1
|
Ramos SV, Distefano G, Lui LY, Cawthon PM, Kramer P, Sipula IJ, Bello FM, Mau T, Jurczak MJ, Molina AJ, Kershaw EE, Marcinek DJ, Shankland E, Toledo FG, Newman AB, Hepple RT, Kritchevsky SB, Goodpaster BH, Cummings SR, Coen PM. Role of Cardiorespiratory Fitness and Mitochondrial Oxidative Capacity in Reduced Walk Speed of Older Adults With Diabetes. Diabetes 2024; 73:1048-1057. [PMID: 38551899 PMCID: PMC11189829 DOI: 10.2337/db23-0827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/26/2024] [Indexed: 04/09/2024]
Abstract
Cardiorespiratory fitness and mitochondrial oxidative capacity are associated with reduced walking speed in older adults, but their impact on walking speed in older adults with diabetes has not been clearly defined. We examined differences in cardiorespiratory fitness and skeletal muscle mitochondrial oxidative capacity between older adults with and without diabetes, as well as determined their relative contribution to slower walking speed in older adults with diabetes. Participants with diabetes (n = 159) had lower cardiorespiratory fitness and mitochondrial respiration in permeabilized fiber bundles compared with those without diabetes (n = 717), following adjustments for covariates including BMI, chronic comorbid health conditions, and physical activity. Four-meter and 400-m walking speeds were slower in those with diabetes. Mitochondrial oxidative capacity alone or combined with cardiorespiratory fitness mediated ∼20-70% of the difference in walking speed between older adults with and without diabetes. Additional adjustments for BMI and comorbidities further explained the group differences in walking speed. Cardiorespiratory fitness and skeletal muscle mitochondrial oxidative capacity contribute to slower walking speeds in older adults with diabetes. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
| | | | - Li-Yung Lui
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, CA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA
| | - Peggy M. Cawthon
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, CA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA
| | - Philip Kramer
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Ian J. Sipula
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Fiona M. Bello
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Theresa Mau
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, CA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA
| | - Michael J. Jurczak
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Anthony J. Molina
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Erin E. Kershaw
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - David J. Marcinek
- Department of Radiology, University of Washington School of Medicine, Seattle, WA
| | - Eric Shankland
- Department of Radiology, University of Washington School of Medicine, Seattle, WA
| | - Frederico G.S. Toledo
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Anne B. Newman
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Russell T. Hepple
- Department of Physical Therapy, University of Florida, Gainesville, FL
| | - Stephen B. Kritchevsky
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC
| | | | - Steven R. Cummings
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, CA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA
| | - Paul M. Coen
- Translational Research Institute, AdventHealth, Orlando, FL
| |
Collapse
|
2
|
Wilkerson JL, Tatum SM, Holland WL, Summers SA. Ceramides are fuel gauges on the drive to cardiometabolic disease. Physiol Rev 2024; 104:1061-1119. [PMID: 38300524 PMCID: PMC11381030 DOI: 10.1152/physrev.00008.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/02/2024] Open
Abstract
Ceramides are signals of fatty acid excess that accumulate when a cell's energetic needs have been met and its nutrient storage has reached capacity. As these sphingolipids accrue, they alter the metabolism and survival of cells throughout the body including in the heart, liver, blood vessels, skeletal muscle, brain, and kidney. These ceramide actions elicit the tissue dysfunction that underlies cardiometabolic diseases such as diabetes, coronary artery disease, metabolic-associated steatohepatitis, and heart failure. Here, we review the biosynthesis and degradation pathways that maintain ceramide levels in normal physiology and discuss how the loss of ceramide homeostasis drives cardiometabolic pathologies. We highlight signaling nodes that sense small changes in ceramides and in turn reprogram cellular metabolism and stimulate apoptosis. Finally, we evaluate the emerging therapeutic utility of these unique lipids as biomarkers that forecast disease risk and as targets of ceramide-lowering interventions that ameliorate disease.
Collapse
Affiliation(s)
- Joseph L Wilkerson
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - Sean M Tatum
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - William L Holland
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - Scott A Summers
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
3
|
Chen Z, Chen L, Tan J, Mao Y, Hao M, Li Y, Wang Y, Li J, Wang J, Jin L, Zheng HX. Natural selection shaped the protective effect of the mtDNA lineage against obesity in Han Chinese populations. J Genet Genomics 2024:S1673-8527(24)00129-2. [PMID: 38880354 DOI: 10.1016/j.jgg.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 06/18/2024]
Abstract
Mitochondria play a key role in lipid metabolism, and mitochondrial DNA (mtDNA) mutations are thus considered to affect obesity susceptibility by altering oxidative phosphorylation and mitochondrial function. In this study, we investigated mtDNA variants that may affect obesity risk in 2877 Han Chinese individuals from three independent populations. The association analysis of 16 basal mtDNA haplogroups with body mass index, waist circumference, and waist-to-hip ratio revealed that only haplogroup M7 was significantly negatively correlated with all three adiposity-related anthropometric traits in the overall cohort, verified by the analysis of a single population, i.e., the Zhengzhou population. Furthermore, subhaplogroup analysis suggested that M7b1a1 was the most likely haplogroup associated with a decreased obesity risk, and the variation T12811C (causing Y159H in ND5) harbored in M7b1a1 may be the most likely candidate for altering the mitochondrial function. Specifically, we found that proportionally more nonsynonymous mutations accumulated in M7b1a1 carriers, indicating that M7b1a1 was either under positive selection or subject to a relaxation of selective constraints. We also found that nuclear variants, especially in DACT2 and PIEZO1, may functionally interact with M7b1a1.
Collapse
Affiliation(s)
- Ziwei Chen
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Center for Evolutionary Biology, Fudan University, Shanghai 200438, China
| | - Lu Chen
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jingze Tan
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Center for Evolutionary Biology, Fudan University, Shanghai 200438, China
| | - Yizhen Mao
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Meng Hao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Center for Evolutionary Biology, Fudan University, Shanghai 200438, China
| | - Yi Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Center for Evolutionary Biology, Fudan University, Shanghai 200438, China
| | - Yi Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Center for Evolutionary Biology, Fudan University, Shanghai 200438, China; Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai 200438, China
| | - Jinxi Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Center for Evolutionary Biology, Fudan University, Shanghai 200438, China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Center for Evolutionary Biology, Fudan University, Shanghai 200438, China; Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai 200438, China; Research Unit of Dissecting Population Genetics and Developing New Technologies for Treatment and Prevention of Skin Phenotypes and Dermatological Diseases (2019RU058), Chinese Academy of Medical Sciences, Beijing 100730, China.
| | - Li Jin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Center for Evolutionary Biology, Fudan University, Shanghai 200438, China; Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai 200438, China; Research Unit of Dissecting Population Genetics and Developing New Technologies for Treatment and Prevention of Skin Phenotypes and Dermatological Diseases (2019RU058), Chinese Academy of Medical Sciences, Beijing 100730, China.
| | - Hong-Xiang Zheng
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Center for Evolutionary Biology, Fudan University, Shanghai 200438, China; Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai 200438, China.
| |
Collapse
|
4
|
Brennan AM, Coen PM, Mau T, Hetherington-Rauth M, Toledo FG, Kershaw EE, Cawthon PM, Kramer PA, Ramos SV, Newman AB, Cummings SR, Forman DE, Yeo RX, Distefano G, Miljkovic I, Justice JN, Molina AJ, Jurczak MJ, Sparks LM, Kritchevsky SB, Goodpaster BH. Associations between regional adipose tissue distribution and skeletal muscle bioenergetics in older men and women. Obesity (Silver Spring) 2024; 32:1125-1135. [PMID: 38803308 PMCID: PMC11139412 DOI: 10.1002/oby.24008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 05/29/2024]
Abstract
OBJECTIVE The aim of this study was to examine associations of ectopic adipose tissue (AT) with skeletal muscle (SM) mitochondrial bioenergetics in older adults. METHODS Cross-sectional data from 829 adults ≥70 years of age were used. Abdominal, subcutaneous, and visceral AT and thigh muscle fat infiltration (MFI) were quantified by magnetic resonance imaging. SM mitochondrial energetics were characterized in vivo (31P-magnetic resonance spectroscopy; ATPmax) and ex vivo (high-resolution respirometry maximal oxidative phosphorylation [OXPHOS]). ActivPal was used to measure physical activity ([PA]; step count). Linear regression adjusted for covariates was applied, with sequential adjustment for BMI and PA. RESULTS Independent of BMI, total abdominal AT (standardized [Std.] β = -0.21; R2 = 0.09) and visceral AT (Std. β = -0.16; R2 = 0.09) were associated with ATPmax (p < 0.01; n = 770) but not following adjustment for PA (p ≥ 0.05; n = 658). Visceral AT (Std. β = -0.16; R2 = 0.25) and thigh MFI (Std. β = -0.11; R2 = 0.24) were associated with carbohydrate-supported maximal OXPHOS independent of BMI and PA (p < 0.05; n = 609). Total abdominal AT (Std. β = -0.19; R2 = 0.24) and visceral AT (Std. β = -0.17; R2 = 0.24) were associated with fatty acid-supported maximal OXPHOS independent of BMI and PA (p < 0.05; n = 447). CONCLUSIONS Skeletal MFI and abdominal visceral, but not subcutaneous, AT are inversely associated with SM mitochondrial bioenergetics in older adults independent of BMI. Associations between ectopic AT and in vivo mitochondrial bioenergetics are attenuated by PA.
Collapse
Affiliation(s)
- Andrea M. Brennan
- Translational Research Institute, AdventHealth Research Institute, Orlando, Florida, USA
| | - Paul M. Coen
- Translational Research Institute, AdventHealth Research Institute, Orlando, Florida, USA
| | - Theresa Mau
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, California, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA
| | - Megan Hetherington-Rauth
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, California, USA
| | - Frederico G.S. Toledo
- Division of Endocrinology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Erin E. Kershaw
- Division of Endocrinology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Peggy M. Cawthon
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, California, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA
| | - Philip A. Kramer
- Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Sofhia V. Ramos
- Translational Research Institute, AdventHealth Research Institute, Orlando, Florida, USA
| | - Anne B. Newman
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Steven R. Cummings
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, California, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA
| | - Daniel E. Forman
- Department of Medicine-Divisions of Geriatrics and Cardiology, University of Pittsburgh, Geriatrics Research, Education, and Clinical Care (GRECC), VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
| | - Reichelle X. Yeo
- Translational Research Institute, AdventHealth Research Institute, Orlando, Florida, USA
| | - Giovanna Distefano
- Translational Research Institute, AdventHealth Research Institute, Orlando, Florida, USA
| | - Iva Miljkovic
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jamie N. Justice
- Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Anthony J.A. Molina
- Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
- Department of Medicine-Division of Geriatrics, Gerontology, and Palliative Care, University of California San Diego School of Medicine, La Jolla, California, USA
| | - Michael J. Jurczak
- Division of Endocrinology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Lauren M. Sparks
- Translational Research Institute, AdventHealth Research Institute, Orlando, Florida, USA
| | - Stephen B. Kritchevsky
- Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Bret H. Goodpaster
- Translational Research Institute, AdventHealth Research Institute, Orlando, Florida, USA
| |
Collapse
|
5
|
Swargiary D, Kashyap B, Sarma P, Ahmed SA, Gurumayum S, Barge SR, Basumatary D, Borah JC. Free radical scavenging polyphenols isolated from Phyllanthus niruri L. ameliorates hyperglycemia via SIRT1 induction and GLUT4 translocation in in vitro and in vivo models. Fitoterapia 2024; 173:105803. [PMID: 38171388 DOI: 10.1016/j.fitote.2023.105803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/12/2023] [Accepted: 12/28/2023] [Indexed: 01/05/2024]
Abstract
Type 2 diabetes milletus (T2DM) is a complex multifaceted disorder characterized by insulin resistance in skeletal muscle. Phyllanthus niruri L. is well reported sub-tropical therapeutically beneficial ayurvedic medicinal plant from Euphorbiaceae family used in various body ailments such as metabolic disorder including diabetes. The present study emphasizes on the therapeutic potential of Phyllanthus niruri L. and its phytochemical(s) against insulin resistance conditions and impaired antioxidant activity thereby aiding as an anti-hyperglycemic agent in targeting T2DM. Three compounds were isolated from the most active ethyl acetate fraction namely compound 1 as 1-O-galloyl-6-O-luteoyl-β-D-glucoside, compound 2 as brevifolincarboxylic acid and compound 3 as ricinoleic acid. Compounds 1 and 2, the two polyphenols enhanced the uptake of glucose and inhibited ROS levels in palmitate induced C2C12 myotubes. PNEAF showed the potent enhancement of glucose uptake in palmitate-induced insulin resistance condition in C2C12 myotubes and significant ROS inhibition was observed in skeletal muscle cell line. PNEAF treated IR C2C12 myotubes and STZ induced Wistar rats elevated SIRT1, PGC1-α signaling cascade through phosphorylation of AMPK and GLUT4 translocation resulting in insulin sensitization. Our study revealed an insight into the efficacy of marker compounds isolated from P. niruri and its enriched ethyl acetate fraction as ROS scavenging agent and helps in attenuating insulin resistance condition in C2C12 myotubes as well as in STZ induced Wistar rat by restoring glucose metabolism. Overall, this study can provide prospects for the marker-assisted development of P. niruri as a phytopharmaceutical drug for the insulin resistance related diabetic complications.
Collapse
Affiliation(s)
- Deepsikha Swargiary
- Chemical Biology Lab-I, Institute of Advanced Study in Science and Technology (IASST), Guwahati, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P, India
| | - Bhaswati Kashyap
- Chemical Biology Lab-I, Institute of Advanced Study in Science and Technology (IASST), Guwahati, Assam, India
| | - Pranamika Sarma
- Chemical Biology Lab-I, Institute of Advanced Study in Science and Technology (IASST), Guwahati, Assam, India
| | - Semim Akhtar Ahmed
- Chemical Biology Lab-I, Institute of Advanced Study in Science and Technology (IASST), Guwahati, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P, India
| | - Shalini Gurumayum
- Chemical Biology Lab-I, Institute of Advanced Study in Science and Technology (IASST), Guwahati, Assam, India
| | - Sagar Ramrao Barge
- Chemical Biology Lab-I, Institute of Advanced Study in Science and Technology (IASST), Guwahati, Assam, India
| | - Devi Basumatary
- Chemical Biology Lab-I, Institute of Advanced Study in Science and Technology (IASST), Guwahati, Assam, India
| | - Jagat C Borah
- Chemical Biology Lab-I, Institute of Advanced Study in Science and Technology (IASST), Guwahati, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P, India.
| |
Collapse
|
6
|
Brennan AM, Coen PM, Mau T, Hetherington-Rauth M, Toledo FGS, Kershaw EE, Cawthon PM, Kramer PA, Ramos SV, Newman AB, Cummings SR, Forman DE, Yeo RX, DiStefano G, Miljkovic I, Justice JN, Molina AJA, Jurczak MJ, Sparks LM, Kritchevsky SB, Goodpaster BH. Associations between regional adipose tissue distribution and skeletal muscle bioenergetics in older men and women. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.10.23298359. [PMID: 37986822 PMCID: PMC10659498 DOI: 10.1101/2023.11.10.23298359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Objective Examine the association of ectopic adipose tissue (AT) with skeletal muscle (SM) mitochondrial bioenergetics in older adults. Methods Cross-sectional data from 829 older adults ≥70 years was used. Total abdominal, subcutaneous, and visceral AT; and thigh muscle fat infiltration (MFI) was quantified by MRI. SM mitochondrial energetics were characterized using in vivo 31 P-MRS (ATP max ) and ex vivo high-resolution respirometry (maximal oxidative phosphorylation (OXPHOS)). ActivPal was used to measure PA (step count). Linear regression models adjusted for covariates were applied, with sequential adjustment for BMI and PA. Results Independent of BMI, total abdominal (standardized (Std.) β=-0.21; R 2 =0.09) and visceral AT (Std. β=-0.16; R 2 =0.09) were associated with ATP max ( p <0.01), but not after further adjustment for PA (p≥0.05). Visceral AT (Std. β=-0.16; R 2 =0.25) and thigh MFI (Std. β=-0.11; R 2 =0.24) were negatively associated with carbohydrate-supported maximal OXPHOS independent of BMI and PA ( p <0.05). Total abdominal AT (Std. β=-0.19; R 2 =0.24) and visceral AT (Std. β=-0.17; R 2 =0.24) were associated with fatty acid-supported maximal OXPHOS independent of BMI and PA (p<0.05). Conclusions Skeletal MFI and abdominal visceral, but not subcutaneous AT, are inversely associated with SM mitochondrial bioenergetics in older adults independent of BMI. Associations between ectopic AT and in vivo mitochondrial bioenergetics are attenuated by PA.
Collapse
|
7
|
Liu Y, Wang D, Liu YP. Metabolite profiles of diabetes mellitus and response to intervention in anti-hyperglycemic drugs. Front Endocrinol (Lausanne) 2023; 14:1237934. [PMID: 38027178 PMCID: PMC10644798 DOI: 10.3389/fendo.2023.1237934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) has become a major health problem, threatening the quality of life of nearly 500 million patients worldwide. As a typical multifactorial metabolic disease, T2DM involves the changes and interactions of various metabolic pathways such as carbohydrates, amino acid, and lipids. It has been suggested that metabolites are not only the endpoints of upstream biochemical processes, but also play a critical role as regulators of disease progression. For example, excess free fatty acids can lead to reduced glucose utilization in skeletal muscle and induce insulin resistance; metabolism disorder of branched-chain amino acids contributes to the accumulation of toxic metabolic intermediates, and promotes the dysfunction of β-cell mitochondria, stress signal transduction, and apoptosis. In this paper, we discuss the role of metabolites in the pathogenesis of T2DM and their potential as biomarkers. Finally, we list the effects of anti-hyperglycemic drugs on serum/plasma metabolic profiles.
Collapse
Affiliation(s)
| | | | - Yi-Ping Liu
- Provincial University Key Laboratory of Sport and Health Science, School of Physical Education and Sport Sciences, Fujian Normal University, Fuzhou, China
| |
Collapse
|
8
|
Alaniz-Arcos JL, Ortiz-Cornejo ME, Larios-Tinoco JO, Klünder-Klünder M, Vidal-Mitzi K, Gutiérrez-Camacho C. Differences in the absolute muscle strength and power of children and adolescents with overweight or obesity: a systematic review. BMC Pediatr 2023; 23:474. [PMID: 37726719 PMCID: PMC10510195 DOI: 10.1186/s12887-023-04290-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 09/05/2023] [Indexed: 09/21/2023] Open
Abstract
This study aimed to describe absolute muscle strength and power in children and adolescents with obesity, overweight and normal weight, and the assessment tests and tools used. We retrieved observational studies from MEDLINE (PubMed), TripDataBase, Epistemonikos, EBSCO essentials, NICE, SCOPUS, and LILACs up to February 2023. In addition, we recovered data from studies with at least three comparison groups (obesity, overweight, normal weight) and with a description of the absolute muscle strength and power and the assessment tests and instruments used. The methodologic quality of the studies was assessed with the Joanna Briggs checklist, and the review was carried out using the PRISMA 2020 methodology. Eleven studies with 13,451 participants from 6 to 18 years of age were once included, finding that the absolute muscle strength of their upper extremities was greater when they were overweight or obese; however, in the same groups, absolute muscle strength was lower when they carried their body weight. In addition, lower limb absolute muscle strength was significantly lower in obese participants than in normal weight, regardless of age and gender. The most used tools to measure the absolute muscle strength of the upper limbs were the grip dynamometers and push-up exercises. In contrast, different jump tests were used to measure the power of the lower limbs. There are great differences in muscle strength and power between overweight or obese children and adolescents and those with normal weight. Therefore, it is recommended to use validated tests, preferably that assess strength through the load of the patient's body weight, either of the upper or lower limbs, for greater evaluation objectivity that facilitates the management of these children and adolescents.
Collapse
Affiliation(s)
- José Luis Alaniz-Arcos
- Physiotherapy Research Unit, Faculty of Medicine, Universidad Nacional Autónoma de México, Dr. Márquez 162 Colonia Doctores, Mexico City, CP 06720 Mexico
| | - Ma. Elena Ortiz-Cornejo
- Physiotherapy Research Unit, Faculty of Medicine, Universidad Nacional Autónoma de México, Dr. Márquez 162 Colonia Doctores, Mexico City, CP 06720 Mexico
| | - José Omar Larios-Tinoco
- Physiotherapy Research Unit, Faculty of Medicine, Universidad Nacional Autónoma de México, Dr. Márquez 162 Colonia Doctores, Mexico City, CP 06720 Mexico
| | - Miguel Klünder-Klünder
- Research Headmaster’s Office, Hospital Infantil de México Federico Gómez, Mexico City, México
| | - Karla Vidal-Mitzi
- Physiotherapy Research Unit, Faculty of Medicine, Universidad Nacional Autónoma de México, Dr. Márquez 162 Colonia Doctores, Mexico City, CP 06720 Mexico
| | - Claudia Gutiérrez-Camacho
- Physiotherapy Research Unit, Faculty of Medicine, Universidad Nacional Autónoma de México, Dr. Márquez 162 Colonia Doctores, Mexico City, CP 06720 Mexico
| |
Collapse
|
9
|
Deboeck G, Vicenzi M, Faoro V, Lamotte M. Aerobic exercise capacity is normal in obesity with or without metabolic syndrome. Respir Med 2023; 210:107173. [PMID: 36858324 DOI: 10.1016/j.rmed.2023.107173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/03/2023]
Abstract
BACKGROUND Obesity might be a cause of limited aerobic exercise capacity. It is often associated with metabolic syndrome (MS) that includes cardiovascular comorbidities as arterial hypertension. Cardiopulmonary exercise testing (CPET) is the gold-standard to assess aerobic capacity and discriminate causes of dyspnea. AIM To evaluate aerobic capacity in obesity and if MS or hypertensive treatment impacts on the CPET profile. METHODS CPET of 146 obese patients, whom 33 and 31 were matched for MS and antihypertensive medication, were analyzed. VO2peak (mL/min/Kg) was reported in percentage of predicted value, or, divided by body weight, fat free mass (FFM) or body weight expected for a body mass index of 24 (BMI24). RESULTS VO2peak (20,8 ± 4,4 mL/min/Kg) was normal when expressed in percentage predicted for obesity (111 ± 22%pred) or divided by FFM and weightBMI24 (33,6 ± 5,6 and 30,6 ± 6,2 respectively). The latter correlated better with maximal work rate (r = 0,7168, p < 0,001). Obese patients showed normal ventilatory efficiency (ventilation to carbon dioxide production slope: 28 ± 4), VO2 to work rate (10,2 ± 1,6 mLO2/Watt) and, slightly elevated heart rate to VO2 slope (4,0 ± 1,1 bpm/mL/min/Kg). Compared to normotensives, hypertensive medicated patients had higher blood pressure at anaerobic threshold (142 ± 23 vs 158 ± 26 mmHg, p = 0,001) but not at maximal exercise (189 ± 31 vs 201 ± 23 mmHg, p = NS), and, had lower actual maximal heart rate (155 ± 23 vs 143 ± 25 bpm, p = 0,03). There was no difference between obese patients with or without MS. CONCLUSION Obese people with or without MS present with similar and normal aerobic profile related to the excessive body weight. VO2peak divided by weightBMI24 is an easy and clinical meaningful index for obese patients.
Collapse
Affiliation(s)
- G Deboeck
- Research Unit of Rehabilitation Sciences, Faculty of Motorskills Sciences, Université Libre de Bruxelles, route de Lennik 808, 1070, Brussels, Belgium.
| | - M Vicenzi
- Dyspnea Lab, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy; Department of Cardio-Thoracic-Vascular Area, Cardiology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Italy
| | - V Faoro
- Research Unit of Cardio-Pulmonary Exercise Physiology Faculty of Motorskills Sciences, Université Libre de Bruxelles, route de Lennik 808, 1070, Brussels, Belgium
| | - M Lamotte
- Service of Cardiology, Hospital Erasme, Université Libre de Bruxelles, 1070, Brussels, Belgium
| |
Collapse
|
10
|
Vibarel-Rebot N, Asselin M, Amiot V, Collomp K. Short-Term Effect of Bariatric Surgery on Cardiorespiratory Response at Submaximal, Ventilatory Threshold, and Maximal Exercise in Women with Severe Obesity. Obes Surg 2023; 33:1528-1535. [PMID: 36952099 DOI: 10.1007/s11695-023-06550-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/24/2023]
Abstract
PURPOSE People with obesity have varying degrees of cardiovascular, pulmonary, and musculoskeletal dysfunction that affect aerobic exercise testing variables. Short time after bariatric surgery, these dysfunctions could affect both peak oxygen consumption ([Formula: see text] O2 peak), the gold standard for assessing cardiorespiratory fitness (CRF) and aerobic capacity evaluated with ventilatory threshold (VT1). The purpose of this study was to evaluate the short-term effect of bariatric surgery, i.e. before the resumption of physical activity, on submaximal, at VT1 and maximal cardiorespiratory responses in middle-aged women with severe obesity. MATERIALS AND METHODS Thirteen middle-aged women with severe obesity (age: 36.7 ± 2.3 years; weight: 110.5 ± 3.6 kg, BMI: 41.8 ± 1.1 kg/m2) awaiting bariatric surgery participated in the study. Four weeks before and 6 to 8 weeks after surgery, body composition was determined by bioelectrical impedance. The participants performed an incremental cycling test to [Formula: see text] O2 peak. RESULTS After bariatric surgery, all body composition parameters were reduced, absolute [Formula: see text] O2 peak and peak workload decline with a lower VT1. Relative [Formula: see text] O2 at peak and at VT1 (ml/min/kg or ml/min/kg of FFM) remained unchanged. Ventilation was lower after bariatric surgery during exercise with no change in cardiac response. CONCLUSION Our results showed that weight loss alone at short-term after bariatric surgery decreased CRF as seen by a decrease in absolute [Formula: see text] O2 peak, and peak workload with lower VT1, whereas relative [Formula: see text] O2 (ml/min/kg or ml/min/kg of FFM) during exercise remained unchanged in women with obesity. Rapid FFM loss affects cardiorespiratory responses at submaximal and maximal.
Collapse
Affiliation(s)
- Nancy Vibarel-Rebot
- CIAMS, EA 4532, Université Orléans, Orléans, France.
- CIAMS, EA 4532, Université Paris-Saclay, Orsay, France.
- Research Group Sport, Physical Activity, Rehabilitation and Movement for Performance and Health, University of Orleans, Orléans, France.
| | - Marine Asselin
- CIAMS, EA 4532, Université Orléans, Orléans, France
- CIAMS, EA 4532, Université Paris-Saclay, Orsay, France
| | - Virgile Amiot
- Research Group Sport, Physical Activity, Rehabilitation and Movement for Performance and Health, University of Orleans, Orléans, France
- Service de Médecine du Sport, CHR Orléans, 45067, Orléans, France
| | - Katia Collomp
- CIAMS, EA 4532, Université Orléans, Orléans, France
- CIAMS, EA 4532, Université Paris-Saclay, Orsay, France
- Research Group Sport, Physical Activity, Rehabilitation and Movement for Performance and Health, University of Orleans, Orléans, France
- Laboratoire AntiDopage Français, LADF, Université Paris-Saclay, Chatenay-Malabry, France
| |
Collapse
|
11
|
Contribution of specific ceramides to obesity-associated metabolic diseases. Cell Mol Life Sci 2022; 79:395. [PMID: 35789435 PMCID: PMC9252958 DOI: 10.1007/s00018-022-04401-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/20/2022] [Accepted: 05/26/2022] [Indexed: 12/04/2022]
Abstract
Ceramides are a heterogeneous group of bioactive membrane sphingolipids that play specialized regulatory roles in cellular metabolism depending on their characteristic fatty acyl chain lengths and subcellular distribution. As obesity progresses, certain ceramide molecular species accumulate in metabolic tissues and cause cell-type-specific lipotoxic reactions that disrupt metabolic homeostasis and lead to the development of cardiometabolic diseases. Several mechanisms for ceramide action have been inferred from studies in vitro, but only recently have we begun to better understand the acyl chain length specificity of ceramide-mediated signaling in the context of physiology and disease in vivo. New discoveries show that specific ceramides affect various metabolic pathways and that global or tissue-specific reduction in selected ceramide pools in obese rodents is sufficient to improve metabolic health. Here, we review the tissue-specific regulation and functions of ceramides in obesity, thus highlighting the emerging concept of selectively inhibiting production or action of ceramides with specific acyl chain lengths as novel therapeutic strategies to ameliorate obesity-associated diseases.
Collapse
|
12
|
Mocciaro G, Gastaldelli A. Obesity-Related Insulin Resistance: The Central Role of Adipose Tissue Dysfunction. Handb Exp Pharmacol 2022; 274:145-164. [PMID: 35192055 DOI: 10.1007/164_2021_573] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Obesity is a key player in the onset and progression of insulin resistance (IR), a state by which insulin-sensitive cells fail to adequately respond to insulin action. IR is a reversible condition, but if untreated leads to type 2 diabetes alongside increasing cardiovascular risk. The link between obesity and IR has been widely investigated; however, some aspects are still not fully characterized.In this chapter, we introduce key aspects of the pathophysiology of IR and its intimate connection with obesity. Specifically, we focus on the role of adipose tissue dysfunction (quantity, quality, and distribution) as a driver of whole-body IR. Furthermore, we discuss the obesity-related lipidomic remodeling occurring in adipose tissue, liver, and skeletal muscle. Key mechanisms linking lipotoxicity to IR in different tissues and metabolic alterations (i.e., fatty liver and diabetes) and the effect of weight loss on IR are also reported while highlighting knowledge gaps.
Collapse
Affiliation(s)
- Gabriele Mocciaro
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Amalia Gastaldelli
- Institute of Clinical Physiology, National Research Council, Pisa, Italy.
| |
Collapse
|
13
|
Tippetts TS, Holland WL, Summers SA. Cholesterol - the devil you know; ceramide - the devil you don't. Trends Pharmacol Sci 2021; 42:1082-1095. [PMID: 34750017 PMCID: PMC8595778 DOI: 10.1016/j.tips.2021.10.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 01/20/2023]
Abstract
Ectopic lipids play a key role in numerous pathologies, including heart disease, stroke, and diabetes. Of all the lipids studied, perhaps the most well understood is cholesterol, a widely used clinical biomarker of cardiovascular disease and a target of pharmacological interventions (e.g., statins). Thousands of studies have interrogated the regulation and action of this disease-causing sterol. As a growing body of literature indicates, a new class of lipid-based therapies may be on the horizon. Ceramides are cholesterol-independent biomarkers of heart disease and diabetes in humans. Studies in rodents suggest that they are causative agents of disease, as lowering ceramides through genetic or pharmacological interventions prevents cardiovascular disease and diabetes. Herein, we discuss the evidence supporting the potential of therapeutics targeting ceramides to treat cardiometabolic disease, contrasting it with the robust datasets that drove the creation of cholesterol-lowering pharmaceuticals.
Collapse
Affiliation(s)
| | | | - Scott A. Summers
- Correspondence should be addressed to: Scott A. Summers, Department of Nutrition and Integrative Physiology, University of Utah College of Health, 15N, 2030 East, Rm 3110, Salt Lake City Utah 84112, , Tel: 801-585-9359
| |
Collapse
|
14
|
Gil S, Kirwan JP, Murai IH, Dantas WS, Merege-Filho CAA, Ghosh S, Shinjo SK, Pereira RMR, Teodoro WR, Felau SM, Benatti FB, de Sá-Pinto AL, Lima F, de Cleva R, Santo MA, Gualano B, Roschel H. A randomized clinical trial on the effects of exercise on muscle remodelling following bariatric surgery. J Cachexia Sarcopenia Muscle 2021; 12:1440-1455. [PMID: 34666419 PMCID: PMC8718087 DOI: 10.1002/jcsm.12815] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 07/27/2021] [Accepted: 09/07/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Muscle atrophy and strength loss are common adverse outcomes following bariatric surgery. This randomized, controlled trial investigated the effects of exercise training on bariatric surgery-induced loss of muscle mass and function. Additionally, we investigated the effects of the intervention on molecular and histological mediators of muscle remodelling. METHODS Eighty women with obesity were randomly assigned to a Roux-en-Y gastric bypass (RYGB: n = 40, age = 42 ± 8 years) or RYGB plus exercise training group (RYGB + ET: n = 40, age = 38 ± 7 years). Clinical and laboratory parameters were assessed at baseline, and 3 (POST3) and 9 months (POST9) after surgery. The 6 month, three-times-a-week, exercise intervention (resistance plus aerobic exercise) was initiated 3 months post-surgery (for RYGB + ET). A healthy, lean, age-matched control group was recruited to provide reference values for selected variables. RESULTS Surgery resulted in a similar (P = 0.66) reduction in lower-limb muscle strength in RYGB and RYGB+ET (-26% vs. -31%), which was rescued to baseline values in RYGB + ET (P = 0.21 vs. baseline) but not in RYGB (P < 0.01 vs. baseline). Patients in RYGB+ET had greater absolute (214 vs. 120 kg, P < 0.01) and relative (2.4 vs. 1.4 kg/body mass, P < 0.01) muscle strength compared with RYGB alone at POST9. Exercise resulted in better performance in timed-up-and-go (6.3 vs. 7.1 s, P = 0.05) and timed-stand-test (18 vs. 14 repetitions, P < 0.01) compared with RYGB. Fat-free mass was lower (POST9-PRE) after RYBG than RYGB + ET (total: -7.9 vs. -4.9 kg, P < 0.01; lower-limb: -3.8 vs. -2.7 kg, P = 0.02). Surgery reduced Types I (~ - 21%; P = 0.99 between-group comparison) and II fibre cross-sectional areas (~ - 27%; P = 0.88 between-group comparison), which were rescued to baseline values in RYGB+ET (P > 0.05 vs. baseline) but not RYGB (P > 0.01 vs. baseline). RYGB + ET showed greater Type I (5187 vs. 3898 μm2 , P < 0.01) and Type II (5165 vs. 3565 μm2 , P < 0.01) fCSA than RYGB at POST9. RYGB + ET also resulted in increased capillarization (P < 0.01) and satellite cell content (P < 0.01) than RYGB at POST9. Gene-set normalized enrichment scores for the muscle transcriptome revealed that the ubiquitin-mediated proteolysis pathway was suppressed in RYGB + ET at POST9 vs. PRE (NES: -1.7; P < 0.01), but not in RYGB. Atrogin-1 gene expression was lower in RYGB + ET vs. RYGB at POST9 (0.18 vs. 0.71-fold change, P < 0.01). From both genotypic and phenotypic perspectives, the muscle of exercised patients resembled that of healthy lean individuals. CONCLUSIONS This study provides compelling evidence-from gene to function-that strongly supports the incorporation of exercise into the recovery algorithm for bariatric patients so as to counteract the post-surgical loss of muscle mass and function.
Collapse
Affiliation(s)
- Saulo Gil
- Applied Physiology & Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil.,Laboratory of Assessment and Conditioning in Rheumatology, Universidade de São Paulo, São Paulo, SP, Brazil.,Rheumatology Division, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - John P Kirwan
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Igor H Murai
- Applied Physiology & Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil.,Rheumatology Division, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Wagner S Dantas
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Carlos Alberto Abujabra Merege-Filho
- Applied Physiology & Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil.,Laboratory of Assessment and Conditioning in Rheumatology, Universidade de São Paulo, São Paulo, SP, Brazil.,Rheumatology Division, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Sujoy Ghosh
- Laboratory of Computational Biology, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA.,Centre for Computational Biology, Duke-NUS Medical School, Singapore
| | - Samuel K Shinjo
- Rheumatology Division, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Rosa M R Pereira
- Rheumatology Division, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Walcy R Teodoro
- Rheumatology Division, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Sheylla M Felau
- Applied Physiology & Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Fabiana B Benatti
- Applied Physiology & Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil.,School of Applied Sciences, Universidade Estadual de Campinas, São Paulo, Brazil
| | - Ana L de Sá-Pinto
- Rheumatology Division, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Fernanda Lima
- Rheumatology Division, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Roberto de Cleva
- Gastroenterology Department, Digestive Surgery Division Department of Digestive Division, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Marco Aurélio Santo
- Gastroenterology Department, Digestive Surgery Division Department of Digestive Division, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Bruno Gualano
- Applied Physiology & Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil.,Laboratory of Assessment and Conditioning in Rheumatology, Universidade de São Paulo, São Paulo, SP, Brazil.,Rheumatology Division, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Hamilton Roschel
- Applied Physiology & Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil.,Laboratory of Assessment and Conditioning in Rheumatology, Universidade de São Paulo, São Paulo, SP, Brazil.,Rheumatology Division, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
15
|
Takagi H, Ikehara T, Hashimoto K, Tanimoto K, Shimazaki A, Kashiwagi Y, Sakamoto S, Yukioka H. Acetyl-CoA carboxylase 2 inhibition reduces skeletal muscle bioactive lipid content and attenuates progression of type 2 diabetes in Zucker diabetic fatty rats. Eur J Pharmacol 2021; 910:174451. [PMID: 34454928 DOI: 10.1016/j.ejphar.2021.174451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 11/17/2022]
Abstract
Intramyocellular lipid (IMCL) accumulation in skeletal muscle is closely associated with development of insulin resistance. In particular, diacylglycerol and ceramide are currently considered as causal bioactive lipids for impaired insulin action. Recently, inhibition of acetyl-CoA carboxylase 2 (ACC2), which negatively modulates mitochondrial fatty acid oxidation, has been shown to reduce total IMCL content and improve whole-body insulin resistance. This study aimed to investigate whether ACC2 inhibition-induced compositional changes in bioactive lipids, especially diacylglycerol and ceramide, within skeletal muscle contribute to the improved insulin resistance. In skeletal muscle of normal rats, treatment of the ACC2 inhibitor compound 2e significantly decreased both diacylglycerol and ceramide levels while having no significant impact on other lipid metabolite levels. In skeletal muscle of Zucker diabetic fatty (ZDF) rats, which exhibited greater lipid accumulation than that of normal rats, compound 2e significantly decreased diacylglycerol and ceramide levels corresponding to reduced long chain acyl-CoA pools. Additionally, in the lipid metabolomics study, ZDF rats treated with compound 2e also showed improved diabetes-related metabolic disturbance, as reflected by delayed hyperinsulinemia as well as upregulated gene expression associated with diabetic conditions in skeletal muscle. These metabolic improvements were strongly correlated with the bioactive lipid reductions. Furthermore, long-term treatment of compound 2e markedly improved whole-body insulin resistance, attenuated hyperglycemia and delayed insulin secretion defect even at severe diabetic conditions. These findings suggest that ACC2 inhibition decreases diacylglycerol and ceramide accumulation within skeletal muscle by enhancing acyl-CoA breakdown, leading to attenuation of lipid-induced insulin resistance and subsequent diabetes progression.
Collapse
Affiliation(s)
- Hiroyuki Takagi
- Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka, Osaka, 561-0825, Japan.
| | - Tatsuya Ikehara
- Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka, Osaka, 561-0825, Japan
| | - Kumi Hashimoto
- Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka, Osaka, 561-0825, Japan
| | - Keiichi Tanimoto
- Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka, Osaka, 561-0825, Japan
| | - Atsuyuki Shimazaki
- Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka, Osaka, 561-0825, Japan
| | - Yuto Kashiwagi
- Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka, Osaka, 561-0825, Japan
| | - Shingo Sakamoto
- Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka, Osaka, 561-0825, Japan
| | - Hideo Yukioka
- Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka, Osaka, 561-0825, Japan
| |
Collapse
|
16
|
The aetiology and molecular landscape of insulin resistance. Nat Rev Mol Cell Biol 2021; 22:751-771. [PMID: 34285405 DOI: 10.1038/s41580-021-00390-6] [Citation(s) in RCA: 279] [Impact Index Per Article: 69.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2021] [Indexed: 02/07/2023]
Abstract
Insulin resistance, defined as a defect in insulin-mediated control of glucose metabolism in tissues - prominently in muscle, fat and liver - is one of the earliest manifestations of a constellation of human diseases that includes type 2 diabetes and cardiovascular disease. These diseases are typically associated with intertwined metabolic abnormalities, including obesity, hyperinsulinaemia, hyperglycaemia and hyperlipidaemia. Insulin resistance is caused by a combination of genetic and environmental factors. Recent genetic and biochemical studies suggest a key role for adipose tissue in the development of insulin resistance, potentially by releasing lipids and other circulating factors that promote insulin resistance in other organs. These extracellular factors perturb the intracellular concentration of a range of intermediates, including ceramide and other lipids, leading to defects in responsiveness of cells to insulin. Such intermediates may cause insulin resistance by inhibiting one or more of the proximal components in the signalling cascade downstream of insulin (insulin receptor, insulin receptor substrate (IRS) proteins or AKT). However, there is now evidence to support the view that insulin resistance is a heterogeneous disorder that may variably arise in a range of metabolic tissues and that the mechanism for this effect likely involves a unified insulin resistance pathway that affects a distal step in the insulin action pathway that is more closely linked to the terminal biological response. Identifying these targets is of major importance, as it will reveal potential new targets for treatments of diseases associated with insulin resistance.
Collapse
|
17
|
Davis AN, Myers WA, Eduardo Rico J, Feng Wang L, Chang C, Richards AT, Moniruzzaman M, Haughey NJ, McFadden JW. Effects of serine palmitoyltransferase inhibition by myriocin in ad libitum-fed and nutrient-restricted ewes. J Anim Sci 2021; 99:6330562. [PMID: 34324668 DOI: 10.1093/jas/skab221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/27/2021] [Indexed: 11/14/2022] Open
Abstract
The fungal isolate myriocin inhibits serine palmitoyltransferase and de novo ceramide synthesis in rodents; however, the effects of myriocin on ceramide concentrations and metabolism have not been previously investigated in ruminants. In our study, 12 non-lactating crossbred ewes received an intravenous bolus of myriocin (0, 0.1, 0.3, or 1.0 mg/kg/body weight [BW]; CON, LOW, MOD, or HIGH) every 48 h for 17 d. Ewes consumed a high-energy diet from day 1 to 14 and were nutrient-restricted (straw only) from day 15 to 17. Blood was collected preprandial and at 1, 6, and 12 h relative to bolus and nutrient restriction. Tissues were collected following euthanasia on day 17. Plasma was analyzed for free fatty acids (FFAs), glucose, and insulin. Plasma and tissue ceramides were quantified using mass spectrometry. HIGH selectively decreased metabolizable energy intake, BW, and plasma insulin, and increased plasma FFA (Dose, P < 0.05). Myriocin linearly decreased plasma very-long-chain (VLC) ceramide and dihydroceramide (DHCer) by day 13 (Linear, P < 0.05). During nutrient restriction, fold-change in FFA was lower with increasing dose (P < 0.05). Nutrient restriction increased plasma C16:0-Cer, an effect suppressed by MOD and HIGH (Dose × Time, P < 0.05). Myriocin linearly decreased most ceramide and DHCer species in the liver and omental and mesenteric adipose, VLC ceramide and DHCer in the pancreas, and C18:0-Cer in skeletal muscle and subcutaneous adipose tissue (Linear, P ≤ 0.05). We conclude that the intravenous delivery of 0.3 mg of myriocin/kg of BW/48 h decreases circulating and tissue ceramide without modifying energy intake in ruminants.
Collapse
Affiliation(s)
- Amanda N Davis
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA.,Biological Sciences Department, State University of New York College at Cortland, Cortland, NY 13045, USA
| | - William A Myers
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA
| | | | - Lin Feng Wang
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA.,College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zengzhou 450002, China
| | - Crystal Chang
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA
| | - Andrew T Richards
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA
| | - Mohammed Moniruzzaman
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Norman J Haughey
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Joseph W McFadden
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
18
|
Assessment of aerobic exercise capacity in obesity, which expression of oxygen uptake is the best? SPORTS MEDICINE AND HEALTH SCIENCE 2021; 3:138-147. [PMID: 35784518 PMCID: PMC9219259 DOI: 10.1016/j.smhs.2021.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 01/27/2021] [Accepted: 01/30/2021] [Indexed: 11/24/2022] Open
|
19
|
Insulin Signal Transduction Perturbations in Insulin Resistance. Int J Mol Sci 2021; 22:ijms22168590. [PMID: 34445300 PMCID: PMC8395322 DOI: 10.3390/ijms22168590] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/23/2021] [Accepted: 07/28/2021] [Indexed: 12/11/2022] Open
Abstract
Type 2 diabetes mellitus is a widespread medical condition, characterized by high blood glucose and inadequate insulin action, which leads to insulin resistance. Insulin resistance in insulin-responsive tissues precedes the onset of pancreatic β-cell dysfunction. Multiple molecular and pathophysiological mechanisms are involved in insulin resistance. Insulin resistance is a consequence of a complex combination of metabolic disorders, lipotoxicity, glucotoxicity, and inflammation. There is ample evidence linking different mechanistic approaches as the cause of insulin resistance, but no central mechanism is yet described as an underlying reason behind this condition. This review combines and interlinks the defects in the insulin signal transduction pathway of the insulin resistance state with special emphasis on the AGE-RAGE-NF-κB axis. Here, we describe important factors that play a crucial role in the pathogenesis of insulin resistance to provide directionality for the events. The interplay of inflammation and oxidative stress that leads to β-cell decline through the IAPP-RAGE induced β-cell toxicity is also addressed. Overall, by generating a comprehensive overview of the plethora of mechanisms involved in insulin resistance, we focus on the establishment of unifying mechanisms to provide new insights for the future interventions of type 2 diabetes mellitus.
Collapse
|
20
|
Pileggi CA, Parmar G, Harper ME. The lifecycle of skeletal muscle mitochondria in obesity. Obes Rev 2021; 22:e13164. [PMID: 33442950 DOI: 10.1111/obr.13164] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/10/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022]
Abstract
Skeletal muscle possesses dramatic metabolic plasticity that allows for the rapid adaptation in cellular energy transduction to meet the demands of the organism. Obesity elicits changes in skeletal muscle structure and function, resulting in the accumulation of intramuscular lipids. The accumulation of intramuscular lipids in obesity is associated with impaired skeletal muscle mitochondrial content and function. Mitochondria exist as a dynamic network that is regulated by the processes of biogenesis, fusion, fission, and mitophagy. In this review, we outline adaptations in molecular pathways that regulate mitochondrial structure and function in obesity. We highlight the emerging role of dysregulated skeletal muscle macroautophagy and mitochondrial turnover in obesity. Future research should further elucidate the role of mitophagy in observed reductions in mitochondrial content and function during obesity.
Collapse
Affiliation(s)
- Chantal A Pileggi
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.,Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Gaganvir Parmar
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.,Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Mary-Ellen Harper
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.,Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| |
Collapse
|
21
|
Lee H, Kim YI, Nirmala FS, Kim JS, Seo HD, Ha TY, Jang YJ, Jung CH, Ahn J. MiR-141-3p promotes mitochondrial dysfunction in ovariectomy-induced sarcopenia via targeting Fkbp5 and Fibin. Aging (Albany NY) 2021; 13:4881-4894. [PMID: 33534778 PMCID: PMC7950230 DOI: 10.18632/aging.202617] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 12/09/2020] [Indexed: 01/12/2023]
Abstract
Post-menopausal conditions exacerbate the biological aging process and this is often accompanied by visceral adiposity with sarcopenia. Mitochondrial impairment is a hallmark of frailty and sarcopenia in the elderly. However, the exact mechanism underlying the development of obesogenic sarcopenia and the involvement of mitochondria remains unclear. This study confirmed that there is a decline in muscle mass and function as well as mitochondrial dysfunction in the quadriceps of ovariectomized (OVX) mice. To investigate the role of microRNA (miRNA) in this process, we performed miRNA and mRNA arrays and found that miR-141-3p directly targets and downregulates FK506 binding protein 5 (Fkbp5) and Fibin. Overexpression of miR-141-3p decreased mitochondrial function and inhibited myogenic differentiation in C2C12 cells. These effects were mediated by Fkbp5 and Fibin inhibition. Conversely, knockdown of miR-141-3p increased mitochondrial respiration and enhanced myogenesis. Treatment with β-estradiol effectively reversed the palmitic acid-induced upregulation of miR-141-3p and subsequent downregulation of Fkbp5 and Fibin. In conclusion, miR-141-3p is upregulated in OVX mice, and this is associated with mitochondrial dysfunction through inhibition of Fkbp5 and Fibin. These findings suggest that inhibiting miR-141-3p could be a therapeutic target for alleviating obesogenic sarcopenia.
Collapse
Affiliation(s)
- Hyunjung Lee
- Research Group of Natural Material and Metabolism, Korea Food Research Institute, Wanju, South Korea
| | - Young In Kim
- Research Group of Natural Material and Metabolism, Korea Food Research Institute, Wanju, South Korea.,Department of Food Science and Technology, Jeonbuk National University, Jeonju-Si, South Korea
| | - Farida S Nirmala
- Research Group of Natural Material and Metabolism, Korea Food Research Institute, Wanju, South Korea.,Department of Food Biotechnology, University of Science and Technology, Daejeon, South Korea
| | - Ji-Sun Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Hyo-Deok Seo
- Research Group of Natural Material and Metabolism, Korea Food Research Institute, Wanju, South Korea
| | - Tae Youl Ha
- Research Group of Natural Material and Metabolism, Korea Food Research Institute, Wanju, South Korea.,Department of Food Biotechnology, University of Science and Technology, Daejeon, South Korea
| | - Young-Jin Jang
- Research Group of Natural Material and Metabolism, Korea Food Research Institute, Wanju, South Korea
| | - Chang Hwa Jung
- Research Group of Natural Material and Metabolism, Korea Food Research Institute, Wanju, South Korea.,Department of Food Biotechnology, University of Science and Technology, Daejeon, South Korea
| | - Jiyun Ahn
- Research Group of Natural Material and Metabolism, Korea Food Research Institute, Wanju, South Korea.,Department of Food Biotechnology, University of Science and Technology, Daejeon, South Korea
| |
Collapse
|
22
|
Zhang X, Xu D, Chen M, Wang Y, He L, Wang L, Wu J, Yin J. Impacts of Selected Dietary Nutrient Intakes on Skeletal Muscle Insulin Sensitivity and Applications to Early Prevention of Type 2 Diabetes. Adv Nutr 2021; 12:1305-1316. [PMID: 33418570 PMCID: PMC8321846 DOI: 10.1093/advances/nmaa161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/11/2020] [Accepted: 11/13/2020] [Indexed: 11/14/2022] Open
Abstract
As the largest tissue in the body, skeletal muscle not only plays key roles in movement and glucose uptake and utilization but also mediates insulin sensitivity in the body by myokines. Insulin resistance in the skeletal muscle is a major feature of type 2 diabetes (T2D). A weakened response to insulin could lead to muscle mass loss and dysfunction. Increasing evidence in skeletal muscle cells, rodents, nonhuman primates, and humans has shown that restriction of caloric or protein intake positively mediates insulin sensitivity. Restriction of essential or nonessential amino acids was reported to facilitate glucose utilization and regulate protein turnover in skeletal muscle under certain conditions. Furthermore, some minerals, such as zinc, chromium, vitamins, and some natural phytochemicals such as curcumin, resveratrol, berberine, astragalus polysaccharide, emodin, and genistein, have been shown recently to protect skeletal muscle cells, mice, or humans with or without diabetes from insulin resistance. In this review, we discuss the roles of nutritional interventions in the regulation of skeletal muscle insulin sensitivity. A comprehensive understanding of the nutritional regulation of insulin signaling would contribute to the development of tools and treatment programs for improving skeletal muscle health and for preventing T2D.
Collapse
Affiliation(s)
- Xin Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China,State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Doudou Xu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Meixia Chen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yubo Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Linjuan He
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lu Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jiangwei Wu
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, China
| | | |
Collapse
|
23
|
Barberio MD, Dohm GL, Pories WJ, Gadaleta NA, Houmard JA, Nadler EP, Hubal MJ. Type 2 Diabetes Modifies Skeletal Muscle Gene Expression Response to Gastric Bypass Surgery. Front Endocrinol (Lausanne) 2021; 12:728593. [PMID: 34690929 PMCID: PMC8526857 DOI: 10.3389/fendo.2021.728593] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/13/2021] [Indexed: 01/06/2023] Open
Abstract
INTRODUCTION Roux-en-Y gastric bypass (RYGB) is an effective treatment for type 2 diabetes mellitus (T2DM) that can result in remission of clinical symptoms, yet mechanisms for improved skeletal muscle health are poorly understood. We sought to define the impact of existing T2DM on RYGB-induced muscle transcriptome changes. METHODS Vastus lateralis biopsy transcriptomes were generated pre- and 1-year post-RYGB in black adult females with (T2D; n = 5, age = 51 ± 6 years, BMI = 53.0 ± 5.8 kg/m2) and without (CON; n = 7, 43 ± 6 years, 51.0 ± 9.2 kg/m2) T2DM. Insulin, glucose, and HOMA-IR were measured in blood at the same time points. ANCOVA detected differentially expressed genes (p < 0.01, fold change < |1.2|), which were used to identify enriched biological pathways. RESULTS Pre-RYGB, 95 probes were downregulated with T2D including subunits of mitochondrial complex I. Post-RYGB, the T2D group had normalized gene expression when compared to their non-diabetic counterparts with only three probes remaining significantly different. In the T2D, we identified 52 probes upregulated from pre- to post-RYGB, including NDFUB7 and NDFUA1. CONCLUSION Black females with T2DM show extensive downregulation of genes across aerobic metabolism pathways prior to RYGB, which resolves 1 year post-RYGB and is related to improvements in clinical markers. These data support efficacy of RYGB for improving skeletal muscle health, especially in patients with T2DM.
Collapse
Affiliation(s)
- Matthew D. Barberio
- Center for Genetic Medicine Research, Children’s National Research Institute, Washington, DC, United States
- Department of Exercise and Nutrition Sciences, Milken Institute School of Public Health, George Washington University, Washington, DC, United States
| | - G. Lynis Dohm
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Walter J. Pories
- Department of Surgery, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Natalie A. Gadaleta
- Department of Exercise and Nutrition Sciences, Milken Institute School of Public Health, George Washington University, Washington, DC, United States
| | - Joseph A. Houmard
- Human Performance Laboratory, Department of Kinesiology, College of Health and Human Performance, East Carolina University, Greenville, NC, United States
| | - Evan P. Nadler
- Division of Pediatric Surgery, Children’s National Hospital, Washington, DC, United States
| | - Monica J. Hubal
- Center for Genetic Medicine Research, Children’s National Research Institute, Washington, DC, United States
- Department of Kinesiology, Indiana University Purdue University Indianapolis, Indianapolis, IN, United States
- *Correspondence: Monica J. Hubal,
| |
Collapse
|
24
|
Chaurasia B, Ying L, Talbot CL, Maschek JA, Cox J, Schuchman EH, Hirabayashi Y, Holland WL, Summers SA. Ceramides are necessary and sufficient for diet-induced impairment of thermogenic adipocytes. Mol Metab 2020; 45:101145. [PMID: 33352310 PMCID: PMC7807150 DOI: 10.1016/j.molmet.2020.101145] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/25/2020] [Accepted: 12/14/2020] [Indexed: 02/06/2023] Open
Abstract
Objective Aging and weight gain lead to a decline in brown and beige adipocyte functionality that exacerbates obesity and insulin resistance. We sought to determine whether sphingolipids, such as ceramides, a class of lipid metabolites that accumulate in aging and overnutrition, are sufficient or necessary for the metabolic impairment of these thermogenic adipocytes. Methods We generated new mouse models allowing for the conditional ablation of genes required for ceramide synthesis (i.e., serine palmitoyltransferase subunit 2, Sptlc2) or degradation (i.e., acid ceramidase 1, Asah1) from mature, thermogenic adipocytes (i.e., from cells expressing uncoupling protein-1). Mice underwent a comprehensive suite of phenotyping protocols to assess energy expenditure and glucose and lipid homeostasis. Complementary studies were conducted in primary brown adipocytes to dissect the mechanisms controlling ceramide synthesis or action. Results Depletion of Sptlc2 increased energy expenditure, improved glucose homeostasis, and prevented diet-induced obesity. Conversely, depletion of Asah1 led to ceramide accumulation, diminution of energy expenditure, and exacerbation of insulin resistance and obesity. Mechanistically, ceramides slowed lipolysis, inhibited glucose uptake, and decreased mitochondrial respiration. Moreover, β-adrenergic receptor agonists, which activate thermogenesis in brown adipocytes, decreased transcription of enzymes required for ceramide synthesis. Conclusions These studies support our hypothesis that ceramides are necessary and sufficient for the impairment in thermogenic adipocyte function that accompanies obesity. Moreover, they suggest that implementation of therapeutic strategies to block ceramide synthesis in thermogenic adipocytes may serve as a means of improving adipose health and combating obesity and cardiometabolic disease. β-Adrenergic agonists lower ceramide levels in brown adipocytes by decreasing expression of Sptlc2 and CerS6. Selective inhibition of ceramide synthesis in UCP1+ cells confers resistance to obesity and increases energy expenditure. Selectively inducing ceramide accumulation in UCP1+ cells impairs thermogenesis to exacerbate obesity and insulin resistance. Brown adipocyte ceramides alter mitochondrial ultrastructure and activity and influences rates of fatty acid uptake.
Collapse
Affiliation(s)
- Bhagirath Chaurasia
- Division of Endocrinology, Department of Internal Medicine, Carver College of Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, 52242, USA; Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT, USA.
| | - Li Ying
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT, USA
| | - Chad Lamar Talbot
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT, USA
| | - John Alan Maschek
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - James Cox
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Edward H Schuchman
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, USA
| | | | - William L Holland
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT, USA
| | - Scott A Summers
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
25
|
Schianchi F, Glatz JFC, Navarro Gascon A, Nabben M, Neumann D, Luiken JJFP. Putative Role of Protein Palmitoylation in Cardiac Lipid-Induced Insulin Resistance. Int J Mol Sci 2020; 21:ijms21249438. [PMID: 33322406 PMCID: PMC7764417 DOI: 10.3390/ijms21249438] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 12/25/2022] Open
Abstract
In the heart, inhibition of the insulin cascade following lipid overload is strongly associated with contractile dysfunction. The translocation of fatty acid transporter CD36 (SR-B2) from intracellular stores to the cell surface is a hallmark event in the lipid-overloaded heart, feeding forward to intracellular lipid accumulation. Yet, the molecular mechanisms by which intracellularly arrived lipids induce insulin resistance is ill-understood. Bioactive lipid metabolites (diacyl-glycerols, ceramides) are contributing factors but fail to correlate with the degree of cardiac insulin resistance in diabetic humans. This leaves room for other lipid-induced mechanisms involved in lipid-induced insulin resistance, including protein palmitoylation. Protein palmitoylation encompasses the reversible covalent attachment of palmitate moieties to cysteine residues and is governed by protein acyl-transferases and thioesterases. The function of palmitoylation is to provide proteins with proper spatiotemporal localization, thereby securing the correct unwinding of signaling pathways. In this review, we provide examples of palmitoylations of individual signaling proteins to discuss the emerging role of protein palmitoylation as a modulator of the insulin signaling cascade. Second, we speculate how protein hyper-palmitoylations (including that of CD36), as they occur during lipid oversupply, may lead to insulin resistance. Finally, we conclude that the protein palmitoylation machinery may offer novel targets to fight lipid-induced cardiomyopathy.
Collapse
Affiliation(s)
- Francesco Schianchi
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands; (F.S.); (J.F.C.G.); (A.N.G.); (M.N.)
| | - Jan F. C. Glatz
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands; (F.S.); (J.F.C.G.); (A.N.G.); (M.N.)
- Department of Clinical Genetics, Maastricht University Medical Center+, 6202 AZ Maastricht, The Netherlands
| | - Artur Navarro Gascon
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands; (F.S.); (J.F.C.G.); (A.N.G.); (M.N.)
| | - Miranda Nabben
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands; (F.S.); (J.F.C.G.); (A.N.G.); (M.N.)
- Department of Clinical Genetics, Maastricht University Medical Center+, 6202 AZ Maastricht, The Netherlands
| | - Dietbert Neumann
- Department of Pathology, Maastricht University Medical Center+, 6202 AZ Maastricht, The Netherlands;
| | - Joost J. F. P. Luiken
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands; (F.S.); (J.F.C.G.); (A.N.G.); (M.N.)
- Department of Clinical Genetics, Maastricht University Medical Center+, 6202 AZ Maastricht, The Netherlands
- Correspondence: ; Tel.: +31-43-388-1998
| |
Collapse
|
26
|
Abstract
The global prevalence of metabolic diseases such as type 2 diabetes mellitus, steatohepatitis, myocardial infarction, and stroke has increased dramatically over the past two decades. These obesity-fueled disorders result, in part, from the aberrant accumulation of harmful lipid metabolites in tissues not suited for lipid storage (e.g., the liver, vasculature, heart, and pancreatic beta-cells). Among the numerous lipid subtypes that accumulate, sphingolipids such as ceramides are particularly impactful, as they elicit the selective insulin resistance, dyslipidemia, and ultimately cell death that underlie nearly all metabolic disorders. This review summarizes recent findings on the regulatory pathways controlling ceramide production, the molecular mechanisms linking the lipids to these discrete pathogenic events, and exciting attempts to develop therapeutics to reduce ceramide levels to combat metabolic disease.
Collapse
Affiliation(s)
- Bhagirath Chaurasia
- Department of Internal Medicine, Division of Endocrinology, Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA;
| | - Scott A Summers
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah 84112, USA;
| |
Collapse
|
27
|
Maltais A, Lemieux I, Alméras N, Tremblay A, Bergeron J, Poirier P, Després JP. One-Year Lifestyle Intervention, Muscle Lipids, and Cardiometabolic Risk. Med Sci Sports Exerc 2020; 51:2156-2165. [PMID: 31525173 DOI: 10.1249/mss.0000000000002030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE Low-attenuation muscle (LAM) area at mid-thigh, a computed tomography (CT)-derived index of intramuscular lipids, is associated with insulin resistance, obesity, and type 2 diabetes. The present study aimed at testing the hypothesis that changes in LAM area in trunk muscles from a single abdominal scan could provide relevant information to evaluate the effects of a lifestyle intervention without the use of a mid-thigh CT scan. METHODS Cardiometabolic risk variables, including waist circumference, lipoprotein-lipid profile, glucose tolerance, and cardiorespiratory fitness, were assessed in a sample of 102 dyslipidemic viscerally obese men at baseline and after a 1-yr lifestyle intervention. Abdominal (L4-L5) and mid-thigh CT scans were performed and abdominal muscles classified as psoas and core muscles. Scans were segmented to calculate muscle areas, LAM areas, and mean attenuation values. RESULTS All muscle groups showed a decrease in LAM areas (P < 0.0001) in response to the lifestyle intervention. Changes in LAM areas were significantly associated with changes in triglycerides, high-density lipoprotein (HDL) cholesterol, cholesterol/HDL cholesterol ratio and log triglycerides/HDL cholesterol ratio (mid-thigh, 0.20 ≤ |r| ≤ 0.29; psoas, 0.28 ≤ |r| ≤ 0.38; core, 0.29 ≤ |r| ≤ 0.34, P < 0.05). Changes in core LAM area were significantly associated with changes in 2-h glucose levels, glucose area measured during the oral glucose tolerance test and homeostasis model assessment of insulin resistance (0.21 ≤ r ≤ 0.34, P < 0.05). Stepwise regression analyses showed that changes in LAM psoas area were associated with changes in HDL cholesterol and the cholesterol/HDL cholesterol ratio independently from changes in visceral adiposity. CONCLUSIONS Changes in trunk LAM areas are useful indices of changes in mid-thigh LAM area observed with a 1-yr lifestyle intervention. Thus, an additional mid-thigh scan is not necessary to evaluate muscle lipid content by CT when an abdominal CT scan is available.
Collapse
Affiliation(s)
- Alexandre Maltais
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Québec, QC, CANADA.,Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, QC, CANADA
| | - Isabelle Lemieux
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Québec, QC, CANADA
| | - Natalie Alméras
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Québec, QC, CANADA.,Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, QC, CANADA
| | - Angelo Tremblay
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Québec, QC, CANADA.,Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, QC, CANADA
| | - Jean Bergeron
- Endocrinology and Nephrology Unit, CHU de Québec, Université Laval Research Center, Québec, QC, CANADA
| | - Paul Poirier
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Québec, QC, CANADA.,Faculty of Pharmacy, Université Laval, Québec, QC, CANADA
| | - Jean-Pierre Després
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Québec, QC, CANADA.,Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, QC, CANADA
| |
Collapse
|
28
|
Bergman BC, Goodpaster BH. Exercise and Muscle Lipid Content, Composition, and Localization: Influence on Muscle Insulin Sensitivity. Diabetes 2020; 69:848-858. [PMID: 32312901 DOI: 10.2337/dbi18-0042] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/17/2020] [Indexed: 11/13/2022]
Abstract
Accumulation of lipid in skeletal muscle is thought to be related to the development of insulin resistance and type 2 diabetes. Initial work in this area focused on accumulation of intramuscular triglyceride; however, bioactive lipids such as diacylglycerols and sphingolipids are now thought to play an important role. Specific species of these lipids appear to be more negative toward insulin sensitivity than others. Adding another layer of complexity, localization of lipids within the cell appears to influence the relationship between these lipids and insulin sensitivity. This article summarizes how accumulation of total lipids, specific lipid species, and localization of lipids influence insulin sensitivity in humans. We then focus on how these aspects of muscle lipids are impacted by acute and chronic aerobic and resistance exercise training. By understanding how exercise alters specific species and localization of lipids, it may be possible to uncover specific lipids that most heavily impact insulin sensitivity.
Collapse
|
29
|
Keenan SN, Watt MJ, Montgomery MK. Inter-organelle Communication in the Pathogenesis of Mitochondrial Dysfunction and Insulin Resistance. Curr Diab Rep 2020; 20:20. [PMID: 32306181 DOI: 10.1007/s11892-020-01300-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW Impairments in mitochondrial function in patients with insulin resistance and type 2 diabetes have been disputed for decades. This review aims to briefly summarize the current knowledge on mitochondrial dysfunction in metabolic tissues and to particularly focus on addressing a new perspective of mitochondrial dysfunction, the altered capacity of mitochondria to communicate with other organelles within insulin-resistant tissues. RECENT FINDINGS Organelle interactions are temporally and spatially formed connections essential for normal cell function. Recent studies have shown that mitochondria interact with various cellular organelles, such as the endoplasmic reticulum, lysosomes and lipid droplets, forming inter-organelle junctions. We will discuss the current knowledge on alterations in these mitochondria-organelle interactions in insulin resistance and diabetes, with a focus on changes in mitochondria-lipid droplet communication as a major player in ectopic lipid accumulation, lipotoxicity and insulin resistance.
Collapse
Affiliation(s)
- Stacey N Keenan
- Department of Physiology, School of Biomedical Sciences, Faculty of Medicine Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Matthew J Watt
- Department of Physiology, School of Biomedical Sciences, Faculty of Medicine Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Magdalene K Montgomery
- Department of Physiology, School of Biomedical Sciences, Faculty of Medicine Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, 3010, Australia.
| |
Collapse
|
30
|
Dungan CM, Peck BD, Walton RG, Huang Z, Bamman MM, Kern PA, Peterson CA. In vivo analysis of γH2AX+ cells in skeletal muscle from aged and obese humans. FASEB J 2020; 34:7018-7035. [PMID: 32246795 DOI: 10.1096/fj.202000111rr] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/12/2020] [Accepted: 03/17/2020] [Indexed: 12/25/2022]
Abstract
Over the past 20 years, various identifiers of cellular senescence have been used to quantify the abundance of these cells in different tissues. These include classic markers such as p16, senescence-associated β-gal, and γH2AX, in addition to more recent markers (Sudan Black B and HMGB1). In vivo data on the usefulness of these markers in skeletal muscle are very limited and inconsistent. In the present study, we attempted to identify senescent cells in frozen human skeletal muscle biopsies using these markers to determine the effects of age and obesity on senescent cell burden; however, we were only able to assess the abundance of DNA-damaged nuclei using γH2AX immunohistochemistry. The abundance of γH2AX+ cells, including satellite cells, was not higher in muscle from old compared to young individuals; however, γH2AX+ cells were higher with obesity. Additionally, terminally differentiated, postmitotic myofiber nuclei from obese individuals had elevated γH2AX abundance compared to muscle from lean individuals. Analyses of gene expression support the conclusion that the elevated DNA damage and the senescence-associated secretory phenotype are preferentially associated with obesity in skeletal muscle. These data implicate obesity as a larger contributor to DNA damage in skeletal muscle than aging; however, more sensitive senescence markers for human skeletal muscle are needed to determine if these cells are in fact senescent.
Collapse
Affiliation(s)
- Cory M Dungan
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY, USA.,Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Bailey D Peck
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY, USA.,Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - R Grace Walton
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY, USA.,Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Zhengyan Huang
- Department of Biostatistics, College of Public Health, University of Kentucky, Lexington, KY, USA
| | - Marcas M Bamman
- Department of Cell, Developmental, and Integrative Biology, School of Medicine, University of Alabama, Birmingham, AL, USA.,Geriatric Research, Education, and Clinical Center, Birmingham VA Medical Center, Birmingham, AL, USA
| | - Philip A Kern
- Department of Internal Medicine/Endocrinology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Charlotte A Peterson
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY, USA.,Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
31
|
Brennan AM, Standley RA, Yi F, Carnero EA, Sparks LM, Goodpaster BH. Individual Response Variation in the Effects of Weight Loss and Exercise on Insulin Sensitivity and Cardiometabolic Risk in Older Adults. Front Endocrinol (Lausanne) 2020; 11:632. [PMID: 33013705 PMCID: PMC7511700 DOI: 10.3389/fendo.2020.00632] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/04/2020] [Indexed: 12/29/2022] Open
Abstract
Weight loss induced by decreased energy intake (diet) or exercise generally has favorable effects on insulin sensitivity and cardiometabolic risk. The variation in these responses to diet-induced weight loss with or without exercise, particularly in older obese adults, is less clear. The objectives of our study were to (1) examine the effect of weight loss with or without exercise on the variability of responses in insulin sensitivity and cardiometabolic risk factors and (2) to explore whether baseline phenotypic characteristics are associated with response. Sedentary older obese (BMI 36.3 ± 5.0 kg/m2) adults (68.6 ± 4.7 years) were randomized to one of 3 groups: health education control (HED); diet-induced weight loss (WL); or weight loss and exercise (WL + EX) for 6 months. Composite Z-scores were calculated for changes in insulin sensitivity (C_IS: rate of glucose disposal/insulin at steady state during hyperinsulinemic euglycemic clamp, HOMA-IR, and HbA1C) and cardiometabolic risk (C_CMR: waist circumference, triglycerides, and fasting glucose). Baseline measures included body composition (MRI), cardiorespiratory fitness, in vivo mitochondrial function (ATPmax; P-MRS), and muscle fiber type. WL + EX groups had a greater proportion of High Responders in both C_IS and C_CMR compared to HED and WL only (all p < 0.05). Pre-intervention measures of insulin (r = 0.60) and HOMA-IR (r = 0.56) were associated with change in insulin sensitivity (C_IS) in the WL group (p < 0.05). Pre-intervention measures of glucose (r = 0.55), triglycerides (r = 0.53), and VLDL (r = 0.53) were associated with change in cardiometabolic risk (C_CMR) in the WL group (p < 0.05), whereas triglycerides (r = 0.59) and VLDL (r = 0.59) were associated with C_CMR (all p < 0.05) in WL + EX. Thus, the addition of exercise to diet-induced weight loss increases the proportion of older obese adults who improve insulin sensitivity and cardiometabolic risk. Additionally, individuals with poorer metabolic status are more likely to experience greater improvements in cardiometabolic risk during weight loss with or without exercise.
Collapse
|
32
|
Banh TH, Puchala SE, Cole RM, Andridge RR, Kiecolt-Glaser JK, Belury MA. Blood level of adiponectin is positively associated with lean mass in women without type 2 diabetes. Menopause 2019; 26:1311-1317. [PMID: 31688578 DOI: 10.1097/gme.0000000000001391] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The objective of this study was to evaluate the relationship between blood levels of adiponectin and leptin with lean body and trunk adipose mass in women with and without type 2 diabetes mellitus (T2DM). METHODS This cross-sectional study analyzed baseline data from five previous clinical studies involving postmenopausal women (n = 95). Body composition was assessed by dual-energy x-ray absorptiometry, and appendicular lean mass was calculated based on body mass index (ALMBMI). Adipokines and cytokines were measured by enzyme-linked immunosorbent assay. Linear mixed-effect models with a random study effect were used to investigate the relationship between predictors (eg, adiponectin, leptin), outcomes (eg, ALMBMI, trunk adipose mass), and co-variables (T2DM status, age, interleukin-6, and C-reactive protein). RESULTS Postmenopausal women with T2DM had lower ALMBMI than those without T2DM. There was a positive association between blood adiponectin and ALMBMI in postmenopausal women without T2DM, but no association in those with T2DM. Blood leptin was negatively associated with ALMBMI for women regardless of T2DM diagnosis. Blood adiponectin was negatively associated, whereas blood leptin was positively associated with trunk adipose mass for the entire cohort. CONCLUSIONS T2DM status moderated the relationship between blood adiponectin and ALMBMI, where blood adiponectin was positively associated with ALMBMI in postmenopausal women without T2DM, but not those with T2DM. Dysregulated metabolism in T2DM may contribute to lower muscle mass in women with T2DM, but future research is required to elucidate this mechanistic link. The negative association between blood leptin and ALMBMI was a novel finding. Future studies will need to more clearly define the relationship between these variables.
Collapse
Affiliation(s)
- Taylor H Banh
- Program of Human Nutrition, Department of Human Sciences, The Ohio State University, Columbus, OH
| | - Sarah E Puchala
- Program of Human Nutrition, Department of Human Sciences, The Ohio State University, Columbus, OH
| | - Rachel M Cole
- Program of Human Nutrition, Department of Human Sciences, The Ohio State University, Columbus, OH
| | | | - Janice K Kiecolt-Glaser
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Martha A Belury
- Program of Human Nutrition, Department of Human Sciences, The Ohio State University, Columbus, OH
| |
Collapse
|
33
|
Abstract
Ceramides are products of metabolism that accumulate in individuals with obesity or dyslipidaemia and alter cellular processes in response to fuel surplus. Their actions, when prolonged, elicit the tissue dysfunction that underlies diabetes and heart disease. Here, we review the history of research on these enigmatic molecules, exploring their discovery and mechanisms of action, the evolutionary pressures that have given them their unique attributes and the potential of ceramide-reduction therapies as treatments for cardiometabolic disease.
Collapse
Affiliation(s)
- Scott A Summers
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Center, University of Utah, Salt Lake City, UT, USA.
| | - Bhagirath Chaurasia
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Center, University of Utah, Salt Lake City, UT, USA
| | - William L Holland
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Center, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
34
|
Pino MF, Stephens NA, Eroshkin AM, Yi F, Hodges A, Cornnell HH, Pratley RE, Smith SR, Wang M, Han X, Coen PM, Goodpaster BH, Sparks LM. Endurance training remodels skeletal muscle phospholipid composition and increases intrinsic mitochondrial respiration in men with Type 2 diabetes. Physiol Genomics 2019; 51:586-595. [PMID: 31588872 DOI: 10.1152/physiolgenomics.00014.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The effects of exercise training on the skeletal muscle (SKM) lipidome and mitochondrial function have not been thoroughly explored in individuals with Type 2 diabetes (T2D). We hypothesize that 10 wk of supervised endurance training improves SKM mitochondrial function and insulin sensitivity that are related to alterations in lipid signatures within SKM of T2D (males n = 8). We employed integrated multi-omics data analyses including ex vivo lipidomics (MS/MS-shotgun) and transcriptomics (RNA-Seq). From biopsies of SKM, tissue and primary myotubes mitochondrial respiration were quantified by high-resolution respirometry. We also performed hyperinsulinemic-euglycemic clamps and blood draws before and after the training. The lipidomics analysis revealed that endurance training (>95% compliance) increased monolysocardiolipin by 68.2% (P ≤ 0.03), a putative marker of mitochondrial remodeling, and reduced total sphingomyelin by 44.8% (P ≤ 0.05) and phosphatidylserine by 39.7% (P ≤ 0.04) and tended to reduce ceramide lipid content by 19.8%. Endurance training also improved intrinsic mitochondrial respiration in SKM of T2D without alterations in mitochondrial DNA copy number or cardiolipin content. RNA-Seq revealed 71 transcripts in SKM of T2D that were differentially regulated. Insulin sensitivity was unaffected, and HbA1c levels moderately increased by 7.3% despite an improvement in cardiorespiratory fitness (V̇o2peak) following the training intervention. In summary, endurance training improves intrinsic and cell-autonomous SKM mitochondrial function and modifies lipid composition in men with T2D independently of alterations in insulin sensitivity and glycemic control.
Collapse
Affiliation(s)
- Maria F Pino
- Translational Research Institute for Metabolism and Diabetes, Adventhealth, Orlando, Florida
| | - Natalie A Stephens
- Translational Research Institute for Metabolism and Diabetes, Adventhealth, Orlando, Florida
| | - Alexey M Eroshkin
- Sanford Burnham Prebys Medical Discovery Institute, Torrey Pines, California
| | - Fanchao Yi
- Translational Research Institute for Metabolism and Diabetes, Adventhealth, Orlando, Florida
| | - Andrew Hodges
- Sanford Burnham Prebys Medical Discovery Institute, Torrey Pines, California
| | - Heather H Cornnell
- Translational Research Institute for Metabolism and Diabetes, Adventhealth, Orlando, Florida
| | - Richard E Pratley
- Translational Research Institute for Metabolism and Diabetes, Adventhealth, Orlando, Florida
| | - Steven R Smith
- Translational Research Institute for Metabolism and Diabetes, Adventhealth, Orlando, Florida
| | - Miao Wang
- University of Texas Health Sciences Center San Antonio, San Antonio, Texas
| | - Xianlin Han
- University of Texas Health Sciences Center San Antonio, San Antonio, Texas
| | - Paul M Coen
- Translational Research Institute for Metabolism and Diabetes, Adventhealth, Orlando, Florida
| | - Bret H Goodpaster
- Translational Research Institute for Metabolism and Diabetes, Adventhealth, Orlando, Florida
| | - Lauren M Sparks
- Translational Research Institute for Metabolism and Diabetes, Adventhealth, Orlando, Florida
| |
Collapse
|
35
|
Dynamic changes of muscle insulin sensitivity after metabolic surgery. Nat Commun 2019; 10:4179. [PMID: 31519890 PMCID: PMC6744497 DOI: 10.1038/s41467-019-12081-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 08/15/2019] [Indexed: 02/07/2023] Open
Abstract
The mechanisms underlying improved insulin sensitivity after surgically-induced weight loss are still unclear. We monitored skeletal muscle metabolism in obese individuals before and over 52 weeks after metabolic surgery. Initial weight loss occurs in parallel with a decrease in muscle oxidative capacity and respiratory control ratio. Persistent elevation of intramyocellular lipid intermediates, likely resulting from unrestrained adipose tissue lipolysis, accompanies the lack of rapid changes in insulin sensitivity. Simultaneously, alterations in skeletal muscle expression of genes involved in calcium/lipid metabolism and mitochondrial function associate with subsequent distinct DNA methylation patterns at 52 weeks after surgery. Thus, initial unfavorable metabolic changes including insulin resistance of adipose tissue and skeletal muscle precede epigenetic modifications of genes involved in muscle energy metabolism and the long-term improvement of insulin sensitivity. Surgical weight-loss interventions improve insulin sensitivity via incompletely understood mechanisms. Here the authors assess skeletal muscle epigenetic changes in individuals with obesity following metabolic surgery and compare them with data from individuals without obesity.
Collapse
|
36
|
Jayasinghe SU, Tankeu AT, Amati F. Reassessing the Role of Diacylglycerols in Insulin Resistance. Trends Endocrinol Metab 2019; 30:618-635. [PMID: 31375395 DOI: 10.1016/j.tem.2019.06.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/26/2019] [Accepted: 06/27/2019] [Indexed: 12/15/2022]
Abstract
Skeletal muscle (SM) insulin resistance (IR) plays an important role in the burden of obesity, particularly because it leads to glucose intolerance and type 2 diabetes. Among the mechanisms thought to link IR to obesity is the accumulation, in muscle cells, of different lipid metabolites. Diacylglycerols (DAGs) are subject of particular attention due to reported interactions with the insulin signaling cascade. Given that SM accounts for the majority of insulin-stimulated glucose uptake, this review integrates recent observational and mechanistic works with the sole focus on questioning the role of DAGs in SM IR. Particular attention is given to the subcellular distributions and specific structures of DAGs, highlighting future research directions towards reaching a consensus on the mechanistic role played by DAGs.
Collapse
Affiliation(s)
- Sisitha U Jayasinghe
- Aging and Muscle Metabolism Laboratory, Department of Physiology, University of Lausanne, Lausanne, Switzerland
| | - Aurel T Tankeu
- Aging and Muscle Metabolism Laboratory, Department of Physiology, University of Lausanne, Lausanne, Switzerland
| | - Francesca Amati
- Aging and Muscle Metabolism Laboratory, Department of Physiology, University of Lausanne, Lausanne, Switzerland; Institute of Sports Sciences, University of Lausanne, Lausanne, Switzerland; Service of Endocrinology, Diabetology and Metabolism, Department of Medicine, University Hospital and Lausanne University, Lausanne, Switzerland.
| |
Collapse
|
37
|
Chung E, Campise SN, Joiner HE, Tomison MD, Kaur G, Dufour JM, Cole L, Ramalingam L, Moustaid-Moussa N, Shen CL. Effect of annatto-extracted tocotrienols and green tea polyphenols on glucose homeostasis and skeletal muscle metabolism in obese male mice. J Nutr Biochem 2019; 67:36-43. [DOI: 10.1016/j.jnutbio.2019.01.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 01/18/2019] [Accepted: 01/29/2019] [Indexed: 12/25/2022]
|
38
|
Muscle-Saturated Bioactive Lipids Are Increased with Aging and Influenced by High-Intensity Interval Training. Int J Mol Sci 2019; 20:ijms20051240. [PMID: 30871020 PMCID: PMC6429484 DOI: 10.3390/ijms20051240] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 11/16/2022] Open
Abstract
Ceramide and diacylglycerol are linked to insulin resistance in rodents, but in humans the data are inconsistent. Insulin resistance is frequently observed with aging, but the role of ceramide and diacylglycerol is not clarified. Training improves metabolic health and, therefore, we aimed to elucidate the influence of age and high-intensity interval training (HIIT) on ceramide and diacylglycerol content in muscle. Fourteen young (33 ± 1) and 22 older (63 ± 1) overweight to obese subjects performed 6 weeks HIIT three times a week. Maximal oxygen uptake and body composition were measured and muscle biopsies and fasting blood samples were obtained. Muscle ceramide and diacylglycerol were measured by gas-liquid chromatography and proteins in insulin signaling, lipid and glucose metabolism were measured by Western blotting. Content of ceramide and diacylglycerol total, saturated, C16:0 and C18:0 fatty acids and C18:1 ceramide were higher in older compared to young. HIIT reduced saturated and C18:0 ceramides, while the content of the proteins involved in glucose (GLUT4, glycogen synthase, hexokinase II, AKT) and lipid metabolism (adipose triglyceride lipase, fatty acid binding protein) were increased after HIIT. We demonstrate a higher content of saturated ceramide and diacylglycerol fatty acids in the muscle of older subjects compared to young. Moreover, the content of saturated ceramides was reduced and muscle glucose metabolism improved at protein level after HIIT. This study highlights an increased content of saturated ceramides in aging which could be speculated to influence insulin sensitivity.
Collapse
|
39
|
Sphingolipid Metabolism: New Insight into Ceramide-Induced Lipotoxicity in Muscle Cells. Int J Mol Sci 2019; 20:ijms20030479. [PMID: 30678043 PMCID: PMC6387241 DOI: 10.3390/ijms20030479] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/10/2019] [Accepted: 01/18/2019] [Indexed: 12/17/2022] Open
Abstract
Insulin-resistance is a characteristic feature of type 2 diabetes (T2D) and plays a major role in the pathogenesis of this disease. Skeletal muscles are quantitatively the biggest glucose users in response to insulin and are considered as main targets in development of insulin-resistance. It is now clear that circulating fatty acids (FA), which are highly increased in T2D, play a major role in the development of muscle insulin-resistance. In healthy individuals, excess FA are stored as lipid droplets in adipocytes. In situations like obesity and T2D, FA from lipolysis and food are in excess and eventually accumulate in peripheral tissues. High plasma concentrations of FA are generally associated with increased risk of developing diabetes. Indeed, ectopic fat accumulation is associated with insulin-resistance; this is called lipotoxicity. However, FA themselves are not involved in insulin-resistance, but rather some of their metabolic derivatives, such as ceramides. Ceramides, which are synthetized de novo from saturated FA like palmitate, have been demonstrated to play a critical role in the deterioration of insulin sensitivity in muscle cells. This review describes the latest progress involving ceramides as major players in the development of muscle insulin-resistance through the targeting of selective actors of the insulin signaling pathway.
Collapse
|
40
|
Nedeljkovic-Arsenovic O, Banovic M, Radenkovic D, Rancic N, Polovina S, Micic D, Nedeljkovic I. The Amount of Weight Loss Six Months after Bariatric Surgery: It Makes a Difference. Obes Facts 2019; 12:281-290. [PMID: 31104054 PMCID: PMC6696766 DOI: 10.1159/000499387] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 03/05/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Bariatric surgery, especially Roux-en-Y gastric bypass (RYGB), has become the most frequently used therapy for morbid obesity. OBJECTIVES The aim of this study was to examine the effects of surgically induced weight loss on cardiopulmonary function 6 months after the procedure, as well as the effect of such an intervention on well-known risk factors for cardiovascular diseases. METHODS This is a cross-sectional study on 66 morbidly obese patients (BMI ≥40 or ≥35 kg/m2 with present comorbidities), comparing their cardiopulmonary function prior to and 6 months after RYGB surgery. RESULTS The substantial amount of weight loss (29.80 ± 13.27 kg) after RYGB surgery was associated with significant reduction of comorbidities, especially diabetes and sedentary lifestyle (p = 0.005 and p = 0.002, respectively). Regarding functional capacity, there was significant increase in peak oxygen uptake (VO2 peak, p = 0.003), duration of exercise testing, metabolic equivalents (exercise time and METs, p < 0.001), and in peak O2 pulse. These findings were particularly pronounced in a group of patients who had lost more than 18% of initial weight. CONCLUSIONS Reduction of body weight after RYGB surgery is associated with significantly improved cardiorespiratory function 6 months after surgery, especially in patients who lost more than 18% of their initial body weight. In addition, substantial decreases in body weight were also associated with a reduction of cardiovascular risk factors such as diabetes, smoking, hypertriglyceridemia, and sedentary lifestyle.
Collapse
Affiliation(s)
| | - Marko Banovic
- School of Medicine, University of Belgrade, Belgrade, Serbia
- Clinical Center of Serbia, Department of Cardiology, Belgrade, Serbia
| | - Dejan Radenkovic
- School of Medicine, University of Belgrade, Belgrade, Serbia
- Clinical Center of Serbia, Department of Digestive Surgery, Belgrade, Serbia
| | - Nemanja Rancic
- Centre for Clinical Pharmacology, Faculty of Medicine of the Military Medical Academy, University of Defence, Belgrade, Serbia
| | - Snezana Polovina
- Clinical Center of Serbia, Department of Endocrinology, Belgrade, Serbia
- Faculty of Pharmacy, University of Novi Sad, Novi Sad, Serbia
| | - Dragan Micic
- School of Medicine, University of Belgrade, Belgrade, Serbia
- Clinical Center of Serbia, Department of Endocrinology, Belgrade, Serbia
| | - Ivana Nedeljkovic
- School of Medicine, University of Belgrade, Belgrade, Serbia
- Clinical Center of Serbia, Department of Cardiology, Belgrade, Serbia
| |
Collapse
|
41
|
Mousa A, Naderpoor N, Mellett N, Wilson K, Plebanski M, Meikle PJ, de Courten B. Lipidomic profiling reveals early-stage metabolic dysfunction in overweight or obese humans. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:335-343. [PMID: 30586632 DOI: 10.1016/j.bbalip.2018.12.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Advances in mass spectrometry and lipidomics techniques are providing new insights into the role of lipid metabolism in obesity-related diseases. However, human lipidomic studies have been inconsistent, owing to the use of indirect proxy measures of metabolic outcomes and relatively limited coverage of the lipidome. Here, we employed comprehensive lipid profiling and gold-standard metabolic measures to test the hypothesis that distinct lipid signatures in obesity may signify early stages of pathogenesis toward type 2 diabetes. METHODS Using high-performance liquid chromatography-electrospray tandem mass spectrometry, we profiled >450 lipid species across 26 classes in 65 overweight or obese non-diabetic individuals. Intensive metabolic testing was conducted using direct gold-standard measures of adiposity (% body fat by dual X-ray absorptiometry), insulin sensitivity (hyperinsulinaemic-euglycaemic clamps), and insulin secretion (intravenous glucose tolerance tests), as well as measurement of serum inflammatory cytokines and adipokines (multiplex assays; flow cytometry). Univariable and multivariable linear regression models were computed using Matlab R2011a, and all analyses were corrected for multiple testing using the Benjamini-Hochberg method. RESULTS We present new evidence showing a strong and independent positive correlation between the lysophosphatidylinositol (LPI) lipid class and insulin secretion in vivo in humans (β [95% CI] = 781.9 [353.3, 1210.4], p = 0.01), supporting the insulinotropic effects of LPI demonstrated in mouse islets. Dihydroceramide, a sphingolipid precursor, was independently and negatively correlated with insulin sensitivity (β [95% CI] = -1.9 [-2.9, -0.9], p = 0.01), indicating a possible upregulation in sphingolipid synthesis in obese individuals. These associations remained significant in multivariable models adjusted for age, sex, and % body fat. The dihexosylceramide class correlated positively with interleukin-10 before and after adjustment for age, sex, and % body fat (p = 0.02), while the phosphatidylethanolamine class and its vinyl ether-linked (plasmalogen) derivatives correlated negatively with % body fat in both univariable and age- and sex-adjusted models (all p < 0.04). CONCLUSIONS Our data suggest that these lipid classes may signify early pathogenesis toward type 2 diabetes and could serve as novel therapeutic targets or biomarkers for diabetes prevention.
Collapse
Affiliation(s)
- Aya Mousa
- Monash Centre for Health Research and Implementation (MCHRI), School of Public Health and Preventive Medicine, Monash University, 43-51 Kanooka Grove, Clayton, VIC 3168, Australia.
| | - Negar Naderpoor
- Monash Centre for Health Research and Implementation (MCHRI), School of Public Health and Preventive Medicine, Monash University, 43-51 Kanooka Grove, Clayton, VIC 3168, Australia.
| | - Natalie Mellett
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia.
| | - Kirsty Wilson
- Department of Immunology and Pathology, Monash University, 89 Commercial Road, Melbourne, VIC 3004, Australia.
| | - Magdalena Plebanski
- Department of Immunology and Pathology, Monash University, 89 Commercial Road, Melbourne, VIC 3004, Australia; School of Health and Biomedical Sciences, RMIT University, Corner Janefield Dr and Plenty Road, Bundoora, VIC 3083, Australia.
| | - Peter J Meikle
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia.
| | - Barbora de Courten
- Monash Centre for Health Research and Implementation (MCHRI), School of Public Health and Preventive Medicine, Monash University, 43-51 Kanooka Grove, Clayton, VIC 3168, Australia.
| |
Collapse
|
42
|
Dahlmans D, Houzelle A, Andreux P, Wang X, Jörgensen JA, Moullan N, Daemen S, Kersten S, Auwerx J, Hoeks J. MicroRNA-382 silencing induces a mitonuclear protein imbalance and activates the mitochondrial unfolded protein response in muscle cells. J Cell Physiol 2018; 234:6601-6610. [PMID: 30417335 PMCID: PMC6344277 DOI: 10.1002/jcp.27401] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 08/17/2018] [Indexed: 12/21/2022]
Abstract
Proper mitochondrial function plays a central role in cellular metabolism. Various diseases as well as aging are associated with diminished mitochondrial function. Previously, we identified 19 miRNAs putatively involved in the regulation of mitochondrial metabolism in skeletal muscle, a highly metabolically active tissue. In the current study, these 19 miRNAs were individually silenced in C2C12 myotubes using antisense oligonucleotides, followed by measurement of the expression of 27 genes known to play a major role in regulating mitochondrial metabolism. Based on the outcomes, we then focused on miR‐382‐5p and identified pathways affected by its silencing using microarrays, investigated protein expression, and studied cellular respiration. Silencing of miRNA‐382‐5p significantly increased the expression of several genes involved in mitochondrial dynamics and biogenesis. Conventional microarray analysis in C2C12 myotubes silenced for miRNA‐382‐5p revealed a collective downregulation of mitochondrial ribosomal proteins and respiratory chain proteins. This effect was accompanied by an imbalance between mitochondrial proteins encoded by the nuclear and mitochondrial DNA (1.35‐fold, p < 0.01) and an induction of HSP60 protein (1.31‐fold,
p < 0.05), indicating activation of the mitochondrial unfolded protein response (mtUPR). Furthermore, silencing of miR‐382‐5p reduced basal oxygen consumption rate by 14% (
p < 0.05) without affecting mitochondrial content, pointing towards a more efficient mitochondrial function as a result of improved mitochondrial quality control. Taken together, silencing of miR‐382‐5p induces a mitonuclear protein imbalance and activates the mtUPR in skeletal muscle, a phenomenon that was previously associated with improved longevity.
Collapse
Affiliation(s)
- Dennis Dahlmans
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, The Netherlands
| | - Alexandre Houzelle
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, The Netherlands
| | - Pénélope Andreux
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Xu Wang
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Johanna A Jörgensen
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, The Netherlands
| | - Norman Moullan
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Sabine Daemen
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, The Netherlands
| | - Sander Kersten
- Division of Human Nutrition, Nutrition, Metabolism and Genomics Group, Wageningen University, Wageningen, The Netherlands
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Joris Hoeks
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, The Netherlands
| |
Collapse
|
43
|
Visco DB, Manhães-de-Castro R, Chaves WF, Lacerda DC, Pereira SDC, Ferraz-Pereira KN, Toscano AE. Selective serotonin reuptake inhibitors affect structure, function and metabolism of skeletal muscle: A systematic review. Pharmacol Res 2018; 136:194-204. [DOI: 10.1016/j.phrs.2018.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/01/2018] [Accepted: 09/04/2018] [Indexed: 12/14/2022]
|
44
|
Régnier M, Polizzi A, Guillou H, Loiseau N. Sphingolipid metabolism in non-alcoholic fatty liver diseases. Biochimie 2018; 159:9-22. [PMID: 30071259 DOI: 10.1016/j.biochi.2018.07.021] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 07/26/2018] [Indexed: 12/12/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) involves a panel of pathologies starting with hepatic steatosis and continuing to irreversible and serious conditions like steatohepatitis (NASH) and hepatocarcinoma. NAFLD is multifactorial in origin and corresponds to abnormal fat deposition in liver. Even if triglycerides are mostly associated with these pathologies, other lipid moieties seem to be involved in the development and severity of NAFLD. That is the case with sphingolipids and more particularly ceramides. In this review, we explore the relationship between NAFLD and sphingolipid metabolism. After providing an analysis of complex sphingolipid metabolism, we focus on the potential involvement of sphingolipids in the different pathologies associated with NAFLD. An unbalanced ratio between ceramides and terminal metabolic products in the liver and plasma promotes weight gain, inflammation, and insulin resistance. In the etiology of NAFLD, some sphingolipid species such as ceramides may be potential biomarkers for NAFLD. We review the clinical relevance of sphingolipids in liver diseases.
Collapse
Affiliation(s)
- Marion Régnier
- INRA UMR1331, ToxAlim, Chemin de Tournefeuille, 31027 Toulouse, France
| | - Arnaud Polizzi
- INRA UMR1331, ToxAlim, Chemin de Tournefeuille, 31027 Toulouse, France
| | - Hervé Guillou
- INRA UMR1331, ToxAlim, Chemin de Tournefeuille, 31027 Toulouse, France
| | - Nicolas Loiseau
- INRA UMR1331, ToxAlim, Chemin de Tournefeuille, 31027 Toulouse, France.
| |
Collapse
|
45
|
Broskey NT, Obanda DN, Burton JH, Cefalu WT, Ravussin E. Skeletal muscle ceramides and daily fat oxidation in obesity and diabetes. Metabolism 2018; 82:118-123. [PMID: 29307520 PMCID: PMC5930033 DOI: 10.1016/j.metabol.2017.12.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/15/2017] [Accepted: 12/27/2017] [Indexed: 11/18/2022]
Abstract
BACKGROUND/OBJECTIVES Ectopic accumulation of lipids in skeletal muscle and the formation of deleterious lipid intermediates is thought to contribute to the development of insulin resistance and type 2 diabetes mellitus (T2DM). Similarly, impaired fat oxidation (metabolic inflexibility) are predictors of weight gain and the development of T2DM; however, no study has investigated the relation between muscle ceramide accumulation and 24-hour macronutrient oxidation. The purpose of this study was to retrospectively explore the relationships between whole body fat oxidation and skeletal muscle ceramide accumulation in obese non-diabetic individuals (ND) and in people with obesity and T2DM. METHODS Daily substrate oxidation was measured in a respiratory chamber and skeletal muscle ceramides were measured using liquid chromatographyelectrospray ionization tandem-mass spectrometry. RESULTS After adjusting for sex, age, and BMI, no differences existed between the groups for fat oxidation or 24-h RQ. However, ceramides C18:1, C:20, C22, C24 and C24:1 were significantly higher in people with T2DM compared to ND whereas no differences existed for C16 and C18. Despite low amounts of muscle ceramides, fat oxidation rates were positively associated with ceramide species concentration in ND only. Our data suggests that ceramides do not interfere with whole-body fat oxidation in ND individuals whereas a persistent lipid oversupply results in excessive ceramide muscle accumulation in people with T2DM.
Collapse
Affiliation(s)
- Nicholas T Broskey
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, United States
| | - Diana N Obanda
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, United States
| | - Jeffrey H Burton
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, United States
| | - William T Cefalu
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, United States
| | - Eric Ravussin
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, United States.
| |
Collapse
|
46
|
Huynh K, Martins RN, Meikle PJ. Lipidomic Profiles in Diabetes and Dementia. J Alzheimers Dis 2018; 59:433-444. [PMID: 28582856 DOI: 10.3233/jad-161215] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Lipids are a diverse class of hydrophobic and amphiphilic molecules which make up the bulk of most biological systems and are essential for human life. The role of lipids in health and disease has been recognized for many decades, as evidenced by the early identification of cholesterol as an important risk factor of heart disease and the development and introduction of statins as a one of the most successful therapeutic interventions to date. While several studies have demonstrated an increased risk of dementia, including Alzheimer's disease (AD), in those with diabetes mellitus, the nature of this risk is not well understood. Recent developments in the field of lipidomics, driven primarily by technological advances in high pressure liquid chromatography and particularly mass spectrometry, have enabled the detailed characterization of the many hundreds of individual lipid species in mammalian systems and their association with disease states. Diabetes mellitus and AD have received particular attention due to their prominence in Western societies as a result of the ongoing obesity epidemic and the aging populations. In this review, we examine how these lipidomic studies are informing on the relationship between lipid metabolism with diabetes and AD and how this may inform on the common pathological pathways that link diabetes risk with dementia.
Collapse
Affiliation(s)
- Kevin Huynh
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Ralph N Martins
- School of Biomedical and Health Sciences, Edith Cowan University, Perth Western Australia, WA, Australia.,Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
| | - Peter J Meikle
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
47
|
Distefano G, Standley RA, Zhang X, Carnero EA, Yi F, Cornnell HH, Coen PM. Physical activity unveils the relationship between mitochondrial energetics, muscle quality, and physical function in older adults. J Cachexia Sarcopenia Muscle 2018; 9:279-294. [PMID: 29368427 PMCID: PMC5879963 DOI: 10.1002/jcsm.12272] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 09/01/2017] [Accepted: 10/24/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The concept of mitochondrial dysfunction in ageing muscle is highly controversial. In addition, emerging evidence suggests that reduced muscle oxidative capacity and efficiency underlie the aetiology of mobility loss in older adults. Here, we hypothesized that studying well-phenotyped older cohorts across a wide range of physical activity would unveil a range of mitochondrial function in skeletal muscle and in turn allow us to more clearly examine the impact of age per se on mitochondrial energetics. This also enabled us to more clearly define the relationships between mitochondrial energetics and muscle lipid content with clinically relevant assessments of muscle and physical function. METHODS Thirty-nine volunteers were recruited to the following study groups: young active (YA, n = 2 women/8 men, age = 31.2 ± 5.4 years), older active (OA, n = 2 women/8 men, age = 67.5 ± 2.7 years), and older sedentary (OS, n = 8 women/11 men, age = 70.7 ± 4.7 years). Participants completed a graded exercise test to determine fitness (VO2 peak), a submaximal exercise test to determine exercise efficiency, and daily physical activity was recorded using a tri-axial armband accelerometer. Mitochondrial energetics were determined by (i) 31 P magnetic resonance spectroscopy and (ii) respirometry of fibre bundles from vastus lateralis biopsies. Quadriceps function was assessed by isokinetic dynamometry and physical function by the short physical performance battery and stair climb test. RESULTS Daily physical activity energy expenditure was significantly lower in OS, compared with YA and OA groups. Despite fitness being higher in YA compared with OA and OS, mitochondrial respiration, maximum mitochondrial capacity, Maximal ATP production/Oxygen consumption (P/O) ratio, and exercise efficiency were similar in YA and OA groups and were significantly lower in OS. P/O ratio was correlated with exercise efficiency. Time to complete the stair climb and repeated chair stand tests were significantly greater for OS. Interestingly, maximum mitochondrial capacity was related to muscle contractile performance and physical function. CONCLUSIONS Older adults who maintain a high amount of physical activity have better mitochondrial capacity, similar to highly active younger adults, and this is related to their better muscle quality, exercise efficiency, and physical performance. This suggests that mitochondria could be an important therapeutic target for sedentary ageing associated conditions including sarcopenia, dynapenia, and loss of physical function.
Collapse
Affiliation(s)
- Giovanna Distefano
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, 301 East Princeton Street, Orlando, FL, 32804, USA
| | - Robert A Standley
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, 301 East Princeton Street, Orlando, FL, 32804, USA
| | - Xiaolei Zhang
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, 301 East Princeton Street, Orlando, FL, 32804, USA
| | - Elvis A Carnero
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, 301 East Princeton Street, Orlando, FL, 32804, USA
| | - Fanchao Yi
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, 301 East Princeton Street, Orlando, FL, 32804, USA
| | - Heather H Cornnell
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, 301 East Princeton Street, Orlando, FL, 32804, USA
| | - Paul M Coen
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, 301 East Princeton Street, Orlando, FL, 32804, USA.,Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, 6400 Sanger Rd, Orlando, FL, 32827, USA
| |
Collapse
|
48
|
Collins KH, Hart DA, Smith IC, Issler AM, Reimer RA, Seerattan RA, Rios JL, Herzog W. Acute and chronic changes in rat soleus muscle after high-fat high-sucrose diet. Physiol Rep 2018; 5:e13270. [PMID: 28533262 PMCID: PMC5449557 DOI: 10.14814/phy2.13270] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 04/04/2017] [Indexed: 12/13/2022] Open
Abstract
The effects of obesity on different musculoskeletal tissues are not well understood. The glycolytic quadriceps muscles are compromised with obesity, but due to its high oxidative capacity, the soleus muscle may be protected against obesity‐induced muscle damage. To determine the time–course relationship between a high‐fat/high‐sucrose (HFS) metabolic challenge and soleus muscle integrity, defined as intramuscular fat invasion, fibrosis and molecular alterations over six time points. Male Sprague‐Dawley rats were fed a HFS diet (n = 64) and killed at serial short‐term (3 days, 1 week, 2 weeks, 4 weeks) and long‐term (12 weeks, 28 weeks) time points. Chow‐fed controls (n = 21) were killed at 4, 12, and 28 weeks. At sacrifice, animals were weighed, body composition was calculated (DXA), and soleus muscles were harvested and flash‐frozen. Cytokine and adipokine mRNA levels for soleus muscles were assessed, using RT‐qPCR. Histological assessment of muscle fibrosis and intramuscular fat was conducted, CD68+ cell number was determined using immunohistochemistry, and fiber typing was assessed using myosin heavy chain protein analysis. HFS animals demonstrated significant increases in body fat by 1 week, and this increase in body fat was sustained through 28 weeks on the HFS diet. Short‐term time‐point soleus muscles demonstrated up‐regulated mRNA levels for inflammation, atrophy, and oxidative stress molecules. However, intramuscular fat, fibrosis, and CD68+ cell number were similar to their respective control group at all time points evaluated. Therefore, the oxidative capacity of the soleus may be protective against diet‐induced alterations to muscle integrity. Increasing oxidative capacity of muscles using aerobic exercise may be a beneficial strategy for mitigating obesity‐induced muscle damage, and its consequences.
Collapse
Affiliation(s)
- Kelsey H Collins
- Human Performance Laboratory, University of Calgary, Calgary, Alberta, Canada.,McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada
| | - David A Hart
- Human Performance Laboratory, University of Calgary, Calgary, Alberta, Canada.,McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada.,The Centre for Hip Health & Mobility, Department of Family Practice, University of British Columbia, Vancouver, British Columbia, Canada.,Alberta Health Services Bone & Joint Health Strategic Clinical Network, Calgary, Alberta, Canada
| | - Ian C Smith
- Human Performance Laboratory, University of Calgary, Calgary, Alberta, Canada
| | - Anthony M Issler
- Human Performance Laboratory, University of Calgary, Calgary, Alberta, Canada.,Department of Mechanical Engineering, University of Calgary, Calgary, Alberta, Canada
| | - Raylene A Reimer
- Human Performance Laboratory, University of Calgary, Calgary, Alberta, Canada.,Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Ruth A Seerattan
- Human Performance Laboratory, University of Calgary, Calgary, Alberta, Canada
| | - Jaqueline L Rios
- Human Performance Laboratory, University of Calgary, Calgary, Alberta, Canada.,McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada.,CAPES Foundation, Brasilia, Brazil
| | - Walter Herzog
- Human Performance Laboratory, University of Calgary, Calgary, Alberta, Canada.,McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
49
|
Palmnäs MSA, Kopciuk KA, Shaykhutdinov RA, Robson PJ, Mignault D, Rabasa-Lhoret R, Vogel HJ, Csizmadi I. Serum Metabolomics of Activity Energy Expenditure and its Relation to Metabolic Syndrome and Obesity. Sci Rep 2018; 8:3308. [PMID: 29459697 PMCID: PMC5818610 DOI: 10.1038/s41598-018-21585-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 02/01/2018] [Indexed: 12/19/2022] Open
Abstract
Modifiable lifestyle factors, including exercise and activity energy expenditure (AEE), may attenuate the unfavorable health effects of obesity, such as risk factors of metabolic syndrome (MetS). However, the underlying mechanisms are not clear. In this study we sought to investigate whether the metabolite profiles of MetS and adiposity assessed by body mass index (BMI) and central obesity are inversely correlated with AEE and physical activity. We studied 35 men and 47 women, aged 30-60 years, using doubly labeled water to derive AEE and the Sedentary Time and Activity Reporting Questionnaire (STAR-Q) to determine the time spent in moderate and vigorous physical activity. Proton nuclear magnetic resonance spectroscopy was used for serum metabolomics analysis. Serine and glycine were found in lower concentrations in participants with more MetS risk factors and greater adiposity. However, serine and glycine concentrations were higher with increasing activity measures. Metabolic pathway analysis and recent literature suggests that the lower serine and glycine concentrations in the overweight/obese state could be a consequence of serine entering de novo sphingolipid synthesis. Taken together, higher levels of AEE and physical activity may play a crucial part in improving metabolic health in men and women with and without MetS risk factors.
Collapse
Affiliation(s)
- Marie S A Palmnäs
- University of Calgary, Department of Biochemistry and Molecular Biology, Calgary, T2N 1N4, Canada
- University of Calgary, Department of Biological Sciences, Calgary, T2N 1N4, Canada
| | - Karen A Kopciuk
- University of Calgary, Department of Oncology, Calgary, T2N 1N4, Canada
- University of Calgary, Department of Mathematics and Statistics, Calgary, T2N 1N4, Canada
| | | | - Paula J Robson
- C-MORE, CancerControl Alberta, Alberta Health Services, Calgary, T5J 3H1, Canada
| | - Diane Mignault
- Institut de Recherches Cliniques de Montréal, Montréal, H2W 1R7, Canada
- Université de Montréal, Département de Nutrition, Montréal, H3T 1J4, Canada
| | - Rémi Rabasa-Lhoret
- Institut de Recherches Cliniques de Montréal, Montréal, H2W 1R7, Canada
- Université de Montréal, Département de Nutrition, Montréal, H3T 1J4, Canada
| | - Hans J Vogel
- University of Calgary, Department of Biochemistry and Molecular Biology, Calgary, T2N 1N4, Canada.
- University of Calgary, Department of Biological Sciences, Calgary, T2N 1N4, Canada.
| | - Ilona Csizmadi
- University of Calgary, Department of Oncology, Calgary, T2N 1N4, Canada.
- University of Calgary, Community Health Sciences, Calgary, T2N 1N4, Canada.
| |
Collapse
|
50
|
|