1
|
Tao Q, Wu Q, Xue Y, Chen C, Zhou Y, Shao R, Zhang H, Liu H, Zeng X, Zhou L, Liu Q, Jin H. Prognostic impact of IL7R mutations on acute myeloid leukemia. Ther Adv Hematol 2024; 15:20406207241279533. [PMID: 39346679 PMCID: PMC11439168 DOI: 10.1177/20406207241279533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 07/24/2024] [Indexed: 10/01/2024] Open
Abstract
Background Interleukin-7 receptor (IL7R) mutation has been demonstrated to be an adverse prognostic factor in acute lymphoblastic leukemia (ALL) patients. However, the effects of the IL7R mutation on acute myeloid leukemia (AML) have rarely been reported. Here, we investigated IL7R mutations and their effects on AML patients. Methods A total of 346 newly diagnosed AML patients from January 2017 to July 2020 at Nanfang Hospital were analyzed in this study. A genomic panel of 167 gene targets was detected by next-generation sequencing. Results Among 346 patients, 33 (9.5%) AML patients carried IL7R mutations. With a median follow-up of 50.7 months (95% confidence interval (CI) 17.3-62.2), the 5-year overall survival (OS) rates were 51.5% (95% CI 37.0%-71.0%) and 72.2% (95% CI 67.4%-77.3%; p = 0.008), the 5-year event-free survival (EFS) rates were 36.1% (95% CI 23.2%-57.1%) and 58.1% (95% CI 52.9%-63.8%; p = 0.005), the 5-year non-relapse mortality (NRM) were 21.4% (95% CI 8.5%-38.2%) and 6.2% (95% CI 3.7%-9.5%; p = 0.004) in the IL7R mutant (IL7R MUT ) group and non-IL7R mutant (IL7R WT ) group, respectively. There is no significant difference in the disease-free survival (75.1% vs 73.5%, p = 0.885) and cumulative incidence of relapse (25.7% vs 25.2%, p = 0.933) between IL7R MUT and IL7R WT group. Furthermore, patients who underwent hematopoietic stem cell transplantation (HSCT) still had more adverse outcomes in the IL7R MUT group than in the IL7R WT group (5-year OS: 61.9% vs 85.3%, p = 0.003). In the TET2 (p = 0.013) and DNA methyltransferase 3A (DNMT3A; p = 0.046) mutation subgroups, the presence of IL7R mutations was associated with worse OS than in AML patients without IL7R mutations. Conclusion Our study demonstrated that the IL7R mutation is associated with an inferior prognosis for AML patients. Patients with IL7R mutations have higher NRM, shorter OS, and EFS than patients without IL7R mutations, even patients who have undergone HSCT. Future larger and multicentric prospective studies will be explored.
Collapse
Affiliation(s)
- Qiqi Tao
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Hematology, The Sixth Affiliated Hospital, school of Medicine, South China University of Technology, Foshan, China
| | - Qiaoyuan Wu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Yutong Xue
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Changkun Chen
- Department of Hematology, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, Jiangxi, China
- Department of Hematology, Ganzhou People’s Hospital, Ganzhou, Jiangxi, China
| | - Ya Zhou
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Ruoyang Shao
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Haiyan Zhang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | | | - Xiangzong Zeng
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Hematology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, China
| | - Lingling Zhou
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Qifa Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Hua Jin
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Hematology, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, Jiangxi, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| |
Collapse
|
2
|
Lill CB, Fitter S, Zannettino ACW, Vandyke K, Noll JE. Molecular and cellular mechanisms of chemoresistance in paediatric pre-B cell acute lymphoblastic leukaemia. Cancer Metastasis Rev 2024:10.1007/s10555-024-10203-9. [PMID: 39102101 DOI: 10.1007/s10555-024-10203-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/24/2024] [Indexed: 08/06/2024]
Abstract
Paediatric patients with relapsed B cell acute lymphoblastic leukaemia (B-ALL) have poor prognosis, as relapse-causing clones are often refractory to common chemotherapeutics. While the molecular mechanisms leading to chemoresistance are varied, significant evidence suggests interactions between B-ALL blasts and cells within the bone marrow microenvironment modulate chemotherapy sensitivity. Importantly, bone marrow mesenchymal stem cells (BM-MSCs) and BM adipocytes are known to support B-ALL cells through multiple distinct molecular mechanisms. This review discusses the contribution of integrin-mediated B-ALL/BM-MSC signalling and asparagine supplementation in B-ALL chemoresistance. In addition, the role of adipocytes in sequestering anthracyclines and generating a BM niche favourable for B-ALL survival is explored. Furthermore, this review discusses the role of BM-MSCs and adipocytes in promoting a quiescent and chemoresistant B-ALL phenotype. Novel treatments which target these mechanisms are discussed herein, and are needed to improve dismal outcomes in patients with relapsed/refractory disease.
Collapse
Affiliation(s)
- Caleb B Lill
- Myeloma Research Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
- Precision Cancer Medicine Theme, Solid Tumour Program, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Stephen Fitter
- Myeloma Research Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
- Precision Cancer Medicine Theme, Solid Tumour Program, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Andrew C W Zannettino
- Myeloma Research Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
- Precision Cancer Medicine Theme, Solid Tumour Program, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Kate Vandyke
- Myeloma Research Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
- Precision Cancer Medicine Theme, Solid Tumour Program, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Jacqueline E Noll
- Myeloma Research Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia.
- Precision Cancer Medicine Theme, Solid Tumour Program, South Australian Health and Medical Research Institute, Adelaide, Australia.
| |
Collapse
|
3
|
Ehm P, Rietow R, Wegner W, Bußmann L, Kriegs M, Dierck K, Horn S, Streichert T, Horstmann M, Jücker M. SHIP1 Is Present but Strongly Downregulated in T-ALL, and after Restoration Suppresses Leukemia Growth in a T-ALL Xenotransplantation Mouse Model. Cells 2023; 12:1798. [PMID: 37443832 PMCID: PMC10341211 DOI: 10.3390/cells12131798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/23/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common cause of cancer-related death in children. Despite significantly increased chances of cure, especially for high-risk ALL patients, it still represents a poor prognosis for a substantial fraction of patients. Misregulated proteins in central switching points of the cellular signaling pathways represent potentially important therapeutic targets. Recently, the inositol phosphatase SHIP1 (SH2-containing inositol 5-phosphatase) has been considered as a tumor suppressor in leukemia. SHIP1 serves as an important negative regulator of the PI3K/AKT signaling pathway, which is frequently constitutively activated in primary T-ALL. In contrast to other reports, we show for the first time that SHIP1 has not been lost in T-ALL cells, but is strongly downregulated. Reduced expression of SHIP1 leads to an increased activation of the PI3K/AKT signaling pathway. SHIP1-mRNA expression is frequently reduced in primary T-ALL samples, which is recapitulated by the decrease in SHIP1 expression at the protein level in seven out of eight available T-ALL patient samples. In addition, we investigated the change in the activity profile of tyrosine and serine/threonine kinases after the restoration of SHIP1 expression in Jurkat T-ALL cells. The tyrosine kinase receptor subfamilies of NTRK and PDGFR, which are upregulated in T-ALL subgroups with low SHIP1 expression, are significantly disabled after SHIP1 reconstitution. Lentiviral-mediated reconstitution of SHIP1 expression in Jurkat cells points to a decreased cellular proliferation upon transplantation into NSG mice in comparison to the control cohort. Together, our findings will help to elucidate the complex network of cell signaling proteins, further support a functional role for SHIP1 as tumor suppressor in T-ALL and, much more importantly, show that full-length SHIP1 is expressed in T-ALL samples.
Collapse
Affiliation(s)
- Patrick Ehm
- Institute of Biochemistry and Signal Transduction, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
- Research Institute Children’s Cancer Center Hamburg, Hamburg and Department of Pediatric Oncology and Hematology, University Medical Center, 20246 Hamburg, Germany
| | - Ruth Rietow
- Institute of Biochemistry and Signal Transduction, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
- Research Institute Children’s Cancer Center Hamburg, Hamburg and Department of Pediatric Oncology and Hematology, University Medical Center, 20246 Hamburg, Germany
| | - Wiebke Wegner
- Institute of Biochemistry and Signal Transduction, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Lara Bußmann
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- UCCH Kinomics Core Facility, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Malte Kriegs
- UCCH Kinomics Core Facility, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Center for Oncology, Clinic for Radiation Therapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Kevin Dierck
- Research Institute Children’s Cancer Center Hamburg, Hamburg and Department of Pediatric Oncology and Hematology, University Medical Center, 20246 Hamburg, Germany
| | - Stefan Horn
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Thomas Streichert
- Institute for Clinical Chemistry, University Hospital Köln, 50937 Cologne, Germany
| | - Martin Horstmann
- Research Institute Children’s Cancer Center Hamburg, Hamburg and Department of Pediatric Oncology and Hematology, University Medical Center, 20246 Hamburg, Germany
| | - Manfred Jücker
- Institute of Biochemistry and Signal Transduction, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| |
Collapse
|
4
|
Pottosin I, Olivas-Aguirre M, Dobrovinskaya O. In vitro simulation of the acute lymphoblastic leukemia niche: a critical view on the optimal approximation for drug testing. J Leukoc Biol 2023; 114:21-41. [PMID: 37039524 DOI: 10.1093/jleuko/qiad039] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/12/2023] Open
Abstract
Acute lymphoblastic leukemia with the worst prognosis is related to minimal residual disease. Minimal residual disease not only depends on the individual peculiarities of leukemic clones but also reflects the protective role of the acute lymphoblastic leukemia microenvironment. In this review, we discuss in detail cell-to-cell interactions in the 2 leukemic niches, more explored bone marrow and less studied extramedullary adipose tissue. A special emphasis is given to multiple ways of interactions of acute lymphoblastic leukemia cells with the bone marrow or extramedullary adipose tissue microenvironment, indicating observed differences in B- and T-cell-derived acute lymphoblastic leukemia behavior. This analysis argued for the usage of coculture systems for drug testing. Starting with a review of available sources and characteristics of acute lymphoblastic leukemia cells, mesenchymal stromal cells, endothelial cells, and adipocytes, we have then made an update of the available 2-dimensional and 3-dimensional systems, which bring together cellular elements, components of the extracellular matrix, or its imitation. We discussed the most complex available 3-dimensional systems like "leukemia-on-a-chip," which include either a prefabricated microfluidics platform or, alternatively, the microarchitecture, designed by using the 3-dimensional bioprinting technologies. From our analysis, it follows that for preclinical antileukemic drug testing, in most cases, intermediately complex in vitro cell systems are optimal, such as a "2.5-dimensional" coculture of acute lymphoblastic leukemia cells with niche cells (mesenchymal stromal cells, endothelial cells) plus matrix components or scaffold-free mesenchymal stromal cell organoids, populated by acute lymphoblastic leukemia cells. Due to emerging evidence for the correlation of obesity and poor prognosis, a coculture of adipocytes with acute lymphoblastic leukemia cells as a drug testing system is gaining shape.
Collapse
Affiliation(s)
- Igor Pottosin
- Laboratory of Immunobiology and Ionic Transport Regulation, University Center for Biomedical Research, University of Colima, Av. Enrique Arreola Silva 883, Guzmán City, Jalisco, 49000, Mexico
| | - Miguel Olivas-Aguirre
- Laboratory of Immunobiology and Ionic Transport Regulation, University Center for Biomedical Research, University of Colima, Av. Enrique Arreola Silva 883, Guzmán City, Jalisco, 49000, Mexico
- Division of Exact, Natural and Technological Sciences, South University Center (CUSUR), University of Guadalajara, Jalisco, Mexico
| | - Oxana Dobrovinskaya
- Laboratory of Immunobiology and Ionic Transport Regulation, University Center for Biomedical Research, University of Colima, Av. Enrique Arreola Silva 883, Guzmán City, Jalisco, 49000, Mexico
| |
Collapse
|
5
|
Page N, Wappett M, O'Dowd CR, O'Rourke M, Gavory G, Zhang L, Rountree JSS, Jordan L, Barker O, Gibson H, Boyd C, Feutren-Burton S, McLean E, Trevitt G, Harrison T. Identification and development of a subtype-selective allosteric AKT inhibitor suitable for clinical development. Sci Rep 2022; 12:15715. [PMID: 36127435 PMCID: PMC9489722 DOI: 10.1038/s41598-022-20208-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 09/09/2022] [Indexed: 11/29/2022] Open
Abstract
The serine/threonine protein kinase AKT plays a pivotal role within the PI3K pathway in regulating cellular proliferation and apoptotic cellular functions, and AKT hyper-activation via gene amplification and/or mutation has been implicated in multiple human malignancies. There are 3 AKT isoenzymes (AKT1-3) which mediate critical, non-redundant functions. We present the discovery and development of ALM301, a novel, allosteric, sub-type selective inhibitor of AKT1/2. ALM301 binds in an allosteric pocket created by the combined movement of the PH domain and the catalytic domain, resulting in a DFG out conformation. ALM301 was shown to be highly selective against a panel of over 450 kinases and potently inhibited cellular proliferation. These effects were particularly pronounced in MCF-7 cells containing a PI3KCA mutation. Subsequent cellular downstream pathway analysis in this sensitive cell line revealed potent inhibition of pAKT signalling up to 48 h post dosing. ALM301 treatment was well tolerated in an MCF-7 xenograft model and led to a dose-dependent reduction in tumour growth. Enhanced efficacy was observed in combination with tamoxifen. In summary, ALM301 is a highly specific AKT 1/2 inhibitor with an excellent pharmacological profile suitable for further clinical development.
Collapse
Affiliation(s)
- Natalie Page
- Almac Discovery Ltd, Health Sciences Building, 97 Lisburn Road, Belfast, BT9 7AE, Northern Ireland, UK
| | - Mark Wappett
- Almac Discovery Ltd, Health Sciences Building, 97 Lisburn Road, Belfast, BT9 7AE, Northern Ireland, UK
| | - Colin R O'Dowd
- Almac Discovery Ltd, Health Sciences Building, 97 Lisburn Road, Belfast, BT9 7AE, Northern Ireland, UK
| | - Martin O'Rourke
- Amphista Therapeutics, BioCity, Bo'Ness Rd, Newhouse, Chapelhall, Motherwell, ML1 5UH, UK
| | - Gerald Gavory
- Ridgeline Therapeutics GmbH, Technologiepark, Hochbergerstrasse 60C, 4057, Basel, Switzerland
| | - Lixin Zhang
- Shenyang University of Chemical Technology, Shenyang, China
| | - J S Shane Rountree
- Almac Discovery Ltd, Health Sciences Building, 97 Lisburn Road, Belfast, BT9 7AE, Northern Ireland, UK
| | - Linda Jordan
- Globachem, Alderley Park, 2 BioHub, Mereside, Macclesfield, SK10 4TG, UK
| | - Oliver Barker
- Almac Discovery Ltd, Health Sciences Building, 97 Lisburn Road, Belfast, BT9 7AE, Northern Ireland, UK
| | - Hayley Gibson
- Almac Discovery Ltd, Health Sciences Building, 97 Lisburn Road, Belfast, BT9 7AE, Northern Ireland, UK
| | - Caroline Boyd
- Almac Discovery Ltd, Health Sciences Building, 97 Lisburn Road, Belfast, BT9 7AE, Northern Ireland, UK
| | - Stephanie Feutren-Burton
- Almac Discovery Ltd, Health Sciences Building, 97 Lisburn Road, Belfast, BT9 7AE, Northern Ireland, UK
| | - Estelle McLean
- Almac Discovery Ltd, Health Sciences Building, 97 Lisburn Road, Belfast, BT9 7AE, Northern Ireland, UK
| | - Graham Trevitt
- Sygnature Discovery, BioCity, Pennyfoot Street, Nottingham, NG1 1GR, UK
| | - Timothy Harrison
- Almac Discovery Ltd, Health Sciences Building, 97 Lisburn Road, Belfast, BT9 7AE, Northern Ireland, UK. .,Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, BT9 7AE, Northern Ireland, UK.
| |
Collapse
|
6
|
Toson B, Fortes IS, Roesler R, Andrade SF. Targeting Akt/PKB in pediatric tumors: A review from preclinical to clinical trials. Pharmacol Res 2022; 183:106403. [PMID: 35987481 DOI: 10.1016/j.phrs.2022.106403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/01/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022]
Abstract
The serine/threonine kinase Akt is a major player in the phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling pathway, and its modulation impacts multiple cellular processes such as growth, proliferation, and survival. Several abnormalities in this pathway have been documented over the years, and these alterations were shown to have great implications in tumorigenesis and resistance to chemotherapy. Thus, multiple Akt inhibitors have been developed and tested in adult tumors, and some of them are currently undergoing phase I, II, and III clinical trials for distinct cancers that arise during adulthood. Despite that, the impact of these inhibitors is still not fully understood in pediatric tumors, and Akt-specific targeting seems to be a promising approach to treat children affected by cancers. This review summarizes recent available evidence of Akt inhibitors in pediatric cancers, from both preclinical and clinical studies. In short, we demonstrate the impact that Akt inhibition provides in tumorigenesis, and we suggest targeting the PI3K/Akt/mTOR signaling pathway, alone or in combination with other inhibitors, is a feasible tool to achieve better outcomes in pediatric tumors.
Collapse
Affiliation(s)
- Bruno Toson
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Isadora S Fortes
- Pharmaceutical Synthesis Group (PHARSG), College of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Pharmaceutical Sciences Graduate Program, Federal University of Rio Grande do Sul (UFRGS), Av. Ipiranga, 2752, Porto Alegre, RS 90610-000, Brazil
| | - Rafael Roesler
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Saulo F Andrade
- Pharmaceutical Synthesis Group (PHARSG), College of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Pharmaceutical Sciences Graduate Program, Federal University of Rio Grande do Sul (UFRGS), Av. Ipiranga, 2752, Porto Alegre, RS 90610-000, Brazil.
| |
Collapse
|
7
|
Piktel D, Nair RR, Rellick SL, Geldenhuys WJ, Martin KH, Craig MD, Gibson LF. Pitavastatin Is Anti-Leukemic in a Bone Marrow Microenvironment Model of B-Lineage Acute Lymphoblastic Leukemia. Cancers (Basel) 2022; 14:cancers14112681. [PMID: 35681662 PMCID: PMC9179467 DOI: 10.3390/cancers14112681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 05/26/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Chemoresistance after chemotherapy is a negative prognostic indicator for B-cell acute lymphoblastic leukemia (ALL), necessitating the search for novel therapies. By growing ALL cells together with bone marrow stromal cells, we developed a chemoresistant ALL model. Using this model, we found that the lipid lowering drug pitavastatin had antileukemic activity in this chemoresistant co-culture model. Our data suggests that pitavastatin may be a novel treatment option for repurposing in chemoresistant, relapse ALL. Abstract The lack of complete therapeutic success in the treatment of B-cell acute lymphoblastic leukemia (ALL) has been attributed, in part, to a subset of cells within the bone marrow microenvironment that are drug resistant. Recently, the cholesterol synthesis inhibitor, pitavastatin (PIT), was shown to be active in acute myeloid leukemia, prompting us to evaluate it in our in vitro co-culture model, which supports a chemo-resistant ALL population. We used phospho-protein profiling to evaluate the use of lipid metabolic active compounds in these chemo-resistant cells, due to the up-regulation of multiple active survival signals. In a co-culture with stromal cells, a shift towards anabolic processes occurred, which was further confirmed by assays showing increased lipid content. The treatment of REH leukemia cells with pitavastatin in the co-culture model resulted in significantly higher leukemic cell death than exposure to the standard-of-care chemotherapeutic agent, cytarabine (Ara-C). Our data demonstrates the use of pitavastatin as a possible alternative treatment strategy to improve patient outcomes in chemo-resistant, relapsed ALL.
Collapse
Affiliation(s)
- Debbie Piktel
- Robert C. Byrd Health Sciences Center, West Virginia University Cancer Institute, West Virginia University, Morgantown, WV 26506, USA; (D.P.); (R.R.N.); (S.L.R.); (K.H.M.)
| | - Rajesh R. Nair
- Robert C. Byrd Health Sciences Center, West Virginia University Cancer Institute, West Virginia University, Morgantown, WV 26506, USA; (D.P.); (R.R.N.); (S.L.R.); (K.H.M.)
| | - Stephanie L. Rellick
- Robert C. Byrd Health Sciences Center, West Virginia University Cancer Institute, West Virginia University, Morgantown, WV 26506, USA; (D.P.); (R.R.N.); (S.L.R.); (K.H.M.)
| | - Werner J. Geldenhuys
- Department of Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV 26506, USA;
| | - Karen H. Martin
- Robert C. Byrd Health Sciences Center, West Virginia University Cancer Institute, West Virginia University, Morgantown, WV 26506, USA; (D.P.); (R.R.N.); (S.L.R.); (K.H.M.)
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | | | - Laura F. Gibson
- Robert C. Byrd Health Sciences Center, West Virginia University Cancer Institute, West Virginia University, Morgantown, WV 26506, USA; (D.P.); (R.R.N.); (S.L.R.); (K.H.M.)
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26506, USA
- Correspondence: ; Tel.: +1-304-293-7206
| |
Collapse
|
8
|
Yonan A, Jacques C, Fletcher T, Suk-In T, Campbell RB. An Overview of Conventional Drugs and Nano Therapeutic Options for the Treatment and Management of Pediatric Acute Lymphoblastic Leukemia. Anticancer Agents Med Chem 2022; 22:ACAMC-EPUB-122906. [PMID: 36574508 DOI: 10.2174/1871520622666220426105922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/27/2021] [Accepted: 02/03/2022] [Indexed: 12/29/2022]
Abstract
Acute lymphoblastic leukemia (ALL) is a common form of pediatric cancer affecting the lymphoblast, a type of white blood cell found in the bone marrow. In this disease, the normal lymphoblast cells transform into leukemic cells and subsequently enter the bloodstream. Leukemic cells found in patients with ALL have shown differences in cholesterol uptake and utilization. Current treatment consists of chemotherapy, chimeric antigen receptor (CAR) therapy, and hematopoietic stem cell transplantation (HSCT). In addition, minimal residual disease (MRD) has become an effective tool in measuring treatment efficacy and the potential for relapse. Chemotherapy resistance remains a significant barrier in the treatment of ALL. Biomarkers such as an upregulated Akt signaling pathway and an overexpressed VLA-4 integrin-protein have been associated with drug resistance. Nanoparticles have been used to favorably alter the pharmacokinetic profile of conventional drug agents. These drug-delivery systems are designed to selectively deliver their drug payloads to desired targets. Therefore, nanoparticles offer advantages such as improved efficacy and reduced toxicity. This review highlights conventional treatment options, distinctive characteristics of pediatric ALL, therapeutic challenges encountered during therapy, and the key role that nanotherapeutics play in the treatment of ALL.
Collapse
Affiliation(s)
- Andre Yonan
- MCPHS University Department of Pharmaceutical Sciences 19 Foster Street Worcester, MA 01608, USA
| | - Christopher Jacques
- MCPHS University Department of Pharmaceutical Sciences 19 Foster Street Worcester, MA 01608, USA
| | - Tafaswa Fletcher
- MCPHS University Department of Pharmaceutical Sciences 19 Foster Street Worcester, MA 01608, USA
| | - Thanaphorn Suk-In
- MCPHS University Department of Pharmaceutical Sciences 19 Foster Street Worcester, MA 01608, USA
| | - Robert B Campbell
- MCPHS University Department of Pharmaceutical Sciences 19 Foster Street Worcester, MA 01608, USA
| |
Collapse
|
9
|
Investigation of the function of the PI3-Kinase / AKT signaling pathway for leukemogenesis and therapy of acute childhood lymphoblastic leukemia (ALL). Cell Signal 2022; 93:110301. [DOI: 10.1016/j.cellsig.2022.110301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/21/2022] [Accepted: 03/02/2022] [Indexed: 02/05/2023]
|
10
|
Grüninger PK, Uhl F, Herzog H, Gentile G, Andrade-Martinez M, Schmidt T, Han K, Morgens DW, Bassik MC, Cleary ML, Gorka O, Zeiser R, Groß O, Duque-Afonso J. Functional characterization of the PI3K/AKT/MTOR signaling pathway for targeted therapy in B-precursor acute lymphoblastic leukemia. Cancer Gene Ther 2022; 29:1751-1760. [PMID: 35794338 PMCID: PMC9663301 DOI: 10.1038/s41417-022-00491-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/22/2022] [Accepted: 06/08/2022] [Indexed: 02/04/2023]
Abstract
B-cell precursor acute lymphoblastic leukemias (B-ALL) are characterized by the activation of signaling pathways, which are involved in survival and proliferation of leukemia cells. Using an unbiased shRNA library screen enriched for targeting signaling pathways, we identified MTOR as the key gene on which human B-ALL E2A-PBX1+ RCH-ACV cells are dependent. Using genetic and pharmacologic approaches, we investigated whether B-ALL cells depend on MTOR upstream signaling pathways including PI3K/AKT and the complexes MTORC1 or MTORC2 for proliferation and survival in vitro and in vivo. Notably, the combined inhibition of MTOR and AKT shows a synergistic effect on decreased cell proliferation in B-ALL with different karyotypes. Hence, B-ALL cells were more dependent on MTORC2 rather than MTORC1 complex in genetic assays. Using cell metabolomics, we identified changes in mitochondrial fuel oxidation after shRNA-mediated knockdown or pharmacological inhibition of MTOR. Dependence of the cells on fatty acid metabolism for their energy production was increased upon inhibition of MTOR and associated upstream signaling pathways, disclosing a possible target for a combination therapy. In conclusion, B-ALL are dependent on the PI3K/AKT/MTOR signaling pathway and the combination of specific small molecules targeting this pathway appears to be promising for the treatment of B-ALL patients.
Collapse
Affiliation(s)
- Patricia K. Grüninger
- grid.7708.80000 0000 9428 7911Department of Hematology/Oncology/Stem Cell Transplantation, University of Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Franziska Uhl
- grid.7708.80000 0000 9428 7911Department of Hematology/Oncology/Stem Cell Transplantation, University of Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Heike Herzog
- grid.7708.80000 0000 9428 7911Department of Hematology/Oncology/Stem Cell Transplantation, University of Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Gaia Gentile
- grid.7708.80000 0000 9428 7911Department of Hematology/Oncology/Stem Cell Transplantation, University of Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marta Andrade-Martinez
- grid.7708.80000 0000 9428 7911Department of Hematology/Oncology/Stem Cell Transplantation, University of Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tobias Schmidt
- grid.7708.80000 0000 9428 7911Department of Hematology/Oncology/Stem Cell Transplantation, University of Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kyuho Han
- grid.168010.e0000000419368956Department of Genetics, Stanford University School of Medicine, Stanford, CA USA
| | - David W. Morgens
- grid.168010.e0000000419368956Department of Genetics, Stanford University School of Medicine, Stanford, CA USA
| | - Michael C. Bassik
- grid.168010.e0000000419368956Department of Genetics, Stanford University School of Medicine, Stanford, CA USA
| | - Michael L. Cleary
- grid.168010.e0000000419368956Department of Pathology, Stanford University School of Medicine, Stanford, CA USA
| | - Oliver Gorka
- grid.5963.9Institute of Neuropathology, University of Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Robert Zeiser
- grid.7708.80000 0000 9428 7911Department of Hematology/Oncology/Stem Cell Transplantation, University of Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany ,grid.5963.9Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Olaf Groß
- grid.5963.9Institute of Neuropathology, University of Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany ,grid.5963.9Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany ,grid.7708.80000 0000 9428 7911Center for Basics in NeuroModulation (NeuroModulBasics), University of Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jesús Duque-Afonso
- grid.7708.80000 0000 9428 7911Department of Hematology/Oncology/Stem Cell Transplantation, University of Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
11
|
Abstract
Despite the therapeutic progress, relapse remains a major problem in the treatment of acute lymphoblastic leukemia (ALL). Most leukemia cells that survive chemotherapy are found in the bone marrow (BM), thus resistance to chemotherapy and other treatments may be partially attributed to pro-survival signaling to leukemic cells mediated by leukemia cell-microenvironment interactions. Adhesion of leukemia cells to BM stromal cells may lead to cell adhesion-mediated drug resistance (CAM-DR) mediating intracellular signaling changes that support survival of leukemia cells. In ALL and chronic lymphocytic leukemia (CLL), adhesion-mediated activation of the PI3K/AKT signaling pathway has been shown to be critical in CAM-DR. PI3K targeting inhibitors have been approved for CLL and have been evaluated preclinically in ALL. However, PI3K inhibition has yet to be approved for clinical use in ALL. Here, we review the role of PI3K signaling for normal hematopoietic and leukemia cells and summarize preclinical inhibitors of PI3K in ALL.
Collapse
Affiliation(s)
- Hye Na Kim
- Department of Pediatrics, Division of Hematology and Oncology, Children's Hospital Los Angeles, University of Southern California, Los Angeles, California, USA
| | - Heather Ogana
- Department of Pediatrics, Division of Hematology and Oncology, Children's Hospital Los Angeles, University of Southern California, Los Angeles, California, USA
| | - Vanessa Sanchez
- Department of Pediatrics, Division of Hematology and Oncology, Children's Hospital Los Angeles, University of Southern California, Los Angeles, California, USA
| | - Cydney Nichols
- Department of Pediatrics, Division of Hematology and Oncology, Children's Hospital Los Angeles, University of Southern California, Los Angeles, California, USA
| | - Yong-Mi Kim
- Department of Pediatrics, Division of Hematology and Oncology, Children's Hospital Los Angeles, University of Southern California, Los Angeles, California, USA.
| |
Collapse
|
12
|
Huang Y, Wang Y, Tang J, Qin S, Shen X, He S, Ju S. CAM-DR: Mechanisms, Roles and Clinical Application in Tumors. Front Cell Dev Biol 2021; 9:698047. [PMID: 34295898 PMCID: PMC8290360 DOI: 10.3389/fcell.2021.698047] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/08/2021] [Indexed: 12/14/2022] Open
Abstract
Despite the continuous improvement of various therapeutic techniques, the overall prognosis of tumors has been significantly improved, but malignant tumors in the middle and advanced stages still cannot be completely cured. It is now evident that cell adhesion-mediated resistance (CAM-DR) limits the success of cancer therapies and is a great obstacle to overcome in the clinic. The interactions between tumor cells and extracellular matrix (ECM) molecules or adjacent cells may play a significant role in initiating the intracellular signaling pathways that are associated with cell proliferation, survival upon binding to their ligands. Recent studies illustrate that these adhesion-related factors may contribute to the survival of cancer cells after chemotherapeutic therapy, advantageous to resistant cells to proliferate and develop multiple mechanisms of drug resistance. In this review, we focus on the molecular basis of these interactions and the main signal transduction pathways that are involved in the enhancement of the cancer cells’ survival. Furthermore, therapies targeting interactions between cancer cells and their environment to enhance drug response or prevent the emergence of drug resistance will also be discussed.
Collapse
Affiliation(s)
- Yuejiao Huang
- Medical School, Nantong University, Nantong, China.,Department of Medical Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Yuchan Wang
- Department of Pathogenic Biology, School of Medicine, Nantong University, Nantong, China
| | - Jie Tang
- Department of Pathogenic Biology, School of Medicine, Nantong University, Nantong, China
| | - Shiyi Qin
- Medical School, Nantong University, Nantong, China.,Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Xianjuan Shen
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Song He
- Department of Pathology, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Shaoqing Ju
- Medical School, Nantong University, Nantong, China.,Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
13
|
Ge Z, Song C, Ding Y, Tan BH, Desai D, Sharma A, Gowda R, Yue F, Huang S, Spiegelman V, Payne JL, Reeves ME, Iyer S, Dhanyamraju PK, Imamura Y, Bogush D, Bamme Y, Yang Y, Soliman M, Kane S, Dovat E, Schramm J, Hu T, McGrath M, Chroneos ZC, Payne KJ, Gowda C, Dovat S. Dual targeting of MTOR as a novel therapeutic approach for high-risk B-cell acute lymphoblastic leukemia. Leukemia 2021; 35:1267-1278. [PMID: 33531656 PMCID: PMC8102195 DOI: 10.1038/s41375-021-01132-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/28/2020] [Accepted: 01/07/2021] [Indexed: 01/30/2023]
Abstract
Children of Hispanic/Latino ancestry have increased incidence of high-risk B-cell acute lymphoblastic leukemia (HR B-ALL) with poor prognosis. This leukemia is characterized by a single-copy deletion of the IKZF1 (IKAROS) tumor suppressor and increased activation of the PI3K/AKT/mTOR pathway. This identifies mTOR as an attractive therapeutic target in HR B-ALL. Here, we report that IKAROS represses MTOR transcription and IKAROS' ability to repress MTOR in leukemia is impaired by oncogenic CK2 kinase. Treatment with the CK2 inhibitor, CX-4945, enhances IKAROS activity as a repressor of MTOR, resulting in reduced expression of MTOR in HR B-ALL. Thus, we designed a novel therapeutic approach that implements dual targeting of mTOR: direct inhibition of the mTOR protein (with rapamycin), in combination with IKAROS-mediated transcriptional repression of the MTOR gene (using the CK2 inhibitor, CX-4945). Combination treatment with rapamycin and CX-4945 shows synergistic therapeutic effects in vitro and in patient-derived xenografts from Hispanic/Latino children with HR B-ALL. These data suggest that such therapy has the potential to reduce the health disparity in HR B-ALL among Hispanic/Latino children. The dual targeting of oncogene transcription, combined with inhibition of the corresponding oncoprotein provides a paradigm for a novel precision medicine approach for treating hematological malignancies.
Collapse
Affiliation(s)
- Zheng Ge
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
- Zhongda Hospital, Medical School of Southeast University Nanjing, 210009, Nanjing, China
| | - Chunhua Song
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
- Ohio State University College of Medicine, Columbus, OH, 43210, USA
| | - Yali Ding
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Bi-Hua Tan
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Dhimant Desai
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Arati Sharma
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Raghavendra Gowda
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Feng Yue
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Suming Huang
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | | | - Jonathon L Payne
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
- Loma Linda University College of Medicine, Loma Linda, CA, 92350, USA
| | - Mark E Reeves
- Loma Linda University College of Medicine, Loma Linda, CA, 92350, USA
| | - Soumya Iyer
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | | | - Yuka Imamura
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Daniel Bogush
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Yevgeniya Bamme
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Yiping Yang
- Ohio State University College of Medicine, Columbus, OH, 43210, USA
| | - Mario Soliman
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Shriya Kane
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Elanora Dovat
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Joseph Schramm
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Tommy Hu
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Mary McGrath
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Zissis C Chroneos
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Kimberly J Payne
- Loma Linda University College of Medicine, Loma Linda, CA, 92350, USA
| | - Chandrika Gowda
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
| | - Sinisa Dovat
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
| |
Collapse
|
14
|
Olivas-Aguirre M, Torres-López L, Pottosin I, Dobrovinskaya O. Overcoming Glucocorticoid Resistance in Acute Lymphoblastic Leukemia: Repurposed Drugs Can Improve the Protocol. Front Oncol 2021; 11:617937. [PMID: 33777761 PMCID: PMC7991804 DOI: 10.3389/fonc.2021.617937] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/16/2021] [Indexed: 12/11/2022] Open
Abstract
Glucocorticoids (GCs) are a central component of multi-drug treatment protocols against T and B acute lymphoblastic leukemia (ALL), which are used intensively during the remission induction to rapidly eliminate the leukemic blasts. The primary response to GCs predicts the overall response to treatment and clinical outcome. In this review, we have critically analyzed the available data on the effects of GCs on sensitive and resistant leukemic cells, in order to reveal the mechanisms of GC resistance and how these mechanisms may determine a poor outcome in ALL. Apart of the GC resistance, associated with a decreased expression of receptors to GCs, there are several additional mechanisms, triggered by alterations of different signaling pathways, which cause the metabolic reprogramming, with an enhanced level of glycolysis and oxidative phosphorylation, apoptosis resistance, and multidrug resistance. Due to all this, the GC-resistant ALL show a poor sensitivity to conventional chemotherapeutic protocols. We propose pharmacological strategies that can trigger alternative intracellular pathways to revert or overcome GC resistance. Specifically, we focused our search on drugs, which are already approved for treatment of other diseases and demonstrated anti-ALL effects in experimental pre-clinical models. Among them are some “truly” re-purposed drugs, which have different targets in ALL as compared to other diseases: cannabidiol, which targets mitochondria and causes the mitochondrial permeability transition-driven necrosis, tamoxifen, which induces autophagy and cell death, and reverts GC resistance through the mechanisms independent of nuclear estrogen receptors (“off-target effects”), antibiotic tigecycline, which inhibits mitochondrial respiration, causing energy crisis and cell death, and some anthelmintic drugs. Additionally, we have listed compounds that show a classical mechanism of action in ALL but are not used still in treatment protocols: the BH3 mimetic venetoclax, which inhibits the anti-apoptotic protein Bcl-2, the hypomethylating agent 5-azacytidine, which restores the expression of the pro-apoptotic BIM, and compounds targeting the PI3K-Akt-mTOR axis. Accordingly, these drugs may be considered for the inclusion into chemotherapeutic protocols for GC-resistant ALL treatments.
Collapse
Affiliation(s)
- Miguel Olivas-Aguirre
- Laboratory of Immunobiology and Ionic Transport Regulation, University Center for Biomedical Research, University of Colima, Colima, Mexico
| | - Liliana Torres-López
- Laboratory of Immunobiology and Ionic Transport Regulation, University Center for Biomedical Research, University of Colima, Colima, Mexico
| | - Igor Pottosin
- Laboratory of Immunobiology and Ionic Transport Regulation, University Center for Biomedical Research, University of Colima, Colima, Mexico
| | - Oxana Dobrovinskaya
- Laboratory of Immunobiology and Ionic Transport Regulation, University Center for Biomedical Research, University of Colima, Colima, Mexico
| |
Collapse
|
15
|
Combined Application of Pan-AKT Inhibitor MK-2206 and BCL-2 Antagonist Venetoclax in B-Cell Precursor Acute Lymphoblastic Leukemia. Int J Mol Sci 2021; 22:ijms22052771. [PMID: 33803402 PMCID: PMC7967241 DOI: 10.3390/ijms22052771] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/05/2021] [Accepted: 03/06/2021] [Indexed: 12/12/2022] Open
Abstract
Aberrant PI3K/AKT signaling is a hallmark of acute B-lymphoblastic leukemia (B-ALL) resulting in increased tumor cell proliferation and apoptosis deficiency. While previous AKT inhibitors struggled with selectivity, MK-2206 promises meticulous pan-AKT targeting with proven anti-tumor activity. We herein, characterize the effect of MK-2206 on B-ALL cell lines and primary samples and investigate potential synergistic effects with BCL-2 inhibitor venetoclax to overcome limitations in apoptosis induction. MK-2206 incubation reduced AKT phosphorylation and influenced downstream signaling activity. Interestingly, after MK-2206 mono application tumor cell proliferation and metabolic activity were diminished significantly independently of basal AKT phosphorylation. Morphological changes but no induction of apoptosis was detected in the observed cell lines. In contrast, primary samples cultivated in a protective microenvironment showed a decrease in vital cells. Combined MK-2206 and venetoclax incubation resulted in partially synergistic anti-proliferative effects independently of application sequence in SEM and RS4;11 cell lines. Venetoclax-mediated apoptosis was not intensified by addition of MK-2206. Functional assessment of BCL-2 inhibition via Bax translocation assay revealed slightly increased pro-apoptotic signaling after combined MK-2206 and venetoclax incubation. In summary, we demonstrate that the pan-AKT inhibitor MK-2206 potently blocks B-ALL cell proliferation and for the first time characterize the synergistic effect of combined MK-2206 and venetoclax treatment in B-ALL.
Collapse
|
16
|
Ianevski A, Lahtela J, Javarappa KK, Sergeev P, Ghimire BR, Gautam P, Vähä-Koskela M, Turunen L, Linnavirta N, Kuusanmäki H, Kontro M, Porkka K, Heckman CA, Mattila P, Wennerberg K, Giri AK, Aittokallio T. Patient-tailored design for selective co-inhibition of leukemic cell subpopulations. SCIENCE ADVANCES 2021; 7:eabe4038. [PMID: 33608276 PMCID: PMC7895436 DOI: 10.1126/sciadv.abe4038] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
The extensive drug resistance requires rational approaches to design personalized combinatorial treatments that exploit patient-specific therapeutic vulnerabilities to selectively target disease-driving cell subpopulations. To solve the combinatorial explosion challenge, we implemented an effective machine learning approach that prioritizes patient-customized drug combinations with a desired synergy-efficacy-toxicity balance by combining single-cell RNA sequencing with ex vivo single-agent testing in scarce patient-derived primary cells. When applied to two diagnostic and two refractory acute myeloid leukemia (AML) patient cases, each with a different genetic background, we accurately predicted patient-specific combinations that not only resulted in synergistic cancer cell co-inhibition but also were capable of targeting specific AML cell subpopulations that emerge in differing stages of disease pathogenesis or treatment regimens. Our functional precision oncology approach provides an unbiased means for systematic identification of personalized combinatorial regimens that selectively co-inhibit leukemic cells while avoiding inhibition of nonmalignant cells, thereby increasing their likelihood for clinical translation.
Collapse
Affiliation(s)
- Aleksandr Ianevski
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Helsinki Institute for Information Technology (HIIT), Department of Computer Science, Aalto University, Espoo, Finland
| | - Jenni Lahtela
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Komal K Javarappa
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Philipp Sergeev
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Bishwa R Ghimire
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Prson Gautam
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Markus Vähä-Koskela
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Laura Turunen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Nora Linnavirta
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Heikki Kuusanmäki
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Biotech Research and Innovation Centre (BRIC) and Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark
- Department of Hematology, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| | - Mika Kontro
- Department of Hematology, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| | - Kimmo Porkka
- Helsinki University Hospital Comprehensive Cancer Center, Hematology Research Unit Helsinki, iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Caroline A Heckman
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Pirkko Mattila
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Krister Wennerberg
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland.
- Biotech Research and Innovation Centre (BRIC) and Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark
| | - Anil K Giri
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland.
| | - Tero Aittokallio
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland.
- Helsinki Institute for Information Technology (HIIT), Department of Computer Science, Aalto University, Espoo, Finland
- Institute for Cancer Research, Department of Cancer Genetics, Oslo University Hospital, Oslo, Norway
- Centre for Biostatistics and Epidemiology (OCBE), Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
17
|
Investigation of a new oxazolidine derivative in human resistance acute leukemia cells: deciphering its mechanism of action by label-free proteomic. Naunyn Schmiedebergs Arch Pharmacol 2021; 394:1153-1166. [PMID: 33475759 DOI: 10.1007/s00210-020-02024-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 11/10/2020] [Indexed: 10/22/2022]
Abstract
The present study aimed to evaluate the mechanism of action of the antineoplastic activity of an oxazolidine derivative, LPSF/NB-3 (5-(4-cloro-benzilideno)-3-etil-2-tioxo-oxazolidin-4-ona). Cytotoxicity assays were performed in peripheral blood mononuclear cells (PBMCs) and resistant acute leukemia cell line (HL-60/MX1) by the MTT method. LPSF/NB-3 exhibited cytotoxicity in HL-60/MX1, but it was not toxic to healthy cells in the highest dose tested (100 μM). The protein extract of HL-60/MX1 cells treated with LPSF/NB-3 was subjected to proteomic analysis using two-dimensional chromatography coupled to mass spectrometry. We could identify a total of 2652 proteins, in which 633 were statistically modulated. Within the group of protein considered for the quantitative analysis with the established criteria, 262 were differentially expressed, 146 with increased expression and 116 with decreased expression in the sample treated with LPSF/NB-3 compared to the control. The following differentially expressed pathways were found: involving regulation of the cytoskeleton, DNA damage, and transduce cellular signals. Networks that were highlighted are related to the immune system. The ELISA technique was used to assess the immunomodulatory potential of LPSF/NB-3 in PBMCs. We observed significant decrease of IFNγ (p < 0.01) and dose-response pattern of the cytokines IL-6, IL-17A, IL-22, and IL-10. Therefore, results suggest that LPSF/NB-3 appears to modulate important pathways, including cell cycle and immune system regulatory pathways.
Collapse
|
18
|
Delahaye MC, Salem KI, Pelletier J, Aurrand-Lions M, Mancini SJC. Toward Therapeutic Targeting of Bone Marrow Leukemic Niche Protective Signals in B-Cell Acute Lymphoblastic Leukemia. Front Oncol 2021; 10:606540. [PMID: 33489914 PMCID: PMC7820772 DOI: 10.3389/fonc.2020.606540] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/23/2020] [Indexed: 01/01/2023] Open
Abstract
B-cell acute lymphoblastic leukemia (B-ALL) represents the malignant counterpart of bone marrow (BM) differentiating B cells and occurs most frequently in children. While new combinations of chemotherapeutic agents have dramatically improved the prognosis for young patients, disease outcome remains poor after relapse or in adult patients. This is likely due to heterogeneity of B-ALL response to treatment which relies not only on intrinsic properties of leukemic cells, but also on extrinsic protective cues transmitted by the tumor cell microenvironment. Alternatively, leukemic cells have the capacity to shape their microenvironment towards their needs. Most knowledge on the role of protective niches has emerged from the identification of mesenchymal and endothelial cells controlling hematopoietic stem cell self-renewal or B cell differentiation. In this review, we discuss the current knowledge about B-ALL protective niches and the development of therapies targeting the crosstalk between leukemic cells and their microenvironment.
Collapse
|
19
|
Ratti S, Lonetti A, Follo MY, Paganelli F, Martelli AM, Chiarini F, Evangelisti C. B-ALL Complexity: Is Targeted Therapy Still A Valuable Approach for Pediatric Patients? Cancers (Basel) 2020; 12:cancers12123498. [PMID: 33255367 PMCID: PMC7760974 DOI: 10.3390/cancers12123498] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary B-ALL is the more frequent childhood malignancy. Even though significant improvements in patients’ survival, some pediatric B-ALL have still poor prognosis and novel strategies are needed. Recently, new genetic abnormalities and altered signaling pathways have been described, defining novel B-ALL subtypes.Innovative targeted therapeutic drugs may potentially show a great impact on the treatment of B-ALL subtypes, offering an important chance to block multiple signaling pathways and potentially improving the clinical management of B-ALL younger patients, especially for the new identified subtypes that lack efficient chemotherapeutic protocols. In this review, we shed light on the up-to-date knowledge of the novel childhood B-ALL subtypes and the altered signaling pathways that could become new druggable targets. Abstract B-cell acute lymphoblastic leukemia (B-ALL) is a hematologic malignancy that arises from the clonal expansion of transformed B-cell precursors and predominately affects childhood. Even though significant progresses have been made in the treatment of B-ALL, pediatric patients’ outcome has to be furtherly increased and alternative targeted treatment strategies are required for younger patients. Over the last decade, novel approaches have been used to understand the genomic landscape and the complexity of the molecular biology of pediatric B-ALL, mainly next generation sequencing, offering important insights into new B-ALL subtypes, altered pathways, and therapeutic targets that may lead to improved risk stratification and treatments. Here, we will highlight the up-to-date knowledge of the novel B-ALL subtypes in childhood, with particular emphasis on altered signaling pathways. In addition, we will discuss the targeted therapies that showed promising results for the treatment of the different B-ALL subtypes.
Collapse
Affiliation(s)
- Stefano Ratti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (S.R.); (M.Y.F.); (F.P.); (A.M.M.)
| | - Annalisa Lonetti
- Giorgio Prodi Cancer Research Center, S. Orsola-Malpighi Hospital, University of Bologna, Via Massarenti, 11, 40138 Bologna, Italy;
| | - Matilde Y. Follo
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (S.R.); (M.Y.F.); (F.P.); (A.M.M.)
| | - Francesca Paganelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (S.R.); (M.Y.F.); (F.P.); (A.M.M.)
| | - Alberto M. Martelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (S.R.); (M.Y.F.); (F.P.); (A.M.M.)
| | - Francesca Chiarini
- CNR Institute of Molecular Genetics Luigi Luca Cavalli-Sforza, Via di Barbiano 1/10, 40136 Bologna, Italy
- IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, 40136 Bologna, Italy
- Correspondence: (F.C.); (C.E.); Tel.: +39-051-209-1581 (F.C.); +39-051-209-1581 (C.E.)
| | - Camilla Evangelisti
- CNR Institute of Molecular Genetics Luigi Luca Cavalli-Sforza, Via di Barbiano 1/10, 40136 Bologna, Italy
- IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, 40136 Bologna, Italy
- Correspondence: (F.C.); (C.E.); Tel.: +39-051-209-1581 (F.C.); +39-051-209-1581 (C.E.)
| |
Collapse
|
20
|
Dushnicky MJ, Nazarali S, Mir A, Portwine C, Samaan MC. Is There A Causal Relationship between Childhood Obesity and Acute Lymphoblastic Leukemia? A Review. Cancers (Basel) 2020; 12:E3082. [PMID: 33105727 PMCID: PMC7690432 DOI: 10.3390/cancers12113082] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 12/20/2022] Open
Abstract
Childhood obesity is a growing epidemic with numerous global health implications. Over the past few years, novel insights have emerged about the contribution of adult obesity to cancer risk, but the evidence base is far more limited in children. While pediatric patients with acute lymphoblastic leukemia (ALL) are at risk of obesity, it is unclear if there are potential causal mechanisms by which obesity leads to ALL development. This review explores the endocrine, metabolic and immune dysregulation triggered by obesity and its potential role in pediatric ALL's genesis. We describe possible mechanisms, including adipose tissue attraction and protection of lymphoblasts, and their impact on ALL chemotherapies' pharmacokinetics. We also explore the potential contribution of cytokines, growth factors, natural killer cells and adipose stem cells to ALL initiation and propagation. While there are no current definite causal links between obesity and ALL, critical questions persist as to whether the adipose tissue microenvironment and endocrine actions can play a causal role in childhood ALL, and there is a need for more research to address these questions.
Collapse
Affiliation(s)
- Molly J. Dushnicky
- Department of Pediatrics, McMaster University, Hamilton, ON L8N 3Z5, Canada; (M.J.D.); (S.N.); (A.M.); (C.P.)
- Division of Pediatric Endocrinology, McMaster Children’s Hospital, Hamilton, ON L8N 3Z5, Canada
| | - Samina Nazarali
- Department of Pediatrics, McMaster University, Hamilton, ON L8N 3Z5, Canada; (M.J.D.); (S.N.); (A.M.); (C.P.)
- Division of Pediatric Endocrinology, McMaster Children’s Hospital, Hamilton, ON L8N 3Z5, Canada
- Michael G. De Groote School of Medicine, McMaster University, Hamilton, ON L8S4L8, Canada
| | - Adhora Mir
- Department of Pediatrics, McMaster University, Hamilton, ON L8N 3Z5, Canada; (M.J.D.); (S.N.); (A.M.); (C.P.)
- Division of Pediatric Endocrinology, McMaster Children’s Hospital, Hamilton, ON L8N 3Z5, Canada
- Michael G. De Groote School of Medicine, McMaster University, Hamilton, ON L8S4L8, Canada
| | - Carol Portwine
- Department of Pediatrics, McMaster University, Hamilton, ON L8N 3Z5, Canada; (M.J.D.); (S.N.); (A.M.); (C.P.)
- Division of Pediatric Hematology/Oncology, McMaster Children’s Hospital, Hamilton, ON L8N 3Z5, Canada
| | - Muder Constantine Samaan
- Department of Pediatrics, McMaster University, Hamilton, ON L8N 3Z5, Canada; (M.J.D.); (S.N.); (A.M.); (C.P.)
- Division of Pediatric Endocrinology, McMaster Children’s Hospital, Hamilton, ON L8N 3Z5, Canada
- Michael G. De Groote School of Medicine, McMaster University, Hamilton, ON L8S4L8, Canada
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
21
|
Orgel E, Sea JL, Mittelman SD. Mechanisms by Which Obesity Impacts Survival from Acute Lymphoblastic Leukemia. J Natl Cancer Inst Monogr 2020; 2019:152-156. [PMID: 31532535 DOI: 10.1093/jncimonographs/lgz020] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/22/2019] [Accepted: 07/01/2019] [Indexed: 01/29/2023] Open
Abstract
The prevalence of obesity has steadily risen over the past decades, even doubling in more than 70 countries. High levels of body fat (adiposity) and obesity are associated with endocrine and hormonal dysregulation, cardiovascular compromise, hepatic dysfunction, pancreatitis, changes in drug metabolism and clearance, inflammation, and metabolic stress. It is thus unsurprising that obesity can affect the development of and survival from a wide variety of malignancies. This review focuses on acute lymphoblastic leukemia, the most common malignancy in children, to explore the multiple mechanisms connecting acute lymphoblastic leukemia, obesity, and adipocytes, and the implications for leukemia therapy.
Collapse
Affiliation(s)
- Etan Orgel
- Children's Center for Cancer and Blood Diseases, Children's Hospital Los Angeles, Los Angeles, CA Department of Pediatrics, Keck School of Medicine, University of Southern California
| | - Jessica L Sea
- Division of Pediatric Endocrinology, UCLA Children's Discovery and Innovation Institute, David Geffen School of Medicine UCLA, Los Angeles, CA
| | - Steven D Mittelman
- Division of Pediatric Endocrinology, UCLA Children's Discovery and Innovation Institute, David Geffen School of Medicine UCLA, Los Angeles, CA
| |
Collapse
|
22
|
Haghighian HK, Ketabchi N, Kavianpour M. The Role of the Curcumin for Inducing Apoptosis in Acute Lymphoblastic Leukemia Cells: A Systematic Review. Nutr Cancer 2020; 73:1081-1091. [PMID: 32657624 DOI: 10.1080/01635581.2020.1791916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Acute lymphoblastic leukemia (ALL) is a hematological malignancy of lymphoid progenitor cells associated with excessive proliferation of lymphocytes. Curcumin, a polyphenolic compound, is known to possess anticancer activity. However, the mechanism of apoptosis induction differs in cancers. In this study, we discuss the potential apoptosis and anticancer effect of curcumin on the ALL. After choosing Medical Subject Headings (MeSH) keywords, including "Curcumin", "acute lymphoblastic leukemia", "apoptosis", as well as searching Medline/PubMed, Scopus, Sciencedirect. hand searching in key journals, list of references of selected articles and gray literature, without time and language limitation, articles up to December 2017 were entered into this review. In this review, 244 articles were acquired at the primary search. Study selection and quality assessment processes were done based on Cochrane library guidelines. According to six articles that were selected, curcumin could enhance the antitumor activity of chemotherapy drugs such as L-asparaginase. Curcumin induces apoptosis in Pre B- ALL and T- ALL cells by decreased NF-kB levels, increased p53 levels, PARP-1 cleavage. Also, the induction of growth-arrest and apoptosis in association with the blockade of constitutively active JAK-STAT pathway suggests this be a mechanism by curcumin. Curcumin could be used for the treatment of cancer like ALL.
Collapse
Affiliation(s)
| | - Neda Ketabchi
- Department of Medical Laboratory Sciences, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Maria Kavianpour
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Cell-Based Therapies Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Sbirkov Y, Burnusuzov H, Sarafian V. Metabolic reprogramming in childhood acute lymphoblastic leukemia. Pediatr Blood Cancer 2020; 67:e28255. [PMID: 32293782 DOI: 10.1002/pbc.28255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 02/04/2020] [Accepted: 02/25/2020] [Indexed: 12/12/2022]
Abstract
The first observations of altered metabolism in malignant cells were made nearly 100 years ago and therapeutic strategies targeting cell metabolism have been in clinical use for several decades. In this review, we summarize our current understanding of cell metabolism dysregulation in childhood acute lymphoblastic leukemia (cALL). Reprogramming of cellular bioenergetic processes can be expected in the three distinct stages of cALL: at diagnosis, during standard chemotherapy, and in cases of relapse. Upregulation of glycolysis, dependency on anaplerotic energy sources, and activation of the electron transport chain have all been observed in cALL. While the current treatment strategies are tackling some of these aberrations, cALL cells are likely to be able to rewire their metabolism in order to escape therapy, which may contribute to a refractory disease and relapse. Finally, here we focus on novel therapeutic approaches emerging from our evolving understanding of the alterations of different metabolic networks in lymphoblasts.
Collapse
Affiliation(s)
- Yordan Sbirkov
- Department of Medical Biology, Medical University of Plovdiv, Plovdiv, Bulgaria.,Research Institute at Medical University- Plovdiv, Plovdiv, Bulgaria
| | - Hasan Burnusuzov
- Research Institute at Medical University- Plovdiv, Plovdiv, Bulgaria.,Department of Pediatrics and Medical Genetics, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Victoria Sarafian
- Department of Medical Biology, Medical University of Plovdiv, Plovdiv, Bulgaria.,Research Institute at Medical University- Plovdiv, Plovdiv, Bulgaria
| |
Collapse
|
24
|
Huang FL, Liao EC, Li CL, Yen CY, Yu SJ. Pathogenesis of pediatric B-cell acute lymphoblastic leukemia: Molecular pathways and disease treatments. Oncol Lett 2020; 20:448-454. [PMID: 32565969 PMCID: PMC7285861 DOI: 10.3892/ol.2020.11583] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 04/03/2020] [Indexed: 01/12/2023] Open
Abstract
B-cell acute lymphoblastic lymphoma (B-ALL) is a disease found mainly in children and in young adults. B-ALL is characterized by the rapid proliferation of poorly differentiated lymphoid progenitor cells inside the bone marrow. In the United States, ~4,000 of these patients are diagnosed each year, accounting for ~30% of childhood cancer types. The tumorigenesis of the disease involves a number of abnormal gene expressions (including TEL-AML1, BCR-ABL-1, RAS and PI3K) leading to dysregulated cell cycle. Risk factors of B-ALL are the history of parvovirus B 19 infection, high birth weight and exposure to environmental toxins. These risk factors can induce abnormal DNA methylation and DNA damages. Treatment procedures are divided into three phases: Induction, consolidation and maintenance. The goal of treatment is complete remission without relapses. Apart from traditional treatments, newly developed approaches include gene targeting therapy, with the aim of wiping out leukemic cells through the inhibition of mitogen-activated protein kinases and via c-Myb inhibition enhancing sensitivity to chemotherapy. To evaluate the efficacy of ongoing treatments, several indicators are currently used. The indicators include the expression levels of microRNAs (miRs) miR-146a, miR-155, miR-181a and miR-195, and soluble interleukin 2 receptor. Multiple drug resistance and levels of glutathione reductase can affect treatment efficacy through the increased efflux of anti-cancer drugs and weakening the effect of chemotherapy through the reduction of intracellular reactive oxygen species. The present review appraised recent studies on B-ALL regarding its pathogenesis, risk factors, treatments, treatment evaluation and causes of disease relapse. Understanding the mechanisms of B-ALL initiation and causes of treatment failure can help physicians improve disease management and reduce relapses.
Collapse
Affiliation(s)
- Fang-Liang Huang
- Children's Medical Center, Taichung Veterans General Hospital, Xitun, Taichung 40705, Taiwan, R.O.C.,Department of Physical Therapy, Hungkuang University, Shalu, Taichung 433, Taiwan, R.O.C
| | - En-Chih Liao
- Department of Medicine, Mackay Medical College, Sanzhi, New Taipei 252, Taiwan, R.O.C
| | - Chia-Ling Li
- Children's Medical Center, Taichung Veterans General Hospital, Xitun, Taichung 40705, Taiwan, R.O.C
| | - Chung-Yang Yen
- Department of Dermatology, Taichung Veterans General Hospital, Xitun, Taichung 40705, Taiwan, R.O.C
| | - Sheng-Jie Yu
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Zuoying, Kaohsiung 813, Taiwan, R.O.C
| |
Collapse
|
25
|
Hu P, Li H, Yu X, Liu X, Wang X, Qing Y, Wang Z, Wang H, Zhu M, Xu J, Tan R, Guo Q, Hui H. GL-V9 exerts anti-T cell malignancies effects via promoting lysosome-dependent AKT1 degradation and activating AKT1/FOXO3A/BIM axis. Free Radic Biol Med 2019; 145:237-249. [PMID: 31560953 DOI: 10.1016/j.freeradbiomed.2019.09.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/22/2019] [Accepted: 09/23/2019] [Indexed: 02/06/2023]
Abstract
T-cell malignancies are characterized by the excessive proliferation of hematopoietic precursor cells of T-cell lineage lymphocytes in the bone marrow. Previous studies suggest that T-cell malignancies are usually accompanied by highly activated PI3K/AKT signaling which confers the ability of cancer cells to proliferate and survive. Here, we found that GL-V9, a newly synthesized flavonoid compound, had a potent to inhibit the activation of AKT1 and induce the cell apoptosis in T-cell malignancies including cell lines and primary lymphoblastic leukemia. Results showed that GL-V9-induced degradation of AKT1 blocked PI3K/AKT1 signaling and the degradation of AKT1 could be reversed by NH4Cl, an inhibitor of lysosomal function. Inhibiting AKT1 promoted dephosphorylation of FOXO3A and its nuclear translocation. We further demonstrated that GL-V9-induced apoptosis effects were dependent on the binding of FOXO3A to the BIM promoter, resulting in the production of BH3-only protein BIM. Moreover, GL-V9 showed a more persistent and stronger apoptosis induction effects than pharmacologic PI3K inhibitor. The in vivo studies also verified that GL-V9 possessed the anti-tumor effects by reducing the leukemic burden in T-ALL-bearing BALB/c nude mice. In conclusion, our study provides a new insight into the mechanism of GL-V9-induced apoptosis, suggesting the potency of GL-V9 to be a promising agent against T-cell malignancies.
Collapse
Affiliation(s)
- Po Hu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Hui Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Xiaoxuan Yu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Xiao Liu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Xiangyuan Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Yingjie Qing
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Zhanyu Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Hongzheng Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Mengyuan Zhu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Jingyan Xu
- Department of Hematology, The Affiliated DrumTower Hospital of Nanjing University Medical School, Nanjing, 210008, People's Republic of China
| | - Renxiang Tan
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, People's Republic of China
| | - Qinglong Guo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China.
| | - Hui Hui
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
26
|
Li J, Zheng L, Yan M, Wu J, Liu Y, Tian X, Jiang W, Zhang L, Wang R. Activity and mechanism of flavokawain A in inhibiting P-glycoprotein expression in paclitaxel resistance of lung cancer. Oncol Lett 2019; 19:379-387. [PMID: 31897150 PMCID: PMC6923923 DOI: 10.3892/ol.2019.11069] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 09/11/2019] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is one of the most common cancers, which is the leading cause of cancer-related death among various cancers worldwide. Flavokawain A (FKA), a chalcone found in the kava plant, exerts potent anticancer activity. However, the activity and mechanisms of FKA in inhibiting the viability of paclitaxel (PTX)-resistant lung cancer A549 (A549/T) have not been investigated. In the present study, the effect of FKA on the viability of A549/T and hepatotoxicity in normal liver epithelial cells was detected by Cell Counting Kit-8 assay. Flow cytometry, western blot analysis and Annexin V-FITC/PI apoptosis detection kit were used to assess cell apoptosis. The effect of FKA on permeability-glycoprotein (P-gp) expression was measured by reverse transcription-PCR and western blot analysis. The results indicated that FKA dose-dependently inhibited cell proliferation and induced cell apoptosis in PTX-resistant A549/T cells, with an IC50 value of ~21 µM, while the IC50 value of A549/T cells to PTX was 34.64 µM. FKA had no hepatic toxicity in liver epithelial cells. P-gp, which contributes to the chemoresistant phenotype, was not expressed in A549 cells but was remarkably enhanced in A549/T cells. FKA (30 µM) decreased P-gp protein expression at 24 h by 3-fold. Furthermore, FKA downregulated P-gp expression by blocking the PI3K/Akt pathway. These findings suggest FKA as a potential candidate for the treatment of PTX-resistant lung cancer.
Collapse
Affiliation(s)
- Juan Li
- Department of Clinical Pharmacy, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Lei Zheng
- Department of Pharmacy, Shandong Provincial Third Hospital, Jinan, Shandong 250031, P.R. China
| | - Mi Yan
- Department of Clinical Pharmacy, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Jing Wu
- Department of Clinical Pharmacy, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Yongqing Liu
- Department of Clinical Pharmacy, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Xiaona Tian
- Department of Clinical Pharmacy, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Wen Jiang
- Central Research Laboratory, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Lu Zhang
- Central Research Laboratory, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Rongmei Wang
- Department of Clinical Pharmacy, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| |
Collapse
|
27
|
Simioni C, Bergamini F, Ferioli M, Rimondi E, Caruso L, Neri LM. New biomarkers and therapeutic strategies in acute lymphoblastic leukemias: Recent advances. Hematol Oncol 2019; 38:22-33. [PMID: 31487068 DOI: 10.1002/hon.2678] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/30/2019] [Accepted: 09/03/2019] [Indexed: 12/28/2022]
Abstract
Acute lymphoblastic leukemia (ALL) represents a heterogeneous group of hematologic malignancies, and it is normally characterized by an aberrant proliferation of immature lymphoid cells. Moreover, dysregulation of multiple signaling pathways that normally regulate cellular transcription, growth, translation, and proliferation is frequently encountered in this malignancy. ALL is the most frequent tumor in childhood, and adult ALL patients still correlate with poor survival. This review focuses on modern therapies in ALL that move beyond standard chemotherapy, with a particular emphasis on immunotherapeutic approaches as new treatment strategies. Bi-specific T-cell Engagers (BiTE) antibodies, the chimeric antigen receptor (CAR)-T cells, or CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats [CRISPR]-associated nuclease 9) represent other new innovative approaches for this disease. Target and tailored therapy could make the difference in previously untreatable cases, i.e., precision and personalized medicine. Clinical trials will help to select the most efficient novel therapies in ALL management and to integrate them with existing treatments to achieve durable cures.
Collapse
Affiliation(s)
- Carolina Simioni
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Fabio Bergamini
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Martina Ferioli
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Erika Rimondi
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy.,LTTA-Electron Microscopy Center, University of Ferrara, Ferrara, Italy
| | - Lorenzo Caruso
- Department of Biomedical and Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Luca M Neri
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy.,LTTA-Electron Microscopy Center, University of Ferrara, Ferrara, Italy
| |
Collapse
|
28
|
Hong Y, Zhang J, Guo Q, Zhu M, Chen B, Luo W. Diacetyl Hexamethylene Diamine (CAHB) Exerts Pro-Apoptotic and Anti-Proliferative Function in Leukemic T Lymphocytes via Downregulating PI3K/Akt Signaling. Med Sci Monit 2019; 25:5211-5218. [PMID: 31301225 PMCID: PMC6647926 DOI: 10.12659/msm.915840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background T cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic malignancy caused by abnormal proliferation of immature T cell progenitors. Chemotherapy of T-ALL usually consists of induction, consolidation, and long-term maintenance. Diacetyl hexamethylene diamine (CAHB) is a newly developed agent that induces the differentiation of malignant cells and deprives their clonal growth ability. Since its effect on T-ALL has not been previously determined, we evaluated its potential function in the Jurkat cell line. Material/Methods MTT assay was conducted to evaluate the cytotoxicity and anti-proliferative effect of CAHB. The apoptosis level of CAHB-treated Jurkat cells was evaluated using flow cytometry via staining with Annexin V/PI or cleaved-caspase-3. The alteration of mitochondrial membrane potential was determined by flow cytometry. The expression of Bax and Bcl-2 was evaluated by RT-PCR and Western blot. Western blot was also used to assess the activation of Akt. Results CAHB inhibited the proliferation and promoted the apoptosis of Jurkat cells in a time- and dose-dependent manner by decreasing activation of Akt, reducing the mitochondrial membrane potential, and downregulating the Bcl-2/Bax ratio. Conclusions Our data suggest that CAHB might be regarded as a novel treatment agent for T-ALL since it can induce apoptosis and inhibit proliferation of the T-ALL cell line at a relatively low level.
Collapse
Affiliation(s)
- Ye Hong
- Department of Hematology and Oncology, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou, Zhejiang, China (mainland)
| | - Jia Zhang
- Department of Hematology and Oncology, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou, Zhejiang, China (mainland)
| | - Qunyi Guo
- Department of Hematology and Oncology, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou, Zhejiang, China (mainland)
| | - Min Zhu
- Department of Hematology and Oncology, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou, Zhejiang, China (mainland)
| | - Baoguo Chen
- Department of Hematology and Oncology, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou, Zhejiang, China (mainland)
| | - Wenda Luo
- Department of Hematology and Oncology, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou, Zhejiang, China (mainland)
| |
Collapse
|
29
|
Green barley mitigates cytotoxicity in human lymphocytes undergoing aggressive oxidative stress, via activation of both the Lyn/PI3K/Akt and MAPK/ERK pathways. Sci Rep 2019; 9:6005. [PMID: 30979953 PMCID: PMC6461650 DOI: 10.1038/s41598-019-42228-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 03/19/2019] [Indexed: 02/06/2023] Open
Abstract
Oxidative stress plays a critical role in numerous diseases. Therefore, the pursuit of compounds with antioxidant activity remains critical. Green barley young leaves aqueous extract (GB) was tested for its capacity to ameliorate cellular oxidative stress, and its potential cytoprotective mechanism was partially elucidated. Through Folin-Ciocalteau and 1,1-diphenyl-2-picrylhydrazyl (DPPH) colorimetric assays, GB total phenolic content and free radical scavenging activity were found to be 59.91 ± 2.17 mg/L and 110.75 µg/ml (IC50), respectively. Using a live cell-based propidium iodide dye exclusion assay and flow cytometry, GB was found to display significant cytoprotection activity on three human lymphocytic cell lines exposed to an aggressive H2O2-induced oxidative stress. The molecular mechanism for GB cytoprotection activity was assessed via bead-based xMAP technology on the Luminex platform and western blot analysis. GB treatment resulted in activation of Lyn, Akt, and ERK1/2, suggesting that GB is able to mitigate the H2O2-induced oxidative stress via activation of both the Lyn/PI3K/Akt and ERK/MAPK pathways. Our findings support the notion that GB extract has the potential to be a valuable therapeutic agent and may serve to establish a strategy to discover potential compound(s) or biological extracts/mixtures to be incorporated as a treatment to prevent oxidative stress-related diseases.
Collapse
|
30
|
Targeting mTOR in Acute Lymphoblastic Leukemia. Cells 2019; 8:cells8020190. [PMID: 30795552 PMCID: PMC6406494 DOI: 10.3390/cells8020190] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/12/2019] [Accepted: 02/16/2019] [Indexed: 12/12/2022] Open
Abstract
Acute Lymphoblastic Leukemia (ALL) is an aggressive hematologic disorder and constitutes approximately 25% of cancer diagnoses among children and teenagers. Pediatric patients have a favourable prognosis, with 5-years overall survival rates near 90%, while adult ALL still correlates with poorer survival. However, during the past few decades, the therapeutic outcome of adult ALL was significantly ameliorated, mainly due to intensive pediatric-based protocols of chemotherapy. Mammalian (or mechanistic) target of rapamycin (mTOR) is a conserved serine/threonine kinase belonging to the phosphatidylinositol 3-kinase (PI3K)-related kinase family (PIKK) and resides in two distinct signalling complexes named mTORC1, involved in mRNA translation and protein synthesis and mTORC2 that controls cell survival and migration. Moreover, both complexes are remarkably involved in metabolism regulation. Growing evidence reports that mTOR dysregulation is related to metastatic potential, cell proliferation and angiogenesis and given that PI3K/Akt/mTOR network activation is often associated with poor prognosis and chemoresistance in ALL, there is a constant need to discover novel inhibitors for ALL treatment. Here, the current knowledge of mTOR signalling and the development of anti-mTOR compounds are documented, reporting the most relevant results from both preclinical and clinical studies in ALL that have contributed significantly into their efficacy or failure.
Collapse
|
31
|
Targeting PI3K Signaling in Acute Lymphoblastic Leukemia. Int J Mol Sci 2019; 20:ijms20020412. [PMID: 30669372 PMCID: PMC6358886 DOI: 10.3390/ijms20020412] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/13/2019] [Accepted: 01/14/2019] [Indexed: 01/11/2023] Open
Abstract
Adhesion of acute lymphoblastic leukemia (ALL) cells to bone marrow stroma cells triggers intracellular signals regulating cell-adhesion-mediated drug resistance (CAM-DR). Stromal cell protection of ALL cells has been shown to require active AKT. In chronic lymphocytic leukemia (CLL), adhesion-mediated activation of the PI3K/AKT pathway is reported. A novel FDA-approved PI3Kδ inhibitor, CAL-101/idelalisib, leads to downregulation of p-AKT and increased apoptosis of CLL cells. Recently, two additional PI3K inhibitors have received FDA approval. As the PI3K/AKT pathway is also implicated in adhesion-mediated survival of ALL cells, PI3K inhibitors have been evaluated preclinically in ALL. However, PI3K inhibition has yet to be approved for clinical use in ALL. Here, we review the role of PI3K in normal hematopoietic cells, and in ALL. We focus on summarizing targeting strategies of PI3K in ALL.
Collapse
|
32
|
Oliveira ML, Akkapeddi P, Ribeiro D, Melão A, Barata JT. IL-7R-mediated signaling in T-cell acute lymphoblastic leukemia: An update. Adv Biol Regul 2019; 71:88-96. [PMID: 30249539 PMCID: PMC6386770 DOI: 10.1016/j.jbior.2018.09.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 01/09/2023]
Abstract
Interleukin 7 (IL-7) and its receptor (IL-7R, a heterodimer of IL-7Rα and γc) are essential for normal lymphoid development. In their absence, severe combined immunodeficiency occurs. By contrast, excessive IL-7/IL-7R-mediated signaling can drive lymphoid leukemia development, disease acceleration and resistance to chemotherapy. IL-7 and IL-7R activate three main pathways: STAT5, PI3K/Akt/mTOR and MEK/Erk, ultimately leading to the promotion of leukemia cell viability, cell cycle progression and growth. However, the contribution of each of these pathways towards particular functional outcomes is still not completely known and appears to differ between normal and malignant states. For example, IL-7 upregulates Bcl-2 in a PI3K/Akt/mTOR-dependent and STAT5-independent manner in T-ALL cells. This is a 'symmetric image' of what apparently happens in normal lymphoid cells, where PI3K/Akt/mTOR does not impact on Bcl-2 and regulates proliferation rather than survival. In this review, we provide an updated summary of the knowledge on IL-7/IL-7R-mediated signaling in the context of cancer, focusing mainly on T-cell acute lymphoblastic leukemia, where this axis has been more extensively studied.
Collapse
Affiliation(s)
- Mariana L Oliveira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - Padma Akkapeddi
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - Daniel Ribeiro
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - Alice Melão
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - João T Barata
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal.
| |
Collapse
|
33
|
Toosi B, Zaker F, Alikarami F, Kazemi A, Teremmahi Ardestanii M. VS-5584 as a PI3K/mTOR inhibitor enhances apoptotic effects of subtoxic dose arsenic trioxide via inhibition of NF-κB activity in B cell precursor-acute lymphoblastic leukemia. Biomed Pharmacother 2018; 102:428-437. [DOI: 10.1016/j.biopha.2018.03.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 03/01/2018] [Accepted: 03/05/2018] [Indexed: 10/17/2022] Open
|
34
|
Simioni C, Martelli AM, Zauli G, Vitale M, McCubrey JA, Capitani S, Neri LM. Targeting the phosphatidylinositol 3-kinase/Akt/mechanistic target of rapamycin signaling pathway in B-lineage acute lymphoblastic leukemia: An update. J Cell Physiol 2018; 233:6440-6454. [PMID: 29667769 DOI: 10.1002/jcp.26539] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 02/12/2018] [Indexed: 12/26/2022]
Abstract
Despite considerable progress in treatment protocols, B-lineage acute lymphoblastic leukemia (B-ALL) displays a poor prognosis in about 15-20% of pediatric cases and about 60% of adult patients. In addition, life-long irreversible late effects from chemo- and radiation therapy, including secondary malignancies, are a growing problem for leukemia survivors. Targeted therapy holds promising perspectives for cancer treatment as it may be more effective and have fewer side effects than conventional therapies. The phosphatidylinositol 3-phosphate kinase (PI3K)/Akt/mechanistic target of rapamycin (mTOR) signaling pathway is a key regulatory cascade which controls proliferation, survival and drug-resistance of cancer cells, and it is frequently upregulated in the different subtypes of B-ALL, where it plays important roles in the pathophysiology, maintenance and progression of the disease. Moreover, activation of this signaling cascade portends a poorer prognosis in both pediatric and adult B-ALL patients. Promising preclinical data on PI3K/Akt/mTOR inhibitors have documented their anticancer activity in B-ALL and some of these novel drugs have entered clinical trials as they could lead to a longer event-free survival and reduce therapy-associated toxicity for patients with B-ALL. This review highlights the current status of PI3K/Akt/mTOR inhibitors in B-ALL, with an emphasis on emerging evidence of the superior efficacy of synergistic combinations involving the use of traditional chemotherapeutics or other novel, targeted agents.
Collapse
Affiliation(s)
- Carolina Simioni
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Giorgio Zauli
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Marco Vitale
- Department of Medicine and Surgery, University of Parma, Parma, Italy.,CoreLab, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina
| | - Silvano Capitani
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Luca M Neri
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
35
|
Kino T. GR-regulating Serine/Threonine Kinases: New Physiologic and Pathologic Implications. Trends Endocrinol Metab 2018; 29:260-270. [PMID: 29501228 DOI: 10.1016/j.tem.2018.01.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/25/2018] [Accepted: 01/29/2018] [Indexed: 12/17/2022]
Abstract
Glucocorticoid hormones, end products of the hypothalamic-pituitary-adrenal axis, virtually influence all human functions both in a basal homeostatic condition and under stress. The glucocorticoid receptor (GR), a nuclear hormone receptor superfamily protein, mediates these actions of glucocorticoids by acting as a ligand-dependent transcription factor. Because glucocorticoid actions are diverse and strong, many biological pathways adjust them in local tissues by targeting the GR signaling pathway as part of the regulatory loop coordinating complex human functions. Phosphorylation of GR protein by serine/threonine kinases is one of the major regulatory mechanisms for this communication. In this review, recent progress in research investigating GR phosphorylation by these kinases is discussed, along with the possible physiologic and pathophysiologic implications.
Collapse
Affiliation(s)
- Tomoshige Kino
- Department of Human Genetics, Division of Translational Medicine, Sidra Medical and Research Center, Doha 26999, Qatar.
| |
Collapse
|
36
|
Clinical utility of miR-143/miR-182 levels in prognosis and risk stratification specificity of BFM-treated childhood acute lymphoblastic leukemia. Ann Hematol 2018; 97:1169-1182. [PMID: 29556721 DOI: 10.1007/s00277-018-3292-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 03/05/2018] [Indexed: 12/22/2022]
Abstract
Although childhood acute lymphoblastic leukemia (ALL) is characterized by high remission rates, there are still patients who experience poor response to therapy or toxic effects due to intensive treatment. In the present study, we examined the expression profile of miR-143 and miR-182 in childhood ALL and evaluated their clinical significance for patients receiving Berlin-Frankfurt-Münster (BFM) protocol. Bone marrow specimens from 125 childhood ALL patients upon diagnosis and the end-of-induction (EoI; day 33), as well as from 64 healthy control children undergone RNA extraction, polyadenylation, and reverse transcription. Expression levels of miRNAs were quantified by qPCR analysis. Patients' cytogenetic, immunohistotype and MRD evaluation was performed according to international guidelines. Median follow-up time was 86.0 months (95% CI 74.0-98.0), while patients' mean DFS and OS intervals were 112.0 months (95% CI 104.2-119.8) and 109.2 months (95% CI 101.2-117.3), respectively. Bone marrow levels of miR-143/miR-182 were significantly decreased in childhood ALL patients at diagnosis and increased in more than 90% of patients at the EoI. Patients' survival analysis highlighted that children overexpressing miR-143/miR-182 at the EoI presented significantly higher risk for short-term relapse (log-rank test: p = 0.021; Cox regression: HR = 4.911, p = 0.038) and death (log-rank test: p = 0.028; Cox regression: HR = 4.590, p = 0.046). Finally, the evaluation of the miR-143/miR-182 EoI levels along with the established disease prognostic markers resulted to improved prediction of BFM-treated patients' survival outcome and response to therapy and additionally to superior BFM risk stratification specificity. Concluding, miR-143 and miR-182 could serve as novel prognostic molecular markers for pediatric ALL treated with BFM chemotherapy.
Collapse
|
37
|
Evangelisti C, Cappellini A, Oliveira M, Fragoso R, Barata JT, Bertaina A, Locatelli F, Simioni C, Neri LM, Chiarini F, Lonetti A, Buontempo F, Orsini E, Pession A, Manzoli L, Martelli AM, Evangelisti C. Phosphatidylinositol 3-kinase inhibition potentiates glucocorticoid response in B-cell acute lymphoblastic leukemia. J Cell Physiol 2017; 233:1796-1811. [DOI: 10.1002/jcp.26135] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 08/03/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Cecilia Evangelisti
- Department of Biomedical and Neuromotor Sciences; University of Bologna; Bologna Italy
| | - Alessandra Cappellini
- Department of Human Social and Health Sciences; University of Cassino; Cassino Italy
| | - Mariana Oliveira
- Instituto de Medicina Molecular; Faculdade de Medicina; Universidade de Lisboa; Lisbon Portugal
| | - Rita Fragoso
- Instituto de Medicina Molecular; Faculdade de Medicina; Universidade de Lisboa; Lisbon Portugal
| | - João T. Barata
- Instituto de Medicina Molecular; Faculdade de Medicina; Universidade de Lisboa; Lisbon Portugal
| | - Alice Bertaina
- Department of Pediatric Hematology-Oncology, IRCCS; Bambino Gesù Children's Hospital; Rome Italy
| | - Franco Locatelli
- Department of Pediatric Hematology-Oncology, IRCCS; Bambino Gesù Children's Hospital; Rome Italy
| | - Carolina Simioni
- Department of Morphology; Surgery and Experimental Medicine; University of Ferrara; Ferrara Italy
| | - Luca M. Neri
- Department of Morphology; Surgery and Experimental Medicine; University of Ferrara; Ferrara Italy
| | - Francesca Chiarini
- Institute of Molecular Genetics; Rizzoli Orthopedic Institute, National Research Council; Bologna Italy
| | - Annalisa Lonetti
- Department of Biomedical and Neuromotor Sciences; University of Bologna; Bologna Italy
| | - Francesca Buontempo
- Department of Biomedical and Neuromotor Sciences; University of Bologna; Bologna Italy
| | - Ester Orsini
- Department of Biomedical and Neuromotor Sciences; University of Bologna; Bologna Italy
| | - Andrea Pession
- Department of Medical and Surgical Sciences; University of Bologna; Bologna Italy
| | - Lucia Manzoli
- Department of Biomedical and Neuromotor Sciences; University of Bologna; Bologna Italy
| | | | - Camilla Evangelisti
- Institute of Molecular Genetics; Rizzoli Orthopedic Institute, National Research Council; Bologna Italy
| |
Collapse
|
38
|
Control of B lymphocyte development and functions by the mTOR signaling pathways. Cytokine Growth Factor Rev 2017; 35:47-62. [PMID: 28583723 DOI: 10.1016/j.cytogfr.2017.04.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 04/07/2017] [Indexed: 12/21/2022]
Abstract
Mechanistic target of rapamycin (mTOR) is a serine/threonine kinase originally discovered as the molecular target of the immunosuppressant rapamycin. mTOR forms two compositionally and functionally distinct complexes, mTORC1 and mTORC2, which are crucial for coordinating nutrient, energy, oxygen, and growth factor availability with cellular growth, proliferation, and survival. Recent studies have identified critical, non-redundant roles for mTORC1 and mTORC2 in controlling B cell development, differentiation, and functions, and have highlighted emerging roles of the Folliculin-Fnip protein complex in regulating mTOR and B cell development. In this review, we summarize the basic mechanisms of mTOR signaling; describe what is known about the roles of mTORC1, mTORC2, and the Folliculin/Fnip1 pathway in B cell development and functions; and briefly outline current clinical approaches for targeting mTOR in B cell neoplasms. We conclude by highlighting a few salient questions and future perspectives regarding mTOR in B lineage cells.
Collapse
|
39
|
Habib T, Sadoun A, Nader N, Suzuki S, Liu W, Jithesh PV, Kino T. AKT1 has dual actions on the glucocorticoid receptor by cooperating with 14-3-3. Mol Cell Endocrinol 2017; 439:431-443. [PMID: 27717743 DOI: 10.1016/j.mce.2016.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/02/2016] [Accepted: 10/03/2016] [Indexed: 01/08/2023]
Abstract
Glucocorticoids are important therapeutic compounds for acute lymphoblastic leukemia (ALL). AKT1 or the protein kinase B is frequently activated in ALL, and contributes to the development of glucocorticoid resistance. We examined impact of AKT1 on glucocorticoid receptor (GR)-induced transcriptional activity in cooperation with phospho-serine/threonine-binding protein 14-3-3. AKT1 has two distinct actions on GR transcriptional activity, one through segregation of GR in the cytoplasm by phosphorylating GR at Ser-134 and subsequent association of 14-3-3, and the other through direct modulation of GR transcriptional activity in the nucleus. For the latter, AKT1 and 14-3-3 are attracted to DNA-bound GR, accompanied by AKT1-dependent p300 phosphorylation, H3S10 phosphorylation and H3K14 acetylation at the DNA site. These two actions of AKT1 regulate distinct sets of glucocorticoid-responsive genes. Our results suggest that specific inhibition of the AKT1/14-3-3 activity on the cytoplasmic retention of GR may be a promising target for treating glucocorticoid resistance observed in ALL.
Collapse
Affiliation(s)
- Tanwir Habib
- Division of System Biology, Sidra Medical and Research Center, Out Patient Clinic, PO Box 26999, Al Luqta Street, Education City North Campus, Doha, Qatar.
| | - Ameera Sadoun
- Division of Translational Medicine, Sidra Medical and Research Center, Out Patient Clinic, PO Box 26999, Al Luqta Street, Education City North Campus, Doha, Qatar.
| | - Nancy Nader
- Physiology and Biophysics, Weill Cornell University in Qatar, PO Box 24144, Al Luqta Street, Education City South Campus, Doha, Qatar.
| | - Shigeru Suzuki
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bldg. 10, CRC, Rm 1-3140, 10 Center Drive MSC 1109, Bethesda, MD 20892, USA; Department of Pediatrics, Asahikawa Medical University, Asahikawa, 078-8510, Japan.
| | - Wei Liu
- Division of Genomic Core, Sidra Medical and Research Center, Out Patient Clinic, PO Box 26999, Al Luqta Street, Education City North Campus, Doha, Qatar.
| | - Puthen V Jithesh
- Division of System Biology, Sidra Medical and Research Center, Out Patient Clinic, PO Box 26999, Al Luqta Street, Education City North Campus, Doha, Qatar.
| | - Tomoshige Kino
- Division of Translational Medicine, Sidra Medical and Research Center, Out Patient Clinic, PO Box 26999, Al Luqta Street, Education City North Campus, Doha, Qatar; Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bldg. 10, CRC, Rm 1-3140, 10 Center Drive MSC 1109, Bethesda, MD 20892, USA.
| |
Collapse
|
40
|
Li Y, Buijs-Gladdines JGCAM, Canté-Barrett K, Stubbs AP, Vroegindeweij EM, Smits WK, van Marion R, Dinjens WNM, Horstmann M, Kuiper RP, Buijsman RC, Zaman GJR, van der Spek PJ, Pieters R, Meijerink JPP. IL-7 Receptor Mutations and Steroid Resistance in Pediatric T cell Acute Lymphoblastic Leukemia: A Genome Sequencing Study. PLoS Med 2016; 13:e1002200. [PMID: 27997540 PMCID: PMC5172551 DOI: 10.1371/journal.pmed.1002200] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 11/11/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Pediatric acute lymphoblastic leukemia (ALL) is the most common childhood cancer and the leading cause of cancer-related mortality in children. T cell ALL (T-ALL) represents about 15% of pediatric ALL cases and is considered a high-risk disease. T-ALL is often associated with resistance to treatment, including steroids, which are currently the cornerstone for treating ALL; moreover, initial steroid response strongly predicts survival and cure. However, the cellular mechanisms underlying steroid resistance in T-ALL patients are poorly understood. In this study, we combined various genomic datasets in order to identify candidate genetic mechanisms underlying steroid resistance in children undergoing T-ALL treatment. METHODS AND FINDINGS We performed whole genome sequencing on paired pre-treatment (diagnostic) and post-treatment (remission) samples from 13 patients, and targeted exome sequencing of pre-treatment samples from 69 additional T-ALL patients. We then integrated mutation data with copy number data for 151 mutated genes, and this integrated dataset was tested for associations of mutations with clinical outcomes and in vitro drug response. Our analysis revealed that mutations in JAK1 and KRAS, two genes encoding components of the interleukin 7 receptor (IL7R) signaling pathway, were associated with steroid resistance and poor outcome. We then sequenced JAK1, KRAS, and other genes in this pathway, including IL7R, JAK3, NF1, NRAS, and AKT, in these 69 T-ALL patients and a further 77 T-ALL patients. We identified mutations in 32% (47/146) of patients, the majority of whom had a specific T-ALL subtype (early thymic progenitor ALL or TLX). Based on the outcomes of these patients and their prednisolone responsiveness measured in vitro, we then confirmed that these mutations were associated with both steroid resistance and poor outcome. To explore how these mutations in IL7R signaling pathway genes cause steroid resistance and subsequent poor outcome, we expressed wild-type and mutant IL7R signaling molecules in two steroid-sensitive T-ALL cell lines (SUPT1 and P12 Ichikawa cells) using inducible lentiviral expression constructs. We found that expressing mutant IL7R, JAK1, or NRAS, or wild-type NRAS or AKT, specifically induced steroid resistance without affecting sensitivity to vincristine or L-asparaginase. In contrast, wild-type IL7R, JAK1, and JAK3, as well as mutant JAK3 and mutant AKT, had no effect. We then performed a functional study to examine the mechanisms underlying steroid resistance and found that, rather than changing the steroid receptor's ability to activate downstream targets, steroid resistance was associated with strong activation of MEK-ERK and AKT, downstream components of the IL7R signaling pathway, thereby inducing a robust antiapoptotic response by upregulating MCL1 and BCLXL expression. Both the MEK-ERK and AKT pathways also inactivate BIM, an essential molecule for steroid-induced cell death, and inhibit GSK3B, an important regulator of proapoptotic BIM. Importantly, treating our cell lines with IL7R signaling inhibitors restored steroid sensitivity. To address clinical relevance, we treated primary T-ALL cells obtained from 11 patients with steroids either alone or in combination with IL7R signaling inhibitors; we found that including a MEK, AKT, mTOR, or dual PI3K/mTOR inhibitor strongly increased steroid-induced cell death. Therefore, combining these inhibitors with steroid treatment may enhance steroid sensitivity in patients with ALL. The main limitation of our study was the modest cohort size, owing to the very low incidence of T-ALL. CONCLUSIONS Using an unbiased sequencing approach, we found that specific mutations in IL7R signaling molecules underlie steroid resistance in T-ALL. Future prospective clinical studies should test the ability of inhibitors of MEK, AKT, mTOR, or PI3K/mTOR to restore or enhance steroid sensitivity and improve clinical outcome.
Collapse
Affiliation(s)
- Yunlei Li
- Department of Pediatric Oncology/Hematology, Erasmus Medical Center/Sophia Children’s Hospital, Rotterdam, The Netherlands
| | - Jessica G. C. A. M. Buijs-Gladdines
- Department of Pediatric Oncology/Hematology, Erasmus Medical Center/Sophia Children’s Hospital, Rotterdam, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Kirsten Canté-Barrett
- Department of Pediatric Oncology/Hematology, Erasmus Medical Center/Sophia Children’s Hospital, Rotterdam, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Andrew P. Stubbs
- Department of Bioinformatics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Eric M. Vroegindeweij
- Department of Pediatric Oncology/Hematology, Erasmus Medical Center/Sophia Children’s Hospital, Rotterdam, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Willem K. Smits
- Department of Pediatric Oncology/Hematology, Erasmus Medical Center/Sophia Children’s Hospital, Rotterdam, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Ronald van Marion
- Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Martin Horstmann
- Research Institute Children’s Cancer Center Hamburg, Hamburg, Germany
- Clinic of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Co-operative Study Group for Childhood Acute Lymphoblastic Leukemia, Hamburg, Germany
| | - Roland P. Kuiper
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | | | | - Rob Pieters
- Department of Pediatric Oncology/Hematology, Erasmus Medical Center/Sophia Children’s Hospital, Rotterdam, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Jules P. P. Meijerink
- Department of Pediatric Oncology/Hematology, Erasmus Medical Center/Sophia Children’s Hospital, Rotterdam, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
41
|
Lee JHS, Vo TT, Fruman DA. Targeting mTOR for the treatment of B cell malignancies. Br J Clin Pharmacol 2016; 82:1213-1228. [PMID: 26805380 PMCID: PMC5061788 DOI: 10.1111/bcp.12888] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 01/20/2016] [Accepted: 01/21/2016] [Indexed: 12/12/2022] Open
Abstract
Mechanistic target of rapamycin (mTOR) is a serine/threonine kinase that functions as a key regulator of cell growth, division and survival. Many haematologic malignancies exhibit elevated or aberrant mTOR activation, supporting the launch of numerous clinical trials aimed at evaluating the potential of single agent mTOR-targeted therapies. While promising early clinical data using allosteric mTOR inhibitors (rapamycin and its derivatives, rapalogs) have suggested activity in a subset of haematologic malignancies, these agents have shown limited efficacy in most contexts. Whether the efficacy of these partial mTOR inhibitors might be enhanced by more complete target inhibition is being actively addressed with second generation ATP-competitive mTOR kinase inhibitors (TOR-KIs), which have only recently entered clinical trials. However, emerging preclinical data suggest that despite their biochemical advantage over rapalogs, TOR-KIs may retain a primarily cytostatic response. Rather, combinations of mTOR inhibition with other targeted therapies have demonstrated promising efficacy in several preclinical models. This review investigates the current status of rapalogs and TOR-KIs in B cell malignancies, with an emphasis on emerging preclinical evidence of synergistic combinations involving mTOR inhibition.
Collapse
Affiliation(s)
- Jong-Hoon Scott Lee
- Department of Molecular Biology & Biochemistry, University of California, Irvine, USA
| | - Thanh-Trang Vo
- Department of Molecular Biology & Biochemistry, University of California, Irvine, USA
| | - David A Fruman
- Department of Molecular Biology & Biochemistry, University of California, Irvine, USA.
| |
Collapse
|
42
|
Wang H, Jia XH, Chen JR, Yi YJ, Wang JY, Li YJ, Xie SY. HOXB4 knockdown reverses multidrug resistance of human myelogenous leukemia K562/ADM cells by downregulating P-gp, MRP1 and BCRP expression via PI3K/Akt signaling pathway. Int J Oncol 2016; 49:2529-2537. [PMID: 27779650 DOI: 10.3892/ijo.2016.3738] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 10/14/2016] [Indexed: 11/06/2022] Open
Abstract
Multidrug resistance (MDR) plays a pivotal role in human chronic myelogenous leukemia (CML) chemotherapy failure. MDR is mainly associated with the overexpression of drug efflux transporters of the ATP-binding cassette (ABC) proteins. Phosphoinositide 3-kinase (PI3K)/Akt signaling cascade is involved in the MDR phenotype and is correlated with multidrug resistance 1 (MDR1)/P-glycoprotein (P-gp), multidrug resistance-associated protein 1 (MRP1) and breast cancer resistance protein (BCRP) expression in many human malignancies. Homeobox (HOX) B4, a member of the HOX gene family, has been reported to be correlated with occurrence, development, poor prognosis and drug resistance of human leukemia. In the present study, HOXB4 expression was analyzed in K562 cell line and its MDR subline K562/ADM. Compared with K562 cells, drug-resistant K562/ADM cells demonstrated evidently higher HOXB4 expression. In addition, we firstly investigated the reversal effect of HOXB4 deletion on K562/ADM cells and the underlying mechanism. The Cell Counting kit-8 (CCK-8) and flow cytometry assays showed that knockdown of HOXB4 enhanced chemosensitivity and decreased drug efflux in K562/ADM cells. Moreover, HOXB4 knockout led to downregulation of P-gp, MRP1 and BCRP expression and PI3K/Akt signaling activity, suggesting that repression of HOXB4 might be a key point to reverse MDR of K562/ADM cells.
Collapse
Affiliation(s)
- Hong Wang
- Department of Pediatrics, The Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong 256603, P.R. China
| | - Xiu-Hong Jia
- Department of Pediatrics, The Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong 256603, P.R. China
| | - Jie-Ru Chen
- Department of Pediatrics, The Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong 256603, P.R. China
| | - Ying-Jie Yi
- Department of Pediatrics, The Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong 256603, P.R. China
| | - Jian-Yong Wang
- Department of Pediatrics, The Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong 256603, P.R. China
| | - You-Jie Li
- Department of Biochemistry and Molecular Biology, Key Laboratory of Tumour Molecular Biology, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Shu-Yang Xie
- Department of Biochemistry and Molecular Biology, Key Laboratory of Tumour Molecular Biology, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| |
Collapse
|
43
|
Wang H, Jia XH, Chen JR, Wang JY, Li YJ. Osthole shows the potential to overcome P-glycoprotein‑mediated multidrug resistance in human myelogenous leukemia K562/ADM cells by inhibiting the PI3K/Akt signaling pathway. Oncol Rep 2016; 35:3659-68. [PMID: 27109742 DOI: 10.3892/or.2016.4730] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 01/08/2016] [Indexed: 11/06/2022] Open
Abstract
P-glycoprotein (P-gp)-mediated multidrug resistance (MDR) has been reported to play a pivotal role in tumor chemotherapy failure. Study after study has illustrated that the phosphoinositide 3-kinase (PI3K)/Akt signaling cascade is involved in the MDR phenotype and is correlated with P-gp expression in many human malignancies. In the present study, osthole, an O-methylated coumarin, exhibited potent reversal capability of MDR in myelogenous leukemia K562/ADM cells. Simultaneously, the uptake and efflux of Rhodamine-123 (Rh-123) and the accumulation of doxorubicin assays combined with flow cytometric analysis suggested that osthole could increase intracellular drug accumulation. Furthermore, osthole decreased the expression of multidrug resistance gene 1 (MDR1) at both the mRNA and protein levels. Further experiments elucidated that osthole could suppress P-gp expression by inhibiting the PI3K/Akt signaling pathway which might be the main mechanism accounting for the reversal potential of osthole in the MDR in K562/ADM cells. In conclusion, osthole combats MDR and could be a promising candidate for the development of novel MDR reversal modulators.
Collapse
Affiliation(s)
- Hong Wang
- Department of Pediatrics, The Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong 256603, P.R. China
| | - Xiu-Hong Jia
- Department of Pediatrics, The Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong 256603, P.R. China
| | - Jie-Ru Chen
- Department of Pediatrics, The Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong 256603, P.R. China
| | - Jian-Yong Wang
- Department of Pediatrics, The Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong 256603, P.R. China
| | - You-Jie Li
- Department of Biochemistry and Molecular Biology, Key Laboratory of Tumour Molecular Biology, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| |
Collapse
|
44
|
Targeting of hyperactivated mTOR signaling in high-risk acute lymphoblastic leukemia in a pre-clinical model. Oncotarget 2015; 6:1382-95. [PMID: 25682198 PMCID: PMC4359301 DOI: 10.18632/oncotarget.2842] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 12/01/2014] [Indexed: 11/25/2022] Open
Abstract
Despite increasingly successful treatment of pediatric ALL, up to 20% of patients encounter relapse. By current biomarkers, the majority of relapse patients is initially not identified indicating the need for prognostic and therapeutic targets reflecting leukemia biology. We previously described that rapid engraftment of patient ALL cells transplanted onto NOD/SCID mice (short time to leukemia, TTLshort) is indicative of early patient relapse. Gene expression profiling identified genes coding for molecules involved in mTOR signaling to be associated with TTLshort/early relapse leukemia. Here, we now functionally address mTOR signaling activity in primograft ALL samples and evaluate mTOR pathway inhibition as novel treatment strategy for high-risk ALL ex vivo and in vivo. By analysis of S6-phosphorylation downstream of mTOR, increased mTOR activation was found in TTLshort/high-risk ALL, which was effectively abrogated by mTOR inhibitors resulting in decreased leukemia proliferation and growth. In a preclinical setting treating individual patient-derived ALL in vivo, mTOR inhibition alone, and even more pronounced together with conventional remission induction therapy, significantly delayed post-treatment leukemia reoccurrence in TTLshort/high-risk ALL. Thus, the TTLshort phenotype is functionally characterized by hyperactivated mTOR signaling and can effectively be targeted ex vivo and in vivo providing a novel therapeutic strategy for high-risk ALL.
Collapse
|
45
|
Hall CP, Reynolds CP, Kang MH. Modulation of Glucocorticoid Resistance in Pediatric T-cell Acute Lymphoblastic Leukemia by Increasing BIM Expression with the PI3K/mTOR Inhibitor BEZ235. Clin Cancer Res 2015; 22:621-32. [PMID: 26080839 DOI: 10.1158/1078-0432.ccr-15-0114] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 06/06/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE The aim of our study is to evaluate the preclinical therapeutic activity and mechanism of action of BEZ235, a dual PI3K/mTOR inhibitor, in combination with dexamethasone in acute lymphoblastic leukemia (ALL). EXPERIMENTAL DESIGN The cytotoxic effects of BEZ235 and dexamethasone as single agents and in combination were assessed in a panel of ALL cell lines and xenograft models. The underlying mechanism of BEZ235 and dexamethasone was evaluated using immunoblotting, TaqMan RT-PCR, siRNA, immunohistochemistry, and immunoprecipitation. RESULTS Inhibition of the PI3K/AKT/mTOR pathway with the dual PI3K/mTOR inhibitor BEZ235 enhanced dexamethasone-induced anti-leukemic activity in in vitro (continuous cell lines and primary ALL cultures) and systemic in vivo models of T-ALL (including a patient-derived xenograft). Through inhibition of AKT1, BEZ235 was able to alleviate AKT1-mediated suppression of dexamethasone-induced apoptotic pathways leading to increased expression of the proapoptotic BCL-2 protein BIM. Downregulation of MCL-1 by BEZ235 further contributed to the modulation of dexamethasone resistance by increasing the amount of BIM available to induce apoptosis, especially in PTEN-null T-ALL where inhibition of AKT only partially overcame AKT-induced BIM suppression. CONCLUSIONS Our data support the further investigation of agents targeting the PI3K/mTOR pathway to modulate glucocorticoid resistance in T-ALL.
Collapse
Affiliation(s)
- Connor P Hall
- Cancer Center, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas. Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - C Patrick Reynolds
- Cancer Center, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas. Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas. Pediatrics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas. Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Min H Kang
- Cancer Center, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas. Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas. Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas. Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas.
| |
Collapse
|
46
|
Zhang X, Dong W, Zhou H, Li H, Wang N, Miao X, Jia L. α-2,8-Sialyltransferase Is Involved in the Development of Multidrug Resistance via PI3K/Akt Pathway in Human Chronic Myeloid Leukemia. IUBMB Life 2015; 67:77-87. [PMID: 25855199 DOI: 10.1002/iub.1351] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Revised: 01/07/2015] [Accepted: 01/12/2015] [Indexed: 11/07/2022]
Abstract
Cell surface sialylation is emerging as an important feature of cancer cell multidrug resistance (MDR). We have focused on the influence of 2,8-sialyltransferases in key steps of the development of MDR in chronic myeloid leukemia (CML). The expressional profiles of six α-2,8-sialyltransferases were generated in three pairs of CML cell lines and peripheral blood mononuclear cells (PBMC) of CML patients. Cellular MDR phenotype positively correlated with ST8SIA4 and ST8SIA6 levels. Furthermore, ST8SIA4 mediated the activity of phosphoinositide-3 kinase (PI3K)/Akt signal pathway and the expression of P-glycoprotein (P-gp). Targeting the PI3K/Akt pathway by its specific inhibitor LY294002, or by Akt RNA interfering reversed the MDR phenotype of K562/ADR cells. Inhibition of PI3K/Akt pathway also attenuated the effects caused by the overexpression of ST8SIA4 on MDR. Therefore this study indicated that α-2,8-sialyltransferases involved in the development of MDR of CML cells probably through ST8SIA4 regulating the activity of PI3K/Akt signaling and the expression of P-gp.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Medical Laboratory, College of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning Province, China
| | | | | | | | | | | | | |
Collapse
|
47
|
Fransecky L, Mochmann LH, Baldus CD. Outlook on PI3K/AKT/mTOR inhibition in acute leukemia. MOLECULAR AND CELLULAR THERAPIES 2015; 3:2. [PMID: 26056603 PMCID: PMC4452048 DOI: 10.1186/s40591-015-0040-8] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 03/05/2015] [Indexed: 02/08/2023]
Abstract
Technological advances allowing high throughput analyses across numerous cancer tissues have allowed much progress in understanding complex cellular signaling. In the future, the genetic landscape in cancer may have more clinical relevance than diagnosis based on tumor origin. This progress has emphasized PI3K/AKT/mTOR, among others, as a central signaling center of cancer development due to its governing control in cellular growth, survival, and metabolism. The discovery of high frequencies of mutations in the PI3K/AKT/mTOR pathway in different cancer entities has sparked interest to inhibit elements of this pathway. In acute leukemia pharmacological interruption has yet to achieve desirable efficacy as targetable downstream mutations in PI3K/AKT/mTOR are absent. Nevertheless, mutations in membrane-associated genes upstream of PI3K/AKT/mTOR are frequent in acute leukemia and are associated with aberrant activation of PI3K/AKT/mTOR thus providing a good rationale for further exploration. This review attempts to summarize key findings leading to aberrant activation and to reflect on both promises and challenges of targeting PI3K/AKT/mTOR in acute leukemia. Our emphasis lies on the insights gained through high-throughput data acquisition that open up new avenues for identifying specific subgroups of acute leukemia as ideal candidates for PI3K/AKT/mTOR targeted therapy.
Collapse
Affiliation(s)
- Lars Fransecky
- Department of Hematology and Oncology, Charité University Hospital Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Liliana H Mochmann
- Department of Hematology and Oncology, Charité University Hospital Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Claudia D Baldus
- Department of Hematology and Oncology, Charité University Hospital Berlin, Campus Benjamin Franklin, Berlin, Germany
| |
Collapse
|
48
|
Activation of Akt/mTOR pathway is associated with poor prognosis of nasopharyngeal carcinoma. PLoS One 2014; 9:e106098. [PMID: 25165983 PMCID: PMC4148345 DOI: 10.1371/journal.pone.0106098] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Accepted: 07/23/2014] [Indexed: 12/21/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a malignant tumor of the head and neck region, which frequently occurs in Southeast Asia, especially in the south of China. It is known that the mammalian target of rapamycin (mTOR) pathway plays a central role in regulating cellular functions, including proliferation, growth, survival, mobility, and angiogenesis. Aberrant expression of the mTOR signaling pathway molecules has been found in many types of cancer. However, whether the alterations of p-Akt, p-p70S6K and p-4EBP1 protein expression are associated with clinicopathological features and prognostic implications in NPC have not been reported. The purposes of the present study are to investigate the association between the expression of p-Akt, p-p70S6K and p-4EBP1 proteins and clinicopathological features in NPC by immunohistochemistry. The results showed that the positive percentage of p-Akt, p-p70S6K and p-4EBP1 proteins expression in NPC (47.2%, 73.0% and 61.7%, respectively) was significantly higher than that in the non-cancerous nasopharyngeal control tissue (33.3%, 59.1% and 47.0%, respectively). There was a significantly higher positive expression of p-Akt in undifferentiated non-keratinizing nasopharyngeal carcinoma than that in differentiated non-keratinizing nasopharyngeal carcinoma (P = 0.014). Additionally, positive expression of p-p70S6K and p-4EBP1 proteins, and positive expression of either of p-Akt, p-p70S6K and p-4EBP1 were significantly correlated inversely with overall survival rates of NPC patients (P = 0.023, P = 0.033, P = 0.008, respectively). Spearman’s rank correlation test showed that expression of p-Akt in NPC was significantly associated with expression of p-p70S6K (r = 0.263, P<0.001) and p-4EBP1(r = 0.284, P<0.001). Also there was an obviously positive association between expression of p-p70S6K and p-4EBP1 proteins in NPC (r = 0.286, P<0.001). Multivariate Cox regression analysis further identified positive expression of p-4EBP1 and p-p70S6K proteins were the independent poor prognostic factors for NPC (P = 0.043, P = 0.027, respectively). Taken together, high expression of p-p70S6K and p-4EBP1 proteins may act as valuable independent biomarkers to predict a poor prognosis of NPC.
Collapse
|
49
|
Ma H, Zhou H, Li P, Song X, Miao X, Li Y, Jia L. Effect of ST3GAL 4 and FUT 7 on sialyl Lewis X synthesis and multidrug resistance in human acute myeloid leukemia. Biochim Biophys Acta Mol Basis Dis 2014; 1842:1681-92. [PMID: 24953795 DOI: 10.1016/j.bbadis.2014.06.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 06/07/2014] [Accepted: 06/12/2014] [Indexed: 01/12/2023]
Abstract
Sialyl Lewis X (sLe X, CD15s) is a key antigen produced on tumor cell surfaces during multidrug resistance (MDR) development. The present study investigated the effect of α1, 3 fucosyltransferase VII (FucT VII) and α2, 3 sialyltransferase IV (ST3Gal IV) on sLe X oligosaccharides synthesis as well as their impact on MDR development in acute myeloid leukemia cells (AML). FUT7 and ST3GAL4 were overexpressed in three AML MDR cells and bone marrow mononuclear cells (BMMC) of AML patients with MDR by real-time polymerase chain reaction (PCR). A close association was found between the expression levels of FUT7 and ST3GAL4 and the amount of sLe X oligosaccharides, as well as the phenotypic variation of MDR of HL60 and HL60/ADR cells both in vitro and in vivo. Manipulation of these two genes' expression modulated the activity of phosphoinositide-3 kinase (PI3K)/Akt signaling pathway, thereby regulating the proportionally mutative expression of P-glycoprotein (P-gp) and multidrug resistance related protein 1 (MRP1), both of which are known to be involved in MDR. Blocking the PI3K/Akt pathway by its specific inhibitor LY294002 or Akt short hairpin RNA (shRNA) resulted in the reduced MDR of HL60/ADR cells. This study indicated that sLe X involved in the development of MDR of AML cells probably through FUT7 and ST3GAL4 regulating the activity of PI3K/Akt signaling pathway and the expression of P-gp and MRP1.
Collapse
Affiliation(s)
- Hongye Ma
- College of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning Province, China
| | - Huimin Zhou
- Department of Microbiology, Dalian Medical University, Dalian, Liaoning Province, China
| | - Peng Li
- Department of Bone Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Xiaobo Song
- Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
| | - Xiaoyan Miao
- College of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning Province, China
| | - Yanping Li
- College of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning Province, China
| | - Li Jia
- College of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning Province, China.
| |
Collapse
|
50
|
Modification of sialylation is associated with multidrug resistance in human acute myeloid leukemia. Oncogene 2014; 34:726-40. [PMID: 24531716 DOI: 10.1038/onc.2014.7] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 12/07/2013] [Accepted: 01/06/2014] [Indexed: 12/15/2022]
Abstract
Aberrant cell surface sialylation patterns have been shown to correlate with tumor progression and metastasis. However, the role of sialylation regulation of cancer multidrug resistance (MDR) remains poorly understood. This study investigated sialylation in modification on MDR in acute myeloid leukemia (AML). Using mass spectrometry (MS) analysis, the composition profiling of sialylated N-glycans differed in three pairs of AML cell lines. Real-time PCR showed the differential expressional profiles of 20 sialyltransferase (ST) genes in the both AML cell lines and bone marrow mononuclear cells (BMMCs) of AML patients. The expression levels of ST3GAL5 and ST8SIA4 were detected, which were overexpressed in HL60 and HL60/adriamycin-resistant (ADR) cells. The altered levels of ST3GAL5 and ST8SIA4 were found in close association with the MDR phenotype changing of HL60 and HL60/ADR cells both in vitro and in vivo. Further data demonstrated that manipulation of these two genes' expression modulated the activity of phosphoinositide-3 kinase (PI3K)/Akt signaling pathway and its downstream target thus regulated the proportionally mutative expression of P-glycoprotein (P-gp) and MDR-related protein 1 (MRP1), both of which are known to be involved in MDR. Blocking the PI3K/Akt pathway by its specific inhibitor LY294002 or by Akt small interfering RNA resulted in the reduced chemosensitivity of HL60/ADR cells. Therefore, this study indicated that sialylation involved in the development of MDR of AML cells probably through ST3GAL5 or ST8SIA4 regulating the activity of PI3K/Akt signaling and the expression of P-gp and MRP1.
Collapse
|