1
|
Weiser T, Hoch CC, Petry J, Shoykhet M, Schmidl B, Yazdi M, Hachani K, Mergner J, Theodoraki MN, Azimzadeh O, Multhoff G, Bashiri Dezfouli A, Wollenberg B. Head and neck squamous cell carcinoma-derived extracellular vesicles mediate Ca²⁺-dependent platelet activation and aggregation through tissue factor. Cell Commun Signal 2025; 23:210. [PMID: 40312345 PMCID: PMC12044835 DOI: 10.1186/s12964-025-02215-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 04/25/2025] [Indexed: 05/03/2025] Open
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is an aggressive malignancy, characterized by poor clinical outcomes, primarily driven by high rate of locoregional recurrence and metastasis. Extensive heterogeneity among the tumor cells as well as modulation of a highly immunosuppressive tumor microenvironment shape cancer progression. Shedding of extracellular vesicles (EVs) derived from tumor cells is a critical mediator of the disease initiating horizontal transfer of tumor components into platelets. This triggers platelet activation and thromboinflammation fueling tumor progression through multiple mechanisms. METHODS HNSCC-derived EVs isolated from HNSCC cell lines (SAS, UD-SCC 5) using size exclusion chromatography and characterized via flow cytometry, electron microscopy, nanoparticle tracking analysis and Western blotting, were used to induce platelet activation and aggregation, measured by aggregometry, flow cytometry, as well as the release of chemokines and Adenosine triphosphate, which were quantified using enzyme-linked immunosorbent assays (ELISA). Mechanistic investigations included inhibitor assays, thrombin activity measurements, and proteomic analyses. RESULTS We could show that EVs do not activate platelets through the FcγRIIa-IgG axis but platelet activation and aggregation is induced in a calcium-dependent manner, primarily mediated by EV-associated tissue factor. Proteomic analysis confirmed the presence of tissue factor in these vesicles, implicating its involvement in initiating the coagulation cascade, that leads to platelet activation and aggregation. This process was characterized by delayed aggregation kinetics and relied on thrombin activation, as the inhibition of thrombin and its receptors reduced platelet aggregation. HNSCC-derived EVs are pivotal in establishing a prothrombotic environment by promoting platelet activation and aggregation through tissue factor-dependent thrombin generation. CONCLUSION These findings indicate a therapeutic potential of targeting EV-mediated pathways as a therapeutic approach to alleviate thrombotic complications in HNSCC patients. Subsequent animal studies will be crucial to validate and extend these observations, providing deeper insight into their clinical implications.
Collapse
Affiliation(s)
- Tobias Weiser
- Department of Otolaryngology, Head and Neck Surgery, TUM School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Cosima C Hoch
- Department of Otolaryngology, Head and Neck Surgery, TUM School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Julie Petry
- Department of Otolaryngology, Head and Neck Surgery, TUM School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Maria Shoykhet
- Department of Otolaryngology, Head and Neck Surgery, TUM School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Benedikt Schmidl
- Department of Otolaryngology, Head and Neck Surgery, TUM School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Mina Yazdi
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität (LMU), Munich, Germany
| | - Khouloud Hachani
- Department of Otolaryngology, Head and Neck Surgery, TUM School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Julia Mergner
- Bavarian Center for Biomolecular Mass Spectrometry at Klinikum rechts der Isar (BayBioMS@MRI), TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Marie-Nicole Theodoraki
- Department of Otolaryngology, Head and Neck Surgery, TUM School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Omid Azimzadeh
- Section Radiation Biology, Federal Office for Radiation Protection (BfS), Neuherberg, Germany
| | - Gabriele Multhoff
- Central Institute for Translational Cancer Research, Department of Radiation Oncology, TUM School of Medicine and Health, Technical University of Munich (TranslaTUM), Technical University of Munich, Munich, Germany
| | - Ali Bashiri Dezfouli
- Department of Otolaryngology, Head and Neck Surgery, TUM School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
- Central Institute for Translational Cancer Research, Department of Radiation Oncology, TUM School of Medicine and Health, Technical University of Munich (TranslaTUM), Technical University of Munich, Munich, Germany
| | - Barbara Wollenberg
- Department of Otolaryngology, Head and Neck Surgery, TUM School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany.
| |
Collapse
|
2
|
Hwang JH, Lai A, Tung JP, Harkin DG, Flower RL, Pecheniuk NM. Proteomic Characterization of Transfusable Blood Components: Fresh Frozen Plasma, Cryoprecipitate, and Derived Extracellular Vesicles via Data-Independent Mass Spectrometry. J Proteome Res 2024; 23:4508-4522. [PMID: 39254217 DOI: 10.1021/acs.jproteome.4c00417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Extracellular vesicles (EVs) are a heterogeneous collection of particles that play a crucial role in cell-to-cell communication, primarily due to their ability to transport molecules, such as proteins. Thus, profiling EV-associated proteins offers insight into their biological effects. EVs can be isolated from various biological fluids, including donor blood components such as cryoprecipitate and fresh frozen plasma (FFP). In this study, we conducted a proteomic analysis of five single donor units of cryoprecipitate, FFP, and EVs derived from these blood components using a quantitative mass spectrometry approach. EVs were successfully isolated from both cryoprecipitate and FFP based on community guidelines. We identified and quantified approximately 360 proteins across all sample groups. Principal component analysis and heatmaps revealed that both cryoprecipitate and FFP are similar. Similarly, EVs derived from cryoprecipitate and FFP are comparable. However, they differ between the originating fluids and their derived EVs. Using the R-package MS-DAP, differentially expressed proteins (DEPs) were identified. The DEPs for all comparisons, when submitted for gene enrichment analysis, are involved in the complement and coagulation pathways. The protein profile generated from this study will have important clinical implications in increasing our knowledge of the proteins that are associated with EVs derived from blood components.
Collapse
Affiliation(s)
- Ji Hui Hwang
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Qld 4000, Australia
- Research and Development, Australian Red Cross Lifeblood, Brisbane, QLD 4059, Australia
| | - Andrew Lai
- UQ Centre for Clinical Research, Faculty of Medicine, University of Queensland, Brisbane, QLD 4006, Australia
| | - John-Paul Tung
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Qld 4000, Australia
- Research and Development, Australian Red Cross Lifeblood, Brisbane, QLD 4059, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD 4006, Australia
- School of Health, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia
| | - Damien G Harkin
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Qld 4000, Australia
- Research and Development, Australian Red Cross Lifeblood, Brisbane, QLD 4059, Australia
| | - Robert L Flower
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Qld 4000, Australia
- Research and Development, Australian Red Cross Lifeblood, Brisbane, QLD 4059, Australia
| | - Natalie M Pecheniuk
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Qld 4000, Australia
- Research and Development, Australian Red Cross Lifeblood, Brisbane, QLD 4059, Australia
| |
Collapse
|
3
|
Bonifay A, Cointe S, Plantureux L, Lacroix R, Dignat-George F. Update on Tissue Factor Detection in Blood in 2024: A Narrative Review. Hamostaseologie 2024; 44:368-376. [PMID: 39442509 DOI: 10.1055/a-2381-6854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
Tissue factor (TF) is a transmembrane protein essential for hemostasis. Different forms of active TF circulate in the blood, either as a component of blood cells and extracellular vesicles (EVs) or as a soluble plasma protein. Accumulating experimental and clinical evidence suggests that TF plays an important role in thrombosis. Many in-house and commercially available assays have been developed to measure TF-dependent procoagulant activity or antigen in blood and have shown promising results for the prediction of disease outcomes or the occurrence of thrombosis events in diseases such as cancer or infectious coagulopathies. This review addresses the different assays that have been published for measuring circulating TF antigen and/or activity in whole blood, cell-free plasma, and EVs and discusses the main preanalytical and analytical parameters that impact results and their interpretation, highlighting their strengths and limitations. In the recent decade, EVTF assays have been significantly developed. Among them, functional assays that use a blocking anti-TF antibody or immunocapture to measure EVTF activity have higher specificity and sensitivity than antigen assays. However, there is still a high variability between assays. Standardization and automatization are prerequisites for the measurement of EVTF in clinical laboratories.
Collapse
Affiliation(s)
- Amandine Bonifay
- Aix-Marseille University, C2VN, INSERM 1263, INRAE 1260, Marseille, France
- Department of Hematology, Biogénopôle, CHU La Timone, APHM, Marseille, France
| | - Sylvie Cointe
- Aix-Marseille University, C2VN, INSERM 1263, INRAE 1260, Marseille, France
- Department of Hematology, Biogénopôle, CHU La Timone, APHM, Marseille, France
| | - Léa Plantureux
- Aix-Marseille University, C2VN, INSERM 1263, INRAE 1260, Marseille, France
| | - Romaric Lacroix
- Aix-Marseille University, C2VN, INSERM 1263, INRAE 1260, Marseille, France
- Department of Hematology, Biogénopôle, CHU La Timone, APHM, Marseille, France
| | - Françoise Dignat-George
- Aix-Marseille University, C2VN, INSERM 1263, INRAE 1260, Marseille, France
- Department of Hematology, Biogénopôle, CHU La Timone, APHM, Marseille, France
| |
Collapse
|
4
|
Bonifay A, Mackman N, Hisada Y, Sachetto ATA, Hau C, Gray E, Hogwood J, Aharon A, Badimon L, Barile L, Baudar J, Beckmann L, Benedikter B, Bolis S, Bouriche T, Brambilla M, Burrello J, Camera M, Campello E, Ettelaie C, Faille D, Featherby S, Franco C, Guldenpfennig M, Hansen JB, Judicone C, Kim Y, Kristensen SR, Laakmann K, Langer F, Latysheva N, Lucien F, de Menezes EM, Mullier F, Norris P, Nybo J, Orbe J, Osterud B, Paramo JA, Radu CM, Roncal C, Samadi N, Snir O, Suades R, Wahlund C, Chareyre C, Abdili E, Martinod K, Thaler J, Dignat-George F, Nieuwland R, Lacroix R. Comparison of assays measuring extracellular vesicle tissue factor in plasma samples: communication from the ISTH SSC Subcommittee on Vascular Biology. J Thromb Haemost 2024; 22:2910-2921. [PMID: 38925490 DOI: 10.1016/j.jtha.2024.05.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/23/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Scientific and clinical interest in extracellular vesicles (EVs) is growing. EVs that expose tissue factor (TF) bind factor VII/VIIa and can trigger coagulation. Highly procoagulant TF-exposing EVs are detectable in the circulation in various diseases, such as sepsis, COVID-19, or cancer. Many in-house and commercially available assays have been developed to measure EV-TF activity and antigen, but only a few studies have compared some of these assays. OBJECTIVES The International Society on Thrombosis and Haemostasis Scientific and Standardization Committee Subcommittee on Vascular Biology initiated a multicenter study to compare the sensitivity, specificity, and reproducibility of these assays. METHODS Platelet-depleted plasma samples were prepared from blood of healthy donors. The plasma samples were spiked either with EVs from human milk or EVs from TF-positive and TF-negative cell lines. Plasma was also prepared from whole human blood with or without lipopolysaccharide stimulation. Twenty-one laboratories measured EV-TF activity and antigen in the prepared samples using their own assays representing 18 functional and 9 antigenic assays. RESULTS There was a large variability in the absolute values for the different EV-TF activity and antigen assays. Activity assays had higher specificity and sensitivity compared with antigen assays. In addition, there was a large intra-assay and interassay variability. Functional assays that used a blocking anti-TF antibody or immunocapture were the most specific and sensitive. Activity assays that used immunocapture had a lower coefficient of variation compared with assays that isolated EVs by high-speed centrifugation. CONCLUSION Based on this multicenter study, we recommend measuring EV-TF using a functional assay in the presence of an anti-TF antibody.
Collapse
Affiliation(s)
- Amandine Bonifay
- Aix-Marseille University, C2VN, INSERM 1263, INRAE1260, Marseille, France; Department of Hematology and Vascular Biology, CHU La Conception, APHM, Marseille, France
| | - Nigel Mackman
- UNC Blood Research Center, Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Yohei Hisada
- UNC Blood Research Center, Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ana Teresa Azevedo Sachetto
- UNC Blood Research Center, Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Chi Hau
- Laboratory of Experimental Clinical Chemistry, and Amsterdam Vesicle Center, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Elaine Gray
- National Institute for Biological Standards and Control, Potter's Bar, Hertfordshire, United Kingdom
| | - John Hogwood
- National Institute for Biological Standards and Control, Potter's Bar, Hertfordshire, United Kingdom
| | - Anat Aharon
- Hematology Research Laboratory, Department of Hematology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lina Badimon
- Cardiovascular ICCC Program, Research Institute Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain; Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Lucio Barile
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Justine Baudar
- Université Catholique de Louvain, CHU UCL NAMUR, Namur Thrombosis and Hemostasis Center (NTHC), Yvoir, Belgium
| | - Lennart Beckmann
- Department of Hematology and Oncology, University Cancer Center Hamburg (UCCH), University Medical Center Eppendorf, Hamburg, Germany
| | - Birke Benedikter
- Institute for Lung Research, Universities of Giessen and Marburg Lung Centre, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany; University Eye Clinic Maastricht, MHeNs School for Mental Health and Neuroscience, Maastricht University Medical Center + (MUMC+), Maastricht, the Netherlands
| | - Sara Bolis
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Tarik Bouriche
- Research and Technology Department, BioCytex, Marseille, France
| | | | - Jacopo Burrello
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Marina Camera
- Centro Cardiologico Monzino IRCCS, Milan, Italy; Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milan, Italy
| | - Elena Campello
- Department of Medicine, University of Padova, Padua, Italy
| | - Camille Ettelaie
- Biomedical Science, University of Hull/HYMS, Cottingham Road, Hull, United Kingdom
| | - Dorothée Faille
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, Paris, France; Laboratoire d'Hématologie, AP-HP, Hôpital Bichat, Paris, France
| | - Sophie Featherby
- Biomedical Science, University of Hull/HYMS, Cottingham Road, Hull, United Kingdom
| | - Corentin Franco
- Research and Technology Department, BioCytex, Marseille, France
| | - Maite Guldenpfennig
- Université Catholique de Louvain, CHU UCL NAMUR, Namur Thrombosis and Hemostasis Center (NTHC), Yvoir, Belgium
| | - John-Bjarne Hansen
- Thrombosis Research Group (TREC), Institute of Clinical Medicine, UiT - The Arctic University of Norway, Tromsø, Norway; Thrombosis Research Center (TREC), Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway
| | | | - Yohan Kim
- epartment of Urology, Department of Immunology, Mayo Clinic, Rochester, Minnesota, USA
| | - Soren Risom Kristensen
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Katrin Laakmann
- Institute for Lung Research, Universities of Giessen and Marburg Lung Centre, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany
| | - Florian Langer
- Department of Hematology and Oncology, University Cancer Center Hamburg (UCCH), University Medical Center Eppendorf, Hamburg, Germany
| | - Nadezhda Latysheva
- Thrombosis Research Group (TREC), Institute of Clinical Medicine, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Fabrice Lucien
- epartment of Urology, Department of Immunology, Mayo Clinic, Rochester, Minnesota, USA
| | - Erika Marques de Menezes
- Vitalant Research Institute, San Francisco, California, USA; Department of Laboratory Medicine, University of California, San Francisco, California, USA
| | - François Mullier
- Université Catholique de Louvain, CHU UCL NAMUR, Namur Thrombosis and Hemostasis Center (NTHC), Yvoir, Belgium
| | - Philip Norris
- Vitalant Research Institute, San Francisco, California, USA; Department of Laboratory Medicine, University of California, San Francisco, California, USA; Department of Medicine, UCSF, San Francisco, California, USA
| | - Jette Nybo
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
| | - Josune Orbe
- Laboratory of Atherothrombosis, Program of Cardiovascular Diseases, Cima Universidad de Navarra, Pamplona, Spain; IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain; RICORS-Cerebrovascular Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Bjarne Osterud
- Thrombosis Research Group (TREC), Institute of Clinical Medicine, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Jose A Paramo
- Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain; Laboratory of Atherothrombosis, Program of Cardiovascular Diseases, Cima Universidad de Navarra, Pamplona, Spain; IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Claudia M Radu
- Department of Medicine, University of Padova, Padua, Italy
| | - Carmen Roncal
- Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain; Laboratory of Atherothrombosis, Program of Cardiovascular Diseases, Cima Universidad de Navarra, Pamplona, Spain; IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain; RICORS-Cerebrovascular Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Nazanin Samadi
- Clinical Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Omri Snir
- Thrombosis Research Group (TREC), Institute of Clinical Medicine, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Rosa Suades
- Cardiovascular ICCC Program, Research Institute Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain; Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Casper Wahlund
- Thrombosis Research Group (TREC), Institute of Clinical Medicine, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Corinne Chareyre
- Aix-Marseille University, C2VN, INSERM 1263, INRAE1260, Marseille, France
| | - Evelyne Abdili
- Department of Hematology and Vascular Biology, CHU La Conception, APHM, Marseille, France
| | - Kimberly Martinod
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Johannes Thaler
- Clinical Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Françoise Dignat-George
- Aix-Marseille University, C2VN, INSERM 1263, INRAE1260, Marseille, France; Department of Hematology and Vascular Biology, CHU La Conception, APHM, Marseille, France.
| | - Rienk Nieuwland
- Laboratory of Experimental Clinical Chemistry, and Amsterdam Vesicle Center, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Romaric Lacroix
- Aix-Marseille University, C2VN, INSERM 1263, INRAE1260, Marseille, France; Department of Hematology and Vascular Biology, CHU La Conception, APHM, Marseille, France
| |
Collapse
|
5
|
Hisada Y, Archibald SJ, Bansal K, Chen Y, Dai C, Dwarampudi S, Balas N, Hageman L, Key NS, Bhatia S, Bhatia R, Mackman N, Gangaraju R. Biomarkers of bleeding and venous thromboembolism in patients with acute leukemia. J Thromb Haemost 2024; 22:1984-1996. [PMID: 38574862 PMCID: PMC11214882 DOI: 10.1016/j.jtha.2024.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/01/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND Coagulopathy and associated bleeding and deep vein thrombosis (DVT) are major causes of morbidity and mortality in patients with acute leukemia. The underlying mechanisms of these complications have not been fully elucidated. OBJECTIVES To evaluate the associations between biomarker levels and bleeding and DVT in acute leukemia patients. METHODS We examined plasma levels of activators, inhibitors, and biomarkers of the coagulation and fibrinolytic pathways in patients aged ≥18 years with newly diagnosed acute leukemia compared with those of normal controls. Multivariable regression models were used to examine the association of biomarkers with bleeding and DVT in acute leukemia patients. The study included 358 patients with acute leukemia (29 with acute promyelocytic leukemia [APL], 253 with non-APL acute myeloid leukemia, and 76 with acute lymphoblastic leukemia) and 30 normal controls. RESULTS Patients with acute leukemia had higher levels of extracellular vesicle tissue factor (EVTF) activity, phosphatidylserine-positive extracellular vesicles, plasminogen activator inhibitor-1, plasmin-antiplasmin complexes, and cell-free DNA and lower levels of citrullinated histone H3-DNA complexes compared with normal controls. APL patients had the highest levels of EVTF activity and the lowest levels of tissue plasminogen activator among acute leukemia patients. There were 41 bleeding and 23 DVT events in acute leukemia patients. High EVTF activity was associated with increased risk of bleeding (subdistribution hazard ratio, 2.30; 95% CI, 0.99-5.31), whereas high levels of plasminogen activator inhibitor-1 were associated with increased risk of DVT (subdistribution hazard ratio, 3.00; 95% CI, 0.95-9.47) in these patients. CONCLUSION Our study shows alterations in several biomarkers in acute leukemia and identifies biomarkers associated with risk of bleeding and DVT.
Collapse
Affiliation(s)
- Yohei Hisada
- UNC Blood Research Center, Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
| | - Sierra J Archibald
- UNC Blood Research Center, Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Karan Bansal
- Institute for Cancer Outcomes and Survivorship, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yanjun Chen
- Institute for Cancer Outcomes and Survivorship, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Chen Dai
- Institute for Cancer Outcomes and Survivorship, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sindhu Dwarampudi
- Institute for Cancer Outcomes and Survivorship, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Nora Balas
- Institute for Cancer Outcomes and Survivorship, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Lindsey Hageman
- Institute for Cancer Outcomes and Survivorship, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Nigel S Key
- UNC Blood Research Center, Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Smita Bhatia
- Institute for Cancer Outcomes and Survivorship, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ravi Bhatia
- Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Nigel Mackman
- UNC Blood Research Center, Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Radhika Gangaraju
- Institute for Cancer Outcomes and Survivorship, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA; Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| |
Collapse
|
6
|
Cabrera-Pastor A. Extracellular Vesicles as Mediators of Neuroinflammation in Intercellular and Inter-Organ Crosstalk. Int J Mol Sci 2024; 25:7041. [PMID: 39000150 PMCID: PMC11241119 DOI: 10.3390/ijms25137041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 07/16/2024] Open
Abstract
Neuroinflammation, crucial in neurological disorders like Alzheimer's disease, multiple sclerosis, and hepatic encephalopathy, involves complex immune responses. Extracellular vesicles (EVs) play a pivotal role in intercellular and inter-organ communication, influencing disease progression. EVs serve as key mediators in the immune system, containing molecules capable of activating molecular pathways that exacerbate neuroinflammatory processes in neurological disorders. However, EVs from mesenchymal stem cells show promise in reducing neuroinflammation and cognitive deficits. EVs can cross CNS barriers, and peripheral immune signals can influence brain function via EV-mediated communication, impacting barrier function and neuroinflammatory responses. Understanding EV interactions within the brain and other organs could unveil novel therapeutic targets for neurological disorders.
Collapse
Affiliation(s)
- Andrea Cabrera-Pastor
- Departamento de Farmacología, Facultad de Medicina y Odontología, Universitat de València, 46010 Valencia, Spain; or
- Fundación de Investigación del Hospital Clínico Universitario de Valencia, INCLIVA, 46010 Valencia, Spain
| |
Collapse
|
7
|
Barbosa MS, de Lima F, Peachazepi Moraes CR, Borba-Junior IT, Huber SC, Santos I, Bombassaro B, Dertkigil SSJ, Ilich A, Key NS, Annichino-Bizzacchi JM, Orsi FA, Mansour E, Velloso LA, De Paula EV. Angiopoietin2 is associated with coagulation activation and tissue factor expression in extracellular vesicles in COVID-19. Front Med (Lausanne) 2024; 11:1367544. [PMID: 38803346 PMCID: PMC11128612 DOI: 10.3389/fmed.2024.1367544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/12/2024] [Indexed: 05/29/2024] Open
Abstract
Coagulation activation in immunothrombosis involves various pathways distinct from classical hemostasis, offering potential therapeutic targets to control inflammation-induced hypercoagulability while potentially sparing hemostasis. The Angiopoietin/Tie2 pathway, previously linked to embryonic angiogenesis and sepsis-related endothelial barrier regulation, was recently associated with coagulation activation in sepsis and COVID-19. This study explores the connection between key mediators of the Angiopoietin/Tie2 pathway and coagulation activation. The study included COVID-19 patients with hypoxia and healthy controls. Blood samples were processed to obtain platelet-free plasma, and frozen until analysis. Extracellular vesicles (EVs) in plasma were characterized and quantified using flow cytometry, and their tissue factor (TF) procoagulant activity was measured using a kinetic chromogenic method. Several markers of hemostasis were assessed. Levels of ANGPT1, ANGPT2, and soluble Tie2 correlated with markers of coagulation and platelet activation. EVs from platelets and endothelial cells were increased in COVID-19 patients, and a significant increase in TF+ EVs derived from endothelial cells was observed. In addition, ANGPT2 levels were associated with TF expression and activity in EVs. In conclusion, we provide further evidence for the involvement of the Angiopoietin/Tie2 pathway in the coagulopathy of COVID-19 mediated in part by release of EVs as a potential source of TF activity.
Collapse
Affiliation(s)
- Mayck Silva Barbosa
- School of Medical Sciences, Universidade Estadual de Campinas, Campinas, Brazil
| | - Franciele de Lima
- School of Medical Sciences, Universidade Estadual de Campinas, Campinas, Brazil
| | | | | | - Stephany Cares Huber
- Hematology and Hemotherapy Center, Universidade Estadual de Campinas, Campinas, Brazil
| | - Irene Santos
- Hematology and Hemotherapy Center, Universidade Estadual de Campinas, Campinas, Brazil
| | - Bruna Bombassaro
- Obesity and Comorbidities Research Center, Universidade Estadual de Campinas, Campinas, Brazil
| | | | - Anton Ilich
- Blood Research Center, University of North Carolina, Chapel Hill, NC, United States
- Division of Hematology, Department of Medicine, University of North Carolina, Chapel Hill, NC, United States
| | - Nigel S. Key
- Blood Research Center, University of North Carolina, Chapel Hill, NC, United States
- Division of Hematology, Department of Medicine, University of North Carolina, Chapel Hill, NC, United States
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, United States
| | - Joyce M. Annichino-Bizzacchi
- School of Medical Sciences, Universidade Estadual de Campinas, Campinas, Brazil
- Hematology and Hemotherapy Center, Universidade Estadual de Campinas, Campinas, Brazil
| | - Fernanda Andrade Orsi
- Hematology and Hemotherapy Center, Universidade Estadual de Campinas, Campinas, Brazil
| | - Eli Mansour
- School of Medical Sciences, Universidade Estadual de Campinas, Campinas, Brazil
| | - Licio A. Velloso
- School of Medical Sciences, Universidade Estadual de Campinas, Campinas, Brazil
- Obesity and Comorbidities Research Center, Universidade Estadual de Campinas, Campinas, Brazil
| | - Erich Vinicius De Paula
- School of Medical Sciences, Universidade Estadual de Campinas, Campinas, Brazil
- Hematology and Hemotherapy Center, Universidade Estadual de Campinas, Campinas, Brazil
| |
Collapse
|
8
|
Englisch C, Moik F, Thaler J, Koder S, Mackman N, Preusser M, Pabinger I, Ay C. Tissue factor pathway inhibitor is associated with risk of venous thromboembolism and all-cause mortality in patients with cancer. Haematologica 2024; 109:1128-1136. [PMID: 37822244 PMCID: PMC10985431 DOI: 10.3324/haematol.2023.283581] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/03/2023] [Indexed: 10/13/2023] Open
Abstract
Venous thromboembolism (VTE) is a common complication in patients with cancer. Data on the role of natural inhibitors of coagulation for occurrence of cancer-associated VTE are limited, thus, we investigated the association of tissue factor pathway inhibitor (TFPI) with risk of VTE and all-cause mortality in patients with cancer. Total TFPI antigen levels were measured with a commercially available enzyme-linked immunosorbant assay in patients included in the Vienna Cancer and Thrombosis Study, a prospective observational cohort study with the primary outcome VTE. Competing risk analysis and Cox regression analysis were performed to explore the association of TFPI levels with VTE and all-cause mortality. TFPI was analyzed in 898 patients (median age 62 years; interquartile range [IQR], 53-68; 407 (45%) women). Sixty-seven patients developed VTE and 387 died (24-month cumulative risk 7.5% and 42.1%, respectively). Patients had median TFPI levels at study inclusion of 56.4 ng/mL (IQR, 45.7-70.0), with highest levels in tumor types known to have a high risk of VTE (gastroesophageal, pancreatic and brain cancer: 62.0 ng/mL; IQR, 52.0-75.0). In multivariable analysis adjusting for age, sex, cancer type and stage, TFPI levels were associated with VTE risk (subdistribution hazard ratio per doubling =1.63, 95% confidence interval [CI]: 1.03-2.57). When patients with high and intermediate/low VTE risk were analyzed separately, the association remained independently associated in the high risk group only (subdistribution hazard ratio =2.63, 95% CI: 1.40-4.94). TFPI levels were independently associated with all-cause mortality (hazard ratio =2.36, 95% CI: 1.85-3.00). In cancer patients increased TFPI levels are associated with VTE risk, specifically in patients with high-risk tumor types, and with all-cause mortality.
Collapse
Affiliation(s)
- Cornelia Englisch
- Clinical Division of Haematology and Haemostaseology, Department of Medicine I, Medical University of Vienna; Vienna
| | - Florian Moik
- Clinical Division of Haematology and Haemostaseology, Department of Medicine I, Medical University of Vienna; Vienna, Austria; Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz
| | - Johannes Thaler
- Clinical Division of Haematology and Haemostaseology, Department of Medicine I, Medical University of Vienna; Vienna
| | - Silvia Koder
- Clinical Division of Haematology and Haemostaseology, Department of Medicine I, Medical University of Vienna; Vienna
| | - Nigel Mackman
- Division of Hematology, Department of Medicine, UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Matthias Preusser
- Division of Oncology, Department of Medicine I, Medical University of Vienna; Vienna
| | - Ingrid Pabinger
- Clinical Division of Haematology and Haemostaseology, Department of Medicine I, Medical University of Vienna; Vienna
| | - Cihan Ay
- Clinical Division of Haematology and Haemostaseology, Department of Medicine I, Medical University of Vienna; Vienna.
| |
Collapse
|
9
|
Doubre H, Monnet I, Azarian R, Girard P, Meyer G, Trichereau J, Devillier P, Van Dreden P, Couderc LJ, Chouaid C, Vasse M. Plasma tissue factor activity in lung cancer patients predicts venous thromboembolism and poor overall survival. Res Pract Thromb Haemost 2024; 8:102359. [PMID: 38666062 PMCID: PMC11043639 DOI: 10.1016/j.rpth.2024.102359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/18/2024] [Accepted: 02/09/2024] [Indexed: 04/28/2024] Open
Abstract
Background Biomarkers to identify lung cancer (LC) patients with high risk of venous thromboembolism (VTE) are needed. Objectives To evaluate the usefulness of plasma tissue factor activity (TFA) and D-dimer levels for the prediction of VTE and overall survival in patients with LC. Methods In a prospective multicenter observational cohort of consecutive LC patients, TFA and D-dimer levels were measured at diagnosis before any cancer treatment (V1) and between 8 and 12 weeks after diagnosis (V2). Results Among 302 patients, 38 (12.6%) experienced VTE within the first year after diagnosis. V1-TFA and V1-D-dimer levels were significantly (P = .02) higher in patients who presented VTE within 3 months than in patients without VTE: V1-TFA was 2.02 (25th-75th percentiles, 0.20-4.01) vs 0.49 (0.20-3.09) ng/mL and V1-D-dimer was 1.42 (0.64-4.40) vs 0.69 (0.39-1.53) μg/mL, respectively. Cutoffs of 1.92 ng/mL for TFA and 1.26 μg/mL for D-dimer could discriminate both groups of patients. In multivariate analysis, V1-TFA > 1.92 ng/mL was the only significant predictor of VTE risk at 1 year (hazard ratio, 2.10; 95% CI, 1.06-4.16; P = .03). V2-TFA, quantified in 251 patients, decreased significantly compared with V1-TFA (0.20 vs 0.56 ng/mL, P < .05), but a V2-TFA level > 0.77 ng/mL could predict VTE in the following 3 months. Median overall survival was worse for patients with V1-TFA > 1.92 ng/mL (14.6 vs 23.8 months) and V1-D-dimer > 1.26 μg/mL (13.8 vs 24 months, P < .001). Conclusion High plasma TFA levels are associated with the occurrence of VTE within the next 3 months after each visit (V1 or V2) and poor survival.
Collapse
Affiliation(s)
- Helene Doubre
- Service de Pneumologie, Hôpital Foch, Suresnes, France
| | - Isabelle Monnet
- Service de Pneumologie, Centre Hospitalier Intercommunal, Creteil, France
| | - Reza Azarian
- Service de Pneumologie, Centre Hospitalier Versailles, Le Chesnay, France
| | - Philippe Girard
- Département de pneumologie, Institut du Thorax Curie-Montsouris, Institut Mutualiste Montsouris, Paris, France
| | - Guy Meyer
- Service de Pneumologie, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Julie Trichereau
- Direction Recherche Clinique et Innovation, Hôpital Foch, Suresnes, France
| | - Philippe Devillier
- Service de Pneumologie, Hôpital Foch, Suresnes, France
- VIM Suresnes, UMR 0892, Pôle des Maladies Respiratoires, Hopital Foch, Université Paris Saclay, Suresnes, France
| | | | | | - Christos Chouaid
- Service de Pneumologie, Centre Hospitalier Intercommunal, Creteil, France
| | - Marc Vasse
- Biology Department, Hôpital Foch, Suresnes, France
- UMRS-1176, Le Kremlin-Bicêtre, France
| |
Collapse
|
10
|
Tanratana P, Sachetto AT, Mast AE, Mackman N. An anti-tissue factor pathway inhibitor antibody increases tissue factor activity in extracellular vesicles isolated from human plasma. Res Pract Thromb Haemost 2024; 8:102275. [PMID: 38187825 PMCID: PMC10770550 DOI: 10.1016/j.rpth.2023.102275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 11/07/2023] [Indexed: 01/09/2024] Open
Affiliation(s)
- Pansakorn Tanratana
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Ana T.A. Sachetto
- UNC Blood Research Center, Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alan E. Mast
- Thrombosis and Hemostasis Program, Versiti Blood Research Institute, Milwaukee, Wisconsin, USA
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Wisconsin, USA
| | - Nigel Mackman
- UNC Blood Research Center, Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
11
|
Hisada Y, Archibald SJ, Bansal K, Chen Y, Dai C, Dwarampudi S, Balas N, Hageman L, Key NS, Bhatia S, Bhatia R, Mackman N, Gangaraju R. Biomarkers of bleeding and venous thromboembolism in patients with acute leukemia. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.10.18.23297216. [PMID: 37905148 PMCID: PMC10615001 DOI: 10.1101/2023.10.18.23297216] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Background Coagulopathy and associated bleeding and venous thromboembolism (VTE) are major causes of morbidity and mortality in patients with acute leukemia. The underlying mechanisms of these complications have not been fully elucidated. Objectives To evaluate the associations between biomarker levels and bleeding and VTE in acute leukemia patients. Patients/Method We examined plasma levels of activators, inhibitors and biomarkers of the coagulation and fibrinolytic pathways in patients ≥18 years with newly diagnosed acute leukemia compared to healthy controls. Multivariable regression models were used to examine the association of biomarkers with bleeding and VTE in acute leukemia patients. The study included 358 patients with acute leukemia (29 acute promyelocytic leukemia [APL], 253 non-APL acute myeloid leukemia [AML] and 76 acute lymphoblastic leukemia [ALL]), and 30 healthy controls. Results Patients with acute leukemia had higher levels of extracellular vesicle (EV) tissue factor (TF) activity, phosphatidylserine-positive EVs, plasminogen activator inhibitor-1 (PAI-1), plasmin-antiplasmin complexes, cell-free DNA and lower levels of citrullinated histone H3-DNA complexes compared to healthy controls. APL patients had the highest levels of EVTF activity and the lowest levels of tissue plasminogen activator among the acute leukemia patients. There were 41 bleeding and 37 VTE events in acute leukemia patients. High EVTF activity was associated with increased risk of bleeding (sHR 2.30, 95%CI 0.99-5.31) whereas high PAI-1 was associated with increased risk of VTE (sHR 3.79, 95%CI 1.40-10.28) in these patients. Conclusions Our study shows alterations in several biomarkers in acute leukemia and identifies biomarkers associated with risk of bleeding and VTE.
Collapse
Affiliation(s)
- Yohei Hisada
- UNC Blood Research Center, Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Sierra J. Archibald
- UNC Blood Research Center, Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Karan Bansal
- Institute for Cancer Outcomes and Survivorship, School of Medicine, University of Alabama at Birmingham, Birmingham, USA
| | - Yanjun Chen
- Institute for Cancer Outcomes and Survivorship, School of Medicine, University of Alabama at Birmingham, Birmingham, USA
| | - Chen Dai
- Institute for Cancer Outcomes and Survivorship, School of Medicine, University of Alabama at Birmingham, Birmingham, USA
| | - Sindhu Dwarampudi
- Institute for Cancer Outcomes and Survivorship, School of Medicine, University of Alabama at Birmingham, Birmingham, USA
| | - Nora Balas
- Institute for Cancer Outcomes and Survivorship, School of Medicine, University of Alabama at Birmingham, Birmingham, USA
| | - Lindsey Hageman
- Institute for Cancer Outcomes and Survivorship, School of Medicine, University of Alabama at Birmingham, Birmingham, USA
| | - Nigel S. Key
- UNC Blood Research Center, Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Smita Bhatia
- Institute for Cancer Outcomes and Survivorship, School of Medicine, University of Alabama at Birmingham, Birmingham, USA
| | - Ravi Bhatia
- Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, USA
| | - Nigel Mackman
- UNC Blood Research Center, Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Radhika Gangaraju
- Institute for Cancer Outcomes and Survivorship, School of Medicine, University of Alabama at Birmingham, Birmingham, USA
- Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, USA
| |
Collapse
|
12
|
Hwang JH, Tung JP, Harkin DG, Flower RL, Pecheniuk NM. Investigation of the effect of pre-analytical factors on particle concentration and size in cryoprecipitate using nanoparticle tracking analysis. Transfus Med 2023; 33:398-402. [PMID: 37483014 DOI: 10.1111/tme.12986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/15/2023] [Accepted: 07/12/2023] [Indexed: 07/25/2023]
Abstract
BACKGROUND Cryoprecipitate is used primarily to replenish fibrinogen levels in patients. Little is known about the presence of micro- or nano-sized particles in cryoprecipitate. Therefore, we aimed to quantify these particles and investigate some pre-analytical considerations. MATERIALS AND METHODS Particle concentration and size distribution were determined in 10 cryoprecipitate units by nanoparticle tracking analysis (NTA). The effects of freeze-thawing cryoprecipitate and 0.45 μm filtration with either regenerated cellulose (RC) or polytetrafluoroethylene (PTFE) filters before sample analysis were examined. RESULTS Neither the size nor concentration of particles were affected by two freeze/thaw cycles. PTFE filtration, but not RC filtration, significantly reduced particle mean and mode size compared to RC filtration and mode size compared to unfiltered cryoprecipitate. The 10 cryoprecipitate units had an average particle concentration of 2.50 × 1011 ± 1.10 × 1011 particles/mL, a mean particle size of 133.8 ± 7.5 nm and a mode particle size of 107.9 ± 11.1 nm. CONCLUSION This study demonstrated that preanalytical filtration of cryoprecipitate units using RC filters was suitable for NTA. An additional freeze/thaw cycle did not impact NTA parameters, suggesting that aliquoting cryoprecipitate units prior to laboratory investigations is suitable for downstream analyses.
Collapse
Affiliation(s)
- Ji Hui Hwang
- Queensland University of Technology, School of Biomedical Sciences, Faculty of Health, Brisbane, Queensland, Australia
- Research and Development, Australian Red Cross Lifeblood, Brisbane, Queensland, Australia
| | - John-Paul Tung
- Queensland University of Technology, School of Biomedical Sciences, Faculty of Health, Brisbane, Queensland, Australia
- Research and Development, Australian Red Cross Lifeblood, Brisbane, Queensland, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Damien G Harkin
- Queensland University of Technology, School of Biomedical Sciences, Faculty of Health, Brisbane, Queensland, Australia
- Research and Development, Australian Red Cross Lifeblood, Brisbane, Queensland, Australia
| | - Robert L Flower
- Queensland University of Technology, School of Biomedical Sciences, Faculty of Health, Brisbane, Queensland, Australia
- Research and Development, Australian Red Cross Lifeblood, Brisbane, Queensland, Australia
| | - Natalie M Pecheniuk
- Queensland University of Technology, School of Biomedical Sciences, Faculty of Health, Brisbane, Queensland, Australia
- Research and Development, Australian Red Cross Lifeblood, Brisbane, Queensland, Australia
| |
Collapse
|
13
|
Kristensen SR, Nybo J. A sensitive tissue factor activity assay determined by an optimized thrombin generation method. PLoS One 2023; 18:e0288918. [PMID: 37467256 DOI: 10.1371/journal.pone.0288918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 07/06/2023] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND Tissue factor (TF) is the principal activator of the coagulation system, but an increased concentration in the blood in cancer and inflammatory diseases has been suggested to play a role increasing the risk of venous thromboembolism. However, measurement of the TF concentration is difficult, and quantitation of activity is the most valid estimation. The objective of this study was to establish a sensitive method to measure TF activity based on thrombin generation. METHODS The assay is based on thrombin generation (TG) measured on the Calibrated Automated Thrombogram (CAT). Various low concentrations of TF were prepared from reagents containing 1 pM TF and 4 μM phospholipid (PPL), and no TF and 4 μM PPL, and a calibration curve was produced from Lagtime vs TF concentration. TF in blood samples was measured after isolation and resuspension of extracellular vesicles (EVs) in a standard plasma from which EVs had been removed. The same standard plasma was used for the calibrators. RESULTS Contact activation of the coagulation system was avoided using CTI plasma samples in Monovette tubes. EVs contain procoagulant phospholipids but addition of PPL only reduced lagtime slightly at very low concentrations of TF resulting in overestimation to a lesser extent at 10 fM but no interference at 30 fM or higher. Addition of EVs to the TG analysis induced a small unspecific TF-independent activity (i.e., an activity not inhibited by antibodies against TF) which also may result in a smaller error in estimation of TF activity at very low levels but the effect was negligible at higher concentrations. It was possible to measure TF activity in healthy controls which was found to be 1-6 fM (EVs were concentrated, i.e. solubilized in a lower volume than the original volume plasma). Coefficient of variation (CV) was below 20% at the low level, and below 10% at a level around 100 fM TF. However, the step with isolation of EVs have a higher inherent CV. CONCLUSION A sensitive and rather precise one-stage TG-based method to measure TF activity has been established.
Collapse
Affiliation(s)
- Søren Risom Kristensen
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Jette Nybo
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
| |
Collapse
|
14
|
Wright A, Snyder OL, He H, Christenson LK, Fleming S, Weiss ML. Procoagulant Activity of Umbilical Cord-Derived Mesenchymal Stromal Cells' Extracellular Vesicles (MSC-EVs). Int J Mol Sci 2023; 24:ijms24119216. [PMID: 37298168 DOI: 10.3390/ijms24119216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/11/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023] Open
Abstract
Many cell types, including cancer cells, release tissue factor (TF)-exposing extracellular vesicles (EVs). It is unknown whether MSC-EVs pose a thromboembolism risk due to TF expression. Knowing that MSCs express TF and are procoagulant, we hypothesize that MSC-EVs also might. Here, we examined the expression of TF and the procoagulant activity of MSC-EVs and the impact of EV isolation methods and cell culture expansion on EV yield, characterization, and potential risk using a design of experiments methodology. MSC-EVs were found to express TF and have procoagulant activity. Thus, when MSC-derived EVs are employed as a therapeutic agent, one might consider TF, procoagulant activity, and thromboembolism risk and take steps to prevent them.
Collapse
Affiliation(s)
- Adrienne Wright
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506, USA
- Midwest Institute of Comparative Stem Cell Biotechnology, Kansas State University, Manhattan, KS 66506, USA
| | - Orman Larry Snyder
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506, USA
- Midwest Institute of Comparative Stem Cell Biotechnology, Kansas State University, Manhattan, KS 66506, USA
| | - Hong He
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506, USA
- Midwest Institute of Comparative Stem Cell Biotechnology, Kansas State University, Manhattan, KS 66506, USA
| | - Lane K Christenson
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Sherry Fleming
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Mark L Weiss
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506, USA
- Midwest Institute of Comparative Stem Cell Biotechnology, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
15
|
Price JM, Hisada Y, Hazeldine J, Bae-Jump V, Luther T, Mackman N, Harrison P. Detection of tissue factor-positive extracellular vesicles using the ExoView R100 system. Res Pract Thromb Haemost 2023; 7:100177. [PMID: 37333992 PMCID: PMC10276261 DOI: 10.1016/j.rpth.2023.100177] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 04/19/2023] [Accepted: 04/30/2023] [Indexed: 06/20/2023] Open
Abstract
Background Tissue factor (TF) is essential for hemostasis. TF-expressing extracellular vesicles (TF+ EVs) are released in pathological conditions, such as trauma and cancer, and are linked to thrombosis. Detection of TF+ EV antigenically in plasma is challenging due to their low concentration but may be of clinical utility. Objectives We hypthesised that ExoView can allow for direct measurement of TF+ EV in plasma, antigenically. Methods We utilized the anti-TF monoclonal antibody 5G9 to capture TF EV onto specialized ExoView chips. This was combined with fluorescent TF+ EV detection using anti-TF monoclonal antibody IIID8-AF647. We measured tumor cell-derived (BxPC-3) TF+ EV and TF+ EVs from plasma derived from whole blood with or without lipopolysaccharide (LPS) stimulation. We used this system to analyze TF+ EVs in 2 relevant clinical cohorts: trauma and ovarian cancer. We compared ExoView results with an EV TF activity assay. Results BxPC-3-derived TF+ EVs were identified with ExoView using 5G9 capture with IIID8-AF647 detection. 5G9 capture with IIID8-AF647 detection was significantly higher in LPS+ samples than in LPS samples and correlated with EV TF activity (R2 = 0.28). Trauma patient samples had higher levels of EV TF activity than healthy controls, but activity did not correlate with TF measurements made by ExoView (R2 = 0.15). Samples from patients with ovarian cancer have higher levels of EV TF activity than those from healthy controls, but activity did not correlate with TF measurement by ExoView (R2 = 0.0063). Conclusion TF+ EV measurement is possible in plasma, but the threshold and potential clinical applicability of ExoView R100, in this context, remain to be established.
Collapse
Affiliation(s)
- Joshua M.J. Price
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Yohei Hisada
- Division of Hematology and Oncology, UNC Blood Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jon Hazeldine
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Victoria Bae-Jump
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Thomas Luther
- Institute of Pathology, Technical University Dresden, Dresden, Germany
| | - Nigel Mackman
- Division of Hematology and Oncology, UNC Blood Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Paul Harrison
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
16
|
Morimoto M, Tatsumi K, Takabayashi Y, Sakata A, Yuui K, Terazawa I, Kudo R, Kasuda S. Involvement of monocyte-derived extracellular vesicle-associated tissue factor activity in convallatoxin-induced hypercoagulability. Blood Coagul Fibrinolysis 2023; 34:184-190. [PMID: 36966751 DOI: 10.1097/mbc.0000000000001211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
Abstract
OBJECTIVES Convallatoxin (CNT) is a natural cardiac glycoside extracted from lily of the valley ( Convallaria majalis ). Although it is empirically known to cause blood coagulation disorders, the underlying mechanism remains unclear. CNT exerts cytotoxicity and increases tissue factor (TF) expression in endothelial cells. However, the direct action of CNT on blood coagulation remains unclear. Therefore, herein, we investigated the effects of CNT on whole blood coagulation system and TF expression in monocytes. METHODS Blood samples were collected from healthy volunteers to measure plasma thrombin-antithrombin complex (TAT) concentration using ELISA and to perform rotational thromboelastometry (ROTEM) and whole-blood extracellular vesicle (EV)-associated TF (EV-TF) analysis. The effects of CNT were also investigated using the monocytic human cell line THP-1. Quantitative real-time PCR and western blotting were performed, and PD98059, a mitogen-activated protein kinase (MAPK) inhibitor, was used to elucidate the action mechanism of CNT-mediated TF production. RESULTS CNT treatment increased EV-TF activity, shortened the whole blood clotting time in rotational thromboelastometry analysis, and increased TAT levels, which is an index of thrombin generation. Furthermore, CNT increased TF mRNA expression in THP-1 cells and EV-TF activity in the cell culture supernatant. Therefore, CNT may induce a hypercoagulable state with thrombin generation, in which elevated EV-TF activity derived from monocytes might be involved. These procoagulant effects of CNT were reversed by PD98059, suggesting that CNT-induced TF production in monocytes might be mediated by the MAPK pathway. CONCLUSIONS The findings of the present study have further clarified the procoagulant properties of CNT.
Collapse
Affiliation(s)
| | - Kohei Tatsumi
- Advanced Medical Science of Thrombosis and Hemostasis
| | | | - Asuka Sakata
- Medicinal Biology of Thrombosis and Hemostasis, Nara Medical University, Kashihara, Nara, Japan
| | | | | | | | | |
Collapse
|
17
|
Davidson SM, Boulanger CM, Aikawa E, Badimon L, Barile L, Binder CJ, Brisson A, Buzas E, Emanueli C, Jansen F, Katsur M, Lacroix R, Lim SK, Mackman N, Mayr M, Menasché P, Nieuwland R, Sahoo S, Takov K, Thum T, Vader P, Wauben MHM, Witwer K, Sluijter JPG. Methods for the identification and characterization of extracellular vesicles in cardiovascular studies: from exosomes to microvesicles. Cardiovasc Res 2023; 119:45-63. [PMID: 35325061 PMCID: PMC10233250 DOI: 10.1093/cvr/cvac031] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
Extracellular vesicles (EVs) are nanosized vesicles with a lipid bilayer that are released from cells of the cardiovascular system, and are considered important mediators of intercellular and extracellular communications. Two types of EVs of particular interest are exosomes and microvesicles, which have been identified in all tissue and body fluids and carry a variety of molecules including RNAs, proteins, and lipids. EVs have potential for use in the diagnosis and prognosis of cardiovascular diseases and as new therapeutic agents, particularly in the setting of myocardial infarction and heart failure. Despite their promise, technical challenges related to their small size make it challenging to accurately identify and characterize them, and to study EV-mediated processes. Here, we aim to provide the reader with an overview of the techniques and technologies available for the separation and characterization of EVs from different sources. Methods for determining the protein, RNA, and lipid content of EVs are discussed. The aim of this document is to provide guidance on critical methodological issues and highlight key points for consideration for the investigation of EVs in cardiovascular studies.
Collapse
Affiliation(s)
- Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, WC1E 6HX London, UK
| | - Chantal M Boulanger
- Université Paris Cité, Paris-Cardiovascular Research Center, INSERM, Paris, France
| | - Elena Aikawa
- Department of Medicine, Center for Excellence in Vascular Biology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Lina Badimon
- Cardiovascular Science Program-ICCC, IR-Hospital de la Santa Creu i Santa Pau-IIBSantPau, CiberCV, Autonomous University of Barcelona, Barcelona, Spain
| | - Lucio Barile
- Laboratory for Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Ente Ospedaliero Cantonale and Faculty of Biomedical Sciences, Università Svizzera italiana, 6900 Lugano, Switzerland
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Alain Brisson
- Molecular Imaging and NanoBioTechnology, UMR-5248-CBMN, CNRS-University of Bordeaux-IPB, Bat. B14, Allée Geoffroy Saint-Hilaire, 33600 Pessac, France
| | - Edit Buzas
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, HCEMM-SU and ELKH-SE Immune Proteogenomics Extracellular Vesicle Research Group, Budapest, Hungary
| | - Costanza Emanueli
- National Heart and Lung Institute, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | - Felix Jansen
- Department of Internal Medicine II, Heart Center, University Hospital Bonn, Bonn, Germany
| | - Miroslava Katsur
- The Hatter Cardiovascular Institute, University College London, WC1E 6HX London, UK
| | - Romaric Lacroix
- Aix Marseille University, INSERM 1263, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre de Recherche en CardioVasculaire et Nutrition (C2VN), Marseille, France
- Department of Haematology and Vascular Biology, CHU La Conception, APHM, Marseille, France
| | - Sai Kiang Lim
- Institute of Medical Biology and Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Nigel Mackman
- Department of Medicine, UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Manuel Mayr
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London, UK
| | - Philippe Menasché
- Department of Cardiovascular Surgery, Hôpital Européen Georges Pompidou, Paris, France
- Laboratory of Experimental Cardiology, Department of Cardiology, UMC Utrecht Regenerative Medicine Center and Circulatory Health Laboratory, Utrecht University, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rienk Nieuwland
- Vesicle Observation Center, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Laboratory of Experimental Clinical Chemistry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Susmita Sahoo
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kaloyan Takov
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London, UK
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
- Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
| | - Pieter Vader
- Université Paris Cité, Paris-Cardiovascular Research Center, INSERM, Paris, France
- CDL Research, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Marca H M Wauben
- Faculty of Veterinary Medicine, Department of Biomolecular Health Sciences, Utrecht University, Yalelaan 2, Utrecht, The Netherlands
| | - Kenneth Witwer
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joost P G Sluijter
- Laboratory of Experimental Cardiology, Department of Cardiology, UMC Utrecht Regenerative Medicine Center and Circulatory Health Laboratory, Utrecht University, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
18
|
Sachetto AT, Archibald SJ, Bhatia R, Monroe D, Hisada Y, Mackman N. Evaluation of four commercial ELISAs to measure tissue factor in human plasma. Res Pract Thromb Haemost 2023; 7:100133. [PMID: 37275179 PMCID: PMC10233285 DOI: 10.1016/j.rpth.2023.100133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/09/2023] [Accepted: 03/11/2023] [Indexed: 03/30/2023] Open
Abstract
Background Under pathological conditions, tissue factor (TF)-positive extracellular vesicles (EVs) are released into the circulation and activate coagulation. Therefore, it is important to identify methods that accurately quantitate levels of TF in plasma. Enzyme-linked immunosorbent assays (ELISAs) are a fast and simple method to quantitate levels of proteins. However, there are several specific challenges with measuring TF antigen in plasma including its low concentration and the complexity of plasma. Objectives We aimed to evaluate the ability of 4 commercial ELISAs to measure TF in human plasma. Methods We determined the ability of 4 commercial ELISAs (Imubind, Quantikine, Human SimpleStep, and CD142 Human) to detect recombinant human TF (Innovin) (12.5-100 pg/mL), TF-positive EVs isolated from the culture supernatant from a human pancreatic cancer cell line (57 pg/mL), TF in plasma containing low levels of EV TF activity (1.2-2.6 pg/mL) from lipopolysaccharide-stimulated whole blood, and plasma containing high levels of EV TF activity (151-696 pg/mL) from patients with acute leukemia. Results The CD142 Human ELISA could not detect recombinant TF. Imubind and Quantikine but not Human SimpleStep detected recombinant TF spiked into plasma and TF-positive EVs isolated from the culture supernatant of a human pancreatic cancer cell line. Quantikine and Imubind could not detect low levels of TF in plasma from lipopolysaccharide-stimulated whole blood. However, Quantikine but not Imubind detected TF in plasma from acute leukemia patients with high levels of EV TF activity. Conclusion Our results indicate that commercial ELISAs have different abilities to detect TF. Quantikine and Imubind could not detect low levels of TF in plasma, but Quantikine detected TF in plasma with high levels of TF.
Collapse
Affiliation(s)
- Ana T.A. Sachetto
- UNC Blood Research Center, Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sierra J. Archibald
- UNC Blood Research Center, Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ravi Bhatia
- Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Dougald Monroe
- UNC Blood Research Center, Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Yohei Hisada
- UNC Blood Research Center, Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nigel Mackman
- UNC Blood Research Center, Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
19
|
Sachetto ATA, Mackman N. Tissue Factor and COVID-19: An Update. Curr Drug Targets 2022; 23:1573-1577. [PMID: 36165519 DOI: 10.2174/1389450123666220926144432] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/21/2022] [Accepted: 08/29/2022] [Indexed: 01/25/2023]
Abstract
The coronavirus 2019 (COVID-19) pandemic is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. Infection with SARS-CoV-2 is associated with acute respiratory distress syndrome, thrombosis and a high rate of mortality. Thrombotic events increase with severity. Tissue factor (TF) expression is increased during viral and bacterial infections. This review summarizes studies that have examined TF expression in response to SARS-CoV-2 infection. SARS-CoV-2 virus and its proteins upregulate TF mRNA, protein and activity in a variety of cells, including bronchial epithelial cells, neutrophils, monocytes, macrophages, endothelial cells and adventitial fibroblasts. COVID-19 patients have increased TF expression in lungs, bronchoalveolar lavage fluid and circulating extracellular vesicles. The increase in TF was associated with coagulation activation markers, thrombosis, inflammatory markers, severity of disease and mortality. Taken together, the studies suggest that TF plays a central role in thrombosis in COVID- 19. TF may be a useful prognostic marker and therapeutic target to reduce thrombosis and inflammation.
Collapse
Affiliation(s)
- Ana Teresa Azevedo Sachetto
- Laboratory of Pathophysiology, Butantan Institute, São Paulo, São Paulo, Brazil.,University of São Paulo Medical School, São Paulo, São Paulo, Brazil.,Department of Medicine, UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nigel Mackman
- Department of Medicine, UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
20
|
Mackman N, Sachetto ATA, Hisada Y. Measurement of tissue factor-positive extracellular vesicles in plasma: strengths and weaknesses of current methods. Curr Opin Hematol 2022; 29:266-274. [PMID: 35852819 DOI: 10.1097/moh.0000000000000730] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW This review evaluates the different methods used to measure levels of tissue factor (TF) in plasma and on extracellular vesicles (EVs). Levels of TF-positive (TF+) EVs in blood are increased in a variety of diseases, such as cancer, sepsis, and viral infection, and are associated with thrombosis. Highly sensitive assays are required to measure the low levels of TF+ EVs in blood. RECENT FINDINGS TF antigen levels in plasma have been measured using standard ELISAs, SimpleStep ELISA technology, and solid-phase proximity ligation assay. Some studies reported the detection of TF+ EVs in plasma by flow cytometry. In addition, TF+ EVs can be captured onto beads and chips using anti-TF antibodies. Several assays have been developed to measure TF activity in EVs isolated from plasma. Importantly, activity-based assays are more sensitive than antigen-based assays as a single TF/FVIIa complex can generate large amounts of FXa. SUMMARY We recommend isolating EVs from plasma and measuring TF activity using a functional assay in the presence and absence of an anti-TF antibody. We do not recommend using antigen-based assays as these are not sensitive enough to detect the low levels of TF in plasma.
Collapse
Affiliation(s)
- Nigel Mackman
- UNC Blood Research Center, Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | | | | |
Collapse
|
21
|
Hounkpe BW, Moraes CRP, Lanaro C, Santos MNN, Costa FF, De Paula EV. Evaluation of the mechanisms of heme-induced tissue factor activation: Contribution of innate immune pathways. Exp Biol Med (Maywood) 2022; 247:1542-1547. [PMID: 35775605 PMCID: PMC9554166 DOI: 10.1177/15353702221106475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hemolytic diseases such as Sickle Cell Disease (SCD) are characterized by a natural propensity for both arterial and venous thrombosis. The ability of heme to induce tissue factor (TF) activation has been shown both in animal models of SCD, and in human endothelial cells and monocytes. Moreover, it was recently demonstrated that heme can induce coagulation activation in the whole blood of healthy volunteers in a TF-dependent fashion. Herein, we aim to further explore the cellular mechanisms by which heme induces TF-coagulation activation, using human mononuclear cells, which have been shown to be relevant to in vivo hemostasis. TF mRNA expression was evaluated by qPCR and TF procoagulant activity was evaluated using a 2-stage assay based on the generation of activated factor X (FXa). Heme was capable of inducing both TF expression and activation in a TLR4-dependent pathway. This activity was further amplified after TNF-α-priming. Our results provide additional details on the mechanisms by which heme is involved in the pathogenesis of hypercoagulability in hemolytic diseases.
Collapse
Affiliation(s)
| | | | - Carolina Lanaro
- Hematology and Hemotherapy Center, University of Campinas, CEP 13083-970 Campinas, Brazil
| | | | - Fernando Ferreira Costa
- School of Medical Sciences, University of Campinas, CEP 13083-894 Campinas, Brazil,Hematology and Hemotherapy Center, University of Campinas, CEP 13083-970 Campinas, Brazil
| | - Erich Vinicius De Paula
- School of Medical Sciences, University of Campinas, CEP 13083-894 Campinas, Brazil,Hematology and Hemotherapy Center, University of Campinas, CEP 13083-970 Campinas, Brazil,Erich Vinicius De Paula.
| |
Collapse
|
22
|
Sim MM, Banerjee M, Myint T, Garvy BA, Whiteheart SW, Wood JP. Total Plasma Protein S Is a Prothrombotic Marker in People Living With HIV. J Acquir Immune Defic Syndr 2022; 90:463-471. [PMID: 35616596 PMCID: PMC9246910 DOI: 10.1097/qai.0000000000002994] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/21/2022] [Indexed: 01/30/2023]
Abstract
BACKGROUND HIV-1 infection is associated with multiple procoagulant changes and increased thrombotic risk. Possible mechanisms for this risk include heigthened expression of procoagulant tissue factor (TF) on circulating monocytes, extracellular vesicles, and viral particles and/or acquired deficiency of protein S (PS), a critical cofactor for the anticoagulant protein C (PC). PS deficiency occurs in up to 76% of people living with HIV-1 (PLWH). As increased ex vivo plasma thrombin generation is a strong predictor of mortality, we investigated whether PS and plasma TF are associated with plasma thrombin generation. METHODS We analyzed plasma samples from 9 healthy controls, 17 PLWH on first diagnosis (naive), and 13 PLWH on antiretroviral therapy (ART). Plasma thrombin generation, total and free PS, PC, C4b-binding protein, and TF activity were measured. RESULTS We determined that the plasma thrombin generation assay is insensitive to PS, because of a lack of PC activation, and developed a modified PS-sensitive assay. Total plasma PS was reduced in 58% of the naive and 38% of the ART-treated PLWH samples and correlated with increased thrombin generation in the modified assay. Conversely, plasma TF was not increased in our patient population, suggesting that it does not significantly contribute to ex vivo plasma thrombin generation. CONCLUSION These data suggest that reduced total plasma PS contributes to the thrombotic risk associated with HIV-1 infection and can serve as a prothrombotic biomarker. In addition, our refined thrombin generation assay offers a more sensitive tool to assess the functional consequences of acquired PS deficiency in PLWH.
Collapse
Affiliation(s)
- Martha M.S. Sim
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY
| | - Meenakshi Banerjee
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY
| | - Thein Myint
- Division of Infectious Diseases, Department of Internal Medicine, University of Kentucky, Lexington, KY
- Bluegrass Care Clinic, Kentucky Clinic, University of Kentucky, Lexington, KY
| | - Beth A. Garvy
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY
| | - Sidney W. Whiteheart
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY
- Lexington Veterans’ Affairs Healthcare System, Lexington, KY
| | - Jeremy P. Wood
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY
- Gill Heart and Vascular Institute, Division of Cardiovascular Medicine, Department of Internal Medicine, University of Kentucky, Lexington, KY
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
| |
Collapse
|
23
|
Hisada Y, Sachetto ATA, Mackman N. Circulating tissue factor-positive extracellular vesicles and their association with thrombosis in different diseases. Immunol Rev 2022; 312:61-75. [PMID: 35708588 DOI: 10.1111/imr.13106] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 05/27/2022] [Indexed: 12/23/2022]
Abstract
Tissue factor (TF) is a procoagulant protein released from activated host cells, such as monocytes, and tumor cells on extracellular vesicles (EVs). TF + EVs are observed in the circulation of patients with various types of diseases. In this review, we will summarize the association between TF + EVs and activation of coagulation and survival in different types of diseases, including cancer, sepsis, and infections with different viruses, such as human immunodeficiency virus (HIV), influenza A virus (IAV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We will also discuss the source of TF + EVs in various diseases. EVTF activity is associated with thrombosis in pancreatic cancer patients and coronavirus disease 2019 patients (COVID-19) and with disseminated intravascular coagulation in cancer patients. EVTF activity is also associated with worse survival in patients with cancer and COVID-19. Monocytes are the major sources of TF + EVs in sepsis, and viral infections, such as HIV, Ebola virus, and SARS-CoV-2. In contrast, alveolar epithelial cells are the major source of TF + EVs in bronchoalveolar lavage fluid in COVID-19 and influenza A patients. These studies indicate that EVTF activity could be used as a biomarker to identify patients that have an increased risk of coagulopathy and mortality.
Collapse
Affiliation(s)
- Yohei Hisada
- Division of Hematology, Department of Medicine, UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ana Teresa Azevedo Sachetto
- Division of Hematology, Department of Medicine, UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nigel Mackman
- Division of Hematology, Department of Medicine, UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
24
|
Sabbatinelli J, Matacchione G, Giuliani A, Ramini D, Rippo MR, Procopio AD, Bonafè M, Olivieri F. Circulating biomarkers of inflammaging as potential predictors of COVID-19 severe outcomes. Mech Ageing Dev 2022; 204:111667. [PMID: 35341896 PMCID: PMC8949647 DOI: 10.1016/j.mad.2022.111667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 01/10/2023]
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 infection has been of unprecedented clinical and socio-economic worldwide relevance. The case fatality rate for COVID-19 grows exponentially with age and the presence of comorbidities. In the older patients, COVID-19 manifests predominantly as a systemic disease associated with immunological, inflammatory, and procoagulant responses. Timely diagnosis and risk stratification are crucial steps to define appropriate therapies and reduce mortality, especially in the older patients. Chronically and systemically activated innate immune responses and impaired antiviral responses have been recognized as the results of a progressive remodeling of the immune system during aging, which can be described by the words 'immunosenescence' and 'inflammaging'. These age-related features of the immune system were highlighted in patients affected by COVID-19 with the poorest clinical outcomes, suggesting that the mechanisms underpinning immunosenescence and inflammaging could be relevant for COVID-19 pathogenesis and progression. Increasing evidence suggests that senescent myeloid and endothelial cells are characterized by the acquisition of a senescence-associated pro-inflammatory phenotype (SASP), which is considered as the main culprit of both immunosenescence and inflammaging. Here, we reviewed this evidence and highlighted several circulating biomarkers of inflammaging that could provide additional prognostic information to stratify COVID-19 patients based on the risk of severe outcomes.
Collapse
Affiliation(s)
- Jacopo Sabbatinelli
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy; Laboratory Medicine, AOU Ospedali Riuniti, Ancona, Italy
| | - Giulia Matacchione
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Angelica Giuliani
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Deborah Ramini
- Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, Ancona, Italy
| | - Maria Rita Rippo
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Antonio Domenico Procopio
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy; Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, Ancona, Italy
| | - Massimiliano Bonafè
- Department of Experimental, Diagnostic and Specialty Medicine, Università di Bologna, Bologna, Italy
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy; Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, Ancona, Italy.
| |
Collapse
|
25
|
Mackman N, Hisada Y, Archibald SJ. Tissue factor and its procoagulant activity on cancer-associated thromboembolism in pancreatic cancer: Comment by Mackman et al. Cancer Sci 2022; 113:1885-1887. [PMID: 35132733 PMCID: PMC9128168 DOI: 10.1111/cas.15276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 01/21/2022] [Indexed: 12/01/2022] Open
Abstract
The Quantikine® ELISA detects tissue factor in cell lysates and culture supernatants containing extracellular vesicles from tissue factor-expressing cell lines but does not detect low levels of tissue factor antigen in plasma.
Collapse
Affiliation(s)
- Nigel Mackman
- UNC Blood Research CenterDivision of HematologyDepartment of MedicineUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Yohei Hisada
- UNC Blood Research CenterDivision of HematologyDepartment of MedicineUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Sierra J. Archibald
- UNC Blood Research CenterDivision of HematologyDepartment of MedicineUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| |
Collapse
|
26
|
Hubbard WB, Sim MMS, Saatman KE, Sullivan PG, Wood JP. Tissue factor release following traumatic brain injury drives thrombin generation. Res Pract Thromb Haemost 2022; 6:e12734. [PMID: 35702585 PMCID: PMC9175244 DOI: 10.1002/rth2.12734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/25/2022] [Accepted: 04/29/2022] [Indexed: 11/11/2022] Open
Abstract
Background Traumatic brain injury (TBI) results in neurovascular damage that initiates intrinsic mechanisms of hypercoagulation, which can contribute to the development of life-threatening complications, such as coagulopathy and delayed thrombosis. Clinical studies have hypothesized that tissue factor (TF) induces hypercoagulability after TBI; however, none have directly shown this relationship. Objectives In the current study, we took a stepwise approach to understand what factors are driving thrombin generation following experimental TBI. Methods We employed the contusion-producing controlled cortical impact (CCI) model and the diffuse closed head injury (CHI) model to investigate these mechanisms as a function of injury severity and modality. Whole blood was collected at 6 hours and 24 hours after injury, and platelet-poor plasma was used to measure thrombin generation and extracellular vesicle (EV) TF. Results We found that plasma thrombin generation, dependent on TF present in the plasma, was greater in CCI-injured animals compared to sham at both 6 hours (120.4 ± 36.9 vs 0.0 ± 0.0 nM*min endogenous thrombin potential) and 24 hours (131.0 ± 34.0 vs 32.1 ± 20.6 nM*min) after injury. This was accompanied by a significant increase in EV TF at 24 hours (328.6 ± 62.1 vs 167.7 ± 20.8 fM) after CCI. Further, EV TF is also increased at 6 hours (126.6 ± 17.1 vs 63.3 ± 14.4 fM) but not 24 hours following CHI. Conclusion TF-mediated thrombin generation is time-dependent after injury and TF increases resolve earlier following CHI as compared to CCI. Taken together, these data support a TF-mediated pathway of thrombin generation after TBI and pinpoint TF as a major player in TBI-induced coagulopathy.
Collapse
Affiliation(s)
- W. Brad Hubbard
- Lexington Veterans' Affairs Healthcare SystemLexingtonKentuckyUSA
- Department of PhysiologyUniversity of KentuckyLexingtonKentuckyUSA
- Spinal Cord and Brain Injury Research CenterUniversity of KentuckyLexingtonKentuckyUSA
| | - Martha M. S. Sim
- Department of Molecular and Cellular BiochemistryUniversity of KentuckyLexingtonKentuckyUSA
| | - Kathryn E. Saatman
- Department of PhysiologyUniversity of KentuckyLexingtonKentuckyUSA
- Spinal Cord and Brain Injury Research CenterUniversity of KentuckyLexingtonKentuckyUSA
| | - Patrick G. Sullivan
- Lexington Veterans' Affairs Healthcare SystemLexingtonKentuckyUSA
- Spinal Cord and Brain Injury Research CenterUniversity of KentuckyLexingtonKentuckyUSA
- Department of NeuroscienceUniversity of KentuckyLexingtonKentuckyUSA
| | - Jeremy P. Wood
- Department of Molecular and Cellular BiochemistryUniversity of KentuckyLexingtonKentuckyUSA
- Division of Cardiovascular MedicineThe Gill Heart and Vascular InstituteUniversity of KentuckyLexingtonKentuckyUSA
- Saha Cardiovascular Research CenterUniversity of KentuckyLexingtonKentuckyUSA
| |
Collapse
|
27
|
Gabisonia K, Khan M, Recchia FA. Extracellular vesicle-mediated bidirectional communication between heart and other organs. Am J Physiol Heart Circ Physiol 2022; 322:H769-H784. [PMID: 35179973 PMCID: PMC8993522 DOI: 10.1152/ajpheart.00659.2021] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/24/2022] [Accepted: 02/15/2022] [Indexed: 02/07/2023]
Abstract
In recent years, a wealth of studies has identified various molecular species released by cardiac muscle under physiological and pathological conditions that exert local paracrine and/or remote endocrine effects. Conversely, humoral factors, principally produced by organs such as skeletal muscle, kidney, or adipose tissue, may affect the function and metabolism of normal and diseased hearts. Although this cross communication within cardiac tissue and between the heart and other organs is supported by mounting evidence, research on the role of molecular mediators carried by exosomes, microvesicles, and apoptotic bodies, collectively defined as extracellular vesicles (EVs), is at an early stage of investigation. Once released in the circulation, EVs can potentially reach any organ where they transfer their cargo of proteins, lipids, and nucleic acids that exert potent biological effects on recipient cells. Although there are a few cases where such signaling was clearly demonstrated, the results from many other studies can only be tentatively inferred based on indirect evidence obtained by infusing exogenous EVs in experimental animals or by adding them to cell cultures. This area of research is in rapid expansion and most mechanistic interpretations may change in the near future; hence, the present review on the role played by EV-carried mediators in the two-way communication between heart and skeletal muscle, kidneys, bone marrow, lungs, liver, adipose tissue, and brain is necessarily limited. Nonetheless, the available data are already unveiling new, intriguing, and ample scenarios in cardiac physiology and pathophysiology.
Collapse
Affiliation(s)
- Khatia Gabisonia
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Mohsin Khan
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Fabio A Recchia
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
- Fondazione Gabriele Monasterio, Pisa, Italy
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
28
|
Platelet activation by SARS-CoV-2 implicates the release of active tissue factor by infected cells. Blood Adv 2022; 6:3593-3605. [PMID: 35443030 PMCID: PMC9023084 DOI: 10.1182/bloodadvances.2022007444] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/06/2022] [Indexed: 11/20/2022] Open
Abstract
Platelets are hyperactivated in coronavirus disease 2019 (COVID-19). However, the mechanisms promoting platelet activation by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are not well understood. This may be due to inherent challenges in discriminating the contribution of viral vs host components produced by infected cells. This is particularly true for enveloped viruses and extracellular vesicles (EVs), as they are concomitantly released during infection and share biophysical properties. To study this, we evaluated whether SARS-CoV-2 itself or components derived from SARS-CoV-2-infected human lung epithelial cells could activate isolated platelets from healthy donors. Activation was measured by the surface expression of P-selectin and the activated conformation of integrin αIIbβ3, degranulation, aggregation under flow conditions, and the release of EVs. We find that neither SARS-CoV-2 nor purified spike activates platelets. In contrast, tissue factor (TF) produced by infected cells was highly potent at activating platelets. This required trace amounts of plasma containing the coagulation factors FX, FII, and FVII. Robust platelet activation involved thrombin and the activation of protease-activated receptor (PAR)-1 and -4 expressed by platelets. Virions and EVs were identified by electron microscopy. Through size-exclusion chromatography, TF activity was found to be associated with a virus or EVs, which were indistinguishable. Increased TF messenger RNA (mRNA) expression and activity were also found in lungs in a murine model of COVID-19 and plasma of severe COVID-19 patients, respectively. In summary, TF activity from SARS-CoV-2–infected cells activates thrombin, which signals to PARs on platelets. Blockade of molecules in this pathway may interfere with platelet activation and the coagulation characteristic of COVID-19.
Collapse
|
29
|
Østerud B, Latysheva N, Schoergenhofer C, Jilma B, Hansen JB, Snir O. A rapid, sensitive, and specific assay to measure TF activity based on chromogenic determination of thrombin generation. J Thromb Haemost 2022; 20:866-876. [PMID: 34822223 DOI: 10.1111/jth.15606] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/22/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND Most tissue factor (TF) activity assays are based on measurement of factor X (FX) activation by TF in the presence of factor VII (FVII)/FVIIa. This requires long incubation, which may result in TF-independent activity of FX and inaccurate measurement of TF activity. AIM To develop a sensitive and specific TF activity assay, which does not register a non-specific TF activity, using commercial coagulation factors. METHODS Tissue factor activity was measured based on the ability of TF to accelerate the activation of FX by FVIIa in the presence of factor V (FV)/Va, prothrombin, and phospholipids. Following 4 min incubation at 37°C, TF activity was quantified in test samples of different nature by thrombin generation using a chromogenic substrate. RESULTS The TF activity assay proved high sensitivity (low fM range) and specificity, assessed by neutralization of TF activity by anti-TF antibody and the use of FVIIai. TF activity was detected in extracellular vesicles (EVs) derived from HAP1-TF+cells, while no activity was measured in EVs from HAP1-TF/KO cells. The assay was applicable for measurement of TF activity on the surface of live endothelial cells and monocytes activated in vitro, and cell lysates. Infusion of low dose lipopolysaccharide (2 ng/kg bodyweight endotoxin) caused a transient 8-fold increase (peaked at 4 h) in TF activity in EVs isolated from plasma of healthy volunteers. CONCLUSION Our assay provides a fast, sensitive, and specific measurement of TF activity. It reliably quantifies TF activity on cell surface, cell lysate, and isolated EVs. The assay can be used for laboratory and clinical research.
Collapse
Affiliation(s)
- Bjarne Østerud
- Thrombosis Research Center (TREC), Department of Clinical Medicine, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Nadezhda Latysheva
- Thrombosis Research Center (TREC), Department of Clinical Medicine, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
| | | | - Bernd Jilma
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - John-Bjarne Hansen
- Thrombosis Research Center (TREC), Department of Clinical Medicine, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
- Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway
| | - Omri Snir
- Thrombosis Research Center (TREC), Department of Clinical Medicine, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
30
|
Beck S, Hochreiter B, Schmid JA. Extracellular Vesicles Linking Inflammation, Cancer and Thrombotic Risks. Front Cell Dev Biol 2022; 10:859863. [PMID: 35372327 PMCID: PMC8970602 DOI: 10.3389/fcell.2022.859863] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/21/2022] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs) being defined as lipid-bilayer encircled particles are released by almost all known mammalian cell types and represent a heterogenous set of cell fragments that are found in the blood circulation and all other known body fluids. The current nomenclature distinguishes mainly three forms: microvesicles, which are formed by budding from the plasma membrane; exosomes, which are released, when endosomes with intraluminal vesicles fuse with the plasma membrane; and apoptotic bodies representing fragments of apoptotic cells. Their importance for a great variety of biological processes became increasingly evident in the last decade when it was discovered that they contribute to intercellular communication by transferring nucleotides and proteins to recipient cells. In this review, we delineate several aspects of their isolation, purification, and analysis; and discuss some pitfalls that have to be considered therein. Further on, we describe various cellular sources of EVs and explain with different examples, how they link cancer and inflammatory conditions with thrombotic processes. In particular, we elaborate on the roles of EVs in cancer-associated thrombosis and COVID-19, representing two important paradigms, where local pathological processes have systemic effects in the whole organism at least in part via EVs. Finally, we also discuss possible developments of the field in the future and how EVs might be used as biomarkers for diagnosis, and as vehicles for therapeutics.
Collapse
Affiliation(s)
- Sarah Beck
- Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
- Institute of Experimental Biomedicine, University Hospital Würzburg and Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
- *Correspondence: Sarah Beck, ; Johannes A. Schmid,
| | - Bernhard Hochreiter
- Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Johannes A. Schmid
- Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
- *Correspondence: Sarah Beck, ; Johannes A. Schmid,
| |
Collapse
|
31
|
Archibald SJ, Hisada Y, Bae‐Jump VL, Mackman N. Evaluation of a new bead-based assay to measure levels of human tissue factor antigen in extracellular vesicles in plasma. Res Pract Thromb Haemost 2022; 6:e12677. [PMID: 35284777 PMCID: PMC8897283 DOI: 10.1002/rth2.12677] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/03/2022] [Accepted: 02/08/2022] [Indexed: 12/27/2022] Open
Abstract
Background Circulating tissue factor (TF)-expressing extracellular vesicles (EVs) are associated with thrombosis in several diseases, such as coronavirus disease 2019 (COVID-19). Activity assays have higher sensitivity and specificity compared to antigen assays for measuring TF+ EVs in plasma. The MACSPlex Exosome Kit is designed to detect 37 exosomal surface epitopes, including TF, on EVs in plasma using various fluorescently labeled beads. The different EV-bead complexes are detected by flow cytometry. A recent study used the MACSPlex Exosome Kit to measure levels of TF+ EVs in serum from patients with COVID-19. Objectives To evaluate the ability of the MACSPlex Exosome Kit to detect TF on EVs in plasma. Methods We measured levels of TF+ EVs isolated from plasma with or without TF detected using our in-house EVTF activity assay and the MACSPlex Exosome Kit. Results The MACSPlex Exosome Kit gave a very low TF antigen signal (TF bead signal) compared to platelet-derived CD41b+ EVs, which was used as a control. Lipopolysaccharide (LPS) increased levels of EVTF activity but not TF bead signal in four donors. Inhibition of TF reduced levels of EVTF activity but did not affect the TF bead signal in EVs isolated from plasma from LPS-treated blood. Finally, we found no correlation between levels of EVTF activity and TF bead signal in EVs isolated from plasma from ovarian cancer patients (r = .16, P = .62). Conclusion Our data suggest that the MACSPlex Exosome Kit gives a nonspecific signal for TF and does not have the sensitivity to detect TF+ EVs in plasma.
Collapse
Affiliation(s)
- Sierra J. Archibald
- Division of HematologyUNC Blood Research CenterUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Yohei Hisada
- Division of HematologyUNC Blood Research CenterUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Victoria L. Bae‐Jump
- Division of Gynecologic OncologyUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
- Lineberger Comprehensive Cancer CenterDepartment of MedicineUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Nigel Mackman
- Division of HematologyUNC Blood Research CenterUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| |
Collapse
|
32
|
Bonifay A, Ghayad S, Lacroix R, Dignat-George F. [Extracellular vesicles-associated biomarkers: Opportunities and challenges in cardiovascular diseases and cancer]. Med Sci (Paris) 2021; 37:1158-1165. [PMID: 34928220 DOI: 10.1051/medsci/2021208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cardiovascular diseases and cancer are the leading causes of mortality and morbidity in the world. The search for pertinent biomarkers for risk stratification and treatment monitoring is a challenge. Rapid advances in the identification of the molecular and functional content of extracellular vesicles (EV) and ongoing progress in developing highly sensitive methodologies, identify EV as promising biomarkers easily accessible in liquid biopsies. Thanks to robust and sensitive methodologies, the measurability of biological targets on EV allows to define vesicular biomarkers pertinent for disease management. Adaptation of the pre-analytical and analytical steps to each EV-associated biomarker, technological improvement and standardization efforts driven by scientific societies are essential prerequisites to accelerate the transfer of these EV-associated biomarkers to the clinics and to support the development of personalized medicine.
Collapse
Affiliation(s)
- Amandine Bonifay
- Aix-Marseille Université, C2VN (Centre de recherche en cardiovasculaire et nutrition), Inserm 1263, INRAe 1260, 13000 Marseille, France - Service d'hématologie et de biologie vasculaire, CHU La Conception, AP-HM, 13005 Marseille, France
| | - Sandra Ghayad
- Aix-Marseille Université, C2VN (Centre de recherche en cardiovasculaire et nutrition), Inserm 1263, INRAe 1260, 13000 Marseille, France
| | - Romaric Lacroix
- Aix-Marseille Université, C2VN (Centre de recherche en cardiovasculaire et nutrition), Inserm 1263, INRAe 1260, 13000 Marseille, France - Service d'hématologie et de biologie vasculaire, CHU La Conception, AP-HM, 13005 Marseille, France
| | - Françoise Dignat-George
- Aix-Marseille Université, C2VN (Centre de recherche en cardiovasculaire et nutrition), Inserm 1263, INRAe 1260, 13000 Marseille, France - Service d'hématologie et de biologie vasculaire, CHU La Conception, AP-HM, 13005 Marseille, France
| |
Collapse
|
33
|
Puhm F, Flamand L, Boilard E. Platelet extracellular vesicles in COVID-19: Potential markers and makers. J Leukoc Biol 2021; 111:63-74. [PMID: 34730839 PMCID: PMC8667644 DOI: 10.1002/jlb.3mir0221-100r] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Platelets and platelet extracellular vesicles (pEV) are at the crossroads of coagulation and immunity. Extracellular vesicles are messengers that not only transmit signals between cells, but also provide information about the status of their cell of origin. Thus, pEVs have potential as both biomarkers of platelet activation and contributors to pathology. Coronavirus Disease‐19 (COVID‐19), caused by infection with severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2), is a complex disease affecting multiple organs and is characterized by a high degree of inflammation and risk of thrombosis in some patients. In this review, we introduce pEVs as valuable biomarkers in disease with a special focus on their potential as predictors of and contributors to COVID‐19.
Collapse
Affiliation(s)
- Florian Puhm
- Department of Infectious Diseases and Immunity, Centre de recherche du CHU de Québec, Québec, Québec, Canada.,Université Laval and Centre de recherche ARThrite, Québec, Québec, Canada
| | - Louis Flamand
- Department of Infectious Diseases and Immunity, Centre de recherche du CHU de Québec, Québec, Québec, Canada.,Université Laval and Centre de recherche ARThrite, Québec, Québec, Canada
| | - Eric Boilard
- Department of Infectious Diseases and Immunity, Centre de recherche du CHU de Québec, Québec, Québec, Canada.,Université Laval and Centre de recherche ARThrite, Québec, Québec, Canada
| |
Collapse
|
34
|
Mackman N, Grover SP, Antoniak S. Tissue factor expression, extracellular vesicles, and thrombosis after infection with the respiratory viruses influenza A virus and coronavirus. J Thromb Haemost 2021; 19:2652-2658. [PMID: 34418279 PMCID: PMC9770926 DOI: 10.1111/jth.15509] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 02/06/2023]
Abstract
Tissue factor (TF) is induced in a variety of cell types during viral infection, which likely contributes to disseminated intravascular coagulation and thrombosis. TF-expressing cells also release TF-positive extracellular vesicles (EVs) into the circulation that can be measured using an EVTF activity assay. This review summarizes studies that analyze TF expression, TF-positive EVs, activation of coagulation, and thrombosis after infection with influenza A virus (IAV) and coronaviruses (CoVs), including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), SARS-CoV, and Middle East respiratory syndrome CoV (MERS-CoV). The current pandemic of coronavirus disease 2019 (COVID-19) is caused by infection with SARS-CoV-2. Infection of mice with IAV increased TF expression in lung epithelial cells as well as increased EVTF activity and activation of coagulation in the bronchoalveolar lavage fluid (BALF). Infection of mice with MERS-CoV, SARS-CoV, and SARS-CoV-2 also increased lung TF expression. Single-cell RNA sequencing analysis on the BALF from severe COVID-19 patients revealed increased TF mRNA expression in epithelial cells. TF expression was observed in peripheral blood mononuclear cells infected with SARS-CoV. TF was also expressed by peripheral blood mononuclear cells, monocytes in platelet-monocyte aggregates, and neutrophils isolated from COVID-19 patients. Elevated circulating EVTF activity was observed in severe IAV and COVID-19 patients. Importantly, EVTF activity was associated with mortality in severe IAV patients and with plasma D-dimer, severity, thrombosis, and mortality in COVID-19 patients. These studies strongly suggest that increased TF expression in patients infected with IAV and pathogenic CoVs contributes to thrombosis.
Collapse
Affiliation(s)
- Nigel Mackman
- Department of Medicine, UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Steven P Grover
- Department of Medicine, UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Silvio Antoniak
- Department of Pathology and Laboratory Medicine, UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
35
|
Moik F, Prager G, Thaler J, Posch F, Wiedemann S, Schramm T, Englisch C, Mackman N, Pabinger I, Ay C. Hemostatic Biomarkers and Venous Thromboembolism Are Associated With Mortality and Response to Chemotherapy in Patients With Pancreatic Cancer. Arterioscler Thromb Vasc Biol 2021; 41:2837-2847. [PMID: 34470475 DOI: 10.1161/atvbaha.121.316463] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Florian Moik
- Clinical Division of Haematology and Haemostaseology (F.M., J.T., S.W., T.S., C.E., I.P., C.A.), Department of Medicine I, Comprehensive Cancer Center Vienna, Medical University of Vienna, Austria
| | - Gerald Prager
- Clinical Division of Oncology (G.P.), Department of Medicine I, Comprehensive Cancer Center Vienna, Medical University of Vienna, Austria
| | - Johannes Thaler
- Clinical Division of Haematology and Haemostaseology (F.M., J.T., S.W., T.S., C.E., I.P., C.A.), Department of Medicine I, Comprehensive Cancer Center Vienna, Medical University of Vienna, Austria
| | - Florian Posch
- Division of Haematology, Department of Internal Medicine, Comprehensive Cancer Center Graz, Medical University of Graz, Austria (F.P.)
| | - Sarah Wiedemann
- Clinical Division of Haematology and Haemostaseology (F.M., J.T., S.W., T.S., C.E., I.P., C.A.), Department of Medicine I, Comprehensive Cancer Center Vienna, Medical University of Vienna, Austria
| | - Theresa Schramm
- Clinical Division of Haematology and Haemostaseology (F.M., J.T., S.W., T.S., C.E., I.P., C.A.), Department of Medicine I, Comprehensive Cancer Center Vienna, Medical University of Vienna, Austria
| | - Cornelia Englisch
- Clinical Division of Haematology and Haemostaseology (F.M., J.T., S.W., T.S., C.E., I.P., C.A.), Department of Medicine I, Comprehensive Cancer Center Vienna, Medical University of Vienna, Austria
| | - Nigel Mackman
- Division of Hematology, Department of Medicine, UNC Blood Research Center, University of North Carolina at Chapel Hill (N.M.)
| | - Ingrid Pabinger
- Clinical Division of Haematology and Haemostaseology (F.M., J.T., S.W., T.S., C.E., I.P., C.A.), Department of Medicine I, Comprehensive Cancer Center Vienna, Medical University of Vienna, Austria
| | - Cihan Ay
- Clinical Division of Haematology and Haemostaseology (F.M., J.T., S.W., T.S., C.E., I.P., C.A.), Department of Medicine I, Comprehensive Cancer Center Vienna, Medical University of Vienna, Austria.,I. M. Sechenov First Moscow State Medical University, Russia (C.A.)
| |
Collapse
|
36
|
Pedersen S, Kristensen AF, Falkmer U, Christiansen G, Kristensen SR. Increased activity of procoagulant factors in patients with small cell lung cancer. PLoS One 2021; 16:e0253613. [PMID: 34288927 PMCID: PMC8294523 DOI: 10.1371/journal.pone.0253613] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 06/08/2021] [Indexed: 12/21/2022] Open
Abstract
Small cell lung cancer (SCLC) patients have augmented risk of developing venous thromboembolism, but the mechanisms triggering this burden on the coagulation system remain to be understood. Recently, cell-derived microparticles carrying procoagulant phospholipids (PPL) and tissue factor (TF) in their membrane have attracted attention as possible contributors to the thrombogenic processes in cancers. The aims of this study were to assess the coagulation activity of platelet-poor plasma from 38 SCLC patients and to provide a detailed procoagulant profiling of small and large extracellular vesicles (EVs) isolated from these patients at the time of diagnosis, during and after treatment compared to 20 healthy controls. Hypercoagulability testing was performed by thrombin generation (TG), procoagulant phospholipid (PPL), TF activity, Protein C, FVIII activity and cell-free deoxyribonucleic acid (cfDNA), a surrogate measure for neutrophil extracellular traps (NETs). Our results revealed a coagulation activity that is significantly increased in the plasma of SCLC patients when compared to age-related healthy controls, but no substantial changes in coagulation activity during treatment and at follow-up. Although EVs in the patients revealed an increased PPL and TF activity compared with the controls, the TG profiles of EVs added to a standard plasma were similar for patients and controls. Finally, we found no differences in the coagulation profile of patients who developed VTE to those who did not, i.e. the tests could not predict VTE. In conclusion, we found that SCLC patients display an overall increased coagulation activity at time of diagnosis and during the disease, which may contribute to their higher risk of VTE.
Collapse
Affiliation(s)
- Shona Pedersen
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- * E-mail:
| | - Anne Flou Kristensen
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Ursula Falkmer
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Department of Oncology, Aalborg University Hospital, Aalborg, Denmark
| | - Gunna Christiansen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Søren Risom Kristensen
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
37
|
Mackman N, Hisada Y, Grover SP, Rosell A, Havervall S, von Meijenfeldt F, Aguilera K, Lisman T, Thålin C. Response by Mackman et al to Letter Regarding Article, "Patients With COVID-19 Have Elevated Levels of Circulating Extracellular Vesicle Tissue Factor Activity That Is Associated With Severity and Mortality-Brief Report". Arterioscler Thromb Vasc Biol 2021; 41:e381-e382. [PMID: 34038165 DOI: 10.1161/atvbaha.121.316203] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Nigel Mackman
- UNC Blood Research Center, Division of Hematology, Department of Medicine, University of North Carolina, Chapel Hill (N.M., Y.H., S.P.G)
| | - Yohei Hisada
- UNC Blood Research Center, Division of Hematology, Department of Medicine, University of North Carolina, Chapel Hill (N.M., Y.H., S.P.G)
| | - Steven P Grover
- UNC Blood Research Center, Division of Hematology, Department of Medicine, University of North Carolina, Chapel Hill (N.M., Y.H., S.P.G)
| | - Axel Rosell
- Division of Internal Medicine, Department of Clinical Sciences, Karolinska Institutet, Danderyd Hospital, Stockholm, Sweden (A.R., S.H., K.A., C.T.)
| | - Sebastian Havervall
- Division of Internal Medicine, Department of Clinical Sciences, Karolinska Institutet, Danderyd Hospital, Stockholm, Sweden (A.R., S.H., K.A., C.T.)
| | - Fien von Meijenfeldt
- Surgical Research Laboratory, Department of Surgery, University of Groningen, University Medical Center Groningen, the Netherlands (F.v.M., T.L.)
| | - Katherina Aguilera
- Division of Internal Medicine, Department of Clinical Sciences, Karolinska Institutet, Danderyd Hospital, Stockholm, Sweden (A.R., S.H., K.A., C.T.)
| | - Ton Lisman
- Surgical Research Laboratory, Department of Surgery, University of Groningen, University Medical Center Groningen, the Netherlands (F.v.M., T.L.)
| | - Charlotte Thålin
- Division of Internal Medicine, Department of Clinical Sciences, Karolinska Institutet, Danderyd Hospital, Stockholm, Sweden (A.R., S.H., K.A., C.T.)
| |
Collapse
|
38
|
Campbell RA, Hisada Y, Denorme F, Grover SP, Bouck EG, Middleton EA, Wolberg AS, Rondina MT, Mackman N. Comparison of the coagulopathies associated with COVID-19 and sepsis. Res Pract Thromb Haemost 2021; 5:e12525. [PMID: 34027292 PMCID: PMC8131194 DOI: 10.1002/rth2.12525] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/26/2021] [Accepted: 03/30/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) is associated with activation of coagulation that mainly presents as thrombosis. Sepsis is also associated with activation of coagulation that mainly presents as disseminated intravascular coagulation. Many studies have reported increased levels of plasma d-dimer in patients with COVID-19 that is associated with severity, thrombosis, and mortality. OBJECTIVES The aim of this study was to compare levels of circulating extracellular vesicle tissue factor (EVTF) activity and active plasminogen activator inhibitor 1 (PAI-1) in plasma from patients with COVID-19 or sepsis. METHODS We measured levels of d-dimer, EVTF activity, and active PAI-1 in plasma samples from patients with COVID-19 (intensive care unit [ICU], N = 15; and non-ICU, N = 20) and patients with sepsis (N = 35). RESULTS Patients with COVID-19 had significantly higher levels of d-dimer, EVTF activity, and active PAI-1 compared with healthy controls. Patients with sepsis had significantly higher levels of d-dimer and EVTF activity compared with healthy controls. Levels of d-dimer were significantly lower in patients with COVID-19 compared with patients with sepsis. Levels of EVTF activity were significantly higher in ICU patients with COVID-19 compared with patients with sepsis. Levels of active PAI-1 were significantly higher in patients with COVID-19 compared with patients with sepsis. CONCLUSIONS High levels of both EVTF activity and active PAI-1 may promote thrombosis in patients with COVID-19 due to simultaneous activation of coagulation and inhibition of fibrinolysis. The high levels of active PAI-1 in patients with COVID-19 may limit plasmin degradation of crosslinked fibrin and the release of d-dimer. This may explain the lower levels of D-dimer in patients with COVID-19 compared with patients with sepsis.
Collapse
Affiliation(s)
- Robert A. Campbell
- University of Utah Molecular Medicine ProgramSalt Lake CityUTUSA,Department of Internal MedicineUniversity of UtahSalt Lake CityUTUSA
| | - Yohei Hisada
- UNC Blood Research CenterUniversity of North Carolina at Chapel HillChapel HillNCUSA,Division of HematologyDepartment of MedicineUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | - Frederik Denorme
- University of Utah Molecular Medicine ProgramSalt Lake CityUTUSA
| | - Steven P. Grover
- UNC Blood Research CenterUniversity of North Carolina at Chapel HillChapel HillNCUSA,Division of HematologyDepartment of MedicineUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | - Emma G. Bouck
- UNC Blood Research CenterUniversity of North Carolina at Chapel HillChapel HillNCUSA,Department of Pathology and Laboratory MedicineUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | | | - Alisa S. Wolberg
- UNC Blood Research CenterUniversity of North Carolina at Chapel HillChapel HillNCUSA,Department of Pathology and Laboratory MedicineUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | - Matthew T. Rondina
- University of Utah Molecular Medicine ProgramSalt Lake CityUTUSA,George E. Wahlen VAMC Department of Internal Medicine and GRECCSalt Lake CityUTUSA,Department of PathologyUniversity of UtahSalt Lake CityUTUSA
| | - Nigel Mackman
- UNC Blood Research CenterUniversity of North Carolina at Chapel HillChapel HillNCUSA,Division of HematologyDepartment of MedicineUniversity of North Carolina at Chapel HillChapel HillNCUSA
| |
Collapse
|
39
|
Balbi C, Burrello J, Bolis S, Lazzarini E, Biemmi V, Pianezzi E, Burrello A, Caporali E, Grazioli LG, Martinetti G, Fusi-Schmidhauser T, Vassalli G, Melli G, Barile L. Circulating extracellular vesicles are endowed with enhanced procoagulant activity in SARS-CoV-2 infection. EBioMedicine 2021; 67:103369. [PMID: 33971404 PMCID: PMC8104913 DOI: 10.1016/j.ebiom.2021.103369] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/26/2021] [Accepted: 04/14/2021] [Indexed: 12/29/2022] Open
Abstract
Background Coronavirus-2 (SARS-CoV-2) infection causes an acute respiratory syndrome accompanied by multi-organ damage that implicates a prothrombotic state leading to widespread microvascular clots. The causes of such coagulation abnormalities are unknown. The receptor tissue factor, also known as CD142, is often associated with cell-released extracellular vesicles (EV). In this study, we aimed to characterize surface antigens profile of circulating EV in COVID-19 patients and their potential implication as procoagulant agents. Methods We analyzed serum-derived EV from 67 participants who underwent nasopharyngeal swabs molecular test for suspected SARS-CoV-2 infection (34 positives and 33 negatives) and from 16 healthy controls (HC), as referral. A sub-analysis was performed on subjects who developed pneumonia (n = 28). Serum-derived EV were characterized for their surface antigen profile and tested for their procoagulant activity. A validation experiment was performed pre-treating EV with anti-CD142 antibody or with recombinant FVIIa. Serum TNF-α levels were measured by ELISA. Findings Profiling of EV antigens revealed a surface marker signature that defines circulating EV in COVID-19. A combination of seven surface molecules (CD49e, CD209, CD86, CD133/1, CD69, CD142, and CD20) clustered COVID (+) versus COVID (-) patients and HC. CD142 showed the highest discriminating performance at both multivariate models and ROC curve analysis. Noteworthy, we found that CD142 exposed onto surface of EV was biologically active. CD142 activity was higher in COVID (+) patients and correlated with TNF-α serum levels. Interpretation In SARS-CoV-2 infection the systemic inflammatory response results in cell-release of substantial amounts of procoagulant EV that may act as clotting initiation agents, contributing to disease severity. Funding Cardiocentro Ticino Institute, Ente ospedaliero Cantonale, Lugano-Switzerland.
Collapse
Affiliation(s)
- Carolina Balbi
- Laboratory of Cellular and Molecular Cardiology, Istituto Cardiocentro Ticino, Ente Ospedaliero Cantonale, Lugano, Switzerland; Center for Molecular Cardiology, Zurich, Switzerland
| | - Jacopo Burrello
- Laboratory for Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Ente Ospedaliero Cantonale Lugano, Switzerland
| | - Sara Bolis
- Laboratory of Cellular and Molecular Cardiology, Istituto Cardiocentro Ticino, Ente Ospedaliero Cantonale, Lugano, Switzerland; Laboratory for Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Ente Ospedaliero Cantonale Lugano, Switzerland
| | - Edoardo Lazzarini
- Laboratory for Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Ente Ospedaliero Cantonale Lugano, Switzerland
| | - Vanessa Biemmi
- Laboratory for Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Ente Ospedaliero Cantonale Lugano, Switzerland
| | - Enea Pianezzi
- Laboratory of Microbiology, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Alessio Burrello
- Department of Electrical, Electronic and Information Engineering (DEI), University of Bologna, Bologna, Italy
| | - Elena Caporali
- Cardiology Department, Istituto Cardiocentro Ticino, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Lorenzo Gauthier Grazioli
- Internal Medicine Department, Ospedale Regionale di Lugano, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Gladys Martinetti
- Laboratory of Microbiology, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Tanja Fusi-Schmidhauser
- Internal Medicine Department, Ospedale Regionale di Lugano, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Giuseppe Vassalli
- Laboratory of Cellular and Molecular Cardiology, Istituto Cardiocentro Ticino, Ente Ospedaliero Cantonale, Lugano, Switzerland; Center for Molecular Cardiology, Zurich, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano, Switzerland
| | - Giorgia Melli
- Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano, Switzerland; Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Lugano, Switzerland
| | - Lucio Barile
- Laboratory for Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Ente Ospedaliero Cantonale Lugano, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano, Switzerland; Institute of Life Science, Scuola Superiore Sant'Anna, Pisa, Italy.
| |
Collapse
|
40
|
Merino A, Hoogduijn MJ, Molina-Molina M, Arias-Salgado EG, Korevaar SS, Baan CC, Montes-Worboys A. Membrane particles from mesenchymal stromal cells reduce the expression of fibrotic markers on pulmonary cells. PLoS One 2021; 16:e0248415. [PMID: 33730089 PMCID: PMC7968667 DOI: 10.1371/journal.pone.0248415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 02/26/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a devastating lung disease with limited treatment options in which the telomere shortening is a strong predictive factor of poor prognosis. Mesenchymal stromal cells (MSC) administration is probed in several experimental induced lung pathologies; however, MSC might stimulate fibrotic processes. A therapy that avoids MSC side effects of transformation would be an alternative to the use of living cells. Membranes particles (MP) are nanovesicles artificially generated from the membranes of MSC containing active enzymes involved in ECM regeneration. We aimed to investigate the anti-fibrotic role of MP derived from MSC in an in vitro model of pulmonary fibrosis. METHODS Epithelial cells (A549) and lung fibroblasts, from IPF patients with different telomere length, were co-cultured with MP and TGF-β for 48h and gene expression of major pro-fibrotic markers were analyzed. RESULTS About 90% of both types of cells effectively took up MP without cytotoxic effects. MP decreased the expression of profibrotic proteins such as Col1A1, Fibronectin and PAI-1, in A549 cells. In fibroblasts culture, there was a different response in the inhibitory effect of MP on some pro-fibrotic markers when comparing fibroblast from normal telomere length patients (FN) versus short telomere length (FS), but both types showed an inhibition of Col1A1, Tenascin-c, PAI-1 and MMP-1 gene expression after MP treatment. CONCLUSIONS MP conserve some of the properties attributed to the living MSC. This study shows that MP target lung cells, via which they may have a broad anti-fibrotic effect.
Collapse
Affiliation(s)
- Ana Merino
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Martin J. Hoogduijn
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Maria Molina-Molina
- Unit of Interstitial Lung Diseases, Pulmonary Department, University Hospital of Bellvitge, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
- CIBER of Respiratory Diseases (CIBERES) Health Institute Carlos III, Madrid, Spain
| | | | - Sander S. Korevaar
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Carla C. Baan
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ana Montes-Worboys
- Unit of Interstitial Lung Diseases, Pulmonary Department, University Hospital of Bellvitge, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
41
|
Iyer A, Humphries TLR, Owens EP, Zhao KN, Masci PP, Johnson DW, Nikolic-Paterson D, Gobe GC, Fairlie DP, Vesey DA. PAR2 Activation on Human Kidney Tubular Epithelial Cells Induces Tissue Factor Synthesis, That Enhances Blood Clotting. Front Physiol 2021; 12:615428. [PMID: 33776786 PMCID: PMC7987918 DOI: 10.3389/fphys.2021.615428] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/12/2021] [Indexed: 12/14/2022] Open
Abstract
Coagulation abnormalities and increased risk of atherothrombosis are common in patients with chronic kidney diseases (CKD). Mechanisms that alter renal hemostasis and lead to thrombotic events are not fully understood. Here we show that activation of protease activated receptor-2 (PAR2) on human kidney tubular epithelial cells (HTECs), induces tissue factor (TF) synthesis and secretion that enhances blood clotting. PAR-activating coagulation-associated protease (thrombin), as well as specific PAR2 activators (matriptase, trypsin, or synthetic agonist 2f-LIGRLO-NH2 (2F), induced TF synthesis and secretion that were potently inhibited by PAR2 antagonist, I-191. Thrombin-induced TF was also inhibited by a PAR1 antagonist, Vorapaxar. Peptide activators of PAR1, PAR3, and PAR4 failed to induce TF synthesis. Differential centrifugation of the 2F-conditoned medium sedimented the secreted TF, together with the exosome marker ALG-2 interacting protein X (ALIX), indicating that secreted TF was associated with extracellular vesicles. 2F-treated HTEC conditioned medium significantly enhanced blood clotting, which was prevented by pre-incubating this medium with an antibody for TF. In summary, activation of PAR2 on HTEC stimulates synthesis and secretion of TF that induces blood clotting, and this is attenuated by PAR2 antagonism. Thrombin-induced TF synthesis is at least partly mediated by PAR1 transactivation of PAR2. These findings reveal how underlying hemostatic imbalances might increase thrombosis risk and subsequent chronic fibrin deposition in the kidneys of patients with CKD and suggest PAR2 antagonism as a potential therapeutic strategy for intervening in CKD progression.
Collapse
Affiliation(s)
- Abishek Iyer
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
- Centre for Inflammation and Disease Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Tyrone L. R. Humphries
- Centre for Kidney Disease Research, Translational Research Institute, Faculty of Medicine at the Princess Alexandra Hospital, The University of Queensland, Woolloongabba, QLD, Australia
| | - Evan P. Owens
- Centre for Kidney Disease Research, Translational Research Institute, Faculty of Medicine at the Princess Alexandra Hospital, The University of Queensland, Woolloongabba, QLD, Australia
| | - Kong-Nan Zhao
- Centre for Venomics Research, Faculty of Medicine, The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Paul P. Masci
- Centre for Venomics Research, Faculty of Medicine, The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - David W. Johnson
- Centre for Kidney Disease Research, Translational Research Institute, Faculty of Medicine at the Princess Alexandra Hospital, The University of Queensland, Woolloongabba, QLD, Australia
- Department of Nephrology, The University of Queensland at Princess Alexandra Hospital, Woolloongabba, QLD, Australia
| | - David Nikolic-Paterson
- Department of Nephrology, Monash Medical Centre and Monash University Centre for Inflammatory Diseases, Melbourne, VIC, Australia
| | - Glenda C. Gobe
- Centre for Kidney Disease Research, Translational Research Institute, Faculty of Medicine at the Princess Alexandra Hospital, The University of Queensland, Woolloongabba, QLD, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - David P. Fairlie
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
- Centre for Inflammation and Disease Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - David A. Vesey
- Centre for Kidney Disease Research, Translational Research Institute, Faculty of Medicine at the Princess Alexandra Hospital, The University of Queensland, Woolloongabba, QLD, Australia
- Department of Nephrology, The University of Queensland at Princess Alexandra Hospital, Woolloongabba, QLD, Australia
| |
Collapse
|
42
|
Rosell A, Aguilera K, Hisada Y, Schmedes C, Mackman N, Wallén H, Lundström S, Thålin C. Prognostic value of circulating markers of neutrophil activation, neutrophil extracellular traps, coagulation and fibrinolysis in patients with terminal cancer. Sci Rep 2021; 11:5074. [PMID: 33658563 PMCID: PMC7930088 DOI: 10.1038/s41598-021-84476-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/16/2021] [Indexed: 12/12/2022] Open
Abstract
Predicting survival accurately in patients with advanced cancer is important in guiding interventions and planning future care. Objective tools are therefore needed. Blood biomarkers are appealing due to their rapid measurement and objective nature. Thrombosis is a common complication in cancer. Recent data indicate that tumor-induced neutrophil extracellular traps (NETs) are pro-thrombotic. We therefore performed a comprehensive investigation of circulating markers of neutrophil activation, NET formation, coagulation and fibrinolysis in 106 patients with terminal cancer. We found that neutrophil activation and NET markers were prognostic in terminal cancer patients. Interestingly, markers of coagulation and fibrinolysis did not have a prognostic value in this patient group, and there were weak or no correlations between these markers and markers of neutrophil activation and NETs. This suggest that NETs are linked to a poor prognosis through pathways independent of coagulation. Additional studies are needed to determine the utility of circulating neutrophil activation and NET markers, alone or in concert with established clinical parameters, as objective and reliable prognostic tools in advanced cancer.
Collapse
Affiliation(s)
- Axel Rosell
- Department of Clinical Sciences, Danderyd Hospital, Division of Internal Medicine, Karolinska Institutet, Stockholm, 182 88, Sweden.
| | - Katherina Aguilera
- Department of Clinical Sciences, Danderyd Hospital, Division of Internal Medicine, Karolinska Institutet, Stockholm, 182 88, Sweden
| | - Yohei Hisada
- UNC Blood Research Center, Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Clare Schmedes
- UNC Blood Research Center, Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nigel Mackman
- UNC Blood Research Center, Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Håkan Wallén
- Department of Clinical Sciences, Danderyd Hospital, Division of Cardiovascular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Staffan Lundström
- Palliative Care Services and R&D-Unit, Stockholms Sjukhem Foundation, Stockholm, Sweden
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Charlotte Thålin
- Department of Clinical Sciences, Danderyd Hospital, Division of Internal Medicine, Karolinska Institutet, Stockholm, 182 88, Sweden
| |
Collapse
|
43
|
Rosell A, Havervall S, von Meijenfeldt F, Hisada Y, Aguilera K, Grover SP, Lisman T, Mackman N, Thålin C. Patients With COVID-19 Have Elevated Levels of Circulating Extracellular Vesicle Tissue Factor Activity That Is Associated With Severity and Mortality-Brief Report. Arterioscler Thromb Vasc Biol 2021; 41:878-882. [PMID: 33267656 PMCID: PMC7837685 DOI: 10.1161/atvbaha.120.315547] [Citation(s) in RCA: 168] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/15/2020] [Indexed: 01/23/2023]
Abstract
OBJECTIVE Patients with coronavirus disease 2019 (COVID-19) have a high rate of thrombosis. We hypothesized that severe acute respiratory syndrome coronavirus 2 infection leads to induction of TF (tissue factor) expression and increased levels of circulating TF-positive extracellular vesicles (EV) that may drive thrombosis. Approach and Results: We measured levels of plasma EV TF activity in 100 patients with COVID-19 with moderate and severe disease and 28 healthy controls. Levels of EV TF activity were significantly higher in patients with COVID-19 compared with controls. In addition, levels of EV TF activity were associated with disease severity and mortality. Finally, levels of EV TF activity correlated with several plasma markers, including D-dimer, which has been shown to be associated with thrombosis in patients with COVID-19. CONCLUSIONS Our results indicate that severe acute respiratory syndrome coronavirus 2 infection induces the release of TF-positive EVs into the circulation that are likely to contribute to thrombosis in patients with COVID-19. EV TF activity was also associated with severity and mortality.
Collapse
Affiliation(s)
- Axel Rosell
- Division of Internal Medicine, Department of Clinical Sciences, Karolinska Institutet, Danderyd Hospital, Stockholm, Sweden (A.R., S.H., K.A., C.T.)
| | - Sebastian Havervall
- Division of Internal Medicine, Department of Clinical Sciences, Karolinska Institutet, Danderyd Hospital, Stockholm, Sweden (A.R., S.H., K.A., C.T.)
| | - Fien von Meijenfeldt
- Surgical Research Laboratory, Department of Surgery, University of Groningen, University Medical Center Groningen, the Netherlands (F.v.M., T.L.)
| | - Yohei Hisada
- UNC Blood Research Center, Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill (Y.H., S.P.G., N.M.)
| | - Katherina Aguilera
- Division of Internal Medicine, Department of Clinical Sciences, Karolinska Institutet, Danderyd Hospital, Stockholm, Sweden (A.R., S.H., K.A., C.T.)
| | - Steven P. Grover
- UNC Blood Research Center, Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill (Y.H., S.P.G., N.M.)
| | - Ton Lisman
- Surgical Research Laboratory, Department of Surgery, University of Groningen, University Medical Center Groningen, the Netherlands (F.v.M., T.L.)
| | - Nigel Mackman
- UNC Blood Research Center, Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill (Y.H., S.P.G., N.M.)
| | - Charlotte Thålin
- Division of Internal Medicine, Department of Clinical Sciences, Karolinska Institutet, Danderyd Hospital, Stockholm, Sweden (A.R., S.H., K.A., C.T.)
| |
Collapse
|
44
|
Biologically Active Tissue Factor-Bearing Larger Ectosome-Like Extracellular Vesicles in Malignant Effusions from Ovarian Cancer Patients: Correlation with Incidence of Thrombosis. Int J Mol Sci 2021; 22:ijms22020790. [PMID: 33466775 PMCID: PMC7829758 DOI: 10.3390/ijms22020790] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/10/2021] [Accepted: 01/12/2021] [Indexed: 12/12/2022] Open
Abstract
The development of malignant effusions such as ascites reflects a massive progression of a malignant disease. In patients with ovarian carcinoma, a high amount of ascites (>500 mL) is an independent negative prognostic marker. The composition and constituents of ascites reflect the inflammatory environment of the underlying tumor. Increased cellular resistance of ascites-derived tumor cells and the development of venous thromboembolic events (VTE) are major risks for these patients, especially in patients with advanced ovarian carcinoma. In this study, we discuss the release of tissue factor-bearing extracellular vesicles (TF+ EVs) from tumor cells into the environment (ascites fluid) and their systemic spreading as a possible causal explanation of the pathologic coagulation status in these patients. We obtained ascites from patients with advanced ovarian carcinoma, collected during surgery or therapeutic paracentesis (n = 20). Larger ectosome-like EVs were isolated using sequential centrifugation, quantified by high-resolution flow cytometry and analyzed using nanoparticle tracking analysis. Furthermore, the pro-coagulant properties (TF activity) of EVs were determined. Compared to published TF activities of EVs from healthy persons, TF activities of EVs derived from ascites of patients with ovarian cancer were very high, with a median of 80 pg/mL. The rate of VTE, as reported in the patient files, was high as well (35%, 7 out of 20). Furthermore, all but one patient with VTE had EV concentrations above the median within their ascetic fluid (p < 0.02). Since VTE continues to be a frequent cause of death in cancer patients, prophylactic antithrombotic treatment might be worth considering in these patients. However, given the risk of bleeding, more clinical data are warranted. Although the study is too small to enable reaching a conclusion on direct clinical implementation, it can well serve as a proof of principle and a rationale to initiate a prospective clinical study with different patient subgroups. We also show ex vivo that these larger ectosome-like EVs induce intracellular ERK phosphorylation and tumor cell migration, which is not directly related to their pro-coagulative potency, but might help to understand why cancer patients with thromboembolic events have a poorer prognosis.
Collapse
|
45
|
Mattila N, Hisada Y, Przybyla B, Posma J, Jouppila A, Haglund C, Seppänen H, Mackman N, Lassila R. Levels of the cancer biomarker CA 19-9 are associated with thrombin generation in plasma from treatment-naïve pancreatic cancer patients. Thromb Res 2020; 199:21-31. [PMID: 33385797 DOI: 10.1016/j.thromres.2020.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/08/2020] [Accepted: 12/18/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is associated with a hypercoagulable state and high mortality. Increases in the plasma levels of tumor marker carbohydrate antigen (CA) 19-9 are used in diagnosis and follow-up but have also been reported to precede venous thromboembolism (VTE). AIMS We examined the association between CA 19-9 and thrombin generation (TG) in plasma from PDAC patients, as well as their association with coagulation biomarkers prior to pancreatic surgery. In addition, we determined the effect of commercial sources of CA 19-9 on TG. METHODS We collected plasma from 58 treatment-naïve PDAC patients without any signs of VTE. We measured levels of CA 19-9, FVIII, fibrinogen, D-dimer, antithrombin and extracellular vesicle (EV) tissue factor (TF) activity and TG using a Calibrated Automated Thrombogram (CAT). The effect of different commercial sources of CA 19-9 on TG in Standard Human Plasma (SHP) was also studied. RESULTS Patient plasma samples were divided into 4 preoperative groups based on the level of CA 19-9: none < 2, low = 3-200, high = 201-1000, and very high > 1000 U/mL. CA 19-9 levels were associated with several of the TG parameters, including endogenous thrombin potential, peak, and time to peak. CA 19-9 did not associate with any of the coagulation biomarkers. Spiking of SHP with CA 19-9 increased TG but this was decreased by an anti-TF antibody. CONCLUSIONS CA 19-9 was associated with TG in patients prior to any pancreatic cancer treatments or signs of VTE. Some commercial sources of CA 19-9 enhanced TG in SHP seemingly due to contaminating TF.
Collapse
Affiliation(s)
- N Mattila
- Department of Surgery, Helsinki University Hospital, Helsinki, Finland; Department of Hematology, Coagulation Disorders Unit, Comprehensive Cancer Center, Helsinki University Hospital, Helsinki, Finland
| | - Y Hisada
- UNC Blood Research Center, Division of Hematology/Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - B Przybyla
- Department of Hematology, Coagulation Disorders Unit, Comprehensive Cancer Center, Helsinki University Hospital, Helsinki, Finland
| | - J Posma
- Laboratory for Clinical Thrombosis and Hemostasis, Department of Internal Medicine, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, the Netherlands; Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, the Netherlands
| | - A Jouppila
- Department of Hematology, Coagulation Disorders Unit, Comprehensive Cancer Center, Helsinki University Hospital, Helsinki, Finland; Clinical Research Institute HUCH, Helsinki, Finland; Research Programs Unit in Systems Oncology, University of Helsinki, Helsinki, Finland
| | - C Haglund
- Department of Surgery, Helsinki University Hospital, Helsinki, Finland; Translational Cancer Medicine, University of Helsinki, Helsinki, Finland
| | - H Seppänen
- Department of Surgery, Helsinki University Hospital, Helsinki, Finland; Translational Cancer Medicine, University of Helsinki, Helsinki, Finland
| | - N Mackman
- UNC Blood Research Center, Division of Hematology/Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - R Lassila
- Department of Hematology, Coagulation Disorders Unit, Comprehensive Cancer Center, Helsinki University Hospital, Helsinki, Finland; Research Programs Unit in Systems Oncology, University of Helsinki, Helsinki, Finland; HUSLAB Laboratory Services, Clinical Chemistry, Helsinki, Finland.
| |
Collapse
|
46
|
Humphries TLR, Johnson LA, Masci PP, Gobe GC, Vesey DA. Progress curve analysis of microtitre plate plasma clotting assays. Assessment of tissue factor levels. Anal Biochem 2020; 614:114060. [PMID: 33271154 DOI: 10.1016/j.ab.2020.114060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/23/2020] [Accepted: 11/27/2020] [Indexed: 11/25/2022]
Abstract
MTP plasma clotting assays monitor the time course of fibrin formation in re-calcified plasma by absorbance measurements and are increasingly used as alternatives to traditional one-point clot time assays employed in clinical laboratories to detect thrombotic disorders. The parameters derived from these analyses are analogous to thromboelastography viz. time, rate and maximum extent of clot formation. The derived parameters, based on the whole course of the clotting reaction are more robust, informative and quantitative than single-point clot time assays. However, the parameters themselves are usually obtained arbitrarily by crude graphical analysis of subjectively selected points of progress curves. The current work aimed to investigate the sensitivity and reproducibility of an MTP clotting assay and examine its suitability for measuring tissue factor (TF) levels in cell culture medium and patient urine. The results demonstrate that progress curves can be analysed by fitting a logistic equation, derived from a simplified autocatalytic clot formation model. The parameters, maximum amplitude (Fm), rate constant (k), time to half-maximum amplitude (tm) and maximum rate of clot formation (vm), fit a power curve showing limiting effects with increasing TF concentration. Log/log plots of tm and k against TF concentration provide standard curves for assessment of unknowns.
Collapse
Affiliation(s)
- Tyrone L R Humphries
- Kidney Disease Research Collaborative, Princess Alexandra Hospital, University of Queensland and Translational Research Institute, Brisbane, Australia
| | - Lambro A Johnson
- Centre for Venomics Research, School of Medicine, University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Paul P Masci
- Centre for Venomics Research, School of Medicine, University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Glenda C Gobe
- Kidney Disease Research Collaborative, Princess Alexandra Hospital, University of Queensland and Translational Research Institute, Brisbane, Australia
| | - David A Vesey
- Kidney Disease Research Collaborative, Princess Alexandra Hospital, University of Queensland and Translational Research Institute, Brisbane, Australia.
| |
Collapse
|
47
|
Kim AS, Khorana AA, McCrae KR. Mechanisms and biomarkers of cancer-associated thrombosis. Transl Res 2020; 225:33-53. [PMID: 32645431 PMCID: PMC8020882 DOI: 10.1016/j.trsl.2020.06.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/24/2020] [Accepted: 06/30/2020] [Indexed: 02/07/2023]
Abstract
Cancer-associated thrombosis is a leading cause of non-cancer death in cancer patients and is comprised of both arterial and venous thromboembolism (VTE). There are multiple risk factors for developing VTE, including cancer type, stage, treatment, and other medical comorbidities, which suggests that the etiology of thrombosis is multifactorial. While cancer-associated thrombosis can be treated with anticoagulation, benefits of therapy must be balanced with the increased bleeding risks seen in patients with cancer. Although risk models exist for primary and recurrent VTE, additional predictors are needed to improve model performance and discrimination of high-risk patients. This review will outline the diverse mechanisms driving thrombosis in cancer patients, as well as provide an overview of biomarkers studied in thrombosis risk and important considerations when selecting candidate biomarkers.
Collapse
Affiliation(s)
- Ann S Kim
- Taussig Cancer Institute, Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, Ohio
| | - Alok A Khorana
- Taussig Cancer Institute, Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, Ohio
| | - Keith R McCrae
- Taussig Cancer Institute, Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, Ohio.
| |
Collapse
|
48
|
Franco C, Lacroix R, Vallier L, Judicone C, Bouriche T, Laroumagne S, Astoul P, Dignat-George F, Poncelet P. A new hybrid immunocapture bioassay with improved reproducibility to measure tissue factor-dependent procoagulant activity of microvesicles from body fluids. Thromb Res 2020; 196:414-424. [PMID: 33038585 DOI: 10.1016/j.thromres.2020.09.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/25/2020] [Accepted: 09/15/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND The procoagulant activity of tissue factor-bearing microvesicles (MV-TF) has been associated with the risk of developing venous thrombosis in cancer patients. However, MV-TF assays are limited either by i) a lack of specificity, ii) a low sensitivity, or iii) a lack of repeatability when high-speed centrifugation (HS-C) is used to isolate MV. Therefore, our objective was to develop a new hybrid "capture-bioassay" with improved reproducibility combining MV immunocapture from biofluids and measurement of their TF activity. MATERIALS AND METHODS Factor Xa generation and flow cytometry assays were used to evaluate IMS beads performance, and to select the most effective capture antibodies. The analytical performance between IMS-based and HS-C-based assays was evaluated with various models of plasma samples (from LPS-activated blood, spiked with tumoral MV, or with saliva MV) and different biofluids (buffer, plasma, saliva, and pleural fluid). RESULTS Combining both CD29 and CD59 antibodies on IMS beads was as efficient as HS-C to isolate plasmatic PS+ MV. The IMS-based strategy gave significantly higher levels of MV-TF activity than HS-C in tumor MV spiked buffer, and both pleural fluids and saliva samples. Surprisingly, lower TF values were measured in plasma due to TFPI (TF pathway inhibitor) non-specifically adsorbed onto beads. This was overcome by adding a TFPI-blocking antibody. After optimization, the new IMS-based assay significantly improved reproducibility of MV-TF bioassay versus the HS-C-based assay without losing specificity and sensitivity. In addition, this approach could identify the cellular origin of MV-TF in various biological fluids. CONCLUSION Compared to HS-C, the IMS-based measurement of MV-TF activity in body fluids improves reproducibility and makes the assay compatible with clinical practice. It can facilitate future automation.
Collapse
Affiliation(s)
- Corentin Franco
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France; BioCytex, Research and Technology Department, Marseille, France.
| | - Romaric Lacroix
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France; Aix Marseille Univ, APHM, CHU La Conception, Department of Hematology and Vascular Biology, Marseille, France.
| | - Loris Vallier
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France; Aix Marseille Univ, APHM, CHU La Conception, Department of Hematology and Vascular Biology, Marseille, France
| | - Coralie Judicone
- BioCytex, Research and Technology Department, Marseille, France.
| | - Tarik Bouriche
- BioCytex, Research and Technology Department, Marseille, France.
| | - Sophie Laroumagne
- Aix Marseille Univ, APHM, Hôpital Nord, Division of Thoracic Oncology, Pleural Diseases, and Interventional Pulmonology, Marseille, France.
| | - Philippe Astoul
- Aix Marseille Univ, APHM, Hôpital Nord, Division of Thoracic Oncology, Pleural Diseases, and Interventional Pulmonology, Marseille, France.
| | - Francoise Dignat-George
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France; Aix Marseille Univ, APHM, CHU La Conception, Department of Hematology and Vascular Biology, Marseille, France.
| | | |
Collapse
|
49
|
Schmedes CM, Grover SP, Hisada YM, Goeijenbier M, Hultdin J, Nilsson S, Thunberg T, Ahlm C, Mackman N, Fors Connolly AM. Circulating Extracellular Vesicle Tissue Factor Activity During Orthohantavirus Infection Is Associated With Intravascular Coagulation. J Infect Dis 2020; 222:1392-1399. [PMID: 31722433 PMCID: PMC7488197 DOI: 10.1093/infdis/jiz597] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/11/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Puumala orthohantavirus (PUUV) causes hemorrhagic fever with renal syndrome (HFRS). Patients with HFRS have an activated coagulation system with increased risk of disseminated intravascular coagulation (DIC) and venous thromboembolism (VTE). The aim of the study was to determine whether circulating extracellular vesicle tissue factor (EVTF) activity levels associates with DIC and VTE (grouped as intravascular coagulation) in HFRS patients. METHODS Longitudinal samples were collected from 88 HFRS patients. Patients were stratified into groups of those with intravascular coagulation (n = 27) and those who did not (n = 61). We measured levels of circulating EVTF activity, fibrinogen, activated partial prothrombin time, D-dimer, tissue plasminogen activator (tPA), plasminogen activator inhibitor 1 (PAI-1), and platelets. RESULTS Plasma EVTF activity was transiently increased during HFRS. Levels of EVTF activity were significantly associated with plasma tPA and PAI-1, suggesting that endothelial cells could be a potential source. Patients with intravascular coagulation had significantly higher peak EVTF activity levels compared with those who did not, even after adjustment for sex and age. The peak EVTF activity value predicting intravascular coagulation was 0.51 ng/L with 63% sensitivity and 61% specificity with area under the curve = 0.63 (95% confidence interval, 0.51-0.76) and P = .046. CONCLUSIONS Plasma EVTF activity during HFRS is associated with intravascular coagulation.
Collapse
Affiliation(s)
- Clare M Schmedes
- Department of Medicine, Division of Hematology and Oncology, University of North Carolina at Chapel Hill, Chapel Hill, North Carlina, USA
| | - Steven P Grover
- Department of Medicine, Division of Hematology and Oncology, University of North Carolina at Chapel Hill, Chapel Hill, North Carlina, USA
| | - Yohei M Hisada
- Department of Medicine, Division of Hematology and Oncology, University of North Carolina at Chapel Hill, Chapel Hill, North Carlina, USA
| | - Marco Goeijenbier
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Johan Hultdin
- Department of Medical Biosciences, Clinical Chemistry, Umeå University, Umeå, Sweden
| | - Sofie Nilsson
- Department of Medical Biosciences, Clinical Chemistry, Umeå University, Umeå, Sweden
| | - Therese Thunberg
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Clas Ahlm
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Nigel Mackman
- Department of Medicine, Division of Hematology and Oncology, University of North Carolina at Chapel Hill, Chapel Hill, North Carlina, USA
| | | |
Collapse
|
50
|
Greenberg A, Huber BR, Liu DX, Logue JP, Hischak AMW, Hart RJ, Abbott M, Isic N, Hisada YM, Mackman N, Bennett RS, Hensley LE, Connor JH, Crossland NA. Quantification of Viral and Host Biomarkers in the Liver of Rhesus Macaques: A Longitudinal Study of Zaire Ebolavirus Strain Kikwit (EBOV/Kik). THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1449-1460. [PMID: 32275904 PMCID: PMC7322367 DOI: 10.1016/j.ajpath.2020.03.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 03/12/2020] [Accepted: 03/17/2020] [Indexed: 12/21/2022]
Abstract
Zaire ebolavirus (EBOV) causes Ebola virus disease (EVD), which carries a fatality rate between 25% and 90% in humans. Liver pathology is a hallmark of terminal EVD; however, little is known about temporal disease progression. We used multiplexed fluorescent immunohistochemistry and in situ hybridization in combination with whole slide imaging and image analysis (IA) to quantitatively characterize temporospatial signatures of viral and host factors as related to EBOV pathogenesis. Eighteen rhesus monkeys euthanized between 3 and 8 days post-infection, and 3 uninfected controls were enrolled in this study. Compared with semiquantitative histomorphologic ordinal scoring, quantitative IA detected subtle and progressive features of early and terminal EVD that was not feasible with routine approaches. Sinusoidal macrophages were the earliest cells to respond to infection, expressing proinflammatory cytokine interleukin 6 (IL6) mRNA, which was subsequently also observed in fibrovascular compartments. The mRNA of interferon-stimulated gene-15 (ISG-15), also known as ISG15 ubiquitin like modifier (ISG15), was observed early, with a progressive and ubiquitous hybridization signature involving mesenchymal and epithelial compartments. ISG-15 mRNA was prominent near infected cells, but not in infected cells, supporting the hypothesis that bystander cells produce a robust interferon gene response. This study contributes to our current understanding of early EVD progression and illustrates the value that digital pathology and quantitative IA serve in infectious disease research.
Collapse
Affiliation(s)
- Alexandra Greenberg
- Graduate Medical Sciences, Boston University School of Medicine, Boston, Massachusetts
| | - Bertrand R Huber
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
| | - David X Liu
- Integrated Research Facility, National Institute for Allergy and Infectious Diseases (NIAID), Frederick, Maryland
| | - James P Logue
- Integrated Research Facility, National Institute for Allergy and Infectious Diseases (NIAID), Frederick, Maryland
| | - Amanda M W Hischak
- Integrated Research Facility, National Institute for Allergy and Infectious Diseases (NIAID), Frederick, Maryland
| | - Randy J Hart
- Integrated Research Facility, National Institute for Allergy and Infectious Diseases (NIAID), Frederick, Maryland
| | - Maureen Abbott
- Integrated Research Facility, National Institute for Allergy and Infectious Diseases (NIAID), Frederick, Maryland
| | - Nejra Isic
- Integrated Research Facility, National Institute for Allergy and Infectious Diseases (NIAID), Frederick, Maryland
| | - Yohei M Hisada
- Division of Hematology and Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Nigel Mackman
- Division of Hematology and Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Richard S Bennett
- Integrated Research Facility, National Institute for Allergy and Infectious Diseases (NIAID), Frederick, Maryland
| | - Lisa E Hensley
- Integrated Research Facility, National Institute for Allergy and Infectious Diseases (NIAID), Frederick, Maryland
| | - John H Connor
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Nicholas A Crossland
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts.
| |
Collapse
|