1
|
Kuleš J, Bujanić M, Rubić I, Šimonji K, Konjević D. A Comprehensive Multi-Omics Study of Serum Alterations in Red Deer Infected by the Liver Fluke Fascioloides magna. Pathogens 2024; 13:922. [PMID: 39599475 PMCID: PMC11597349 DOI: 10.3390/pathogens13110922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/10/2024] [Accepted: 10/17/2024] [Indexed: 11/29/2024] Open
Abstract
Liver fluke infections are acknowledged as diseases with global prevalence and significant implications for both veterinary and public health. The large American liver fluke, Fascioloides magna, is a significant non-native parasite introduced to Europe, threatening the survival of local wildlife populations. The aim of this study was to analyze differences in the serum proteome and metabolome between F. magna-infected and control red deer. Serum samples from red deer were collected immediately following regular hunting operations, including 10 samples with confirmed F. magna infection and 10 samples from healthy red deer. A proteomics analysis of the serum samples was performed using a tandem mass tag (TMT)-based quantitative approach, and a metabolomics analysis of the serum was performed using an untargeted mass spectrometry-based metabolomics approach. A knowledge-driven approach was applied to integrate omics data. Our findings demonstrated that infection with liver fluke was associated with changes in amino acid metabolism, energy metabolism, lipid metabolism, inflammatory host response, and related biochemical pathways. This study offers a comprehensive overview of the serum proteome and metabolome in response to F. magna infection in red deer, unveiling new potential targets for future research. The identification of proteins, metabolites, and related biological pathways enhances our understanding of host-parasite interactions and may improve current tools for more effective liver fluke control.
Collapse
Affiliation(s)
- Josipa Kuleš
- Department of Chemistry and Biochemistry, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Miljenko Bujanić
- Educational Center for Game Management I/3 “Črnovšćak”, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Ivana Rubić
- Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia; (I.R.); (K.Š.)
| | - Karol Šimonji
- Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia; (I.R.); (K.Š.)
| | - Dean Konjević
- Department of Veterinary Economics and Epidemiology, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| |
Collapse
|
2
|
Kim J, Sohn WM, Bae YA. Prostaglandin synthase activity of sigma- and mu-class glutathione transferases in a parasitic trematode, Clonorchis sinensis. PARASITES, HOSTS AND DISEASES 2024; 62:205-216. [PMID: 38835261 PMCID: PMC11150925 DOI: 10.3347/phd.24004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/21/2024] [Indexed: 06/06/2024]
Abstract
Sigma-class glutathione transferase (GST) proteins with dual GST and prostaglandin synthase (PGS) activities play a crucial role in the establishment of Clonorchis sinensis infection. Herein, we analyzed the structural and enzymatic properties of sigma-class GST (CsGST-σ) proteins to obtain insight into their antioxidant and immunomodulatory functions in comparison with mu-class GST (CsGST-μ) proteins. CsGST-σ proteins conserved characteristic structures, which had been described in mammalian hematopoietic prostaglandin D2 synthases. Recombinant forms of these CsGST-σ and CsGST-μ proteins expressed in Escherichia coli exhibited considerable degrees of GST and PGS activities with substantially different specific activities. All recombinant proteins displayed higher affinities toward prostaglandin H2 (PGS substrate; average Km of 30.7 and 3.0 μm for prostaglandin D2 [PGDS] and E2 synthase [PGES], respectively) than those toward CDNB (GST substrate; average Km of 1,205.1 μm). Furthermore, the catalytic efficiency (Kcat/Km) of the PGDS/PGES activity was higher than that of GST activity (average Kcat/Km of 3.1, 0.7, and 7.0×10-3 s-1μm-1 for PGDS, PGES, and GST, respectively). Our data strongly suggest that the C. sinensis sigma- and mu-class GST proteins are deeply involved in regulating host immune responses by generating PGD2 and PGE2 in addition to their roles in general detoxification.
Collapse
Affiliation(s)
- Jiyoung Kim
- Department of Microbiology, Gachon University College of Medicine, Incheon 21999,
Korea
| | - Woon-Mok Sohn
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727,
Korea
| | - Young-An Bae
- Department of Microbiology, Gachon University College of Medicine, Incheon 21999,
Korea
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University College of Medicine, Incheon 21999,
Korea
| |
Collapse
|
3
|
Kha S, Chaiyadet S, Saichua P, Tangkawatana S, Sripa B, Suttiprapa S. Opisthorchis viverrini excretory-secretory products suppress GLUT8 of cholangiocytes. Parasitol Res 2024; 123:161. [PMID: 38491300 DOI: 10.1007/s00436-024-08184-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/08/2024] [Indexed: 03/18/2024]
Abstract
Opisthorchis viverrini infection and the subsequent bile duct cancer it induces remains a significant public health problem in Southeast Asia. Opisthorchiasis has been reported to cause reduced plasma glucose levels among infected patients. The underlying mechanism for this phenomenon is unclear. In the present study, evidence is presented to support the hypothesis that O. viverrini exploits host cholangiocyte glucose transporters (GLUTs) in a similar manner to that of rodent intestinal nematodes, to feed on unabsorbed glucose in the bile for survival. GLUT levels in a cholangiocyte H69 cell line co-cultured with excretory-secretory products of O. viverrini were examined using qPCR and immunoblotting. GLUT 8 mRNA and expressed proteins were found to be downregulated in H69 cells in the presence of O. viverrini. This suggests that O. viverrini alters glucose metabolism in cells within its vicinity by limiting transporter expression resulting in increased bile glucose that it can utilize and potentially explains the previously reported anti-insulin effect of opisthorchiasis.
Collapse
Affiliation(s)
- Sandy Kha
- Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Graduate School, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sujittra Chaiyadet
- Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Tropical Disease Research Center, WHO Collaborating Centre for Research and Control of Opisthorchiasis, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Prasert Saichua
- Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Tropical Disease Research Center, WHO Collaborating Centre for Research and Control of Opisthorchiasis, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sirikachorn Tangkawatana
- Tropical Disease Research Center, WHO Collaborating Centre for Research and Control of Opisthorchiasis, Khon Kaen University, Khon Kaen, 40002, Thailand
- Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Banchob Sripa
- Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Tropical Disease Research Center, WHO Collaborating Centre for Research and Control of Opisthorchiasis, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sutas Suttiprapa
- Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
- Tropical Disease Research Center, WHO Collaborating Centre for Research and Control of Opisthorchiasis, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
4
|
Qian MB, Keiser J, Utzinger J, Zhou XN. Clonorchiasis and opisthorchiasis: epidemiology, transmission, clinical features, morbidity, diagnosis, treatment, and control. Clin Microbiol Rev 2024; 37:e0000923. [PMID: 38169283 PMCID: PMC10938900 DOI: 10.1128/cmr.00009-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 07/18/2023] [Indexed: 01/05/2024] Open
Abstract
Clonorchis sinensis, Opisthorchis viverrini, and Opisthorchis felineus are important liver flukes that cause a considerable public health burden in eastern Asia, southeastern Asia, and eastern Europe, respectively. The life cycles are complex, involving humans, animal reservoirs, and two kinds of intermediate hosts. An interplay of biological, cultural, ecological, economic, and social factors drives transmission. Chronic infections are associated with liver and biliary complications, most importantly cholangiocarcinoma. With regard to diagnosis, stool microscopy is widely used in epidemiologic surveys and for individual diagnosis. Immunologic techniques are employed for screening purposes, and molecular techniques facilitate species differentiation in reference laboratories. The mainstay of control is preventive chemotherapy with praziquantel, usually combined with behavioral change through information, education and communication, and environmental control. Tribendimidine, a drug registered in the People's Republic of China for soil-transmitted helminth infections, shows potential against both C. sinensis and O. viverrini and, hence, warrants further clinical development. Novel control approaches include fish vaccine and biological control. Considerable advances have been made using multi-omics which may trigger the development of new interventions. Pressing research needs include mapping the current distribution, disentangling the transmission, accurately estimating the disease burden, and developing new diagnostic and treatment tools, which would aid to optimize control and elimination measures.
Collapse
Affiliation(s)
- Men-Bao Qian
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, People’s Republic of China
- NHC Key Laboratory of Parasite and Vector Biology, Shanghai, People’s Republic of China
- WHO Collaborating Centre for Tropical Diseases, Shanghai, People’s Republic of China
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Jennifer Keiser
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Jürg Utzinger
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Xiao-Nong Zhou
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, People’s Republic of China
- NHC Key Laboratory of Parasite and Vector Biology, Shanghai, People’s Republic of China
- WHO Collaborating Centre for Tropical Diseases, Shanghai, People’s Republic of China
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
5
|
Rinaldi G, Loukas A, Sotillo J. Trematode Genomics and Proteomics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1454:507-539. [PMID: 39008274 DOI: 10.1007/978-3-031-60121-7_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Trematode infections stand out as one of the frequently overlooked tropical diseases, despite their wide global prevalence and remarkable capacity to parasitize diverse host species and tissues. Furthermore, these parasites hold significant socio-economic, medical, veterinary and agricultural implications. Over the past decades, substantial strides have been taken to bridge the information gap concerning various "omic" tools, such as proteomics and genomics, in this field. In this edition of the book, we highlight recent progress in genomics and proteomics concerning trematodes with a particular focus on the advances made in the past 5 years. Additionally, we present insights into cutting-edge technologies employed in studying trematode biology and shed light on the available resources for exploring the molecular facets of this particular group of parasitic helminths.
Collapse
Affiliation(s)
- Gabriel Rinaldi
- Department of Life Sciences, Aberystwyth University, Aberystwyth, UK
| | - Alex Loukas
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Javier Sotillo
- Laboratorio de Referencia e Investigación en Parasitología, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Spain.
| |
Collapse
|
6
|
Saijuntha W, Sithithaworn P, Wangboon C, Andrews RH, Petney TN. Liver Flukes: Clonorchis and Opisthorchis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1454:239-284. [PMID: 39008268 DOI: 10.1007/978-3-031-60121-7_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Clonorchis sinensis, Opisthorchis viverrini and O. felineus are liver flukes of human and animal pathogens occurring across much of Europe and Asia. Nevertheless, they are often underestimated compared to other, better known neglected diseases in spite of the fact that many millions of people are infected and hundreds of millions are at risk. This is possibly because of the chronic nature of the infection and disease and that it takes several decades prior to a life-threatening pathology to develop. Several studies in the past decade have provided more information on the molecular biology of the liver flukes which clearly lead to better understanding of parasite biology, systematics and population genetics. Clonorchiasis and opisthorchiasis are characterized by a chronic infection that induces hepatobiliary inflammation, especially periductal fibrosis, which can be detected by ultrasonography. These chronic inflammations eventually lead to cholangiocarcinoma (CCA), a usually fatal bile duct cancer that develops in some infected individuals. In Thailand alone, opisthorchiasis-associated CCA kills up to 20,000 people every year and is therefore of substantial public health importance. Its socioeconomic impacts on impoverished families and communities are considerable. To reduce hepatobiliary morbidity and CCA, the primary intervention measures focus on control and elimination of the liver fluke. Accurate diagnosis of liver fluke infections in both human and other mammalian, snail and fish intermediate hosts is important for achieving these goals. While the short-term goal of liver fluke control can be achieved by praziquantel chemotherapy, a comprehensive health education package targeting school children is believed to be more beneficial for a long-term goal/solution. It is recommended that transdisciplinary research or multisectoral control approach including one health and/or eco health intervention strategy should be applied to combat the liver flukes and hence contribute to reduction of CCA in endemic areas.
Collapse
Affiliation(s)
| | - Paiboon Sithithaworn
- Department of Parasitology and Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.
| | - Chompunoot Wangboon
- School of Preclinical Sciences, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Ross H Andrews
- CASCAP, Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Faculty of Medicine, St Mary's Campus, Imperial College London, London, UK
| | - Trevor N Petney
- CASCAP, Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Department of Paleontology and Evolution, State Museum of Natural History, Karlsruhe, Germany
| |
Collapse
|
7
|
Caligiuri A, Becatti M, Porro N, Borghi S, Marra F, Pastore M, Taddei N, Fiorillo C, Gentilini A. Oxidative Stress and Redox-Dependent Pathways in Cholangiocarcinoma. Antioxidants (Basel) 2023; 13:28. [PMID: 38247453 PMCID: PMC10812651 DOI: 10.3390/antiox13010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
Cholangiocarcinoma (CCA) is a primary liver tumor that accounts for 2% of all cancer-related deaths worldwide yearly. It can arise from cholangiocytes of biliary tracts, peribiliary glands, and possibly from progenitor cells or even hepatocytes. CCA is characterized by high chemoresistance, aggressiveness, and poor prognosis. Potentially curative surgical therapy is restricted to a small number of patients with early-stage disease (up to 35%). Accumulating evidence indicates that CCA is an oxidative stress-driven carcinoma resulting from chronic inflammation. Oxidative stress, due to enhanced reactive oxygen species (ROS) production and/or decreased antioxidants, has been recently suggested as a key factor in cholangiocyte oncogenesis through gene expression alterations and molecular damage. However, due to different experimental models and conditions, contradictory results regarding oxidative stress in cholangiocarcinoma have been reported. The role of ROS and antioxidants in cancer is controversial due to their context-dependent ability to stimulate tumorigenesis and support cancer cell proliferation or promote cell death. On these bases, the present narrative review is focused on illustrating the role of oxidative stress in cholangiocarcinoma and the main ROS-driven intracellular pathways. Heterogeneous data about antioxidant effects on cancer development are also discussed.
Collapse
Affiliation(s)
- Alessandra Caligiuri
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (A.C.); (F.M.); (M.P.)
| | - Matteo Becatti
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (M.B.); (N.P.); (S.B.); (N.T.)
| | - Nunzia Porro
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (M.B.); (N.P.); (S.B.); (N.T.)
| | - Serena Borghi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (M.B.); (N.P.); (S.B.); (N.T.)
| | - Fabio Marra
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (A.C.); (F.M.); (M.P.)
| | - Mirella Pastore
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (A.C.); (F.M.); (M.P.)
| | - Niccolò Taddei
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (M.B.); (N.P.); (S.B.); (N.T.)
| | - Claudia Fiorillo
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (M.B.); (N.P.); (S.B.); (N.T.)
| | - Alessandra Gentilini
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (A.C.); (F.M.); (M.P.)
| |
Collapse
|
8
|
Wong Y, Pearson MS, Fedorova O, Ivanov V, Khmelevskaya E, Tedla B, Arachchige BJ, Reed S, Field M, Laha T, Loukas A, Sotillo J. Secreted and surface proteome and transcriptome of Opisthorchis felineus. FRONTIERS IN PARASITOLOGY 2023; 2:1195457. [PMID: 39816815 PMCID: PMC11732047 DOI: 10.3389/fpara.2023.1195457] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/25/2023] [Indexed: 01/18/2025]
Abstract
Introduction Opisthorchis felineus, Opisthorchis viverrini, and Clonorchis sinensis are the most medically important species of fish-borne zoonotic trematodes. O. felineus is endemic to the river plains of Western Siberia and Eastern Europe, and it is estimated that more than 1.6 million people could be infected with this parasite. Chronic opisthorchiasis may lead to significant gastrointestinal and hepatobiliary pathology. This study aimed to identify and characterize proteins from the secreted and tegumental proteomes of O. felineus. Methods Adult flukes were collected from experimentally infected hamsters and cultured in vitro in serum-free media. We extracted proteins from different compartments of the O. felineus secretome, including (i) soluble excretory/secretory (ES) products; (ii) secreted 15K-extracellular vesicles (EVs); and (iii) tegument. Results We also generated a transcriptome using long-read sequencing, and when this was combined with high-resolution mass spectrometry, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) separation, and protein digestion, we identified 686, 894, 389, 324, and 165 proteins from the ES, 15K-EV, and the three sequentially extracted tegument (TEG) protein fractions, respectively. We conducted in-depth gene ontology and protein family analyses on the identified proteins and discussed comparisons against similar proteome data sets acquired for the Southeast Asian liver fluke O. viverrini and the Chinese liver fluke C. sinensis. Discussion The information from this study will form a biologically relevant data set of O. felineus proteins that could be used to develop diagnostic and therapeutic tools to manage the human cost of O. felineus infection and its associated comorbidities.
Collapse
Affiliation(s)
- Yide Wong
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns, QLD, Australia
| | - Mark S. Pearson
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Olga Fedorova
- Department of Faculty Pediatrics, Federal State Budget Educational Institution of Higher Education, Siberian State Medical University, Ministry of Healthcare of Russian Federation, Tomsk, Russia
| | - Vladimir Ivanov
- Laboratory of Biological Models, Federal State Budget Educational Institution of Higher Education, Siberian State Medical University, Ministry of Healthcare of Russian Federation, Tomsk, Russia
| | - Ekaterina Khmelevskaya
- Central Research Laboratory, Federal State Budget Educational Institution of Higher Education, Siberian State Medical University, Ministry of Healthcare of Russian Federation, Tomsk, Tomsk, Russia
| | - Bemnet Tedla
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns, QLD, Australia
| | | | - Sarah Reed
- Mass Spectrometry Facility, Centre for Clinical Research, University of Queensland, Brisbane, QLD, Australia
| | - Matt Field
- College of Public Health, Medical and Veterinary Science, James Cook University, Cairns, QLD, Australia
- Immunogenomics Lab, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- Menzies School of Health Research, Charles Darwin University, Darwin, NT, Thailand
| | - Thewarach Laha
- Department of Parasitology, Faculty of Medicine, Khon Kaen Universit, Khon Kaen, Thailand
| | - Alex Loukas
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Javier Sotillo
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Parasitology Reference and Research Laboratory, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| |
Collapse
|
9
|
Geadkaew-Krenc A, Grams R, Siricoon S, Kosa N, Krenc D, Phadungsil W, Martviset P. Cystatins from the Human Liver Fluke Opisthorchis viverrini: Molecular Characterization and Functional Analysis. Pathogens 2023; 12:949. [PMID: 37513796 PMCID: PMC10386146 DOI: 10.3390/pathogens12070949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
A high incidence of cholangiocarcinoma (bile duct cancer) has been observed in Thailand. This usually rare cancer has been associated with infection with the human liver fluke, Opisthorchis viverrini. Secretions of the parasite that interact with the host are thought to be a major component of its pathogenicity and proteolysis is a key biological activity of the secreted molecules. In this study, we present a molecular analysis of cysteine proteinase inhibitors (cystatins) of Opisthorchis viverrini. Six cDNA coding sequences of Opisthorchis viverrini cystatins, OvCys1-6, were cloned from the adult stage of the parasite using RT-PCR. Based on their sequences, OvCys1 and OvCys2 are classified as type 1 cystatins, while OvCys3-6 are classified as type 2 cystatins, with each containing a signal peptide and only one C-terminal disulfide bond. Their C-terminal region sequences are diverse compared with other cystatin members. Cystatins OvCys1, 3 and 4 were found in crude worm extracts and excretory-secretory (ES) products from the adult parasite using Western blot detection, while the other isoforms were not. Thus, OvCys1, 3 and 4 were selected for inhibition analysis and immune reactivity with Opisthorchis viverrini-infected hamster sera. OvCys1, 3, and 4 inhibited mammalian cathepsin L more effectively than cathepsin B. The pH range for their full activity was very wide (pH 3-9) and they were heat stable for at least 3 h. Unlike Fasciola gigantica cystatins, they showed no immune reactivity with infected hamster sera based on indirect ELISA. Our findings suggest that Opisthorchis viverrini cystatins are not major antigenic components in the ES product of this parasite and that other effects of Opisthorchis viverrini cystatins should be investigated.
Collapse
Affiliation(s)
- Amornrat Geadkaew-Krenc
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Khlong Luang, Pathum Thani 12120, Thailand
| | - Rudi Grams
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Khlong Luang, Pathum Thani 12120, Thailand
| | - Sinee Siricoon
- Thailand Institute of Scientific and Technological Research, Khlong Luang, Pathum Thani 12120, Thailand
| | - Nanthawat Kosa
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Khlong Luang, Pathum Thani 12120, Thailand
| | - Dawid Krenc
- Chulabhorn International College of Medicine, Thammasat University, Khlong Luang, Pathum Thani 12120, Thailand
| | - Wansika Phadungsil
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Khlong Luang, Pathum Thani 12120, Thailand
| | - Pongsakorn Martviset
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Khlong Luang, Pathum Thani 12120, Thailand
| |
Collapse
|
10
|
Watakulsin K, Surapaitoon A, Ulag LH, Kaing S, Suyapoh W, Saichua P, Salao K, Tangkawatana S, Suttiprapa S. Distinct antibody response in susceptible and non-susceptible hosts of the carcinogenic liver fluke Opisthorchis viverrini infection. Parasitology 2023; 150:653-660. [PMID: 37288733 PMCID: PMC10410377 DOI: 10.1017/s0031182023000112] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/19/2023]
Abstract
Opisthorchis viverrini is a carcinogenic parasite that can cause bile duct cancer called cholangiocarcinoma. A study of the immune response of this parasite in susceptible and non-susceptible hosts may provide a clue to develop vaccines and immunodiagnostic markers, which are currently not available. Here, we compared the antibody response in susceptible Golden Syrian hamsters and non-susceptible BALB/c mice infected by the liver fluke. In mice, the antibody was detected between 1 and 2 weeks post-infection, whereas it was positive between 2 and 4 weeks post-infection in hamsters. Immunolocalization revealed that the antibody from mice reacts strongly with the tegumental surface and gut epithelium of the worm, while hamster antibody showed a weak signal in the tegument and a comparable signal in the gut of the worm. Immunoblot of the tegumental proteins demonstrated that while hamster antibody showed a broad specificity, mice strongly reacted with a single protein band. Mass spectrometry revealed these immunogenic targets. Recombinant proteins of the reactive targets were produced in the bacterial expression system. The immunoblot of these recombinant proteins confirm the reactivity of their native form. In summary, there is a different antibody response against O. viverrini infection in susceptible and non-susceptible hosts. The non-susceptible host reacts quicker and stronger than the susceptible host.
Collapse
Affiliation(s)
- Krongkarn Watakulsin
- Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Tropical Disease Research Center, WHO Collaborating Centre for Research and Control of Opisthorchiasis, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Arpa Surapaitoon
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Lorina Handayani Ulag
- Department of Biomedicine, School of Life Sciences, Indonesia International Institute for Life Sciences, Jakarta 13210, Indonesia
| | - Sunheng Kaing
- Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Tropical Disease Research Center, WHO Collaborating Centre for Research and Control of Opisthorchiasis, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Watcharapol Suyapoh
- Faculty of Veterinary Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Prasert Saichua
- Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Tropical Disease Research Center, WHO Collaborating Centre for Research and Control of Opisthorchiasis, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Kanin Salao
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sirikachorn Tangkawatana
- Tropical Disease Research Center, WHO Collaborating Centre for Research and Control of Opisthorchiasis, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sutas Suttiprapa
- Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Tropical Disease Research Center, WHO Collaborating Centre for Research and Control of Opisthorchiasis, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
11
|
Chaiyadet S, Sotillo J, Smout M, Cooper M, Doolan DL, Waardenberg A, Eichenberger RM, Field M, Brindley PJ, Laha T, Loukas A. Small extracellular vesicles but not microvesicles from Opisthorchis viverrini promote cell proliferation in human cholangiocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.22.540805. [PMID: 37292777 PMCID: PMC10245807 DOI: 10.1101/2023.05.22.540805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Chronic infection with O. viverrini has been linked to the development of cholangiocarcinoma (CCA), which is a major public health burden in the Lower Mekong River Basin countries, including Thailand, Lao PDR, Vietnam and Cambodia. Despite its importance, the exact mechanisms by which O. viverrini promotes CCA are largely unknown. In this study, we characterized different extracellular vesicle populations released by O. viverrini (OvEVs) using proteomic and transcriptomic analyses and investigated their potential role in host-parasite interactions. While 120k OvEVs promoted cell proliferation in H69 cells at different concentrations, 15k OvEVs did not produce any effect compared to controls. The proteomic analysis of both populations showed differences in their composition that could contribute to this differential effect. Furthermore, the miRNAs present in 120k EVs were analysed and their potential interactions with human host genes was explored by computational target prediction. Different pathways involved in inflammation, immune response and apoptosis were identified as potentially targeted by the miRNAs present in this population of EVs. This is the first study showing specific roles for different EV populations in the pathogenesis of a parasitic helminth, and more importantly, an important advance towards deciphering the mechanisms used in establishment of opisthorchiasis and liver fluke infection-associated malignancy.
Collapse
Affiliation(s)
- Sujittra Chaiyadet
- Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Javier Sotillo
- Parasitology Reference and Research Laboratory, Centro Nacional de Microbiologia, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Michael Smout
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| | - Martha Cooper
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| | - Denise L Doolan
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| | - Ashley Waardenberg
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
- Current affiliation: i-Synapse, Cairns, QLD, Australia
| | - Ramon M Eichenberger
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| | - Matt Field
- Centre for Tropical Bioinformatics and Molecular Biology, College of Public Health, Medical and Veterinary Science, James Cook University, Cairns, Australia
- Immunogenomics Lab, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Paul J Brindley
- Department of Microbiology, Immunology and Tropical Medicine, School of Medicine & Health Sciences, George Washington University, Washington, DC, USA
| | - Thewarach Laha
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Thailand
| | - Alex Loukas
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| |
Collapse
|
12
|
Prasanphanich NS, Leon K, Secor WE, Shoemaker CB, Heimburg-Molinaro J, Cummings RD. Anti-schistosomal immunity to core xylose/fucose in N-glycans. Front Mol Biosci 2023; 10:1142620. [PMID: 37081851 PMCID: PMC10110957 DOI: 10.3389/fmolb.2023.1142620] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/20/2023] [Indexed: 04/07/2023] Open
Abstract
Schistosomiasis is a globally prevalent, debilitating disease that is poorly controlled by chemotherapy and for which no vaccine exists. While partial resistance in people may develop over time with repeated infections and treatments, some animals, including the brown rat (Rattus norvegicus), are only semi-permissive and have natural protection. To understand the basis of this protection, we explored the nature of the immune response in the brown rat to infection by Schistosoma mansoni. Infection leads to production of IgG to Infection leads to production of IgG to parasite glycoproteins parasite glycoproteins with complex-type N-glycans that contain a non-mammalian-type modification by core α2-Xylose and core α3-Fucose (core Xyl/Fuc). These epitopes are expressed on the surfaces of schistosomula and adult worms. Importantly, IgG to these epitopes can kill schistosomula by a complement-dependent process in vitro. Additionally, sera from both infected rhesus monkey and infected brown rat were capable of killing schistosomula in a manner inhibited by glycopeptides containing core Xyl/Fuc. These results demonstrate that protective antibodies to schistosome infections in brown rats and rhesus monkeys include IgG responses to the core Xyl/Fuc epitopes in surface-expressed N-glycans, and raise the potential of novel glyco-based vaccines that might be developed to combat this disease.
Collapse
Affiliation(s)
| | - Kristoffer Leon
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, United States
| | - W. Evan Secor
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Charles B. Shoemaker
- Department of Infectious Disease and Global Health, Tufts University Cummings School of Veterinary Medicine, North Grafton, MA, United States
| | - Jamie Heimburg-Molinaro
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, United States
- National Center for Functional Glycomics, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Richard D. Cummings
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, United States
- National Center for Functional Glycomics, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- *Correspondence: Richard D. Cummings,
| |
Collapse
|
13
|
Pakharukova MY, Mordvinov VA. Similarities and differences among the Opisthorchiidae liver flukes: insights from Opisthorchis felineus. Parasitology 2022; 149:1306-1318. [PMID: 35570685 PMCID: PMC11010525 DOI: 10.1017/s0031182022000397] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/12/2022] [Accepted: 03/19/2022] [Indexed: 11/08/2022]
Abstract
The foodborne liver trematode Opisthorchis felineus (Rivolta, 1884) is a member of the triad of phylogenetically related epidemiologically important Opisthorchiidae trematodes, which also includes O. viverrini (Poirier, 1886) and Clonorchis sinensis (Loos, 1907). Despite similarity in the life cycle, Opisthorchiidae liver flukes also have marked differences. Two species (O. viverrini and C. sinensis) are recognized as Group 1A biological carcinogens, whereas O. felineus belongs to Group 3A. In this review, we focus on these questions: Are there actual differences in carcinogenicity among these 3 liver fluke species? Is there an explanation for these differences? We provide a recent update of our knowledge on the liver fluke O. felineus and highlight its differences from O. viverrini and C. sinensis. In particular, we concentrate on differences in the climate of endemic areas, characteristics of the life cycle, the range of intermediate hosts, genomic and transcriptomic features of the pathogens, and clinical symptoms and morbidity of the infections in humans. The discussion of these questions can stimulate new developments in comparative studies on the pathogenicity of liver flukes and should help to identify species-specific features of opisthorchiasis and clonorchiasis pathogenesis.
Collapse
Affiliation(s)
- Maria Y. Pakharukova
- Laboratory of Molecular Mechanisms of Pathological Processes, Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), 10 Akad. Lavrentieva Ave., Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova Str., Novosibirsk 630090, Russia
| | - Viatcheslav A. Mordvinov
- Laboratory of Molecular Mechanisms of Pathological Processes, Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), 10 Akad. Lavrentieva Ave., Novosibirsk 630090, Russia
| |
Collapse
|
14
|
Quinteros SL, O'Brien B, Donnelly S. Exploring the role of macrophages in determining the pathogenesis of liver fluke infection. Parasitology 2022; 149:1364-1373. [PMID: 35621040 PMCID: PMC11010472 DOI: 10.1017/s0031182022000749] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/06/2022]
Abstract
The food-borne trematodes, Opisthorchis viverrini and Clonorchis sinensis, are classified as group 1 biological carcinogens: definitive causes of cancer. By contrast, infections with Fasciola hepatica, also a food-borne trematode of the phylum Platyhelminthes, are not carcinogenic. This review explores the premise that the differential activation of macrophages during infection with these food-borne trematodes is a major determinant of the pathological outcome of infection. Like most helminths, the latter stages of infection with all 3 flukes induce M2 macrophages, a phenotype that mediates the functional repair of tissue damaged by the feeding and migratory activities of the parasites. However, there is a critical difference in how the development of pro-inflammatory M1 macrophages is regulated during infection with these parasites. While the activation of the M1 macrophage phenotype is largely suppressed during the early stages of infection with F. hepatica, M1 macrophages predominate in the bile ducts following infection with O. viverrini and C. sinensis. The anti-microbial factors released by M1 macrophages create an environment conducive to mutagenesis, and hence the initiation of tumour formation. Subsequently, the tissue remodelling processes induced by the M2 macrophages promote the proliferation of mutated cells, and the expansion of cancerous tissue. This review will also explore the interactions between macrophages and parasite-derived signals, and their contributions to the stark differences in the innate immune responses to infection with these parasites.
Collapse
Affiliation(s)
- Susel Loli Quinteros
- School of Life Sciences, Faculty of Science, The University of Technology Sydney, Ultimo, Australia
| | - Bronwyn O'Brien
- School of Life Sciences, Faculty of Science, The University of Technology Sydney, Ultimo, Australia
| | - Sheila Donnelly
- School of Life Sciences, Faculty of Science, The University of Technology Sydney, Ultimo, Australia
| |
Collapse
|
15
|
Soe BK, Adisakwattana P, Reamtong O, Anuracpreeda P, Sukhumavasi W. A first attempt at determining the antibody-specific pattern of Platynosomum fastosum crude antigen and identification of immunoreactive proteins for immunodiagnosis of feline platynosomiasis. Vet World 2022; 15:2029-2038. [PMID: 36313847 PMCID: PMC9615491 DOI: 10.14202/vetworld.2022.2029-2038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/18/2022] [Indexed: 11/26/2022] Open
Abstract
Background and Aim: Feline platynosomiasis, also known as lizard poisoning, is a feline hepatic disease caused by the parasitic trematode Platynosomum fastosum. Since this helminth resides in biliary ducts and gallbladder, the heavy infection can lead to failure of the hepatobiliary system and can be associated with cholangiocarcinoma. The primary diagnostic tool currently used is conventional fecal microscopy. However, low sensitivity of detection could occur in the case of light infection or biliary obstruction. This study aimed to determine the antibody-specific pattern of P. fastosum crude antigen and to identify immunoreactive proteins to develop the immunodiagnostic techniques. Materials and Methods: We investigated potential antigens specific to P. fastosum infection using western blotting. Forty-six samples of cat serum, including 16 P. fastosum-infected sera, eight healthy control sera, and 22 sera infected with other endoparasites were used. The sensitivity, specificity, positive predictive value, and negative predictive value of each band were calculated. Immunoreactive bands with high diagnostic values were further analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS) to identify the protein components. Results: Using immunoblotting, three proteins of 72 kDa, 53 kDa, and 13 kDa were found to be immunogenic. LC-MS/MS identified these proteins as a 70 kDa heat shock protein, a hypothetical protein (CRM22_002083) (adenosine triphosphate synthase subunit beta), and histone H2B, respectively. Conclusion: This study is the first to reveal three proteins that could be candidates for developing diagnostic tools for feline platynosomiasis.
Collapse
Affiliation(s)
- Babi Kyi Soe
- The International Graduate Program of Veterinary Science and Technology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Poom Adisakwattana
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Mahidol University, Bangkok, Thailand
| | - Panat Anuracpreeda
- Parasitology Research Laboratory, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Woraporn Sukhumavasi
- Parasitology Unit, Department of Pathology, Feline Infectious Disease and Health for Excellence Research Unit, Animal Vector-Borne Disease Research Unit, Microbial Food Safety and Antimicrobial Resistance Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
16
|
Chaiyadet S, Sotillo J, Krueajampa W, Thongsen S, Smout M, Brindley PJ, Laha T, Loukas A. Silencing of Opisthorchis viverrini Tetraspanin Gene Expression Results in Reduced Secretion of Extracellular Vesicles. Front Cell Infect Microbiol 2022; 12:827521. [PMID: 35223551 PMCID: PMC8875506 DOI: 10.3389/fcimb.2022.827521] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/19/2022] [Indexed: 12/12/2022] Open
Abstract
Inter-phylum transfer of molecular information is exquisitely exemplified in the uptake of parasite extracellular vesicles (EVs) by their target mammalian host tissues. The oriental liver fluke, Opisthorchis viverrini is the major cause of bile duct cancer in people in Southeast Asia. A major mechanism by which O. viverrini promotes cancer is through the secretion of excretory/secretory products which contain extracellular vesicles (OvEVs). OvEVs contain microRNAs that are predicted to impact various mammalian cell proliferation pathways, and are internalized by cholangiocytes that line the bile ducts. Upon uptake, OvEVs drive relentless proliferation of cholangiocytes and promote a tumorigenic environment, but the underlying mechanisms of this process are unknown. Moreover, purification and characterization methods for helminth EVs in general are ill defined. We therefore compared different purification methods for OvEVs and characterized the sub-vesicular compartment proteomes. Two CD63-like tetraspanins (Ov-TSP-2 and TSP-3) are abundant on the surface of OvEVs, and could serve as biomarkers for these parasite vesicles. Anti-TSP-2 and -TSP-3 IgG, as well as different endocytosis pathway inhibitors significantly reduced OvEV uptake and subsequent proliferation of cholangiocytes in vitro. Silencing of Ov-tsp-2 and tsp-3 gene expression in adult flukes using RNA interference resulted in substantial reductions in OvEV secretion, and those vesicles that were secreted were deficient in their respective TSP proteins. Our findings shed light on the importance of tetraspanins in fluke EV biogenesis and/or stability, and provide a conceivable mechanism for the efficacy of anti-tetraspanin subunit vaccines against a range of parasitic helminth infections.
Collapse
Affiliation(s)
- Sujittra Chaiyadet
- Tropical Medicine Graduate Program, Academic Affairs, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Javier Sotillo
- Parasitology Reference and Research Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Watchara Krueajampa
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Sophita Thongsen
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Michael Smout
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Paul J. Brindley
- Department of Microbiology, Immunology and Tropical Medicine, and Research Center for Neglected Diseases of Poverty, George Washington University, Washington, DC, United States
| | - Thewarach Laha
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- *Correspondence: Alex Loukas, ; Thewarach Laha,
| | - Alex Loukas
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- *Correspondence: Alex Loukas, ; Thewarach Laha,
| |
Collapse
|
17
|
Mekonnen GG, Tedla BA, Pearson MS, Becker L, Field M, Amoah AS, van Dam G, Corstjens PLAM, Mduluza T, Mutapi F, Loukas A, Sotillo J. Characterisation of tetraspanins from Schistosoma haematobium and evaluation of their potential as novel diagnostic markers. PLoS Negl Trop Dis 2022; 16:e0010151. [PMID: 35073344 PMCID: PMC8812969 DOI: 10.1371/journal.pntd.0010151] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/03/2022] [Accepted: 01/06/2022] [Indexed: 01/01/2023] Open
Abstract
Schistosoma haematobium is the leading cause of urogenital schistosomiasis and it is recognised as a class 1 carcinogen due to the robust association of infection with bladder cancer. In schistosomes, tetraspanins (TSPs) are abundantly present in different parasite proteomes and could be potential diagnostic candidates due to their accessibility to the host immune system. The large extracellular loops of six TSPs from the secretome (including the soluble excretory/secretory products, tegument and extracellular vesicles) of S. haematobium (Sh-TSP-2, Sh-TSP-4, Sh-TSP-5, Sh-TSP-6, Sh-TSP-18 and Sh-TSP-23) were expressed in a bacterial expression system and polyclonal antibodies were raised to the recombinant proteins to confirm the anatomical sites of expression within the parasite. Sh-TSP-2, and Sh-TSP-18 were identified on the tegument, whereas Sh-TSP-4, Sh-TSP-5, Sh-TSP-6 and Sh-TSP-23 were identified both on the tegument and internal tissues of adult parasites. The mRNAs encoding these TSPs were differentially expressed throughout all schistosome developmental stages tested. The potential diagnostic value of three of these Sh-TSPs was assessed using the urine of individuals (stratified by infection intensity) from an endemic area of Zimbabwe. The three Sh-TSPs were the targets of urine IgG responses in all cohorts, including individuals with very low levels of infection (those positive for circulating anodic antigen but negative for eggs by microscopy). This study provides new antigen candidates to immunologically diagnose S. haematobium infection, and the work presented here provides compelling evidence for the use of a biomarker signature to enhance the diagnostic capability of these tetraspanins. Schistosoma haematobium, the leading cause of urogenital schistosomiasis, affects millions of people worldwide. Infection with this parasite is associated with different clinical complications such as squamous cell carcinoma and genital malignancy in women. Despite its importance, there is a lack of sensitive and specific diagnostics that support control and elimination initiatives against this devastating disease. Herein, we have characterised six molecules belonging to the tetraspanin family of membrane proteins, providing details about their relative expression during parasite’s development and their localization in adult forms of S. haematobium. Furthermore, we have characterised the antibody responses against three of these molecules in urine from infected human subjects from an endemic area, providing compelling evidence for the use of these molecules to diagnose urogenital schistosomiasis.
Collapse
Affiliation(s)
- Gebeyaw G. Mekonnen
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
- Department of Medical Parasitology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Bemnet A. Tedla
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| | - Mark S. Pearson
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
- * E-mail: (MSP); (AL); (JS)
| | - Luke Becker
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| | - Matt Field
- Australian Institute of Tropical Health & Medicine and Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns, Australia
- Immunogenomics Lab, Garvan Institute of Medical Research, Darlinghurst, Australia
- Menzies School of Health Research, Charles Darwin University, Darwin, Australia
| | - Abena S. Amoah
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Population Health, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Malawi Epidemiology and Intervention Research Unit, Chilumba, Malawi
| | - Govert van Dam
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Paul L. A. M. Corstjens
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Takafira Mduluza
- Biochemistry Department, University of Zimbabwe, P.O. Box MP167, Mount Pleasant, Harare, Zimbabwe
- Tackling Infections to Benefit Africa Partnership, NIHR Global Health Research Unit, University of Zimbabwe, Mount Pleasant, Harare, Zimbabwe
| | - Francisca Mutapi
- Tackling Infections to Benefit Africa Partnership, NIHR Global Health Research Unit, University of Zimbabwe, Mount Pleasant, Harare, Zimbabwe
- Institute of Immunology & Infection Research, Ashworth Laboratories, University of Edinburgh, King’s Buildings, Edinburgh, United Kingdom
| | - Alex Loukas
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
- * E-mail: (MSP); (AL); (JS)
| | - Javier Sotillo
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- * E-mail: (MSP); (AL); (JS)
| |
Collapse
|
18
|
Ma XX, Qiu YY, Chang ZG, Gao JF, Jiang RR, Li CL, Wang CR, Chang QC. Identification of Myoferlin, a Potential Serodiagnostic Antigen of Clonorchiasis, via Immunoproteomic Analysis of Sera From Different Infection Periods and Excretory-Secretory Products of Clonorchis sinensis. Front Cell Infect Microbiol 2021; 11:779259. [PMID: 34733798 PMCID: PMC8558468 DOI: 10.3389/fcimb.2021.779259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 10/04/2021] [Indexed: 11/25/2022] Open
Abstract
Clonorchiasis, which is caused by Clonorchis sinensis, is an important foodborne disease worldwide. The excretory-secretory products (ESPs) of C. sinensis play important roles in host-parasite interactions by acting as causative agents. In the present study, the ESPs and sera positive for C. sinensis were collected to identify proteins specific to the sera of C. sinensis (i.e., proteins that do not cross-react with Fasciola hepatica and Schistosoma japonicum) at different infection periods. Briefly, white Japanese rabbits were artificially infected with C. sinensis, and their sera were collected at 7 days post-infection (dpi), 14 dpi, 35 dpi, and 77 dpi. To identify the specific proteins in C. sinensis, a co-immunoprecipitation (Co-IP) assay was conducted using shotgun liquid chromatography tandem-mass spectrometry (LC-MS/MS) to pull down the sera roots of C. sinensis, F. hepatica, and S. japonicum. For the annotated proteins, 32, 18, 39, and 35 proteins specific to C. sinensis were pulled down by the infected sera at 7, 14, 35, and 77 dpi, respectively. Three proteins, Dynein light chain-1, Dynein light chain-2 and Myoferlin were detected in all infection periods. Of these proteins, myoferlin is known to be overexpressed in several human cancers and could be a promising biomarker and therapeutic target for cancer cases. Accordingly, this protein was selected for further studies. To achieve a better expression, myoferlin was truncated into two parts, Myof1 and Myof2 (1,500 bp and 810 bp), based on the antigenic epitopes provided by bioinformatics. The estimated molecular weight of the recombinant proteins was 57.3 ku (Myof1) and 31.3 ku (Myof2). Further, both Myof1 and Myof2 could be probed by the sera from rabbits infected with C. sinensis. No cross-reaction occurred with the positive sera of S. japonica, F. hepatica, and negative controls. Such findings indicate that myoferlin may be an important diagnostic antigen present in the ESPs. Overall, the present study provides new insights into proteomic changes between ESPs and hosts in different infection periods by LC-MS/MS. Moreover, myoferlin, as a biomarker, may be used to develop an objective method for future diagnosis of clonorchiasis.
Collapse
Affiliation(s)
- Xiao-Xiao Ma
- School of Public Health, Shantou University, Shantou, China.,College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China.,Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yang-Yuan Qiu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China.,Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zhi-Guang Chang
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jun-Feng Gao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | | | - Chun-Lin Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Chun-Ren Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Qiao-Cheng Chang
- School of Public Health, Shantou University, Shantou, China.,College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
19
|
Evaluation of Immunogenicity and Efficacy of Fasciola hepatica Tetraspanin 2 (TSP2) Fused to E. coli Heat-Labile Enterotoxin B Subunit LTB Adjuvant Following Intranasal Vaccination of Cattle. Vaccines (Basel) 2021; 9:vaccines9111213. [PMID: 34835144 PMCID: PMC8623123 DOI: 10.3390/vaccines9111213] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/15/2021] [Accepted: 10/16/2021] [Indexed: 11/16/2022] Open
Abstract
Fasciolosis, caused by the liver flukes Fasciola hepatica and F. gigantica, is an economically important and globally distributed zoonotic disease. Liver fluke infections in livestock cause significant losses in production and are of particular concern to regions where drug resistance is emerging. Antigens of the F. hepatica surface tegument represent promising vaccine candidates for controlling this disease. Tetraspanins are integral tegumental antigens that have shown partial protection as vaccine candidates against other trematode species. The Escherichia coli heat-labile enterotoxin's B subunit (LTB) is a potent mucosal adjuvant capable of inducing an immune response to fused antigens. This study investigates the potential of F. hepatica tetraspanin 2 extracellular loop 2 (rFhTSP2) as a protective vaccine antigen and determines if fusion of FhTSP2 to LTB can enhance protection in cattle. Cattle were immunised subcutaneously with rFhTSP2 mixed in the Freund's adjuvant and intranasally with rLTB-FhTSP2 in saline, accounting for equal molar ratios of tetraspanin in both groups. Vaccination with rFhTSP2 stimulated a strong specific serum IgG response, whereas there was no significant serum IgG response following rLTB-FhTSP2 intranasal vaccination. There was no substantial antigen specific serum IgA generated in all groups across the trial. Contrastingly, after the fluke challenge, a rise in antigen specific saliva IgA was observed in both vaccination groups on Day 42, with the rLTB-FhTSP2 vaccination group showing significant mucosal IgA production at Day 84. However, neither vaccine group showed a significant reduction of fluke burden nor faecal egg output. These results suggest that intranasal vaccination with rLTB-FhTSP2 does elicit a humoral mucosal response but further work is needed to evaluate if mucosal delivery of liver fluke antigens fused to LTB is a viable vaccine strategy.
Collapse
|
20
|
Machicado C, Soto MP, La Chira LF, Torres J, Mendoza C, Marcos LA. In silico prediction of secretory proteins of Opisthorchis viverrini, Clonorchis sinensis and Fasciola hepatica that target the host cell nucleus. Heliyon 2021; 7:e07204. [PMID: 34337171 PMCID: PMC8318992 DOI: 10.1016/j.heliyon.2021.e07204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/21/2021] [Accepted: 05/31/2021] [Indexed: 12/01/2022] Open
Abstract
Liver flukes Fasciola hepatica, Opisthorchis viverrini and Clonorchis sinensis are causing agents of liver and hepatobiliary diseases. A remarkable difference between such worms is the fact that O. viverrini and C. sinensis are carcinogenic organisms whereas F. hepatica is not carcinogenic. The release of secretory factors by carcinogenic flukes seems to contribute to cancer development however if some of these target the host cell nuclei is unknown. We investigated the existence of O. viverrini and C. sinensis secretory proteins that target the nucleus of host cells and compared these with the corresponding proteins predicted in F. hepatica. Here we applied an algorithm composed by in silico approaches that screened and analyzed the potential genes predicted from genomes of liver flukes. We found 31 and 22 secretory proteins that target the nucleus of host cells in O. viverrini and C. sinensis, respectively, and that have no homologs in F. hepatica. These polypeptides have enriched the transcription initiation process and nucleic acid binding in O. viverrini and C. sinensis, respectively. In addition, other 11 secretory proteins of O. viverrini and C. sinensis, that target the nucleus of host cells, had F. hepatica homologs, have enriched RNA processing function. In conclusion, O. viverrini and C. sinensis have 31 and 22 genes, respectively, that may be involved in their carcinogenic action through a direct targeting on the host cell nuclei.
Collapse
Affiliation(s)
- Claudia Machicado
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Honorio Delgado 430, Lima 31, Peru.,Institute for Biocomputation and Physics of Complex Systems, University of Zaragoza, Spain
| | - Maria Pia Soto
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Honorio Delgado 430, Lima 31, Peru.,Laboratorio de Investigación en Biología Molecular y Farmacología Experimental, Universidad Católica de Santa María, Urb. San José, San Jose s/n, Arequipa, Peru
| | - Luis Felipe La Chira
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Honorio Delgado 430, Lima 31, Peru
| | - Joel Torres
- Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Av. Carlos Germán Amezaga 375, Cercado de Lima, Peru
| | - Carlos Mendoza
- Facultad de Ciencias Biológicas, Universidad Nacional de Trujillo, Av. Juan Pablo II, Trujillo, 13011, Peru
| | - Luis A Marcos
- Department of Medicine (Division of Infectious Diseases), Department of Microbiology and Immunology, State University of New York at Stony Brook, NY, Stony Brook, USA
| |
Collapse
|
21
|
Phumrattanaprapin W, Chaiyadet S, Brindley PJ, Pearson M, Smout MJ, Loukas A, Laha T. Orally Administered Bacillus Spores Expressing an Extracellular Vesicle-Derived Tetraspanin Protect Hamsters Against Challenge Infection With Carcinogenic Human Liver Fluke. J Infect Dis 2021; 223:1445-1455. [PMID: 32813017 PMCID: PMC8064041 DOI: 10.1093/infdis/jiaa516] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/10/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The human liver fluke Opisthorchis viverrini is a food-borne trematode that causes hepatobiliary disease in humans throughout Southeast Asia. People become infected by consuming raw or undercooked fish containing metacercariae. Development of a vaccine to prevent or minimize pathology would decrease the risk of severe morbidity, including the development of bile duct cancer. METHODS We produced an oral vaccine based on recombinant Bacillus subtilis spores expressing the large extracellular loop (LEL) of O. viverrini tetraspanin-2 (Ov-TSP-2), a protein that is abundant on the surface of O. viverrini secreted extracellular vesicles (EVs). Recombinant spores expressing Ov-TSP-2-LEL were orally administered to hamsters prior to challenge infection with O. viverrini metacercariae. RESULTS Vaccinated hamsters generated serum IgG as well as bile IgG and IgA responses to Ov-TSP-2-LEL, and serum IgG from vaccinated hamsters blocked the uptake of fluke EVs by a human bile duct epithelial cell line. Vaccinated hamsters had 56% reductions in both adult flukes and fecal eggs compared to the control group. CONCLUSIONS These findings indicate that oral vaccination of hamsters with recombinant B. subtilis spores expressing Ov-TSP-2-LEL is efficacious at reducing infection intensity and could form the basis of a vaccine for control of carcinogenic liver fluke infection in humans.
Collapse
Affiliation(s)
| | - Sujittra Chaiyadet
- Tropical Medicine Graduate Program, Academic Affairs, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Paul J Brindley
- Department of Microbiology, Immunology and Tropical Medicine, Research Center for Neglected Diseases of Poverty, School of Medicine and Health Sciences, George Washington University, Washington, District of Columbia, USA
| | - Mark Pearson
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Michael J Smout
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Alex Loukas
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Thewarach Laha
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
22
|
Allen NR, Taylor-Mew AR, Wilkinson TJ, Huws S, Phillips H, Morphew RM, Brophy PM. Modulation of Rumen Microbes Through Extracellular Vesicle Released by the Rumen Fluke Calicophoron daubneyi. Front Cell Infect Microbiol 2021; 11:661830. [PMID: 33959516 PMCID: PMC8096352 DOI: 10.3389/fcimb.2021.661830] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/17/2021] [Indexed: 12/12/2022] Open
Abstract
Parasite derived extracellular vesicles (EVs) have been proposed to play key roles in the establishment and maintenance of infection. Calicophoron daubneyi is a newly emerging parasite of livestock with many aspects of its underpinning biology yet to be resolved. This research is the first in-depth investigation of EVs released by adult C. daubneyi. EVs were successfully isolated using both differential centrifugation and size exclusion chromatography (SEC), and morphologically characterized though transmission electron microscopy (TEM). EV protein components were characterized using a GeLC approach allowing the elucidation of comprehensive proteomic profiles for both their soluble protein cargo and surface membrane bound proteins yielding a total of 378 soluble proteins identified. Notably, EVs contained Sigma-class GST and cathepsin L and B proteases, which have previously been described in immune modulation and successful establishment of parasitic flatworm infections. SEC purified C. daubneyi EVs were observed to modulate rumen bacterial populations by likely increasing microbial species diversity via antimicrobial activity. This data indicates EVs released from adult C. daubneyi have a role in establishment within the rumen through the regulation of microbial populations offering new routes to control rumen fluke infection and to develop molecular strategies to improve rumen efficiency.
Collapse
Affiliation(s)
- Nathan R Allen
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Aspen R Taylor-Mew
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Toby J Wilkinson
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Sharon Huws
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Helen Phillips
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Russell M Morphew
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Peter M Brophy
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| |
Collapse
|
23
|
Bennett APS, Robinson MW. Trematode Proteomics: Recent Advances and Future Directions. Pathogens 2021; 10:348. [PMID: 33809501 PMCID: PMC7998542 DOI: 10.3390/pathogens10030348] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/09/2021] [Accepted: 03/14/2021] [Indexed: 12/14/2022] Open
Abstract
Trematodes cause disease in millions of people worldwide, but the absence of commercial vaccines has led to an over-reliance on a handful of monotherapies to control infections. Since drug-resistant fluke populations are emerging, a deeper understanding of parasite biology and host interactions is required to identify new drug targets and immunogenic vaccine candidates. Mass spectrometry-based proteomics represents a key tool to that end. Recent studies have capitalised on the wider availability of annotated helminth genomes to achieve greater coverage of trematode proteomes and discover new aspects of the host-parasite relationship. This review focusses on these latest advances. These include how the protein components of fluke extracellular vesicles have given insight into their biogenesis and cellular interactions. In addition, how the integration of transcriptome/proteome datasets has revealed that the expression and secretion of selected families of liver fluke virulence factors and immunomodulators are regulated in accordance with parasite development and migration within the mammalian host. Furthermore, we discuss the use of immunoproteomics as a tool to identify vaccine candidates associated with protective antibody responses. Finally, we highlight how established and emerging technologies, such as laser microdissection and single-cell proteomics, could be exploited to resolve the protein profiles of discrete trematode tissues or cell types which, in combination with functional tools, could pinpoint optimal targets for fluke control.
Collapse
Affiliation(s)
| | - Mark W. Robinson
- School of Biological Sciences, Queen’s University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, Northern Ireland, UK;
| |
Collapse
|
24
|
Huson KM, Atcheson E, Oliver NAM, Best P, Barley JP, Hanna REB, McNeilly TN, Fang Y, Haldenby S, Paterson S, Robinson MW. Transcriptome and Secretome Analysis of Intra-Mammalian Life-Stages of Calicophoron daubneyi Reveals Adaptation to a Unique Host Environment. Mol Cell Proteomics 2021; 20:100055. [PMID: 33581320 PMCID: PMC7973311 DOI: 10.1074/mcp.ra120.002175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Paramphistomosis, caused by the rumen fluke, Calicophoron daubneyi, is a parasitic infection of ruminant livestock, which has seen a rapid rise in prevalence throughout Western Europe in recent years. After ingestion of metacercariae (parasite cysts) by the mammalian host, newly excysted juveniles (NEJs) emerge and invade the duodenal submucosa, which causes significant pathology in heavy infections. The immature flukes then migrate upward, along the gastrointestinal tract, and enter the rumen where they mature and begin to produce eggs. Despite their emergence, and sporadic outbreaks of acute disease, we know little about the molecular mechanisms used by C. daubneyi to establish infection, acquire nutrients, and avoid the host immune response. Here, transcriptome analysis of four intramammalian life-cycle stages, integrated with secretome analysis of the NEJ and adult parasites (responsible for acute and chronic diseases, respectively), revealed how the expression and secretion of selected families of virulence factors and immunomodulators are regulated in accordance with fluke development and migration. Our data show that while a family of cathepsins B with varying S2 subsite residues (indicating distinct substrate specificities) is differentially secreted by NEJs and adult flukes, cathepsins L and F are secreted in low abundance by NEJs only. We found that C. daubneyi has an expanded family of aspartic peptidases, which is upregulated in adult worms, although they are under-represented in the secretome. The most abundant proteins in adult fluke secretions were helminth defense molecules that likely establish an immune environment permissive to fluke survival and/or neutralize pathogen-associated molecular patterns such as bacterial lipopolysaccharide in the microbiome-rich rumen. The distinct collection of molecules secreted by C. daubneyi allowed the development of the first coproantigen-based ELISA for paramphistomosis which, importantly, did not recognize antigens from other helminths commonly found as coinfections with rumen fluke.
Collapse
Affiliation(s)
- Kathryn M Huson
- School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland
| | - Erwan Atcheson
- School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland
| | - Nicola A M Oliver
- School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland
| | - Philip Best
- School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland
| | - Jason P Barley
- Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, Northern Ireland
| | - Robert E B Hanna
- Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, Northern Ireland
| | - Tom N McNeilly
- Disease Control Department, Moredun Research Institute, Edinburgh, Scotland
| | - Yongxiang Fang
- Centre for Genomic Research, University of Liverpool, Liverpool, England
| | - Sam Haldenby
- Centre for Genomic Research, University of Liverpool, Liverpool, England
| | - Steve Paterson
- Centre for Genomic Research, University of Liverpool, Liverpool, England
| | - Mark W Robinson
- School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland.
| |
Collapse
|
25
|
Stryiński R, Łopieńska-Biernat E, Carrera M. Proteomic Insights into the Biology of the Most Important Foodborne Parasites in Europe. Foods 2020; 9:E1403. [PMID: 33022912 PMCID: PMC7601233 DOI: 10.3390/foods9101403] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/24/2020] [Accepted: 09/27/2020] [Indexed: 02/07/2023] Open
Abstract
Foodborne parasitoses compared with bacterial and viral-caused diseases seem to be neglected, and their unrecognition is a serious issue. Parasitic diseases transmitted by food are currently becoming more common. Constantly changing eating habits, new culinary trends, and easier access to food make foodborne parasites' transmission effortless, and the increase in the diagnosis of foodborne parasitic diseases in noted worldwide. This work presents the applications of numerous proteomic methods into the studies on foodborne parasites and their possible use in targeted diagnostics. Potential directions for the future are also provided.
Collapse
Affiliation(s)
- Robert Stryiński
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Elżbieta Łopieńska-Biernat
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Mónica Carrera
- Department of Food Technology, Marine Research Institute (IIM), Spanish National Research Council (CSIC), 36-208 Vigo, Spain
| |
Collapse
|
26
|
Shi Y, Yu K, Liang A, Huang Y, Ou F, Wei H, Wan X, Yang Y, Zhang W, Jiang Z. Identification and Analysis of the Tegument Protein and Excretory-Secretory Products of the Carcinogenic Liver Fluke Clonorchis sinensis. Front Microbiol 2020; 11:555730. [PMID: 33072014 PMCID: PMC7538622 DOI: 10.3389/fmicb.2020.555730] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 08/26/2020] [Indexed: 12/14/2022] Open
Abstract
Liver fluke proteins, including excretory-secretory products (ESPs) and tegument proteins, are critical for the pathogenesis, nutrient metabolism, etiology and immune response of liver cancer. To understand the functions of various proteins in Clonorchis sinensis physiology and human clonorchiasis, the ESPs and tegument proteins of C. sinensis were identified. Supernatants containing ESPs from adult C. sinensis after culture for 6 h were harvested and concentrated. The tegument was detached using a freeze/thaw method and successively extracted using various extraction buffers. The outer surface proteins of C. sinensis were labeled with biotin, and the biotinylated proteins were purified. The ESP, tegument and labeled outer surface proteins were identified and analyzed by high-resolution LC-MS/MS. The identified proteins were compared with those of other flukes, and the protein functions associated with pathogenesis, carcinogenesis and potential vaccine antigens and drug targets were predicted and analyzed. A total of 175 proteins were identified after the 6-h culture of C. sinensis ESPs. A total of 352 tegument proteins were identified through sequential solubilization of the isolated teguments, and a subset of these proteins were localized to the surface membrane of the tegument by labeling with biotin. Thirty identified proteins, including annexins, actin and tetraspanins, were identified as potential immunomodulators and promising vaccine antigens. Interestingly, among the 352 tegument proteins, as many as 155 were enzymes, and most were oxidoreductases, hydrolases or transferases. A comparison of the outer surface proteins of C. sinensis with those of other flukes indicated that flukes have some common outer surface proteins, such as actin, tetraspanin, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and annexin. Granulin, thioredoxin peroxiredoxin, carbonyl reductase 1 and cystatin were identified in the C. sinensis proteome and predicted to be related to liver disease and cancer. The analysis of the C. sinensis proteome could contribute to a more in-depth understanding of complex parasite-host relationships, improve the diagnosis of clonorchiasis and benefit research on the pathogenesis and development of novel interventions, drugs and vaccines to control C. sinensis infection.
Collapse
Affiliation(s)
- Yunliang Shi
- Institute of Parasitic Disease Control and Prevention, Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning, China.,Guangxi Key Laboratory for the Prevention and Control of Viral Hepatitis, Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning, China
| | - Kai Yu
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Anli Liang
- Xiangsihu College of Guangxi University for Nationalities, Nanning, China
| | - Yan Huang
- Institute of Parasitic Disease Control and Prevention, Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning, China
| | - Fangqi Ou
- Institute of Parasitic Disease Control and Prevention, Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning, China
| | - Haiyan Wei
- Institute of Parasitic Disease Control and Prevention, Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning, China
| | - Xiaoling Wan
- Institute of Parasitic Disease Control and Prevention, Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning, China
| | - Yichao Yang
- Institute of Parasitic Disease Control and Prevention, Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning, China
| | - Weiyu Zhang
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Zhihua Jiang
- Institute of Parasitic Disease Control and Prevention, Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning, China
| |
Collapse
|
27
|
Recent Progress in the Development of Liver Fluke and Blood Fluke Vaccines. Vaccines (Basel) 2020; 8:vaccines8030553. [PMID: 32971734 PMCID: PMC7564142 DOI: 10.3390/vaccines8030553] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/18/2020] [Accepted: 09/18/2020] [Indexed: 12/14/2022] Open
Abstract
Liver flukes (Fasciola spp., Opisthorchis spp., Clonorchis sinensis) and blood flukes (Schistosoma spp.) are parasitic helminths causing neglected tropical diseases that result in substantial morbidity afflicting millions globally. Affecting the world’s poorest people, fasciolosis, opisthorchiasis, clonorchiasis and schistosomiasis cause severe disability; hinder growth, productivity and cognitive development; and can end in death. Children are often disproportionately affected. F. hepatica and F. gigantica are also the most important trematode flukes parasitising ruminants and cause substantial economic losses annually. Mass drug administration (MDA) programs for the control of these liver and blood fluke infections are in place in a number of countries but treatment coverage is often low, re-infection rates are high and drug compliance and effectiveness can vary. Furthermore, the spectre of drug resistance is ever-present, so MDA is not effective or sustainable long term. Vaccination would provide an invaluable tool to achieve lasting control leading to elimination. This review summarises the status currently of vaccine development, identifies some of the major scientific targets for progression and briefly discusses future innovations that may provide effective protective immunity against these helminth parasites and the diseases they cause.
Collapse
|
28
|
Liver fluke granulin promotes extracellular vesicle-mediated crosstalk and cellular microenvironment conducive to cholangiocarcinoma. Neoplasia 2020; 22:203-216. [PMID: 32244128 PMCID: PMC7118280 DOI: 10.1016/j.neo.2020.02.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/25/2020] [Accepted: 02/29/2020] [Indexed: 12/13/2022] Open
Abstract
Crosstalk between malignant and neighboring cells contributes to tumor growth. In East Asia, infection with the liver fluke is a major risk factor for cholangiocarcinoma (CCA). The liver fluke Opisthorchis viverrini secretes a growth factor termed liver fluke granulin, a homologue of the human progranulin, which contributes significantly to biliary tract fibrosis and morbidity. Here, extracellular vesicle (EV)-mediated transfer of mRNAs from human cholangiocytes to naïve recipient cells was investigated following exposure to liver fluke granulin. To minimize the influence of endogenous progranulin, its cognate gene was inactivated using CRISPR/Cas9-based gene knock-out. Several progranulin-depleted cell lines, termed ΔhuPGRN-H69, were established. These lines exhibited >80% reductions in levels of specific transcript and progranulin, both in gene-edited cells and within EVs released by these cells. Profiles of extracellular vesicle RNAs (evRNA) from ΔhuPGRN-H69 for CCA-associated characteristics revealed a paucity of transcripts for estrogen- and Wnt-signaling pathways, peptidase inhibitors and tyrosine phosphatase related to cellular processes including oncogenic transformation. Several CCA-specific evRNAs including MAPK/AKT pathway members were induced by exposure to liver fluke granulin. By comparison, estrogen, Wnt/PI3K and TGF signaling and other CCA pathway mRNAs were upregulated in wild type H69 cells exposed to liver fluke granulin. Of these, CCA-associated evRNAs modified the CCA microenvironment in naïve cells co-cultured with EVs from ΔhuPGRN-H69 cells exposed to liver fluke granulin, and induced translation of MAPK phosphorylation related-protein in naïve recipient cells in comparison with control recipient cells. Exosome-mediated crosstalk in response to liver fluke granulin promoted a CCA-specific program through MAPK pathway which, in turn, established a CCA-conducive disposition.
Collapse
|
29
|
Kokova D, Verhoeven A, Perina EA, Ivanov VV, Knyazeva EM, Saltykova IV, Mayboroda OA. Plasma metabolomics of the time resolved response to Opisthorchis felineus infection in an animal model (golden hamster, Mesocricetus auratus). PLoS Negl Trop Dis 2020; 14:e0008015. [PMID: 31978047 PMCID: PMC7002010 DOI: 10.1371/journal.pntd.0008015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 02/05/2020] [Accepted: 12/24/2019] [Indexed: 01/15/2023] Open
Abstract
Background Opisthorchiasis is a hepatobiliary disease caused by flukes of the trematode family Opisthorchiidae. Opisthorchiasis can lead to severe hepatobiliary morbidity and is classified as a carcinogenic agent. Here we investigate the time-resolved metabolic response to Opisthorchis felineus infection in an animal model. Methodology Thirty golden hamsters were divided in three groups: severe infection (50 metacercariae/hamster), mild infection (15 metacercariae/hamster) and uninfected (vehicle-PBS) groups. Each group consisted of equal number of male and female animals. Plasma samples were collected one day before the infection and then every two weeks up to week 22 after infection. The samples were subjected to 1H Nuclear Magnetic Resonance (NMR) spectroscopy and multivariate statistical modelling. Principal findings The time-resolved study of the metabolic response to Opisthorchis infection in plasma in the main lines agrees with our previous report on urine data. The response reaches its peak around the 4th week of infection and stabilizes after the 10th week. Yet, unlike the urinary data there is no strong effect of the gender in the data and the intensity of infection is presented in the first two principal components of the PCA model. The main trends of the metabolic response to the infection in blood plasma are the transient depletion of essential amino acids and an increase in lipoprotein and cholesterol concentrations. Conclusions The time resolved metabolic signature of Opisthorchis infection in the hamster’s plasma shows a coherent shift in amino acids and lipid metabolism. Our work provides insight into the metabolic basis of the host response on the helminth infection. Opisthorchiasis is a parasitic infection caused by liver flukes of the Opisthorchiidae family. The liver fluke infection triggers development of hepatobiliary pathologies such as chronic forms of cholecystitis, cholangitis, pancreatitis, and cholelithiasis and increases the risk of intrahepatic cholangiocarcinoma. This manuscript is the second part of our outgoing project dedicated to a comprehensive description of the metabolic response to opisthorchiasis (more specifically Opisthorchis felineus) in an animal model. We show that the metabolic response in blood plasma is unfolding according to the same scenario as in urine, reaching its peak at the 4th week and stabilizing after the 10th week post-infection. Yet, unlike the response described in urine, the observed metabolic response in plasma is less gender specific. Moreover, the biochemical basis of the detected response in blood plasma is restricted to the remodeling of the lipid metabolism and the transient depletion of essential amino acids. Together with our first manuscript this report forms the first systematic description of the metabolic response on opisthorchiasis in an animal model using two easily accessible biofluids. Thus, this contribution provides novel results and fills an information gap still existing in the analytically driven characterization of the “Siberian liver fluke”, Opisthorchis felineus.
Collapse
Affiliation(s)
- Daria Kokova
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
- Laboratory of clinical metabolomics, Tomsk State University, Tomsk, Russia
- * E-mail:
| | - Aswin Verhoeven
- Center for Proteomics and Metabolomics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Ekaterina A. Perina
- Central Research Laboratory Siberian State Medical University, Tomsk, Russian Federation
| | - Vladimir V. Ivanov
- Central Research Laboratory Siberian State Medical University, Tomsk, Russian Federation
| | - Elena M. Knyazeva
- School of Core Engineering Education, National Research Tomsk Polytechnic University, Tomsk, Russian Federation
| | - Irina V. Saltykova
- Central Research Laboratory Siberian State Medical University, Tomsk, Russian Federation
| | - Oleg A. Mayboroda
- Center for Proteomics and Metabolomics, Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
30
|
Ta BTT, Nguyen DL, Jala I, Dontumprai R, Plumworasawat S, Aighewi O, Ong E, Shawley A, Potriquet J, Saichua P, van Diepen A, Sripa B, Hokke CH, Suttiprapa S. Identification, recombinant protein production, and functional analysis of a M60-like metallopeptidase, secreted by the liver fluke Opisthorchis viverrini. Parasitol Int 2019; 75:102050. [PMID: 31901435 DOI: 10.1016/j.parint.2019.102050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/30/2019] [Accepted: 12/30/2019] [Indexed: 02/06/2023]
Abstract
The carcinogenic liver fluke Opisthorchis viverrini (O. viverrini) is endemic in Thailand and neighboring countries including Laos PDR, Vietnam and Cambodia. Infections with O. viverrini lead to hepatobiliary abnormalities including bile duct cancer-cholangiocarcinoma (CCA). Despite decades of extensive studies, the underlying mechanisms of how this parasite survives in the bile duct and causes disease are still unclear. Therefore, this study aims to identify and characterize the most abundant protein secreted by the parasite. Proteomics and bioinformatics analysis revealed that the most abundant secretory protein is a metallopeptidase, named Ov-M60-like-1. This protein contains an N-terminal carbohydrate-binding domain and a C-terminal M60-like domain with a zinc metallopeptidase HEXXH motif. Further analysis by mass spectrometry revealed that Ov-M60-like-1 is N-glycosylated. Recombinant Ov-M60-like-1 (rOv-M60-like-1) expressed in Escherichia coli (E. coli) was able to digest bovine submaxillary mucin (BSM). The mucinase activity was inhibited by the ion chelating agent EDTA, confirming its metallopeptidase identity. The enzyme was active at temperatures ranging 25-37 °C in a broad pH range (pH 2-10). The identification of Ov-M60-like-1 mucinase as the major secretory protein of O. viverrini worms warrants further research into the role of this glycoprotein in the pathology induced by this carcinogenic worm.
Collapse
Affiliation(s)
- Binh T T Ta
- Tropical Medicine Graduate Program, Academic Affairs, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - D Linh Nguyen
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Isabelle Jala
- Tropical Medicine Graduate Program, Academic Affairs, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; WHO Collaborating Centre for Research and Control of Opisthorchiasis (Southeast Asian Liver Fluke Disease), Tropical Disease Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Rieofarng Dontumprai
- Department of Microbiology, Faculty of Science, Mahidol University - RAMA VI, Bangkok 10400, Thailand
| | - Sirikanya Plumworasawat
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Omorose Aighewi
- WHO Collaborating Centre for Research and Control of Opisthorchiasis (Southeast Asian Liver Fluke Disease), Tropical Disease Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Emily Ong
- Occidental College, 1600 Campus Road, Los Angeles, CA 90041, USA
| | - Audrey Shawley
- Occidental College, 1600 Campus Road, Los Angeles, CA 90041, USA
| | - Jeremy Potriquet
- Australian Institute of Tropical Health & Medicine, James Cook University, Douglas, QLD 4814, Australia
| | - Prasert Saichua
- Tropical Medicine Graduate Program, Academic Affairs, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; WHO Collaborating Centre for Research and Control of Opisthorchiasis (Southeast Asian Liver Fluke Disease), Tropical Disease Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Angela van Diepen
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Banchob Sripa
- WHO Collaborating Centre for Research and Control of Opisthorchiasis (Southeast Asian Liver Fluke Disease), Tropical Disease Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Cornelis H Hokke
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Sutas Suttiprapa
- Tropical Medicine Graduate Program, Academic Affairs, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; WHO Collaborating Centre for Research and Control of Opisthorchiasis (Southeast Asian Liver Fluke Disease), Tropical Disease Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.
| |
Collapse
|
31
|
Phung LT, Chaiyadet S, Hongsrichan N, Sotillo J, Dieu HDT, Tran CQ, Brindley PJ, Loukas A, Laha T. Recombinant Opisthorchis viverrini tetraspanin expressed in Pichia pastoris as a potential vaccine candidate for opisthorchiasis. Parasitol Res 2019; 118:3419-3427. [PMID: 31724067 DOI: 10.1007/s00436-019-06488-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/25/2019] [Indexed: 12/21/2022]
Abstract
Opisthorchiasis affects millions of people in Southeast Asia and has been strongly associated with bile duct cancer. Current strategic control approaches such as chemotherapy and health education are not sustainable, and a prophylactic vaccine would be a major advance in the prevention of the disease. Tetraspanins are transmembrane proteins previously described as potential vaccine candidates for other helminth infections and are also found in the membranes of the tegument and extracellular vesicles of O. viverrini. Here, we investigated the potential of a recombinant protein encoding for the large extracellular loop of O. viverrini tetraspanin-2 (rOv-LEL-TSP-2) in a hamster vaccination model. Hamsters were vaccinated with 50 and 100 μg of rOv-LEL-TSP-2 produced from Pichia pastoris yeast combined with alum CpG adjuvant via the intraperitoneal route. The number of worms recovered from hamsters vaccinated with rOv-LEL-TSP-2 was significantly reduced compared to adjuvant control groups. Fecal egg output was also significantly reduced in vaccinated animals, and the average length of worms recovered from vaccinated animals was significantly shorter than that of the control group. Vaccinated animals showed significantly increased levels of anti-rOv-TSP-2 IgG in the sera after three immunizations, as well as increased levels of several T helper type 1 cytokines in the spleen including IFN-γ and IL-6 but not the Th2/regulatory cytokines IL-4 or IL-10. These results suggest that rOv-TSP-2 could be a potential vaccine against opisthorchiasis and warrants further exploration.
Collapse
Affiliation(s)
- Luyen Thi Phung
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Hai Duong Medical Technical University, Hai Duong City, Hai Duong Province, Vietnam
| | - Sujittra Chaiyadet
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Nuttanan Hongsrichan
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Javier Sotillo
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Majadahonda, Spain
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Hang Dinh Thi Dieu
- Hai Duong Medical Technical University, Hai Duong City, Hai Duong Province, Vietnam
| | - Canh Quang Tran
- Hai Duong Medical Technical University, Hai Duong City, Hai Duong Province, Vietnam
| | - Paul J Brindley
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington, DC, USA
| | - Alex Loukas
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Thewarach Laha
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
32
|
Li Y, Qin H, Ye M. An overview on enrichment methods for cell surface proteome profiling. J Sep Sci 2019; 43:292-312. [PMID: 31521063 DOI: 10.1002/jssc.201900700] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 12/17/2022]
Abstract
Cell surface proteins are essential for many important biological processes, including cell-cell interactions, signal transduction, and molecular transportation. With the characteristics of low abundance, high hydrophobicity, and high heterogeneity, it is difficult to get a comprehensive view of cell surface proteome by direct analysis. Thus, it is important to selectively enrich the cell surface proteins before liquid chromatography with mass spectrometry analysis. In recent years, a variety of enrichment methods have been developed. Based on the separation mechanism, these methods could be mainly classified into three types. The first type is based on their difference in the physicochemical property, such as size, density, charge, and hydrophobicity. The second one is based on the bimolecular affinity interaction with lectin or antibody. And the third type is based on the chemical covalent coupling to free side groups of surface-exposed proteins or carbohydrate chains, such as primary amines, carboxyl groups, glycan side chains. In addition, metabolic labeling and enzymatic reaction-based methods have also been employed to selectively isolate cell surface proteins. In this review, we will provide a comprehensive overview of the enrichment methods for cell surface proteome profiling.
Collapse
Affiliation(s)
- Yanan Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hongqiang Qin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, P. R. China
| | - Mingliang Ye
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, P. R. China
| |
Collapse
|
33
|
Prasopdee S, Thitapakorn V, Sathavornmanee T, Tesana S. A comprehensive review of omics and host-parasite interplays studies, towards control of Opisthorchis viverrini infection for prevention of cholangiocarcinoma. Acta Trop 2019; 196:76-82. [PMID: 31100270 DOI: 10.1016/j.actatropica.2019.05.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/10/2019] [Accepted: 05/12/2019] [Indexed: 10/26/2022]
Abstract
Opisthorchis viverrini infection, opisthorchiasis, is a food-borne trematodiasis that is the main cause of cholangiocarcinoma, a bile duct cancer, in the Lower Mekong sub-region of Lao PDR, Cambodia, Vietnam, and Thailand. Despite extensive research on opisthorchiasis, the eradication of this disease has yet to be achieved. One of the major reasons for this failure is due to the multi-host life cycle of the parasite, which requires complex medical and public health interventions to eradicate. Another reason is due to a lack of knowledge of not only the interactions between the parasite and the human immune system, but also the interactions between the parasite and its various hosts during its complicated life cycle. Recent advances in various high-throughput omics technologies has allowed for the identification of key biomolecules crucial to the processes of parasitic transmission, and the identification of novel drug and/or vaccine targets. In this paper, omics studies dealing with O. viverrini host-parasite biology will be reviewed. In particular, there will be a focus on the strategies O. viverrini uses to trigger, evade, and manipulate the host's defense systems. Recently-identified biological molecules with potential as targets for interventions will also be reviewed. The results obtained from these omics approaches to analyzing O. viverrini and host interactions will be of great importance in the future when developing effective and sustainable medical and public health models for the prevention and control of opisthorchiasis and opisthorchiasis-induced CCA.
Collapse
|
34
|
Chaiyadet S, Sotillo J, Krueajampa W, Thongsen S, Brindley PJ, Sripa B, Loukas A, Laha T. Vaccination of hamsters with Opisthorchis viverrini extracellular vesicles and vesicle-derived recombinant tetraspanins induces antibodies that block vesicle uptake by cholangiocytes and reduce parasite burden after challenge infection. PLoS Negl Trop Dis 2019; 13:e0007450. [PMID: 31136572 PMCID: PMC6555531 DOI: 10.1371/journal.pntd.0007450] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 06/07/2019] [Accepted: 05/09/2019] [Indexed: 12/11/2022] Open
Abstract
Background The liver fluke Opisthorchis viverrini infects several million people in Southeast Asia. Adult flukes live in the bile ducts of humans, where they cause hepatobiliary pathology, including cholangiocarcinoma. Here, we investigated the potential of extracellular vesicles (EVs) secreted by the fluke and defined recombinant proteins derived from EVs to generate protective immunity in a hamster vaccination-challenge model. Methodology/Principal findings EVs isolated from the excretory-secretory products of O. viverrini and two recombinant EV surface proteins encoding the large extracellular loops (LEL) of Ov-TSP-2 (rOv-TSP-2) and Ov-TSP-3 (rOv-TSP-3) were adjuvanted and used to vaccinate hamsters intraperitoneally followed by challenge infection with O. viverrini metacercariae. The number of adult flukes recovered from hamsters immunized with EVs, rOv-TSP-2, rOv-TSP-3 and rOv-TSP-2+rOv-TSP-3 were significantly reduced compared to control animals vaccinated with adjuvant alone. The number of eggs per gram feces was also significantly reduced in hamsters vaccinated with rOv-TSP-2 compared to controls, but no significant differences were found in the other groups. The average length of worms recovered from hamsters vaccinated with EVs, rOv-TSP-2 and rOv-TSP-3 was significantly shorter than that of worms recovered from the control group. Anti-EV IgG levels in serum and bile were significantly higher in hamsters vaccinated with EVs compared to control hamsters both pre- and post-challenge. In addition, levels of anti-rOv-TSP antibodies in the serum and bile were significantly higher than control hamsters both pre- and post-challenge. Finally, antibodies against rOv-TSP-2 and rOv-TSP-3 blocked uptake of EVs by human primary cholangiocyte in vitro, providing a plausible mechanism by which these vaccines exert partial efficacy and reduce the intensity of O. viverrini infection. Conclusion/Significance Liver fluke EVs and recombinant tetraspanins derived from the EV surface when administered to hamsters induce antibody responses that block EV uptake by target bile duct cells and exert partial efficacy and against O. viverrini challenge. Cholangiocarcinoma (CCA) is a significant public health problem in countries throughout Southeast Asia. In these areas CCA has a strong association with chronic infection with the food-borne liver fluke Opisthorchis viverrini. Current control of the infection relies on chemotherapy and health education, however these approaches are not sustainable in isolation. Hence, there is an urgent need for a vaccine against this neglected tropical disease. A vaccine against O. viverrini would confer anti-cancer protection in similar fashion to the acclaimed vaccine for human papillomavirus and cervical cancer. Toward this goal, secreted extracellular vesicles (EVs) of O. viverrini and recombinant proteins from the surface of EVs were generated and tested as vaccines in a hamster challenge model. Vaccination of hamsters with EVs and recombinant proteins induced production of antibodies in serum and bile, and those antibodies blocked uptake of EVs by primary bile duct cells in vitro. Challenge of vaccinated hamsters with infective stage flukes markedly reduced adult fluke recovery compared to the adjuvant control group. This is the first report of successful vaccination of hamsters with O. viverrini EVs and recombinant vesicle surface proteins, and provides proof-of-concept for development of subunit vaccines for this carcinogenic infection.
Collapse
Affiliation(s)
- Sujittra Chaiyadet
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Javier Sotillo
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| | - Watchara Krueajampa
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Sophita Thongsen
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Paul J. Brindley
- Department of Microbiology, Immunology and Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, DC, United States of America
| | - Banchob Sripa
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Alex Loukas
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
- * E-mail: (AL); (TL)
| | - Thewarach Laha
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- * E-mail: (AL); (TL)
| |
Collapse
|
35
|
Sotillo J, Pearson MS, Loukas A. Trematode Genomics and Proteomics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1154:411-436. [PMID: 31297769 DOI: 10.1007/978-3-030-18616-6_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Trematode infections are among the most neglected tropical diseases despite their worldwide distribution and extraordinary ability to parasitise many different host species and host tissues. Furthermore, these parasites are of great socioeconomic, medical, veterinary and agricultural importance. During the last 10 years, there have been increasing efforts to overcome the lack of information on different "omic" resources such as proteomics and genomics. Herein, we focus on the recent advances in genomics and proteomics from trematodes of human importance, including liver, blood, intestinal and lung flukes. We also provide information on the latest technologies applied to study the biology of trematodes as well as on the resources available for the study of the molecular aspects of this group of helminths.
Collapse
Affiliation(s)
- Javier Sotillo
- Centre for Molecular Therapeutics, Australian Institute for Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia.
| | - Mark S Pearson
- Centre for Molecular Therapeutics, Australian Institute for Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Alex Loukas
- Centre for Molecular Therapeutics, Australian Institute for Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| |
Collapse
|
36
|
Saijuntha W, Sithithaworn P, Kiatsopit N, Andrews RH, Petney TN. Liver Flukes: Clonorchis and Opisthorchis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1154:139-180. [PMID: 31297762 DOI: 10.1007/978-3-030-18616-6_6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Clonorchis sinensis, Opisthorchis viverrini, and O. felineus are liver flukes of human and animal pathogens occurring across much of Europe and Asia. Nevertheless, they are often underestimated compared to other, better known neglected diseases in spite of the fact that many millions of people are infected and hundreds of millions are at risk. This is possibly because of the chronic nature of the infection and disease and that it takes several decades prior to a life-threatening pathology to develop. Several studies in the past decade have provided more information on the molecular biology of the liver flukes which clearly lead to better understanding of parasite biology, systematics, and population genetics. Clonorchiasis and opisthorchiasis are characterized by a chronic infection that induces hepatobiliary inflammation, especially periductal fibrosis, which can be detected by ultrasonography. These chronic inflammations eventually lead to cholangiocarcinoma (CCA), a usually fatal bile duct cancer that develops in some infected individuals. In Thailand alone, opisthorchiasis-associated CCA kills up to 20,000 people every year and is therefore of substantial public health importance. Its socioeconomic impacts on impoverished families and communities are considerable. To reduce hepatobiliary morbidity and CCA, the primary intervention measures focus on control and elimination of the liver fluke. Accurate diagnosis of liver fluke infections in both human and other mammalian, snail and fish intermediate hosts, are important for achieving these goals. While the short-term goal of liver fluke control can be achieved by praziquantel chemotherapy, a comprehensive health education package targeting school children is believed to be more beneficial for a long-term goal/solution. It is recommended that a transdisciplinary research or multisectoral control approach including one health and/or eco health intervention strategy should be applied to combat the liver flukes, and hence contribute to reduction of cholangiocarcinoma in endemic areas.
Collapse
Affiliation(s)
- Weerachai Saijuntha
- Walai Rukhavej Botanical Research Institute, Mahasarakham University, Maha Sarakham, Thailand
| | - Paiboon Sithithaworn
- Department of Parasitology, Faculty of Medicine, Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand.
| | - Nadda Kiatsopit
- Department of Parasitology, Faculty of Medicine, Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Ross H Andrews
- CASCAP, Faculty of Medicine, Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand.,Faculty of Medicine, St Mary's Campus, Imperial College London, London, UK
| | - Trevor N Petney
- CASCAP, Faculty of Medicine, Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand.,Department of Paleontology and Evolution, State Museum of Natural History, Karlsruhe, Germany
| |
Collapse
|
37
|
Prueksapanich P, Piyachaturawat P, Aumpansub P, Ridtitid W, Chaiteerakij R, Rerknimitr R. Liver Fluke-Associated Biliary Tract Cancer. Gut Liver 2018; 12:236-245. [PMID: 28783896 PMCID: PMC5945254 DOI: 10.5009/gnl17102] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/29/2017] [Accepted: 05/06/2017] [Indexed: 02/06/2023] Open
Abstract
Cholangiocarcinoma (CCA) is an aggressive cancer arising from epithelial cells of the bile duct. Most patients with CCA have an unresectable tumor at the time of diagnosis. In Western countries, the risk of CCA increases in patients with primary sclerosing cholangitis, whereas liver fluke infection appears to be the major risk factor for CCA in Asian countries. A diagnosis of liver fluke infection often relies on stool samples, including microscopic examination, polymerase chain reaction-based assays, and fluke antigen detection. Tests of serum, saliva and urine samples are also potentially diagnostic. The presence of liver fluke along with exogenous carcinogens magnifies the risk of CCA in people living in endemic areas. The “liver fluke-cholangiocarcinoma” carcinogenesis pathways consist of mechanical damage to the bile duct epithelium, immunopathologic and cellular reactions to the liver fluke’s antigens and excretory/secretory products, liver fluke-induced changes in the biliary tract microbiome and the effects of repeated treatment for liver fluke. A vaccine and novel biomarkers are needed for the primary and secondary prevention of CCA in endemic areas. Importantly, climate change exerts an effect on vector-borne parasitic diseases, and awareness of liver fluke should be enhanced in potentially migrated habitat areas.
Collapse
Affiliation(s)
- Piyapan Prueksapanich
- Division of Gastroenterology, Department of Medicine, Chulalongkorn University Faculty of Medicine, Bangkok, Thailand
| | - Panida Piyachaturawat
- Division of Gastroenterology, Department of Medicine, Chulalongkorn University Faculty of Medicine, Bangkok, Thailand
| | - Prapimphan Aumpansub
- Division of Gastroenterology, Department of Medicine, Chulalongkorn University Faculty of Medicine, Bangkok, Thailand
| | - Wiriyaporn Ridtitid
- Division of Gastroenterology, Department of Medicine, Chulalongkorn University Faculty of Medicine, Bangkok, Thailand
| | - Roongruedee Chaiteerakij
- Division of Gastroenterology, Department of Medicine, Chulalongkorn University Faculty of Medicine, Bangkok, Thailand
| | - Rungsun Rerknimitr
- Division of Gastroenterology, Department of Medicine, Chulalongkorn University Faculty of Medicine, Bangkok, Thailand
| |
Collapse
|
38
|
Wijekoon HMS, Munasinghe DMS, Wijayawardhane KAN, Ariyarathna HMHS, Horadagoda N, Rajapakse J, De Silva DDN. Postmortem detection and histopathological features of canine spirocercosis-induced putative esophageal chondrosarcoma. Vet World 2018; 11:1376-1379. [PMID: 30532489 PMCID: PMC6247872 DOI: 10.14202/vetworld.2018.1376-1379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 08/27/2018] [Indexed: 11/16/2022] Open
Abstract
Aim: The objective of this study was to describe and characterize the postmortem and histopathological findings of putative esophageal chondrosarcoma associated with Spirocerca lupi. Materials and Methods: Spirocerca-associated esophageal nodules were collected from 54 dogs at postmortem examination and were stained with hematoxylin and eosin. Of the cases examined, 15 were selected randomly for further investigation, of which 11 were classified as non-neoplastic nodules while 4 had changes reflecting a neoplastic process. Results: In all four neoplastic cases, the wall of the esophageal nodules contained islands and nests of highly proliferative atypical chondroblasts within a cartilaginous matrix. However, there was no statistically significant association between gender (p=0.228), age (p=0.568), and breeds (p>0.05) with the occurrence of spirocercosis. Moreover, all esophageal nodules identified were located near the caudal segment, and their diameters ranged from 1 to 6 cm (4.7±1.5 cm). A number of worms in each nodule varied from 5 to 25 (11.3±5). Conclusion: Histopathology and cytology revealed that the wall of the esophageal nodules contained islands and nests of highly proliferative atypical chondroblasts within a cartilaginous matrix, a rare finding, and clinical challenge in spirocercosis.
Collapse
Affiliation(s)
- H M Suranji Wijekoon
- Department of Veterinary Pathobiology, Division of Parasitology, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Sri Lanka
| | - D M S Munasinghe
- Department of Veterinary Clinical Sciences, Veterinary Teaching Hospital, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Sri Lanka
| | - K A N Wijayawardhane
- Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Sri Lanka
| | - H M H S Ariyarathna
- Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Sri Lanka
| | - Neil Horadagoda
- University Veterinary Teaching Hospital Camden, University of Sydney, 410 Werombi Road, Camden, NSW 2570, Australia
| | - Jayanthe Rajapakse
- Department of Veterinary Pathobiology, Division of Parasitology, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Sri Lanka
| | - D D Niranjala De Silva
- Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Sri Lanka
| |
Collapse
|
39
|
Homan EJ, Bremel RD. A Role for Epitope Networking in Immunomodulation by Helminths. Front Immunol 2018; 9:1763. [PMID: 30108588 PMCID: PMC6079203 DOI: 10.3389/fimmu.2018.01763] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 07/17/2018] [Indexed: 12/19/2022] Open
Abstract
Helminth infections, by nematodes, trematodes, or cestodes, can lead to the modulation of host immune responses. This allows long-duration parasite infections and also impacts responses to co-infections. Surface, secreted, excreted, and shed proteins are thought to play a major role in modulation. A commonly reported feature of such immune modulation is the role of T regulatory (Treg) cells and IL-10. Efforts to identify helminth proteins, which cause immunomodulation, have identified candidates but not provided clarity as to a uniform mechanism driving modulation. In this study, we applied a bioinformatics systems approach, allowing us to analyze predicted T-cell epitopes of 17 helminth species and the responses to their surface proteins. In addition to major histocompatibility complex (MHC) binding, we analyzed amino acid motifs that would be recognized by T-cell receptors [T-cell-exposed motifs (TCEMs)]. All the helminth species examined have, within their surface proteins, peptides, which combine very common TCEMs with predicted high affinity binding to many human MHC alleles. This combination of features would result in large cognate T cell and a high probability of eliciting Treg responses. The TCEMs, which determine recognition by responding T-cell clones, are shared to a high degree between helminth species and with Plasmodium falciparum and Mycobacterium tuberculosis, both common co-infecting organisms. The implication of our observations is not only that Treg cells play a significant role in helminth-induced immune modulation but also that the epitope specificities of Treg responses are shared across species and genera of helminth. Hence, the immune response to a given helminth cannot be considered in isolation but rather forms part of an epitope ecosystem, or microenvironment, in which potentially immunosuppressive peptides in the helminth network via their common T-cell receptor recognition signals with T-cell epitopes in self proteins, microbiome, other helminths, and taxonomically unrelated pathogens. Such a systems approach provides a high-level view of the antigen-immune system signaling dynamics that may bias a host's immune response to helminth infections toward immune modulation. It may indicate how helminths have evolved to select for peptides that favor long-term parasite host coexistence.
Collapse
|
40
|
Wu M, Yan M, Xu J, Yin X, Dong X, Wang N, Gu X, Xie Y, Lai W, Jing B, Peng X, Yang G. Molecular characterization of triosephosphate isomerase from Echinococcus granulosus. Parasitol Res 2018; 117:3169-3176. [PMID: 30027383 DOI: 10.1007/s00436-018-6015-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 07/12/2018] [Indexed: 11/26/2022]
Abstract
Cystic echinococcosis (CE) is a zoonosis that can be caused by the larvae of Echinococcus granulosus; this disease occurs worldwide and is highly endemic in China. E. granulosus can produce energy by glycolysis as well as both aerobic and anaerobic respirations. Triosephosphate isomerase is a glycolytic enzyme present in a wide range of organisms and plays an important role in glycolysis. However, there has been little research on triosephosphate isomerase from E. granulosus (Eg-TIM). Here, we present a bioinformatic characterization and the experimentally determined tissue distribution characteristics of Eg-TIM. We also explored its potential value for diagnosing CE in sheep using indirect enzyme-linked immunosorbent assay (ELISA). Native Eg-TIM was located in the neck and hooks of protoscoleces (PSCs), as well as the tegument and parenchyma tissue of adult worms. The entire germinal layer was also Eg-TIM positive. Western blots showed that recombinant Eg-TIM (rEg-TIM) reacts with positive serum from sheep and had good immunogenicity. Indirect ELISA exhibited low specificity (53.6%) and low sensitivity (87.5%) and cross-reacted with both Taenia multiceps and Taenia hydatigena. Our results suggest that TIM may take part in the growth and development of E. granulosus. Furthermore, we determined that rEg-TIM is not a suitable serodiagnostic antigen for CE in sheep.
Collapse
Affiliation(s)
- Maodi Wu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Min Yan
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jing Xu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaoxiao Yin
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaowei Dong
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ning Wang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaobin Gu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yue Xie
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Weimin Lai
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bo Jing
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xuerong Peng
- Department of Chemistry, College of Life and Basic Science, Sichuan Agricultural University, Ya'an, China
| | - Guangyou Yang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
41
|
Young ND, Gasser RB. Opisthorchis viverrini Draft Genome - Biomedical Implications and Future Avenues. ADVANCES IN PARASITOLOGY 2018; 101:125-148. [PMID: 29907252 DOI: 10.1016/bs.apar.2018.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Opisthorchiasis is a neglected tropical disease of major proportion, caused by the carcinogenic, Asian liver fluke, Opisthorchis viverrini. This hepatobiliary disease is known to be associated with malignant cancer (cholangiocarcinoma, CCA) and affects millions of people in Southeast Asia. No vaccine is available, and only one drug (praziquantel) is routinely employed against the parasite. Despite technological advances, little is known about the molecular biology of the fluke itself and the disease complex that it causes in humans. The advent of high-throughput nucleic acid sequencing and bioinformatic technologies is enabling researchers to gain global insights into the molecular pathways and processes in parasites. The principal aims of this chapter are to (1) review molecular research of O. viverrini and opisthorchiasis; (2) provide an account of recent advances in the sequencing and characterization of the genome and transcriptomes of O. viverrini; (3) describe the complex life of this worm in the biliary system of the definitive (human) host and how the fluke interacts with this host and causes disease at the molecular level; (4) discuss the implications of systems biological research and (5) consider how progress in genomics and informatics might enable explorations of O. viverrini and related worms and the discovery of new interventions against opisthorchiasis and CCA.
Collapse
Affiliation(s)
- Neil D Young
- The University of Melbourne, Parkville, VIC, Australia
| | | |
Collapse
|
42
|
Molecular characterization and allergenicity potential of triosephosphate isomerase from Sarcoptes scabiei. Vet Parasitol 2018; 257:40-47. [DOI: 10.1016/j.vetpar.2018.05.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 05/20/2018] [Accepted: 05/26/2018] [Indexed: 11/21/2022]
|
43
|
Mekonnen GG, Pearson M, Loukas A, Sotillo J. Extracellular vesicles from parasitic helminths and their potential utility as vaccines. Expert Rev Vaccines 2018; 17:197-205. [PMID: 29353519 DOI: 10.1080/14760584.2018.1431125] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Helminths are multicellular parasites affecting nearly three billion people worldwide. To orchestrate a parasitic existence, helminths secrete different molecules, either in soluble form or contained within extracellular vesicles (EVs). EVs are secreted by most cell types and organisms, and have varied roles in intercellular communication, including immune modulation and pathogenesis. AREAS COVERED In this review, we describe the nucleic acid and proteomic composition of EVs from helminths, with a focus on the protein vaccine candidates present on the EV surface membrane, and discuss the potential utility of helminth EVs and their constituent proteins in the fight against helminth infections. EXPERT COMMENTARY A significant number of proteins present in helminth-secreted EVs are known vaccine candidates. The characterization of helminth EV proteomes will shed light on host-pathogen interactions, facilitate the discovery of new diagnostic biomarkers, and provide a novel approach for the development of new control measures against helminth infections.
Collapse
Affiliation(s)
- Gebeyaw Getnet Mekonnen
- a Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine , James Cook University , Cairns , Australia.,b Department of Medical Parasitology , School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar , Gondar , Ethiopia
| | - Mark Pearson
- a Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine , James Cook University , Cairns , Australia
| | - Alex Loukas
- a Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine , James Cook University , Cairns , Australia
| | - Javier Sotillo
- a Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine , James Cook University , Cairns , Australia
| |
Collapse
|
44
|
Suttiprapa S, Sotillo J, Smout M, Suyapoh W, Chaiyadet S, Tripathi T, Laha T, Loukas A. Opisthorchis viverrini Proteome and Host-Parasite Interactions. ADVANCES IN PARASITOLOGY 2018; 102:45-72. [PMID: 30442310 DOI: 10.1016/bs.apar.2018.06.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The omics technologies have improved our understanding of the molecular events that underpin host-parasite interactions and the pathogenesis of parasitic diseases. In the last decade, proteomics and genomics in particular have been used to characterize the surface and secreted products of the carcinogenic liver fluke Opisthorchis viverrini and revealed important roles for proteins at the host-parasite interface to ensure that the flukes can migrate, feed and reproduce in a hostile environment. This review summarizes the advances made in this area, primarily focusing on discoveries enabled by the publication of the fluke secreted proteomes over the last decade. Protein families that will be covered include proteases, antioxidants, oncogenic proteins and the secretion of exosome-like extracellular vesicles. Roles of these proteins in host-parasite interactions and pathogenesis of fluke-induced hepatobiliary diseases, including cholangiocarcinogenesis, are discussed. Future directions for the application of this knowledge to control infection and disease will also be discussed.
Collapse
|
45
|
Marzano V, Mancinelli L, Bracaglia G, Del Chierico F, Vernocchi P, Di Girolamo F, Garrone S, Tchidjou Kuekou H, D’Argenio P, Dallapiccola B, Urbani A, Putignani L. "Omic" investigations of protozoa and worms for a deeper understanding of the human gut "parasitome". PLoS Negl Trop Dis 2017; 11:e0005916. [PMID: 29095820 PMCID: PMC5667730 DOI: 10.1371/journal.pntd.0005916] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The human gut has been continuously exposed to a broad spectrum of intestinal organisms, including viruses, bacteria, fungi, and parasites (protozoa and worms), over millions of years of coevolution, and plays a central role in human health. The modern lifestyles of Western countries, such as the adoption of highly hygienic habits, the extensive use of antimicrobial drugs, and increasing globalisation, have dramatically altered the composition of the gut milieu, especially in terms of its eukaryotic “citizens.” In the past few decades, numerous studies have highlighted the composition and role of human intestinal bacteria in physiological and pathological conditions, while few investigations exist on gut parasites and particularly on their coexistence and interaction with the intestinal microbiota. Studies of the gut “parasitome” through “omic” technologies, such as (meta)genomics, transcriptomics, proteomics, and metabolomics, are herein reviewed to better understand their role in the relationships between intestinal parasites, host, and resident prokaryotes, whether pathogens or commensals. Systems biology–based profiles of the gut “parasitome” under physiological and severe disease conditions can indeed contribute to the control of infectious diseases and offer a new perspective of omics-assisted tropical medicine.
Collapse
Affiliation(s)
- Valeria Marzano
- Human Microbiome Unit, Bambino Gesù Children’s Hospital IRCCS, Rome, Italy
| | - Livia Mancinelli
- Laboratory Medicine, Bambino Gesù Children’s Hospital IRCCS, Rome, Italy
| | - Giorgia Bracaglia
- Laboratory Medicine, Bambino Gesù Children’s Hospital IRCCS, Rome, Italy
| | | | - Pamela Vernocchi
- Human Microbiome Unit, Bambino Gesù Children’s Hospital IRCCS, Rome, Italy
| | | | - Stefano Garrone
- Laboratory Medicine, Bambino Gesù Children’s Hospital IRCCS, Rome, Italy
| | | | - Patrizia D’Argenio
- Pediatric Immuno-infectivology, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Bruno Dallapiccola
- Scientific Directorate, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Andrea Urbani
- Institute of Biochemistry and Biochemical Clinic, Faculty of Medicine and Surgery–Policlinico A. Gemelli, Catholic University of Sacred Heart, Rome, Italy
- Proteomic and Metabonomic Unit, Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Lorenza Putignani
- Human Microbiome Unit, Bambino Gesù Children’s Hospital IRCCS, Rome, Italy
- Parasitology Unit, Bambino Gesù Children’s Hospital IRCCS, Rome, Italy
- * E-mail:
| |
Collapse
|
46
|
Chaiyadet S, Krueajampa W, Hipkaeo W, Plosan Y, Piratae S, Sotillo J, Smout M, Sripa B, Brindley PJ, Loukas A, Laha T. Suppression of mRNAs encoding CD63 family tetraspanins from the carcinogenic liver fluke Opisthorchis viverrini results in distinct tegument phenotypes. Sci Rep 2017; 7:14342. [PMID: 29084967 PMCID: PMC5662742 DOI: 10.1038/s41598-017-13527-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/25/2017] [Indexed: 02/05/2023] Open
Abstract
The liver fluke Opisthorchis viverrini infects 10 million people in Southeast Asia and causes cholangiocarcinoma (CCA). Fluke secreted and tegumental proteins contribute to the generation of a tumorigenic environment and are targets for drug and vaccine-based control measures. Herein, we identified two tetraspanins belonging to the CD63 family (Ov-TSP-2 and Ov-TSP-3) that are abundantly expressed in the tegument proteome of O. viverrini. Ov-tsp-2 and tsp-3 transcripts were detected in all developmental stages of O. viverrini. Protein fragments corresponding to the large extracellular loop (LEL) of each TSP were produced in recombinant form and antibodies were raised in rabbits. Ov-TSP-2 and TSP-3 were detected in whole worm extracts and excretory/secretory products of O. viverrini and reacted with sera from infected hamsters and humans. Antibodies confirmed localization of Ov-TSP-2 and TSP-3 to the adult fluke tegument. Using RNA interference, Ov-tsp-2 and tsp-3 mRNA expression was significantly suppressed for up to 21 days in vitro. Ultrastructural observation of tsp-2 and tsp-3 dsRNA-treated flukes resulted in phenotypes with increased tegument thickness, increased vacuolation (tsp-2) and reduced electron density (tsp-3). These studies confirm the importance of CD63 family tegument tetraspanins in parasitic flukes and support efforts to target these proteins for vaccine development.
Collapse
Affiliation(s)
- Sujittra Chaiyadet
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Watchara Krueajampa
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Wiphawi Hipkaeo
- Electron microscopy Laboratory, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Yada Plosan
- Electron microscopy Laboratory, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Supawadee Piratae
- Office of Academic Affairs, Faculty of Veterinary Sciences, Mahasarakham University, Mahasarakham, Thailand
| | - Javier Sotillo
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Michael Smout
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Banchob Sripa
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Paul J Brindley
- Department of Microbiology, Immunology and Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, DC, 20037, USA
| | - Alex Loukas
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia.
| | - Thewarach Laha
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.
| |
Collapse
|
47
|
Clonorchis sinensis infection and co-infection with the hepatitis B virus are important factors associated with cholangiocarcinoma and hepatocellular carcinoma. Parasitol Res 2017; 116:2645-2649. [PMID: 28801696 PMCID: PMC5599464 DOI: 10.1007/s00436-017-5572-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 07/26/2017] [Indexed: 01/08/2023]
Abstract
To evaluate the contributions of Clonorchis sinensis and hepatitis B virus to the development of cholangiocarcinoma (ICC) and hepatocellular carcinoma (HCC), C. sinensis and hepatitis B virus infections in 20 clinical liver cancer cases from a C. sinensis- and hepatitis B virus-epidemic region were detected. Eight cases of ICC, 11 cases of HCC and one mixed ICC and HCC case were verified by CT, pathological section and (or) observations during surgery. The C. sinensis infection was detected by stool microscopy and ELISA, and the worms and eggs found during surgery and in pathological sections also allowed for diagnoses. Hepatitis B virus infections were detected by ELISA. In the 20 cases, 18 patients were diagnosed with C. sinensis infections. Eight of the 20 patients were infected with the hepatitis B virus, and seven were co-infected with C. sinensis. In the eight ICC patients, seven were diagnosed with C. sinensis infection, and two had mixed infections with the hepatitis B virus. In the 11 HCC patients, 10 were diagnosed with C. sinensis, four had mixed infections with the hepatitis B virus, and only one HCC patient presented a single infection by the hepatitis B virus. These clinical observations revealed that C. sinensis infection and C. sinensis co-infection with the hepatitis B virus are important factors in ICC and HCC.
Collapse
|
48
|
Tripathi T, Suttiprapa S, Sripa B. Unusual thiol-based redox metabolism of parasitic flukes. Parasitol Int 2017; 66:390-395. [DOI: 10.1016/j.parint.2016.05.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 05/18/2016] [Accepted: 05/23/2016] [Indexed: 11/27/2022]
|
49
|
Teimoori S, Arimatsu Y, Laha T, Kaewkes S, Sereerak P, Sripa M, Tangkawattana S, Brindley PJ, Sripa B. Chicken IgY-based coproantigen capture ELISA for diagnosis of human opisthorchiasis. Parasitol Int 2017; 66:443-447. [PMID: 27140305 PMCID: PMC5086311 DOI: 10.1016/j.parint.2015.10.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 10/21/2015] [Indexed: 11/30/2022]
Abstract
Diagnosis of Opisthorchis viverrini infection by conventional stool examination is increasingly difficult due to the low intensity of the infection after several rounds of control programmes in endemic regions as well as coinfections with intestinal flukes. Therefore sensitive and specific diagnostic test is needed. In this study, a coproantigen sandwich ELISA using recombinant O. viverrini cathepsin F (rOv-CF) was developed. This sandwich ELISA employing chicken IgY raised against rOv-CF in combination with rabbit IgG antibody to the somatic O. viverrini antigens showed a lower detection limit (LLD) of 70ng native O. viverrini somatic antigens by spiking the parasite antigens into control feces. When applied to the diagnosis, the IgY-based sandwich ELISA exhibited sensitivity and specificity of 93.3% and 76.7%, respectively, in an investigation of 90 human cases positive or negative for opisthorchiasis. The positive predictive value (PPV) and negative predictive value (NPV) for this coproantigen detection were 66.7% and 95.2%, respectively. This IgY-based sandwich ELISA using parasite cathepsin F detection shows a promising immunodiagnostic alternative for human opisthorchiasis in endemic regions.
Collapse
Affiliation(s)
- Salma Teimoori
- Centre of Research Excellence for Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine, Siriraj Hospital, Bangkok 10700, Thailand; WHO Collaborating Centre for Research and Control of Opisthorchiasis (Southeast Asian Liver Fluke Disease), Tropical Disease Research Laboratory, Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Yuji Arimatsu
- WHO Collaborating Centre for Research and Control of Opisthorchiasis (Southeast Asian Liver Fluke Disease), Tropical Disease Research Laboratory, Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Thewarach Laha
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sasithorn Kaewkes
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Piya Sereerak
- Department of Pathobiology, Faculty of Veterinary, Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Manop Sripa
- WHO Collaborating Centre for Research and Control of Opisthorchiasis (Southeast Asian Liver Fluke Disease), Tropical Disease Research Laboratory, Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sirikachorn Tangkawattana
- Department of Pathobiology, Faculty of Veterinary, Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Paul J Brindley
- Department of Microbiology, Immunology and Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, DC 20037, USA
| | - Banchob Sripa
- Centre of Research Excellence for Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine, Siriraj Hospital, Bangkok 10700, Thailand.
| |
Collapse
|
50
|
Sotillo J, Toledo R, Mulvenna J, Loukas A. Exploiting Helminth-Host Interactomes through Big Data. Trends Parasitol 2017; 33:875-888. [PMID: 28734897 DOI: 10.1016/j.pt.2017.06.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 06/26/2017] [Accepted: 06/28/2017] [Indexed: 12/19/2022]
Abstract
Helminths facilitate their parasitic existence through the production and secretion of different molecules, including proteins. Some helminth proteins can manipulate the host's immune system, a phenomenon that is now being exploited with a view to developing therapeutics for inflammatory diseases. In recent years, hundreds of helminth genomes have been sequenced, but as a community we are still taking baby steps when it comes to identifying proteins that govern host-helminth interactions. The information generated from genomic, immunomic, and proteomic studies, as well as from cutting-edge approaches such as proteogenomics, is leading to a substantial volume of big data that can be utilised to shed light on fundamental biology and provide solutions for the development of bioactive-molecule-based therapeutics.
Collapse
Affiliation(s)
- Javier Sotillo
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia.
| | - Rafael Toledo
- Departament de Farmacia, Tecnologia Farmacéutica y Parasitologia, Facultat de Farmacia, Universitat de Valencia, Spain
| | - Jason Mulvenna
- QIMR-Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Alex Loukas
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia.
| |
Collapse
|