were observed: peripheral insulin resistance, increased fibrosis, oxidative distress, and a reduction in muscle mass, oxidative capacity, and neuromuscular junctions, increased fibrosis, and oxidative distress. Thus, we can conclude that the condition found in adult life and the difficulty restoring in the muscle profile is related to the metabolic damage established early on.
Collapse
|
48
|
Zheng J, Qiu G, Zhou Y, Ma K, Cui S. Hepatoprotective Effects of Taurine Against Cadmium-Induced Liver Injury in Female Mice. Biol Trace Elem Res 2023; 201:1368-1376. [PMID: 35581430 DOI: 10.1007/s12011-022-03252-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/21/2022] [Indexed: 02/07/2023]
Abstract
Cadmium (Cd), a heavy metal contaminant, seriously threatens human and animal health. Taurine (Tau) has been used against hepatotoxicity caused by different environmental toxins. However, it has not been elucidated whether Tau exerts its protective function against Cd-induced hepatotoxicity. The aim of this study was thus to evaluate the ameliorative function of Tau (500 mg/kg body weight intraperitoneally) on Cd-induced (2 mg/kg body weight intraperitoneally) liver toxicity in mice for 14 days. The histopathologic and ultrastructure changes as well as alterations in indexes related to liver function, antioxidant biomarkers, inflammatory, and apoptosis were evaluated. The results showed that Tau alleviated the vacuolar degeneration, nuclear condensation, mitochondria swelling, and cristae lysis of hepatocytes induced by Cd. In addition, Tau treatment significantly reduced the ALT, AST levels in serum, and inflammatory factor TNF-α and IL-1β in liver tissue. Furthermore, Tau treatment decreased the Bax/Bcl-2 ratio and cleaved caspase-3 protein expression levels. Taken together, these observations demonstrate that Tau has an important hepatic protective function against the inflammation and apoptosis induced by Cd.
Collapse
Affiliation(s)
- Jiaming Zheng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Guobin Qiu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Yewen Zhou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Kezhe Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Sheng Cui
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China.
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, People's Republic of China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China.
| |
Collapse
|
49
|
Fontana F, Longhi G, Tarracchini C, Mancabelli L, Lugli GA, Alessandri G, Turroni F, Milani C, Ventura M. The human gut microbiome of athletes: metagenomic and metabolic insights. MICROBIOME 2023; 11:27. [PMID: 36782241 PMCID: PMC9926762 DOI: 10.1186/s40168-023-01470-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 01/18/2023] [Indexed: 05/14/2023]
Abstract
BACKGROUND The correlation between the physical performance of athletes and their gut microbiota has become of growing interest in the past years, since new evidences have emerged regarding the importance of the gut microbiota as a main driver of the health status of athletes. In addition, it has been postulated that the metabolic activity of the microbial population harbored by the large intestine of athletes might influence their physical performances. Here, we analyzed 418 publicly available shotgun metagenomics datasets obtained from fecal samples of healthy athletes and healthy sedentary adults. RESULTS This study evidenced how agonistic physical activity and related lifestyle can be associated with the modulation of the gut microbiota composition, inducing modifications of the taxonomic profiles with an enhancement of gut microbes able to produce short-fatty acid (SCFAs). In addition, our analyses revealed a correlation between specific bacterial species and high impact biological synthases (HIBSs) responsible for the generation of a range of microbially driven compounds such vitamin B12, amino acidic derivatives, and other molecules linked to cardiovascular and age-related health-risk reduction. CONCLUSIONS Notably, our findings show how subsist an association between competitive athletes, and modulation of the gut microbiota, and how this modulation is reflected in the potential production of microbial metabolites that can lead to beneficial effects on human physical performance and health conditions. Video Abstract.
Collapse
Affiliation(s)
- Federico Fontana
- Department of Chemistry, Life Sciences, and Environmental Sustainability, Laboratory of Probiogenomics, University of Parma, Parco Area Delle Scienze 11a, 43124, Parma, Italy
- GenProbio Srl, Parma, Italy
| | - Giulia Longhi
- Department of Chemistry, Life Sciences, and Environmental Sustainability, Laboratory of Probiogenomics, University of Parma, Parco Area Delle Scienze 11a, 43124, Parma, Italy
- GenProbio Srl, Parma, Italy
| | - Chiara Tarracchini
- Department of Chemistry, Life Sciences, and Environmental Sustainability, Laboratory of Probiogenomics, University of Parma, Parco Area Delle Scienze 11a, 43124, Parma, Italy
| | - Leonardo Mancabelli
- Department of Chemistry, Life Sciences, and Environmental Sustainability, Laboratory of Probiogenomics, University of Parma, Parco Area Delle Scienze 11a, 43124, Parma, Italy
| | - Gabriele Andrea Lugli
- Department of Chemistry, Life Sciences, and Environmental Sustainability, Laboratory of Probiogenomics, University of Parma, Parco Area Delle Scienze 11a, 43124, Parma, Italy
| | - Giulia Alessandri
- Department of Chemistry, Life Sciences, and Environmental Sustainability, Laboratory of Probiogenomics, University of Parma, Parco Area Delle Scienze 11a, 43124, Parma, Italy
| | - Francesca Turroni
- Department of Chemistry, Life Sciences, and Environmental Sustainability, Laboratory of Probiogenomics, University of Parma, Parco Area Delle Scienze 11a, 43124, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Christian Milani
- Department of Chemistry, Life Sciences, and Environmental Sustainability, Laboratory of Probiogenomics, University of Parma, Parco Area Delle Scienze 11a, 43124, Parma, Italy.
- Microbiome Research Hub, University of Parma, Parma, Italy.
| | - Marco Ventura
- Department of Chemistry, Life Sciences, and Environmental Sustainability, Laboratory of Probiogenomics, University of Parma, Parco Area Delle Scienze 11a, 43124, Parma, Italy.
- Microbiome Research Hub, University of Parma, Parma, Italy.
| |
Collapse
|
50
|
Zhang G, Ma F, Zhang Z, Qi Z, Luo M, Yu Y. Associated long-term effects of decabromodiphenyl ethane on the gut microbial profiles and metabolic homeostasis in Sprague-Dawley rat offspring. ENVIRONMENT INTERNATIONAL 2023; 172:107802. [PMID: 36764182 DOI: 10.1016/j.envint.2023.107802] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/29/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Decabromodiphenyl ethane (DBDPE) as a widely used brominated flame retardant is harmful to human health due to its toxicity, including cardiovascular toxicity, reproductive toxicity, and hepatotoxicity. However, the knowledge of the long-term effects and structural and metabolic function influence on gut microbiota from DBDPE exposure remains limited. This study was mainly aimed at the gut microbiome and fecal metabolome of female rats and their offspring exposed to DBDPE in early life. 16S rRNA gene sequencing demonstrated that maternal DBDPE exposure could increase the α-diversity of gut microbiota in immature offspring while decreasing the abundance of Bifidobacterium, Clostridium, Muribaculum, Escherichia, and Lactobacillus in adult offspring. The nonmetric multidimensional scaling showed a consistency in the alternation of β-diversity between pregnant rats and their adult offspring. Furthermore, the short-chain fatty acids produced by gut microbiota dramatically increased in adult offspring after maternal DBDPE exposure, revealing that DBDPE treatment disrupted the gut microbial compositions and altered the gut community's metabolic functions. Untargeted metabolomics identified 41 differential metabolites and seven metabolic pathways between adult offspring from various groups. Targeted metabolomic showed that maternal high dose DBDPE exposure obviously decreased the level of glutathione, taurine, and l-carnitine in their adult offspring, which verified the correlation between weight loss and amino acid metabolites. An interesting link between some gut bacteria (especially the Firmicutes) and fecal metabolites demonstrated the shifts in gut microbiota may drive the metabolic process of fecal metabolites. The current findings provide new insight into long-term effects on human health.
Collapse
Affiliation(s)
- Guoxia Zhang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Environmental Health, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| | - Fengmin Ma
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Environmental Health, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Ziwei Zhang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Zenghua Qi
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Meiqiong Luo
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yingxin Yu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|