1
|
Jiang Z, Liu D, Li T, Gai C, Xin D, Zhao Y, Song Y, Cheng Y, Li T, Wang Z. Hydrogen sulfide reduces oxidative stress in Huntington's disease via Nrf2. Neural Regen Res 2025; 20:1776-1788. [PMID: 39104115 PMCID: PMC11688542 DOI: 10.4103/nrr.nrr-d-23-01051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/27/2023] [Accepted: 12/22/2023] [Indexed: 08/07/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202506000-00028/figure1/v/2024-08-05T133530Z/r/image-tiff The pathophysiology of Huntington's disease involves high levels of the neurotoxin quinolinic acid. Quinolinic acid accumulation results in oxidative stress, which leads to neurotoxicity. However, the molecular and cellular mechanisms by which quinolinic acid contributes to Huntington's disease pathology remain unknown. In this study, we established in vitro and in vivo models of Huntington's disease by administering quinolinic acid to the PC12 neuronal cell line and the striatum of mice, respectively. We observed a decrease in the levels of hydrogen sulfide in both PC12 cells and mouse serum, which was accompanied by down-regulation of cystathionine β-synthase, an enzyme responsible for hydrogen sulfide production. However, treatment with NaHS (a hydrogen sulfide donor) increased hydrogen sulfide levels in the neurons and in mouse serum, as well as cystathionine β-synthase expression in the neurons and the mouse striatum, while also improving oxidative imbalance and mitochondrial dysfunction in PC12 cells and the mouse striatum. These beneficial effects correlated with upregulation of nuclear factor erythroid 2-related factor 2 expression. Finally, treatment with the nuclear factor erythroid 2-related factor 2 inhibitor ML385 reversed the beneficial impact of exogenous hydrogen sulfide on quinolinic acid-induced oxidative stress. Taken together, our findings show that hydrogen sulfide reduces oxidative stress in Huntington's disease by activating nuclear factor erythroid 2-related factor 2, suggesting that hydrogen sulfide is a novel neuroprotective drug candidate for treating patients with Huntington's disease.
Collapse
Affiliation(s)
- Zige Jiang
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Dexiang Liu
- Department of Medical Psychology and Ethics, School of Basic Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Tingting Li
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Chengcheng Gai
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Danqing Xin
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Yijing Zhao
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Yan Song
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Yahong Cheng
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Tong Li
- Department of Neurosurgery Surgery, Qingdao Municipal Hospital, Qingdao, Shandong Province, China
| | - Zhen Wang
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| |
Collapse
|
2
|
Luo XD, Tang S, Luo XY, Quzhen L, Xia RH, Wang XW. Mitochondrial regulation of obesity by POMC neurons. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167682. [PMID: 39837429 DOI: 10.1016/j.bbadis.2025.167682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/10/2025] [Accepted: 01/16/2025] [Indexed: 01/23/2025]
Abstract
Pro-opiomelanocortin (POMC) neurons, nestled in the hypothalamus, play a pivotal role in the intricate coordination of energy homeostasis and metabolic pathways. These neurons' mitochondria, often hailed as the cell's powerhouses, are crucial for maintaining cellular energy equilibrium and metabolic functionality. Recent research has illuminated the complex interplay between mitochondrial dynamics and POMC neuronal activity, underscoring their critical involvement in the pathogenesis of a spectrum of metabolic disorders, notably obesity and diabetes. This comprehensive review delves into the molecular mechanisms that underlie how mitochondrial function within POMC neurons modulates metabolic regulation. We dissect the impact of mitochondrial dynamics, encompassing fusion, fission, mitophagy, and biogenesis, on the regulation of POMC neuronal activity. Furthermore, we scrutinize the role of mitochondrial dysfunction in POMC neurons in the etiology of obesity, identifying key therapeutic targets within these pathways. We offer an in-depth perspective on the indispensable role of POMC neuronal mitochondria in metabolic regulation and chart future research directions to bridge the existing knowledge gaps in this field.
Collapse
Affiliation(s)
- Xing-Dan Luo
- Health Science Center, Yangtze University, Jingzhou, Hubei, 434023, China
| | - Si Tang
- Health Science Center, Yangtze University, Jingzhou, Hubei, 434023, China
| | - Xiang-Yun Luo
- Health Science Center, Yangtze University, Jingzhou, Hubei, 434023, China
| | - Luosang Quzhen
- The Central Hospital of Qusong County, Shannan, Tibet Autonomous Region 856300, China
| | - Ruo-Han Xia
- Health Science Center, Yangtze University, Jingzhou, Hubei, 434023, China.
| | - Xian-Wang Wang
- Department of Biochemistry and Molecular Biology, Center for Molecular Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China; Shannan Maternal and Child Health Hospital, Shannan, Xizang 856100, China.
| |
Collapse
|
3
|
Fu M, Yoon KS, Ha J, Kang I, Choe W. Crosstalk Between Antioxidants and Adipogenesis: Mechanistic Pathways and Their Roles in Metabolic Health. Antioxidants (Basel) 2025; 14:203. [PMID: 40002389 PMCID: PMC11852089 DOI: 10.3390/antiox14020203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/01/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
The interplay between oxidative stress and adipogenesis is a critical factor in the development of obesity and its associated metabolic disorders. Excessive reactive oxygen species (ROS) disrupt key transcription factors such as peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT/enhancer-binding protein alpha (C/EBPα), impairing lipid metabolism, promoting adipocyte dysfunction, and exacerbating inflammation and insulin resistance. Antioxidants, classified as endogenous (e.g., glutathione, superoxide dismutase, and catalase) and exogenous (e.g., polyphenols, flavonoids, and vitamins C and E), are pivotal in mitigating these effects by restoring redox balance and preserving adipocyte functionality. Endogenous antioxidants neutralize ROS and safeguard cellular structures; however, under heightened oxidative stress, these defenses are often insufficient, necessitating dietary supplementation. Exogenous antioxidants derived from plant-based sources, such as polyphenols and vitamins, act through direct ROS scavenging, upregulation of endogenous antioxidant enzymes, and modulation of key signaling pathways like nuclear factor kappa B (NF-κB) and PPARγ, reducing lipid peroxidation, inflammation, and adipocyte dysfunction. Furthermore, they influence epigenetic regulation and transcriptional networks to restore adipocyte differentiation and limit lipid accumulation. Antioxidant-rich diets, including the Mediterranean diet, are strongly associated with improved metabolic health, reduced obesity rates, and enhanced insulin sensitivity. Advances in personalized antioxidant therapies, guided by biomarkers of oxidative stress and supported by novel delivery systems, present promising avenues for optimizing therapeutic interventions. This review, "Crosstalk Between Antioxidants and Adipogenesis: Mechanistic Pathways and Their Role in Metabolic Health", highlights the mechanistic pathways by which antioxidants regulate oxidative stress and adipogenesis to enhance metabolic health.
Collapse
Affiliation(s)
- Minghao Fu
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.F.); (K.-S.Y.); (J.H.); (I.K.)
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kyung-Sik Yoon
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.F.); (K.-S.Y.); (J.H.); (I.K.)
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Joohun Ha
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.F.); (K.-S.Y.); (J.H.); (I.K.)
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Insug Kang
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.F.); (K.-S.Y.); (J.H.); (I.K.)
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Wonchae Choe
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.F.); (K.-S.Y.); (J.H.); (I.K.)
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
4
|
Fletcher E, Miserlis D, Papoutsi E, Steiner JL, Gordon B, Haynatzki G, Pacher P, Koutakis P. Chronic alcohol consumption exacerbates ischemia-associated skeletal muscle mitochondrial dysfunction in a murine model of peripheral artery disease. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167584. [PMID: 39581559 PMCID: PMC11931404 DOI: 10.1016/j.bbadis.2024.167584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 11/26/2024]
Abstract
PURPOSE Peripheral artery disease (PAD) causes ischemic mitochondriopathy-associated muscle damage, amplifying patient disability and mortality. Although alcohol and a high-fat diet enhance PAD predisposition and severity, their impact on PAD myopathy is unclear. Using our murine model of PAD, we investigated the combined effect of chronic alcohol and fat consumption on intramuscular oxidative stress and mitochondrial content, function, and quality control. The potential relationship between intramuscular aldehyde dehydrogenase 2 (ALDH2) content, oxidative stress and mitochondriopathy was also explored. METHODS Twenty-four male, 24 female, 8-month-old C57BL/6 J mice received high-fat-sucrose (HFS) or low-fat-sucrose (LFS) diets for 16-weeks, followed by either 20 % ethanol (EtOH) supplemented in the drinking water or continued water access for another 12-weeks (n = 12 mice/4 groups). The left femoral artery was ligated to induce hindlimb ischemia (HLI), and mice 4-weeks post-ligation were euthanized. RESULTS Chronic HLI was associated with an ischemic muscle mitochondriopathy, which was exacerbated by concurrent HFS and EtOH feeding. Intramuscular ALDH2 was also reduced in mice consuming HFS + EtOH, particularly in the ischemic limb, but increased in their LFS + EtOH-consuming counterparts. Moreover, reduced ALDH2 was strongly correlated with markers of oxidative stress and mitochondrial dysfunction. CONCLUSIONS ALDH2 could be a promising therapeutic target to optimize intramuscular mitochondrial function in PAD patients, particularly those who habitually consume a diet high in fat and alcohol.
Collapse
Affiliation(s)
- Emma Fletcher
- Department of Public Health, Usha Kundu MD College of Health, University of West Florida, Pensacola, FL, USA
| | - Dimitrios Miserlis
- Department of Surgery, University of Texas at Austin Dell Medical School, Austin, TX, USA
| | - Evlampia Papoutsi
- Department of Public Health, Usha Kundu MD College of Health, University of West Florida, Pensacola, FL, USA
| | - Jennifer L Steiner
- Department of Health, Nutrition and Food Sciences, Florida State University, 600 W. College Avenue, Tallahassee, FL 32306, USA; Institute of Sports Sciences and Medicine, Florida State University, 600 W. College Avenue, Tallahassee, FL 32306, USA
| | - Bradley Gordon
- Department of Health, Nutrition and Food Sciences, Florida State University, 600 W. College Avenue, Tallahassee, FL 32306, USA; Institute of Sports Sciences and Medicine, Florida State University, 600 W. College Avenue, Tallahassee, FL 32306, USA
| | - Gleb Haynatzki
- Department of Biostatistics, University of Nebraska Medical Center College of Public Health, 984375 Nebraska Medical Center, Omaha, NE 68198, USA
| | - Pal Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Panagiotis Koutakis
- Department of Public Health, Usha Kundu MD College of Health, University of West Florida, Pensacola, FL, USA; Department of Biology, Baylor University, Waco, TX, USA.
| |
Collapse
|
5
|
Pourmontaseri H, Bazmi S, Sepehrinia M, Mostafavi A, Arefnezhad R, Homayounfar R, Vahid F. Exploring the application of dietary antioxidant index for disease risk assessment: a comprehensive review. Front Nutr 2025; 11:1497364. [PMID: 39885868 PMCID: PMC11781229 DOI: 10.3389/fnut.2024.1497364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/23/2024] [Indexed: 02/01/2025] Open
Abstract
Oxidative stress contributes to the development of cardiometabolic diseases and cancers. Numerous studies have highlighted the adverse effects of high reactive oxygen species (ROS) levels in the progression of chronic noncommunicable diseases and also during infections. On the other hand, antioxidants play a crucial role in preventing oxidative stress or postponing cell damage via the direct scavenging of free radicals or indirectly via the Keap1/Nrf2/ARE pathway, among others. Dietary antioxidants can be obtained from various sources, mainly through a plant-based diet, including fruits and vegetables. The dietary antioxidant index (DAI) has been developed to assess total antioxidant intake from diet. This review delineated the performance of DAI in the risk assessment of different diseases. It is suggested that a high DAI score prevents obesity-related diseases, including diabetes mellitus, hyperuricemia, dyslipidemia, and metabolic (dysfunction)-associated steatotic liver disease (MASLD). Additionally, DAI is negatively associated with Helicobacter pylori and Human papillomavirus infection, thus reducing the risk of gastric and cervical cancer. Also, a high intake of antioxidants prevents the development of osteoporosis, miscarriage, infertility, and mental illnesses. However, further prospective observations and clinical trials are warranted to confirm the application of DAI in preventing diseases that have been studied.
Collapse
Affiliation(s)
| | - Sina Bazmi
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
| | - Matin Sepehrinia
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Ayda Mostafavi
- Department of Psychology, Panjab University, Chandigarh, India
| | - Reza Arefnezhad
- Coenzyme R Research Institute, Tehran, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Homayounfar
- National Nutrition and Food Technology Research Institute (WHO Collaborating Center), Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farhad Vahid
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg
| |
Collapse
|
6
|
Akcan BNB, Yikilmaz BK, Zorlu U, Erel Ö, Neşelioğlu S, Özyurt E, Tekin ÖM, Elmas B. Measurement of thiol/disulfide homeostasis and ischemic modified albumin levels in patients with uterine leiomyomas. Int J Gynaecol Obstet 2024. [PMID: 39704387 DOI: 10.1002/ijgo.16098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/04/2024] [Indexed: 12/21/2024]
Abstract
OBJECTIVE The aim is to contrast the serum levels of thiol-disulfide homeostasis and ischemic modified albumin between patients with leiomyoma and healthy individuals and to assess the impact of oxidative stress on the etiopathogenesis of leiomyoma. METHODS In this prospective case-control study, a total of 154 participants were included, consisting of 77 cases diagnosed with leiomyoma and 77 healthy individuals without leiomyoma. The demographic characteristics and ultrasonographic findings of the participants were recorded, and parameters such as albumin, ischemia-modified albumin, and thiol-disulfide homeostasis were evaluated. The results obtained from the analyses were compared between the two groups. RESULTS No significant differences were observed in the demographic characteristics between the groups. A significant difference was observed between the leiomyoma and control groups regarding serum albumin parameters, serum ischemic modified albumin, and serum dynamic thiol-disulfide parameters (P < 0.001). No significant difference was found in the ratios of disulfide/total thiol, disulfide/native thiol, native thiol/total thiol (P > 0.05). CONCLUSION There was a notable contrast in the levels of albumin, ischemic modified albumin, albumin/ischemic modified albumin ratio, total thiol, native thiol, and disulfide between individuals with uterine leiomyomas and healthy individuals in the control group. Oxidative stress is believed to play a causative role in the etiopathogenesis of uterine leiomyomas.
Collapse
Affiliation(s)
| | - Büşra Karagöz Yikilmaz
- Department of Gynecology and Obstetrics, Şehit Sait Ertürk State Hospital, Ankara, Turkey
| | - Uğurcan Zorlu
- Department of Gynecological Oncology, Dr. Abdurrahman Yurtaslan Ankara Oncology Education and Research Hospital, Ankara, Turkey
| | - Özcan Erel
- Department of Biochemistry, University of Health Sciences Ankara City Hospital, Ankara, Turkey
| | - Salim Neşelioğlu
- Department of Biochemistry, University of Health Sciences Ankara City Hospital, Ankara, Turkey
| | - Esra Özyurt
- Department of Biochemistry, University of Health Sciences Ankara City Hospital, Ankara, Turkey
| | - Özlem Moraloğlu Tekin
- Department of Gynecology and Obstetrics, University of Health Sciences Ankara City Hospital, Ankara, Turkey
| | - Burak Elmas
- Department of Gynecology and Obstetrics, University of Health Sciences Ankara City Hospital, Ankara, Turkey
| |
Collapse
|
7
|
Shu K, Fu YC, Huang M, Cai Z, Ni GF, Huang XY, Song JW, Ye XJ, Cui SH, Zhou YJ, Han L, Wu P, Yan ZH, Liu K. Altered Brain Glymphatic Function at Diffusion-Tensor MRI in Pre-cirrhotic Metabolic Dysfunction-Associated Fatty Liver Disease. Acad Radiol 2024; 31:4946-4954. [PMID: 38955593 DOI: 10.1016/j.acra.2024.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/26/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024]
Abstract
RATIONALE AND OBJECTIVES To evaluate glymphatic function changes and their relationships with clinical features in patients with metabolic dysfunction-associated fatty liver disease (MAFLD), thereby facilitating early intervention before this disease progresses to cirrhosis. MATERIALS AND METHODS A cross-sectional cohort of 46 pre-cirrhotic MAFLD patients and 30 age-, sex-, and education-matched controls was enrolled, with diffusion-tensor imaging (DTI) data, laboratory and neurocognitive scores collected. The DTI analysis along the perivascular space (DTI-ALPS) index was computed for qualifying glymphatic function. Generalized linear model and partial correlation analyses were applied to evaluate relationships between the ALPS index and clinical variables. RESULTS MAFLD group exhibited a decreased ALPS index and increased diffusivity along the y-axis in the projection fiber compared to the controls. The altered ALPS index was associated with clock drawing test (CDT) score (3.931 [0.914, 6.947], P = 0.011) and was correlated with diastolic pressure level (r = -0.315, P = 0.033) in MAFLD group. The relationships of ALPS index with CDT score (6.263 [2.069, 10.458], P = 0.003) and diastolic pressure level (r = -0.518, P = 0.014) remained in the MAFLD with metabolic syndrome (MetS) group. Furthermore, the ALPS index was even associated with Auditory Verbal Learning Test-Immediate recall score (-23.853 [-45.417, -2.289], P = 0.030) in MAFLD with MetS group. CONCLUSION MAFLD patients may have a glymphatic dysfunction prior to cirrhosis, and this alteration may be related to cognition and diastolic pressure. Glymphatic dysfunction has a more severe impact on cognition when MAFLD patient is accompanied by MetS.
Collapse
Affiliation(s)
- Kun Shu
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Yu-Chuan Fu
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Mei Huang
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Zheng Cai
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Ge-Fei Ni
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Xiao-Yan Huang
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Jia-Wen Song
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Xin-Jian Ye
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Shi-Han Cui
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Yong-Jin Zhou
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Lu Han
- Philips Healthcare, Shanghai, China.
| | - Peng Wu
- Philips Healthcare, Shanghai, China.
| | - Zhi-Han Yan
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Kun Liu
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
8
|
Sharma G, Duarte S, Shen Q, Khemtong C. Analyses of mitochondrial metabolism in diseases: a review on 13C magnetic resonance tracers. RSC Adv 2024; 14:37871-37885. [PMID: 39606283 PMCID: PMC11600307 DOI: 10.1039/d4ra03605k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 11/16/2024] [Indexed: 11/29/2024] Open
Abstract
Metabolic diseases such as obesity, type 2 diabetes, and cardiovascular diseases have become a global health concern due to their widespread prevalence and profound impact on life expectancy, healthcare expenditures, and the overall economy. Devising effective treatment strategies and management plans for these diseases requires an in-depth understanding of the pathophysiology of the metabolic abnormalities associated with each disease. Mitochondrial dysfunction is intricately linked to a wide range of metabolic abnormalities and is considered an important biomarker for diseases. However, assessing mitochondrial functions in viable tissues remains a challenging task, with measurements of oxygen consumption rate (OCR) and ATP production being the most widely accepted approaches for evaluating the health of mitochondria in tissues. Measurements of cellular metabolism using carbon-13 (or 13C) tracers have emerged as a viable method for characterizing mitochondrial metabolism in a variety of organelles ranging from cultured cells to humans. Information on metabolic activities and mitochondrial functions can be obtained from magnetic resonance (MR) analyses of 13C-labeled metabolites in tissues and organs of interest. Combining novel 13C tracer technologies with advanced analytical and imaging tools in nuclear magnetic resonance spectroscopy (NMR) and magnetic resonance imaging (MRI) offers the potential to detect metabolic abnormalities associated with mitochondrial dysfunction. These capabilities would enable accurate diagnosis of various metabolic diseases and facilitate the assessment of responses to therapeutic interventions, hence improving patient health and optimizing clinical outcomes.
Collapse
Affiliation(s)
- Gaurav Sharma
- Department of Cardiovascular and Thoracic Surgery, University of Texas Southwestern Medical Center Dallas Texas USA
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center Dallas Texas USA
- Department of Biomedical Engineering, The University of Texas Southwestern Medical Center Dallas Texas USA
| | - Sergio Duarte
- Department of Surgery, University of Florida Gainesville FL USA
| | - Qingyang Shen
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Florida Gainesville Florida USA +1 (352) 273-8646
- Department of Biochemistry and Molecular Biology, University of Florida Gainesville Florida USA
| | - Chalermchai Khemtong
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Florida Gainesville Florida USA +1 (352) 273-8646
- Department of Biochemistry and Molecular Biology, University of Florida Gainesville Florida USA
| |
Collapse
|
9
|
Subošić B, Zdravković V, Ješić M, Munjas J, Kovačević S, Guzonjić A, Mitrović J, Saso L, Đuričić I, Kotur-Stevuljević J. Childhood obesity accelerates biological ageing: is oxidative stress a link? Br J Nutr 2024; 132:227-235. [PMID: 38736405 DOI: 10.1017/s0007114524000898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Obesity is a multifactorial pathophysiological condition with an imbalance in biochemical, immunochemical, redox status and genetic parameters values. We aimed to estimate the connection between relative leucocyte telomere lengths (rLTL) - biomarker of cellular ageing with metabolic and redox status biomarkers values in a group of obese and lean children. The study includes 110 obese and 42 lean children and adolescents, both sexes. The results suggested that rLTL are significantly shorter in obese, compared with lean group (P < 0·01). Negative correlation of rLTL with total oxidant status (TOS) (Spearman's ρ = -0·365, P < 0·001) as well as with C-reactive protein (Spearman's ρ = -0·363, P < 0·001) were observed. Principal component analysis (PCA) extracted three distinct factors (i.e. principal components) entitled as: prooxidant factor with 35 % of total variability; antioxidant factor with 30 % of total variability and lipid antioxidant - biological ageing factor with 12 % of the total variability. The most important predictor of BMI > 30 kg/m2 according to logistic regression analysis was PCA-derived antioxidant factor's score (OR: 1·66, 95th Cl 1·05-2·6, P = 0·029). PCA analysis confirmed that oxidative stress importance in biological ageing is caused by obesity and its multiple consequences related to prooxidants augmentation and antioxidants exhaustion and gave us clear signs of disturbed cellular homoeostasis deepness, even before any overt disease occurrence.
Collapse
Affiliation(s)
- Branko Subošić
- Biochemical Laboratory, University Children's Hospital, Tiršova 10, Belgrade, Serbia
- Department of Medical Biochemistry, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11000, Belgrade
| | - Vera Zdravković
- Department of Endocrinology, University Children's Hospital, Belgrade School of Medicine, University of Belgrade, Belgrade, 11000, Serbia
- Department of Endocrinology, University Children's Hospital, Belgrade, 11000, Serbia
| | - Maja Ješić
- Department of Endocrinology, University Children's Hospital, Belgrade School of Medicine, University of Belgrade, Belgrade, 11000, Serbia
- Department of Endocrinology, University Children's Hospital, Belgrade, 11000, Serbia
| | - Jelena Munjas
- Department of Medical Biochemistry, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11000, Belgrade
| | - Smiljka Kovačević
- Department of Endocrinology, University Children's Hospital, Belgrade, 11000, Serbia
| | - Azra Guzonjić
- Department of Medical Biochemistry, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11000, Belgrade
| | - Jadranka Mitrović
- Biochemical Laboratory, University Children's Hospital, Tiršova 10, Belgrade, Serbia
| | - Luciano Saso
- Department of Physiology and Pharmacology 'Vittorio Erspamer', Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185Rome, Italy
| | - Ivana Đuričić
- Department of Bromatology, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11000, Belgrade, Serbia
| | - Jelena Kotur-Stevuljević
- Department of Medical Biochemistry, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11000, Belgrade
| |
Collapse
|
10
|
Vieira LG, de Noronha SISR, Chírico MTT, de Souza AB, de Matos NA, Chianca-Jr DA, Bezerra FS, de Menezes RC. The impact of high-fat diet consumption and inulin fiber supplementation on anxiety-related behaviors and liver oxidative status in female Wistar rats. Behav Brain Res 2024; 470:115048. [PMID: 38761857 DOI: 10.1016/j.bbr.2024.115048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/04/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
BACKGROUND Obesity is a worldwide public health problem associated with cognitive and mental health problems in both humans and rats. Studies assessing the effect of fiber supplementation on behavioral deficits and oxidative stress caused by high-fat diet (HFD) consumption in female rats are still scarce. We hypothesized that HFD consumption would lead to anxiety-related behavior and hepatic oxidative stress and that inulin would protect against these changes. We analyzed the impact of HFD-induced obesity combined with fiber supplementation (inulin) on anxiety-related defensive behavior and hepatic oxidative stress. RESULTS Female rats were fed a high-fat diet (HFD; 45%) for nine weeks to induce obesity. The administration of inulin was found to decrease the adiposity index in both the control and obese groups. The consumption of a HFD combined with inulin supplementation resulted in a reduction in both CAT activity and carbonylated protein levels, leading to a shift in the hepatic redox balance. Interestingly, the behavioral data were conflicting. Specifically, animals that consumed a high-fat diet and received inulin showed signs of impaired learning and memory caused by obesity. The HFD did not impact anxiety-related behaviors in the female rats. However, inulin appears to have an anxiolytic effect, in the ETM, when associated with the HFD. On the other hand, inulin appears to have affected the locomotor activity in the HFD in both open field and light-dark box. CONCLUSION Our results show that consumption of a HFD induced obesity in female rats, similar to males. However, HFD consumption did not cause a consistent increase in anxiety-related behaviors in female Wistar rats. Treatment with inulin at the dosage used did not exert consistent changes on the behavior of the animals, but attenuated the abdominal WAT expansion and the hepatic redox imbalance elicited by high-fat diet-induced obesity.
Collapse
Affiliation(s)
- Lucas Gabriel Vieira
- Department of Biological Science, Laboratory of Cardiovascular Physiology, Federal University of Ouro Preto, Ouro Preto, MG 35400-000, Brazil.
| | | | - Máira Tereza Talma Chírico
- Department of Biological Science, Laboratory of Cardiovascular Physiology, Federal University of Ouro Preto, Ouro Preto, MG 35400-000, Brazil.
| | - Ana Beatriz de Souza
- Department of Biological Sciences, Laboratory of Experimental Pathophysiology, Federal University of Ouro Preto, MG 35400-000, Brazil.
| | - Natália Alves de Matos
- Department of Biological Sciences, Laboratory of Experimental Pathophysiology, Federal University of Ouro Preto, MG 35400-000, Brazil.
| | - Deoclécio Alves Chianca-Jr
- Department of Biological Sciences, Laboratory of Experimental Pathophysiology, Federal University of Ouro Preto, MG 35400-000, Brazil.
| | - Frank Silva Bezerra
- Department of Biological Sciences, Laboratory of Experimental Pathophysiology, Federal University of Ouro Preto, MG 35400-000, Brazil.
| | - Rodrigo Cunha de Menezes
- Department of Biological Science, Laboratory of Cardiovascular Physiology, Federal University of Ouro Preto, Ouro Preto, MG 35400-000, Brazil.
| |
Collapse
|
11
|
Rossi MM, Signorini FJ, Castillo TA, Parada MPS, Moser F, Baez MDC. Sleeve Gastrectomy Reduces Oxidative Stress and Reverses Mitochondrial Dysfunction Associated with Metabolic Syndrome. Obes Surg 2024; 34:2042-2053. [PMID: 38653888 DOI: 10.1007/s11695-024-07244-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
INTRODUCTION Previous studies have detected mitochondrial alterations in tissues of individuals with obesity and type 2 diabetes mellitus (T2DM). Metabolic surgery could be an effective treatment to improve mitochondrial morphology and reduce oxidative stress (OS). METHODS An experimental study was carried out using 48 male Wistar rats, divided into 6 groups (n = 8): control (C), induced Metabolic Syndrome (MS); intervention with sleeve gastrectomy (SG), MS + SG with 6 weeks postoperatively (MS + SG6), MS + SG with 12 weeks postoperatively (MS + SG12), and MS + SG with 24 weeks postoperatively (MS + SG24). Biochemical markers indicative of MS (glycemia, cholesterol, and triglyceride levels) and oxidative stress markers (nitric oxide levels, Superoxide dismutase and Myeloperoxidase activity) were determined. To study mitochondrial morphology, tissue sections of the thoracic aorta, stomach, liver, heart, and kidney were observed by electron microscopy. RESULTS MS group exhibited elevated glycemic values and dyslipidemia. SG and MS + SG groups showed improvements in glycemia and lipid profiles compared to MS. OS biomarkers indicated reduced oxidative stress in SG and MS + SG groups compared to MS. Electron microscopy revealed mitochondrial alterations in MS. SG group showed no changes compared to the control. MS + SG6 and MS + SG12 groups showed a recovery of mitochondrial morphology until reaching images similar to the control in MS + SG24. CONCLUSION Metabolic surgery could improve mitochondrial function by restoring mitochondrial morphology and architecture and, consequently, reducing systemic oxidative stress and remitting associated metabolic alterations.
Collapse
Affiliation(s)
- Micaela M Rossi
- Biomedical Physics Department, Faculty of Medical Sciences, National University of Córdoba, Santa Rosa 1085, Córdoba Capital, Argentina.
- General Surgery Department, Bariatric Surgery Program, Hospital Privado Universitario de Córdoba, Av. Naciones Unidas 346, Córdoba Capital, Argentina.
| | - Franco J Signorini
- Biomedical Physics Department, Faculty of Medical Sciences, National University of Córdoba, Santa Rosa 1085, Córdoba Capital, Argentina
- General Surgery Department, Bariatric Surgery Program, Hospital Privado Universitario de Córdoba, Av. Naciones Unidas 346, Córdoba Capital, Argentina
| | - Tomas A Castillo
- Biomedical Physics Department, Faculty of Medical Sciences, National University of Córdoba, Santa Rosa 1085, Córdoba Capital, Argentina
| | - María P Scribano Parada
- Biomedical Physics Department, Faculty of Medical Sciences, National University of Córdoba, Santa Rosa 1085, Córdoba Capital, Argentina
| | - Federico Moser
- General Surgery Department, Bariatric Surgery Program, Hospital Privado Universitario de Córdoba, Av. Naciones Unidas 346, Córdoba Capital, Argentina
| | - Maria dC Baez
- Biomedical Physics Department, Faculty of Medical Sciences, National University of Córdoba, Santa Rosa 1085, Córdoba Capital, Argentina
| |
Collapse
|
12
|
Liu S, Zhang R, Zhang L, Yang A, Guo Y, Jiang L, Wang H, Xu S, Zhou H. Oxidative stress suppresses PHB2-mediated mitophagy in β-cells via the Nrf2/PHB2 pathway. J Diabetes Investig 2024; 15:559-571. [PMID: 38260951 PMCID: PMC11060161 DOI: 10.1111/jdi.14147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 12/20/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
AIMS/INTRODUCTION Mitochondrial damage caused by oxidative stress is a main driver of pancreatic β-cell dysfunction in the pathogenesis of type 2 diabetes mellitus. Prohibitin2 (PHB2) is a vital inner mitochondrial membrane protein that participates in mitophagy to remove the damaged mitochondria. This study aimed to investigate the role and mechanisms of PHB2-mediated mitophagy in oxidative stress-induced pancreatic β-cell dysfunction. MATERIALS AND METHODS PHB2 and mitophagy-related protein expression were analyzed by real-time polymerase chain reaction and western blotting in RINm5F cells treated with H2O2 and islets of diabetic rats. Mitophagy was observed by mitochondrial and lysosome colocalization. RINm5F cells were transfected by phb2 siRNA or overexpression plasmid to explore the role of PHB2 in mitophagy of RINm5F cells. The mechanism of Nrf2 regulating PHB2 was explored by Nrf2 inhibitor and agonist. RESULTS The expression of PHB2, mitophagy related protein PINK1, and Parkin were decreased in RINm5F cells incubated with H2O2 and in islets of diabetic rats. Overexpression of PHB2 protected β-cells from oxidative stress by promoting mitophagy and inhibiting cell apoptosis, whereas transfection with PHB2 siRNA suppressed mitophagy. Furthermore, PHB2-mediated mitophagy induced by oxidative stress was through the Nrf2/PHB2 pathway in β-cells. Antioxidant NAC alleviated oxidative stress injury by promoting PHB2-mediated mitophagy. CONCLUSION Our study suggested that PHB2-mediated mitophagy can protect β-cells from apoptosis via the Nrf2/PHB2 pathway under oxidative stress. Antioxidants may protect β-cell from oxidative stress by prompting PHB2-mediated mitophagy. PHB2-mediated mitophagy as a potential mechanism takes part in the oxidative stress induced β-cell injury.
Collapse
Affiliation(s)
- Shan Liu
- Department of EndocrinologyThe First Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
- Hebei Key Laboratory of Brain Science and Psychiatric‐Psychologic DiseaseShijiazhuangHebeiChina
- Department of EndocrinologyThe Second Hospital of ShijiazhuangShijiazhuangHebeiChina
- Central LaboratoryThe First Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| | - Rui Zhang
- Hebei Key Laboratory of Brain Science and Psychiatric‐Psychologic DiseaseShijiazhuangHebeiChina
- Central LaboratoryThe First Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
- Hebei International Joint Research Center for Brain ScienceShijiazhuangHebeiChina
| | - Lan Zhang
- Department of RadiologyThe Fourth Affiliated Hospital Zhejiang University School of MedicineYiwuZhejiangChina
| | - Aige Yang
- Department of EndocrinologyThe First Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| | - Yuqing Guo
- Department of EndocrinologyThe First Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| | - Lei Jiang
- Hebei Key Laboratory of Brain Science and Psychiatric‐Psychologic DiseaseShijiazhuangHebeiChina
- Central LaboratoryThe First Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
- Hebei International Joint Research Center for Brain ScienceShijiazhuangHebeiChina
| | - Huijuan Wang
- Department of EndocrinologyThe Second Hospital of ShijiazhuangShijiazhuangHebeiChina
| | - Shunjiang Xu
- Hebei Key Laboratory of Brain Science and Psychiatric‐Psychologic DiseaseShijiazhuangHebeiChina
- Central LaboratoryThe First Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
- Hebei International Joint Research Center for Brain ScienceShijiazhuangHebeiChina
| | - Huimin Zhou
- Department of EndocrinologyThe First Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| |
Collapse
|
13
|
Ghazizadeh H, Mansoori A, Sahranavard T, Nasrabadi M, Hadiloo K, Andalibi NS, Azmon M, Tavallaei S, Timar A, Ferns GA, Ghayour-Mobarhan M. The associations of oxidative stress and inflammatory markers with obesity in Iranian population: MASHAD cohort study. BMC Endocr Disord 2024; 24:56. [PMID: 38685027 PMCID: PMC11057096 DOI: 10.1186/s12902-024-01590-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 04/24/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Low-grade inflammation and stress oxidative condition play a role in the pathogenesis of obesity, and the serum levels of these markers, such as pro-oxidant-antioxidant balance (PAB), high-sensitivity C-reactive protein (hs-CRP), and uric acid may indicate obesity progression. In this study, we aimed to investigate the relationship between obesity with PAB, hs-CRP, and uric acid in the Iranian population. METHODS This study was derived from the Mashhad Stroke and Heart Atherosclerotic Disorder (MASHAD) study. A total of 7985 subjects aged 35 to 65 years were divided into three groups according to body mass index (BMI) as: normal, overweight and obese groups. Anthropometric indices and biochemical parameters such as PAB, superoxide dismutase type 1 (SOD1), hs-CRP, and uric acid were measured in all the participants. We evaluated the association of obesity with inflammatory factors by using multivariate regression analysis. Also, those participants with hypertension, an endocrine disorder, history of cardiovascular diseases and diabetes mellitus were excluded from the study. RESULTS There was a positive significant correlation between BMI and serum PAB, hs-CRP and uric acid (p < 0.001). While no statistically significant relation was observed between BMI and SOD1 (p = 0.85). Multivariate regression analysis showed that the risk of overweight and obesity increased 1.02 and 1.03-fold according to increase 10 units of PAB raise in comparison to reference group (normal weight) [(odds ratio (OR): 1.02, 95% CI (1.01-1.03)] and [OR: 1.03, 95% CI (1.01-1.04)], respectively). In addition, hs-CRP serum concentration was significantly associated with a high risk of obesity [(OR: 1.02; 95% CI (1.01-1.03)]. While the high levels of serum uric acid were associated with increased odds of overweight and obesity risk [OR: 1.4; CI (1.39-1.58) and OR: 1.76; CI (1.63-1.89), respectively]. CONCLUSIONS Generally, we showed a significant association between BMI and serum PAB, hs-CRP values and uric acid levels, suggesting the role of these factors as risk stratification factors for obesity.
Collapse
Affiliation(s)
- Hamideh Ghazizadeh
- CALIPER Program, Division of Clinical Biochemistry, Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Amin Mansoori
- Department of Applied Mathematics, School of Mathematical Sciences, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Toktam Sahranavard
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohamad Nasrabadi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kaveh Hadiloo
- Student Research Committee, School of Medicine, Zanjan University in Medical Science, Zanjan, Iran
| | | | - Marzyeh Azmon
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shima Tavallaei
- Department of Biochemistry and Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ameneh Timar
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex, BN1 9PH, UK
| | - Majid Ghayour-Mobarhan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
14
|
Choi YR, Na HJ, Lee J, Kim YS, Kim MJ. Isoeugenol Inhibits Adipogenesis in 3T3-L1 Preadipocytes with Impaired Mitotic Clonal Expansion. Nutrients 2024; 16:1262. [PMID: 38732509 PMCID: PMC11085592 DOI: 10.3390/nu16091262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Isoeugenol (IEG), a natural component of clove oil, possesses antioxidant, anti-inflammatory, and antibacterial properties. However, the effects of IEG on adipogenesis have not yet been elucidated. Here, we showed that IEG blocks adipogenesis in 3T3-L1 cells at an early stage. IEG inhibits lipid accumulation in adipocytes in a concentration-dependent manner and reduces the expression of mature adipocyte-related factors including PPARγ, C/EBPα, and FABP4. IEG treatment at different stages of adipogenesis showed that IEG inhibited adipocyte differentiation by suppressing the early stage, as confirmed by lipid accumulation and adipocyte-related biomarkers. The early stage stimulates growth-arrested preadipocytes to enter mitotic clonal expansion (MCE) and initiates their differentiation into adipocytes by regulating cell cycle-related factors. IEG arrested 3T3-L1 preadipocytes in the G0/G1 phase of the cell cycle and attenuated cell cycle-related factors including cyclinD1, CDK6, CDK2, and cyclinB1 during the MCE stage. Furthermore, IEG suppresses reactive oxygen species (ROS) production during MCE and inhibits ROS-related antioxidant enzymes, including superoxide dismutase1 (SOD1) and catalase. The expression of cell proliferation-related biomarkers, including pAKT and pERK1/2, was attenuated by the IEG treatment of 3T3-L1 preadipocytes. These findings suggest that it is a potential therapeutic agent for the treatment of obesity.
Collapse
Affiliation(s)
- Yae Rim Choi
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (Y.R.C.); (H.-J.N.); (J.L.)
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul 03760, Republic of Korea;
| | - Hyun-Jin Na
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (Y.R.C.); (H.-J.N.); (J.L.)
| | - Jaekwang Lee
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (Y.R.C.); (H.-J.N.); (J.L.)
| | - Young-Suk Kim
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul 03760, Republic of Korea;
| | - Min Jung Kim
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (Y.R.C.); (H.-J.N.); (J.L.)
| |
Collapse
|
15
|
Wang Z, Peters BA, Yu B, Grove ML, Wang T, Xue X, Thyagarajan B, Daviglus M, Boerwinkle E, Hu G, Mossavar-Rahmani Y, Isasi CR, Knight R, Burk RD, Kaplan RC, Qi Q. Gut Microbiota and Blood Metabolites Related to Fiber Intake and Type 2 Diabetes. Circ Res 2024; 134:842-854. [PMID: 38547246 PMCID: PMC10987058 DOI: 10.1161/circresaha.123.323634] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/14/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND Consistent evidence suggests diabetes-protective effects of dietary fiber intake. However, the underlying mechanisms, particularly the role of gut microbiota and host circulating metabolites, are not fully understood. We aimed to investigate gut microbiota and circulating metabolites associated with dietary fiber intake and their relationships with type 2 diabetes (T2D). METHODS This study included up to 11 394 participants from the HCHS/SOL (Hispanic Community Health Study/Study of Latinos). Diet was assessed with two 24-hour dietary recalls at baseline. We examined associations of dietary fiber intake with gut microbiome measured by shotgun metagenomics (350 species/85 genera and 1958 enzymes; n=2992 at visit 2), serum metabolome measured by untargeted metabolomics (624 metabolites; n=6198 at baseline), and associations between fiber-related gut bacteria and metabolites (n=804 at visit 2). We examined prospective associations of serum microbial-associated metabolites (n=3579 at baseline) with incident T2D over 6 years. RESULTS We identified multiple bacterial genera, species, and related enzymes associated with fiber intake. Several bacteria (eg, Butyrivibrio, Faecalibacterium) and enzymes involved in fiber degradation (eg, xylanase EC3.2.1.156) were positively associated with fiber intake, inversely associated with prevalent T2D, and favorably associated with T2D-related metabolic traits. We identified 159 metabolites associated with fiber intake, 47 of which were associated with incident T2D. We identified 18 of these 47 metabolites associated with the identified fiber-related bacteria, including several microbial metabolites (eg, indolepropionate and 3-phenylpropionate) inversely associated with the risk of T2D. Both Butyrivibrio and Faecalibacterium were associated with these favorable metabolites. The associations of fiber-related bacteria, especially Faecalibacterium and Butyrivibrio, with T2D were attenuated after further adjustment for these microbial metabolites. CONCLUSIONS Among United States Hispanics/Latinos, dietary fiber intake was associated with favorable profiles of gut microbiota and circulating metabolites for T2D. These findings advance our understanding of the role of gut microbiota and microbial metabolites in the relationship between diet and T2D.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Brandilyn A Peters
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Bing Yu
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Megan L Grove
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Tao Wang
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Xiaonan Xue
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | | | - Eric Boerwinkle
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Gang Hu
- Chronic Disease Epidemiology Laboratory, Pennington Biomedical Research Center, Louisiana, USA
| | - Yasmin Mossavar-Rahmani
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Carmen R Isasi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Rob Knight
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA,USA
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Robert D Burk
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Obstetrics & Gynecology and Women’s Health, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Robert C Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Qibin Qi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
16
|
Tuerxun R, Kamagata K, Saito Y, Andica C, Takabayashi K, Uchida W, Yoshida S, Kikuta J, Tabata H, Naito H, Someya Y, Kaga H, Miyata M, Akashi T, Wada A, Taoka T, Naganawa S, Tamura Y, Watada H, Kawamori R, Aoki S. Assessing interstitial fluid dynamics in type 2 diabetes mellitus and prediabetes cases through diffusion tensor imaging analysis along the perivascular space. Front Aging Neurosci 2024; 16:1362457. [PMID: 38515515 PMCID: PMC10954820 DOI: 10.3389/fnagi.2024.1362457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/19/2024] [Indexed: 03/23/2024] Open
Abstract
Background and purpose Glymphatic system in type 2 diabetes mellitus (T2DM) but not in the prodrome, prediabetes (Pre-DM) was investigated using diffusion tensor image analysis along the perivascular space (DTI-ALPS). Association between glymphatic system and insulin resistance of prominent characteristic in T2DM and Pre-DM between is yet elucidated. Therefore, this study delves into the interstitial fluid dynamics using the DTI-ALPS in both Pre-DM and T2DM and association with insulin resistance. Materials and methods In our cross-sectional study, we assessed 70 elderly individuals from the Bunkyo Health Study, which included 22 with Pre-DM, 18 with T2DM, and 33 healthy controls with normal glucose metabolism (NGM). We utilized the general linear model (GLM) to evaluate the ALPS index based on DTI-ALPS across these groups, considering variables like sex, age, intracranial volume, years of education, anamnesis of hypertension and hyperlipidemia, and the total Fazekas scale. Furthermore, we have explored the relationship between the ALPS index and insulin resistance, as measured by the homeostasis model assessment of insulin resistance (HOMA-IR) using GLM and the same set of covariates. Results In the T2DM group, the ALPS index demonstrated a reduction compared with the NGM group [family-wise error (FWE)-corrected p < 0.001; Cohen's d = -1.32]. Similarly, the Pre-DM group had a lower ALPS index than the NGM group (FWE-corrected p < 0.001; Cohen's d = -1.04). However, there was no significant disparity between the T2DM and Pre-DM groups (FWE-corrected p = 1.00; Cohen's d = -0.63). A negative correlation was observed between the ALPS index and HOMA-IR in the combined T2DM and Pre-DM groups (partial correlation coefficient r = -0.35, p < 0.005). Conclusion The ALPS index significantly decreased in both the pre-DM and T2DM groups and showed a correlated with insulin resistance. This indicated that changes in interstitial fluid dynamics are associated with insulin resistance.
Collapse
Affiliation(s)
- Rukeye Tuerxun
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuya Saito
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Christina Andica
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Faculty of Health Data Science, Juntendo University, Chiba, Japan
| | - Kaito Takabayashi
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Wataru Uchida
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Seina Yoshida
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Junko Kikuta
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hiroki Tabata
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hitoshi Naito
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuki Someya
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
| | - Hideyoshi Kaga
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Mari Miyata
- Department of Functional Brain Imaging, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Toshiaki Akashi
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Akihiko Wada
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Toshiaki Taoka
- Department of Innovative Biomedical Visualization, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshifumi Tamura
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hirotaka Watada
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ryuzo Kawamori
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
17
|
Bosch-Sierra N, Grau-del Valle C, Salom C, Zaragoza-Villena B, Perea-Galera L, Falcón-Tapiador R, Rovira-Llopis S, Morillas C, Monleón D, Bañuls C. Effect of a Very Low-Calorie Diet on Oxidative Stress, Inflammatory and Metabolomic Profile in Metabolically Healthy and Unhealthy Obese Subjects. Antioxidants (Basel) 2024; 13:302. [PMID: 38539836 PMCID: PMC10967635 DOI: 10.3390/antiox13030302] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 10/07/2024] Open
Abstract
The purpose of the study was to determine the impact of weight loss through calorie restriction on metabolic profile, and inflammatory and oxidative stress parameters in metabolically healthy (MHO) and unhealthy (MUHO) obese individuals. A total of 74 subjects (34 MHO and 40 MUHO) received two cycles of a very low-calorie diet, alternating with a hypocaloric diet for 24 weeks. Biochemical, oxidative stress, and inflammatory markers, as well as serum metabolomic analysis by nuclear magnetic resonance, were performed at baseline and at the end of the intervention. After the diet, there was an improvement in insulin resistance, as well as a significant decrease in inflammatory parameters, enhancing oxidative damage, mitochondrial membrane potential, glutathione, and antioxidant capacity. This improvement was more significant in the MUHO group. The metabolomic analysis showed a healthier profile in lipoprotein profile. Lipid carbonyls also decrease at the same time as unsaturated fatty acids increase. We also display a small decrease in succinate, glycA, alanine, and BCAAs (valine and isoleucine), and a slight increase in taurine. These findings show that moderate weight reduction leads to an improvement in lipid profile and subfractions and a reduction in oxidative stress and inflammatory markers; these changes are more pronounced in the MUHO population.
Collapse
Affiliation(s)
- Neus Bosch-Sierra
- Department of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain; (N.B.-S.); (C.G.-d.V.); (C.S.); (B.Z.-V.); (L.P.-G.); (R.F.-T.); (S.R.-L.); (C.M.)
| | - Carmen Grau-del Valle
- Department of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain; (N.B.-S.); (C.G.-d.V.); (C.S.); (B.Z.-V.); (L.P.-G.); (R.F.-T.); (S.R.-L.); (C.M.)
| | - Christian Salom
- Department of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain; (N.B.-S.); (C.G.-d.V.); (C.S.); (B.Z.-V.); (L.P.-G.); (R.F.-T.); (S.R.-L.); (C.M.)
| | - Begoña Zaragoza-Villena
- Department of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain; (N.B.-S.); (C.G.-d.V.); (C.S.); (B.Z.-V.); (L.P.-G.); (R.F.-T.); (S.R.-L.); (C.M.)
| | - Laura Perea-Galera
- Department of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain; (N.B.-S.); (C.G.-d.V.); (C.S.); (B.Z.-V.); (L.P.-G.); (R.F.-T.); (S.R.-L.); (C.M.)
| | - Rosa Falcón-Tapiador
- Department of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain; (N.B.-S.); (C.G.-d.V.); (C.S.); (B.Z.-V.); (L.P.-G.); (R.F.-T.); (S.R.-L.); (C.M.)
| | - Susana Rovira-Llopis
- Department of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain; (N.B.-S.); (C.G.-d.V.); (C.S.); (B.Z.-V.); (L.P.-G.); (R.F.-T.); (S.R.-L.); (C.M.)
- Department of Physiology, INCLIVA Biomedical Research Institute, University of Valencia, 46010 Valencia, Spain
| | - Carlos Morillas
- Department of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain; (N.B.-S.); (C.G.-d.V.); (C.S.); (B.Z.-V.); (L.P.-G.); (R.F.-T.); (S.R.-L.); (C.M.)
- Department of Medicine, University of Valencia, 46010 Valencia, Spain
| | - Daniel Monleón
- Department of Pathology, INCLIVA Biomedical Research Institute, University of Valencia, 46010 Valencia, Spain
| | - Celia Bañuls
- Department of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain; (N.B.-S.); (C.G.-d.V.); (C.S.); (B.Z.-V.); (L.P.-G.); (R.F.-T.); (S.R.-L.); (C.M.)
| |
Collapse
|
18
|
Niu Y, Gao T, Ouyang H, Zhang Y, Gong T, Zhang Z, Cao X, Fu Y. Chondroitin Sulfate-Derived Micelles for Adipose Tissue-Targeted Delivery of Celastrol and Phenformin to Enhance Obesity Treatment. ACS APPLIED BIO MATERIALS 2024; 7:1271-1289. [PMID: 38315869 DOI: 10.1021/acsabm.3c01216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Adipose tissue macrophages (ATMs) are crucial in maintaining a low-grade inflammatory microenvironment in adipose tissues (ATs). Modulating ATM polarization to attenuate inflammation represents a potential strategy for treating obesity with insulin resistance. This study develops a combination therapy of celastrol (CLT) and phenformin (PHE) using chondroitin sulfate-derived micelles. Specifically, CLT-loaded 4-aminophenylboronic acid pinacol ester-modified chondroitin sulfate micelle (CS-PBE/CLT) and chondroitin sulfate-phenformin conjugate micelles (CS-PHE) were synthesized, which were shown to actively target ATs through CD44-mediated pathways. Furthermore, the dual micellar systems significantly reduced inflammation and lipid accumulation via protein quantification and Oil Red O staining. In preliminary in vivo studies, we performed H&E staining, immunohistochemical staining, insulin tolerance test, and glucose tolerance test, and the results showed that the combination therapy using CS-PBE/CLT and CS-PHE micelles significantly reduced the average body weight, white adipose tissue mass, and liver mass of high-fat diet-fed mice while improving their systemic glucose homeostasis. Overall, this combination therapy presents a promising alternative to current treatment options for diet-induced obesity.
Collapse
Affiliation(s)
- Yining Niu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Tingting Gao
- School of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, China
- The Grade 3 Pharmaceutical Chemistry Laboratory of State Administrate of Traditional Chinese Medicine, Hefei 230032, China
| | - Hongling Ouyang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yunxiao Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Tao Gong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhirong Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xi Cao
- School of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, China
- The Grade 3 Pharmaceutical Chemistry Laboratory of State Administrate of Traditional Chinese Medicine, Hefei 230032, China
| | - Yao Fu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
19
|
Peng S, Yin X, Chen G, Sun J, Chen B, Zhou Y, Li Z, Liu F, Xiang H. Long-term exposure to varying-sized particulate matters and kidney disease in middle-aged and elder adults: A 8-year nationwide cohort study in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 911:168621. [PMID: 37977376 DOI: 10.1016/j.scitotenv.2023.168621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
Evidence for the causal relationship of particulate matters (PMs) exposure with kidney disease, especially PM1, PM1-2.5 and PM2.5-10, remained scarce among developing countries with severe pollution. We conducted a longitudinal cohort study involving 13,041 adults with free kidney disease from 150 Chinese counties. PMs concentrations were generated using a well-established satellite-based spatiotemporal model. And the time-varying Cox regression model along with stratified analyses were performed to determine the association and potential modifiers, respectively. We also calculated the population-attributable fraction to evaluate the burden of kidney disease attributable to PMs pollution. Between Jan 2011 and Dec 2018, 985 kidney disease incidents were identified with an incidence rate of 12.69 per 1000 person-years. Significant dose-response relationships were observed for all 5 kinds PMs. Specifically, an increased risk of kidney disease was associated with per 10 μg/m3 increment of PM1 (HR = 1.187, 95%CI: 1.114 to 1.265), PM1-2.5 (1.326, 1.212 to 1.452), PM2.5 (1.197, 1.139 to 1.258), PM2.5-10 (1.297, 1.240 to 1.357), and PM10 (1.137, 1.108 to 1.166). A mixture analysis method of weighted quantile regression model revealed that PM2.5-10 predominated the PMs mixture index (57.1 %), and followed with PM10 (26.4 %). Stratified analyses indicated the elder, overweight persons, smokers, respiratory patients and urban residents were more vulnerable to PMs pollution than their counterparts. Calculated population attributable fractions of kidney disease attributable to PMs pollution was 16.67-39.47 %. Higher PMs pollution was associated with the increased risk of kidney disease development in China. Acceleration of efforts to reduce PMs pollution was therefore urgently needed to alleviate kidney disease burden.
Collapse
Affiliation(s)
- Shouxin Peng
- Global Health Department, School of Public Health, Wuhan University, Wuhan, Hubei 430071, China; Global Health Institute, Wuhan University, Wuhan, Hubei 430071, China
| | - Xiaoyi Yin
- Global Health Department, School of Public Health, Wuhan University, Wuhan, Hubei 430071, China
| | - Gongbo Chen
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Jinhui Sun
- Global Health Department, School of Public Health, Wuhan University, Wuhan, Hubei 430071, China; Global Health Institute, Wuhan University, Wuhan, Hubei 430071, China
| | - Bingbing Chen
- Global Health Department, School of Public Health, Wuhan University, Wuhan, Hubei 430071, China
| | - Yi Zhou
- Global Health Department, School of Public Health, Wuhan University, Wuhan, Hubei 430071, China
| | - Zhaoyuan Li
- Global Health Department, School of Public Health, Wuhan University, Wuhan, Hubei 430071, China; Global Health Institute, Wuhan University, Wuhan, Hubei 430071, China
| | - Feifei Liu
- Global Health Department, School of Public Health, Wuhan University, Wuhan, Hubei 430071, China; Global Health Institute, Wuhan University, Wuhan, Hubei 430071, China
| | - Hao Xiang
- Global Health Department, School of Public Health, Wuhan University, Wuhan, Hubei 430071, China; Global Health Institute, Wuhan University, Wuhan, Hubei 430071, China.
| |
Collapse
|
20
|
Chandrasekaran P, Weiskirchen R. The Role of Obesity in Type 2 Diabetes Mellitus-An Overview. Int J Mol Sci 2024; 25:1882. [PMID: 38339160 PMCID: PMC10855901 DOI: 10.3390/ijms25031882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/29/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
Obesity or excessive weight gain is identified as the most important and significant risk factor in the development and progression of type 2 diabetes mellitus (DM) in all age groups. It has reached pandemic dimensions, making the treatment of obesity crucial in the prevention and management of type 2 DM worldwide. Multiple clinical studies have demonstrated that moderate and sustained weight loss can improve blood glucose levels, insulin action and reduce the need for diabetic medications. A combined approach of diet, exercise and lifestyle modifications can successfully reduce obesity and subsequently ameliorate the ill effects and deadly complications of DM. This approach also helps largely in the prevention, control and remission of DM. Obesity and DM are chronic diseases that are increasing globally, requiring new approaches to manage and prevent diabetes in obese individuals. Therefore, it is essential to understand the mechanistic link between the two and design a comprehensive approach to increase life expectancy and improve the quality of life in patients with type 2 DM and obesity. This literature review provides explicit information on the clinical definitions of obesity and type 2 DM, the incidence and prevalence of type 2 DM in obese individuals, the indispensable role of obesity in the pathophysiology of type 2 DM and their mechanistic link. It also discusses clinical studies and outlines the recent management approaches for the treatment of these associated conditions. Additionally, in vivo studies on obesity and type 2 DM are discussed here as they pave the way for more rigorous development of therapeutic approaches.
Collapse
Affiliation(s)
- Preethi Chandrasekaran
- UT Southwestern Medical Center Dallas, 5323 Harry Hines Blvd. ND10.504, Dallas, TX 75390-9014, USA
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), Rheinisch-Westfälische Technische Hochschule (RWTH), University Hospital Aachen, D-52074 Aachen, Germany
| |
Collapse
|
21
|
Niveta JPS, John CM, Arockiasamy S. Monoamine oxidase mediated oxidative stress: a potential molecular and biochemical crux in the pathogenesis of obesity. Mol Biol Rep 2023; 51:29. [PMID: 38142252 DOI: 10.1007/s11033-023-08938-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/14/2023] [Indexed: 12/25/2023]
Abstract
Obesity has become a global health concern with an increasing prevalence as years pass by but the researchers have not come to a consensus on the exact pathophysiological mechanism underlying this disease. In the past three decades, Monoamine Oxidases (MAO), has come into limelight for a possible involvement in orchestrating the genesis of obesity but the exact mechanism is not well elucidated. MAO is essentially an enzyme involved in the catabolism of neurotransmitters and other biogenic amines to form a corresponding aldehyde, hydrogen peroxide (H2O2) and ammonia. This review aims to highlight the repercussions of MAO's catabolic activity on the redox balance, carbohydrate metabolism and lipid metabolism of adipocytes which ultimately leads to obesity. The H2O2 produced by these enzymes seems to be the culprit causing oxidative stress in pre-adipocytes and goes on to mimic insulin's activity independent of its presence via the Protein Kinase B Pathway facilitating glucose influx. The H2O2 activates Sterol regulatory-element binding protein-1c and peroxisome proliferator activated receptor gamma crucial for encoding enzymes like fatty acid synthase, acetyl CoA carboxylase 1, Adenosine triphosphate-citrate lyase, phosphoenol pyruvate carboxykinase etc., which helps promoting lipogenesis at the same time inhibits lipolysis. More reactive oxygen species production occurs via NADPH Oxidases enzymes and is also able activate Nuclear Factor kappa B leading to inflammation in the adipocyte microenvironment. This chronic inflammation is the seed for insulin resistance.
Collapse
Affiliation(s)
- J P Shirley Niveta
- Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Cordelia Mano John
- Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | | |
Collapse
|
22
|
de Baat A, Meier DT, Rachid L, Fontana A, Böni-Schnetzler M, Donath MY. Cystine/glutamate antiporter System x c- deficiency impairs insulin secretion in mice. Diabetologia 2023; 66:2062-2074. [PMID: 37650924 PMCID: PMC10541846 DOI: 10.1007/s00125-023-05993-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/16/2023] [Indexed: 09/01/2023]
Abstract
AIMS/HYPOTHESIS Glutamate-induced cytotoxicity (excitotoxicity) has been detected in pancreatic beta cells. The cystine/glutamate antiporter System xc- exports glutamate to the extracellular space and is therefore implicated as driving excitotoxicity. As of yet, it has not been investigated whether System xc- contributes to pancreatic islet function. METHODS This study describes the implications of deficiency of System xc- on glucose metabolism in both constitutive and myeloid cell-specific knockout mice using metabolic tests and diet-induced obesity. Pancreatic islets were isolated and analysed for beta cell function, glutathione levels and ER stress. RESULTS Constitutive System xc- deficiency led to an approximately threefold decrease in glutathione levels in the pancreatic islets as well as cystine shortage characterised by upregulation of Chac1. This shortage further manifested as downregulation of beta cell identity genes and a tonic increase in endoplasmic reticulum stress markers, which resulted in diminished insulin secretion both in vitro and in vivo. Myeloid-specific deletion did not have a significant impact on metabolism or islet function. CONCLUSIONS/INTERPRETATION These findings suggest that System xc- is required for glutathione maintenance and insulin production in beta cells and that the system is dispensable for islet macrophage function.
Collapse
Affiliation(s)
- Axel de Baat
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland.
- Department of Biomedicine, University of Basel, Basel, Switzerland.
| | - Daniel T Meier
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Leila Rachid
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Adriano Fontana
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Marianne Böni-Schnetzler
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Marc Y Donath
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
23
|
Fletcher E, Miserlis D, Sorokolet K, Wilburn D, Bradley C, Papoutsi E, Wilkinson T, Ring A, Ferrer L, Haynatzki G, Smith RS, Bohannon WT, Koutakis P. Diet-induced obesity augments ischemic myopathy and functional decline in a murine model of peripheral artery disease. Transl Res 2023; 260:17-31. [PMID: 37220835 PMCID: PMC11388035 DOI: 10.1016/j.trsl.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/25/2023]
Abstract
Peripheral artery disease (PAD) causes an ischemic myopathy contributing to patient disability and mortality. Most preclinical models to date use young, healthy rodents with limited translatability to human disease. Although PAD incidence increases with age, and obesity is a common comorbidity, the pathophysiologic association between these risk factors and PAD myopathy is unknown. Using our murine model of PAD, we sought to elucidate the combined effect of age, diet-induced obesity and chronic hindlimb ischemia (HLI) on (1) mobility, (2) muscle contractility, and markers of muscle (3) mitochondrial content and function, (4) oxidative stress and inflammation, (5) proteolysis, and (6) cytoskeletal damage and fibrosis. Following 16-weeks of high-fat, high-sucrose, or low-fat, low-sucrose feeding, HLI was induced in 18-month-old C57BL/6J mice via the surgical ligation of the left femoral artery at 2 locations. Animals were euthanized 4-weeks post-ligation. Results indicate mice with and without obesity shared certain myopathic changes in response to chronic HLI, including impaired muscle contractility, altered mitochondrial electron transport chain complex content and function, and compromised antioxidant defense mechanisms. However, the extent of mitochondrial dysfunction and oxidative stress was significantly greater in obese ischemic muscle compared to non-obese ischemic muscle. Moreover, functional impediments, such as delayed post-surgical recovery of limb function and reduced 6-minute walking distance, as well as accelerated intramuscular protein breakdown, inflammation, cytoskeletal damage, and fibrosis were only evident in mice with obesity. As these features are consistent with human PAD myopathy, our model could be a valuable tool to test new therapeutics.
Collapse
Affiliation(s)
- Emma Fletcher
- Department of Biology, Baylor University, Waco, Texas
| | - Dimitrios Miserlis
- Department of Surgery, University of Texas at Austin Dell Medical School, Austin, Texas
| | | | - Dylan Wilburn
- Department of Health, Human Performance and Recreation, Baylor University, Waco, Texas
| | | | | | | | - Andrew Ring
- Department of Biology, Baylor University, Waco, Texas
| | - Lucas Ferrer
- Department of Surgery, University of Texas at Austin Dell Medical School, Austin, Texas
| | - Gleb Haynatzki
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, Nebraska
| | - Robert S Smith
- Department of Surgery, Baylor Scott & White Medical Center, Temple, Texas
| | - William T Bohannon
- Department of Surgery, Baylor Scott & White Medical Center, Temple, Texas
| | | |
Collapse
|
24
|
Song J, Park SJ, Choi S, Han M, Cho Y, Oh YH, Park SM. Effect of changes in sleeping behavior on skeletal muscle and fat mass: a retrospective cohort study. BMC Public Health 2023; 23:1879. [PMID: 37770876 PMCID: PMC10540406 DOI: 10.1186/s12889-023-16765-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 09/15/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND An association between sleep behaviors and muscle-fat mass is continuously interesting topic. METHODS Based on the survey on sleep behaviors (quality and duration), the poor quality of sleep was evaluated when the subject did not feel satisfied after sleep, while the good quality was evaluated as they feel refreshed. A total of 19,770 participants were divided into the four groups according to changes in sleep quality: Good-to-Good (those who continuously maintained good quality), Good-to-Poor (those who reported initial good quality but subsequently reported a poor quality), Poor-to-Poor (those who continuously maintained poor quality), and Poor-to-Good (those who reported improved quality of sleep). As changes in skeletal muscle and fat mass index [kg/m2] were estimated by a validated prediction equation, multiple linear regression was used to calculate adjusted mean (adMean) of muscle and fat mass according to changes in sleep behavior. RESULTS When sleep duration decreased and quality of sleep deteriorated (from good to poor), fat mass index significantly increased (adMean: 0.087 for the Good-to-Good group and 0.210 for the Good-to-Poor group; p-value = 0.006). On the other hand, as the quality of sleep deteriorated, skeletal muscle mass more decreased despite the maintained sleep duration (adMean: -0.024 for the Good-to-Good group and - 0.049 for the Good-to-Poor group; p-value = 0.009). CONCLUSION Our results showed that changes in sleep quality and duration affect changes in muscle and fat mass. Thus, we suggest maintaining a good quality of sleep, even if sleep duration is reduced, to preserve muscle mass and inhibit the accumulation of fat.
Collapse
Affiliation(s)
- Jihun Song
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea
| | - Sun Jae Park
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea
| | - Seulggie Choi
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Minjung Han
- Department of Family Medicine, Myongji Hospital, Goyang, South Korea
| | - Yoosun Cho
- Total Healthcare Center, School of Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University, Seoul, Republic of Korea
| | - Yun Hwan Oh
- Department of Family Medicine, Chung-Ang University Gwangmyeong Hospital, Chung-Ang University College of Medicine, Gwangmyeong, Republic of Korea
| | - Sang Min Park
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea.
- Department of Family Medicine, Seoul National University Hospital, 101, Daehak-ro, Jongno- gu, Seoul, Republic of Korea.
| |
Collapse
|
25
|
Cisternas P, Gherardelli C, Gutierrez J, Salazar P, Mendez-Orellana C, Wong GW, Inestrosa NC. Adiponectin and resistin modulate the progression of Alzheimer´s disease in a metabolic syndrome model. Front Endocrinol (Lausanne) 2023; 14:1237796. [PMID: 37732123 PMCID: PMC10507329 DOI: 10.3389/fendo.2023.1237796] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/16/2023] [Indexed: 09/22/2023] Open
Abstract
Metabolic syndrome (MetS), a cluster of metabolic conditions that include obesity, hyperlipidemia, and insulin resistance, increases the risk of several aging-related brain diseases, including Alzheimer's disease (AD). However, the underlying mechanism explaining the link between MetS and brain function is poorly understood. Among the possible mediators are several adipose-derived secreted molecules called adipokines, including adiponectin (ApN) and resistin, which have been shown to regulate brain function by modulating several metabolic processes. To investigate the impact of adipokines on MetS, we employed a diet-induced model to induce the various complications associated with MetS. For this purpose, we administered a high-fat diet (HFD) to both WT and APP/PSN1 mice at a pre-symptomatic disease stage. Our data showed that MetS causes a fast decline in cognitive performance and stimulates Aβ42 production in the brain. Interestingly, ApN treatment restored glucose metabolism and improved cognitive functions by 50% while decreasing the Aβ42/40 ratio by approximately 65%. In contrast, resistin exacerbated Aβ pathology, increased oxidative stress, and strongly reduced glucose metabolism. Together, our data demonstrate that ApN and resistin alterations could further contribute to AD pathology.
Collapse
Affiliation(s)
- Pedro Cisternas
- Instituto de Ciencias de la Salud, Universidad de O’Higgins, Rancagua, Chile
| | - Camila Gherardelli
- Centro de Envejecimiento y Regeneración (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Joel Gutierrez
- Centro de Envejecimiento y Regeneración (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Paulina Salazar
- Centro de Envejecimiento y Regeneración (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carolina Mendez-Orellana
- Carrera de Fonoaudiología, Departamento Ciencias de la Salud, facultad Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - G. William Wong
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Center for Metabolism and Obesity Research, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Nibaldo C. Inestrosa
- Centro de Envejecimiento y Regeneración (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| |
Collapse
|
26
|
Nederveen JP, Mastrolonardo AJ, Xhuti D, Di Carlo A, Manta K, Fuda MR, Tarnopolsky MA. Novel Multi-Ingredient Supplement Facilitates Weight Loss and Improves Body Composition in Overweight and Obese Individuals: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Nutrients 2023; 15:3693. [PMID: 37686725 PMCID: PMC10490028 DOI: 10.3390/nu15173693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Despite the growing recognition of the obesity crisis, its rates continue to rise. The current first-line therapies, such as dietary changes, energy restriction, and physical activity, are typically met with poor adherence. Novel nutritional interventions can address the root causes of obesity, including mitochondrial dysfunction, and facilitate weight loss. OBJECTIVE The objective of this study was to investigate the effects of a multi-ingredient nutritional supplement designed to facilitate mitochondrial function and metabolic health outcomes over a 12 wk period. METHODS Fifty-five overweight and/or obese participants (age (mean ± SEM): 26 ± 1; body mass index (BMI) (kg/m2): 30.5 ± 0.6) completed this double-blind, placebo-controlled clinical trial. Participants were randomized to 12 wks of daily consumption of multi-ingredient supplement (MIS; n = 28; containing 50 mg forskolin, 500 mg green coffee bean extract, 500 mg green tea extract, 500 mg beet root extract, 400 mg α-lipoic acid, 200 IU vitamin E, and 200 mg CoQ10) or control placebo (PLA, n = 27; containing microcrystalline cellulose) matched in appearance. The co-primary outcomes were bodyweight and fat mass (kg) changes. The secondary outcomes included other body composition measures, plasma markers of obesity, fatty liver disease biomarkers, resting energy metabolism, blood pressure, physical performance, and quality of life. The post-intervention differences between MIS and PLA were examined via ANCOVA which was adjusted for the respective pre-intervention variables. RESULTS After adjustment for pre-intervention data, there was a significant difference in weight (p < 0.001) and fat mass (p < 0.001) post-intervention between the PLA and MIS treatment arms. Post-intervention weight and fat mass were significantly lower in MIS. Significant post-intervention differences corrected for baseline were found in markers of clinical biochemistry (AST, p = 0.017; ALT, p = 0.008), molecular metabolism (GDF15, p = 0.028), and extracellular vesicle-associated miRNA species miR-122 and miR-34a in MIS (p < 0.05). CONCLUSIONS Following the 12 wks of MIS supplementation, weight and body composition significantly improved, concomitant with improvements in molecular markers of liver health and metabolism.
Collapse
Affiliation(s)
- Joshua P. Nederveen
- Department of Pediatrics, Faculty of Health Sciences, McMaster University Medical Center (MUMC), Hamilton, ON L8N 3Z5, Canada; (J.P.N.)
| | - Alexander J. Mastrolonardo
- Department of Pediatrics, Faculty of Health Sciences, McMaster University Medical Center (MUMC), Hamilton, ON L8N 3Z5, Canada; (J.P.N.)
| | - Donald Xhuti
- Department of Pediatrics, Faculty of Health Sciences, McMaster University Medical Center (MUMC), Hamilton, ON L8N 3Z5, Canada; (J.P.N.)
| | - Alessia Di Carlo
- Department of Pediatrics, Faculty of Health Sciences, McMaster University Medical Center (MUMC), Hamilton, ON L8N 3Z5, Canada; (J.P.N.)
| | - Katherine Manta
- Department of Pediatrics, Faculty of Health Sciences, McMaster University Medical Center (MUMC), Hamilton, ON L8N 3Z5, Canada; (J.P.N.)
| | - Matthew R. Fuda
- Department of Pediatrics, Faculty of Health Sciences, McMaster University Medical Center (MUMC), Hamilton, ON L8N 3Z5, Canada; (J.P.N.)
| | - Mark A. Tarnopolsky
- Department of Pediatrics, Faculty of Health Sciences, McMaster University Medical Center (MUMC), Hamilton, ON L8N 3Z5, Canada; (J.P.N.)
- Exerkine Corporation, McMaster University Medical Center (MUMC), Hamilton, ON L8N 3Z5, Canada
| |
Collapse
|
27
|
Man AWC, Zhou Y, Xia N, Li H. Perivascular Adipose Tissue Oxidative Stress in Obesity. Antioxidants (Basel) 2023; 12:1595. [PMID: 37627590 PMCID: PMC10451984 DOI: 10.3390/antiox12081595] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Perivascular adipose tissue (PVAT) adheres to most systemic blood vessels in the body. Healthy PVAT exerts anticontractile effects on blood vessels and further protects against cardiovascular and metabolic diseases. Healthy PVAT regulates vascular homeostasis via secreting an array of adipokine, hormones, and growth factors. Normally, homeostatic reactive oxygen species (ROS) in PVAT act as secondary messengers in various signalling pathways and contribute to vascular tone regulation. Excessive ROS are eliminated by the antioxidant defence system in PVAT. Oxidative stress occurs when the production of ROS exceeds the endogenous antioxidant defence, leading to a redox imbalance. Oxidative stress is a pivotal pathophysiological process in cardiovascular and metabolic complications. In obesity, PVAT becomes dysfunctional and exerts detrimental effects on the blood vessels. Therefore, redox balance in PVAT emerges as a potential pathophysiological mechanism underlying obesity-induced cardiovascular diseases. In this review, we summarise new findings describing different ROS, the major sources of ROS and antioxidant defence in PVAT, as well as potential pharmacological intervention of PVAT oxidative stress in obesity.
Collapse
Affiliation(s)
| | | | | | - Huige Li
- Department of Pharmacology, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany; (A.W.C.M.); (Y.Z.); (N.X.)
| |
Collapse
|
28
|
Zhu X, Ren T, Xiong Q, Lin Z, Lin X, Lin G. Salidroside alleviates diet-induced obesity and insulin resistance by activating Nrf2/ARE pathway and enhancing the thermogenesis of adipose tissues. Food Sci Nutr 2023; 11:4735-4744. [PMID: 37576042 PMCID: PMC10420790 DOI: 10.1002/fsn3.3450] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 04/26/2023] [Accepted: 05/02/2023] [Indexed: 08/15/2023] Open
Abstract
Recent reports suggest that salidroside protects cardiomyocytes from oxidative injury and stimulates glucose uptake by skeletal muscle cells. Despite these findings, the therapeutic potential of salidroside in the treatment of obesity and insulin resistance remains uncertain and requires further investigation. In the present study, the treatment effect of salidroside on the onset and development of the obese phenotype and insulin resistance as well as the underlying mechanisms was investigated using long-term high-fat diet-induced obese mice supplemented with salidroside. We used biochemical kits to determine serum biochemical parameters (including triacylglycerol, total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, fasting glucose, and insulin). The results show that salidroside-supplemented animals showed better glucose tolerance and insulin sensitivity, decreased blood lipids, and weight gain (p < .05). Protein expression of p-Nrf2 and Nrf2 was analyzed by western blotting, and the mRNA levels of thermogenic-related genes (Ucp1, Pgc1a, Prdm16, and Cidea) were detected by quantitative RT-PCR. The results show an improvement in lipid peroxidation and Nrf2/ARE signaling, as well as an increased expression of the Ucp1, Pgc1a, Prdm16, and Cidea (p < .05). Our evidence suggests that salidroside alleviates diet-induced obesity and insulin resistance potentially by activating Nrf2/ARE pathway and enhancing the thermogenesis of adipose tissues. This induction represents a potential technique for the management of comorbidities related to obesity and its prevention.
Collapse
Affiliation(s)
- Xiaozhen Zhu
- Department of PharmacyThe Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Ting Ren
- College of Life and Environmental ScienceWenzhou UniversityWenzhouChina
| | - Qiushuang Xiong
- Department of PharmacyThe Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Zhengfeng Lin
- Department of PharmacyThe Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Xiaoxiao Lin
- Department of PharmacyThe Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Guangyong Lin
- Department of PharmacyThe Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| |
Collapse
|
29
|
Algoet M, Janssens S, Himmelreich U, Gsell W, Pusovnik M, Van den Eynde J, Oosterlinck W. Myocardial ischemia-reperfusion injury and the influence of inflammation. Trends Cardiovasc Med 2023; 33:357-366. [PMID: 35181472 DOI: 10.1016/j.tcm.2022.02.005] [Citation(s) in RCA: 145] [Impact Index Per Article: 72.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/12/2022] [Accepted: 02/13/2022] [Indexed: 12/20/2022]
Abstract
Acute myocardial infarction is caused by a sudden coronary artery occlusion and leads to ischemia in the corresponding myocardial territory which generally results in myocardial necrosis. Without restoration of coronary perfusion, myocardial scar formation will cause adverse remodelling of the myocardium and heart failure. Successful introduction of percutaneous coronary intervention and surgical coronary artery bypass grafting made it possible to achieve early revascularisation/reperfusion, hence limiting the ischemic zone of myocardium. However, reperfusion by itself paradoxically triggers an exacerbated and accelerated injury in the myocardium, called ischemia-reperfusion (I/R) injury. This mechanism is partially driven by inflammation through multiple interacting pathways. In this review we summarize the current insights in mechanisms of I/R injury and the influence of altered inflammation. Multiple pharmacological and interventional therapeutic strategies (ischemic conditioning) have proven to be beneficial during I/R in preclinical models but were notoriously unsuccessful upon clinical translation. In this review we focus on common mechanisms of I/R injury, altered inflammation and potential therapeutic strategies. We hypothesize that a dual approach may be of value because I/R injury patients are predestined with multiple comorbidities and systemic low-grade inflammation, which requires targeted intervention before other strategies can be fully effective.
Collapse
Affiliation(s)
- Michiel Algoet
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium.
| | - Stefan Janssens
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Uwe Himmelreich
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Willy Gsell
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Matic Pusovnik
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Jef Van den Eynde
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium; Helen B. Taussig Heart Center, The Johns Hopkins Hospital and School of Medicine, Baltimore, United States
| | | |
Collapse
|
30
|
Cheng MZSZ, Amin FAZ, Zawawi N, Chan KW, Ismail N, Ishak NA, Esa NM. Stingless Bee ( Heterotrigona Itama) Honey and Its Phenolic-Rich Extract Ameliorate Oxidant-Antioxidant Balance via KEAP1-NRF2 Signalling Pathway. Nutrients 2023; 15:2835. [PMID: 37447162 DOI: 10.3390/nu15132835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Diabetes is associated with an imbalance between oxidants and antioxidants, leading to oxidative stress. This imbalance contributes to the development and progression of diabetic complications. Similarly, renal and liver diseases are characterised by oxidative stress, where an excess of oxidants overwhelms the antioxidant defense mechanisms, causing tissue damage and dysfunction. Restoring the oxidant-antioxidant balance is essential for mitigating oxidative stress-related damage under these conditions. In this current study, the efficacy of stingless bee honey (SBH) and its phenolic-rich extract (PRE) in controlling the oxidant-antioxidant balance in high-fat diet- and streptozotocin/nicotinamide-induced diabetic rats was investigated. The administration of SBH and PRE improved systemic antioxidant defense and oxidative stress-related measures without compromising liver and renal functioning. Analyses of the liver, skeletal muscle and adipose tissues revealed differences in their capacities to scavenge free radicals and halt lipid peroxidation. Transcriptional alterations hypothesised tissue-specific control of KEAP1-NRF2 signalling by upregulation of Nrf2, Ho1 and Sod1 in a tissue-specific manner. In addition, hepatic translational studies demonstrated the stimulation of downstream antioxidant-related protein with upregulated expression of SOD-1 and HOD-1 protein. Overall, the results indicated that PRE and SBH can be exploited to restore the oxidant-antioxidant imbalance generated by diabetes via regulating the KEAP1-NRF2 signalling pathway.
Collapse
Affiliation(s)
| | - Fatin Aina Zulkhairi Amin
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Norhasnida Zawawi
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Kim Wei Chan
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Norsharina Ismail
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Nur Akmal Ishak
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Center of Foundation Studies for Agricultural Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Norhaizan Mohd Esa
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Department of Nutrition, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
31
|
Peña A, Olson ML, Ayers SL, Sears DD, Vega-López S, Colburn AT, Shaibi GQ. Inflammatory Mediators and Type 2 Diabetes Risk Factors before and in Response to Lifestyle Intervention among Latino Adolescents with Obesity. Nutrients 2023; 15:nu15112442. [PMID: 37299403 DOI: 10.3390/nu15112442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/15/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Obesity is associated with chronic inflammation that may contribute to T2D among youth. We examined the association between inflammatory biomarkers and insulin sensitivity and β-cell function and response to lifestyle intervention among Latino youth with obesity. Latino youth (n = 64) were randomized to six months of lifestyle intervention (INT, n = 40) or usual care (UC, n = 24). INT included nutrition education and physical activity. UC involved meeting with a pediatric endocrinologist and registered dietitian to discuss healthy lifestyles. At baseline, multiple linear regression assessed fasting serum interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), monocyte chemoattractant protein-1 (MCP-1), high-molecular weight adiponectin (HMW Adpn), IL-10, IL-1 receptor antagonist (IL-1ra) as predictors of insulin sensitivity (whole-body insulin sensitivity index, WBISI) and β-cell function (oral disposition index, oDI). Changes in outcomes between groups were assessed using covariance pattern models. At baseline, MCP-1 (β ± SE, -0.12 ± 0.05, p = 0.027) and IL-1ra (-0.03 ± 0.01, p = 0.005) were negatively associated with WBISI. Treatment effects were not observed for inflammatory markers. WBISI was significantly increased among both INT (from 1.8 ± 0.2 to 2.6 ± 0.4, p = 0.005) and UC (from 1.6 ± 0.2 to 2.8 ± 0.5, p = 0.002) with no significant differences between the groups. Obesity-related inflammatory mediators were associated with T2D risk factors but were unaffected by lifestyle intervention among Latino youth.
Collapse
Affiliation(s)
- Armando Peña
- Department of Health and Wellness Design, School of Public Health-Bloomington, Indiana University, Bloomington, IN 47405, USA
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA
- Center for Health Promotion and Disease Prevention, Arizona State University, Phoenix, AZ 85004, USA
| | - Micah L Olson
- Center for Health Promotion and Disease Prevention, Arizona State University, Phoenix, AZ 85004, USA
- Division of Pediatric Endocrinology and Diabetes, Phoenix Children's Hospital, Phoenix, AZ 85016, USA
| | - Stephanie L Ayers
- Southwestern Interdisciplinary Research Center, Arizona State University, Phoenix, AZ 85004, USA
| | - Dorothy D Sears
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA
| | - Sonia Vega-López
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA
- Southwestern Interdisciplinary Research Center, Arizona State University, Phoenix, AZ 85004, USA
| | - Abigail T Colburn
- Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT 06510, USA
- John B. Pierce Laboratory, Yale School of Medicine, New Haven, CT 06519, USA
| | - Gabriel Q Shaibi
- Center for Health Promotion and Disease Prevention, Arizona State University, Phoenix, AZ 85004, USA
- Division of Pediatric Endocrinology and Diabetes, Phoenix Children's Hospital, Phoenix, AZ 85016, USA
- Southwestern Interdisciplinary Research Center, Arizona State University, Phoenix, AZ 85004, USA
| |
Collapse
|
32
|
Jovanović M, Kovačević S, Brkljačić J, Djordjevic A. Oxidative Stress Linking Obesity and Cancer: Is Obesity a 'Radical Trigger' to Cancer? Int J Mol Sci 2023; 24:ijms24098452. [PMID: 37176160 PMCID: PMC10179114 DOI: 10.3390/ijms24098452] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/24/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
Obesity is on the rise worldwide, and consequently, obesity-related non-communicable diseases are as well. Nutritional overload induces metabolic adaptations in an attempt to restore the disturbed balance, and the byproducts of the mechanisms at hand include an increased generation of reactive species. Obesity-related oxidative stress causes damage to vulnerable systems and ultimately contributes to neoplastic transformation. Dysfunctional obese adipose tissue releases cytokines and induces changes in the cell microenvironment, promoting cell survival and progression of the transformed cancer cells. Other than the increased risk of cancer development, obese cancer patients experience higher mortality rates and reduced therapy efficiency as well. The fact that obesity is considered the second leading preventable cause of cancer prioritizes the research on the mechanisms connecting obesity to cancerogenesis and finding the solutions to break the link. Oxidative stress is integral at different stages of cancer development and advancement in obese patients. Hypocaloric, balanced nutrition, and structured physical activity are some tools for relieving this burden. However, the sensitivity of simultaneously treating cancer and obesity poses a challenge. Further research on the obesity-cancer liaison would offer new perspectives on prevention programs and treatment development.
Collapse
Affiliation(s)
- Mirna Jovanović
- Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia
| | - Sanja Kovačević
- Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia
| | - Jelena Brkljačić
- Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia
| | - Ana Djordjevic
- Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia
| |
Collapse
|
33
|
Oraphruek P, Chusak C, Ngamukote S, Sawaswong V, Chanchaem P, Payungporn S, Suantawee T, Adisakwattana S. Effect of a Multispecies Synbiotic Supplementation on Body Composition, Antioxidant Status, and Gut Microbiomes in Overweight and Obese Subjects: A Randomized, Double-Blind, Placebo-Controlled Study. Nutrients 2023; 15:nu15081863. [PMID: 37111082 PMCID: PMC10141052 DOI: 10.3390/nu15081863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Studies investigating the effect of multispecies synbiotic supplementation in obesity management are limited. The current study was performed to evaluate the effects of multispecies probiotics mixed with fructooligosaccharides on body composition, antioxidant status, and gut microbiome composition in overweight and obese individuals. We employed a randomized, double-blind, placebo-controlled trial design, in which 63 individuals aged 18-45 years were assigned to receive either a synbiotic supplement or placebo for 12 weeks. The synbiotic group consumed a daily dose of 37 × 109 colony-forming units (CFU) of a unique blend of seven different probiotics, along with 2 g of fructooligosaccharides, while the placebo group consumed 2 g of maltodextrin daily. Assessments were performed at baseline, week 6, and the end of the study. The results of the study indicated that synbiotic supplementation resulted in a significant reduction in waist circumference and body fat percentage compared to the baseline measurements, as observed at 12 weeks. At the end of the study, there were no significant differences observed in body weight, BMI, waist circumference, or percentage of body fat between the synbiotic group and the placebo group. An analysis of plasma antioxidant capacity revealed that synbiotic supplementation caused a significant increase in Trolox equivalent antioxidant capacity (TEAC) and a concomitant decrease in malondialdehyde (MDA) in the test group when compared to the placebo. For the gut microbiota analysis, synbiotic supplementation significantly decreased Firmicutes abundance and the Firmicutes/Bacteroidetes (F/B) ratio at week 12 as compared to the placebo group. Nevertheless, the synbiotic group did not exhibit any substantial alterations in other biochemical blood parameters compared to the placebo group. These findings suggest that multispecies synbiotic supplementation could be a beneficial strategy to improve body composition, antioxidant status, and gut microbiome composition in overweight and obese subjects.
Collapse
Affiliation(s)
- Piyarat Oraphruek
- Phytochemical and Functional Food Research Unit for Clinical Nutrition, Department of Nutrition and Dietetics, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Charoonsri Chusak
- Phytochemical and Functional Food Research Unit for Clinical Nutrition, Department of Nutrition and Dietetics, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sathaporn Ngamukote
- Phytochemical and Functional Food Research Unit for Clinical Nutrition, Department of Nutrition and Dietetics, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Vorthon Sawaswong
- Center of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Prangwalai Chanchaem
- Center of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sunchai Payungporn
- Center of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tanyawan Suantawee
- Phytochemical and Functional Food Research Unit for Clinical Nutrition, Department of Nutrition and Dietetics, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sirichai Adisakwattana
- Phytochemical and Functional Food Research Unit for Clinical Nutrition, Department of Nutrition and Dietetics, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
34
|
Ferdowsi PV, Ahuja KDK, Beckett JM, Myers S. Capsaicin and Zinc Signalling Pathways as Promising Targets for Managing Insulin Resistance and Type 2 Diabetes. Molecules 2023; 28:molecules28062861. [PMID: 36985831 PMCID: PMC10051839 DOI: 10.3390/molecules28062861] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
The global burden of type 2 diabetes (T2DM) has led to significant interest in finding novel and effective therapeutic targets for this chronic disorder. Bioactive food components have effectively improved abnormal glucose metabolism associated with this disease. Capsaicin and zinc are food components that have shown the potential to improve glucose metabolism by activating signalling events in the target cells. Capsaicin and zinc stimulate glucose uptake through the activation of distinct pathways (AMPK and AKT, respectively); however, calcium signal transduction seems to be the common pathway between the two. The investigation of molecular pathways that are activated by capsaicin and zinc has the potential to lead to the discovery of new therapeutic targets for T2DM. Therefore, this literature review aims to provide a summary of the main signalling pathways triggered by capsaicin and zinc in glucose metabolism.
Collapse
Affiliation(s)
- Parisa Vahidi Ferdowsi
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Newnham Drive, Launceston, TAS 7248, Australia
- Children's Cancer Institute, Lowy Cancer Research Centre, C25/9 High St, Kensington, NSW 2750, Australia
| | - Kiran D K Ahuja
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Newnham Drive, Launceston, TAS 7248, Australia
| | - Jeffrey M Beckett
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Newnham Drive, Launceston, TAS 7248, Australia
| | - Stephen Myers
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Newnham Drive, Launceston, TAS 7248, Australia
| |
Collapse
|
35
|
Gonzalez P, Dos Santos A, Darnaud M, Moniaux N, Rapoud D, Lacoste C, Nguyen TS, Moullé VS, Deshayes A, Amouyal G, Amouyal P, Bréchot C, Cruciani-Guglielmacci C, Andréelli F, Magnan C, Faivre J. Antimicrobial protein REG3A regulates glucose homeostasis and insulin resistance in obese diabetic mice. Commun Biol 2023; 6:269. [PMID: 36918710 PMCID: PMC10015038 DOI: 10.1038/s42003-023-04616-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 02/21/2023] [Indexed: 03/16/2023] Open
Abstract
Innate immune mediators of pathogen clearance, including the secreted C-type lectins REG3 of the antimicrobial peptide (AMP) family, are known to be involved in the regulation of tissue repair and homeostasis. Their role in metabolic homeostasis remains unknown. Here we show that an increase in human REG3A improves glucose and lipid homeostasis in nutritional and genetic mouse models of obesity and type 2 diabetes. Mice overexpressing REG3A in the liver show improved glucose homeostasis, which is reflected in better insulin sensitivity in normal weight and obese states. Delivery of recombinant REG3A protein to leptin-deficient ob/ob mice or wild-type mice on a high-fat diet also improves glucose homeostasis. This is accompanied by reduced oxidative protein damage, increased AMPK phosphorylation and insulin-stimulated glucose uptake in skeletal muscle tissue. Oxidative damage in differentiated C2C12 myotubes is greatly attenuated by REG3A, as is the increase in gp130-mediated AMPK activation. In contrast, Akt-mediated insulin action, which is impaired by oxidative stress, is not restored by REG3A. These data highlight the importance of REG3A in controlling oxidative protein damage involved in energy and metabolic pathways during obesity and diabetes, and provide additional insight into the dual function of host-immune defense and metabolic regulation for AMP.
Collapse
Affiliation(s)
- Patrick Gonzalez
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, 94800, France
- Université Paris-Saclay, Faculté de Médecine Le Kremlin-Bicêtre, Le Kremlin-Bicêtre, 94270, France
| | - Alexandre Dos Santos
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, 94800, France
- Université Paris-Saclay, Faculté de Médecine Le Kremlin-Bicêtre, Le Kremlin-Bicêtre, 94270, France
| | - Marion Darnaud
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, 94800, France
- Université Paris-Saclay, Faculté de Médecine Le Kremlin-Bicêtre, Le Kremlin-Bicêtre, 94270, France
| | - Nicolas Moniaux
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, 94800, France
- Université Paris-Saclay, Faculté de Médecine Le Kremlin-Bicêtre, Le Kremlin-Bicêtre, 94270, France
| | - Delphine Rapoud
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, 94800, France
- Université Paris-Saclay, Faculté de Médecine Le Kremlin-Bicêtre, Le Kremlin-Bicêtre, 94270, France
| | - Claire Lacoste
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, 94800, France
- Université Paris-Saclay, Faculté de Médecine Le Kremlin-Bicêtre, Le Kremlin-Bicêtre, 94270, France
| | - Tung-Son Nguyen
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, 94800, France
- Université Paris-Saclay, Faculté de Médecine Le Kremlin-Bicêtre, Le Kremlin-Bicêtre, 94270, France
| | - Valentine S Moullé
- Université of Paris, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, Paris, 75013, France
| | - Alice Deshayes
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, 94800, France
- Université Paris-Saclay, Faculté de Médecine Le Kremlin-Bicêtre, Le Kremlin-Bicêtre, 94270, France
| | | | | | | | | | - Fabrizio Andréelli
- Sorbonne Université, INSERM, NutriOmics team, Institute of Cardiometabolism and Nutrition (ICAN), Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Paris, 75013, France
| | - Christophe Magnan
- Université of Paris, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, Paris, 75013, France
| | - Jamila Faivre
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, 94800, France.
- Université Paris-Saclay, Faculté de Médecine Le Kremlin-Bicêtre, Le Kremlin-Bicêtre, 94270, France.
- Assistance Publique-Hôpitaux de Paris (AP-HP). Université Paris Saclay, Medical-University Department (DMU) Biology, Genetics, Pharmacy, Paul-Brousse Hospital, Villejuif, 94800, France.
| |
Collapse
|
36
|
Kamimura N, Wolf AM, Yokota T, Nito C, Takahashi H, Ohta S. Transgenic type2 diabetes mouse models for in vivo redox measurement of hepatic mitochondrial oxidative stress. Biochim Biophys Acta Gen Subj 2023; 1867:130302. [PMID: 36577487 DOI: 10.1016/j.bbagen.2022.130302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/02/2022] [Accepted: 12/21/2022] [Indexed: 12/26/2022]
Abstract
BACKGROUND Oxidative stress is involved in the progression of diabetes and its associated complications. However, it is unclear whether increased oxidative stress plays a primary role in the onset of diabetes or is a secondary indicator caused by tissue damage. Previous methods of analyzing oxidative stress have involved measuring the changes in oxidative stress biomarkers. Our aim is to identify a novel approach to clarify whether oxidative stress plays a primary role in the onset of diabetes. METHODS We constructed transgenic type 2 diabetes mouse models expressing redox-sensitive green fluorescent proteins (roGFPs) that distinguished between mitochondria and whole cells. Pancreas, liver, skeletal muscle, and kidney redox states were measured in vivo. RESULTS Hepatic mitochondrial oxidation increased when the mice were 4 weeks old and continued to increase in an age-dependent manner. The increase in hepatic mitochondrial oxidation occurred simultaneously with weight gain and increased blood insulin levels before the blood glucose levels increased. Administering the oxidative stress inducer acetaminophen increased the vulnerability of the liver mitochondria to oxidative stress. CONCLUSIONS This study demonstrates that oxidative stress in liver mitochondria in mice begins at the onset of diabetes rather than after the disease has progressed. GENERAL SIGNIFICANCE RoGFP-expressing transgenic type 2 diabetes mouse models are effective and convenient tools for measuring hepatic mitochondrial redox statuses in vivo. These models may be used to assess mitochondria-targeting antioxidants and establish the role of oxidative stress in type 2 diabetes.
Collapse
Affiliation(s)
- Naomi Kamimura
- Department of Biochemistry and Cell Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan; Laboratory for Clinical Research, Collaborative Research Center, Nippon Medical School, Tokyo, Japan.
| | - Alexander M Wolf
- Department of Biochemistry and Cell Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Takashi Yokota
- Department of Biochemistry and Cell Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Chikako Nito
- Laboratory for Clinical Research, Collaborative Research Center, Nippon Medical School, Tokyo, Japan
| | - Hiroshi Takahashi
- Laboratory for Clinical Research, Collaborative Research Center, Nippon Medical School, Tokyo, Japan; Department of Ophthalmology, Nippon Medical School, Tokyo, Japan
| | - Shigeo Ohta
- Department of Biochemistry and Cell Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan; Department of Neurology Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
37
|
Anese M, Alongi M, Cervantes-Flores M, Simental-Mendía LE, Martínez-Aguilar G, Valenzuela-Ramírez AA, Rojas-Contreras JA, Guerrero-Romero F, Gamboa-Gómez CI. Influence of coffee roasting degree on inflammatory and oxidative stress markers in high-fructose and saturated fat-fed rats. Food Res Int 2023; 165:112530. [PMID: 36869534 DOI: 10.1016/j.foodres.2023.112530] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 01/09/2023] [Accepted: 01/21/2023] [Indexed: 01/30/2023]
Abstract
The objective of this study was to evaluate the effect of roasting coffee degree on inflammatory (NF-kβ F-6 and TNF-α) and stress oxidative markers (malondialdehyde (MDA), nitric oxide (NO) end product concentrations, catalase (CAT), and superoxide dismutase (SOD) in high-fructose and saturated fat (HFSFD)-fed rats. Roasting was performed using hot air circulation (200 °C) for 45 and 60 min, obtaining dark and very dark coffee, respectively. Male Wistar rats were randomly assigned to receive a) unroasted coffee, b) dark coffee, c) very dark coffee, or distilled water for the control group (n = 8). Coffee brews (7.4 mL/per day equivalent to 75 mL/day in humans) were given by gavage for sixteen weeks. All treated groups significantly decreased NF-kβ F-6 (∼30 % for unroasted, ∼50 % for dark, and ∼ 75 % for very dark group) and TNF-α in the liver compared with the control group. Additionally, TNF-α showed a significant reduction in all treatment groups (∼26 % for unroasted and dark groups, and ∼ 39 % for very dark group) in adipose tissue (AT) compared with the negative control. Regarding oxidative stress makers, all coffee brews exerted antioxidant effects in serum, AT, liver, kidney, and heart. Our results revealed that the anti-inflammatory and antioxidant effects of coffee vary according to the roasting degree in HFSFD-fed rats.
Collapse
Affiliation(s)
- Monica Anese
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Sondrio 2/A, 33100 Udine, Italy
| | - Marilisa Alongi
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Sondrio 2/A, 33100 Udine, Italy
| | - Maribel Cervantes-Flores
- Faculty of Chemical Sciences, Universidad Juárez del Estado de Durango, Avenida Veterinaria S/N. Col. Valle del Sur. C.P. 34120, Durango, Mexico
| | - Luis E Simental-Mendía
- Biomedical Research Unit, Mexican Social Security Institute at Durango, Canoas 100. Col. Los Ángeles CP 34067, Durango, Mexico
| | - Gerardo Martínez-Aguilar
- Biomedical Research Unit, Mexican Social Security Institute at Durango, Canoas 100. Col. Los Ángeles CP 34067, Durango, Mexico
| | | | - Juan A Rojas-Contreras
- TecNM/Instituto Tecnológico de Durango, Felipe Pescador 1830 Ote., 34080 Durango, Dgo., Mexico
| | - Fernando Guerrero-Romero
- Biomedical Research Unit, Mexican Social Security Institute at Durango, Canoas 100. Col. Los Ángeles CP 34067, Durango, Mexico.
| | - Claudia I Gamboa-Gómez
- Biomedical Research Unit, Mexican Social Security Institute at Durango, Canoas 100. Col. Los Ángeles CP 34067, Durango, Mexico.
| |
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW This review aims to detail the current global research state of metabolically healthy obesogenesis with regard to metabolic factors, disease prevalence, comparisons to unhealthy obesity, and targeted interventions to reverse or delay progression from metabolically healthy to unhealthy obesity. RECENT FINDINGS As a long-term condition with increased risk of cardiovascular, metabolic, and all-cause mortality risks, obesity threatens public health on a national level. The recent discovery of metabolically healthy obesity (MHO), a transitional condition during which obese persons carry comparatively lower health risks, has added to confusion about the true effect of visceral fat and subsequent long-term health risks. In this context, the evaluation of fat loss interventions, such as bariatric surgery, lifestyle changes (diet/exercise), and hormonal therapies require re-evaluation in light of evidence that progression to high-risk stages of obesity relies on metabolic status and that strategies to protect the metabolism may be useful in the prevention of metabolically unhealthy obesity. Typical calorie-based exercise and diet interventions have failed to reduce the prevalence of unhealthy obesity. Holistic lifestyle, psychological, hormonal, and pharmacological interventions for MHO, on the other hand, may at least prevent progression to metabolically unhealthy obesity.
Collapse
Affiliation(s)
- Bryan J Mathis
- International Medical Center, University of Tsukuba Hospital, Tsukuba, Ibaraki, 305-8576, Japan.
| | - Kiyoji Tanaka
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Yuji Hiramatsu
- International Medical Center, University of Tsukuba Hospital, Tsukuba, Ibaraki, 305-8576, Japan
| |
Collapse
|
39
|
Andica C, Kamagata K, Takabayashi K, Kikuta J, Kaga H, Someya Y, Tamura Y, Kawamori R, Watada H, Taoka T, Naganawa S, Aoki S. Neuroimaging findings related to glymphatic system alterations in older adults with metabolic syndrome. Neurobiol Dis 2023; 177:105990. [PMID: 36621631 DOI: 10.1016/j.nbd.2023.105990] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/03/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVE The glymphatic system is a glial-based perivascular network that promotes brain metabolic waste clearance. Reduced glymphatic flow has been observed in rat models of type 2 diabetes and hypertension, indicating the role of vascular risk factors in the glymphatic system. However, little is known about how vascular risk factors affect the human glymphatic system. The present study aims to assess the relationships between metabolic syndrome (MetS), a cluster of vascular risk factors, and the glymphatic system function using diffusion magnetic resonance imaging (MRI)-based measures of water diffusivity in the glymphatic compartments, including the brain interstitial space and perivascular spaces around the deep medullary vein. We hypothesized that vascular risk factors are associated with glymphatic dysfunction, leading to cognitive impairment in older adults. METHODS This cross-sectional study assessed 61 older adults (age range, 65-82 years) who had participated in the Bunkyo Health Study, including 15 healthy controls (mean age, 70.87 ± 4.90 years) and 46 individuals with MetS (mean age, 71.76 ± 4.61 years). Fractional volume of extracellular-free water (FW) and an index of diffusion tensor imaging along the perivascular space (DTI-ALPS) were used as indirect indicators of water diffusivity in the interstitial extracellular and perivenous spaces of white matter, respectively. RESULTS After adjusting for age, sex, years of education, total Fazekas scale, Pittsburgh sleep quality index (PSQI) score, and intracranial volume (ICV), a significantly (P = 0.030; Cohen's d = 1.01) higher FW was observed in individuals with MetS than in the healthy controls. Furthermore, individuals with MetS had a significantly (P = 0.031; Cohen's d = 0.86) lower ALPS index than the healthy controls, with age, sex, years of education, total Fazekas scale, PSQI score, ICV, fractional anisotropy, and mean diffusivity included as confounding factors. Higher FW was significantly associated with lower ALPS index (r = -0.37; P = 0.004). Multiple linear regression (MLR) with backward elimination analyses showed that higher diastolic blood pressure (BP; standardized β = 0.33, P = 0.005) was independently associated with higher FW, whereas higher fasting plasma glucose levels (standardized β = -0.63, P = 0.002) or higher Brinkman index of cigarette consumption cumulative amount (standardized β = -0.27, P = 0.022) were associated with lower ALPS index. The lower ALPS index (standardized β, 0.28; P = 0.040) was associated with poorer global cognitive performance, which was determined using the Japanese version of the Montreal Cognitive Assessment (MOCA-J) scores. Finally, partial correlation analyses showed a significant correlation between higher FW and lower MOCA-J scores (r = -0.35; P = 0.025) and between higher FW and higher diastolic BP (r = 0.32, P = 0.044). CONCLUSION The present study shows the changes in diffusion MRI-based measures reflected by the higher FW and lower ALPS index in older adults with MetS, possibly due to the adverse effect of vascular risk factors on the glymphatic system. Our findings also indicate the associations between the diffusion MRI-based measures and elevated diastolic BP, hyperglycemia, smoking habit, and poorer cognitive performance. However, owing to the limitations of this study, the results should be cautiously interpreted.
Collapse
Affiliation(s)
- Christina Andica
- Faculty of Health Data Science, Juntendo University, 6-8-1 Hinode, Urayasu, Chiba 279-0013, Japan; Department of Radiology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan.
| | - Koji Kamagata
- Department of Radiology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Kaito Takabayashi
- Department of Radiology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Junko Kikuta
- Department of Radiology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Hideyoshi Kaga
- Sportology Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-0034, Japan; Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yuki Someya
- Sportology Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-0034, Japan
| | - Yoshifumi Tamura
- Sportology Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-0034, Japan; Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Ryuzo Kawamori
- Sportology Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-0034, Japan; Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Hirotaka Watada
- Sportology Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-0034, Japan; Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Toshiaki Taoka
- Department of Innovative Biomedical Visualization, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Shigeki Aoki
- Faculty of Health Data Science, Juntendo University, 6-8-1 Hinode, Urayasu, Chiba 279-0013, Japan; Department of Radiology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|
40
|
Dark Sweet Cherry ( Prunus avium) Supplementation Reduced Blood Pressure and Pro-Inflammatory Interferon Gamma (IFNγ) in Obese Adults without Affecting Lipid Profile, Glucose Levels and Liver Enzymes. Nutrients 2023; 15:nu15030681. [PMID: 36771387 PMCID: PMC9920461 DOI: 10.3390/nu15030681] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/24/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Dark sweet cherries (DSC) are rich in fiber and polyphenols that decrease risk factors associated with obesity. This single-blind randomized placebo-controlled study investigated DSC effects on inflammation, cardiometabolic, and liver health biomarkers in obese adults. Participants (>18 years, body mass index (BMI) = 30-40 kg/m2) consumed 200 mL of DSC drink (juice supplemented with DSC powder) (n = 19) or a placebo drink (n = 21) twice/day for 30 days. Anthropometric and physiological biomarkers were monitored at baseline (D1), mid-point (D15), and endpoint (D30) visits. Blood inflammatory biomarkers were assessed at D1, D15, and D30, and blood lipids, glucose, and liver enzymes at D1 and D30. DSC consumption lowered systolic blood pressure (SBP) (p = 0.05) and decreased diastolic blood pressure (DBP) compared to placebo (p = 0.04). Stratification of participants by BMI revealed a greater (p = 0.008) SBP reduction in BMI > 35 participants. DSC lowered pro-inflammatory interferon-gamma (IFNγ) (p = 0.001), which correlated with SBP changes. The interleukin (IL)-1RA and SBP changes were correlated in the placebo group, as well as triglycerides (TG) with DBP. The increased IL-10 levels in the placebo group suggested a compensatory mechanism to counteract elevated IFNγ levels. No significant between-group differences were detected for blood lipids, glucose, and liver enzymes. In conclusion, DSC helped to decrease blood pressure levels and inflammation in obese adults.
Collapse
|
41
|
ALATAŞ H, ARSLAN N, PEMBEGÜL İ. The relationship of dietary antioxidant capacity with laboratory and anthropometric measurements in hemodialysis patients. JOURNAL OF HEALTH SCIENCES AND MEDICINE 2023. [DOI: 10.32322/jhsm.1218704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Aim: Dietary antioxidant intake correlates with blood antioxidant content and protects against oxidative damage and related inflammatory complications. This study was conducted to examine the relationship between total antioxidant capacity of diet and effective factors with laboratory and anthropometric parameters in patients undergoing hemodialysis. Material and Method: The present case-control study consisted of 62 cases and 59 controls individuals who received hemodialysis treatment between the ages of 35-75. Dietary intake, sociodemographic data, medical history, and anthropometric measurements were collected from participants using a validated questionnaire. Results: Examining the association between dietary components and diet's total antioxidant capacity (dTAC) reveals a positive correlation between dietary protein (kg/avg), beta carotene (mcg/day), vitamin C (mg/day), vitamin E (mg/day), and polyunsaturated fatty acids (PUFA) (g/day) (p=0.002). The serum albumin, serum neutrophil to lymphocyte ratio and HDL-cholesterol have been reported to have a positive relationship with dTAC. And body mass ındex (BMI) and other anthropometric parameters were found to have a negative connection with dTAC (p=0.007). Conclusion: Total dietary antioxidant capacity is effective on anthropometric measurements and serum laboratory values. Increasing the antioxidant capacity of the diet in hemodialysis patients is important to prevent complications related to inflammation.
Collapse
|
42
|
Ou X, Wang X, Zhao B, Zhao Y, Liu H, Chang Y, Wang Z, Yang W, Zhang X, Yu K. Metabolome and transcriptome signatures shed light on the anti-obesity effect of Polygonatum sibiricum. FRONTIERS IN PLANT SCIENCE 2023; 14:1181861. [PMID: 37143889 PMCID: PMC10151794 DOI: 10.3389/fpls.2023.1181861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 03/27/2023] [Indexed: 05/06/2023]
Abstract
Obesity has become one of the major threats to human health across the globe. The rhizomes of Polygonatum sibiricum have shown promising anti-obesity effect. However, the metabolic and genetic basis mediating this beneficial effect are not fully resolved. It is well known that older rhizomes of P. sibiricum exert stronger pharmacological effects. Here, we performed high-resolution metabolome profiling of P. sibiricum rhizomes at different growth stages, and identified that three candidate anti-obesity metabolites, namely phloretin, linoleic acid and α-linolenic acid, accumulated more in adult rhizomes. To elucidate the genetic basis controlling the accumulation of these metabolites, we performed transcriptome profiling of rhizomes from juvenile and adult P. sibiricum. Through third-generation long-read sequencing, we built a high-quality transcript pool of P. sibiricum, and resolved the genetic pathways involved in the biosynthesis and metabolism of phloretin, linoleic acid and α-linolenic acid. Comparative transcriptome analysis revealed altered expression of the genetic pathways in adult rhizomes, which likely lead to higher accumulation of these candidate metabolites. Overall, we identified several metabolic and genetic signatures related to the anti-obesity effect of P. sibiricum. The metabolic and transcriptional datasets generated in this work could also facilitate future research on other beneficial effects of this medicinal plant.
Collapse
Affiliation(s)
- Xiaobin Ou
- Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, College of Life Sciences and Technology, Longdong University, Qingyang, Gansu, China
- *Correspondence: Xiaobin Ou, ; Xuebin Zhang, ; Ke Yu,
| | - Xiao Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Bing Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Yi Zhao
- Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, College of Life Sciences and Technology, Longdong University, Qingyang, Gansu, China
| | - Haiqing Liu
- Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, College of Life Sciences and Technology, Longdong University, Qingyang, Gansu, China
| | - Yuankai Chang
- School of Life Sciences, Henan University, Kaifeng, China
| | - Zhiwei Wang
- Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, College of Life Sciences and Technology, Longdong University, Qingyang, Gansu, China
| | - Wenqi Yang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Xuebin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
- *Correspondence: Xiaobin Ou, ; Xuebin Zhang, ; Ke Yu,
| | - Ke Yu
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
- *Correspondence: Xiaobin Ou, ; Xuebin Zhang, ; Ke Yu,
| |
Collapse
|
43
|
Suriano F, Vieira-Silva S, Falony G, de Wouters d'Oplinter A, Paone P, Delzenne NM, Everard A, Raes J, Van Hul M, Cani PD. Fat and not sugar as the determining factor for gut microbiota changes, obesity, and related metabolic disorders in mice. Am J Physiol Endocrinol Metab 2023; 324:E85-E96. [PMID: 36516223 DOI: 10.1152/ajpendo.00141.2022] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Diet-induced obesity contributes to the development of type 2 diabetes, insulin resistance, metabolic inflammation, oxidative and endoplasmic reticulum (ER) stress. Overall, obesity is associated with deviations in the composition and functionality of the gut microbiota. There are many divergent findings regarding the link between the excessive intake of certain dietary components (i.e., fat and sugar) and obesity development. We therefore investigated the effect of specific diets, with a different content of sugar and fat, in promoting obesity and related comorbidities as well as their impact on microbial load and gut microbiota composition/diversity. C57BL/6J mice were fed either a low-sugar, low-fat control diet (CT), a high-sugar diet (HS), a high-fat, high-sugar diet (HF/HS), or a high-fat diet (HF) for 8 wk. The impact of the different diets on obesity, glucose metabolism, inflammation, and oxidative and ER stress was determined. Diet-induced changes in the gut microbiota composition and density were also analyzed. HF diet-fed mice showed the highest body weight and fat mass gains and displayed the most impaired glucose and insulin profiles. HS, HF/HS, and HF diets differently affected hepatic cholesterol content and mRNA expression of several markers associated with immune cells, inflammation, oxidative and ER stress in several organs/tissues. In addition, HF diet feeding resulted in a decreased microbial load at the end of the experiment. When analyzing the gut microbiota composition, we found that HS, HF/HS, and HF diets induced specific changes in the abundance of certain bacterial taxa. This was not associated with a specific change in systemic inflammatory markers, but HS mice exhibited higher FGF21 plasma levels compared with HF diet-fed mice. Taken together, our results highlight that dietary intake of different macronutrients distinctively impacts the development of an obese/diabetic state and the regulation of metabolic inflammation in specific organs. We propose that these differences are not only obesity-driven but that changes in the gut microbiota composition may play a key role in this context.NEW & NOTEWORTHY To our knowledge, this study is the first to demonstrate that dietary macronutrients (i.e., sugar and fat) have an impact on fecal bacterial cell counting and quantitative microbiome profiling in mice. Yet, we demonstrate that dietary fat is the determining factor to promote obesity and diabetes progression, and local inflammation in different body sites. These observations can help to disentangle the conundrum of the detrimental effects of fat and sugar in our dietary habits.
Collapse
Affiliation(s)
- Francesco Suriano
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute (LDRI), UCLouvain, Université catholique de Louvain, Brussels, Belgium
- WELBIO-Walloon Excellence in Life Sciences and Biotechnology, WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Sara Vieira-Silva
- Department of Microbiology and Immunology, Rega Institute for Medical Research, VIB Center for Microbiology, University of Leuven, Leuven, Belgium
- Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Institute of Molecular Biology (IMB), Mainz, Germany
| | - Gwen Falony
- Department of Microbiology and Immunology, Rega Institute for Medical Research, VIB Center for Microbiology, University of Leuven, Leuven, Belgium
| | - Alice de Wouters d'Oplinter
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute (LDRI), UCLouvain, Université catholique de Louvain, Brussels, Belgium
- WELBIO-Walloon Excellence in Life Sciences and Biotechnology, WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Paola Paone
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute (LDRI), UCLouvain, Université catholique de Louvain, Brussels, Belgium
- WELBIO-Walloon Excellence in Life Sciences and Biotechnology, WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Nathalie M Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute (LDRI), UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Amandine Everard
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute (LDRI), UCLouvain, Université catholique de Louvain, Brussels, Belgium
- WELBIO-Walloon Excellence in Life Sciences and Biotechnology, WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Jeroen Raes
- Department of Microbiology and Immunology, Rega Institute for Medical Research, VIB Center for Microbiology, University of Leuven, Leuven, Belgium
| | - Matthias Van Hul
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute (LDRI), UCLouvain, Université catholique de Louvain, Brussels, Belgium
- WELBIO-Walloon Excellence in Life Sciences and Biotechnology, WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Patrice D Cani
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute (LDRI), UCLouvain, Université catholique de Louvain, Brussels, Belgium
- WELBIO-Walloon Excellence in Life Sciences and Biotechnology, WELBIO Department, WEL Research Institute, Wavre, Belgium
| |
Collapse
|
44
|
Wallace SR, Pagano PJ, Kračun D. MicroRNAs in the Regulation of NADPH Oxidases in Vascular Diabetic and Ischemic Pathologies: A Case for Alternate Inhibitory Strategies? Antioxidants (Basel) 2022; 12:70. [PMID: 36670932 PMCID: PMC9854786 DOI: 10.3390/antiox12010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 12/30/2022] Open
Abstract
Since their discovery in the vasculature, different NADPH oxidase (NOX) isoforms have been associated with numerous complex vascular processes such as endothelial dysfunction, vascular inflammation, arterial remodeling, and dyslipidemia. In turn, these often underlie cardiovascular and metabolic pathologies including diabetes mellitus type II, cardiomyopathy, systemic and pulmonary hypertension and atherosclerosis. Increasing attention has been directed toward miRNA involvement in type II diabetes mellitus and its cardiovascular and metabolic co-morbidities in the search for predictive and stratifying biomarkers and therapeutic targets. Owing to the challenges of generating isoform-selective NOX inhibitors (NOXi), the development of specific NOXis suitable for therapeutic purposes has been hindered. In that vein, differential regulation of specific NOX isoforms by a particular miRNA or combina-tion thereof could at some point become a reasonable approach for therapeutic targeting under some circumstances. Whereas administration of miRNAs chronically, or even acutely, to patients poses its own set of difficulties, miRNA-mediated regulation of NOXs in the vasculature is worth surveying. In this review, a distinct focus on the role of miRNAs in the regulation of NOXs was made in the context of type II diabetes mellitus and ischemic injury models.
Collapse
Affiliation(s)
- Sean R. Wallace
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Patrick J. Pagano
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Damir Kračun
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
45
|
de Oliveira MS, Pellenz FM, de Souza BM, Crispim D. Blueberry Consumption and Changes in Obesity and Diabetes Mellitus Outcomes: A Systematic Review. Metabolites 2022; 13:metabo13010019. [PMID: 36676944 PMCID: PMC9861336 DOI: 10.3390/metabo13010019] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Low-grade inflammation and oxidative stress are key mechanisms involved in obesity and related disorders. Polyphenols from blueberry (BB) and bilberries (BiB) might protect against oxidative damage and inflammation. To summarize the effects of BiB or BB consumption in parameters related to obesity and its comorbidities, a search of the literature was performed in PubMed, Embase, and Cochrane Library repositories to identify all studies that evaluated associations of whole BB or BiB with obesity and associated disorders. Thirty-one studies were eligible for inclusion in this review: eight clinical trials and 23 animal studies. In humans, BB consumption only consistently decreased oxidative stress and improved endothelial function. In rodents, BB or BiB consumption caused positive effects on glucose tolerance, nuclear factor-kappa B (Nf-κb) activity, oxidative stress, and triglyceride (TG) content in the liver and hepatic steatosis. The high content of anthocyanins present in BB and BiB seems to attenuate oxidative stress. The decrease in oxidative stress may have a positive impact on glucose tolerance and endothelial function. Moreover, in rodents, these berries seem to protect against hepatic steatosis, through the decreased accumulation of hepatic TGs. BB and BiB might also attenuate inflammation by decreasing Nf-κb activity and immune cell recruitment into the adipose tissue.
Collapse
Affiliation(s)
- Mayara Souza de Oliveira
- Endocrinology Division, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil
- Graduate Program in Medical Sciences: Endocrinology, Faculty of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre 90010-150, RS, Brazil
| | - Felipe Mateus Pellenz
- Endocrinology Division, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil
- Graduate Program in Medical Sciences: Endocrinology, Faculty of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre 90010-150, RS, Brazil
| | - Bianca Marmontel de Souza
- Graduate Program in Medical Sciences: Endocrinology, Faculty of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre 90010-150, RS, Brazil
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Daisy Crispim
- Endocrinology Division, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil
- Graduate Program in Medical Sciences: Endocrinology, Faculty of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre 90010-150, RS, Brazil
- Correspondence:
| |
Collapse
|
46
|
Wu YY, Gou W, Yan Y, Liu CY, Yang Y, Chen D, Xie K, Jiang Z, Fu Y, Zhu HL, Zheng JS, Chen YM. Gut microbiota and acylcarnitine metabolites connect the beneficial association between equol and adiposity in adults: a prospective cohort study. Am J Clin Nutr 2022; 116:1831-1841. [PMID: 36095141 DOI: 10.1093/ajcn/nqac252] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/29/2022] [Accepted: 09/07/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Many studies have investigated the effects of soy isoflavones on weight control, but few have focused on the role of equol, a gut-derived metabolite of daidzein with greater bioavailability than other soy isoflavones. OBJECTIVES This study examined the association of equol production with obesity and explored the mediating roles of equol-related gut microbiota and microbial carnitine metabolites. METHODS This 6.6-y prospective study included 2958 Chinese adults (2011 females and 947 males) aged 60.6 ± 6.0 y (mean ± SD) at baseline. Urinary equol and isoflavones were measured using HPLC-tandem MS. BMI, percentage fat mass (%FM), and serum triglycerides (TGs) were assessed every 3 y. Metagenomics sequencing and assessment of carnitine metabolites in feces were performed in a subsample of 897 participants. RESULTS Urinary equol, but not daidzein and genistein, was independently and inversely associated with the obesity-related indicators of BMI, %FM, and a biomarker (TGs). Equol producers (EPs) had lower odds of adiposity conditions and a reduced risk of 6.6-y obesity progression than non-EPs among total participants. Gut microbial analyses indicated that EPs had higher microbiome species richness (P = 3.42 × 10-5) and significantly different β-diversity of gut microbiota compared with the non-EP group (P = 0.001), with 20 of 162 species differing significantly. EPs (compared with non-EPs) had higher abundances of Alistipes senegalensis and Coprococcus catus but lower abundances of Ruminococcus gnavus (false discovery rate <0.05). Among the 7 determined fecal acylcarnitine metabolites, palmitoylcarnitine, oleylcarnitine 18:1, and stearylcarnitine were inversely associated with EPs but positively correlated with obesity conditions and progression. Path analyses indicated that the beneficial association between equol and obesity might be mediated by gut microbiota and decreased production of 3 acylcarnitines in feces. CONCLUSIONS This study suggests a beneficial association between equol and obesity, mediated by the gut microbiome and acylcarnitines, in adults.This trial was registered at clinicaltrials.gov as NCT03179657.
Collapse
Affiliation(s)
- Yan-Yan Wu
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Wanglong Gou
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Yan Yan
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Chun-Ying Liu
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yingdi Yang
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Danyu Chen
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Keliang Xie
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Zengliang Jiang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Yuanqing Fu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Hui-Lian Zhu
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ju-Sheng Zheng
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Yu-Ming Chen
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
47
|
Hautekiet P, Saenen ND, Aerts R, Martens DS, Roels HA, Bijnens EM, Nawrot TS. Higher buccal mtDNA content is associated with residential surrounding green in a panel study of primary school children. ENVIRONMENTAL RESEARCH 2022; 213:113551. [PMID: 35654156 DOI: 10.1016/j.envres.2022.113551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Mitochondria are known to respond to environmental stressors but whether green space is associated with mitochondrial abundance is unexplored. Furthermore, as exposures may affect health from early life onwards, we here evaluate if residential green space is associated with mitochondria DNA content (mtDNAc) in children. METHODS In primary schoolchildren (COGNAC study), between 2012 and 2014, buccal mtDNAc was repeatedly (three times) assessed using qPCR. Surrounding low (<3m), high (≥3m) and total (sum of low and high) green space within different radii (100m-1000m) from the residence and distance to the nearest large green space (>0.5ha) were estimated using a remote sensing derived map. Given the repeated measures design, we applied a mixed-effects model with school and subject as random effect while adjusting for a priori chosen fixed covariates. RESULTS mtDNAc was assessed in 246 children with a total of 436 measurements (mean age 10.3 years). Within a 1000m radius around the residential address, an IQR increment in low (11.0%), high (9.5%), and total (13.9%) green space was associated with a respectively 15.2% (95% CI: 7.2%-23.7%), 10.8% (95% CI: 4.5%-17.5%), and 13.4% (95% CI: 7.4%-19.7%) higher mtDNAc. Conversely, an IQR increment (11.6%) in agricultural area in the same radius was associated with a -3.4% (95% CI: 6.7% to -0.1%) lower mtDNAc. Finally, a doubling in distance to large green space was associated with a -5.2% (95% CI: 7.9 to -2.4%) lower mtDNAc. CONCLUSION To our knowledge, this is the first study evaluating associations between residential surrounding green space and mtDNAc in children. Our results showed that green space was associated with a higher mtDNAc in children, which indicates the importance of the early life environment. To what extent these findings contribute to later life health effects should be further examined.
Collapse
Affiliation(s)
- Pauline Hautekiet
- Centre for Environmental Sciences, Hasselt University, Agoralaan Gebouw D, BE-3590, Hasselt, Belgium; Risk and Health Impact Assessment, Sciensano (Belgian Institute of Health), Juliette Wytsmanstraat 14, BE-1050, Brussels, Belgium
| | - Nelly D Saenen
- Centre for Environmental Sciences, Hasselt University, Agoralaan Gebouw D, BE-3590, Hasselt, Belgium; Risk and Health Impact Assessment, Sciensano (Belgian Institute of Health), Juliette Wytsmanstraat 14, BE-1050, Brussels, Belgium
| | - Raf Aerts
- Centre for Environmental Sciences, Hasselt University, Agoralaan Gebouw D, BE-3590, Hasselt, Belgium; Risk and Health Impact Assessment, Sciensano (Belgian Institute of Health), Juliette Wytsmanstraat 14, BE-1050, Brussels, Belgium; Department of Ecology, Evolution and Biodiversity Conservation, University of Leuven (KU Leuven), Kasteelpark Arenberg 31-2435, BE-3001, Leuven, Belgium
| | - Dries S Martens
- Centre for Environmental Sciences, Hasselt University, Agoralaan Gebouw D, BE-3590, Hasselt, Belgium
| | - Harry A Roels
- Centre for Environmental Sciences, Hasselt University, Agoralaan Gebouw D, BE-3590, Hasselt, Belgium; Louvain Centre for Toxicology and Applied Pharmacology, Université Catholique de Louvain, Av. Hippocrate 57, BE-1200, Woluwe-Saint-Lambert, Belgium
| | - Esmée M Bijnens
- Centre for Environmental Sciences, Hasselt University, Agoralaan Gebouw D, BE-3590, Hasselt, Belgium; Department of Human Structure and Repair, Ghent University Hospital, Corneel Heymanslaan 10, BE-9000, Ghent, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Agoralaan Gebouw D, BE-3590, Hasselt, Belgium; Department of Public Health & Primary Care, University of Leuven (KU Leuven), O&N I Herestraat 49 - Bus 706, BE-3000, Leuven, Belgium.
| |
Collapse
|
48
|
Souza FRM, Silva GMM, Cadavid COM, Lisboa LDS, Silva MMCL, Paiva WS, Ferreira MJP, de Paula Oliveira R, Rocha HAO. Antioxidant Baccharis trimera Leaf Extract Suppresses Lipid Accumulation in C. elegans Dependent on Transcription Factor NHR-49. Antioxidants (Basel) 2022; 11:antiox11101913. [PMID: 36290635 PMCID: PMC9598929 DOI: 10.3390/antiox11101913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Obesity is a global public health problem that is associated with oxidative stress. One of the strategies for the treatment of obesity is the use of drugs; however, these are expensive and have numerous side effects. Therefore, the search for new alternatives is necessary. Baccharis trimera is used in Brazilian folk medicine for the treatment of obesity. Here, B. trimera leaf extract (BT) showed antioxidant activity in seven in vitro tests, and it was not toxic to 3T3 murine fibroblasts or Caenorhabditis elegans. Furthermore, BT reduces the intracellular amount of reactive oxygen species and increases C. elegans survival. Moreover, these effects were not dependent on transcription factors. The inhibition of fat accumulation by BT in the C. elegans model was also investigated. BT reduced lipid accumulation in animals fed diets without or with high amount of glucose. Furthermore, it was observed using RNA interference (iRNA) that BT depends on the transcription factor NHR-49 to exert its effect. Phytochemical analysis of BT revealed rutin, hyperoside, and 5-caffeoylquinic acid as the main BT components. Thus, these data demonstrate that BT has antioxidant and anti-obesity effects. However, further studies should be conducted to understand the mechanisms involved in its action.
Collapse
Affiliation(s)
- Flávia Roberta Monteiro Souza
- Laboratório de Biotecnologia de Polímeros Naturais (BIOPOL), Programa de Pós-graduação em Bioquímica e Biologia Molecular, Centro de Biociências, Federal University of Rio Grande do Norte—UFRN, Natal 59078-970, Brazil
| | - Giovanna Melo Martins Silva
- Laboratório de Genética Bioquímica (LGB), Programa de Pós-graduação em Biotecnologia, Centro de Biociências, Federal University of Rio Grande do Norte—UFRN, Natal 59078-970, Brazil
| | - Cesar Orlando Muñoz Cadavid
- Laboratório de Genética Bioquímica (LGB), Programa de Pós-graduação em Biotecnologia, Centro de Biociências, Federal University of Rio Grande do Norte—UFRN, Natal 59078-970, Brazil
| | - Lucas dos Santos Lisboa
- Laboratório de Biotecnologia de Polímeros Naturais (BIOPOL), Programa de Pós-graduação em Bioquímica e Biologia Molecular, Centro de Biociências, Federal University of Rio Grande do Norte—UFRN, Natal 59078-970, Brazil
| | - Maylla Maria Correia Leite Silva
- Laboratório de Biotecnologia de Polímeros Naturais (BIOPOL), Programa de Pós-graduação em Bioquímica e Biologia Molecular, Centro de Biociências, Federal University of Rio Grande do Norte—UFRN, Natal 59078-970, Brazil
| | - Weslley Souza Paiva
- Laboratório de Biotecnologia de Polímeros Naturais (BIOPOL), Programa de Pós-graduação em Bioquímica e Biologia Molecular, Centro de Biociências, Federal University of Rio Grande do Norte—UFRN, Natal 59078-970, Brazil
| | - Marcelo José Pena Ferreira
- Laboratório de Fitoquímica, Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo—USP, Rua do Matão, 277, São Paulo 05508-090, Brazil
| | - Riva de Paula Oliveira
- Laboratório de Genética Bioquímica (LGB), Programa de Pós-graduação em Biotecnologia, Centro de Biociências, Federal University of Rio Grande do Norte—UFRN, Natal 59078-970, Brazil
| | - Hugo Alexandre Oliveira Rocha
- Laboratório de Biotecnologia de Polímeros Naturais (BIOPOL), Programa de Pós-graduação em Bioquímica e Biologia Molecular, Centro de Biociências, Federal University of Rio Grande do Norte—UFRN, Natal 59078-970, Brazil
- Correspondence: ; Tel.: +55-84-99999-9561
| |
Collapse
|
49
|
Factors of Obesity and Metabolically Healthy Obesity in Asia. Medicina (B Aires) 2022; 58:medicina58091271. [PMID: 36143948 PMCID: PMC9500686 DOI: 10.3390/medicina58091271] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/14/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
The East Asian region (China, Japan, and South Korea) is comprised of almost 1.5 billion people and recent industrialization has brought with it a pandemic of rising obesity, even in children. As these countries are rapidly aging and functioning at sub-replacement birthrates, the burgeoning costs of obesity-related care may threaten socialized healthcare systems and quality of life. However, a condition called metabolically healthy obesity (MHO) has been found to be without immediate cardiopulmonary or diabetic risk. Thus, maintenance of the MHO condition for the obese in East Asia could buffer the burden of long-term obesity care on medical systems and knowledge of the biochemical, genetic, and physiological milieu associated with it could also provide new targets for intervention. Diverse physiological, psychological, environmental, and social factors play a role in obesogenesis and the transition of MHO to a metabolically unhealthy obesity. This review will give a broad survey of the various causes of obesity and MHO, with special emphasis on the East Asian population and studies from that region.
Collapse
|
50
|
Lipid metabolism and ageing in Caenorhabditis elegans: a complex interplay. Biogerontology 2022; 23:541-557. [PMID: 36048312 DOI: 10.1007/s10522-022-09989-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 08/25/2022] [Indexed: 11/02/2022]
Abstract
Life expectancy in Western countries is increasing, with concomitant rise in ageing-related pathologies, including Parkinson's and Alzheimer's disease, as well as other neurodegenerative diseases. Consequently, the medical, psychological and economic burden to society is increasing. Thus, understanding the cellular and molecular mechanisms underlying the association of ageing with elevated vulnerability to disease is crucial towards promoting quality of life in old age. Caenorhabditis elegans has emerged as a versatile model to study ageing, due to its simplicity, fast life cycle, and the availability of a wide range of biological tools to target specific genes and cells. Indeed, recent studies in C. elegans have revealed that lipid metabolism plays a key role in controlling longevity by impinging on a plethora of molecular pathways and cell types. Here, we summarise findings relevant to the interplay between lipid metabolism and ageing in C. elegans, and discuss the implications for the pathogenesis of age-related disorders in humans.
Collapse
|