1
|
Guardiola-Diaz HM, DiBenedictis BT, Prendaj E, Bansal R. Diverse Responses of Oligodendrocytes to Different FGF-Family Members: Uncoupling Structure-Function Relationship Within FGF Subfamilies. ASN Neuro 2024; 16:2371163. [PMID: 39024549 PMCID: PMC11262039 DOI: 10.1080/17590914.2024.2371163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/01/2024] [Indexed: 07/20/2024] Open
Abstract
The fifteen canonical paracrine fibroblast growth factors (FGFs) are organized in five subfamilies that interact with four FGF-receptors (FGFRs) and heparan sulfate proteoglycan (HSPG) co-receptors. Many of these FGFs are expressed in CNS regions where oligodendrocyte (OL) progenitors originate, migrate or differentiate. FGF2 (basic FGF) is considered a prototype FGF and the information about the effects of FGF signaling on OL-lineage cells has evolved largely from the study of FGF2. However, other FGFs from four subfamilies ((FGF1 (FGF1,-2), FGF4 (FGF4,-5,-6), FGF8 (FGF8,-17,-18) and FGF9 (FGF9,-16,-20)) that can interact with the isoforms of FGFRs expressed in OL-lineage cells may also play important roles. We previously reported OL-responses to FGF8 family members. Here, we investigate the effects of members of the FGF1,-4, and -9 subfamilies on proliferation and differentiation of OL progenitors (OPCs), and on cell cycle re-entry and down-regulation of myelin proteins by mature OLs. We found that while FGF2 induced all these responses strongly, FGF4,-6,-9 could do so only transiently and in the presence of exogenous HSPGs, and that FGF5,-16,-20 could not do so even in the presence of heparin or at higher concentrations. Furthermore, we noted that structurally similar FGFs within subfamilies did not always show similarities in their biological effects on OL-lineage cells. Taken together, these studies reveal that FGFs differ in the way they regulate the OL-lineage cells, emphasizes the selectivity and importance of HSPGs as FGF co-receptors in OL-lineage cells and suggests that structural similarity among FGF-subfamily members may not always predict their overlapping biological functions.
Collapse
Affiliation(s)
- Hebe M Guardiola-Diaz
- Department of Biology and Neuroscience Program, Trinity College, Hartford, Connecticut, USA
| | - Brett T DiBenedictis
- Department of Neuroscience, University of Connecticut Medical School, Farmington, Connecticut, USA
| | - Erealda Prendaj
- Department of Neuroscience, University of Connecticut Medical School, Farmington, Connecticut, USA
| | - Rashmi Bansal
- Department of Neuroscience, University of Connecticut Medical School, Farmington, Connecticut, USA
| |
Collapse
|
2
|
Bayraktutar BN, Atocha V, Farhad K, Soto O, Hamrah P. Autoantibodies Against Trisulfated Heparin Disaccharide and Fibroblast Growth Factor Receptor-3 May Play a Role in the Pathogenesis of Neuropathic Corneal Pain. Cornea 2023; 42:821-828. [PMID: 36256257 PMCID: PMC10106522 DOI: 10.1097/ico.0000000000003142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/29/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE The aim of this study was to describe cases of patients with presumable dysimmune small-fiber neuropathy (SFN)-related neuropathic corneal pain (NCP), presenting with autoantibodies against trisulfated heparin disaccharide (TS-HDS) or fibroblast growth factor receptor-3 (FGFR-3). METHODS This study was a case series of 3 patients with NCP with positive anti-TS-HDS and/or anti-FGFR-3 autoantibodies and systemic SFN as confirmed by positive skin biopsy results. RESULTS All 3 patients were women with a mean age of 34.3± 6.1 years. They suffered from moderate to severe persistent chronic ocular discomfort (10/10, 10/10, and 9/10 on a visual analogue scale, respectively). Although 1 patient suffered from ocular pain and photophobia alone, the other 2 patients experienced additional non-ocular pain. One of the patients had pain on her face and head, and 1 patient reported neck and lower back pain. Two patients had high anti-TS-HDS IgM titers, whereas 1 patient had both high anti-TS-HDS IgM and anti-FGFR-3 IgG titers. Skin biopsy confirmed the presence of SFN in all patients by demonstrating decreased intraepidermal nerve fiber density. CONCLUSIONS The presence of anti-TS-HDS and anti-FGFR-3 autoantibodies in patients with NCP with positive skin biopsy findings for SFN highlights the potential role of dysimmune SFN in the pathogenesis of this disease.
Collapse
Affiliation(s)
- Betul N. Bayraktutar
- Cornea Service, New England Eye Center, Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
- Center for Translational Ocular Immunology, Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Vanessa Atocha
- Cornea Service, New England Eye Center, Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Khosro Farhad
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Oscar Soto
- Department of Neurology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Pedram Hamrah
- Cornea Service, New England Eye Center, Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
- Center for Translational Ocular Immunology, Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
3
|
Kumar R, Tang Q, Müller SA, Gao P, Mahlstedt D, Zampagni S, Tan Y, Klingl A, Bötzel K, Lichtenthaler SF, Höglinger GU, Koeglsperger T. Fibroblast Growth Factor 2-Mediated Regulation of Neuronal Exosome Release Depends on VAMP3/Cellubrevin in Hippocampal Neurons. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1902372. [PMID: 32195080 PMCID: PMC7080514 DOI: 10.1002/advs.201902372] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/11/2019] [Indexed: 05/06/2023]
Abstract
Extracellular vesicles (EVs) are endogenous membrane-derived vesicles that shuttle bioactive molecules between glia and neurons, thereby promoting neuronal survival and plasticity in the central nervous system (CNS) and contributing to neurodegenerative conditions. Although EVs hold great potential as CNS theranostic nanocarriers, the specific molecular factors that regulate neuronal EV uptake and release are currently unknown. A combination of patch-clamp electrophysiology and pH-sensitive dye imaging is used to examine stimulus-evoked EV release in individual neurons in real time. Whereas spontaneous electrical activity and the application of a high-frequency stimulus induce a slow and prolonged fusion of multivesicular bodies (MVBs) with the plasma membrane (PM) in a subset of cells, the neurotrophic factor basic fibroblast growth factor (bFGF) greatly increases the rate of stimulus-evoked MVB-PM fusion events and, consequently, the abundance of EVs in the culture medium. Proteomic analysis of neuronal EVs demonstrates bFGF increases the abundance of the v-SNARE vesicle-associated membrane protein 3 (VAMP3, cellubrevin) on EVs. Conversely, knocking-down VAMP3 in cultured neurons attenuates the effect of bFGF on EV release. The results determine the temporal characteristics of MVB-PM fusion in hippocampal neurons and reveal a new function for bFGF signaling in controlling neuronal EV release.
Collapse
Affiliation(s)
- Rohit Kumar
- Department of Translational NeurodegenerationGerman Centre for Neurodegenerative DiseasesFeodor‐Lynen‐Str. 1781377MunichGermany
- Department of NeurologyLudwig Maximilian UniversityMarchioninistr. 1581377MunichGermany
- Graduate Program for Experimental MedicineFaculty of MedicineTechnical University of MunichIsmaninger Straße 2281675MünchenGermany
| | - Qilin Tang
- Department of Translational NeurodegenerationGerman Centre for Neurodegenerative DiseasesFeodor‐Lynen‐Str. 1781377MunichGermany
- Department of NeurologyLudwig Maximilian UniversityMarchioninistr. 1581377MunichGermany
| | - Stephan A. Müller
- Department of NeuroproteomicsGerman Centre for Neurodegenerative DiseasesFeodor‐Lynen‐Str. 1781377MunichGermany
| | - Pan Gao
- Department of Translational NeurodegenerationGerman Centre for Neurodegenerative DiseasesFeodor‐Lynen‐Str. 1781377MunichGermany
| | - Diana Mahlstedt
- Department of Translational NeurodegenerationGerman Centre for Neurodegenerative DiseasesFeodor‐Lynen‐Str. 1781377MunichGermany
- Graduate Program for Experimental MedicineFaculty of MedicineTechnical University of MunichIsmaninger Straße 2281675MünchenGermany
| | - Sofia Zampagni
- Department of Translational NeurodegenerationGerman Centre for Neurodegenerative DiseasesFeodor‐Lynen‐Str. 1781377MunichGermany
| | - Yi Tan
- Department of Translational NeurodegenerationGerman Centre for Neurodegenerative DiseasesFeodor‐Lynen‐Str. 1781377MunichGermany
- Graduate Program for Experimental MedicineFaculty of MedicineTechnical University of MunichIsmaninger Straße 2281675MünchenGermany
| | - Andreas Klingl
- Plant Development and Electron MicroscopyDepartment of Biology IBiocenterLudwig Maximilian UniversityGroßhaderner Str. 282152Planegg‐MartinsriedGermany
| | - Kai Bötzel
- Department of NeurologyLudwig Maximilian UniversityMarchioninistr. 1581377MunichGermany
| | - Stefan F. Lichtenthaler
- Department of NeuroproteomicsGerman Centre for Neurodegenerative DiseasesFeodor‐Lynen‐Str. 1781377MunichGermany
- NeuroproteomicsKlinikum rechts der IsarInstitute for Advanced StudyTechnical University of MunichIsmaninger Straße 2281675MunichGermany
| | - Günter U. Höglinger
- Department of Translational NeurodegenerationGerman Centre for Neurodegenerative DiseasesFeodor‐Lynen‐Str. 1781377MunichGermany
- Department of Neurology (OE 7210)Hannover Medical SchoolCarl‐Neuberg‐Str. 130625HannoverGermany
- Department of NeurologyTechnical University of MunichIsmaninger Str. 2281675MunichGermany
| | - Thomas Koeglsperger
- Department of Translational NeurodegenerationGerman Centre for Neurodegenerative DiseasesFeodor‐Lynen‐Str. 1781377MunichGermany
- Department of NeurologyLudwig Maximilian UniversityMarchioninistr. 1581377MunichGermany
| |
Collapse
|
4
|
Marathe SV, D'almeida PL, Virmani G, Bathini P, Alberi L. Effects of Monoamines and Antidepressants on Astrocyte Physiology: Implications for Monoamine Hypothesis of Depression. J Exp Neurosci 2018; 12:1179069518789149. [PMID: 30046253 PMCID: PMC6056786 DOI: 10.1177/1179069518789149] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/19/2018] [Indexed: 01/17/2023] Open
Abstract
Major depressive disorder (MDD) is one of the most common neuropsychiatric
disorders affecting over one-fifth of the population worldwide. Owing to our
limited understanding of the pathophysiology of MDD, the quest for finding novel
antidepressant drug targets is severely impeded. Monoamine hypothesis of MDD
provides a robust theoretical framework, forming the core of a large jigsaw
puzzle, around which we must look for the vital missing pieces. Growing evidence
suggests that the glial loss observed in key regions of the limbic system in
depressed patients, at least partly, accounts for the structural and cognitive
manifestations of MDD. Studies in animal models have subsequently hinted at the
possibility that the glial atrophy may play a causative role in the
precipitation of depressive symptoms. Antidepressants as well as monoamine
neurotransmitters exert profound effects on the gene expression and metabolism
in astrocytes. This raises an intriguing possibility that the astrocytes may
play a central role alongside neurons in the behavioral effects of
antidepressant drugs. In this article, we discuss the gene expression and
metabolic changes brought about by antidepressants in astrocytes, which could be
of relevance to synaptic plasticity and behavioral effects of antidepressant
treatments.
Collapse
Affiliation(s)
| | | | - Garima Virmani
- Centre for Neuroscience, Indian Institute of Science, Bangalore, India
| | - Praveen Bathini
- Department of Medicine University of Fribourg, Fribourg, Switzerland.,Swiss Integrative Center for Human Health SA (SICHH), Fribourg, Switzerland
| | - Lavinia Alberi
- Department of Medicine University of Fribourg, Fribourg, Switzerland.,Swiss Integrative Center for Human Health SA (SICHH), Fribourg, Switzerland
| |
Collapse
|
5
|
Ito K, Ohkawara B, Yagi H, Nakashima H, Tsushima M, Ota K, Konishi H, Masuda A, Imagama S, Kiyama H, Ishiguro N, Ohno K. Lack of Fgf18 causes abnormal clustering of motor nerve terminals at the neuromuscular junction with reduced acetylcholine receptor clusters. Sci Rep 2018; 8:434. [PMID: 29323161 PMCID: PMC5765005 DOI: 10.1038/s41598-017-18753-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 12/18/2017] [Indexed: 01/29/2023] Open
Abstract
FGF receptor 2 is involved in the formation of the neuromuscular junction (NMJ), but its in vivo ligand remains to be determined. Laser capture microdissection of the mouse spinal motor neurons (SMNs) revealed that Fgf18 mRNA is highly expressed in SMNs in adults. Expression of Fgf18 mRNA was the highest in the spinal cord at embryonic day (E) 15.5, which gradually decreased to postnatal day 7. FGF18 protein was localized at the NMJs of the tibialis anterior muscle at E18.5 and in adults. Fgf18−/− mice at E18.5 showed decreased expressions of the NMJ-specific Chrne and Colq genes in the diaphragm. In Fgf18−/− diaphragms, the synaptophysin-positive areas at the nerve terminals and the acetylcholine receptor (AChR)-positive areas at the motor endplates were both approximately one-third of those in wild-type embryos. Fgf18−/− diaphragms ultrastructurally showed abnormal aggregation of multiple nerve terminals making a gigantic presynapse with sparse synaptic vesicles, and simplified motor endplates. In Fgf18−/− diaphragms, miniature endplate potentials were low in amplitude with markedly reduced frequency. In C2C12 myotubes, FGF18 enhanced AChR clustering, which was blocked by inhibiting FGFRs or MEK1. We propose that FGF18 plays a pivotal role in AChR clustering and NMJ formation in mouse embryogenesis.
Collapse
Affiliation(s)
- Kenyu Ito
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Departments of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Bisei Ohkawara
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hideki Yagi
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Departments of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroaki Nakashima
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Departments of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mikito Tsushima
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Departments of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kyotaro Ota
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Departments of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroyuki Konishi
- Departments of Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akio Masuda
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shiro Imagama
- Departments of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi Kiyama
- Departments of Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Naoki Ishiguro
- Departments of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| |
Collapse
|
6
|
Araújo MR, Kyrylenko S, Spejo AB, Castro MV, Ferreira Junior RS, Barraviera B, Oliveira ALR. Transgenic human embryonic stem cells overexpressing FGF2 stimulate neuroprotection following spinal cord ventral root avulsion. Exp Neurol 2017; 294:45-57. [PMID: 28450050 DOI: 10.1016/j.expneurol.2017.04.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 04/19/2017] [Accepted: 04/22/2017] [Indexed: 12/11/2022]
Abstract
Ventral root avulsion (VRA) triggers a strong glial reaction which contributes to neuronal loss, as well as to synaptic detachment. To overcome the degenerative effects of VRA, treatments with neurotrophic factors and stem cells have been proposed. Thus, we investigated neuroprotection elicited by human embryonic stem cells (hESC), modified to overexpress a human fibroblast growth factor 2 (FGF-2), on motoneurons subjected to VRA. Lewis rats were submitted to VRA (L4-L6) and hESC/FGF-2 were applied to the injury site using a fibrin scaffold. The spinal cords were processed to evaluate neuronal survival, synaptic stability, and glial reactivity two weeks post lesion. Then, qRT-PCR was used to assess gene expression of β2-microglobulin (β2m), TNFα, IL1β, IL6 and IL10 in the spinal cord in vivo and FGF2 mRNA levels in hESC in vitro. The results indicate that hESC overexpressing FGF2 significantly rescued avulsed motoneurons, preserving synaptic covering and reducing astroglial reactivity. The cells were also shown to express BDNF and GDNF at the site of injury. Additionally, engraftment of hESC led to a significant reduction in mRNA levels of TNFα at the spinal cord ventral horn, indicating their immunomodulatory properties. Overall, the present data suggest that hESC overexpressing FGF2 are neuroprotective and can shift gene expression towards an anti-inflammatory environment.
Collapse
Affiliation(s)
- Marta Rocha Araújo
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Sao Paulo, Brazil
| | - Sergiy Kyrylenko
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Sao Paulo, Brazil; Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Aline Barroso Spejo
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Sao Paulo, Brazil
| | - Mateus Vidigal Castro
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Sao Paulo, Brazil
| | - Rui Seabra Ferreira Junior
- Department of Tropical Diseases, Botucatu Medical School, São Paulo State University (UNESP-Univ. Estadual Paulista), São Paulo State, Brazil; Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP-Univ. Estadual Paulista), São Paulo State, Brazil
| | - Benedito Barraviera
- Department of Tropical Diseases, Botucatu Medical School, São Paulo State University (UNESP-Univ. Estadual Paulista), São Paulo State, Brazil; Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP-Univ. Estadual Paulista), São Paulo State, Brazil
| | | |
Collapse
|
7
|
Yu JH, Kim M, Seo JH, Cho SR. Brain Plasticity and Neurorestoration by Environmental Enrichment. BRAIN & NEUROREHABILITATION 2016. [DOI: 10.12786/bn.2016.9.e2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Ji Hea Yu
- Department of Rehabilitation Medicine and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Korea
- Yonsei Stem Cell Center, Avison Biomedical Research Center, Seoul, Korea
| | - MinGi Kim
- Department of Rehabilitation Medicine and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Korea
| | - Jung Hwa Seo
- Department of Rehabilitation Medicine and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Korea
| | - Sung-Rae Cho
- Department of Rehabilitation Medicine and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Korea
- Yonsei Stem Cell Center, Avison Biomedical Research Center, Seoul, Korea
- Rehabilitation Institute of Neuromuscular Disease, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
8
|
Çelik Y, Atıcı A, Beydağı H, Reşitoğlu B, Yılmaz N, Ün İ, Polat A, Bağdatoğlu C, Dağtekin A, Sungur MA, Tiftik N. The effects of fibroblast growth factor-2 and pluripotent astrocytic stem cells on cognitive function in a rat model of neonatal hypoxic-ischemic brain injury. J Matern Fetal Neonatal Med 2015; 29:2199-204. [PMID: 26365220 DOI: 10.3109/14767058.2015.1080683] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE This study aimed to determine the effect of pluripotent astrocytic stem cells (PASCs) and fibroblast growth factor-2 (FGF-2) on cognitive function in neonatal rats with hypoxic-ischemic brain injury (HIBI). METHODS The study was performed on 7-d-old rats that were randomly divided into four groups. All rats, except those in the sham group, were kept in a hypoxic chamber containing 8% oxygen for 2 h after the ligation of the right carotid artery. Next, 5 d after HIBI was induced, PASCs were administered to the motor cortex, and FGF-2 was administered intraperitoneally to group AF; PASCs were administered to the motor cortex, and salt solution buffered with phosphate was administered intraperitoneally to group A; and fresh cell culture solution (medium) was administered to group M. Immunofluorescence was used to localize the administered PASCs in the brains of rats from groups A and AF. The Morris water maze tank (MWM) test was performed to assess the rats' cognitive functions at week 12. The rats that were administered PASCs were observed for the development of neoplasms and autopsies were performed after 30 months. RESULTS PASCs migrated to damaged brain regions surrounding the hippocampus in groups A and AF. The mean platform finding time (PFT) significantly decreased over time in each group on day 1-4 of MWM testing (p < 0.001). On day 2-4, the mean PFT was shortest in group S followed by group AF. In group A, the PFT was significantly longer than in group S on day 3-4 (p = 0.01 and 0.007, respectively). On day 5 of the MWM test, the time spent in the eastern quadrant (which previously contained the platform) was longest in group S followed by groups AF, A, and M; however, the differences between groups were not significant (p = 0.51). After 30 months, none of the rats in groups A or AF had benign or malignant neoplasms. CONCLUSIONS Following the administration of PASCs in rats with experimentally induced HIBI, PASCs migrated to the injured brain regions; however, treatment with PASCs did not have a positive effect on cognitive function. The administration of FGF-2 together with PASCs resulted in positive cognitive results, although not at the level of significance.
Collapse
Affiliation(s)
- Yalçın Çelik
- a Department of Neonatal Intensive Care Unit , Mersin University School of Medicine , Mersin , Turkey
| | - Aytuğ Atıcı
- b Department of Neonatal Intensive Care Unit, Faculty of Medicine , Mersin University , Mersin , Turkey
| | - Hüseyin Beydağı
- c Department of Physiology, Faculty of Medicine , Mersin University Mersin , Turkey
| | - Bora Reşitoğlu
- c Department of Physiology, Faculty of Medicine , Mersin University Mersin , Turkey
| | - Necat Yılmaz
- d Department of Histology-Embryology, Faculty of Medicine , Mersin University , Mersin , Turkey
| | - İsmail Ün
- e Department of Pharmacology, Faculty of Medicine , Mersin University , Mersin , Turkey
| | - Ayşe Polat
- f Department of Pathology, Faculty of Medicine , Mersin University , Mersin , Turkey
| | - Celal Bağdatoğlu
- g Department of Neurosurgery, Faculty of Medicine , Mersin University , Mersin , Turkey , and
| | - Ahmet Dağtekin
- g Department of Neurosurgery, Faculty of Medicine , Mersin University , Mersin , Turkey , and
| | - Mehmet Ali Sungur
- h Department of Biostatistics, Faculty of Medicine , Mersin University , Mersin , Turkey
| | - Nalan Tiftik
- e Department of Pharmacology, Faculty of Medicine , Mersin University , Mersin , Turkey
| |
Collapse
|
9
|
Xie JX, Feng Y, Yuan JM, You ZD, Lin HY, Lu CL, Xu JJ. Positive effects of bFGF modified rat amniotic epithelial cells transplantation on transected rat optic nerve. PLoS One 2015; 10:e0119119. [PMID: 25734497 PMCID: PMC4347977 DOI: 10.1371/journal.pone.0119119] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 01/22/2015] [Indexed: 11/19/2022] Open
Abstract
PURPOSE Effective therapy for visual loss caused by optic nerve injury or diseases has not been achieved even though the optic nerve has the regeneration potential after injury. This study was designed to modify amniotic epithelial cells (AECs) with basic fibroblast growth factor (bFGF) gene, preliminarily investigating its effect on transected optic nerve. METHODS A human bFGF gene segment was delivered into rat AECs (AECs/hbFGF) by lentiviral vector, and the gene expression was examined by RT-PCR and ELISA. The AECs/hbFGF and untransfected rat AECs were transplanted into the transected site of the rat optic nerve. At 28 days post transplantation, the survival and migration of the transplanted cells was observed by tracking labeled cells; meanwhile retinal ganglion cells (RGCs) were observed and counted by employing biotin dextran amine (BDA) and Nissl staining. Furthermore, the expression of growth associated protein 43 (GAP-43) within the injury site was examined with immunohistochemical staining. RESULTS The AECs/hbFGF was proven to express bFGF gene and secrete bFGF peptide. Both AECs/hbFGF and AECs could survive and migrate after transplantation. RGCs counting implicated that RGCs numbers of the cell transplantation groups were significantly higher than that of the control group, and the AECs/hbFGF group was significantly higher than that of the AECs group. Moreover GAP-43 integral optical density value in the control group was significantly lower than that of the cell transplantation groups, and the value in the AECs/hbFGF group was significantly higher than that of the AECs group. CONCLUSIONS AECs modified with bFGF could reduce RGCs loss and promote expression of GAP-43 in the rat optic nerve transected model, facilitating the process of neural restoration following injury.
Collapse
Affiliation(s)
- Jia-Xin Xie
- Department of Anatomy, The Second Military Medical University, Shanghai, P. R. China
- Department of Orthopaedics, Changzheng Hospital, The Second Military Medical University, Shanghai, P. R. China
- People's Liberation Army Clinical Center for Spinal Cord Injury, Kunming General Hospital of Chengdu Military Command, Kunming, P. R. China
| | - Yu Feng
- People's Liberation Army Clinical Center for Spinal Cord Injury, Kunming General Hospital of Chengdu Military Command, Kunming, P. R. China
| | - Jian-Min Yuan
- Department of Anatomy, The Second Military Medical University, Shanghai, P. R. China
| | - Zhen-Dong You
- Department of Neurobiology, The Second Military Medical University, Shanghai, P. R. China
| | - Hai-Yan Lin
- Department of Anatomy, The Second Military Medical University, Shanghai, P. R. China
| | - Chang-Lin Lu
- Department of Neurobiology, The Second Military Medical University, Shanghai, P. R. China
| | - Jia-Jun Xu
- Department of Anatomy, The Second Military Medical University, Shanghai, P. R. China
| |
Collapse
|
10
|
Wang HW, Sun HJ, Chang TY, Lo HH, Cheng WC, Tseng GC, Lin CT, Chang SJ, Pal N, Chung IF. Discovering monotonic stemness marker genes from time-series stem cell microarray data. BMC Genomics 2015; 16 Suppl 2:S2. [PMID: 25708300 PMCID: PMC4331716 DOI: 10.1186/1471-2164-16-s2-s2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background Identification of genes with ascending or descending monotonic expression patterns over time or stages of stem cells is an important issue in time-series microarray data analysis. We propose a method named Monotonic Feature Selector (MFSelector) based on a concept of total discriminating error (DEtotal) to identify monotonic genes. MFSelector considers various time stages in stage order (i.e., Stage One vs. other stages, Stages One and Two vs. remaining stages and so on) and computes DEtotal of each gene. MFSelector can successfully identify genes with monotonic characteristics. Results We have demonstrated the effectiveness of MFSelector on two synthetic data sets and two stem cell differentiation data sets: embryonic stem cell neurogenesis (ESCN) and embryonic stem cell vasculogenesis (ESCV) data sets. We have also performed extensive quantitative comparisons of the three monotonic gene selection approaches. Some of the monotonic marker genes such as OCT4, NANOG, BLBP, discovered from the ESCN dataset exhibit consistent behavior with that reported in other studies. The role of monotonic genes found by MFSelector in either stemness or differentiation is validated using information obtained from Gene Ontology analysis and other literature. We justify and demonstrate that descending genes are involved in the proliferation or self-renewal activity of stem cells, while ascending genes are involved in differentiation of stem cells into variant cell lineages. Conclusions We have developed a novel system, easy to use even with no pre-existing knowledge, to identify gene sets with monotonic expression patterns in multi-stage as well as in time-series genomics matrices. The case studies on ESCN and ESCV have helped to get a better understanding of stemness and differentiation. The novel monotonic marker genes discovered from a data set are found to exhibit consistent behavior in another independent data set, demonstrating the utility of the proposed method. The MFSelector R function and data sets can be downloaded from: http://microarray.ym.edu.tw/tools/MFSelector/.
Collapse
|
11
|
Fields J, Dumaop W, Langford TD, Rockenstein E, Masliah E. Role of neurotrophic factor alterations in the neurodegenerative process in HIV associated neurocognitive disorders. J Neuroimmune Pharmacol 2014; 9:102-16. [PMID: 24510686 PMCID: PMC3973421 DOI: 10.1007/s11481-013-9520-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 12/26/2013] [Indexed: 12/30/2022]
Abstract
Migration of HIV infected cells into the CNS is associated with a spectrum of neurological disorders, ranging from milder forms of HIV-associated neurocognitive disorders (HAND) to HIV-associated dementia (HAD). These neuro-psychiatric syndromes are related to the neurodegenerative pathology triggered by the release of HIV proteins and cytokine/chemokines from monocytes/macrophages into the CNS -a condition known as HIV encephalitis (HIVE). As a result of more effective combined anti-retroviral therapy patients with HIV are living longer and thus the frequency of HAND has increased considerably, resulting in an overlap between the neurodegenerative pathology associated with HIV and that related to aging. In fact, HIV infection is believed to hasten the aging process. The mechanisms through which HIV and aging lead to neurodegeneration include: abnormal calcium flux, excitotoxicity, signaling abnormalities, oxidative stress and autophagy defects. Moreover, recent studies have shown that defects in the processing and transport of neurotrophic factors such as fibroblast growth factors (FGFs), neural growth factor (NGF) and brain-derived growth factor (BDNF) might also play a role. Recent evidence implicates alterations in neurotrophins in the pathogenesis of neurodegeneration associated with HAND in the context of aging. Here, we report FGF overexpression curtails gp120-induced neurotoxicity in a double transgenic mouse model. Furthermore, our data show disparities in brain neurotrophic factor levels may be exacerbated in HIV patients over 50 years of age. In this review, we discuss the most recent findings on neurotrophins and HAND in the context of developing new therapies to combat HIV infection in the aging population.
Collapse
Affiliation(s)
- Jerel Fields
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | | | | | | | | |
Collapse
|
12
|
SH2B1β interacts with STAT3 and enhances fibroblast growth factor 1-induced gene expression during neuronal differentiation. Mol Cell Biol 2014; 34:1003-19. [PMID: 24396070 DOI: 10.1128/mcb.00940-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neurite outgrowth is an essential process during neuronal differentiation as well as neuroregeneration. Thus, understanding the molecular and cellular control of neurite outgrowth will benefit patients with neurological diseases. We have previously shown that overexpression of the signaling adaptor protein SH2B1β promotes fibroblast growth factor 1 (FGF1)-induced neurite outgrowth (W. F. Lin, C. J. Chen, Y. J. Chang, S. L. Chen, I. M. Chiu, and L. Chen, Cell. Signal. 21:1060-1072, 2009). SH2B1β also undergoes nucleocytoplasmic shuttling and regulates a subset of neurotrophin-induced genes. Although these findings suggest that SH2B1β regulates gene expression, the nuclear role of SH2B1β was not known. In this study, we show that SH2B1β interacts with the transcription factor, signal transducer, and activator of transcription 3 (STAT3) in neuronal PC12 cells, cortical neurons, and COS7 fibroblasts. By affecting the subcellular distribution of STAT3, SH2B1β increased serine phosphorylation and the concomitant transcriptional activity of STAT3. As a result, overexpressing SH2B1β enhanced FGF1-induced expression of STAT3 target genes Egr1 and Cdh2. Chromatin immunoprecipitation assays further reveal that, in response to FGF1, overexpression of SH2B1β promotes the in vivo occupancy of STAT3-Sp1 heterodimers at the promoter of Egr1 and Cdh2. These findings establish a central role of SH2B1β in orchestrating signaling events to transcriptional activation through interacting and regulating STAT3-containing complexes during neuronal differentiation.
Collapse
|
13
|
Enhancement of FGF-1 release along with cytosolic proteins from rat astrocytes by hydrogen peroxide. Brain Res 2013; 1522:12-21. [DOI: 10.1016/j.brainres.2013.05.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 04/10/2013] [Accepted: 05/22/2013] [Indexed: 11/24/2022]
|
14
|
Yeh E, Fanganiello RD, Sunaga DY, Zhou X, Holmes G, Rocha KM, Alonso N, Matushita H, Wang Y, Jabs EW, Passos-Bueno MR. Novel molecular pathways elicited by mutant FGFR2 may account for brain abnormalities in Apert syndrome. PLoS One 2013; 8:e60439. [PMID: 23593218 PMCID: PMC3617104 DOI: 10.1371/journal.pone.0060439] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 02/27/2013] [Indexed: 11/18/2022] Open
Abstract
Apert syndrome (AS), the most severe form craniosynostosis, is characterized by premature fusion of coronal sutures. Approximately 70% of AS patients carry S252W gain-of-function mutation in FGFR2. Besides the cranial phenotype, brain dysmorphologies are present and are not seen in other FGFR2-asociated craniosynostosis, such as Crouzon syndrome (CS). Here, we hypothesized that S252W mutation leads not only to overstimulation of FGFR2 downstream pathway, but likewise induces novel pathological signaling. First, we profiled global gene expression of wild-type and S252W periosteal fibroblasts stimulated with FGF2 to activate FGFR2. The great majority (92%) of the differentially expressed genes (DEGs) were divergent between each group of cell populations and they were regulated by different transcription factors. We than compared gene expression profiles between AS and CS cell populations and did not observe correlations. Therefore, we show for the first time that S252W mutation in FGFR2 causes a unique cell response to FGF2 stimulation. Since our gene expression results suggested that novel signaling elicited by mutant FGFR2 might be associated with central nervous system (CNS) development and maintenance, we next investigated if DEGs found in AS cells were also altered in the CNS of an AS mouse model. Strikingly, we validated Strc (stereocilin) in newborn Fgfr2S252W/+ mouse brain. Moreover, immunostaining experiments suggest a role for endothelial cells and cerebral vasculature in the establishment of characteristic CNS dysmorphologies in AS that has not been proposed by previous literature. Our approach thus led to the identification of new target genes directly or indirectly associated with FGFR2 which are contributing to the pathophysiology of AS.
Collapse
Affiliation(s)
- Erika Yeh
- Human Genome Center, Department of Genetics and Evolutive Biology, Institute of Bioscience, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Roberto D. Fanganiello
- Human Genome Center, Department of Genetics and Evolutive Biology, Institute of Bioscience, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Daniele Y. Sunaga
- Human Genome Center, Department of Genetics and Evolutive Biology, Institute of Bioscience, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Xueyan Zhou
- Department of Genetics and Genomic Sciences, The Mount Sinai Medical Center, New York, New York, United States of America
| | - Gregory Holmes
- Department of Genetics and Genomic Sciences, The Mount Sinai Medical Center, New York, New York, United States of America
| | - Katia M. Rocha
- Human Genome Center, Department of Genetics and Evolutive Biology, Institute of Bioscience, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Nivaldo Alonso
- Department of Plastic Surgery, Faculty of Medicine, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Hamilton Matushita
- Department of Neurology, Faculty of Medicine, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Yingli Wang
- Department of Genetics and Genomic Sciences, The Mount Sinai Medical Center, New York, New York, United States of America
| | - Ethylin W. Jabs
- Department of Genetics and Genomic Sciences, The Mount Sinai Medical Center, New York, New York, United States of America
| | - Maria Rita Passos-Bueno
- Human Genome Center, Department of Genetics and Evolutive Biology, Institute of Bioscience, University of Sao Paulo, Sao Paulo, SP, Brazil
- * E-mail:
| |
Collapse
|
15
|
Geisbauer CL, Wu BM, Dunn JCY. Transplantation of enteric cells into the aganglionic rodent small intestines. J Surg Res 2011; 176:20-8. [PMID: 21704327 DOI: 10.1016/j.jss.2011.05.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 05/09/2011] [Accepted: 05/10/2011] [Indexed: 01/27/2023]
Abstract
BACKGROUND Enteric cells, a mixture of cells isolated from the longitudinal and circular muscle of the gut, may contain neural crest stem cells (NCSCs) and therefore may be a potential source to regenerate the enteric nervous system. MATERIALS AND METHODS Benzylalkonium chloride (BAC) was employed to ablate the myenteric and submucosal plexi of the rodent jejunum. Enteric cells were then injected into this BAC-treated segment of the jejunum either with or without basic fibroblast growth factor (bFGF) mixed in collagen. RESULTS Expression of peripherin, S100, and synaptophysin were found in all of the cell injection sites. Peripherin and S100 expression appeared in close proximity in ganglion-like structures when bFGF was injected simultaneously with enteric cells. Synapses that were formed in the presence of bFGF were elongated compared with those formed in the absence of exogenously delivered bFGF. A small percentage of enteric cells expressed peripherin in the injection site after transplantation. CONCLUSIONS Enteric cells transplanted with collagen and bFGF in an aganglionic segment of jejunum regenerated ganglion-like structures and may hold potential as a cellular therapeutic for various motility disorders of the gastrointestinal tract.
Collapse
Affiliation(s)
- Carrie L Geisbauer
- Biomedical Engineering Interdepartmental Program, University of California, Los Angeles, California 90095-7098, USA
| | | | | |
Collapse
|
16
|
Yoo KY, Hwang IK, Lee CH, Choi JH, Kwon SH, Kang IJ, You SG, Kim YM, Won MH. Difference of fibroblast growth factor receptor 1 expression among CA1-3 regions of the gerbil hippocampus after transient cerebral ischemia. J Neurol Sci 2010; 296:13-21. [PMID: 20621308 DOI: 10.1016/j.jns.2010.06.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 06/16/2010] [Accepted: 06/17/2010] [Indexed: 12/17/2022]
Abstract
Fibroblast growth factors are important regulators of neuronal development. In this study, we observed fibroblast growth factor receptor 1 (FGFR1) immunoreactivity and its protein levels in the hippocampus proper (CA1-3 regions) of the gerbil at various time points after ischemia/reperfusion. In the sham-operated group, FGFR1 immunoreaction was not detected in the hippocampus proper. FGFR1 immunoreaction was first detected in non-pyramidal neurons in the CA1-3 region at 12h and 1day after ischemia/reperfusion. From 2days after ischemia/reperfusion, FGFR1 immunoreaction was found in astrocytes, not in microglial cells, in the CA1 region: FGFR1 immunoreactivity and the number of astrocytes were significantly increased at 5days post-ischemia. Western blot analysis revealed that FGFR1 protein levels were also increased from 1day after ischemia/reperfusion. These results indicate that increase of FGFR1 in astrocytes of the ischemic CA1 region may be associated with gliosis followed by delayed neuronal death.
Collapse
Affiliation(s)
- Ki-Yeon Yoo
- Department of Anatomy and Neurobiology, and Institute of Neurodegeneration and Neuroregeneration, College of Medicine, Hallym University, Chuncheon 200-702, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Zechel S, Werner S, Unsicker K, von Bohlen und Halbach O. Expression and Functions of Fibroblast Growth Factor 2 (FGF-2) in Hippocampal Formation. Neuroscientist 2010; 16:357-73. [DOI: 10.1177/1073858410371513] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Among the 23 members of the fibroblast growth factor (FGF) family, FGF-2 is the most abundant one in the central nervous system. Its impact on neural cells has been profoundly investigated by in vitro and in vivo studies as well as by gene knockout analyses during the past 2 decades. Key functions of FGF-2 in the nervous system include roles in neurogenesis, promotion of axonal growth, differentiation in development, and maintenance and plasticity in adulthood. From a clinical perspective, its prominent role for the maintenance of lesioned neurons (e.g., ischemia and following transection of fiber tracts) is of particular relevance. In the unlesioned brain, FGF-2 is involved in synaptic plasticity and processes attributed to learning and memory. The focus of this review is on the expression of FGF-2 and its receptors in the hippocampal formation and the physiological and pathophysiological roles of FGF-2 in this region during development and adulthood.
Collapse
Affiliation(s)
- Sabrina Zechel
- Division of Molecular Neurobiology, Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Sandra Werner
- Department of Molecular Embryology, Institute of Anatomy & Cell Biology, University of Freiburg, Freiburg, Germany
| | - Klaus Unsicker
- Department of Molecular Embryology, Institute of Anatomy & Cell Biology, University of Freiburg, Freiburg, Germany
| | | |
Collapse
|
18
|
Yurek DM, Fletcher AM, Peters LE, Cass WA. Strain difference in the up-regulation of FGF-2 protein following a neurotoxic lesion of the nigrostriatal pathway. Neurochem Res 2010; 35:531-9. [PMID: 19921430 PMCID: PMC3032212 DOI: 10.1007/s11064-009-0093-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2009] [Indexed: 10/20/2022]
Abstract
Lesions of the nigrostriatal pathway are known to induce a compensatory up-regulation of various neurotrophic factors. In this study we examined protein content of basic fibroblast growth factor (FGF-2) in tissue samples taken from the ventral midbrain and striatum at two different time points following a neurotoxic lesion of the nigrostriatal pathway in two different rat strains, the outbred Sprague-Dawley (SD) and inbred F344 9 Brown Norway F1 hybrid (F344BNF1). Despite both rat strains having comparable lesions of the nigrostriatal pathway, we observed a difference in the temporal up-regulation of FGF-2 in ventral midbrain samples taken from the side ipsilateral to the lesion. Basic FGF was significantly upregulated in ventral midbrain in SD rats 1 week post-lesion while we did not observe an up-regulation of FGF-2 in the lesioned ventral midbrain of F344BNF1 at this same time point. However, both strains showed a significant up-regulation of FGF-2 in the lesioned ventral midbrain 3 weeks post-lesion. Sprague-Dawley rats also appeared to be more sensitive to the lesion in terms of up-regulating FGF-2 expression. The differences reported here suggest currently unknown genetic differences between these two strains may be important factors for regulating the compensatory release of neurotrophic factors, such as FGF-2, in response to a neurotoxic lesion of the nigrostriatal pathway.
Collapse
Affiliation(s)
- David M Yurek
- Department of Neurosurgery, University of Kentucky College of Medicine, Lexington, KY 40536-0305, USA.
| | | | | | | |
Collapse
|
19
|
Bian JT, Zhao HL, Zhang ZX, Bi XH, Zhang JW. No association of the C>T polymorphism that is located 1385 upstream from initial code of fibroblast growth factor 1 gene with Alzheimer's disease in Chinese. Brain Res 2010; 1328:113-7. [DOI: 10.1016/j.brainres.2010.03.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 03/08/2010] [Accepted: 03/09/2010] [Indexed: 10/19/2022]
|
20
|
Manfè V, Kochoyan A, Bock E, Berezin V. Peptides derived from specific interaction sites of the fibroblast growth factor 2-FGF receptor complexes induce receptor activation and signaling. J Neurochem 2010; 114:74-86. [PMID: 20374425 DOI: 10.1111/j.1471-4159.2010.06718.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Basic fibroblast growth factor (FGF2, bFGF) is the most extensively studied member of the FGF family and is involved in neurogenesis, differentiation, neuroprotection, and synaptic plasticity in the CNS. FGF2 executes its pleiotropic biologic actions by binding, dimerizing, and activating FGF receptors (FGFRs). The present study reports the physiologic impact of various FGF2-FGFR1 contact sites employing three different synthetic peptides, termed canofins, designed based on structural analysis of the interactions between FGF2 and FGFR1. Canofins mimic the cognate ligand interaction with the receptor and preserve the neuritogenic and neuroprotective properties of FGF2. Canofins were shown by surface plasmon resonance analysis to bind to FGFR1 and promote receptor activation. However, FGF2-induced receptor phosphorylation was inhibited by canofins, indicating that canofins are partial FGFR agonists. Furthermore, canofins were demonstrated to induce neuronal differentiation determined by neurite outgrowth from cerebellar granule neurons, and this effect was dependent on FGFR activation. Additionally, canofins acted as neuroprotectants, promoting survival of cerebellar granule neurons induced to undergo apoptosis. Our results suggest that canofins mirror the effect of specific interaction sites in FGF2 for FGFR. Thus, canofins are valuable pharmacological tools to study the functional roles of specific molecular interactions of FGF2 with FGFR.
Collapse
Affiliation(s)
- Valentina Manfè
- The Protein Laboratory, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen DK-2200, Denmark
| | | | | | | |
Collapse
|
21
|
Feng X, Zhang B, Wang J, Xu X, Lin N, Liu H. Adenovirus-mediated transfer of siRNA against basic fibroblast growth factor mRNA enhances the sensitivity of glioblastoma cells to chemotherapy. Med Oncol 2010; 28:24-30. [DOI: 10.1007/s12032-010-9445-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 01/29/2010] [Indexed: 11/30/2022]
|
22
|
Zhang B, Feng X, Wang J, Xu X, Liu H, Lin N. Adenovirus-mediated delivery of bFGF small interfering RNA increases levels of connexin 43 in the glioma cell line, U251. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2010; 29:3. [PMID: 20074329 PMCID: PMC2830951 DOI: 10.1186/1756-9966-29-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Accepted: 01/14/2010] [Indexed: 11/10/2022]
Abstract
BACKGROUND bFGF is an important growth factor for glioma cell proliferation and invasion, while connexin 43 is implicated in the suppression of glioma growth. Correspondingly, gliomas have been shown to have reduced, or compromised, connexin 43 expression. METHODS In this study, a bFGF-targeted siRNA was delivered to the glioma cell line, U251, using adenovirus (Ad-bFGF-siRNA) and the expression of connexin 43 and its phosphorylation state were evaluated. U251 cells were infected with Ad-bFGF-siRNA (100, 50, or 25 MOI), and infection with adenovirus expressing green fluorescent protein (Ad-GFP) at 100 MOI served as a control. Western blotting and immunofluorescence were used to detect the expression levels, phosphorylation, and localization of connexin 43 in U251 cells infected, and not infected, with Ad-bFGF-siRNA. RESULTS Significantly higher levels of connexin 43 were detected in U251 cells infected with Ad-bFGF-siRNA at 100 and 50 MOI than in cells infected with Ad-GFP, and the same amount of connexin 43 was detected in Ad-GFP-infected and uninfected U251 cells. Connexin 43 phosphorylation did not differ between Ad-bFGF-siRNA-infected and uninfected U251 cells. However, the ratio of phosphorylated to unphosphorylated connexin 43 in Ad-bFGF-siRNA cells was lower, and connexin 43 was predominantly localized to the cytoplasm. Using a scrape loading dye transfer assay, more Lucifer Yellow was transferred to neighboring cells in the Ad-bFGF-siRNA treated group than in the control group. CONCLUSION To our knowledge, this is the first description of a role for connexin 43 in the inhibition of U251 growth using Ad-bFGF-siRNA.
Collapse
Affiliation(s)
- Biao Zhang
- Key Lab for Critical Care Medicine of the Ministry of Health, Affiliated Tianjin First Center Hospital, Tianjin Medical University, Tianjin, 300192, China
| | | | | | | | | | | |
Collapse
|
23
|
Abstract
Human postmortem studies have demonstrated that fibroblast growth factor-2 (FGF2) expression is decreased in the brain of depressed individuals. It remained unclear, however, whether this is a consequence of the illness or whether FGF2 plays a primary role in the control of mood and emotions. In this series of studies, we first ask whether endogenous FGF2 expression correlates with spontaneous anxiety, a trait associated with vulnerability to severe mood disorders in humans. This is tested in two genetically distinct groups of rats selectively bred to differ dramatically in their response to novelty and anxiety-provoking conditions (HRs = low anxiety/high response to novelty vs LRs = high anxiety/low response to novelty). We demonstrate that high-anxiety LRs have significantly lower levels of hippocampal FGF2 mRNA relative to low-anxiety HRs. We then demonstrate that FGF2 expression is modifiable by environmental factors that alter anxiety--thus, environmental complexity reduces anxiety behavior and induces FGF2 expression in hippocampus, particularly in high-anxiety LRs. Finally, we directly test the role of FGF2 as an anxiolytic and show that a 3 week treatment regimen of peripherally administered FGF2 is highly effective at blunting anxiety behavior, specifically in high-anxiety LRs. This treatment is accompanied by an increase in survival of adult-born hippocampal cells, both neurons and astrocytes, most clearly in LRs. These findings implicate hippocampal FGF2 as a central integrator of genetic and environmental factors that modify anxiety, point to hippocampal neurogenesis and gliogenesis as key in this modulation, and underscore FGF2's potential as a new target for treatment of depression and anxiety disorders.
Collapse
|
24
|
Abstract
Brain tumour stem cells (BTSCs) are a small population of cells that has self-renewal, transplantation, multidrug resistance and recurrence properties, thus remain novel therapeutic target for brain tumour. Recent studies have shown that peroxisome proliferator-activated receptor gamma (PPARgamma) agonists induce growth arrest and apoptosis in glioblastoma cells, but their effects on BTSCs are largely unknown. In this study, we generated gliospheres with more than 50% CD133+ BTSC by culturing U87MG and T98G human glioblastoma cells with epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF). In vitro treatment with PPARgamma agonist, 15-Deoxy-Delta(12,14)-Prostaglandin J(2) (15d-PGJ2) or all-trans retinoic acid resulted in a reversible inhibition of gliosphere formation in culture. Peroxisome proliferator-activated receptor gamma agonists inhibited the proliferation and expansion of glioma and gliosphere cells in a dose-dependent manner. Peroxisome proliferator-activated receptor gamma agonists also induced cell cycle arrest and apoptosis in association with the inhibition of EGF/bFGF signalling through Tyk2-Stat3 pathway and expression of PPARgamma in gliosphere cells. These findings demonstrate that PPARgamma agonists regulate growth and expansion of BTSCs and extend their use to target BTSCs in the treatment of brain tumour.
Collapse
|
25
|
Temporal and regional morphological differences as a consequence of FGF-2 deficiency are mirrored in the myenteric proteome. Pediatr Surg Int 2008; 24:49-60. [PMID: 18040697 DOI: 10.1007/s00383-007-2041-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The enteric nervous system with its intricate network of neurons and glia shows a high plasticity, which not only changes during pre- and postnatal development, but also with disease or changing dietary habits. FGF as a potent neurotrophic factor in the central nervous system might also play a specific role for the ENS development, FGF-2 knockout and corresponding wild-type mice were histologically and functionally analyzed. FGF-2 knockout mice are viable and thrive normally and do apparently not display any obvious neurological deficit. Morphological differences were studied on whole mount preparations of muscle and submucous layer using either cuprolinic blue or immunohistochemical stainings for the neuronal marker PGP 9.5. Ussing-chamber and isometric muscle contraction experiments were performed on isolated gut wall, respectively muscle preparations. Intravital microscopy with GFP-transfected E. coli bacteria was used to investigate influences upon bacterial translocation. In additional experiments the protein pattern of the isolated myenteric plexus of knockout and wild-type mice were compared using 2D-DIGE technology. The morphometric analysis of the myenteric plexus revealed significant differences between FGF-2 knockout and wild-type animals, resulting in larger neurons in the knock out animals, embedded in less densely packed enteric ganglia. While muscle contractility appeared not to be affected, there was a significant difference in bacterial translocation as well as differences in basal chloride secretion to be seen. The observed morphological differences were reflected in the varying protein patterns, which were revealed by 2D-DIGE. A large number of differentially expressed proteins were found in both colonic and duodenal samples. FGF obviously influences the development of well established gastrointestinal functions by various means, thus leading to minor but significant deficiencies. Whether the revealed deficits in the mucous barrier are indebted to the morphological alterations in the ENS cannot yet be proved, but is very likely.
Collapse
|
26
|
Bellucci C, Lilli C, Baroni T, Parnetti L, Sorbi S, Emiliani C, Lumare E, Calabresi P, Balloni S, Bodo M. Differences in extracellular matrix production and basic fibroblast growth factor response in skin fibroblasts from sporadic and familial Alzheimer's disease. Mol Med 2007; 13:542-50. [PMID: 17660861 PMCID: PMC1933258 DOI: 10.2119/2007-00034.bellucci] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Accepted: 07/09/2007] [Indexed: 11/06/2022] Open
Abstract
Extracellular matrix (ECM) molecules and growth factors, such as fibroblast growth factor (FGF), play a crucial role in Alzheimer's disease (AD). The purpose of this investigation was to determine whether phenotypic alterations in ECM production are present in non-neuronal AD cells associated with different FGF expression and response. Synthesis of glycosaminoglycans (GAG) and collagen were measured in skin fibroblasts from patients with familial, sporadic AD (FAD and SAD respectively), and from age-matched controls by radiolabeled precursors. Proteoglycans (PG), metalloprotease (MMP)-1, and FGF gene expressions were measured by reverse transcription-polymerase chain reaction. The results showed different ECM neosynthesis and mRNA levels in the two AD fibroblast populations. FAD accumulated more collagen and secreted less GAG than SAD. Biglycan PG was upregulated in FAD while betaglycan, syndecan, and decorin were markedly downregulated in SAD fibroblasts. We found a significant decrease of MMP1, more marked in FAD than in SAD fibroblasts. Constitutive FGF expression was greatly reduced in both pathological conditions (SAD>FAD). Moreover, an inverse high affinity/low affinity FGF receptor ratio between SAD and FAD fibroblasts was observed. FGF treatment differently modulated ECM molecule production and gene expression in the two cell populations. These observations in association with the changes in FGF gene expression and in the FGF receptor number, suggest that cellular mechanisms downstream from FGF receptor binding are involved in the two different forms of AD.
Collapse
Affiliation(s)
- Catia Bellucci
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Italy
| | - Cinzia Lilli
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Italy
| | - Tiziano Baroni
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Italy
| | - Lucilla Parnetti
- Department of Specialistic Medicine and Public Health, Neuroscience Clinical section, University of Perugia, Italy
| | - Sandro Sorbi
- Department of Neurologic and Psychiatric Sciences, University of Firenze, Italy
| | - Carla Emiliani
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Italy
| | | | - Paolo Calabresi
- Department of Specialistic Medicine and Public Health, Neuroscience Clinical section, University of Perugia, Italy
| | - Stefania Balloni
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Italy
| | - Maria Bodo
- Department of Specialistic Medicine and Public Health, Neuroscience Clinical section, University of Perugia, Italy
- Address correspondence and reprint requests to Maria Bodo, Department of Specialistic Medicine and Public Health, Neuroscience Clinical section, University of Perugia, Italy. Phone/Fax: 075-5857432; E-mail:
| |
Collapse
|
27
|
Zhang Y, Ye LP, Wang B, Cao SC, Sun LG. Effect of lead on ERK activity and the protective function of bFGF in rat primary culture astroglia. J Zhejiang Univ Sci B 2007; 8:422-7. [PMID: 17565513 PMCID: PMC1879161 DOI: 10.1631/jzus.2007.b0422] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To observe the effects of lead on levels of phosphorylated extracellular signal regulated kinase (p-ERK) in the cytoplasm of primary cultures of rat astroglial cells and the possible protective effect of basic fibroblast growth factor (bFGF) on lead-induced effects. METHODS The primary astroglia cells from 1~6 d old Wistar rats were cultured. The cells pretreated with the MEK1 (mitogen-activated protein kinase kinase 1) inhibitor PD98059 and bFGF, respectively, were exposed to Pb acetate of different concentrations for different times. Western blotting and reverse transcription polymerase chain reaction (RT-PCR) methods were used to detect the protein and mRNA expressions of ERK. RESULTS mRNA expression for ERK peaked 15 min after initiation of lead exposure (P<0.05) and protein expression of p-ERK peaked at 30 min (P<0.05). ERK mRNA levels and p-ERK protein levels returned to baseline after 60 and 120 min of lead exposure, respectively (P>0.05). The increase in p-ERK levels in lead-treated cells could be inhibited by PD098059. Activation of ERK in the cells by lead was prevented by pretreatment with bFGF. Total ERK protein levels did not change under the same experimental conditions (P>0.05). CONCLUSION Low-level lead exposure resulted in transient activation of ERK through the MEK pathway, which then returned to basal levels in the continued presence of lead. Exogenous bFGF protected ERK signaling components in astroglia from lead poisoning.
Collapse
|
28
|
Abstract
Despite a relatively long history, general knowledge is not widespread that adult neurons can be maintained in cell culture for fairly extended periods of time. Within the central nervous system, this capacity seems to be particularly well developed in the retina, although it is still not clear whether this property is due to physical reasons (spatial configuration, simple connections) or to more fundamental differences (molecular composition, physiological function). Irrespective of the reasons, in vitro model systems are useful for investigating physiological and pathological processes occurring in mature retina. The authors argue that the numerous molecular changes undergone during maturation (modifications in ion channels and receptors, apoptotic pathways and growth factor effects) should be taken into account when using in vitro approaches to study processes involved in photoreceptor and ganglion cell degeneration, and hence that more classical methods relying on embryonic or newborn tissue should be interpreted with caution. A number of examples are given where the use of adult retinal neuronal culture may be especially informative: neurite regeneration, neuroprotection assays and pathogenic mechanisms; and areas of further research that should be explored: cell transplantation.
Collapse
Affiliation(s)
- Carl Romano
- Retina Discovery, Alcon Laboratories Inc., 6201 South Freeway, Fort Worth, TX 76134-2099, USA
| | | |
Collapse
|
29
|
Baguma-Nibasheka M, Li AW, Murphy PR. The fibroblast growth factor-2 antisense gene inhibits nuclear accumulation of FGF-2 and delays cell cycle progression in C6 glioma cells. Mol Cell Endocrinol 2007; 267:127-36. [PMID: 17306451 DOI: 10.1016/j.mce.2007.01.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Revised: 12/21/2006] [Accepted: 01/10/2007] [Indexed: 11/30/2022]
Abstract
Fibroblast growth factor-2 (FGF-2) is a potent heparin-binding protein with growth-promoting and anti-apoptotic activity. Transcription of the GFG/NUDT6 gene on the opposite DNA strand generates an overlapping antisense RNA (FGF-AS) implicated in the post-transcriptional regulation of FGF-2. C6 glioma cells coordinately express FGF-2 and FGF-AS mRNA in a cell cycle-dependent manner. Cellular FGF-2 immunoreactivity was also cell cycle-dependent, with marked nuclear accumulation during S-phase. Stable transfection and overexpression of the FGF-AS RNA resulted in suppression of total cellular FGF-2, and a reduction in nuclear accumulation of FGF-2 isoforms. Serum stimulation of growth-arrested wild-type cells evoked a rapid nuclear translocation of FGF-2, and cell cycle re-entry. FGF-AS transfectants, in contrast, showed a significant delay in recovery of both nuclear FGF-2 staining and S-phase re-entry. Similar results were observed when cells were released from aphidicolin-induced G1 arrest or subjected to heat shock. These findings indicate that FGF-AS RNA inhibits expression and cell cycle-dependent nuclear accumulation of FGF-2, and this is associated with a marked delay in S-phase progression. The results suggest that the endogenous FGF antisense RNA may play a significant functional role in the regulation of FGF-2 dependent cell proliferation in FGF-2 expressing cells.
Collapse
Affiliation(s)
- Mark Baguma-Nibasheka
- Department of Physiology and Biophysics, Dalhousie University, 5850 College Street, Halifax, Nova Scotia, Canada B3H 1X5
| | | | | |
Collapse
|
30
|
Pehar M, Vargas MR, Cassina P, Barbeito AG, Beckman JS, Barbeito L. Complexity of astrocyte-motor neuron interactions in amyotrophic lateral sclerosis. NEURODEGENER DIS 2006; 2:139-46. [PMID: 16909019 DOI: 10.1159/000089619] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Neurons and surrounding glial cells compose a highly specialized functional unit. In amyotrophic lateral sclerosis (ALS) astrocytes interact with motor neurons in a complex manner to modulate neuronal survival. Experiments using chimeric mice expressing ALS-linked mutations to Cu,Zn superoxide dismutase (SOD-1) suggest a critical modulation exerted by neighboring non-neuronal cell types on disease phenotype. When perturbed by primary neuronal damage, e.g. expression of SOD-1 mutations, neurons can signal astrocytes to proliferate and become reactive. Fibroblast growth factor-1 (FGF-1) can be released by motor neurons in response to damage to induce astrocyte activation by signaling through the receptor FGFR1. FGF-1 stimulates nerve growth factor (NGF) expression and secretion, as well as activity of the nuclear factor erythroid 2-related factor 2 (Nrf2) transcription factor. Nrf2 leads to the expression of antioxidant and cytoprotective enzymes such as heme oxygenase-1 and a group of enzymes involved in glutathione metabolism that prevent motor neuron degeneration. However, prolonged stimulation with FGF-1 or SOD-mediated oxidative stress in astrocytes may disrupt the normal neuron-glia interactions and lead to progressive neuronal degeneration. The re-expression of p75 neurotrophin receptor and neuronal NOS in motor neurons in parallel with increased NGF secretion by reactive astrocytes may be a mechanism to eliminate critically damaged neurons. Consequently, astrocyte activation in ALS may have a complex pathogenic role.
Collapse
Affiliation(s)
- Mariana Pehar
- Departamento de Neurobiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | | | | | | | | | | |
Collapse
|
31
|
Salaria S, Chana G, Caldara F, Feltrin E, Altieri M, Faggioni F, Domenici E, Merlo-Pich E, Everall IP. Microarray analysis of cultured human brain aggregates following cortisol exposure: implications for cellular functions relevant to mood disorders. Neurobiol Dis 2006; 23:630-6. [PMID: 16844382 DOI: 10.1016/j.nbd.2006.05.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Revised: 05/06/2006] [Accepted: 05/18/2006] [Indexed: 01/14/2023] Open
Abstract
Increased cortisol levels in humans are often observed in patients suffering from mood disorders. In this study human fetal brain aggregates were exposed to cortisol at 500 nM for 3 weeks, as an in-vitro model of chronic cortisol exposure. Microarray analysis on extracted mRNA using the Affymetrix U133A platform was then performed. Our results demonstrated a significant effect of cortisol on 1648 transcripts; 736 up-regulated and 912 down-regulated genes. The most differentially regulated biological categories were: RNA processing, protein metabolism, and cell growth. Within these categories we observed a down-regulation of fibroblast growth factor 2 (FGF2) (-1.5-fold) and aquaporin4 (AQP4) (-1.7-fold), alongside an up-regulation of fibroblast growth factor 9 (FGF9) (+1.7-fold) and vesicle associated membrane protein2 (VAMP2) (+1.7-fold). FGF2, FGF9, AQP4 and VAMP2 changes were confirmed at the protein level by immunohistochemistry. Alterations in FGF transcripts are in keeping with recent literature demonstrating such effects in patients with mood disorders.
Collapse
Affiliation(s)
- S Salaria
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0603, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Sensory polyneuropathy can be a serious problem, but for the majority of clinically important neuropathies there are no available therapies. Neurotrophic and neuroprotective peptide factors have been identified that prevent or reverse neuropathy in rodent models of disease, but delivery of these highly pleiotropic peptides has posed an obstacle for translation into effective human therapies. Gene transfer into muscle using viral or non-viral vectors, or into neurons of the dorsal root ganglion using herpes simplex virus-based vectors, provides an alternative means to achieve this end. Studies in animal models have been promising, and the first human trial, using a plasmid to transfer the gene coding for vascular endothelial growth factor into muscle for the treatment of diabetic neuropathy, is now underway. Evidence supporting the trial and the challenges facing this therapy are reviewed.
Collapse
Affiliation(s)
- Marina Mata
- Department of Neurology, University of Michigan Health System, Ann Arbor, MI 48109-0316, USA
| | | | | |
Collapse
|
33
|
Eckenstein FP, McGovern T, Kern D, Deignan J. Neuronal vulnerability in transgenic mice expressing an inducible dominant-negative FGF receptor. Exp Neurol 2006; 198:338-49. [PMID: 16487970 DOI: 10.1016/j.expneurol.2005.12.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2005] [Revised: 11/28/2005] [Accepted: 12/01/2005] [Indexed: 10/25/2022]
Abstract
Fibroblast Growth Factors (FGFs) and their receptors (FGFRs) are widely expressed in the mature nervous system and are thought to mediate plasticity and repair. We report the generation of transgenic mice that can be induced to express a dominant-negative FGFR (dnFGFR) in select neuronal populations. We show that a modified Thy1 promoter [Vidal, M., Morris, R., Grosveld, F., and Spanopoulou, E. 1990. Tissue-specific control elements of the Thy-1 gene. EMBO J 9 833-840] can be used to drive widespread neuronal expression of the reverse tetracycline transactivator M2 (rtTA-M2 [Urlinger, S., Baron, U., Thellmann, M., Hasan, M.T., Bujard, H., and Hillen, W., 2000. Exploring the sequence space for tetracycline-dependent transcriptional activators: novel mutations yield expanded range and sensitivity. Proc. Natl. Acad. Sci. U. S. A. 97, 7963-7968]), which after stimulation with doxycycline induces co-expression of dnFGFR in mosaic subpopulations of rtTA-M2-positive forebrain neurons, but not in hindbrain and spinal cord rtTA-M2-positive neurons. Expression of dnFGFR did not cause overt neurodegeneration, but led to increased neuronal vulnerability: four days after a stab injury, cell death was marked in the hippocampus of dnFGFR-expressing animals when compared to controls. The nuclear morphology of dying CA1 pyramidal cells suggested an apoptotic mechanism of cell death. These observations demonstrate the importance of endogenous FGFs in the maintenance of the nervous system.
Collapse
Affiliation(s)
- Felix P Eckenstein
- Department of Neurology and Department of Anatomy and Neurobiology, College of Medicine, University of Vermont, HSRF 408, VT 05405, USA.
| | | | | | | |
Collapse
|
34
|
Madiai F, Goettl VM, Hussain SR, Clairmont AR, Stephens RL, Hackshaw KV. Anti-fibroblast growth factor-2 antibodies attenuate mechanical allodynia in a rat model of neuropathic pain. J Mol Neurosci 2006; 27:315-24. [PMID: 16280602 DOI: 10.1385/jmn:27:3:315] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Accepted: 07/03/2005] [Indexed: 02/02/2023]
Abstract
Peripheral nerve injury leads to the activation of spinal cord astrocytes, which contribute to maintaining neuropathic (NP) pain behavior. Fibroblast growth factor-2 (FGF-2), a neurotrophic and gliogenic factor, is upregulated by spinal cord astrocytes in response to ligation of spinal nerves L5 and L6 (spinal nerve ligation [SpNL]). To evaluate the contribution of spinal astroglial FGF-2 to mechanical allodynia following SpNL, neutralizing antibodies to FGF-2 were injected intrathecally. Administration of 18 microg of anti-FGF-2 antibodies attenuated mechanical allodynia at day 21 after SpNL and reduced FGF-2 and glial acidic fibrillary protein mRNA expression and immunoreactivity in the L5 spinal cord segment of rats with SpNL. These results suggest that endogenous astroglial FGF-2 contributes to maintaining NP tactile allodynia associated with reactivity of spinal cord astrocytes and that inhibition of spinal FGF-2 ameliorates NP pain signs.
Collapse
Affiliation(s)
- Francesca Madiai
- Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | | | | | | | | | | |
Collapse
|
35
|
IRES-dependent regulation of FGF-2 mRNA translation in pathophysiological conditions in the mouse. Biochem Soc Trans 2006. [DOI: 10.1042/bst0340017] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The mRNA coding for FGF-2 (fibroblast growth factor 2), a major angiogenic factor, is translated by an IRES (internal ribosome entry site)-dependent mechanism. We have studied the role of the IRES in the regulation of FGF-2 expression in vivo, under pathophysiological conditions, by creating transgenic mice lines expressing bioluminescent bicistronic transgenes. Analysis of FGF-2 IRES activity indicates strong tissue specificity in adult brain and testis, suggesting a role of the IRES in the activation of FGF-2 expression in testis maturation and brain function. We have explored translational control of FGF-2 mRNA under diabetic hyperglycaemic conditions, as FGF-2 is implied in diabetes-related vascular complications. FGF-2 IRES is specifically activated in the aorta wall in streptozotocin-induced diabetic mice, in correlation with increased expression of endogenous FGF-2. Thus, under hyperglycaemic conditions, where cap-dependent translation is blocked, IRES activation participates in FGF-2 overexpression, which is one of the keys of diabetes-linked atherosclerosis aggravation. IRES activation under such pathophysiological conditions may involve ITAFs (IRES trans-acting factors), such as p53 or hnRNP AI (heterogeneous nuclear ribonucleoprotein AI), recently identified as inhibitory or activatory ITAFs respectively for FGF-2 IRES.
Collapse
|
36
|
Sapieha PS, Hauswirth WW, Di Polo A. Extracellular signal-regulated kinases 1/2 are required for adult retinal ganglion cell axon regeneration induced by fibroblast growth factor-2. J Neurosci Res 2006; 83:985-95. [PMID: 16493686 DOI: 10.1002/jnr.20803] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The intracellular signaling mechanisms used by neurotrophic factors to promote axon growth in the mature, injured central nervous system are not well understood. Here we investigated the signaling cascades that control fibroblast growth factor-2 (FGF-2)-mediated retinal ganglion cell (RGC) axon extension in vivo. For this purpose, a novel adeno-associated virus (AAV) was used to deliver the FGF-2 gene to RGCs, providing a sustained source of this neurotrophic factor. FGF-2 gene transfer led to an approximately ten-fold increase in the number of axons that extended past the lesion site compared with control nerves. Axon growth correlated with FGF-2-induced activation of the extracellular signal-regulated kinases 1/2 (Erk1/2), but not phosphoinositide 3-kinase or protein kinase C. Pharmacological inhibition of Erk1/2 activation resulted in an approximately 80% decrease in the number of axons that regenerated in the injured optic nerve. Our data demonstrate that the Erk1/2 pathway is an essential signaling component in FGF-2-mediated axon regeneration in the mature, injured visual system.
Collapse
Affiliation(s)
- Przemyslaw S Sapieha
- Department of Pathology and Cell Biology, Université de Montréal, Montreal, Quebec, Canada
| | | | | |
Collapse
|
37
|
Walz R, Roesler R, Reinke A, Martins MR, Quevedo J, Izquierdo I. Short- and long-term memory are differentialy modulated by hippocampal nerve growth factor and fibroblast growth factor. Neurochem Res 2005; 30:185-90. [PMID: 15895821 DOI: 10.1007/s11064-004-2440-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Rats were implanted with cannulae in the CA1 area of the dorsal hippocampus and trained in one-trial step-down inhibitory avoidance. Two retention tests were carried out in each animal, one at 1.5 h to measure short-term memory (STM) and another at 24 h to measure long-term memory (LTM). The purpose of the present study was to evaluate the modulation on hippocampal nerve growth factor (NGF) and basic fibroblast growth factor (bFGF) on short- and long-term memory. Immediately after training, animals received 5 microl of NGF (0.05, 0.5 or 5.0 ng), bFGF (1.25, 12.5 or 125 ng) or saline per side. At the higher dose, NGF blocked STM. In contrast, NGF at dose of 0.5 and 5.0 ng improved LTM. The bFGF infusion at a dose of 125 ng enhanced LTM. However, bFGF did not alter STM. These findings indicate that hippocampal NGF and bFGF modulate STM and LTM in a different manner.
Collapse
Affiliation(s)
- Roger Walz
- Departamento de Medicina, Universidade do Vale do Itajaí, 88302-202 Itajaí, SC, Brazil
| | | | | | | | | | | |
Collapse
|
38
|
Carter TA, Greenhall JA, Yoshida S, Fuchs S, Helton R, Swaroop A, Lockhart DJ, Barlow C. Mechanisms of aging in senescence-accelerated mice. Genome Biol 2005; 6:R48. [PMID: 15960800 PMCID: PMC1175968 DOI: 10.1186/gb-2005-6-6-r48] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2004] [Revised: 03/09/2005] [Accepted: 05/05/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Progressive neurological dysfunction is a key aspect of human aging. Because of underlying differences in the aging of mice and humans, useful mouse models have been difficult to obtain and study. We have used gene-expression analysis and polymorphism screening to study molecular senescence of the retina and hippocampus in two rare inbred mouse models of accelerated neurological senescence (SAMP8 and SAMP10) that closely mimic human neurological aging, and in a related normal strain (SAMR1) and an unrelated normal strain (C57BL/6J). RESULTS The majority of age-related gene expression changes were strain-specific, with only a few common pathways found for normal and accelerated neurological aging. Polymorphism screening led to the identification of mutations that could have a direct impact on important disease processes, including a mutation in a fibroblast growth factor gene, Fgf1, and a mutation in and ectopic expression of the gene for the chemokine CCL19, which is involved in the inflammatory response. CONCLUSION We show that combining the study of inbred mouse strains with interesting traits and gene-expression profiling can lead to the discovery of genes important for complex phenotypes. Furthermore, full-genome polymorphism detection, sequencing and gene-expression profiling of inbred mouse strains with interesting phenotypic differences may provide unique insights into the molecular genetics of late-manifesting complex diseases.
Collapse
Affiliation(s)
- Todd A Carter
- The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | | - Shigeo Yoshida
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Sebastian Fuchs
- The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Robert Helton
- The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Anand Swaroop
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48105, USA
| | | | - Carrolee Barlow
- The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Current address: BrainCells Inc., 10835 Road to the Cure, San Diego, CA 92121, USA
| |
Collapse
|
39
|
Cassina P, Pehar M, Vargas MR, Castellanos R, Barbeito AG, Estévez AG, Thompson JA, Beckman JS, Barbeito L. Astrocyte activation by fibroblast growth factor-1 and motor neuron apoptosis: implications for amyotrophic lateral sclerosis. J Neurochem 2005; 93:38-46. [PMID: 15773903 DOI: 10.1111/j.1471-4159.2004.02984.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Fibroblast growth factor-1 (FGF1 or acidic FGF) is highly expressed in motor neurons. FGF-1 is released from cells by oxidative stress, which might occur from SOD-1 aberrant function in amyotrophic lateral sclerosis (ALS). Although FGF-1 is known to be neuroprotective after spinal cord injury or axotomy, we found that FGF-1 could activate spinal cord astrocytes in a manner that decreased motor neuron survival in co-cultures. FGF-1 induced accumulation of the FGF receptor 1 (FGFR1) in astrocyte nuclei and potently stimulated nerve growth factor (NGF) expression and secretion. The FGFR1 tyrosine kinase inhibitor PD166866 prevented these effects. Previously, we have shown that NGF secretion by reactive astrocytes induces motor neuron apoptosis through a p75(NTR)-dependent mechanism. Embryonic motor neurons co-cultured on the top of astrocytes exhibiting activated FGFR1 underwent apoptosis, which was prevented by PD166866 or by adding either anti-NGF or anti-p75(NTR) neutralizing antibodies. In the degenerating spinal cord of mice carrying the ALS mutation G93A of Cu, Zn superoxide dismutase, FGF-1 was no longer localized only in the cytosol of motor neurons, while FGFR1 accumulated in the nuclei of reactive astrocytes. These results suggest that FGF-1 released by oxidative stress from motor neurons might have a role in activating astrocytes, which could in turn initiate motor neuron apoptosis in ALS through a p75(NTR)-dependent mechanism.
Collapse
Affiliation(s)
- Patricia Cassina
- Departamento de Histología, Facultad de Medicina, Universidad de la República Montevideo, Uruguay
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Kawauchi S, Beites CL, Crocker CE, Wu HH, Bonnin A, Murray R, Calof AL. Molecular signals regulating proliferation of stem and progenitor cells in mouse olfactory epithelium. Dev Neurosci 2005; 26:166-80. [PMID: 15711058 DOI: 10.1159/000082135] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2003] [Accepted: 06/14/2004] [Indexed: 11/19/2022] Open
Abstract
To understand how signaling molecules regulate the generation of neurons from proliferating stem cells and neuronal progenitors in the developing and regenerating nervous system, we have studied neurogenesis in a model neurogenic epithelium, the olfactory epithelium (OE) of the mouse. Our studies have employed a candidate approach to test signaling molecules of potential importance in regulating neurogenesis and have utilized methods that include tissue culture, in situ hybridization and mouse genetics. Using these approaches, we have identified three distinct stages of stem and transit amplifying progenitor cells in the differentiation pathway of olfactory receptor neurons (ORNs) and have identified mechanisms by which the development of each of these progenitor cell types is regulated by signals produced both within the OE itself and by its underlying stroma. Our results indicate that regulation of olfactory neurogenesis is critically dependent on multiple signaling molecules from two different polypeptide growth factor superfamilies, the fibroblast growth factors and the transforming growth factor beta (TGF-beta) group. In addition, they indicate that these signaling molecules interact in at least two important ways: first, opposing signals converge on cells at specific developmental stages in the ORN pathway to regulate proliferation and differentiation; and second, these signaling molecules--particularly the TGF-betas and their antagonists--play key roles in feedback loops that regulate the size of progenitor cell pools and thereby neuron number, during development and regeneration.
Collapse
Affiliation(s)
- Shimako Kawauchi
- Department of Anatomy and Neurobiology and the Developmental Biology Center, University of California, Irvine, CA 92697-1275, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Kaur B, Tan C, Brat DJ, Post DE, Van Meir EG. Genetic and hypoxic regulation of angiogenesis in gliomas. J Neurooncol 2005; 70:229-43. [PMID: 15674480 DOI: 10.1007/s11060-004-2752-5] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Infiltrative astrocytic neoplasms are by far the most common malignant brain tumors in adults. Clinically, they are highly problematic due to their widely invasive nature which makes a complete resection almost impossible. Biologic progression of these tumors is inevitable and adjuvant therapies are only moderately effective in prolonging survival. Glioblastoma multiforme (GBM; WHO grade IV), the most malignant form of infiltrating astrocytoma, can evolve from a lower grade precursor tumor (secondary GBM) or can present as high grade lesion from the outset, so-called de novo GBM. Molecular genetic investigations suggest that GBMs are comprised of multiple molecular genetic subsets. Notwithstanding the diversity of genetic alterations leading to the GBM phenotype, the vascular changes that evolve in this disease, presumably favoring further growth, are remarkably similar. Underlying genetic alterations in GBM may tilt the balance in favor of an angiogenic phenotype by upregulation of pro-angiogenic factors and down-regulation of angiogenesis inhibitors. Increased vascularity and endothelial cell proliferation in GBMs are also driven by hypoxia-induced expression of pro-angiogenic cytokines, such vascular endothelial growth factor (VEGF). Understanding the contribution of genetic alterations and hypoxia in angiogenic dysregulation in astrocytic neoplasms will lead to the development of better anti-angiogenic therapies for this disease. This review will summarize the properties of angiogenic dysregulation that lead to the highly vascularized nature of these tumors.
Collapse
Affiliation(s)
- Balveen Kaur
- Laboratory of Molecular Neuro-Oncology, Department of Neuro-surgery and Hematology/Oncology, and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | |
Collapse
|
42
|
Xu J, Fan WH. [Effect of salvianolate on migration of human vascular endothelial cells]. ACTA ACUST UNITED AC 2005; 1:211-4. [PMID: 15339565 DOI: 10.3736/jcim20030320] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To study the effect of salvianolate on the migration of endothelial cells induced by monocytes. METHODS Transwell-boydom system was used to test the migration of endothelial cells induced by monocytes. Enzyme-linked immunosorbent assay (ELISA) and RT-polymerase chain reaction (RT-PCR) method were used to determine the effect of salvianolate on the expression of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) and their mRNA of monocytes. RESULTS The migration of endothelial cells induced by monocytes was facilitated by salvianolate, compared with the control. After the monocytes were treated by salvianolate for 24 hours, the expression of mRNA of VEGF and bFGF was significantly up-regulated, and the expression of VEGF and bFGF was increased. CONCLUSION The facilitation of salvianolate on the migration of endothelial cells induced by monocytes was observed. Salvianolate stimulates the expression of VEGF and bFGF and their mRNA of monocytes, and salvianolate may have the role of inducing migration of endothelial cells by working on these two factors.
Collapse
Affiliation(s)
- Jie Xu
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | | |
Collapse
|
43
|
Langford D, Hurford R, Hashimoto M, Digicaylioglu M, Masliah E. Signalling crosstalk in FGF2-mediated protection of endothelial cells from HIV-gp120. BMC Neurosci 2005; 6:8. [PMID: 15689238 PMCID: PMC549045 DOI: 10.1186/1471-2202-6-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2004] [Accepted: 02/02/2005] [Indexed: 01/17/2023] Open
Abstract
Background The blood brain barrier (BBB) is the first line of defence of the central nervous system (CNS) against circulating pathogens, such as HIV. The cytotoxic HIV protein, gp120, damages endothelial cells of the BBB, thereby compromising its integrity, which may lead to migration of HIV-infected cells into the brain. Fibroblast growth factor 2 (FGF2), produced primarily by astrocytes, promotes endothelial cell fitness and angiogenesis. We hypothesized that treatment of human umbilical vein endothelial cells (HUVEC) with FGF2 would protect the cells from gp120-mediated toxicity via endothelial cell survival signalling. Results Exposure of HUVEC to gp120 resulted in dose- and time-dependent cell death; whereas, pre-treatment of endothelial cells with FGF2 protected cells from gp120 angiotoxicity. Treatment of HUVEC with FGF2 resulted in dose- and time-dependent activation of the extracellular regulated kinase (ERK), with moderate effects on phosphoinositol 3 kinase (PI3K) and protein kinase B (PKB), also known as AKT, but no effects on glycogen synthase kinase 3 (GSK3β) activity. Using pharmacological approaches, gene transfer and kinase activity assays, we show that FGF2-mediated angioprotection against gp120 toxicity is regulated by crosstalk among the ERK, PI3K-AKT and PKC signalling pathways. Conclusions Taken together, these results suggest that FGF2 may play a significant role in maintaining the integrity of the BBB during the progress of HIV associated cerebral endothelial cell damage.
Collapse
Affiliation(s)
- Dianne Langford
- Department of Pathology, University of California, San Diego, La Jolla, CA, USA
| | - Rosemary Hurford
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Makoto Hashimoto
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | | | - Eliezer Masliah
- Department of Pathology, University of California, San Diego, La Jolla, CA, USA
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
44
|
Breugem CC, Hennekam RCM, van Gemert MJC, van der Horst CMAM. Are Capillary Malformations Neurovenular or Purely Neural? Plast Reconstr Surg 2005; 115:578-87. [PMID: 15692368 DOI: 10.1097/01.prs.0000150150.69479.70] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Corstiaan C Breugem
- Department of Plastic, Reconstructive, and Hand Surgery, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
45
|
Torres-Muñoz JE, Van Waveren C, Keegan MG, Bookman RJ, Petito CK. Gene expression profiles in microdissected neurons from human hippocampal subregions. ACTA ACUST UNITED AC 2004; 127:105-14. [PMID: 15306126 DOI: 10.1016/j.molbrainres.2004.05.017] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2004] [Indexed: 11/20/2022]
Abstract
Pyramidal neurons in hippocampal subregions are selectively vulnerable in certain disease states. To investigate, we tested the hypothesis that selective vulnerability in human hippocampus is related to regional differences in neuronal cell death and cell receptor gene expression in CA1 vs. CA3 subregions. We used laser capture microdissection to remove approximately 600 CA1 and 600 CA3 pyramidal neurons each from five fresh-frozen normal post-mortem brains, extracted total RNA and double-amplified mRNA. This was reverse transcribed and labeled for hybridization onto human cDNA array chips containing probes to 10,174 genes and unknown ESTs. RNA from additional microdissections was pooled for replicate hybridizations and quantitative RT-PCR validation. Gene expression differences were few (< 1%). We found 43 enriched genes in CA1 neuronal samples that included peripheral benzodiazipine receptor-associated protein, nicotinic cholinergic receptor, two chemokine receptors (CCR1 and CCR5) and several transcriptional factors. We found 17 enriched genes in the CA3 neuronal samples that included fibroblast growth factor receptor and prostaglandin-endoperoxide synthase 1. We found no differential gene expression for 23 calcium channel proteins; nine transporter proteins; 55 cell death and apoptotic regulator proteins; and an additional 497 cell receptors, including 24 glutamate receptors. Quantitative RT-PCR of four differentially expressed genes confirmed the microarray data. The results confirm the ability to examine gene expression profiles in microdissected neurons from human autopsy brain. They show only minor gene expression differences between two distinct neuronal populations in the hippocampus and suggest that selective hippocampal vulnerability is due to factors other than intrinsic differential expression in glutamate receptors and cell death genes.
Collapse
Affiliation(s)
- Jorge E Torres-Muñoz
- Department of Pathology, University of Miami School of Medicine (R-5), 1550 NW, Tenth Avenue, Miami, FL 33136, USA.
| | | | | | | | | |
Collapse
|
46
|
Nordal RA, Nagy A, Pintilie M, Wong CS. Hypoxia and hypoxia-inducible factor-1 target genes in central nervous system radiation injury: a role for vascular endothelial growth factor. Clin Cancer Res 2004; 10:3342-53. [PMID: 15161688 DOI: 10.1158/1078-0432.ccr-03-0426] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Microvascular permeability changes and loss of blood-brain barrier integrity are important features of central nervous system (CNS) radiation injury. Expression of vascular endothelial growth factor (VEGF), an important determinant of microvascular permeability, was examined to assess its role in CNS radiation damage. Because hypoxia mediates VEGF up-regulation through hypoxia-inducible factor-1alpha (HIF1alpha) induction, we studied the relationships of hypoxia, HIF1alpha expression, and expression of VEGF in this damage pathway. EXPERIMENTAL DESIGN Expression of HIF1alpha, VEGF, and another hypoxia-responsive gene, glucose transporter-1, was assessed in the irradiated rat spinal cord using immunohistochemistry and in situ hybridization. Hypoxic areas were identified using the nitroimidazole 2-(2-nitro-1H-imidazole-L-yl)-N-(2,2,3,3,3,-pentafluoropropyl) acetamide. To determine the causal importance of VEGF expression in radiation myelopathy, we studied the response of transgenic mice with greater (VEGF-A(hi/+)), reduced (VEGF-A(lo/+)), and wild-type VEGF activity to thoracolumbar irradiation. RESULTS In rat spinal cord, the number of cells expressing HIF1alpha and VEGF increased rapidly from 16 to 20 weeks after radiation, before white matter necrosis and forelimb paralysis. A steep dose response was observed in expression of HIF1alpha and VEGF. HIF1alpha and VEGF expressing cells were identified as astrocytes. Hypoxia was present in regions where up-regulation of VEGF and glucose transporter-1 and increased permeability was observed. VEGF-A(lo/+) mice had a longer latency to development of hindlimb weakness and paralysis compared with wild-type or VEGF-A(hi/+) mice. CONCLUSIONS VEGF expression appears to play an important role in CNS radiation injury. This focuses attention on VEGF and other genes induced in response to hypoxia as targets for therapy to reduce or prevent CNS radiation damage.
Collapse
Affiliation(s)
- Robert A Nordal
- Department of Radiation Oncology, Sunnybrook and Women's College Health Sciences Center, University of Toronto, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
47
|
Yamagata H, Chen Y, Akatsu H, Kamino K, Ito JI, Yokoyama S, Yamamoto T, Kosaka K, Miki T, Kondo I. Promoter polymorphism in fibroblast growth factor 1 gene increases risk of definite Alzheimer's disease. Biochem Biophys Res Commun 2004; 321:320-3. [PMID: 15358178 DOI: 10.1016/j.bbrc.2004.06.142] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2004] [Indexed: 11/22/2022]
Abstract
Fibroblast growth factor 1 (FGF1, also known as acidic FGF) protects selective neuronal populations against neurotoxic effects such as those in Alzheimer's disease (AD) and HIV encephalitis. The FGF1 gene is therefore a strong candidate gene for AD. Using the promoter polymorphism of the FGF1 gene, we examined the relationship between AD and the FGF1 and apolipoprotein E (APOE) genes in 100 Japanese autopsy-confirmed late-onset AD patients and 106 age-matched non-demented controls. The promoter polymorphism (-1385 A/G) was significantly associated with AD risk. The odds ratio for AD associated with the GG vs non-GG genotype was 2.02 (95% CI = 1.16-3.52), while that of s4 vs non-ł4 in APOE4 gene was 5.19 (95% CI = 2.68-10.1). The odds ratio for APOEP4 and FGF1 GG carriers was 20.5 (95% CI = 6.88-60.9). The results showed that the FGF1 gene is associated with autopsy-confirmed AD.
Collapse
Affiliation(s)
- Hidehisa Yamagata
- Department of Medical Genetics, Ehime University School of Medicine, Ehime, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Meijs MFL, Timmers L, Pearse DD, Tresco PA, Bates ML, Joosten EAJ, Bunge MB, Oudega M. Basic Fibroblast Growth Factor Promotes Neuronal Survival but Not Behavioral Recovery in the Transected and Schwann Cell Implanted Rat Thoracic Spinal Cord. J Neurotrauma 2004; 21:1415-30. [PMID: 15672632 DOI: 10.1089/neu.2004.21.1415] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
It was investigated whether the addition of basic fibroblast growth factor (FGF-2) enhances the efficacy of a Schwann cell (SC) bridge to repair the transected spinal cord by assessing tissue sparing and neuronal survival near the graft-cord interfaces, axonal regeneration and myelination in the graft, and behavioral recovery up to 12 weeks post-grafting. Experimental animals received a bridge of SCs within fibrin containing 1 microg of FGF-2; control animals received a SC implant without FGF-2. Sparing of tissue in a 2.5-mm-long segment near the graft-cord borders was 69% in the rostral and 52% in the caudal cord at 6 weeks post-grafting, not significantly different from the control group. With FGF-2, survival of NeuN-positive cells was increased in the rostral cord: 24.4%, 20.4%, and 17.2% of the number of positive cells in the uninjured cord compared to 13.5%, 9.1%, and 8.9% in controls at 3, 6, and 12 weeks post-grafting, respectively. Similarly, in the caudal cord, survival of NeuN-positive cells was increased with FGF-2: 19.3%, 16.8%, and 14.5% compared to 10.8%, 5.6%, and 6.1% in controls. The staining intensity of glial fibrillary acidic protein was significantly higher at the interfaces of both cord stumps at 3 weeks with SC/FGF-2 grafts; chondroitin sulfate proteoglycan (CS-56) staining was more intense in the rostral cord but only at 6 weeks. Blood vessels in the FGF-2 grafts were larger and less regular in shape than those in control grafts. Axonal growth into the bridge was not improved by the addition of FGF-2. Retrogradely traced neurons were not found rostral to the implant, indicating that axons had not grown a few mm into the caudal spinal tissue. Recovery of hind limb function was similar in both groups. Despite the neuroprotective effects of FGF-2, improved effects on axonal regeneration and functional recovery were not observed.
Collapse
Affiliation(s)
- Matthijs F L Meijs
- The Miami Project to Cure Paralysis, University of Miami School of Medicine, Miami, Florida 33136, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Sapieha PS, Peltier M, Rendahl KG, Manning WC, Di Polo A. Fibroblast growth factor-2 gene delivery stimulates axon growth by adult retinal ganglion cells after acute optic nerve injury. Mol Cell Neurosci 2004; 24:656-72. [PMID: 14664816 DOI: 10.1016/s1044-7431(03)00228-8] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Basic fibroblast growth factor (or FGF-2) has been shown to be a potent stimulator of retinal ganglion cell (RGC) axonal growth during development. Here we investigated if FGF-2 upregulation in adult RGCs promoted axon regrowth in vivo after acute optic nerve injury. Recombinant adeno-associated virus (AAV) was used to deliver the FGF-2 gene to adult RGCs providing a sustained source of this neurotrophic factor. FGF-2 gene transfer led to a 10-fold increase in the number of axons that extended past 0.5 mm from the lesion site compared to control nerves. Detection of AAV-mediated FGF-2 protein in injured RGC axons correlated with growth into the distal optic nerve. The response to FGF-2 upregulation was supported by our finding that FGF receptor-1 (FGFR-1) and heparan sulfate (HS), known to be essential for FGF-2 signaling, were expressed by adult rat RGCs. FGF-2 transgene expression led to only transient protection of injured RGCs. Thus the effect of this neurotrophic factor on axon extension could not be solely attributed to an increase in neuronal survival. Our data indicate that selective upregulation of FGF-2 in adult RGCs stimulates axon regrowth within the optic nerve, an environment that is highly inhibitory for regeneration. These results support the hypothesis that key factors involved in axon outgrowth during neural development may promote regeneration of adult injured neurons.
Collapse
Affiliation(s)
- Przemyslaw S Sapieha
- Department of Pathology and Cell Biology, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | | | | | | | | |
Collapse
|
50
|
Diensthuber M, Brandis A, Lenarz T, Stöver T. Co-expression of Transforming Growth Factor-β1 and Glial Cell Line–Derived Neurotrophic Factor in Vestibular Schwannoma. Otol Neurotol 2004; 25:359-65. [PMID: 15129118 DOI: 10.1097/00129492-200405000-00026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
HYPOTHESIS Transforming growth factor-beta1, glial cell line-derived neurotrophic factor, and their receptors are expressed in vestibular schwannoma, and the expression data correlate with the proliferation activity (Ki-67 labeling index) and the clinical growth rate of vestibular schwannoma tissue. BACKGROUND Glial cell line-derived neurotrophic factor is a potent growth factor for the central and peripheral nervous system. Recent results demonstrate that glial cell line-derived neurotrophic factor requires transforming growth factor-beta to exert its trophic effect on neural tissue. A functional role, including that in Schwann cell proliferation, is discussed for both transforming growth factor-beta1 and glial cell line-derived neurotrophic factor. METHODS Immunohistochemical analysis for transforming growth factor-beta1 and glial cell line-derived neurotrophic factor and their receptors TbetaR II, GFRalpha-1, and Ret was performed on formalin-fixed, paraffin-embedded archival surgical specimens. The Ki-67 labeling index (mean Ki-67 labeling index and highest Ki-67 labeling index for Antoni Type A and Type B regions) and the clinical growth rate of vestibular schwannoma were determined and correlated with the expression patterns of the examined neurotrophic factors and their receptors. RESULTS Results demonstrate co-expression of transforming growth factor-beta1 and glial cell line-derived neurotrophic factor with higher levels in Antoni Type A than in Antoni Type B regions. Ninety-five percent of vestibular schwannomas exhibited transforming growth factor-beta1 immunoreactivity, and glial cell line-derived neurotrophic factor expression was found in 100% of vestibular schwannoma specimens. Fifty percent of vestibular schwannoma displayed TbetaR II immunostaining, 100% showed positive reactions for GFRalpha-1, and 86% showed positive reactions for Ret. Statistical analysis revealed no significant correlation in neurotrophin expression related to sex, age, tumor size, clinical growth rate, or Ki-67-labeling indices. CONCLUSIONS Expression of transforming growth factor-beta1 and glial cell line-derived neurotrophic factor may suggest a biological role for both growth factors in vestibular schwannomas. Trophic transforming growth factor-beta/glial cell line-derived neurotrophic factor synergism seems possible and is underscored by co-expression of both neurotrophic factors and their receptors.
Collapse
Affiliation(s)
- M Diensthuber
- Department of Otorhinolaryngology, Hannover Medical University, Hannover, Germany
| | | | | | | |
Collapse
|